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Abstract

Network operators have used SDN for routing flows in DCNs. However, a signifi-
cant problem affecting the overall performance of DCNs based on SDN is the de-
lay introduced to latency-sensitive small flows (i.e., mice) by the SDN controllers.
Current approaches tackle this problem by compiling and installing paths for mice
and elephants dynamically, but this has shortcomings related to the large num-
ber of routing rules that the switches must handle, leading to significant delays
to mice flows. In this monograph, we introduce MiceDCER, an algorithm that al-
lows the efficient routing, regarding the delay, of mice flows in SDN-based DCNs
by assigning internal Pseudo-MAC (PMAC) addresses to the edge switches and
hosts. It also installs wildcard rules based on the information carried out by the
ARP packets, to indicate the controller the rules it should install on the switches.
To test our algorithm, we developed a prototype and conducted the experiments
in an emulated topology to compare the results with other routing protocols based
on the number of rules. This comparison reveals that MiceDCER significantly re-
duces the number of rules installed in switches on the topology and, therefore,
contributes to reducing the delay in SDN-based DCNs.
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Resumen

Los operadores de red han usado SDN para enrutar flujos en DCNs. Sin em-
bargo, un problema significante que afecta el desempeño general de los DCNs
basados en SDN es el retardo introducido en los pequeños flujos sensibles a
la latencia (es decir, ratones) por los controladores SDN. Los enfoques actuales
abordan este problema compilando e instalando rutas dinámicamente para los
elefantes y ratones, pero esto tiene deficiencias relacionadas con el gran núme-
ro de rutas de enrutamiento que los conmutadores tienen que manejar, llevando
a retardos significantes en los flujos ratones. En esta monografı́a, introducimos
MiceDCER, un algoritmo que permite el enrutamiento eficiente en cuanto al re-
traso de los flujos ratones en DCNs basados en SDN, asignando direcciones
Pseudo-MAC (PMAC) internas a los conmutadores de borde y a los hosts. Tam-
bién instala reglas de comodı́n (wildcard) basadas en la información transportada
por los paquetes ARP, para indicarle al controlador las reglas que debe instalar
en los conmutadores. Para probar nuestro algoritmo, desarrollamos un prototipo y
conducimos los experimentos en una topologı́a emulada para comparar los resul-
tados con otros protocolos de enrutamiento basándonos en el número de reglas.
Esta comparación revela que MiceDCER reduce significativamente el número de
reglas instaladas en los conmutadores en la topologı́a y, por lo tanto, contribuye
a reducir el retardo en los DCNs basados en SDN.
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Chapter 1

Introduction

In this chapter, we outline our approach. First, we present the problem statement
and describe the objectives followed for the development of this undergraduate
work. Second, we present the work packages and activities carried out as well as
the schedule followed. Third, we present the resources and budget allocated to
the development of the project, as well as the contributions achieved.

1.1. Problem Statement

The Software-Defined Networking (SDN) is an emerging architecture that sepa-
rates the control plane from the data forwarding plane (e.g., switches and routers)
for enabling a more straightforward network operation from a logically centralized
software program, usually known as the controller [1]. This network architecture
emerged to tackle the limitations (e.g., scalability and static policies) of traditional
networking architectures in satisfying the complex networking needs of today ap-
plications. SDN promises to improve the network resource utilization, simplify
network management, reduce operating cost, and promote innovation and evolu-
tion [2].

Typically, in SDN, when the first packet of a flow arrives at a switch, it is redi-
rected to the controller if the routing rule for handling that flow does not exist in

1
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the network switching table. The controller then compiles the routing logic and
dynamically installs the path for the flow by adding routing rules on each switch
over the route from source to destination. Subsequent packets from the same
flow are not redirected to the controller and follow the installed path. Also, the
controller can be programmed for establishing static routing rules on switches for
specific routes that flows must follow [1].

SDN has been used for routing different flows in Data Center Networks (DCN),
mainly focused on the fact that most flows tend to be short-lived and small (i.e.,
mice), while only very few flows are long-lived and large (i.e., elephants). The
mice flows are usually referred to latency-sensitive and bursty applications, such
as Voice Over IP (VoIP) and search results [3]. These flows are numerous and,
thus, they generate many events to be handled by switching devices. The ele-
phant flows are often large transfers like back-end operations and backups. The
phenomenon of mice and elephants influences the overall DCN performance
[4]: large flows tend to fill network buffers end-to-end, introducing delays to the
latency-sensitive small flows that share the same buffers [3].

A lot of research works has addressed the routing of mice and elephant flows by
compiling and installing dynamically the path for both mice and elephants from the
controller [5]. Here, the problem arises when the first packet from each flow is sent
to the controller, introducing the delay of sending the packet. This delay affects
negatively the latency-sensitive mice flows [6]. The controller would install routing
rules for each received flow, and a large number of flows causes an overload
in the controller, increasing the processing time and the delay of flows [7, 8].
The installation of many routing rules in a switch is a problem in DCNs since it
increments the time that the switch takes to find the routing rule for a specific flow,
generating an scalability issue [5]. This increase in time also increases the delay
for flows and may exceed the limited memory of the flow table in switches, which
may cause that some flows be lost (dropped) [2].

To tackle the problems mentioned above, other works have proposed to com-
pile and install the path dynamically only for elephant flows [9, 10]. Therefore,
these works handle the routing of mice flows by using static rules as in Equal-
Cost Multi-Path (ECMP). ECMP is an approach that allows including multipath
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routing without the need for additional protocols or special configurations, using
simple static flow-to-link assignment methods [11]. The implementations consid-
ering static rules has some drawbacks such as the high number of routing rules
installed on the switches if the rules are per source-destination pairs, the complex
task of updating the rules in case of changes in the network, and the inability
to set redundant paths for mice flows. Some works reduce the number of static
rules by setting ordered IPs in the DCN using IP prefixes, but this is not suitable to
provide Virtual Machine Migration (VMM). Other works also use scalable [10, 12],
distributed [13] or centralized [9] Traffic Engineering (TE) techniques (e.g., algo-
rithms, architectures, and protocols) to address the problems related to the routing
of mice flows. In general, the related work describes mostly methods to re-route
mice flows according to links conditions, but without considering delays caused
by an overload in the controller or when sending the packet to the flow table in
the controller. It is essential to allow the switch to handle the installation of routing
rules in the controller to reduce the delay in the latency-sensitive mice flows [5].

To sum up, it is necessary to find a solution that focuses on coping with the delay
on mice flows in DCNs, defining an efficient way on how packets are sent to
the SDN controller when the flow arrives, and how routing rules are installed and
managed in the network switches. As a result of the above, the following research
question is raised:

How to route efficiently, in terms of delay, mice flows in Data Centers based
on Software-Defined Networking?

1.2. Objectives

1.2.1. General Objective

Propose a technique for mice flows routing in Data Center Networks based on
Software-Defined Networking.
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1.2.2. Specific Objectives

Design a technique for routing mice flows in Data Center Networks based
on Software-Defined Networking.

Implement a prototype of the designed technique.

Evaluate the efficiency of the prototype regarding the delay of mice flows in
an emulated environment.

1.3. Activities & Schedule

1.3.1. Work Structure

To structure and organize the processes during the undergraduate work, we
adopted as reference the Work Breakdown Structure (WBS). WBS operates by
dividing the overall work into more manageable hierarchy structured tasks. Fur-
thermore, WBS is designed by a top-down procedure, decomposing each level
from top to bottom into logical groupings of work, allowing lowest-level compo-
nents to be scheduled, and its costs can be estimated, monitored, and controlled.
It is a valuable planning tool that links the goals with the resources and activities
in a logical frame [14].

Work Package 1. Generate the Initial Knowledge Base

Review the state of art of the proposal. We carried out a review to check for
acquired knowledge, and we compared them with aspects described in the
undergraduate proposal.

Synthesize and expose a summary. We interpreted and summarized a set
of central ideas related to the concept of the proposed work.
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Build up the theoretical base. We collected a set of concepts and preposi-
tions to form a perspective which allowed explaining what was going to be
performed in the undergraduate work.

Work Package 2. Design of the Technique

Analyze the existing relevant techniques. We have done analyzes to lever-
age the earlier knowledge and design and build the solution technique ac-
cording to the obtained in the previous package.

Define the efficient SDN mice (small) flow routing technique. We have done
the definition to determine its following specification and design.

Specify and design the routing technique. The technique was specified and
designed to determine its later implementation.

Work Package 3. Implementation of the Technique & Evaluation

Implement a prototype of the technique proposed. We conducted a proof-
of-concept to evaluate the performance of our work regarding the number of
rules.

Evaluate the functionality and efficiency of the prototype regarding the delay.
We designed an emulated SDN-based network to prove the efficiency of the
prototype.

Collect data and analyze them. The test results were analyzed and inter-
preted to check the performance of the prototype.

Check the results obtained and compare them with techniques such as
MiceTrap or PortLand. The test results obtained were compared to con-
clude that there was an improvement in respect to other routing protocols.
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Work Package 4. Disclosure

Elaborate an article. We carried out and submitted a conference paper
named “An Efficient Mice Flow Routing Algorithm for Data Centers based
on Software-Defined Networking” to present the results of the undergradu-
ate work.

Elaborate the monograph. We wrote the monograph as a highly detailed
and documented study of the work done.

1.3.2. Schedule

Table 1.1 presents the schedule followed for developing this undergraduate work.
The schedule includes the packets earlier defined.

MONTHS
ACTIVITIES

1 2 3 4 5 6 7 8 9
WP1. Generate the Initial Knowledge Base
Revision of the state of art of the proposal
Synthesize and expose a summary of a set of central ideas
Build up the theorical base by collecting a set of concepts and prepositions
WP2. Design of the Technique
Analyze the existing relevant techniques to leverage the earlier knowledge
Define the efficient SDN mice (small) flow routing technique
Specify and design the routing technique
WP3. Implementation of the Technique & Evaluation
Implement a prototype of the technique proposed
Evaluate the functionality and efficiency of the prototype in an emulated SDN environment
Collect and analyze data
Check the results obtained and compare them with techniques such as MiceTrap or PortLand
WP4. Disclosure
Elaborate an article
Elaborating the monograph

Table 1.1: Activity Schedule.
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1.4. Resources & Budget

Table 1.2 and Table 1.3 present the aspects related to the budget spent during
the development of this undergraduate work, considering a proposed value for the
point in 2018 being 13,598 COP. This value is defined by the National Government
of Colombia.

Researcher Dedication (h/week) Weeks Points Point Value 2018
Advisor 1 36 2.5 $13,598

Co-advisor 1 36 2.2 $13,598
Student 40 36 1.5 $13,598

Table 1.2: Reference Values for Project Budget.

Sources
ITEMS

Student Department
TOTALS

Human Resources
Advisor – $ 1´223,820 $ 1´223,820
Co-advisor – $ 1´076,962 $ 1´076,962
Student $ 29´371,680 – $ 29´371,680
Technical Resources
Personal Computer with Internet Access $ 1´450,000 – $ 1´450,000
Printer $ 850,000 – $ 850,000
Servers – $ 1´600,000 $ 1´600,000
Various Resources
Paper, Ink, Disks $ 90,000 – $ 90,000

$ 31´761,680 $ 3´900,782 $ 35´662,462
AUI (20%) $ 6´352,336 – $ 6´016,240
TOTAL $ 38´114,016 $ 3´900,782 $ 42´014,798
PERCENTAGE 90.72% 9.28% 100%

Table 1.3: Resources and Budget.
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1.5. Contributions

The following work is framed in the research line of Telecommunication Advanced
Services of the Telematics Department. Contributions are listed below:

We designed and built a technique to determine its implementation for effi-
cient routing of mice flows on SDN-based DCNs.

We implemented a prototype of the routing technique of mice flows for eval-
uating its performance regarding the number of rules.

We evaluated the functionality and efficiency of the technique for mice flow
routing, to collect and analyze data and check the results obtained.

1.6. Organization

The rest of this document has been divided into chapters described below:

Chapter 2 presents the Data Centers based on Software-Defined Net-
working, describing the relevant topics concerning our research. These
topics include SDN, DCN, and TE.

Chapter 3 presents the Related Work that describes the research works
closer to our proposal.

Chapter 4 introduces MiceDCER by presenting motivation, exposing an
overview, and describing our algorithm and prototype in detail.

Chapter 5 presents the Evaluation of our work. We define the testbed to
evaluate the proposed algorithm. Subsequently, we evaluate and analyze
MiceDCER and compare the results with other routing protocols regarding
the number of rules.

Chapter 6 presents Conclusions and Future Work. We provide the con-
clusions of our approach and expose ideas for future work.



Chapter 2

Data Centers based on
Software-Defined Networking

In this chapter, we present a background related to our approach. First, we de-
scribe the architectures of SDN and DCN. Second, we present a classification of
TE techniques. Third, we describe how network operators use TE methods for
improving the performance of SDN-based DCNs.

2.1. Software-Defined Networking

The Software-Defined Networking (SDN) is an emerging paradigm that innovates
in the design and management of computer networks. Although this technology
may seem recent, this paradigm is part of a long history of efforts to make these
networks more programmable, gaining significant attraction in the networking in-
dustry over the past few years [15]. The main feature of SDN is that it aims to
separate the network control plane from the data forwarding plane, providing user
applications a centralized view of the distributed network states [2]. It also facili-
tates programmability in changing the overall characteristics of network elements
and allowing quicker management, configuration, and resource optimization with
dynamic, proprietary-free programs. [16].

9
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Application layer

Applications,

running on physical

or virtual hosts

Control layer

Network controller

Infrastructure layer

Northbound

APIs

Southbound

API

Figure 2.1: SDN Architecture.

Figure 2.1 presents an overview of the SDN architecture, which consists of three
layers that interact and communicate between them [17]. SDN architectures usu-
ally use a single logically-centralized controller, but may make use of multiple
controllers in large-scale or wide-area region networks [2]. The layers interact
between them through the use of Application Programming Interfaces (API) [17]
These interfaces provide access to network services (e.g., routing, security, and
access control) and facilitate the achievement of several commercial objectives
related to network management. Several SDN deployments oriented to flow man-
agement (e.g., Onix [18], BalanceFlow [19], and Beacon [20]) come with their own
set of APIs [2].

On the bottom of the SDN architecture is the data forwarding layer (i.e., infras-
tructure layer), which consists of switching devices (e.g., switches, routers, and
load-balancers) that make up the network topology [17]. The switching devices
are responsible for collecting and storing temporarily network status and sending
them to the controllers. They also process flow packets based on routing rules
provided by a controller [17]. The topology in SDN can employ programmable
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OpenFlow switches, providing access to the forwarding plane of a switch over the
network and enables software applications to look up and forward packets among
the switches, routers or other devices that make up the network [2].

In the middle of the architecture is the control layer, which the SDN controller
operates. It communicates with the data forwarding layer via South-bound Open
APIs, such as the OpenFlow protocol [2]. The control layer uses network policies
to regulate the network states in either a centralized or distributed manner. These
policies can be updated from time to time to react to the current flow activities
[2]. The separation of the control plane from the data forwarding plane allows
to control the entire network, and routing control and topology control are the
primary functions of the control layer in SDN architecture [21].

The application layer, on top of the control layer, hosts and manages the SDN
applications [2]. This layer communicates with the control layer through North-
bound Open APIs, which give the applications access to the data collected from
the network [22]. These applications can make the network system choose deci-
sions based on the information of network status, and carry out these decisions
by configuring switching and routing devices through the use of these APIs [17].
SDN commonly uses the OpenFlow protocol in its architecture, to enable network
operators to treat flows better than traditional networks [16]. This protocol pro-
vides access to the forwarding plane of a switch over the network and enables
switch programs to perform packet lookups and forward them among the network
[2].

Figure 2.2 shows the architectural design of an SDN switching device, which con-
sists of two logical components for the data plane and the control plane. In the
data plane, the switch processor (e.g., XLP, XScale and NPUs) performs packet
forwarding according to the rules imposed by the control layer. In the control
plane, the switching device communicates with the controllers at the control layer
to receive the rules for packet forwarding and link tuning, and store them in its lo-
cal memory (e.g., TCAM and SRAM). Unlike conventional switching devices, SDN
switches do not run routing protocols, which is a task given to the SDN controller,
and they gather and report network status and forward the packets according to
the imposed rules [17]. SDN enables network switches for intelligent and dynamic



2.1. Software-Defined Networking 12

traffic control [23], allowing network operators and administrators an efficient use
and provisioning of network resources [24].

Controller

Memory

Switching Fabric

Control Plane

Data Plane

Figure 2.2: Switching Device Model in SDN: a two-layer logical model consisting
of a processor for data forwarding and onboard memory for control information.

In SDN, network operators can easily and quickly manage, configure, and opti-
mize network resources with dynamic, automated and proprietary-free programs
written in the architecture [16]. It also provides a faster application deployment
and delivery, improves the value of data center virtualization, increases resource
flexibility, and provides greater cloud integration, solving the challenges associ-
ated with networks poorly-suited to the needs of dynamic technology (e.g., se-
curity, and interoperability) [25]. SDN enhances the communication of network
applications and allows them to share information. An example is the Routing
Control Platform (RCP), which improves and optimizes the functionality of Kan-
doo, an SDN architecture with two levels of controllers, and has the ability to re-
duce the configuration status on the routers, minimizing errors and management
complexity, allowing to deploy application services faster than in legacy network
architectures [21].

The separation of planes allows SDN to provide efficient use of resources and
a more flexible resource provisioning, and network operator employ it for many
network applications, including Quality of Service (QoS) management, resource
utilization, anomaly detection, traffic engineering, and so on [16]. SDN also im-
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proves the performance and scalability of networks, and also allows it to central-
ize its functions in the control plane [21]. With its extensive capabilities of network
programming, SDN can reduce or even remove the limitations of the network in-
frastructure and architecture to improve network efficiency.

2.2. Data Center Networks

The Data Center Networks (DCN) are the primary infrastructures for the deliv-
ery of cloud services, playing an important role to meet the needs demanded
by the Internet-of-Things (IoT) applications [26]. Data centers, which are a set of
servers, network devices, and other support elements, were recently promoted by
network administrators as a cost-effective infrastructure for storing large volumes
of data and hosting large-scale service applications [4]. Being a critical factor in
the improvement of the network performance, DCNs are the interconnection fab-
ric of the servers and switches within data centers [27]. The network topology, the
routing or switching equipment, and the protocols used by the network can define
the connections in a DCN. There are several types of DCN architectures, which
are divergent in cloud computing support, topology and networking techniques.
DCN architectures are also different in dealing with scalability issues [28].

For a better study on the behavior of these networks, DCN architectures split
into two main groups: switch-centric and server-centric [26]. Server-centric DCN
architectures consist primarily of commodity switches and servers with multiple
Network Interface Controller (NIC) ports. This group can split into two subgroups:
Dual-port and multi-port. Dual-port server-centric DCNs (e.g., FiConn and GQ),
require only two NIC ports per server and can be constructed using commodity
servers with a small number of NIC ports. Multi-port server-centric DCNs (e.g.,
Dcell, BCube, and MDCube), require a more significant number of NIC ports
when increasing the number of servers, making necessary the use of specialized
servers for deploying these architectures [29].

Switch-centric DCNs (e.g., FatTree [30], ElasticTree [31], and VL2 [32]) focus pri-
marily on the network topology, which is often built in tree-based architectures, as
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shown in Figure 2.3. These architectures distribute the switches in three opera-
tion layers: the core layer, the aggregate layer, and the edge layer, each of which
features switches with interconnection intelligence [29]. Thus, the routing intelli-
gence in these DCNs resides amongst the switches, with the servers behaving
only as computational nodes. The connection in switch-centric DCNs is made us-
ing only server-to-switch and switch-to-switch links, rather than server-to-server
links as in server-centric DCNs [27]. The switches have dense interconnections,
which provide a more significant number of redundant paths between any given
source and a destination edge switch, meaning that the excessive signature of
the higher layer links can be significantly mitigated [33].

...

Figure 2.3: Canonical Tree DCN Architecture.

Switch-centric DCNs feature a hierarchical configuration of the network topology,
meaning that traffic destined to servers must go to the switches in the core layer
of the network, with usually feature large buffers [33]. These architectures feature
different designs which came to resolve many issues (e.g., agility, load balancing,
and power consumption) that existed in conventional data centers [34].

Switch-centric DCNs focus to horizontal expansion rather than vertical expansion
and these architectures are widely used to achieve high performance and flexi-
bility through their ability to provide better scalability and path diversity [33]. In
Clos-tree topology, links between the switches on the core and aggregate lay-
ers form a complete bipartite graph as shown in Figure 2.4, and edge switches
connect to two aggregation switches as in conventional tree architecture [33].
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...

...

...

Figure 2.4: Folded Clos-Tree DCN Architecture.

In Fat-tree topology, the number of switch ports determines its size, and can use
k-port commodity switches uniformly for all layers. As illustrated in Figure 2.5,
the topology consists of k pods, which are management units interconnected
by the (k/2)2 switches that make up the core layer. Each pod consists of k/2

edge switches and k/2 aggregate switches, and each edge switch, also known
as Top-of-Rack (ToR), connects to k/2 end hosts [11]. Therefore, a k-ary FatTree
topology is able to support k3/4 hosts [33].

Core

Aggregate

Edge / ToR

Figure 2.5: A FatTree Topology in a Data Center Network.

In production DCNs, traffic is composed mostly by short-lived and small flows (i.e.,
mice), but it is contributed mostly by the long-lived and large flows (i.e., elephants)
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[30]. In the traffic profile of the data-mining applications and the Information Tech-
nology (IT) services of larger companies, there are both elephant and mice flows
[35]. Mice flows are usually associated with latency-sensitive and bursty appli-
cations, such as Voice over IP and search results [36]. The elephants are fewer
flows than mice, but they often belong to massive transfers of data, such as in
making backups of files [3]. The phenomenon of mice and elephants impacts the
overall performance of DCNs: large flows tend to fill the network switch buffers
end-to-end, introducing delays to the packets of mice flows that share the same
buffers [4].

Existing works deal with the routing of mice and elephant flows in DCNs by dy-
namically compiling and installing paths for the elephant flows [9, 10], while rout-
ing mice flows using static rules provided by multipath routing algorithms, such as
the Equal-Cost Multi-Path (ECMP). These routing algorithms use multiple paths
for sending flows, but their main drawback is that they usually have a longer delay
than traditional unicast algorithms. Here, it is noteworthy that an analysis [37]
revealed that the correlation between traffic flows in a data center is usually poor.

In most DCN architectures, flow packets are forwarded using Location-speci-
fic Addresses (LAs) on switches, and Application-specific Addresses (AAs) on
servers. Therefore, these architectures rely on a directory for AA-to-LA map-
pings. Switches are not aware of AA addressing, so they use only LAs when
forwarding the packets, which are decapsulated at the destination edge switch
and delivered to the destination AA server. PortLand (a switch-centric approach),
however, uses hierarchical Pseudo-MAC (PMAC) addressing of hosts and VMs
for Layer 2 routing. The separation of addressing spaces of switches and servers
improves the scalability of protocols such as VL2, as the switches do not have
to store forwarding information for a large number of servers. Cloud services in-
stead assign contiguous addresses to VMs placed behind the same edge switch
and use wildcard bits for aggregating IP forwarding entries [4].

For typical DCNs, consisting of a two- or three-tier Data Center switching infras-
tructure, the networks are designed for traffic peak rather than real-time traffic.
However, routing algorithms for these architectures are designed primarily for
load-balancing and usually are not able to make full use of network resources
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[38]. DCN architectures typically face some issues regarding the management
and control of physical and virtual resources and the inefficiencies it can lead to
[33].

Flow consolidation operations, which allow the direction of DCN flows to a sub-
topology with the minimum number of links and switches, does not guarantee full
utilization of links [38]. When a sub-topology serves the consolidated flows, not
all links work with the same volume of the link capacity. For a set of flows on
the same link, the completion time will be the same, regardless of the bandwidth
assigned to each flow. Therefore, an exclusive routing must guarantee that each
flow will use its path links exclusively, allowing for total link utilization [38].

2.3. Traffic Engineering

The Traffic Engineering (TE) is an important mechanism to optimize the perfor-
mance of a data network by dynamically analyzing, predicting, and regulating the
behavior of transmitted data [2]. It activates inside the network to perform re-
routing and load-balance of flow traffic when an event happens, solving issues
such as link overload and improving connectivity [39]. Network managers have
exploited TE widely in the past and current data networks, such as ATM and IP/M-
PLS networks [2], and may solve the problems related to traffic routing [40].

There are several TE techniques, which are also divergent in their operation;
traditional TE techniques calculate the paths for routing flows based on simple
shortest path routing protocols. These techniques, however, have some issues
for network optimization because the traffic in a network is dynamically changing
all the time [41]. ECMP, for example, enables and configures the switches with
various possible forwarding paths for a given subnet. Therefore, all packets of a
flow that arrives are forwarded to the same route, maintaining their arrival order
[9]. However, the default segment-routing behavior of exploiting ECMP may lead
to several drawbacks, such as higher network resource utilization [40]. They may
also present collision of two or more large packet flows with the same output port
as shown in Figure 2.6, which may create bottlenecks resulting in a reduction of
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the link bisection bandwidth [9].

Core

Aggregate

Edge / ToR

Local
Collision

Downstream
Collision

Figure 2.6: Examples of flow collisions in ECMP between the red and green flows
and between the blue and yellow flows.

Other TE techniques rely on Multi-Path Transmission Control Protocol (MPTCP),
which splits traffic evenly by balancing flows across multiple paths, preventing hot
spots where congestion occurs [42]. This method allows MPTCP an excellent
host-based solution on the transport layer, much like Data Center TCP (DCTCP)
[11]. However, these techniques lack mechanisms to guarantee that the flows
go over different physical network routes [33]. Also, end-users would be required
to upgrade to a kernel-code that is compatible with MPTCP [43]. Therefore, an
efficient TE algorithm needs to be able to optimize the performance of networks
by dynamically allocating bandwidth and changing the route of traffic. Such is the
case of TE techniques like Google B4 and Microsoft SWAN [44].

One of the most efficient TE techniques that exist is the Inter-domain SDN, which
features the deployment of data plane elements managed by the SDN controller;
this enables richer traffic matching that allows a more direct control over the data
plane and new applications (e.g., inbound TE, WAN load balancing, and fabric
virtualization) [45]. Other techniques based on Inter-domain SDN are usually
designed to tackle the challenges to ensure optimal end-to-end QoS for appli-
cations [16]. Although there are many proposals of advanced TE techniques in
the research literature (e.g., integer programming and multi-commodity flow op-
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timization), operators may not have the required knowledge at hand to optimize
utilization through these techniques or to improve security [45]. By TE, operators
and administrators can achieve the goals of optimizing network performance and
network resource utilization [46].

Most TE approaches are limited to a single administrative domain and assume
complete knowledge of the underlying substrate topology and the overall network
state. However, the rapid development of networks is making network architec-
tures evolve into complex interconnections of domains and layers, delineated by
geographic, administrative and economic factors [44]. Existing TE techniques
could potentially expose link-flooding attacks, which may also affect severely mice
flows. An administrator could exploit TE, and monitor network areas that are
persistently affected by link-flooding events, marking such areas as targets, indi-
cating an attack in progress [39]. Since SDN facilitates the carrying out of TE,
SDN deployments can be an incentive for operators to start the transition to this
new network paradigm. When offering premium services, the SDN controller can
reserve some forwarding paths, apply some TE technique and assign a higher
priority to traffic related to these services [47].

2.4. Traffic Engineering in Data Centers based on

Software-Defined Networking

Network operators and administrators use SDN for routing mice and elephant
flows in DCNs, since SDN-based switches are becoming more common, and
network operators can rely on the functions already provided by SDN [48]. How-
ever, the phenomenon of mice and elephant flows impact negatively on the over-
all performance of SDN-based DCNs: large flows tend to fill the switch buffers
end-to-end, introducing delays to the latency-sensitive mice flows that share the
same buffers [4]. Moreover, mice flows usually trigger the continuous updating of
switching tables when sending the first packet to the controller, which also gener-
ates delay [11].

TE is a widely used method for mitigating the events that may negatively affect
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mice flows. In SDN-based DCNs, TE methods are necessary to utilize the link
bisection bandwidth efficiently. DCN applications also demand TE for achieving
routing reliability, load-balancing, and energy-efficiency [49]. TE techniques vary
depending on the nature and application of the network, and they are oriented
to minimize common issues such as congestion, end-to-end delay, packet loss,
energy consumption, and resource utilization [50].

Several TE approaches distinguish between mice and elephant flows in SDN-
based DCNs. These techniques dynamically compile and install paths for the ele-
phant flows only, while routing mice flows using static rules provided by baseline
methods (e.g., ECMP and VLB) [9, 10]. However, these techniques have some
drawbacks in performance, such as the complexity of updating the routing rules
continuously in case of dynamic changes in the network state and the difficulty to
have redundant paths. Also, these works tend to create a high number of source-
destination routing rules, especially in more extensive networks. A switch with
many routing rules is a severe scalability problem in DCNs because it increases
the time the switch takes to find the routing rule for a specific flow. Such increase
in time may cause the loss (dropping) of flows.

Other TE approaches propose to dynamically compile and install the path for both
mice and elephants from the SDN controller to tackle with some of the problems
presented above [5]. However, these approaches also present some issues. The
switch sends the first packet of each incoming flow to the SDN controller, introduc-
ing a delay which negatively affects latency-sensitive mice flows [6]. Furthermore,
since the controller installs routing rules for each incoming flow, a large number
of incoming flows can overload the controller, increasing the processing delay [7].
Therefore, these proposals also present the same scalability problems faced by
the switches with many routing rules.

In summary, existing TE approaches offer alternatives to re-route mice flows con-
sidering the load on links, the limited memory capacity of switches, and the lo-
cation of network devices in the topology. However, although there are some TE
techniques designed for SDN, they are usually not optimal to meet the require-
ments of the network. For hybrid SDN networks, SDN-TE services have been de-
signed considering the fixed shortest paths of non-SDN environments, but these
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services only handle traffic on packet granularity, without QoS consideration [49].

2.5. Final Remarks

We have observed that SDN can address the limitations of traditional network ar-
chitecture and that DCNs are the main infrastructures in meeting the demands of
current network applications. We also observed that network operators use SDN
for routing mice and elephant flows in DCNs. However, the performance of SDN-
based DCNs is affected by the delays introduced in the latency-sensitive mice
flows. Several TE techniques have been developed to overcome these problems,
but they present shortcomings related to the large number of routing rules that
the switches must handle, leading to significant delays on mice flows. Therefore,
a solution is necessary to, first, reduce the delay caused to mice flows by a large
number of routing rules in the switches and, second, to avoid sending the first
flow packet to the controller.
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Chapter 3

Related Work

This chapter presents a review of the related work according to the network man-
agement works that focus on the management of mice flows in SDN or DCN, and
expose their differences with our algorithm in Table 3.1. From there we obtain our
observations about these works and highlight what our solution needs to fulfill the
objectives previously proposed.

3.1. Routing in Data Center Networks

There are several works related to routing in DCNs. Next, we describe some of
them. In “Hedera: Dynamic Flow Scheduling for Data Center Networks” [9], the
authors present a scalable, dynamic flow scheduling system that adaptively devel-
ops a multi-stage switching fabric to utilize aggregate network resources efficiently
so that could be an efficient solution for mice flow routing. Hedera collects flow
information from constituent switches, computes non-conflicting paths for flows,
and instructs switches to re-route traffic accordingly. Hedera delivers bandwidth
improvements with modest control and computation overhead. This system takes
advantage of multiple paths in DCN topologies using ECMP, so flow packets all
take the same route, maintaining their arrival order. The evaluation of Hedera
reveals better results in bandwidth utilization for Global First Fit and Simulated

23
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Annealing1than traditional ECMP. It is important to mention that Hedera only im-
proves the forwarding of flows, Hedera does not reduce the delay produced when
sending the first packet of the controller.

In “PortLand: A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric” [5],
the authors propose an approach called PortLand that supports a plug-and-play
large-scale DCN in an increasing trend toward migrating applications, computa-
tion, and storage into data centers. PortLand is a set of Ethernet-compatible rout-
ing, forwarding, and address resolution protocols with a set of routing goals. This
approach employs a lightweight protocol to enable switches to discover their po-
sition in the topology, assigning internal Pseudo-MAC addresses to all end hosts
to encode their place in the topology. Furthermore, this approach imposes few
requirements on the underlying switch software and hardware, and the authors
hope that it enables a move towards more flexible, efficient and fault-tolerant data
centers. The evaluation of Portland exposes that it is an excellent fault tolerance
approach when supporting VM migration. Limitations of Portland include the lack
of methods to handle mice flows when they go to the controller.

In “DiFS: Distributed Flow Scheduling for adaptive switching in FatTree data cen-
ter networks” [11], the authors present an adaptive switch method for Fat-Tree
DCNs, which allows switches to cooperate to avoid over-utilized links and find
available paths without centralized control. DiFS runs the Path Allocation algo-
rithm on each switch to assign flows to all outgoing links and avoid local flow
collisions, the Imbalance Detection algorithm to monitor the incoming links, and
the Explicit Adaption algorithm to change the path of the flows and avoid remote
flow collisions. DiFS aims to balance flows among different links and improves
bandwidth utilization, while avoiding flow splitting and, therefore, setting limits
to packet reordering. This protocol focuses on elephant flows, classifying and
spreading them as evenly as possible among all links. DiFS is built in a simu-
lated environment to evaluate its performance and compare it with other routing
solutions. Results show that DiFS has a better aggregate throughput than that

1Both are essential scheduling algorithms that control edge and aggregation switches dynam-
ically. Global First Fit assigns a flow to the first path that can accommodate it using a core switch
for each flow, while Simulated Annealing performs a probabilistic search to efficiently compute
paths for flows, assigning a single core switch for each destination host [9].
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of ECMP and achieves higher efficiency in avoiding local and remote collisions.
However, DiFS does not provide methods for efficient routing of mice flows in
DCNs.

In “Presto: Edge-based Load Balancing for Fast Datacenter Networks” [13], the
authors propose a mechanism that deals with DCN limitations such as latency-
sensitive small flows and drawbacks of earlier proposals such as centralized TE,
multipath-aware transport, or expensive specialized hardware. Presto utilizes vir-
tual edge switches (vSwitches) to break each flow into discrete units of packets
(flowcells) and distributes them evenly for an efficient network load balancing.
Also, Presto improves throughput, latency, and fairness in the network and re-
duces the flow completion time tail for mice flows, demonstrating to be a load bal-
ancing system that naturally enhances the latency by uniformly spreading traffic in
fine-grained units. Note that Presto is built in an open software-based approach
to allow simplified network management, and the vSwitch enables functionality
aware of the underlying hardware offload features, making it faster. The evalua-
tion of Presto reveals that it is more optimal than ECMP and MPTCP. Limitations
of Presto are related to the delay suffered by the mice flows caused by an over-
load on the network controller.

In “A source-controlled data center network model” [12], the authors propose a
source-controlled DCN model. This model applies a new type of source rout-
ing address (vector address) as the packet-switching label. Statistical studies
have revealed that a significant amount of mice flows and their quick arrival and
departure may cause overhead if all flows rely on one controller for scheduling
and routing decision. Employing SDN technology in DCN has full attention for
centralized control and high scalability, but the increasing volume reveals several
challenges for the controller. This model communicates sender and receiver by
sending a packet to the routers, which then perform a table lookup operation to
direct the packet. When it arrives the receiver, it performs the same process in
the opposite direction. The theoretical and experimental evaluation results of the
source-controlled DCN reveals that it has advantages in energy saving and scal-
ability. However, this model does not solve the problems related to the number of
routing rules installed on the switches when mice flows are handled.
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3.2. Flow Routing in Data Centers based on Software-

Defined Networking

There are also several works related to the management of mice flows in SDN or
DCN. Next, we describe some of them. In “MiceTrap: Scalable Traffic Engineer-
ing of Datacenter Mice Flows using OpenFlow” [10], the authors present MiceTrap
that is a TE approach oriented to routing mice flows. MiceTrap employs mice flow
aggregation together with a weighted routing algorithm. This approach spreads
the aggregated flows across multiple links based on dynamically computed ratios
to balance the load on them. The Elephant Flow Detection Mechanism module
separates the elephant flows. The Aggregation Module is implemented on the
switches to reduce the number of rules required. The evaluation results of Mice-
Trap reveal that it takes full advantage of the data center network bandwidth avail-
able in conjunction with other applications (i.e. MapReduce and Web Search) and
achieves better traffic balancing than conventional ECMP. However, aggregating
flows do not reduce the delay generated by sending the first packet of each flow
to the network controller.

In “Efficient traffic splitting on commodity switches” [51], the authors propose
an SDN-based algorithm named Niagara that achieves precise traffic splitting
while being extremely efficient in the use of the available rule-table space of the
switches. Niagara generates wildcard rules to handle and split the flows accord-
ing to different target weights while minimizing traffic imbalance (i.e., the portion
of traffic sent to the wrong next-hop). It allocates these rules to aggregates based
on a tradeoff curve of traffic imbalance versus the number of rules, and shares
the rules generates across aggregates with similar weights. Evaluation results
reveal that Niagara is highly scalable concerning the number of flow aggregates,
and achieves a level of traffic splitting that overperforms ECMP. Although using
wildcard rules minimizes the time of finding a specific flow rule, Niagara still lacks
methods to reduce the delay of the first flow packet.

In “Mitigating elephant flows in SDN-based IXP networks” [52] the authors pro-
pose a recommendations system named SDEFIX, based on templates for routing
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traffic in SDN-based Internet Exchange Points (IXP). SDEFIX enables network
operators to handle the identified elephant flows in an IXP network by using SDN
rules, applying templates for routing elephant flows and mitigating their effect in
mice flows. This system uses elephant flow snapshots to determine the tem-
plates to apply and installs the rules to the controller if the operator confirms the
generated recommendation. In particular, SDEFIX achieves a proper routing of
elephant flows when using the Best Alternative Path (BAP) template, as it selects
the best route for elephant flows to reduce their impact on mice flows and improve
overall utilization of the IXP network. Results show that SDEFIX achieves small
mitigation times even for a large number of elephant flows when using BAP. How-
ever, SDEFIX does not provide methods to handle mice flows when sending the
first packet to the controller.

In “CheetahFlow: Towards Low Latency Software-Defined Network” [53], the au-
thors propose a system which reduces the extra latency in SDN while preserving
its flexibility. CheetahFlow uses a support vector machine to predict successive
communication pairs, and a flow state manager to detect elephant flows by sam-
pling and sliding window. It also uses mixed routing path search algorithms to re-
duce the latency in flow routing, and setups wildcard rules to minimize the latency
in flow setup. CheetahFlow reduces the cost of collecting statistics from switches
by gathering only from edge switches, guaranteeing bandwidth efficiency between
the control plane and data plane. CheetahFlow is implemented in an emulated hi-
erarchy topology and evaluated in aspects such as the flow classifier, throughput,
latency, and blocking island efficiency. Extensive experiments show that Chee-
tahFlow prominently reduces latency on mice flows without any loss of flexibility
of SDN. However, it lacks methods to avoid sending the first flow packet to the
controller.

In “QoS-based distributed flow management in Software Defined Ultra-Dense
Networks” [54], the authors propose a distributed flow management model for
Ultra-Dense SDN based on the queuing theory. This model uses a module to
divide the incoming flows according to the characteristics of mice and elephants
during controller modeling. It sends high-priority mice flows to the head of the
queue without interruption, while the other flows are sent to the queue using the
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Poisson process, and estimates the mice and elephant flow loads of each con-
troller separately. The model is implemented on an emulated network and evalu-
ated considering the queue waiting times of mice and elephants. Results reveal
that this model can decrease the waiting times of mice and elephant flows, as well
as the packet losses of the controllers during an outage compared to the conven-
tional distributed controller implementation. However, it only reduces the delay of
mice flows during an outage, not during a normal routing operation.

To sum up, the works afore-described present several methods aimed at rout-
ing efficiently mice flows in DCNs, dealing, among other aspects, with the limited
memory capacity of the switches, the position of the devices in the topology and
the available bandwidth in the links. However, it is necessary a solution, like of-
fered by MiceDCER, that involves the allocation of addresses to the hosts, the in-
ternal identification of these addresses without having to send the first flow packet
to the controller; and the need to install an efficient routing path (i.e., generate
fewer rules to route).

Table 3.1 depicts the differences between the related work by considering the
article, its functional area (Flow management - F -, Scalability - S - , Data Center
solution - D -, SDN integration - I -, Virtualization - V -), if the method described
by the work is suitable for mice flow transmission, and the limitations per work in
front of this undergraduate proposal.

Table 3.1 reveals that:

The works [10, 53] focuses on flow detection and scalability to separate the
mice flows and avoid delay and latency that could affect their performance.

The works [10, 9, 5, 51, 53] have some limitations regarding sending the
first packet of mice flows from the switch to the network controller.

The work [13] uses virtualization to address the mice flow tracking, but it is
oriented to general flow transmission and network management.

The publication [5], is not recommended for mice flow transmission as still
have some issues related to the delay of these flows, although it is suitable
for virtualization.
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Related Work
Article Functional Area Transmission Limitations

[9] F,D - Controller Delay
[10] F,S - Controller Delay
[5] F,V - Controller Delay

[51] F,S,I X Controller Delay
[52] F,I X Handling Methods
[11] F,D - Handling Methods
[53] F,D,I X Handling Methods
[54] F,D,I - Handling Methods
[13] F,D,V X Controller Overload
[12] F,D,I X Routing Rules

This Proposal F,I,V X Number of Rules

Table 3.1: Related Work

The works [52, 11, 54] focus on reducing the impact of elephant flows but
lacks methods to handle mice flows appropriately.

3.3. Final Remarks

After describing our related work and the limitations presented in front of our
proposal, we observe that it is needed a solution that provides efficiency regarding
the delay of mice flow routing and that supports virtualization while trying to avoid
some of the limitations presented in the afore-described approaches. Thus, the
purpose of this undergraduate work is to propose a technique that meets the
requirements described for mice flows in SDN-based DCNs.
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Chapter 4

MiceDCER

In this section, we expose our proposed algorithm. First, we present a motivation
for our solution. Second, we expose an overview for outlining our proposal. Third,
we introduce our algorithm and prototype to detail MiceDCER.

4.1. Motivation

We use three experimental deployments to explain how a switch table with a large
number of routing rules impacts negatively on the delay of mice flows in DCNs.
The first deployment, as shown in Figure 4.1, measures the Round Trip Time
(RTT) in an emulated environment based on Mininet 2.2.2 [55], in which a Ryu
controller [56] handles an Open vSwitch [57] and two hosts by a single flow-
installer algorithm developed in Python [58].

The second deployment, illustrated in Figure 4.2, measures the RTT in a virtual
environment, in which the Ryu controller handles an Open vSwitch 2.5.4 and
two virtual hosts (connected through a virtual Ethernet interface) by using the
algorithm mentioned above.

The third deployment, as shown in Figure 4.3, is to measure RTT in a physi-
cal environment, in which the Ryu controller handles (using the same algorithm
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Figure 4.1: Emulated Deployment for RTT Measurement.
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Figure 4.2: Virtual Deployment for RTT Measurement.
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that the other deployments) an HP 2920 switch that, in turn, handles commu-
nication between two physical hosts through an OpenFlow VLAN interface. We
used computers with Intel Core i5 2.40GHz (4 cores) processor, 3GB RAM, and
Lubuntu 16.04 LTS operative system to run the emulated environment, the Open
vSwitches, and the Ryu Controller.

Controller

HP 2920

h1 h2

PC1

PC2 PC3

Figure 4.3: Physical Deployment for RTT Measurement.

In the three deployments, we measure the average RTT for each number of rules
r ∈ R = {1000, 2000, ..., 16000}, where two rules (i.e., working rules) are intended
to communicate the hosts, and the remaining are non-working rules. We installed
T times the r flow rules in the switch, setting up the working rules at the beginning,
at the middle, and at the end of the switch routing table for each t ∈ T , and took
the RTT measurement N times for each t ∈ T . The experiments were conducted
by pinging from a host to another one. In particular, we measure the average RTT
in the first host after receiving the reply packets from the switch.

For each deployment afore-described, Figure 4.4 depicts the results for T =

30, N = 30 when the working rules are at the beginning, middle, and ending of
the switch table. These results reveal that the average RTT for the emulated de-



4.1. Motivation 34

ployment stays within a range of [0.08− 0.1] ms regardless of the number of rules
installed. Similarly, the average RTT for the virtual deployment stays at ∼1.3ms.
This higher RTT value is caused by the virtual links used to connect the virtual
machines. For the physical deployment, there is a significant change. First, the
RTT increases (from ∼0.8ms to ∼2.1ms) when the number of rules grows. Sec-
ond, the location of the rules also impacts the RTT. When the working routing
rules are at the beginning of the switch table, the RTT is ∼1.1ms. If the rules are
the end, the RTT is ∼2.1ms.
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Figure 4.4: Average RTT for different number of rules installed on the switch.
Here T = 30 and N = 30.

From the experiments above, we learned that, first, RTT in emulated and virtual
deployments remains nearly constant while varying the number of installed rules.
Second, in a physical deployment, however, the amount of limited memory of
switches implies that the number of installed rules influences the delay of the
packets [2] [59] of mice flows. Thus, we can state that the number of rules is an
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issue that needs to be addressed to reduce the delay of packets in mice flows in
DCNs based on SDN.

4.2. Overview

We present an algorithm named MiceDCER, focused on reducing the delay of
mice flows in DCNs. In particular, MiceDCER addresses three issues:

The allocation of addresses to the hosts.

The internal identification of these addresses without having to send the first
packet of a flow to the controller.

The need to install an efficient routing path.

Moreover, the controller also needs to know the possible routes for the flows to
install the required rules on the switch tables. When a switch is inserted into the
topology, the controller executes an internal method called Topology Discovery.
This method checks which switches are connected and how they connect to each
other, giving the controller an overview of the topology.

Figure 4.5 presents the process to generate and install rules in MiceDCER that
aims at tackling the delay of packets in the mice flows. The MiceDCER process
involves the following tasks: Generate, Define, Install, and Update. It is notewor-
thy that these tasks are executed after the SDN controller obtains the topology
(Topology Overview).

Generate Address. MiceDCER generates the PMAC of the receiver edge
switch (i.e., the switch that received the flow intercepted by the controller)
from the Topology Overview. This task is composed of two others. The first
one generates the PMAC of the edge switches based on their position in the
topology, while the second task stores the new PMACs in a table, associat-
ing them with the corresponding actual MAC (AMAC) of each switch.
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Figure 4.5: Process to generate and install rules in MiceDCER.

Define Routing Rules. Here, the MiceDCER algorithm (see Algorithm 1)
provides the generated PMACs of the switches to the controller for defining
the set of rules to install Rins. This definition is performed by considering the
source MAC and IP addresses of the messages, as well as the input port of
the switches.

Install Routing Rules. MiceDCER instructs to the controller to install the
rules Rins in the edge switches.

Update Routing Rules. When a significant change in the network occurs,
the controller updates the defined rules Rins. This updating may imply the
generation of new PMACs or the definition of new rules.

It is noteworthy that in MiceDCER, we are assuming that we are not going to
install ARP routing rules on the core or aggregate switches, but that they will
flood their ports when they receive ARP messages. Each request ARP message
is expected to be answered with a reply message, which is determined by the
value of its Operation Code field on the ARP packet data. This value is essential
when it comes to the management of ARP messages required to install the rules
on the switches.
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Each core switch will have a rule that will connect to each pod or networking
group. The aggregate switches will have a wildcard group rule that provides a
connection with the core layer, and a rule for each link they have with the edge
layer. The installation of rules in the edge switches is more complicated than
it is in the upper layers because the PMAC-AMAC conversion is performed on
the edge layer. When the packet comes from the host, the switch rewrites the
source MAC field with its associated PMAC, and before sending the packet to its
final destination, it rewrites the destination MAC field with the host AMAC before
routing it through its respective port.

4.3. Algorithm

Inputs. Our algorithm receives as input an intercepted ARP message which
contains the primary data A = {opcode, eth src, eth dst,mac src, in port},
where opcode, eth src, eth dst, mac src, and in port are the Operation Code,
Source IP Address, Destination IP Address, Source MAC, and the switch in-
put port, respectively. While the input port does not make part of the ARP
data of the message, the algorithm still uses this value for generating rules.
MiceDCER also receives a set of edge switches T = {swi|swi = (id, pmac)}
from the Topology Overview. Here, id represents the defined ID of the switch
swi, while pmac is the PMAC that the algorithm assigns on swi. It is impor-
tant to highlight that the defined ID (i.e., datapath ID) for each swi ∈ T is
a 64-bit defined field, where the 48 least significant bits (LSB) correspond
to the switch MAC, while the 16 most significant bits (MSB) depend on the
implementation of the switch, which varies with each model. The algorithm
also has an ARP stale time threshold Θ which determines how often the
connection between the two hosts should be checked.

Outputs. The outputs of MiceDCER are the PMACs and routing rules to
assign to the edge switches. The algorithm provides two tables for stor-
ing PMACs: the first one associates the PMACs of the hosts (or virtual
machines) according to their IP addresses and AMACs, while the second
stores the PMAC headers corresponding to the AMAC of the edge switches.
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Algorithm 1 Rule installation algorithm.
E: Set of edge switches (ToR)
sw: Message receiver switch sw ∈ E
A: Intercepted ARP message data
I: List of known IP addresses
TH : Host PMAC addressing table
TE : Edge switch PMAC addressing table
Θ: ARP stale time threshold

1: Generate initial rules for edges:
2: for each e ∈ E do
3: field← {fieldtypes.ARP};
4: actions← [ACTION CONTROLLER];
5: installRule(e, field, actions);
6: end for

7: Intercepted message management:
8: procedure MESSAGEMANAGEMENT(sw,A)
9: if A.dst ip /∈ I then

10: actions← [ACTION FLOOD];
11: out← packetOut(A, actions);
12: for each e ∈ E do
13: if e 6= sw then
14: generateRequests(e,A);
15: end if
16: end for
17: else
18: if time(A.src ip,A.dst ip) > Θ then
19: checkHostConnection(A.dst ip)
20: else
21: actions← [A.in port];
22: out← packetOut(reply(A), actions);
23: end if
24: end if
25: sw.sendMessage(out);
26: end procedure

27: Generate table entries:
28: procedure GENERATEENTRIES(sw,A)
29: if A.eth src /∈ TH then
30: pmac← generatePmac(sw);
31: add {A.eth src, pmac} to TH ;
32: if sw.id /∈ TE then
33: pmacHeader ← generateHeader(pmac);
34: add {sw.id, pmacHeader} to TE ;
35: end if
36: end if
37: end procedure
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MiceDCER generates and assigns the PMACs using the form pod.pos.port.

vmid. Here, pod reflects the pod number of the edge switch, while pos is its
position within the pod. port is, from its local view, the port number to which
the host connects to the switch, and vmid is the identifier that corresponds
to the virtual machine inside the physical machine (or physical hosts on the
other side of the bridge). The PMAC header represented in the switch table
will have the form pod.pos. ∗ .∗.

Procedures. The algorithm procedures are: generation of initial rules for
the edge switches, intercepted message management, and generation of
table entries.

Generation of initial rules for the edge switches. MiceDCER initially
installs the routing rules for the edge switches with the ARP field type, to
allow the controller to intercept the ARP messages that arrive at the switch.
The algorithm then performs the following procedure to install the rules on
the switch tables.

Intercepted message management. If the controller does not know the IP
destination address of the intercepted ARP request message, the controller
indicates the receiver switch (i.e., the switch that received the message in-
tercepted by the controller) to flood (i.e., sends the packet to all ports ex-
cluding the input port), and instructs the other edge switches to flood with
requests. If the controller knows the IP address, it sends a reply ARP mes-
sage back to the source host, or it checks if the destination host is still
connected after the ARP stale time has passed.

Generation of table entries. If the source IP address of the intercepted
message does not exist in the host PMACs table, MiceDCER proceeds to
generate the PMAC and insert the entry into the table, associating it with
the source IP address. In this procedure, if the defined ID of the receiving
switch is not in the switch PMACs table, the algorithm generates the PMAC
header to add the entry, avoiding to carry out this process again if the same
switch receives the flows of several directly connected hosts.
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4.4. Prototype

MiceDCER relies on information obtained from ARP messages for reducing the
number of rules installed by the controller. The algorithm uses the AMAC-PMAC
association to rewrite the packet fields with the PMAC generated from the host
when the switch receives the packet from the source or when sending it to its
destination. MiceDCER is similar to PortLand, in that it assigns PMAC addresses
to the end hosts according to their position in the topology [5]. However, unlike
PortLand, MiceDCER assigns the PMACs before the hosts start communicating,
minimizing the delays in the transmission of mice flows.

Unlike other proposals, MiceDCER is complemented by the Topology Discovery
method to give the controller an overview of the topology. Once this discovery
finishes, we check the connections between switches with LLDP packets to de-
termine which layer they belong to in the topology, and we then run our algorithm
to populate switching tables with routing rules. Finally, unlike Hedera [9] or Presto
[13] that focus on forwarding and splitting flows, respectively, MiceDCER focuses
on the establishment of the most viable routes for mice flows, because it uses
group rules to select the outgoing port when routing the flow packet to the upper
layers.

Algorithm 2 illustrates the primary process of MiceDCER, which is the installation
of the PMAC rules for IP packets in the routing tables of the edge switches in the
topology. It installs a rule on Table 0 for each PMAC-AMAC association, where
the switch rewrites the source MAC field of the flow packet with the host PMAC
before sending it to Table 1. This second table has another installed rule, where
the switch rewrites the destination MAC field back with the host AMAC, before
sending the flow packet to the output port connecting to the destination host. The
IP rules have a lower priority than the ARP rules and ensure the proper connection
between the hosts in the topology.

We implement MiceDCER on the top of a Python-based SDN controller. In par-
ticular, we use the libraries offered by the Ryu 4.23 framework to implement the
Algorithms 1 and 2. This framework supports OpenFlow and ARP that are the fun-
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Algorithm 2 Python code for installing the rules based on PMAC.
1: def install rule pmac(self, dp, amac, pmac, port):
2: ofp parser = dp.ofproto parser
3: # Install rule for source MAC change on table 0
4: match = ofp parser.OFPMatch(eth type = ether types.ETH TY PE IP,

eth src = amac)
5: actions = [ofp parser.OFPActionSetF ield(eth src = pmac)]
6: self.add flow table(dp, 20, 1,match, actions)
7: self.logger.info(”Rule installed on datapath (%s) [Table 0] : ”+

”\n : [IPv4] Src : %s −> eth src = %s, Table 1”,
dp.id, amac, pmac)

8: # Install rule for destination MAC change on table 1
9: match = ofp parser.OFPMatch(eth dst = pmac)

10: actions = [ofp parser.OFPActionSetF ield(eth dst = amac),
11: ofp parser.OFPActionOutput(port)]
12: self.add flow(dp, 10,match, actions, 1)
13: self.logger.info(”Rule installed on datapath (%s) [Table 1] : ”+
14: ”\n : [IPv4] Dst : %s −> eth dst = %s, Table 1”,
15: dp.id, pmac, amac)

damental protocols of MiceDCER. The MiceDCER implementation is available in
[60].

4.5. Final Remarks

We observe that after realizing experiments on three different deployments, we
found that the delay increases when installing many routing rules in a physical
environment. We also realize that is necessary to address several issues when
focusing on reducing the delay of mice flows, and that we can use an internal
controller method to find which switches are connected and how they connect be-
tween them. Finally, we observe that through AMAC-PMAC association, wildcard
rules and group rules, we can reduce the number of rules installed in each of the
switches in the topology.
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Chapter 5

Evaluation

This chapter presents the evaluation of our proposed solution. First, we describe
the testbed of MiceDCER. Second, we expose the process done by the algo-
rithm to install the flow rules on the switch tables. Third, we compare the results
obtained with other routing protocols to check that it reduces the number of rules.

5.1. Testbed

We evaluate our algorithm analytically to verify if it reduces the delay significantly
in the flow packets compared with other routing protocols based on IP or MAC
addresses. For this evaluation, we set up an emulated environment as shown
in Figure 5.1. To carry out the evaluation, first, we check the initialization of the
topology with MiceDCER to make sure it installs the correct rules; we use a Fat-
Tree topology since it is the most common topology used in DCNs. Second, we
calculate the number of switches for each layer in our topology, and the number of
rules installed by the three evaluated solutions namely, MiceDCER, MAC routing,
and IP routing.

43
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Figure 5.1: MiceDCER Testbed.

5.2. Results

In this section, we present the evaluation results of MiceDCER. First, we describe
the process of initializing the topology. Second, we calculate the number of routing
rules installed per switch for each of the three layers in the topology and compare
the results obtained with other routing proposals.

5.2.1. Topology

Figure 5.2 illustrates the interception of messages ARP that MiceDCER performs.
Our algorithm uses LLDP (Link Layer Discovery Protocol) packets to indicate the
internal position of the switches in the topology. When the controller (i.e., Ryu)
starts running and activates the option of observing the links, MiceDCER auto-
matically installs the rules that allow the controller to intercept the ARP packets at
the edge switches. After running Topology Discovery to check the switches and
the connections between them, MiceDCER assigns the pod and position values
of the edge switches to encode their position within the topology.



5.2. Results 45

Controller

ARP Request

Src: 10.0.0.1 (03:45:21:A2:4B:61)

Dst: 10.0.0.6 (00:00:00:00:00:00)

Edge / ToR

Host A

A

A

A

Host B

Figure 5.2: Interception of ARP.

5.2.2. Number of Rules

We first calculate the total number of routing rules that MiceDCER installs in the
switches within the topology. The total amount of rules per switch (including group
rules) for k-ary FatTree topology can be obtained by using the Equations (5.1),
(5.2) and (5.3) for core, aggregate, and edge layers respectively:

CDC = 3 + k (5.1)

ADC = 5 +
k

2
(5.2)

EDC = 6 + 2

k/2∑
h=1

Mh (5.3)
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Each of the k2/4 core switches connects with each of the k pods. Each of the k2/2

aggregate switches has a wildcard rule which routes to the core layer through a
group table and a rule for each of the k/2 connections with the edge switches.
Each of the k2/2 edge switches has two routing tables, where the first table con-
tains the rules for matching the source AMAC, and the second table has the rules
for matching the destination PMAC. The number of rules installed for each table
is equal to the number of VMs Mh for each host h connected to the rack us-
ing a bridged adapter, as the VMs send the packets with their own MAC. All the
switches also have extra rules for table-miss action and ARP management.

Figure 5.3 illustrates the PMAC-AMAC association that MiceDCER carries out.
The edge switches rewrite the source MAC field with the host PMAC when re-
ceiving the packet, and rewrite the destination MAC field back to the host AMAC
before sending the packet out.

Edge / ToR

Host A

1

d: 1 Position: 1

P

Host B

2

PMAC Table

B

B

Check

Figure 5.3: PMAC-AMAC Association.



5.2. Results 47

Other approaches install a routing rule depending on the IP address, rather than
the MAC of the host or VM [30]. The total amount of rules for IP-based rout-
ing, assuming the use of wildcard rules and Topology Discovery, is given by the
Equations (5.4), (5.5) and (5.6):

CIP = 2 + k (5.4)

AIP = 3 + k (5.5)

EIP = 3 +
k

2
+

k/2∑
h=1

Mh (5.6)

The total amount of rules for MAC-based routing is given by Equations (5.7), (5.8)
and (5.9):

CMAC =
k3

8
(5.7)

AMAC =
k3

8
(5.8)

EMAC =
k3

4
(5.9)

Figure 5.4 presents the topology elements in a typical Fat-Tree topology when
the number of hosts to handle grows. These results reveal that the number of
switches grows significantly regarding the number of hosts. Furthermore, 1/5 of
switches in the topology are in the core layer, distributing the remaining switches
between the core and aggregate layers.
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Figure 5.4: Topology Elements.

Figure 5.5 presents the number of rules per edge switch generated by MiceD-
CER, IP-based and MAC-based routing when the number of hosts grows (recall
that the edge switches grows too, Figure 5.4). We assume we are using eight
non-bridged VMs per host. Results reveal that MAC-based and IP-based routing
installs more rules than MiceDCER (e.g., ∼1500 rules per edge switch when us-
ing 27648 hosts). Considering these results, we can conclude that MiceDCER
reduces the number of rules per edge switch significantly when compared with
other routing solutions.

Figure 5.6 presents the number of rules per aggregate switch generated by MiceD-
CER, IP-based and MAC-based routing when the number of hosts grows. These
results also reveal that MAC-based routing installs much more rules than MiceD-
CER. The IP-based routing installs approximately the double of rules than MiceD-
CER. Thus, we can conclude that MiceDCER reduces the number of rules per
aggregate switch significantly when compared with the MAC-based and IP-based
routing.
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Figure 5.5: Rules on Edge Switches.
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Figure 5.7 presents the number of rules per core switch generated by MiceDCER,
IP-based and MAC-based routing when the number of hosts grows. These results
reveal again that MAC-based routing installs more rules than MiceDCER. In turn,
the IP-based routing installs about the same amount of rules as MiceDCER. We
can conclude that MiceDCER reduces or at least generates the same number of
routing rules to install in the core switches.
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Figure 5.7: Rules on Core Switches.

To sum up, regarding the number of rules to install, MiceDCER always outper-
forms the performance of MAC-routing in SDN-based DCNs operating a Fat-Tree
topology. In turn, the IP-based protocol also installs more rules than MiceDCER,
in particular, in the edge and aggregate layers. Considering that MiceDCER in-
stalls fewer routing rules in switching tables than traditional routing protocols, we
can conclude that it contributes to reducing the delay of mice flows.
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5.3. Final Remarks

We observed that the methods used by our algorithm contribute to reducing the
number of rules on switch tables efficiently. We already demonstrated in Chapter
4 that the number of rules impacts the delay of mice flows so that reducing the
number of rules installed contributes to the optimization of the network regarding
the delay. We can conclude that MiceDCER is a solution for efficient routing in
SDN-based DCNs.
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Chapter 6

Conclusions and Future Work

In this chapter, we start by answering the proposed research question. Then we
present the main conclusions obtained during evaluation. Finally, we outline ideas
for future work.

6.1. Conclusions

This work presented the proposed solution to answer the research question: How
to route efficiently, in terms of delay, mice flows in Data Centers based on
Software-Defined Networking?

A relevant problem affecting the overall performance of SDN-based DCNs is the
delay introduced in latency-sensitive mice flows by the logically centralized con-
trollers when more massive elephant flows tend to fill the network buffers. Several
works aimed to resolve this problem, but they present drawbacks such as scalabil-
ity issues and delays when sending the first flow packet to the controller. Aiming
at overcoming this problem, in this work, we present MiceDCER, an algorithm
which aims to route efficiently mice flows in Data Centers based on SDN.

In particular, our algorithm, first, installs rules relying on the information obtained
from ARP messages. Second, it takes advantage of Topology Discovery to iden-
tify the position of the switches and install the appropriate rules for improving rout-
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ing. Moreover, MiceDCER generates wildcard rules to save memory in switching
tables.

By analytical results compared with other routing protocols, we have demon-
strated that MiceDCER significantly reduces the number of rules installed in switches
and, therefore, contributes to reducing the delay of the latency-sensitive mice
flows.

6.2. Future Work

According to with the work done for developing this project, we expose some
ideas for future work. These ideas are outlined below:

Evaluate the performance of MiceDCER in other types of networks (e.g.,
SDWAN and SDWLAN) that follows the SDN paradigm.

Implement MiceDCER for other SDN controllers to expand further the pos-
sibilities of an efficient routing of mice flows in SDN and DCN.
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Chapter 7

ANNEX A

Annex A presents the content of our GitHub repository.

FILE CONTENT DESCRIPTION
micedcer api.py It is the Python source code used to build the

algorithm used in the evaluation of the prototype.
Slide Operation CN.pptx It is the slide show presented for Ph.D. Chadi

Assi on August 10, 2018.

Table 7.1: Content of GitHub Repository.

Table 7.1 presents the content of our GitHub repository, it is available online in
URL: https://github.com/cfamezquita/MiceDCER
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ANNEX B

The annex B presents the paper developed during the elaboration of my degree
work to be published.

Carlos Felipe Amézquita Suárez, Felipe Estrada Solano, Nelson L.S. da
Fonseca, Oscar Mauricio Caicedo Rendón. An Efficient Mice Flow Rout-
ing Algorithm for Data Centers based on Software-Defined Networking
IEEE ICC 2019.
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