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Abstract

Network Service Chaining (NSC) is introduced by Network Function Virtualization

(NFV) to give the possibility to select Network Services (NSs) according to the needs

or requests of a user. Currently, there are problems that reduce the flexibility of

NSC and cause delays, traffic with unnecessary routes and few control options for

administrators. Although there are different types of NSC (e.g. dynamic, and static)

and some solutions (e.g. automatic algorithms, and frameworks) that allow choosing

the one that suits the best the needs of the user, they do not give a full solution to

the existing problem. In this undergraduate work, we propose an architecture for

semi-automatic NSC, using advantages of mashups technology to achieve a solution

to the current lack of flexibility of the NSC. With proof-of-concept based on Software

Defined Networks (SDN), we were able to demonstrate that our architecture allows

solutions of low consumption in response time (<350 ms) and bandwidth (<3 KB),

giving full control to the administrator to choose the network services that are

executed and avoiding the need to have advanced knowledge.
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Chapter 1

Introduction

1.1 Problem Statement

In the current technological evolution around the computer networks and communi-

cations highlights the importance of NFV. The main function of NFV is to decouple

the network services from the specialized hardware to locate them in commodity

hardware [2]. Such decoupling allows Telecommunications Service Providers (TSPs)

to offer more network services (NSs) to users and performing a faster deployment of

NSs. In addition, with the use of NFV, TSPs reduce Capital Expenditures (CAPEX)

and Operating Expenses (OPEX) due to the integrated management option [3].

The current networks have several shortcomings and one of them is the lack of flex-

ibility in the customization of NSs, i.e., the possibility of selecting NSs according to

the needs or request of a user. In this sense, NFV introduces a fundamental concept,

Network Service Chaining (NSC). The authors of [1] define NSC as an provider-level

process for the continuous delivery of services based on Network Functions (NF) as-

sociations.

Currently, the NSC concept is evolving due to multiple problems in the delivery of

NSs such as delays and unnecessary routes, which damage the throughput of services

and network resources are saturated. In addition, addressing the NSC challenge re-

1
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quires taking into account that it can be analyzed from three points of view, which

are: static, semi-automatic and dynamic. Static NSC is used in traditional computer

networks and, basically, it consists of deploying NSs using specialized hardware and

predetermined service chains. Therefore, when a new NS (e.g. firewall, Deep Packet

Inspection, Network Address Translation) is requested by a user, the acquisition

and installation of specialized hardware is necessary for the new NS. Related to dy-

namic NSC, there are several works in which the authors propose solutions based on

frameworks [4], algorithms [5] and models [6]. Although such solutions obtain sig-

nificant improvement percentages (e.g. response times, throughput, error reduction

and delay) do not define an integral solution that increases the NSC flexibility and

customization.

Concerning to semi-automatic NSC, there is a information and work lack that de-

velop it alternative solution. In this way, it must be taken into account that per-

forming semi-automatic NSC includes human intervention (to a lesser extent than

static NSC) and, therefore, it is necessary to add a concept that facilitates human-

computer interaction. One such concept, which has been used in different domains,

is mashups. Mashups are web applications that integrate several resources available

on the Internet [7], which allows the composition of new services and, in the specific

case of our work, would facilitate networks administrator the NSC.

The mashups technology has not been used in NSC but there are works done around

networking. Some of these works are: [7] in which the authors introduce a mashup

ecosystem, named Mashment Ecosystem (Mashment are mashups aimed at address-

ing network situations), which allows providing solutions to overcome situations of

network management. In addition, in [8], the authors demonstrate that mashups

technology can be used to carry out the monitoring of virtual nodes. Furthermore,

[9] proposes a model focused on cloud services mashups, named QoS Aware Services

Mashup (QASM), which facilitates the selection of service instances and data flow

paths to satisfy with Quality of Service (QoS) requirements. Finally, [10] defines a

mashups-based approach for network management that facilitates network admin-

istrators to build their own solutions based on requirements of the elements that

make up an SDN.
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To sum up, in the mentioned works have been proposed solutions that are not inte-

gral to the NSC, none of which take advantage of the mashups technology. Moreover,

the projects developed with mashups technology have not yet been focused on NSC,

which allows defining the following research question:

How to carry out NSC by using mashups?

In order to answer this research question, we present the following objectives.

1.2 Objectives

1.2.1 General

• Performing the network service chaining by using mashups.

1.2.2 Specifics

• To adapt the mashups-based architecture proposed in [8] [11] to support the

network services chaining.

• To implement a proof-of-concept of adapted architecture.

• To evaluate proof-of-concept throughput in an NFV environment.

1.3 Research Contributions

The main contributions provided in this work are mentioned below:

• An adaptation of the mashups-based architecture, proposed in works [8] [11]

to support the network service chaining.
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• A proof-of-concept of the architecture proposed for the network service chain-

ing.

• Late evaluation of the proposed architecture for the network service chaining

in terms of bandwidth, flexibility and time consumption.

1.4 Methodology and Activities

The activities developed in our undergraduate work were organized using the concept

of Work Breakdown Structure (WBS). WBS defines a hierarchical structure by levels

in which the initial level or root defines the most abstract activity and, the following

levels define the tasks to be developed for its fulfillment [12]. Figure 1.1 shows the

hierarchical schema of the work packages.

We use Scrum [13] as an agile development methodology that will be used for soft-

ware engineering processes. The activities to be carried out in each work package

are shown below.

Figure 1.1: Work packets.
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WP1. Initial knowledge basis generation

• Review of related work.

• Generation of the theoretical basis.

• Definition of the proof-of-concept for NSC.

WP2. Proof-of-concept design for network service chaining

• Definition of key elements to design and build the solution.

• Design of NSC proof-of-concept by mashups.

WP3. Prototype building and proof-of-concept evaluation

• Implementation of a prototype.

• Design and enforcement of system evaluation.

• Data collection for analysis.

WP4. Publishing

• Paper writing.

• Final document writing.
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1.5 Publications

Our NSC proposal presented in this final document will be reported to the scientific

community through paper submission to renowned journal.

• Number 1, Julian Andrés Fuentes Vidal, Juan David Salazar Idrobo,

Oscar Mauricio Caicedo Rendon. An approach based on mashups for

Network Service Chaining: A SDN case study

– Status: Under reviewing

1.6 Document Structure

This document has been divided into chapters described below.

• Chapter 1 presents the Introduction that contains the Problem Statement,

Objectives, Research Contributions, Methodology and Activities, Publications

and the structure of this document.

• Chapter 2 presents the Background about the relevant topics concerning our

research. These topics include NFV, NSC and mashups.

• Chapter 3 presents the Related Work that describes the researches works

closer to our proposal.

• Chapter 4 introduces the mashups-based architecture for Semi-automatic

NSC, an approach that allow conforming NSs by using mashups. To do this,

we describe an overview of the operation of our solution by a Finite State

Machine (FSM). Then, we present our motivating scenarios and, finally, we

describe each one of the elements and layers of our architecture.

• Chapter 5 exposes and analyses the Proof-of-concept, where we present

a prototype of our approach. Then, we explain an Operational Example.
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Subsequently, we evaluate and analyze our approach by using different metrics

(i.e., bandwidth, time-consuming and flexibility).

• Chapter 6, we present Conclusions and Future work, where we provide the

main conclusions of our work and important implications for future works.





Chapter 2

Background

In this chapter, we present a description of the technologies and concepts necessary

for the development of our work. In the first description, we expose NFV and its

structure, after we introduce the NSC concept and we highlight the viability of

the semi-automatic NSC and finally, we present mashups technology and its main

approach.

2.1 Network Functions Virtualization

Around the computer and communications networks large changes are being inves-

tigated and incorporated. In this sense, international standardization and research

groups such as the European Telecommunications Standard Institute (ETSI) have

defined concepts as NFV.

The main function of NFV is to decouple the network functions from dedicated

hardware devices. Thus, the network functions can be executed in commodity hard-

ware and, in this way, the TSPs can use them as software instances. Therefore, a

service (e.g. firewall, load balancer and middleware) can be decomposed into Virtual

Network Functions (VNFs) located on different network equipment [2].

NFV allows reducing CAPEX and OPEX to large industries and TSPs due to the

9
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decrease of specialized network devices [14]. It also facilitates the deployment of new

services more efficiently and in less time. Consequently, NFV allow taking advantage

of commodity hardware reducing the network complexity [3].

2.1.1 Fundamental concepts

ETSI divides the NFV architecture (see Figure 2.1) into three main components:

Network Function Virtualization Infrastructure (NFVI), VNFs and NFV Manage-

ment and Orchestration) [15]. NFVI refers to the combination hardware and soft-

ware resources that conform the deployment environment for VNFs. The hardware

includes Commercial-Off-the-Shelf (COTS) resources of computational, storage and

network hardware that provide treatment, storage and connectivity to VNFs. Vir-

tual resources are abstractions of computing, storage and network resources. A

virtualization layer separates virtual resources from fundamental physical resources

allowing abstraction [2].

NFV MANO provides the required functionality for provisioning VNFs and related

operations. It includes instrumentation and life cycle management of the hardware

and software resources that support the virtualization infrastructure and the life

cycle management of VNFs. In essence, it focuses on all tasks required for specific

virtualization management [16], e.g., coordination with the Operations Support Sys-

tem (OSS) and Business Support System (BSS).

VNFs are an implementation of a NF deployed on virtual resources, e.g., a virtual

machine. VNF concept is explained in more detail in the next subsection.

2.1.2 Virtual Network Functions

A VNF is the implementation of a NF in virtual resources and can be composed for

different elements that can be deployed, each element, in a different virtual machine.

The number of VNFs and the order of execution of the VNFs depend directly on the

service requirements and requests. Virtualization should not affect the throughput of
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Figure 2.1: NFV Architecture [17].

the request service whether VNF are run on dedicated hardware or virtual machines

[2].

ETSI has defined different use cases [18] in which the VNF concept is feasible to apply

as Next Generation Firewall (NGFW) Acceleration, Virtual Base Station (VBS)

L1 Acceleration, Virtual Acceleration Interface for VNFs, Deep Packet Inspection

(DPI), among others.

2.2 Network Service Chaining in NFV

One of the most important issues around NFV is NSC. However, in much of the

NFV literature, the NSC concept has not been standardized. Thus, the authors of

Research directions in network service chaining [1] define NSC as a carrier-grade

process for continuos delivery of services based on network functions associations.

Continuos delivery is the ability of dynamic orchestration and automated deploy-
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ment of NF to increase an operational improvement. Carrier grade refers to high

availability and fast fault recovery [1].

NSC is to provide an order to the network elements in order to provide flexible

network services to the users. It also describes the deployment of composite network

services and allows policy-based approach to the provision of these services [19]. The

NSC goal is to increase efficiency and flexibility for future operators networks [5]

and allowing optimal services chaining without requiring the current high operating

costs.

2.2.1 Fundamental concepts

NSC has associated concepts such as service function, service instance, and service

node, which the authors of Software defined network service chaining [14] define,

respectively, as follows: it is an abstract way to treat network packets and which

has associated a service instance for the network deployment; it is a hardware or

software operational derivation of the associated service function. Service instance is

deployed in the network and it delivers specific handling of a service function to the

network packets; and, it that provides a run-time environment and allows linking

service instances on the network.

2.2.2 NSC types

Nowadays, there are three solutions types to address the NSC challenge which are:

static, semi-automatic, and automatic. Static NSC refers to the NSC used in tradi-

tional computer networks (the most used today) and it essentially is the deployment

of network services using specialized hardware and predetermined service chains.

Therefore, it is necessary to acquire specialized hardware for the deployment of

a new network service. In addition, network administrators must have extensive

knowledge in computer networks, protocol management and installation of a wide

variety of network devices (e.g. switch, router, firewall).
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The semi-automatic NSC uses the advantages of virtualization, i.e., it uses concepts

related to SDN/NFV ecosystem. Moreover, it NSC type requires human interven-

tion, network administrator, to a lesser extent than static. This undergraduate

proposal argues the possibility of implementing semi-automatic NSC with the use of

mashups technology. The mashups allow performing NSC through an unique Web

application which decrement the use and the complexity level in the installation of

new hardware. In addition, the user has more customization options in the selection

of network services without requiring high levels of knowledge in computer networks.

The automatic NSC refers to the use of algorithms that perform a complete automa-

tion of the NSC. For it case, human intervention is not necessary, which shows the

few personalization options. In addition, to make some changes in the NSC, it is

necessary to modify the algorithm in use.

In figure 2.2, we can see the reduction of the travel of network traffic by using

semi-automatic and automatic NSC. The continuos line indicates the route from

Customer Premises Equipment (CPE) to a Data Center. It route is the one that

performs network traffic passing through the different middleboxes in static NSC.

The dotted black line shows the way to go using automatic NSC. Also, the solid

green line indicates the path traveled by the network traffic using semi-automatic

NSC, where it is emphasized that selecting the network services is a function of the

network administrator.

2.3 Mashups

In the recent years there is an important trend focused on facilitating, to the end

users, the use of any of the services available through the Web. Therefore, a tech-

nology know as mashups emerged, which are composite Web applications focused

on the end users and created by the combination of different resources available

through Internet [7]. Focused on the end users refers to that the mashups can be

development by users who do not normally have advanced programming skills.

The fundamental basis is in the cooperation between the end users and the existing
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Figure 2.2: NSC types [1].

Web applications allowing users to create their own custom applications according

to their needs. It technology is characterized mainly by a simple composition model,

which allows easy and quick customization, in addition users can perform the direct

execution of their own applications.

2.3.1 Fundamental concepts

A mashup is a web-based network resource that is composed of resources of the

existing services, either content, data or functionality of an application. It has

the purpose of creating or adapting robust applications from existing resources in

business environments [9]. On the Internet there are many Web Services available

with different QoS that provide the same solution to a specific task. Thus, an

adequate selection of the services to be implemented is necessary and, therefore, the

mashups-based services require an optimal set of services for the construction of a

compound service and look the best QoS based on the requirements of the users and

the needs of the resources.

Advocates of the use of mashups for the convergent services creation promote the

mechanisms generation of services composition using friendly interfaces. It is done

following the mashups Web philosophy based on that a large number of services are
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accessible through open interfaces on the Internet.

Approach Automation
Required

knowledge
Difficulty implementing

new service
Static None High Half

Semi-automatic Half Low Low
Dinamyc High Low Low

Table 2.1: Comparison of convergent service approaches [1].

2.3.2 Mashups in Networking

The mashups technology allows creating composite web applications by combining

resources available in public or private clouds, in local repositories, and in general

over the Internet [20]. The main feature of mashups is the re-use of preexisting ap-

plications and cooperation between end-users. The mashups allow end-users, who do

not have advanced knowledge in programming, to create their own custom applica-

tions according to their needs. An important fact that has increased the possibility

of using mashups is the quantity and variety of Application Programming Interfaces

(APIs) available online and this allows the creation of more dynamic and flexible

applications supporting the creation of mashups [8].

The mashup technology is supported by a simple composition model that allows fast

and easy development and running of custom applications. The creation of mashups

is carried out by a mashup system that allows their storing and execution. Mashup

systems apply the resource abstraction [20] that is the ability to hide technical

details of underlying resources for end-users; which is possible by using APIs that

provides a complete description of the service interfaces including operation names,

parameters and data types [21]. In addition, mashup systems support the re-use

of existing composite applications to promote the creation of more sophisticated

applications.

Nowadays, mashups have been used in different domains such as meteorology, telecom-

munications, and networking. Regarding networking there are different works related

to the improvement of QoS [9], monitoring of virtual nodes [8], solution of situations
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of network management [22]. But, to the best of our knowledge, the semi-automatic

NSC in NFV using mashups technology has not been addressed. Therefore, our work

focuses on proposing a new type of mashups-based NSC. Our proposal defines a new

NSC type, semi-automatic NSC, which is supported in a mashups-based architec-

ture that allows the construction of vNSs. Mashups is the essence of our proposal

because it allows encapsulating the complexity of the underlying network infrastruc-

ture, the access interfaces to VNFs and, furthermore, allows the vNSs composition

regardless of the network topology and with a high flexibility. The semi-automatic

NSC allows the network administrator to interact with the process of creating the

vNSs. Furthermore, this work allows the vNSs association from different providers,

i.e., the heterogeneity of each vNS is not a constraint to create a service chain.



Chapter 3

Related Works

In this chapter we present the closest works that were found in the review of the

state of the art regarding our approach, NSC and the use of mashups in similar

environments. In the first section, we describes the related works to NSC. In the

second section, we presents the related works to mashups.

3.1 Network Service Chaining

In the works consulted, there are different proposals that address the network service

chaining, however, to the best of our knowledge, there are no proposals that address

the semi-automatic NSC using mashups. Some of the most relevant proposals are

described below:

The work “Enabling network function via service chain” [4] propose a service chain

instantiation framework based on SDN/NFV. Their work introduces a new concept

called Atomic Function (AF). An AF (e.g. WAN optimizers, Content Delivery Net-

work and NAT-Protocol Translator) performs specific handling of network packets,

and one or more AFs compose a service chain. AFs only expose the public charac-

teristics (e.g. ID, name, type, action) of NFs. The authors implement a proof of

concept, called MatchMaker, demonstrating that, with different service policies, the

throughput of service chain is improved.

17
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The work “Network service chaining with optimized network function embedding

supporting service decompositions” [5] proposes two algorithms to map the NSs

chains on the network infrastructure and enable the decomposition of NFs. The

first algorithm is based on Integer Linear Programming and focuses on minimizing

the cost of mapping VNFs over network infrastructure based on NS requirements

and infrastructure capabilities. The authors explain that advantages of services de-

composition enable the reduction of Capital Expenditures (CAPEX) and Operating

Expenses (OPEX). The second algorithm is heuristic and resolves the scalability

issue of the first one. A simulation is presented comparing heuristic-based approach

and ILP-based algorithm, this simulation is measured in terms of acceptance ratio

and cost/revenue value. As a result, more services can be mapped over time and

the service acceptance ratio increases in the long run.

Piecing Together the NFV Provisioning Puzzle: Efficient Placement and Chaining

of Virtual Network Functions [6] proposes an Integer Linear Programming model to

solve the network functions placement and chaining problem that causes end-to-end

delays because of misallocation of resources in traditional networks. The authors

obtain a 25% reduction in end-to-end delays compared to chaining models on tradi-

tional networks. The model is evaluated by the processing time for three topological

components: Line, Bifurcated path with different endpoints, and Bifurcated path

with a single endpoint.

The proposal “Network service chaining with efficient network function mapping

based on service decompositions” [3] defines an algorithm to help network operators

to: (i) minimize CAPEX and OPEX by reducing the infrastructure resources used

in the mapping of a network service request; and (ii) solve the Virtual Network Em-

bedding Problem by decomposition of abstract NFs into several NFs interconnected.

The proposed scheme increases the acceptance ratio significantly while decreasing

the mapping cost in the long run.

“A QoS aware services mashup model for cloud computing applications” [9], defines

a model to efficiently solve the problem of selecting service routes that do not satisfy

QoS constraints. The authors propose the QoS Aware Service Mashup model that

facilitates the service instances selection and data flow paths to satisfy QoS require-



NSC 19

ments. A heuristic algorithm is designed to find the service paths to route the data

flow. A simulation of large-scale cloud computing system with 104 service providers

demonstrates that QoS Aware Service Mashup meets the desired QoS requirements

unlike fixed and random algorithms.

The proposal “Service function chaining simplified” [23] propose an optimization

model to solve the throughput limitations of VNFs without worrying about the

network infrastructure. Furthermore, such a model that solves the lacks related to

VNFs such as placement and deployment. The model is implemented using Mixer

Integer Programming in CPLEX. Furthermore, the authors propose a heuristic so-

lution, called Kariz, that achieves competitive acceptance ratio of 80-100%.

The authors of “On orchestrating virtual network functions” [24] identify the VNF

Orchestration Problem (VNFOP), demonstrating that dynamic VNF orchestration

reduces OPEX. The problem is formulated as an Integer Linear Programming and

implemented in CPLEX to find optimal solutions. Furthermore, the authors pro-

pose a heuristic algorithm to solve larger-scale problems of VNFOP. This algorithm

provide solutions that are 30% better than the optimal solution.

Papers
Proposal Concepts used

Dynamic
NSC

Networking
Semi-automatic

NSC
SDN NFV Mashup

[4]
√ √ √

[5]
√ √ √

[6]
√ √ √

[3]
√ √ √

[23]
√ √

[24]
√ √

[9]
√ √

This
work

√ √ √ √ √

Table 3.1: Related work

Table 3.1 summarizes the cited articles approach regarding dynamic NSC, including

the concepts used. Table 3.1 highlights some important aspects such as: (i) in the

literature reviewed there are no papers focused on semi-automatic NSC, (ii) NSC
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is highlighted as an important concept in the implementation of the SDN / NFV

ecosystem, and (iii) a related work uses the mashup approach to solving QoS issues

in dynamic NSC in cloud environments.

3.2 Mashups for NSC

In previous works carried out by Telematics Engineering Group of the University of

Cauca (GIT) and Computer Networks Group of the Federal University of Rio Grande

do Sul (CNG) several solutions have been proposed for the network management

using mashups. However, such solutions do not include concepts of NFV or NSC.

Such solutions are briefly described below.

A mashup ecosystem for network management situations [7] proposes a new ecosys-

tem of mashups that allows network administrators to perform all the activities and

interactions necessary to provide a mashment from an ecosystem. A mashment is

mashup focused on solving network management situations.

The authors of “Monitoring virtual nodes using Mashup” demonstrate that the

mashups technology can be used to perform the integrated monitoring of heteroge-

neous virtual nodes. Such demonstration is performed with the implementation of a

mashup-based architecture that corroborates low traffic generation and low response

times.

The proposal “A Mashup-based Approach for Virtual SDN Management” [10] defines

a novel mashups-based approach for network management. Such approach allows

network administrators to create their own network management solutions based on

the requirements of the different devices that make up an SDN. The authors present

a prototype for the evaluation of the model confirming the low response time in the

construction of mashups.

The authors of “Rich dynamic mashments: An approach for network management

based on mashups and situation management” [11] introduce an architecture named

Rich Dynamic Mashments in order to facilitate the daily work of network administra-
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tors when faced with unexpected, dynamic and heterogeneous situations. Such archi-

tecture makes use of the discipline Situation Management and technology mashups.

Papers
Proposal Concepts used

Dynamic
NSC

Networking
Semi-automatic

NSC
SDN NFV Mashup

[7]
√ √ √

[8]
√ √

[10]
√ √ √

[11]
√ √ √

This
work

√ √ √ √ √

Table 3.2: Related work

Table 3.2 summarizes the approach of the cited articles regarding Mashup. Table

3.2 highlights aspects such as: (i) the mashup technology to be implemented in the

semi-automatic NSC supports its validity and use in the development of networking

jobs, and (ii) related work using the mashup technology does not refer to concepts

of NFV and NSC.





Chapter 4

An Architecture for

Semi-Automatic Network Service

Chaining by using Mashups

Technology in NFV

The process of creating, configuring, and executing the chains is specified in an

mashups-based architecture that follows a layered pattern. Such an architecture

is selected because it allows defining the elements, components, and functionalities

needed in each of the layers. In addition, the interfaces required for communication

between the layers are described. In this way, our architecture is the fundamental

and essential contribution in the description of the semi-automatic NSC.

On the other hand, our architecture is based on the architecture proposed by the

works [8] [11]. Moreover, this work generates a new contribution to the topics

developed in GIT and CNG because previous works use mashups technology but no

one focus on the semi-automatic NSC.

In this chapter, initially, we describe motivating scenarios. Later, we present an

overview of our work. Finally, we introduce our mashups-based architecture, its

layers and elements.

23
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4.1 Motivating Scenarios

Figure 4.1: Scenario 1

First, we consider a network from an Internet Service Provider (see Figure 4.1) that

provides NSs to different users. The network is composed of different intermediary

network devices, network functions running on specialized hardware. Implementing

an NS requires infrastructure changes such as installing new middleboxes, setting up

new intermediary devices, and redirecting network flow. For example, to install a

Firewall, a Network Administrator must connect the wiring of incoming and outgo-

ing network traffic flow, which implies changes in the infrastructure. Furthermore,

Service Level Agreements (SLA) established with users are changing according to the

type of user. Therefore, the Network Administrator in charge of providing the dif-

ferent types of NSs to the users must establish what type of additional middleboxes

are required to comply with the SLA and carry out a plan of implementation and

deployment of the new NSs. In this way, CAPEX and OPEX are increased to the

Internet Service Provider because the acquisition of new devices and the personnel



4.1. Motivating Scenarios 25

required for implementation. Instead, our proposal facilitates the chains deployment

without acquiring additional hardware, in a short time, and with greater flexibility.

We consider a second scenario where a Network Administrator must manage a net-

work based on an SDN / NFV ecosystem and which is composed of a large number

of devices. The Network Administrator uses different platforms for network manage-

ment, and in the case of network services chaining are used automated algorithms.

The algorithms are responsible for creating network services chains based on user

requests, and taking into account algorithm constraints. For instance, to execute a

chain, the algorithm is in charge of selecting the VNFs and correlating their inputs

and outputs. In this way, NSC process is completely automatic and isolated from the

decisions of the Network Administrator. Thus, to make a change in the service chain

or in a particular network function it is necessary to access the algorithm and make

the modifications. Therefore, the network administrator should have high knowledge

in software development and knowledge of various programming languages. In this

way, the customization of a service chain becomes a tedious task which increases

the workload of the Network Administrator. Instead, our proposal increases the

interaction of the Network Administrator with the NSC process and improves the

customization options on the chains.

Figure 4.2: Scenario 2
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Based on the previous scenarios, we have observed some shortcomings concerning

the NSC in current NSC types. For instance, some shortcomings in a traditional

environment (static NSC) are:

• Topological dependence of the network which reduces the flexibility in the new

NSs deployment.

• Buying and configure hardware devices for the implementation of new NSs.

• Network Administrator must generate a plan for deploying and mounting the

new hardware devices purchased. In addition, the network administrator must

adapt to the proprietary interface that each network function has. This results

in the increase of CAPEX and OPEX.

Some shortcomings in an automated environment (dynamic NSC) are:

• Network Administrator must possess advanced knowledge in networking, pro-

gramming languages, and in the SDN / NFV ecosystem.

• Low customization of the chains.

• Low control of Network Administrator for advanced configuration.

To address the above shortcomings, our work uses the mashups technology and

incorporates the semi-automatic NSC concept, offering:

• Creating NSs in a more efficient and less time-consuming way.

• More customization options applicable to the service chains or in a particular

network function. In addition, it allows the visualization of the running service

chains.

• Statistics on the performance of each network function, e.g. the rejected packet

rate of a firewall.
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4.2 Overview

Current NSC approaches do not provide Network Administrators with optimal cus-

tomization options for configuring NSs. Such approaches tend to automate NSC pro-

cess but limiting interaction with Network Administrators. Although, the mashups

provide basis for creating composite web solutions, the mashups have not been still

used for NSC. Hereinafter, we expose how semi-automatic NSC using mashups pro-

vides Network Administrators with a new chaining concept that allows meeting the

end-user (e.g. Internet Service Provider, Application Service Provider) requirements

considering the heterogeneity of network services and resources.

Figure 4.3: Overview

We use a Mealy Finite State Machine (FSM) to illustrate the semi-automatic NSC

process. A Mealy FSM is a deterministic machine that produces outputs on their

state transitions after receiving inputs [25]. Figure 4.3 presents FSM to illustrate

each semi-automatic NSC process stage, the events that cause the change of state,
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and the actions performed at each transition. All events except set up parameters

and instantiate chain are caused by the Network Administrator, and actions are

performed by the system. Our FSM has six states and starts with the Select

VNF state in which each VNF is selected to create the chain (the number of VNFs

depends on end-user needs). This selection can include chains already created and

ready to be used. The event causing the transition to the second state is named as

set parameters, and no action is performed which is symbolized with ^.

The second state is Configure VNF in which the basic parameters are setted to

selected VNFs for their proper functioning. Thus, each time a VNF is added, it is

mandatory to set the basic parameters to change to the next state, and no action is

performed.

In the third state, Compose Chain, the selected VNFs are chained between them

based on end-user needs. This state allows correlating the inputs and outputs of

VNFs that form the chain. The event causing the transition to the four state is

deploy Chain, and the action executed is save chain which allow storing, in a local

repository, the chain that is represented as a data which contains the information of

the used VNFs and their setted parameters.

The fourth state is Launching Chain. This state is to request the execution of

the chain that has already been stored. The event that caused the transition

to the fifth state is instantiate chain and the executed action is instantiate

infrastructure which allows creating VNFs instances used in the chain on net-

work infrastructure.

The fifth state is Execute Chain in which the chain is executed on the network

infrastructure, i.e., VNFs instances used have been created. This state of the NSC

process is hidden to Network Administrators, and in this state the chaining process

ends. Even so, the sixth state is added, Adjust VNFs, to make additional config-

urations when the chain has already been created and stored or even when it is

running. It state has three transitions which are add VNF || drop VNF, modify

VNFs parameters and reorder chain corresponding to the first, second and third

state already described. Thus, it is possible to make any modification to the chain or

to a particular VNF and update the changes in the repository. Therefore, this state



4.3. Architectural Layers and Elements 29

allows Network Administrators to customize the chains and deploy them efficiently

and dynamically.

The FSM described facilitates the understanding of the semi-automatic NSC process

and specifies the main actions required for such a process, supporting the feasibility

to develop our proposal compared to current types of chaining. For example, static

NSC requires infrastructure changes to install new network devices for which the

Network Administrator must have extensive knowledge in infrastructure, networking

and network device configuration. Furthermore, static NSC increases CAPEX and

OPEX because of personnel displacement for the installation process. Instead, our

new chaining concept supported by mashups-based architecture allows conforming

chains with low impact on network traffic, low time-consuming in creation, config-

uration, and launch of the chains, and with greater flexibility and usability. More-

over, changes or modifications to the chain can be made at runtime. Dynamic NSC

provides very few chain configuration or modification options, furthermore, Net-

work Administrators does not directly interact with the chaining process and the

algorithm in charge of the process is the one who makes the chain conformation

decisions. Instead, our proposal provides a high degree of interaction between the

Network Administrator and the NSC process with greater process control and better

chain configuration and customization options. Furthermore, the chaining decisions

are made by the Network Administrators.

4.3 Architectural Layers and Elements

Figure 4.4 introduces our mashups-based architecture that focuses on carrying out

semi-automatic NSC considering the described FSM. The proposed architecture

follows a layered architectural pattern [26] in which the lower layer provides ser-

vices to the upper layer. Our architecture is formed by three layers: Presentation,

Chains Composition, and Virtualization. In a broad sense, chains are displayed and

launched in the Presentation Layer. The Chains Composition Layer supports the

building of chains by combining resources of the Virtualization Layer which provides

a physical computational resources abstraction generating a virtualization environ-
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ment for chains execution. The actors involved in the semi-automatic NSC, the

layers and their components are described in detail in the following subsections.

Figure 4.4: Mashups-based architecture for semi-automatic NSC
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4.3.1 Actors

There are two actors involved in the semi-automatic NSC process: Network Admin-

istrator, and VNF Creator.

The Network Administrator is responsible for creating, configuring, and executing

chains by combining resources such as: graphic elements, available VNFs, configu-

ration elements, and stored chains. These resources may be external or internal. A

resource is external if it is located in a third-party, for example, VNFs, the libraries

used for the visual interface. An internal resource refers to VNFs stored in a local

repository and that are available for creating chains. For the chains creation, Net-

work Administrators do not need advanced skills in Web programming because the

mashups operate in a high-abstraction level. This actor is in charge of monitoring

the chains that are running and, if necessary, modifying chains at runtime. Chains

must be monitored to verify their optimal functioning because it is necessary to

check that the configuration applied to each VNF is working according to what is

necessary.

The VNF Creator is expected to be an Information Technology (I.T) Professional

with significant knowledge about software engineering, computer networks, and vir-

tualization of NFs. This actor is in charge of creating and publishing VNFs, i.e.,

he/she must abstract the NFs operation that are executed on middleboxes and

perform the software development of NFs in the most appropriate programming

language. Furthermore, the Creator must provide interfaces by which all features

provided by any VNF are exposed. The created and published VNFs are stored

in a local repository. Such VNFs are used in the chain composition process. It is

important to highlight there may be external VNFs whose access Uniform Resource

Locators (URLs) are stored in a local repository. Furthermore, this actor deter-

mines the hardware resources (e.g. processing cores, RAM, disk space) required for

optimum VNFs operation.
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4.3.2 Presentation Layer

Figure 4.5 depicts the Presentation Layer that allows building and launching chains

by a Mashups Integrated Development Environment that runs over a Web Client.

Our Mashup IDE is based on visual and drag-and-drop mechanisms with which

the Network Administrator combines different interaction elements to select, create,

configure, launch and execute chains. The proposed Mashup IDE encapsulates the

entire semi-automatic NSC process, i.e., it is the only way the Network Administra-

tor interacts to create chains.

Figure 4.5: Presentation Layer

The Web Client is formed by a Mashups Runtime Environment represented by

browsers, which are software entities in charge of presenting the Graphical User In-

terfaces (GUIs) of the Mashups IDE to Network Administrators, and allow launching

chains. GUIs of Mashup IDE are: GUI for creating chains, and GUI for configur-

ing VNFs that compose the chains. For example, GUI for creating chains refers

to the section in which the VNFs are located to compose the chains. The other

GUI has configuration elements according to each VNF, for example, the GUI for

configuring a Firewall has options to allow network traffic by indicating the source

and destination IP addresses. GUI for configuring a LoadBalancer has options to

define the virtual IP address and select the servers to do the load balancing. These

components provide the Network Administrators with the necessary resources and

concepts to create, launch, and customize chains. It is important to highlight that
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the Presentation Layer communicates with the Chains Composition Layer via JSON

/ HTTP (S). In this communication, request / response messages are exchanged in

which information is sent regarding VNFs used, their parameters, and the order of

execution of VNFs. The information sent in request / response messages is described

in the following subsection.

4.3.3 Chains Composition Layer

The Chains Composition Layer (see Figure 4.6) is composed of a Mashup System, a

set of VNF representations, VNFs repository, a Network Service repository, and an

External Resources repository. The Mashup System is formed by the Engine and the

Manager which contains two components that are VNFs Linker, and Chains Maker.

In a broad sense, the Manager coordinates the invocation of VNF representations

used in the composed chain and, furthermore, it guarantees the correct order of VNFs

execution and instantiation on the Virtualization Layer. Specifically, the Engine is

the lifecycle manager of the Mashup System and the chain as a whole. Thus, when

the Presentation Layer sends a request message to run a chain, the Engine invokes

the Manager. The Manager instructs the Engine for using VNFs Linker to ensure

that VNFs instantiation order is the requested in the Presentation Layer.

The Chains Maker communicates with the VNFs Linker to generate the VNFs in-

stantiation on the Virtualization Layer, that instantiation must be in the order

requested by the Presentation Layer. The Chains Maker uses each VNF represen-

tation to perform the instantiation over network infrastructure.

The VNF Repository contains metadata about the VNFs available to compose the

chain. This metadata is structured by means of the JavaScript Object Notation

(JSON) as follows [{IDVNF : id,NAME : name,PAR : parameters}].

Where, IDVNF, NAME and PAR represent the identifier, the name and

the functioning parameters of a VNF. Capital and lowercase letters refer

to names and values of JSON object properties, respectively. For exam-

ple, a Firewall (see Figure 4.7) would be structured in JSON notation as

[{IDVNF : 1,NAME : Firewall,PAR : param}].
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Figure 4.6: Chains Composition Layer

Figure 4.7: JSON example of a Firewall

The PAR parameter indicates the initial default values (i.e. in this case firewall

rules) that the firewall contain, for example, network flow protocol, host IP-Address

to which the rule applies, and the action, i.e., if the network flow is accepted or

rejected. In case of no default values the PAR field will be empty and will be

modified when the firewall is added to a chain.

The Chains repository stores metadata that describes a chain that have been

created, i.e., VNFs that are used, execution order of VNFs, and the param-

eters of each VNF. This metadata is structured by means of JSON (see Fig-

ure 4.8) as follows [{IDSERV ICE : id,NAME : name,DESCRIPTION :

desc, CONTENT : {{IDV NF1 : id1, ORDER1 : order1}, ..., {IDV NFn :

idn, ORDERn : ordern}}, SIZE : size}].

Where, IDSERVICE, NAME, DESCRIPTION, CONTENT and SIZE represent the
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identifier, the name, the network service description, the content (i.e. VNFs that

compose a chain), and the chain size (i.e. the number of VNFs that compose a

chain). The content parameter is composed by the IDs of VNFs that compose a

chain and by the order or position in which they are executed.

The External Resource repository stores the URLs of third-party VNFs. Each VNF

contains the fields previously described. Network Administrators evaluate the chain

creation request to determine whether third-party VNFs or local VNFs are used

in the chain creation. It is important to highlight that the use of local VNFs has

priority because it generates less delay in the network flow.

Figure 4.8: JSON example of a chain

As previously mentioned, the main function of the Chains Composition Layer is to

interpret the actions performed in the Presentation Layer and execute the necessary

actions to instantiate the chains and the parameters defined on each VNF on the

Virtualization Layer. For instance, when a Network Administrator receives a request

about creating a chain, the Network Administrator must do the following:

• Check if the requested chain has already been created which should be con-

sulted in the Network Service Repository. If the chain has already been created

then the Network Administrator only uses the stored chain in the Network Ser-

vice Repository and launches it again from the Presentation Layer, i.e., a new

instance of the chain will be created on the Virtualization Layer, finishing
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the chain creation request. If the chain has not been created then the chain

creation process continues.

• Check for the existence of the requested VNFs in the VNF Repository and

External Resources Repository. If the required VNFs are not available, the

chain can not be created.

• Network Administrator selects VNFs to compose the chain.

• The operating parameters are set in each VNF based on the request require-

ments.

• Network Administrator chains VNFs in the order needed.

• Network Administrator must launch the chain and configure additional pa-

rameters to the chain based on the operation of the chain in a production

environment.

Figure 4.9: Sequence diagram

The sequence diagram in figure 4.9 complements the action of the Network Admin-

istrator to launch a chain. In a broad sense, Presentation Layer sends a request

message to the Composition layer to execute a chain. Then, Chains Composition

Layer requests the instantiation of the VNFs used in the chain to the Virtualization

layer. Thus, the requested chain remains in a state of execution.



4.3. Architectural Layers and Elements 37

For instance, a chain named network-security (see Figure 4.8) formed by a load

balancer, a firewall and a router is structured by JSON as [{IDCHAIN :

1, NAME : network− security,DESCRIPTION : manages− and−monitors−
incoming−and−outgoing−connections, CONTENT : {{IDV NF1 : 1, ORDER1 :

1}, {IDV NF2 : 2, ORDER2 : 3}, {IDV NF3 : 3, ORDER3 : 2}}, SIZE : 3}].

When a chain has been set and the operating parameters have been defined for

each selected VNF, the JSON formed for the chain is stored in the Network Service

Repository and each VNF and its parameters are stored in VNF Repository.

Figure 4.10: VNF representation

The VNFs are a software abstraction of NFs that run on middleboxes and they are

deployed on servers in an Infrastructure-as-a-Service (IaaS) environment provided

by the Virtualization Layer. In the Chains Composition layer are the VNF represen-

tations that are manipulated by the Mashup System. The VNFs are structured as

services based on the Representational State Transfer (REST) Architectural Model

that follows the HTTP request/response model. Every VNF (see figure 4.10) is rep-

resented by Uniform Resource Identifiers (URIs). These URIs are obtained through

HTTP(S) request such as GET and POST which obtain HTTP(S) responses. For

instance, the URI http://<controllerIP>:8080/loadbalancer/ allows to perform a

load balancing (create), or eliminate the existing load balancing (delete). One of

the advantages of our proposal is to store chains in the Network Service Repository

to which Network Administrators has access, this facilitates the deployment of a new

instance of stored chain increasing the flexibility and decreasing the time-consuming.

To sum up, the Chains Composition layer is the core of the semi-automatic NSC

process because it is the interpreter between the visual components (Presentation
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Layer) and the instantiation and execution of the chains (Virtualization Layer). In

other words, the Chains Composition Layer encapsulates and hides the technical

details of the semi-automatic NSC process, which increases flexibility in the chains

deployment.

4.3.4 Virtualization Layer

Figure 4.11 introduces the Virtualization Layer that provides the infrastructure to

deploy the chains. Virtualization Layer is composed of VNFs, Infrastructure Virtu-

alization Environment (IaaS), and hardware resources. Hardware resources refers to

computers that act as servers to deploy the IaaS.

Figure 4.11: Virtualization Layer

The Infrastructure Virtualization Environment (IaaS) provides, through the con-

cept of resource abstraction, the means for VNFs to be deployed. VNFs refers to

the software abstraction of NFs that run on the current middleboxes. Therefore, our

proposal focuses on the NFV concept that provides virtual resources. Such virtual

resources are provided by a Virtualization Layer that separates virtual resources

from physical resources. The main advantage of NFV is that allows using commod-

ity hardware to executed VNFs reducing implementation costs. Currently, there

are different Open Source and licensed tools that allow creating the Virtualization

Layer. For example, OpenStack, Cloudstack, and Nebula are open source clouds
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to create private clouds. Amazon, Microsoft Azure, and VMware are public clouds

that provide the abstraction of hardware resources.





Chapter 5

Proof-of-concept

To evaluate the effectiveness and feasibility of our proposed approach, we performed

the following:

(1) We implemented a prototype called NEMASOF that is an instance of the archi-

tecture described in chapter 4.

(2) We built a test environment.

(3) We performed a quantitative and qualitative evaluation of NEMASOF. The

quantitative evaluation was carried out in terms of time-consuming, time-

response, and network traffic [11].

• The time-consuming is the time the Network Administrator needs to launch

a chain.

• The time-response refers to the time the system takes to respond to a chain

execution request.

• Network traffic refers to the amount of load that is generated in the network

when using NEMASOF.

The qualitative evaluation was carried out in terms of flexibility, extensibility,

and usability.

41
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• The flexibility [8] refers to our approach allowing the Network Administra-

tor to launch chains in a matter of seconds.

• The extensibility [8] refers to the ability to integrate own or third-party

resources.

• Usability [27] refers to the facility offered by NEMASOF to display chains.

5.1 Prototype

Figure 5.1: NEMASOF

Figure 5.1 depicts the GUI of the semi-automatic Network Service Chaining Proto-

type (NEMASOF) that is formed by VNF representations, Buttons (Configuration,

Save, Delete, Restart, Chains on Execution (CoE), and Run (Play Symbol)), and

Chains Constructor. The Visual Resources, Buttons and Chains Constructor are

Web elements implemented using Cascading Style Sheets (CSS) and JavaScript.

Some VNF representations implemented are Firewall, Load Balancer, and Router,

which are the visual representation (i.e. a high-level abstraction) of VNFs.

A drag-and-drop mechanism is used to compose chains, i.e., VNFs and chains are

dragged-and-dropped in the Chains Constructor section, where VNFs or chains are
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joined in the required order and it are automatically linked in that order to avoid un-

necessary consumption of time and thus reduce to the maximum the time-consuming.

Our prototype allows displaying statistical information of each executed VNF, for

instance, in the Load Balancer case, the statistical information provided is about

the packets transmitted to the servers.

NEMASOF was developed using JavaScript to implement the Mashup Sys-

tem, Django framework based on Python to implement the Mashups IDE,

and VNFs based on REST. The necessary repositories for executing NEMA-

SOF were implemented in MySQL database. This prototype is available on

github.com/cngunicauca/NEMASOF.

5.2 Test scenario

We define a case study in which a Network Administrator must create, configure,

and launch a VNFs chain consisting of a load balancer, a firewall, and a router

(see figure 5.1). The chain is deployed on an emulated SDN with Mininet v2.2.1,

and the Ryu controller v3.22 acting as the Manager. We created a SDN (see figure

5.2) with tree topology in Mininet defining a depth = 2 and fanout = 2. Depth

refers to the number of levels that the tree topology has, and fanout is the number

of outputs per switch. Therefore, emulated SDN is formed by three switches and

four host. VNFs that compose the chain must have initial operating configurations:

the Firewall is configured to run on all three topology switches. Three host are

established as servers for load balancing with the virtual IP 10.0.0.10. The router

is configured with a rule that enables the network flow between host two and three

by means of a gateway with IP address 10.0.0.1.

Figure 5.3 describes the test environment for the case study. To make such an

environment, first, we create a SDN. Second, we develop NEMASOF, the VNFs

repository, the Network Service repository, and External Resources repository in a

single MySQL database separated by tables. Third, we deploy NEMASOF and the

necessary resources for the creation and release of the chain. When the Network
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Figure 5.2: Tree topology

Administrator must deploy a chain, NEMASOF allows him to create, configure, and

launch VNF chain.

Our prototype was deployed in a Cloud Computing environment. Cloud Computing

is a model for enabling resources (e.g. network, servers, storage, applications, and

services) on-demand. The model used in the NEMASOF deployment is IaaS, which

refers to the provision of processing, storage, networks and other computational

resources.

Microsoft Azure was used for the NEMASOF deployment and to create an SDN

network. Two Virtual Machines (VM) were used, a VM to run the Ryu controller

and Mininet, which is the SDN network emulation software, and a VM to deploy

NEMASOF. In this sense, NEMASOF takes advantage of the features of flexibility

of a Cloud Computing environment.

The SDN network was created by using Open vSwitch and a controller named Ryu.

Ryu controller is based on Python programming language. The switches, hosts

and controller were deployed on Mininet. Mininet was run on a VM with 4-core
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Figure 5.3: Test environment

processing, 16 GBytes RAM, and 28 GBytes Solid State Disk (SSD) on the Microsoft

Azure platform. NEMASOF was deployed in a VM with 2-core processing, 8 GBytes

RAM, and 15 GBytes Solid State Disk (SSD) on the Microsoft Azure platform. The

Test Client had i5-core processing, 8 GBytes RAM, 120 GBytes Hard Disk Drive

(HDD).

The chain that the Network Administrator created in the test scenario (see Fig-

ure 5.1) is structured and stored in the Network Service repository, in a gen-

eral way, as a JSON object as follows [{IDCHAIN : 1, NAME : network −
security,DESCRIPTION : manages − and − monitors − incoming − and −
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outgoing − connections, CONTENT : {{IDV NF1 : 1, ORDER1 : 1}, {IDV NF2 :

2, ORDER2 : 3}, {IDV NF3 : 3, ORDER3 : 2}}, SIZE : 3}].

In turn, each VNF that forms the chain is structured as follows:

• Firewall is structured as [{IDV NF : 1, NAME : Firewall, PAR :

{{SWITCH1 : on}, {SWITCH2 : on}, {SWITCH3 : on}}}].

• Load Balancer is structured as [{IDV NF : 2, NAME : LoadBalancer, PAR :

{{IP − V IRTUAL : 10.0.0.10}, {HOST1 : on}, {HOST2 : on}, {HOST3 :

on}}}].

• Router is structured as [{IDV NF : 3, NAME : Router, PAR :

{{IP − SOURCE : 10.0.0.2}, {IP − DESTINATION : 10.0.0.3}, {IP −
GATEWAY : 10.0.0.1}}}].

The created chain was taken as the basis for the creation of chains with a large

number of VNFs, in order to evaluate our proposal and determine its behavior over

the network infrastructure.

5.3 Evaluation and analysis

We evaluate our proposal by the case study described in the test scenario. The

evaluate steps are as follows.

(1) Theoretical and experimental time-consuming measurement to determine the

time used in creating, configuring, and launching the chain.

(2) Measurement of the time-response to assess NEMASOF responsiveness to a

request to execute the chain.

(3) Measurement of network traffic to assess the additional traffic generated by

NEMASOF.
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5.3.1 Time-consuming

Measuring time-consuming allows demonstrating that NEMASOF is a feasible so-

lution because of the short time spent in deploying a chain compared to other NSC

types. To determine the time-consuming, we use the Keystroke Level Model (KLM)

[28] because it allows to estimate the time that the Network Administrator takes to

create, configure, and launch a chain using the computer mouse and keyboard. In

KLM, each task is formed by a sequence of actions, and each action adds a certain

time:

• Hold or release the mouse → B = 0.1s.

• Press and release a key → K = 0.2s.

• Type a string → nk ∗ 0.2s.

• Move the hand from mouse to keyboard or vice-versa → H = 0.4s.

• Point the mouse → P = 1.1s.

• Drag-and-drop a visual element → dnd = 1.3s.

For practical purposes, sometimes we join the actions Point the mouse and Hold or

release the mouse in a single action defined as Point, hold and release the mouse

assigned the variable X equivalent to P + 2B.

The measurement of theoretical and experimental time-consuming consists in: (i)

configure the IP address (see Figure 5.4) of the VM where Mininet, VNFs, and Ryu

are hosted, (ii) select and configure each VNF that forms the chain, i.e., create the

chain; and (iii) launch the chain.

The sequence of actions for the IP-configuration is as follows: (i) Point, hold and

release the mouse over Configuration button → X, (ii) Point, hold an release the

mouse over Controller IP address field → X, (iii) Move the hand from mouse to

keyboard → H, (iv) Configure the IP address 52.171.133.220:8081 of the server

where the controller and VNFs are hosted. Entering the IP corresponds to pressing
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Figure 5.4: IP address Configuration

19 keys → 19K, (v) Move the hand from keyboard to mouse → H, (vi) Point, hold

and release the mouse to select topology→ X, and (vii) Point, hold and release the

mouse over save button → X.

The actions to create the chain consist of selecting and configuring three VNFs,

Firewall (see Figure 5.5), Load Balancer (see Figure 5.6), and Router (see Figure

5.7), and such actions are described in the same order.

The actions to select and configure the Firewall are: (i) Point the mouse over Firewal

VNF → P , (ii) Drag-and-drop the Firewall VNF → dnd, (iii) Hold and release the

mouse over Firewall VNF→ 2B, (iv) Point, hold and release the mouse over switches

buttons (three switch) → 3X, and (v) Point, hold and release the mouse over Save

button → X.

The actions to select and configure the Load Balancer are: (i) Point the mouse over

Load-Balancer VNF → P , (ii) Drag-and-drop the Load-Balancer VNF → dnd, (iii)

Hold and release the mouse over Load-Balancer VNF → 2B, (iv) Point, hold and

release the mouse over IP-Virtual field → X, (v) Move the hand from mouse to

keyboard→ H, (vi) Enter the IP-Virtual 10.0.0.10→ 9K, (vii) Move the hand from

keyboard to mouse→ H, (viii) Point the mouse over choose your hosts submenu→
P , and (ix) Point, hold and release the mouse over hosts button (three host)→ 3X,

and (x) Point, hold and release the mouse over Agree button → X.
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Figure 5.5: Firewall configuration

Figure 5.6: Load Balancer configuration

The actions to select and configure the Router are: (i) Point the mouse over Router

VNF → P , (ii) Drag-and-drop the Router VNF → dnd, (iii) Hold and release the
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Figure 5.7: Router configuration

mouse over Router VNF→ 2B, (iv) Point the mouse over the select switch submenu

→ P , (v) Point, hold and release the mouse over the selected switch → X, (vi)

Point, hold and release the mouse over IP-Source field → X, (vii) Move the hand

from mouse to keyboard → H, (viii) Enter IP-Source 10.0.0.2 → 8K, (ix) Move the

hand from keyboard to mouse → H, (x) Point, hold and release the mouse over

IP-Destination field → X, (xi) Move the hand from mouse to keyboard → H, (xii)

Enter IP-Destination 10.0.0.3 → 8K, (xiii) Move the hand from keyboard to mouse

→ H, (xiv) Point, hold and release the mouse over IP-Gateway field → X, (xv)

Move the hand from mouse to keyboard → H, (xvi) Enter IP-Gateway 10.0.0.1 →
8K, (xvii) Move the hand from keyboard to mouse → H, (xviii) Point, hold and

release the mouse over Add-Rule button→ X, and (xix) Point, hold and release the

mouse over Save button→ X.

Finally, the action to launch the chain is Point, hold and release the mouse over Run

chain button → X.

The time-consuming (Tcon:chain) will depend on the number of VNFs that compose

the chain and the configurations per VNF. The created chain as test meets the
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minimum execution and operation requirements in the emulated SDN. In general,

the time spent in each stage of the process performed is defined mathematically as:

• IP-configuration: C = 4M + 2H + 19K

• Firewall: FW = P + dnd + 2B + 4M

• LoadBalancer: LB = 2P + dnd + 2B + 5M + 2H + 9K

• Router: R = 2P + dnd + 2B + 6M + 6H + 24K

• Lanzar: L = M

Then, the total time-consuming in general is:

• Tcon:chain = C + (n1*FW) + (n2*LB) + (n3*R) + L

Where, n1, n2, and n3 are variables that correspond to the number of instances

used of each VNF. For the created chain an instance of each VNF was used, so the

theoretical time-consuming is:

• Tcon:chain = C + FW + LB + R + L

• Tcon:chain = 9,8s + 7,8s + 12,8s + 18,7s + 1,3s = 50,4s

Then, it is expected that by using NEMASOF a Network Administrator late 50.4s in

creating, configuring, and launching the chain consisting of three VNFs with initial

operating parameters.

We also conducted an experimental study to measure time-consuming. The study

involved 40 people whose age range is from 20 to 30 who often use web tools. Figure

5.8 illustrates the time measured in each part of the process mentioned in the theo-

retical measurement, and is compared with the time measured experimentally. The

experimental average time result was 56.07s. This confirms the KLM predictions

and demonstrates the feasibility of using NEMASOF in SDN.
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Figure 5.8: Time-consuming

5.3.2 Time-response

Figure 5.9: Time-response

Evaluating the time-response provides information about NEMASOF response ca-

pacity to determine that it is a good solution for NSC. It is appropriate to measure

the time-response of NEMASOF when the chains are launched with different amount

of VNFs. In this evaluation the time-response is measured in milliseconds (ms), 32
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measurements were taken with a 95% confidence level.

In the time-response evaluation, the number of chains launched in the SDN was

varied from 1 to 5. Thus, the total number of VNFs executed in each evaluation was

27, 81 and 243. The time-response (r in ms) of Web systems has ranges as optimal

(r<100), good (100<r<10000), and deficient (r>10000), therefore, the time-response

result expose: NEMASOF is in the good range because his time-response is between

265 ms and 330 ms in the tests performed (see Figure 5.9).

5.3.3 Network traffic

The main objective of measuring network traffic is to determine the impact of using

NEMASOF to deploy a chain over an SDN-based network. We measure the network

traffic in the SDN network controller. The network traffic measurement test was

performed in a cloud environment.

When a Network Administrator has created a chain and configured each VNF, the

Network Administrator launches the chain using NEMASOF. Launching a chain

consists of sending messages to the controller with information about the operations

to be performed on the SDN. The controller is in charge of executing VNFs that

form the chain and, furthermore, sends OpenFlow messages to the switches of SDN

about the execution of VNFs and their operating parameters.

In this sense, we carry out the measurement of the network traffic on the controller

when it receives requests of execution of a chain from NEMASOF. We measure net-

work traffic in bytes when the controller receives a chain execution requests that are

compose of 27, 81 and 243 VNFs. Figure 5.10 presents the corresponding results in

which the topology of the network is not taken into account because our approach is

topologically independent. The results reveal: (i) the traffic generated by launching

chains by NEMASOF increases as the number of VNFs to be executed increases,

(ii) the traffic growth generated is slightly exponential, and (iii) a chain with the

highest number of VNFs generates 2536 Bytes (2,4766 KB) which is a very low value

based on the bandwidth used today.
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Figure 5.10: Network traffic

5.3.4 Qualitative Analysis

From the qualitative point of view, we briefly analyze the behavior of NEMASOF,

which refers to analyze its main characteristics that are flexibility, extensibility, and

usability as follows:

Flexibility refers to our semi-automatic NSC approach based on mashups allowing

Network Administrators by themselves to create, customize and launch chains to

decrease their daily workload. They do not need Web programming tools to deploy

chains because our approach provides a high level of abstraction regarding the un-

derlying network infrastructure and VNFs. VNFs are represented in visual form,

and the customization options are graphically made. In addition, unlike other types

of NSC, using mashups technology provides a flexible and easy way to compose

chains (see Table 5.1).

Extensibility refers to Network Administrators being able to create, configure, and

launch chains by a simple process using existing VNFs. It is possible because of the

mashups-based approach that takes advantage of the composition, abstraction and

reuse of own or third-party resources. In this way, it highlights the effectiveness and

ease of launching chains unlike other NSC types. Table 5.2 presents a comparison
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Approach Flexibility
Static Low

Dynamic Half
NEMASOF High

Table 5.1: Flexibility

regarding the extensibility between the different NSC types.

Approach Extensibility
Static Low

Dynamic Half
NEMASOF High

Table 5.2: Extensibility

Usability refers to the ease with which a product can be used to achieve defined

objectives with efficiency, effectiveness and satisfaction [27]. NEMASOF provides

the Network Administrator with a tool with the fundamental components to deploy

chains in SDN. In addition, the use of NEMASOF is intuitive, which allows the

Network Administrator to perform the chain deployment process efficiently (see

Table 5.3).

Approach Usability
Static Low

Dynamic Low
NEMASOF High

Table 5.3: Usability





Chapter 6

Conclusions and future work

This chapter starts answering the research question. Then, we present the main

conclusions of our work. Finally, we provide insights for future work.

6.1 Conclusions

This work presented the investigation carried out to answer the research question:

How to carry out NSC by using mashups?. In response to this question,

we have proposed an architecture that is composed of three layers (i.e., Presen-

tation, Chains Composition, and Virtualization) directed to the composition and

customization of chains. The proposed architecture uses NFV and Mashups tech-

nology concepts for chains composition.

Mashups technology allows creating composite web applications by combining avail-

able resources (e.g. VNFs, graphic elements) in public or private clouds, local repos-

itories, or the Internet. Furthermore, mashups allow encapsulating technical details

of the underlying resources using a resource abstraction. In addition, mashups do

not require advanced programming skills.

NFV allows decoupling NFs from the specialized hardware, which allows NFs to

be executed in commodity hardware as software instances. Thus, NFV provides

57
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flexibility, scalability and ease of deployment of NFs which allows the chains com-

position.

SDN allows centralizing network control by separating the control plane from the

data plane. In addition, SDN makes the network more flexible which facilitates

the management of NFs and allows the underlying network infrastructure to be

abstracted for NFs.

In this work, we have implemented a prototype of the proposed architecture as well

as an extensive evaluation and analysis in a qualitative and quantitative way. The

evaluation carried out is aimed at demonstrating the feasibility of our semi-automatic

NSC approach based on mashups. The quantitative evaluation was addressed in

terms of time-consuming, time-response, and network traffic:

• Time-consuming was evaluated experimentally and KLM, which allows us to

demonstrate that the time required for a Network Administrator to launch a

chain is a matter of seconds (estimated time = 50.4s, experimental time =

56.07s). But, the time required to launch a chain depends on the number of

VNFs to be used and the configuration parameters of VNFs. The estimated

time with KLM was corroborated with the experimental evaluation and, thus,

the feasibility of using NEMASOF to launch chains. In addition, the short

time needed to deploy a chain demonstrates that our proposal facilitates the

daily tasks of Network Administrator.

• The time-response results corroborates that NEMASOF is an excellent alter-

native to deploy vNSs in a short time. NEMASOF is well-performing in terms

of time-response. According to the ranking of websites, NEMASOF is ranked

as good. Thus, the evaluation demonstrates that the prototype carried out is

an adequate solution so that the Network Administrators can deploy chains.

• The network traffic results show that our proposed approach has a good behav-

ior in terms of network traffic because the additional traffic generated over the

network is low. The number of deployed VNFs does not increase considerably

the traffic generated, which corroborates that our approach has an excellent
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performance and is considered as an optimal solution for deploying chains in

SDN using few resources.

From a qualitative point of view, the main characteristic provided by our proposal in

this work are flexibility, extensibility, and usability. The flexibility refers to that NE-

MASOF allows deploying chains independently of the network topology and network

resources. Moreover, our approach considers NFV concepts allowing NEMASOF to

deploy a cloud environment. The mashup technology used in the development of our

proposal facilitates the interaction of the Network Administrator with the process

of creating, personalizing and deploying chains, which confirms that flexibility is

inherent to the proposed approach.

Regarding the extensibility, it is important to highlight that it is an implicit feature

of NEMASOF because it is capable of being adapted to use VNFs and network

controllers from different providers. Thus, the possibility of deploying chains of

different sizes and functions increases as well as the integration with varied network

topologies.

Usability of our approach was demonstrated by the evaluation of the time-consuming

because the little time spent to launch a chain corroborates that NEMASOF is

intuitive.

6.2 Future work

During the carrying out of this undergraduate work, we observed interesting oppor-

tunities for improving this proposal and further researches. These opportunities are

outlined below.

• We are very interested in being able to implement a system of recommendation

of VNFs, i.e., a system that allows identifying the most optimal VNF to be

used according to the user requirements, the VNF location, the computational

resources used by VNF, and network traffic to access VNF.
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• We propose to implement a security system based on Artificial Intelligence (AI)

that protects chains from unauthorized modifications and that determines the

level of reliability of VNF to be used.

The above opportunities will be addressed by the GIT.
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