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Abstract

State-of-the-art fingerprinting-based localization methods relying on WiFi/GSM information
provide sufficient localization accuracy for many mobile applications and work reliably in urban
areas and indoors. These methods assume that each location contains a unique combination
of signal strength readings. To obtain a location estimation, a mobile devices gathers signal
strength readings and with the help of a fingerprinting algorithm, the closest match in a ref-
erence database is found. Building this reference database requires a training set consisting
of geo-referenced fingerprints. Traditional approaches require manual labelling of the reference
locations or GPS information. This work proposes a collaborative, semi-supervised WiFi/GSM-
based fingerprinting method where only a small fraction of all fingerprints needs to be geo-
referenced. This allows for automatic indexing of areas in the absence of GPS reception as
found in urban spaces and indoors without requiring manual labelling of fingerprints. Taking
advantage of the characteristic that the similarity between two fingerprints correlates to the
distance between their corresponding locations, this method applies multidimensional scaling
to generate a topology estimation of the training set. With the help of a subset of geo-referenced
fingerprints, the topology estimation is anchored to physical locations now serving as a refer-
ence database. Further fingerprints can be used to refine and extend the topology estimation.
Hence, the covered space grows gradually. An evaluation of the approach is performed using an
urban-scale dataset showing that the method can locate a mobile device with a median accu-
racy of 30 m. Hereby, only 7% of the fingerprints are geo-referenced. Further, the localization
error decreases and converges to a value comparable to related work as new fingerprints are
added to the reference database. A promising application of the method is seen by combining it
with existing fingerprinting systems to extend their functionality into areas where a GPS-based
indexing is not possible.

Keywords
Localization – Mobile Phone – WiFi – GSM – Fingerprints – MDS – GPS Anchor Points



Contents

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3. Approach and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Related Work 4
2.1. Wi-Fi based Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. GSM based Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. Similarity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4. MDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Experiments & DataSet 12
3.1. CoenoSense Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1. Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2. Aim of Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1. Description & Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3. Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4. WiFi Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5. GSM Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4. Similarity Measurement 16
4.1. Similarity and Distance Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. Data Analisys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. MDS 33
5.1. Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2. Topology Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1. Topology Results Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . 40



iv Contents

5.2.2. Algorithm Operation Limitations . . . . . . . . . . . . . . . . . . . . . . . 49
5.3. Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.1. Generating a reference topology . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2. Density Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6. Results 61
6.1. Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1.1. Fingerprint Similarity vs. Distance . . . . . . . . . . . . . . . . . . . . . . 61
6.1.2. Topology Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.3. Evolution of the reference topology . . . . . . . . . . . . . . . . . . . . . . 65

7. Discussion 68
7.1. Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2. Findings, Achievements and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 69
7.3. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography 72

List of Figures 76

List of Tables 78

Appendix A. Excerpts of the Code 79

Appendix B. Similarity Measurement Results 83



CHAPTER 1

Introduction

1.1. Motivation

Knowing the geographical position of a person enables a large number of location-based mobile
applications [1]. State-of-the-art mobile phones contain multiple technologies to provide such lo-
cation information including GPS, WiFi and GSM-based approaches. Despite its largely spread
use and commercialization, GPS-based localization faces some limitations as it requires a clear
view of the sky, it provides accurate positions in open sky conditions and less accurate ones
or none in urban and indoor areas [2]. These, however, are places where people spend most of
their time [3].
The localization problem in indoor venues and urban spaces has then became object of re-

search. Thanks to the vast penetration of GSM and WiFi networks, exploiting these existing
infrastructures for localization purposes has found great interest. The achievable location accu-
racy has been found to be sufficient for many mobile phone applications. Additionally, WiFi-
and GSM-based approaches have the advantage of performing well in urban areas and indoor
venues [1]. However most of the existing approaches need previous indexing of the WiFi and/or
GSM information to geographical locations, requiring GPS availability for this process.

1.2. Problem Statement

Recently, so-called fingerprinting approaches have found great interest in the research com-
munity for localization purposes. Hereby, a reference database is built where a list of access
points (APs) and their corresponding received signal strengths at given locations are called
fingerprints.
The assumption is that each fingerprint is unique across the space and thus represents a par-

ticular geographical location. To be localized, a mobile device gathers signal strength readings
and with the help of a fingerprinting algorithm, the closest match in the reference database can
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be found revealing a location. Bahl et al.’s RADAR localization system [4] was a pioneer effort
in that direction. In a more recent work, LaMarca et al. [3], achieve 20 − 30 meters median
localization accuracy in urban areas with their Place Lab system.

For such fingerprinting approaches to work, training data is required to build the reference
database consisting of geo-referenced -usually using GPS- fingerprints.

For collecting such GPS-referenced fingerprints in urban environments, approaches like war-
driving [5] and war-walking [6] became popular. War-walking tends to take more time but
provides better accuracy and larger coverage in metropolitan areas as some regions in a city are
only accessible by pedestrians [6]. Fingerprinting efforts can be minimized by e.g. geocoded infor-
mation to bootstrap fingerprinting databases [7]. Following a collaborative approach, fingerprint
databases are automatically updated when GPS and WiFi are active on a user’s phone [8].

Many of the existing methods assume the availability of accurate GPS signals during the
recording of the training set. GPS reception, however, is not always available in many urban
areas as well as indoors, limiting the possible indexing space significantly and thus the usefulness
of such localization systems. Hence, to provide extensive coverage and high accuracy for urban
positioning, methods are required to be able to index urban spaces also in the absence of GPS-
based reference information.

While existing approaches rely on manual labeling of the reference locations [9] or require
expensive equipment [10], in this work we present a fingerprinting approach which does not
require a reference location for each fingerprint in the training set. Only a small number of
anchor points is required. Contribution is threefold: 1) A collaborative, semi-supervised WiFi
and GSM (termed WiFi+GSM in the following) fingerprinting method that only require geo-
referencing of a fraction of the fingerprints is proposed, by taking advantage of the characteristic
that the similarity between two fingerprints correlates to the distance between the location of the
recordings. By applying Multidimensional Scaling (MDS) [11] on the similarity information, a
topology of fingerprints which can be mapped to a geographical coordinate system is obtained
using some geo-referenced fingerprints serving as anchor points. This reference topology can
be used to locate new fingerprints. 2) The topology can be updated with new fingerprints to
increase the localization accuracy and to extend the covered space and is therefore suitable for
a collaborative approach. 3) Evaluation results using an extensive urban data set that provides
evidence for the feasibility of our approach is presented.

1.3. Approach and Outline
Figure 1.1 gives a general overview of the approach we intend to use. From every set of scans
taken with different mobile devices, a fingerprint is builded up, then through a pairwise similarity
comparison of these fingerprints in relation with their geographical separation distance, a model
of its behaviour is should be obtained, from this model and by making use of an algorithm,
we intend to obtain a topology that represents the real geographical locations where the scans
were made.
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Figure 1.1.: Addressed approach.

This chapter acted as introduction to this thesis. The next chapter will present the state of
the art in related literature. Through the thesis we will rely on data, thus we require to obtain a
data set through the conduction of an experiment. For obtaining the desired data, the extension
of the existing CoenoSense plattform and the conducted experiment are presented in chapter 3.
The analysis of WiFi and GSM data, and its behaviour in relation to spatial distance is pre-

sented in chapter 4. An introduction to the basic principles of MDS its expected performance,
and the proposed algorithm operation is presented in Chapter 5; Chapter 6 shows the evalua-
tion and performance of the proposed algorithm. The results are discussed and summarized in
Chapter 7 by showing the limitations, presenting a conclusion and proposing further work that
could be done in the area. Some considerations that should be taken into account for a real life
implementation are also suggested.
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Related Work

The most commonly available and used localization technology nowadays is the Global Position-
ing System GPS. Altough highly efective and accurate in open enviroments, GPS does not work
well in indoor enviroments, urban canyons or in such areas with limited view of the sky: places
where people spend most of their time. A study in [3] shows that GPS is available only 4.5%
of the time for a device carried in user’s pocket or during a normal day, these values represent
the worst case scenario and are elevated when both mobile and stationary times are considered.
Some works have been done in localization approaches to work indoors, for example Infrarred
[12], Ultrasound [13] and Bluetooth [14] have been explored as alternatives, even though they
work well indoors, deploying them in a wide area is either cost prohibitive or dificult from a
technical perspective, for example, due to infrarred interference from the sun.

A review of the existing positioning methods for wireless networks is made in [15], authors
examinate a broad range of techniques from Angle of Arrival (AoA), to Time of Arrival (ToA),
propagation and geometrical models. Most of these methods focus on wireless sensor networks
and thus require a complete knowledge of the network and hardware.

2.1. Wi-Fi based Positioning

Several fingerprinting approaches have been used for localization purposes, using either Wi-Fi
or GSM information. Bahl et al.’s RADAR localization system [4] was a pioneer effort that
estimated the distance from a client to each beacon using its received signal strenght indication
RSSI, then trilaterated a location estimate. Niculescu et al. used relative angles, rather than
distances, from clients to beacons [16]. The use of time difference of arrival techniques has been
studied for example in [17] and [18] to generate precise distance estimates than RSSI alone
could provide. Hightower et al. focused on removing the need for fixed infraestructure through
rapid and flexible RF deployments [19]. The main difficulty that all of these approaches face
is that reflections, difractions, absorptions, multi-path effects and the presence of objects e.g.
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people, cars, often affect signal propagation models and in turn, angles and distance estimates.
Subsequent work of the RADAR group dealed with the signal modeling and triangulation

by proposing the use of RF Signatures, or fingerprints. Due to walls, obstacles, distance and
structures in indoor enviroments, the observed signals in a particular area will be different from
those in other spaces, even adjacent ones. This also applies to GSM signals, which have been used
for localization purposes due to its behavior in urban and indoor enviroments, further Many RF
sources are geographically fixed which makes the signals in most spaces fairly consistent over
time. Together the RF signals observed in a space form that’s space RF Signature or fingerprint.
RADAR’s approach works as follows: First a database containing the signatures from all the
spaces is constructed, this phase is often called training or survey phase, given this database
a user device can gather a current RF signature, then find the closest match in the previously
constructed database. The space with the closest match is returned as the result. This is called
the use phase.

The RADAR effort obtained a medium accuracy of 2-3 meters, which inspired future research
in the topic.
An important tradeoff while deploying this kind of location systems is the obtained or desired

accuracy versus the training phase or calibration effort involved. Developing such a method for
large scale urban areas would require a high effort training phase in order to obtain a good
accuracy. The classical fingerprinting algorithm is based on the RADAR mechanism [4], to
position a device, the algorithm uses a previously indexed set of fingerprints or RF signatures
to compare with the current fingerprint to find the fingerprint that is the closest match to the
positioning scan in terms of APs seen and their corresponding signal strengths. The Euclidean
distance in signal strength is calculated between the observed signal strengths in the current
fingerprint and the recorded ones in the stored fingerprints. Suppose that a positioning scan
discovered three APs: A, B, and C with corresponding signal strengths Sa, Sb, Sc. For each match
between the actual scan and a fingerprint S′a, S′b, S′c stored in the database, and according to
the Euclidean distance definition, the distance is computed as equation 2.1:√

(Sa − S′a)2 +
(
Sb − S′b

)2 + (Sc − S′c)
2 (2.1)

It then selects the k fingerprints with the smallest distance to the observed scan as potential
indicators of the observed scan. The location of the device is estimated as an average of the
latitude and longitude coordinates of the best k matches [5]. Location estimation accuracy
is highly dependent on the density of the set of collected fingerprints. Many indoor WiFi and
GSM localization methods using fingerprinting approaches as [4] collected fingerprints at a
density of around one fingerprint per square meter. Authors in [20] investigated how well
fingerprinting works with sparser calibration and less uniformly distributed set of fingerprints
at a metropolitan scale.
In [5] the Intel PlaceLab group relied on user-contributed data collected by war driving, the

process of using software on Wi-Fi and GPS equipped mobile computers and driving or walking
through an area collecting traces of Wi-Fi access points. MIT group at [21] developed a system
which in an organic, i.e. crowdsourced, way eliminates the necessity of a training phase to save
a set of fingerprints of a determinated area, and does not require GPS to build the radio map.
This system has an user interface that prompts the user to select his location by indicating on
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a labeled floorplan his position if there is no match between the current scan and the actually
saved data, or if the match is of low confidence.

A similar work by Bolliger in [9], presents an application that in a collaborative way, similar to
[21], builds in an incremental and collaborative approach a database with fingerprints. Similar
works were done by [5] where the training process is shifted by the so called war driving, and by
[22] which bases the training process on a simplistic algorithm that relies on known positions
of access points on an university campus to find a user’s location.

There are many different variations of the fingerprinting localization algorithm, in [5] two
variations are shown. When the algorithm is not able to find stored fingerprints with the same
set of APs as heard in the scan, the search is expanded to look for fingerprints containing
subsets of APs, the algorithm matches fingerprints that have at most p different APs between
the stored fingerprints and the scan. Also, if the scan shows an AP that never appears in the
database or radio map, for example a recently deployed AP, it is ignored. These modifications
allowed this approach to improve the matching rate from 70% up to 99%. According to this
work, p = 2 provides the best matching rate without reducing overall accuracy.

Another adaptation to the fingerprinting localization algorithm is introduced by [5]. It adopts
a ranking. Fingerprinting is based on the assumption that Wi-Fi devices used for training
and positioning measure signal strengths in the same way or scale. If that is not the case,
due to differences caused by manufacturing variations, antennas, orientation. . . One can not
directly compare the signal strengths nor derive distances from them. The algorithm proposed
by RightSpot in [23] proposed that instead of comparing absolute signal strengths, to compare
a list of access points sorted by signal strength in descending order. Then the comparation is
made by using the Spearman rank-order correlation coefficient [24]. However, according to [5]
the ranking algorithm performs quite poorly in low AP densitiy zones.

There are different adaptations for positioning algorithms, either for the training phase or
for the test phase. For example the Centroid algorithm [5], which is the simplest positioning
method, during the training phase estimates a geographic location for an access point by com-
puting the arithmetic mean of the positions reported in all the readings. Using the radio map,
the Centroid algorithm positions the user in the center of all the APs heard during the scan
by computing an average of the estimated positions of each of the heard APs. There is also
a weightened version of this algorithm that assigns weights according to the reported signal
strength during a scan. Statistical positioning algorithms are also shown in [20], where the
position is calculated by using probabilistic distributions and assigning probabilities to each
position where the user could stay.

Summarizing, Wi-Fi fingerprinting localization methods either require a training phase and
GPS availability to build a radio map, or require the user’s colaboration to determine his
location either by providing GPS information or by selecting his position in a map.

2.2. GSM based Positioning

Global System for Mobile Communication (GSM) is the most widespread cellular telephony
standard in the world, with deployments in more than 210 countries by over 676 network
operators [25]. In North-America, GSM operates on the 850 MHz and 1900 MHz frequency
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bands. Each band is subdivided into 200 KHz wide physical channels using Frequency Division
Multiple Access (FDMA). Each physical channel is then subdivided into 8 logical channels based
on Time Division Multiple Access (TDMA). There are 299 non-interfering physical channels
available in the 1900 MHz band, and 124 in the 850 MHz band, totaling 423 physical channels.
A GSM base station is typically equipped with a number of directional antennas that define

sectors of coverage or cells. Each cell is allocated a number of physical channels based on the
expected traffic load and the operator’s requirements. Typically, the channels are allocated in a
way that both increases coverage and reduces interference between cells. Thus, for example, two
neighboring cells will never be assigned the same channel. Channels are, however, reused across
cells that are far-enough away from each other so that inter-cell interference is minimized while
channel reuse is maximized. The channel-to-cell allocation is a complex and costly process that
requires careful planning, and typically involves field measurements and extensive computer-
based simulations of radio signal propagation [26].
Therefore, once the mapping between cells and frequencies has been established, it rarely

changes. Every GSM cell has a special Broadcast Control Channel (BCCH) used to transmit,
among other things, the identities of neighboring cells to be monitored by mobile stations for
handover purposes. While GSM employs transmission power control both at the base station
and the mobile device, the data on the BCCH is transmitted at a full and constant power. This
allows mobile stations to compare signal strength of neighboring cells in a meaningful manner
and choose the best one for further communication.
With GSM several approaches of fingerprinting have been made, they require a training phase

where given a set of GPS-stamped GSM traces, the algorithm builds a model of an environment,
which it later uses for predicting device’s location.
Fingerprinting then matches every measurement in the testing set to one or more measure-

ments observed during the training phase and then averages the true positions of the best
matched measurements. Weighting by the signal strength of the best matched measurements
provides better results. Authors in [26] argued that for emerging location enhanced applica-
tions, client-based GSM localization based on fingerprinting can provide an adequate solution
both in terms of coverage and accuracy in a device people already carry. To dispel the notion
that location systems using GSM phones are inherently less accurate than systems built for
WiFi devices, they presented preliminary results showing that using GSM for indoors, it is
feasible to achieve a median error of 2-5 meters, and room-level localization. Using GSM for
outdoors, it is feasible to achieve a median error of 70-200 meters, and to detect places people go
in their everyday lives. These results are comparable to what has been demonstrated previously
for WiFi.
They also consider that onphone localization based on cellular networks is not specific to

GSM. Indeed, any cellular technology that transmits stable beacons from the cellular towers
(e.g., for the need of hand-off purposes) will make the on-phone localization possible. The main
problem of the existing fingerprinting localization systems, whether WiFi or GSM, is the non-
trivial training required for the system to become usable.
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2.3. Similarity Measurement

Metric Functions The following are common functions used for similarity measurements:

Minkowsky Metric Given an m-by-n data matrix, which is treated as m (1-by-n) row vectors
x1, x2, ..., xm, the various distances between the vector xs and xt are defined in equation 2.2.

dst = p

√√√√ n∑
j=1
|xsj − xtj |p (2.2)

For the special case of p = 1 the Minkowski metric gives the City Block metric, for p = 2 the
Euclidean distance, and for p =∞ the Minkowski metric gives the Chebychev distance.

Similarity Indices The similarity indices often have their origins in Ecology or Botanics, with
the efforts to find the distribution of species among geographical zones. They are often used in
to compare documents in text mining. In addition, they can be used to measure cohesion within
clusters in the field of Data Mining, for example using the Cosine Similarity. In the following
equations A and B represent two fingerprints, so the union would represent the information
present in A and B, and the intersection represent the common information between those
fingerprints.

Jaccard Index Introduced by [27] in 1912 to compare the distribution of plants among the
alps, but it can be applied to numerous types of data. We see a WiFi fingerprint as a set that
contains the Basic Service Set Identification BSSID, i.e. MAC Address, of all WiFi networks
that were visible at the time of the WiFi scan. The Jaccard index is defined as the size of the
intersection divided by the size of the union of the WiFi fingerprint sets, in other words the
number of networks common to the two locations divided by the total number of networks at
the two locations. Given by equation 2.3.

J (A,B) = |A ∩B|
|A ∪B|

(2.3)

Sørensen Index is another statistic commonly used to compare sets of samples, developed in
1948 by botanist Thorvald Sørensen [28]. It processes the same fingerprint sets as the Jaccard
index. Given by equation 2.4

S (A,B) = 2 |A ∩B|
|A+B|

(2.4)

Cosine Similarity Is a measure of similarity between two vectors by measuring the cosine of
the angle between them. The result of the Cosine function is equal to 1 when the angle is 0, and
it is less than 1 when the angle is of any other value. Calculating the cosine of the angle between
two vectors thus determines whether two vectors are pointing in roughly the same direction.
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The cosine can be derived from the dot product of two vectors as equation 2.5.

A ·B = ‖A‖ ‖B‖ cos θ (2.5)

Thus, similarity is given by equation 2.6.

cos θ = A ·B
‖A‖ ‖B‖

(2.6)

Since the angle θ is in the range of [0, π], the resulting similarity yields the value of -1
as meaning exactly opposite, 0 meaning independent and +1 meaning exactly the same, with
in-between values indicating intermediate similarities or dissimilarities. The cosine similarity
is extended to the Jaccard coefficient in case of binary distributions, this is the Tanimoto
coefficient. For the present work, vector-oriented similarity indices are expected to result in
better or more addecuate estimations, because they would consider both the networks and
their received signal strenghts as a whole. We could think in each fingerprint as a vector,
each component of this vector would be each network name and its magnitude would be the
respective received signal strength, then we would have fingerprints as vectors of n-dimensions,
with n being the size of the biggest fingerprint. This consideration is necessary in order to
be able to operate vectors, as they must have the same dimensions. Thus, all the fingerprints
would ’know’ all the networks, but the networks don’t seen in each fingerprint would have a
zero magnitude. For the case of GSM information, the network name would be the Cell ID, but
further considerations should be taken in mind, as there is a specific order for the GSM cell
ditribution.

Tanimoto Coefficient [29] is an extension of the Jaccard index that is used to compare non-
binary samples. Most data are not simple binary sets containing or not BSSIDs. There are
scalar vectors that contain the signal strength for each network. Given by equation 2.7.

T (A,B) = A ·B
‖A‖2 + ‖B‖2 −A ·B

(2.7)

First Kulczynski Is another similarity index used to compared sets of samples with origins in
Ecology. Given by equation 2.8

K (A,B) = 2 |A ∩B|
|A+B| − 2 |A ∩B| (2.8)

Second Kulczynski A second version of the previously described similarity index. Given by
equation 2.9

K (A,B) = 2 |A ∩B| |A+B|
2 |A| |B| (2.9)

Other Indices in [21] a fixed similarity index is used to compare the BSSIDs between each
pair of fingerprints and another index for each pair of RSSIDs of the corresponding fingerprints.
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2.4. MDS

Multidimensional Scaling is a collection of statistical techniques which explores the similarities
or dissimilarities in data, they have its origins in psychometrics and psychophysics.

The history of MDS techniques begins with the work of Torgeson in 1952, who draw the first
ideas [30]. In 1962 Shepard proposed a quite accurate formulation of MDS when he proved that
in a known ordination of the distances between a determinated set of points, it could be possible
to find a configuration of points in a low dimensional Euclidian space, which pair-wise distances
represent or practically reproduce the initial configuration. Those ideas were refined by Kruskal
in the 60’s and later developed by other authors like Guttman and Lingoes. The approach of
these techniques is to build metric distances by adecuately transforming disimilarities and are
often known as non-metric multidimensional scaling.

In 1966 Gower proposed the Principal Coordinates Analysis method, which could be consid-
ered as a metric MDS which avoids the resolution by iterative processes used in the non-metrical
techniques. In the 80’s and 90’s several researchers countinued the research on finding algorithms
able to produce a final configuration of points which distances are as close as possible to the
perceived disimilarities. MDS has been applied in many fields ranging from machine learning,
computational chemistry to psychologie. For localization purposes MDS takes full advantage of
connectivity or distance information between known and unknown nodes, unlike other distance
approaches [31].

MDS models are defined by specifying how the given similarity data between two nodes i
and j are mapped into distances d̂ij . MDS-based works on range-based localization assuming
the node-node pairwise distance is measurable, and on range-free localization, only estimating
node-node pairwise distance by connectivity information [32].

Despite fingerprinting methods are not novel persé, the use of ordination algorithms or tech-
niques such as MDS for localization purposes has not been explored as much as fingerprinting.
Until the extent of literature research suggests, recently there are works that applied MDS and
adaptations of MDS algorithms to similarity data for localization purposes, which means that
the location resolution should be between 1 and 100 meters, and the timeliness should be in
seconds [31]. However these methods make use of either previously recorded information, GPS,
or have been applied into Wireless Sensors Networks. Allegedly there is no work that has ap-
plied MDS in a collaborative manner to fingerprints either based on GSM information alone or
a combination of Wi-Fi and GSM.

Goussevakia et al. [33] used MDS to map the The World of Music into an Euclidean space
with the scope of accelerating the calculation of the shortest path between two musical pieces.
MDS is applied in this work under multiple iterations in order to increase the accuracy of the
obtained map. Shang et al. [34] applied for the first time MDS into a Wireless Sensor Network
(WSN). MDS was sucessfully used to derive the position of nodes in a WSN, based exclusevely
on connectivity information: who is in the range to who. Its approach initially calculates the
shortest path using the Djkstra algorithm, then mutiplies it with the average range of radio
signals to obtain each pairwise distance, and uses MDS to obtain a relative topology of the
network. This relative topology can be approximated into a real topology if the position of at
least three nodes is known. This work was extended in [35] to work without knowledge of the
entire connectivity.
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Authors in [31] developed an algorithm based on MDS and Received Signal Strength Indi-
cation (RSSI). In this work, the signals with RSSI values among beacon nodes, i.e. nodes with
knwon location, helped to construct a real time 2D map of the network by self iterations. Nodes
with unknown locations use the map to determine their locations in this network. A simulation
was used to test the performance of the algorithm as well as practical experiments showed the
localization efficiency and accuracy. The most significant difference of this approach is that it
uses RSSI to obtain estimated distances between beacons to build a distance matrix, and then
uses a MDS-based algorithm to approximate the mapping, which is shown to be more effective in
both simulation and implementation. After this process, the unknown nodes can estimate their
location based on the previously built map. The results of this approach, show an acceptable
performance: less than 10% of the average distance between beacons.
Schläpfer in [36] applied MDS to a data set of Wi-Fi fingerprints with the aim of mapping

the similarities between fingerpringts into a bidimensional space which represents the points
where the fingerprints were taken. This approach used fingerprints consisting in the name of
the network SSID, the MAC address of the acces point BSSID and the received signal level.
According to the author, this process was made in a very short time, however, its results seem
promising. Authors in [32] were motivated to improve the accuracy of fingerprinting localization
algorithm using MDS. Based on the original fingerprinting location estimation, the proposed lo-
cation sensing approach uses MDS and Procrustes analysis to improve the localization accuracy,
by trying to guarantee that the configuration of points obtained by MDS matches the original
configuration of points in the least-squares sense. From radio scans authors in [37], extracted
dissimilarities between pairs of WiFi APs, then analyzed the dissimilarities to produce a geo-
metric configuration of WiFi APs based on a multidimensional scaling technique. To validate
the scheme, they conducted experiments on five floors of an office building with an area of 50
m by 35 m in each floor. WiFi APs were located within a 10m error range, and floors of APs
are recognized without error. While they intend to locate WiFi APs, we intend to locate mobile
devices based on the available WiFi and GSM information. The work that is most comparable
to our effort is presented by Pulkkinen et al. in [38] where they generate a topology map,
based on the similarity of WiFi fingerprints. They achieve a median localization error of 1.5m
by using MDS to generate the reference database and a classic fingerprinting algorithm for the
positioning part. The approach in this work, on the other hand, also uses MDS for locating fin-
gerprints. Further, their approach was only evaluated on one floor of a building. For urban-scale
deployment as envisioned in our work, additional effects have to be taken into consideration
mainly due to the non-linear relation between distance estimation and fingerprint similarity. In
this work, we address these issues and evaluate a method for urban-scale positioning using both
WiFi and GSM readings.



CHAPTER 3

Experiments & DataSet

To investigate the relationship between the similarity of the two fingerprints and their spatial
distance as well as to evaluate the accuracy, performance and efficiency of the MDS-based
topology estimation, we require a data set. For this we recorded two data sets in a realistic
urban environment.

Besides the following reported experiment, several and smaller tests or experiments were
conducted with the aim of getting familiar with the devices and the behavior of the existing
CoenoSense platform, and to evaluate the correct functionality of the intended extensions and
modifications to this platform, in order to be able to collect and process WiFi and GSM data.

3.1. CoenoSense Extension

CoenoSense is a mobile sensing platform that facilitates the development and evaluation
of algorithms working with large scale socio technical systems [36]. An existing version of
CoenoSense which initially enabled the phones to act as data loggers was available, storing
raw data locally from different sensors enabled in the mobile device. This initial version was
substantially extended by Schläpfer in [36], with the aim of facilitating the centralized analysis
of the acquired data, extracting characteristics from raw data obtained in the mobile phone,
and sending it to a server where it could be accesed and subsequently analized.

In the present work, the CoenoSense platform was extended to allow recoding of GSM cell-
tower information for subsequent analysis, similarity measurement and topology estimation.

3.1.1. Description

GSM information to be collected by the CoenoSense platform for the current and neighboring
cells is:
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• Cell ID: is a generally unique number used to identify each Base Transceiver Station (BTS)
or sector of a BTS within a Location Area Code (LAC) if not within a GSM network.

• RSSI: The received signal strength in a cell in Active Service Unit (ASU) for GSM net-
works. ASUs are related to dBm by equation 3.1.

RSSI(dBm) = −113 + 2 ∗ASU (3.1)

• LAC: Locarion Area Code, Is a number that represents a set of base stations that are
grouped together to optimise signalling.

• Network Type: The current network type of the cell i.e. GPRS

However, as later explained, the useful information basically consists in the RSSI and cell
IDs, as the LAC, BER and Network types are always the same due to the characteristics and
location where experiments were conducted.

3.2. Aim of Experiment
The aim of this experiment is to collect a data set that allows us to evaluate and characterize
the approach of the present work.
The obtained data set should allow, after a proper analysis, answer or get a better under-

standing of:

• Comparison of distance estimation/representation for different fingerprinting approaches
and similarity measures.

• Computational complexity of the whole proposed algorithm.

• Evolution of localization error.

• Effect of the density of access points for topology estimation.

• Effect of the density of Fingerprints for topology estimation.

• Influence of fingerprinting measurement errors on the localization estimation.

• Limitations of the approach.

• How to minimize error in localization estimation.

The better case is to obtain a data set that reflects the normal, day to day, user’s activity,
to evaluate or get an approximated estimation of the performance under real conditions. The
problem when intending to acquire data in the a realistic way is how to avoid influencing the
data acquisition, and at the same time being able to obtain useful and analizable data that
allows answering the intended questions.

The scope of the present work depends on the quality of the data set that should be obtained
after completion of this experiment. A good data set is required in order to evaluate and apply
the intended method in a proper manner.
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3.2.1. Description & Procedure

A controlled experiment with a proper ground truth is very useful when evaluating a specific
characteristic or parameter is desired. However, a localization method or system under no
circunstances would be useful if its use is bounded or limited to certain conditions. A localization
method is supposed to work in as many as possible scenarios, and in the ideal case, anywhere
and anytime.

Three Android Nexus-One phones [39] were available, as well as the existing CoenoSense
platform. The following steps compose the experiment:

• During one week, a planned walk through the same paths was taken once during the day
and once during the evening through the city center of Zürich, considered to have a high
density of WiFi access points. Influence of non-permanent obstacles is expected, such as
people walking, and trams or buses passing by the streets.

• Two zones of the city center of Zürich will be selected to run the planned walks. Figure
3.1 shows the areas where the data acquisition took place.

Figure 3.1.: Zones covered during the experiment
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3.3. Dataset
Two recordings were taken in the area shown in figure 3.1. In following chapters we will explain
that initially one experiment was conducted with a scanning rate of 30 seconds, but we found
that in order to be able to test our algorithm, a second recording with a smaller scanning rate of
5 seconds was necessary. The obtained data set allowed to get 1000 fingerprints, which contain
GSM, WiFi information, and GPS traces used as ground truth.
To properly make a similarity estimation, in the present part each fingerprint ideally should

consist of WiFi information, GSM information, GPS location, time stamp and an user ID.
However, there could be locations where for example GPS is not available, or locations with
no WiFi signals, or even locations, for example inside a building, where there is no GSM
coverage, all of this would result in unaccurate estimations. So, with the aim of getting a
better understanding of the similarity behavior of GSM and WiFi information, the recorded
and in-server stored fingerprints were filtered by comparing the timestamps of every part of
each fingerprint, as each fingerprint has three parts of interest: a WiFi part, a GSM part and
a GPS part, each of these parts have a timestamp and an user ID, so a fingerprint is ’built’ or
’filtered’ by comparing the time stamps of its parts and the user ID, to classify who generated
what information and when.

3.4. WiFi Scan
CoenoLogger starts a WiFi scan every 5 seconds and stores the results. The scan returns a list
of detected WiFi networks and contains the following information about each of these networks:

• SSID: The network name, not necessarily unique.

• BSSID: The MAC address of the network’s access point. This is a unique identifier that
should exist only once worldwide.

• Level: The signal level (signal strength) in dBm.

3.5. GSM Scan
CoenoLogger starts a GSM scan every 5 seconds and stores the results. The scan returns the
Cell ID, received signal strength, location area code, and network type of the current GSM cell
and the neighboring GSM cells:

• Cell ID: generally an unique number used to identify each Base Transceiver Station (BTS)
or sector of a BTS within a Location Area Code (LAC), if not within a GSM network.

• RSSI: The Received Signal Strength in a cell in dBm.

• LAC: Locarion Area Code, a number that represents a set of base stations that are grouped
together to optimise signalling.

• Network Type: The current network type of the cell i.e. GPRS.



CHAPTER 4

Similarity Measurement

In order to obtain a topology by means of an MDS algorithm, a matrix containing all pairwise
distances between the diferent points must be obtained. However, for the present approach, an
absolute distance matrix is not built, instead of it, the points are represented by fingerprints
containing WiFi and GSM information, and the pairwise distances are dissimilarity estimations
between each pair of fingerprints. As shown in a previous chapter, several similarity measure-
ments were studied. Basically, two types of similarity measurements were evaluated, those which
work for binary samples, and two which consider non-binary samples. It’s expected that an es-
timation based on non-binary samples would provide better results.

4.1. Similarity and Distance Relation

We expected fingerprints recorded in close proximity to each other to be more similar than
fingerprints that were recorded further apart. This is a reasonable assumption, because 802.11
WiFi networks have limited range in open space and significantly less range in indoor areas
or Urban Canyons. GSM signals have a broader range, current cell and the neighboring cells
information sent by different mobile stations in a particular moment is expected to be more
similar if the mobile stations are close to each other. To review these assumptions, we compared
different similarity indices for each pair of fingerprints to their geographical distance, which at
the same time were computed from the locations obtained by the GPS measurements taken to
serve as ground truth.

• WiFi Fingerprints: contain only WiFi information.

• GSM Fingerprints: contain only GSM information.

• WiFi+GSM information: Containing both WiFi and GSM information.
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The plotted results of each similarity measurement applied to the each of the three types
of fingerprints described above are presented in Appendix B. The blue points represent the
estimated similarities at a certain distance between each pair of fingerprints. The colored curves
correspond to different grade polynomial regressions, from one to fourth order, applied to the
estimated similarities, this kind of data analysis finds a curve that best fits the behaviour of
the points in the figure in a least-square sense.

4.1.1. Discussion

According to the results shown in Appendix B, the worst performance is obtained with the
First and Second kulzcynski indices. Vectorial approaches show a better performance and lower
error. A polynomial modelling shows lower error if made up to second grade, for third and
fourth grade the error is larger. The fingerprints consisting on WiFi and GSM information
combined show better accuracy, less spreading and a lower error when modeled with a curve of
up to second grade, in some cases even third. This behaviour can be observed on the calculated
regression coefficients, where the lower grades coeffiecients have more weigth than the higher
grades coefficients. It seems interesting that the behaviour in the first 100 meters can be modeled
with a rect line or with a parabolic function, both of them presenting very similar accuracy.
From all the figures that show similarity evaluations of GSM information, in particular figures
B.1c, B.2c, B.3c and B.4c, result of particular interest that through various distances the
estimated similarity would seem to be fixed in the same value. This behaviour is probably due to
the GSM system itself, because of the broader size of the cellular cells, many fingerprints located
inside the same cell would see almost the same cell IDs through long distances, the variation
would be present in the received signal strength, it can explain how the non-vectorial approaches
show in a stronger manner this behaviour, while the vectorial approaches, by considering the
signal strengths can differentiate better the similarity from GSM information. The lower error
is present in the vectorial approaches, with a similar performance for the Tanimoto coefficient
and Cosine similarity. However, it is important to be aware of a intrinsec error in all the
measurements, an error that can not be controlled in an easy way. It mainly consist for example
in the accuracy of the GPS coordinates received from satellites, which allow us to obtain the
separation distances between each pair of fingerprints. Further, the process of obtaining the
separation distance also makes use of the Haversine Formula which requires the assumption of
the earth as an sphere, which in reality is not true. Despite these intrinsec described errors it
is expected that the present results still have consistence and validity.
According to the obtained results, the higher the density of fingerprints the higher the pro-

cessing complexity, specially for those vectorial approaches. For example, with 500 fingerprints
consisting on GSM and WiFi information each one, the amount of operations required is gi-
gantic, it took several hours to our server to process and generate the previously shown results.
From now on, it shows up to be compulsory not to recalculate every time the entire matrices,
but to update them incrementally, otherwise, the response of a localization system based on
this type of approach would be incredibly slow. On the other hand, the error associated to a
polynomial modelling of the similarity behaviour seems to be reduced when a high density of
fingerprints is used; specially for low order regressions. However, the error obtained in the re-
gressions for each similarity measurement does not mean that a specific measurement is better
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than another one, it gives an idea about how accurate the current measurement results can be
modelled with a polynomial approximation, that means, an idea about the behaviour of the
results obtained through the application of a specific similarity. Which similarity measurement
is the best one, is still hard to analitically determine out of the present results, as the best
similarity would be the one wich provides less dispersion and high differentiability.

4.2. Data Analisys

The previous section showed that the behaviour of our dataset could be modelled with up to
second order polynomials with a certain variable error, depending basically on the amount of
fingerprints analyzed. However, it could be risky to try to model such data in a deterministic
way, as there are many factors that affect the data at the moment it is recorded, factors that
in a real situation can not be controlled. Figure 4.1 show the similarity measures obtained from
the analysis of the data recorded by three different devices worn at the same time by the same
subject. It can be seen that even in this case, the three devices report different records. The
reason for the existence of these differences is certainly unknown, but it can be due to differences
in the devices’ hardware, place and way the devices were carried: for example, inside different
pockets etc.

(a) (b) (c)

Figure 4.1.: WiFi+GSM Similarities for three different devices.

All these factors lead to consider the analysis of the similarity behaviour with a probabilistic
approach, given a specific similarity between a pair of fingerprints, which is the most probable
distance between these pair of fingerprints. In our case, this behaviour can be modelled with
a gaussian probability distribution function, that has a different mean and variance for every
possible similarity value. Figures 4.2, 4.3, 4.4 and 4.5 show the probability of finding a specific
similarity at certain distances, the expected value and variance for different types of similarity
measures, and the probability distribution in the form of heatmaps.

The figures are organized in the following way: the first column corresponds to WiFi finger-
prints, the second to GSM fingerprints and the third column to WiFi+GSM fingerprints. The
first row correspond to Cosine Similarities, the second to Tanimoto Coefficient, the third to Jac-
card Index and the last row corresponds to Sørensen Index. These similarity estimations where
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choosen among the set of similarity estimations previously introduced due to their acceptable
behaviour presented in the last section, where the initial similarity data plots were shown.
Figure 4.2 shows the probability of finding a specific similarity value at certain distances,

each curve is a specific similarity range. Low range values are plotted. In figure 4.3, high range
values are plotted.
Figure 4.4 shows the expected values of similarity versus distance and the variance. As ex-

plained above the first column corresponds to WiFi fingerprints, the second to GSM finger-
prints and the third column to WiFi+GSM fingerprints. The first row correspond to Cosine
Similarities, the second to Tanimoto Coefficient, the third to Jaccard Index and the last row
corresponds to Sørensen Index. It can be seen that WiFi fingerprints present high variance
for mid-high similarity values, GSM fingerprints exhibit a constant variance among almost the
entire distances, and the expected values are not very differentiable. WiFi+GSM fingerprints
present lower variance and better differentiability in the expected values. The following table
shows how the figures are presented in the next pages, for example, the element in first row,
first column corresponds to a plot containing information for WiFi fingerprints using cosine
similarity.

WiFi Cosine GSM Cosine WiFi & GSM Cosine
WiFi Tanimoto GSM Tanimoto WiFi & GSM Tanimoto
WiFi Sørensen GSM Sørensen WiFi & GSM Sørensen
WiFi Jaccard GSM Jaccard WiFi & GSM Jaccard

Table 4.1.: Presentation order of the characterization results
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.2.: Probability Behaviour of different Similarity Values for various Indices.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3.: Probability Behaviour of different Similarity Values for various Indices.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4.: Expected values and Variance for different Similarity Measures.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.5.: Probability Distribution for different Similarity Measures.
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Figures 4.5 shows how the probability of finding a specific similarity value between two
fingerprints is distributed among the distance between them.

From them, it can be seen that the probability distribution is highly concentrated for WiFi
fingerprints, it is highly spread or dispersed for GSM fingerprints, and is relatively compensated
for WiFi+GSM fingerprints. The aim is to determine which similarity measures provide high
differentiability with low dispersion. WiFi fingerprints show high differentiability however this
differentiability is found only for high and low similarity values, it is, WiFi fingerprints are
expected to be highly differentiable between highly different similarity values, not mid or close
values. For example, it results difficult to determine a distance for a specific low similarity. For
short ranges, WiFi fingerprints with high similarity values would be easily located and differ-
entiable, however one will have trouble to determine a distance range for mid-high similarity
values which are expected for distances between 100-200 meters as shown above. In contrast,
WiFi+GSM fingerprints seem to exhibit a good differentiability with acceptable dispersion for
high and mid-high ranges. The Tanimoto Coefficient seems to provide the better differentiability
and less variance.

Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 show the result of the same analysis
performed to the second record taken with a scanning window of 5 seconds. We appreciate that
due to the increased number of available fingerprints variance gets reduced, and considering the
amount of data being analyzed, we assume that the following figures represent more accurate
the separation distances through similarities. However, the behaviour for the different types of
fingerprints and similarity measurements described above keeps the same.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6.: Cosine Similarity. Coloured curves show different order polynomial regressions.
a,b)WiFi, c,d)GSM, e,f)WiFi+GSM. Second recording.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7.: Similarities using Tanimoto Coefficient. Coloured curves show different order poly-
nomial regressions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM. Second recording.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8.: Similarities using Jaccard Index. Coloured curves show different order polynomial
regressions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM. Second recording.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9.: Similarities using Sørensen Index. Coloured curves show different order polynomial
regressions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.10.: Probability behaviour of different similarity values, second record.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11.: Probability behaviour of different similarity values, second record.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.12.: Expected values and variance for different similarity measures, second record.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.13.: Probability distribution for different similarity measures.



CHAPTER 5

MDS

5.1. Brief Introduction

Multidimensional Scaling is a method that represents measurements of similarity (or dissimilar-
ity) among pairs of objects as distances between points in a low-dimensional multidimensional
space. It is a technique for the analysis of similarity or dissimilarity data on a set of objects.
MDS attempts to model such data as distances among points in a geometric space.

To give an intuitive idea of what MDS is, figure 5.1 shows schematically an idea of its op-
eration. Suppose that there is a set of n objects, which in our case are fingerprints containing
WiFi and GSM information. Assuming that we can estimate the pairwise similarity in this set
of fingerprints, we would obtain a matrix S whose element sij represent the similarity between
fingerprint i and j, and in our case all sii are identical. Now, sij tell us how "close" is fingerprint
i to j. Suppose that somehow we traduce this similarity into a dissimilarity δij which would
tell us how "far" is fingerprint i from j, mapping all pairwise similarities we would obtain a
dissimilarity matrix ∆. We can now look at MDS as a black box, where we introduce our dis-
similarity matrix ∆, and it would give us a matrix X containing coordinates in our case in a
two dimensional space, for each fingerprint. Now, with these coordinates we can calculate the
euclidean distance in this two dimensional space for all pairs of fingerprints, which would be
another matrix ∆ which elements δ̂ij . The aim of MDS is that each δ̂ij be as close as possible
to δij . Ideally, MDS would give us a matrix X such that its pairwise euclidean distance matrix
∆ is equal to the initial matrix ∆.
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Figure 5.1.: MDS scheme

Of course, it was a very intuitive way to understand what MDS does. In practice, some
transformations need to be applied to matrix X, such scaling it. In practice, almost never both
∆ matrices are equal. The effort consist of finding methods to make them as equal as possible.

There are many MDS methods, most common being the following:

• Metric or Ratio and Ordinal or non-Metric MDS: Metric scaling uses the actual values
of the dissimilarities, while nonmetric scaling effectively uses only their rank. Ordinal or
non-metric MDS only requires the order of the data to properly reflect the order of the
similarities or distances, thus points are located inside zones where they can be located
according to the ranking information, because the rank of the distances is not absolute.

Treating the data as ordinal information only may be sufficient for reconstructing the
original map. Ratio and ordinal MDS solutions are almost always very similar in practice.
However, there are some instances when an ordinal MDS will yield an undefined solution.
The positions of the points in an ordinal MDS are practically just as unique as they are
in metric MDS, unless one has only very few points. With few points, the solution spaces
remain relatively large, allowing for much freedom to position the points [11].

Ordinal or non-metric MDS is used at all to scale level considerations on data, it is,
when the disimilarity information is very relative, dependent or subjective to the way it
is measured.

• Classical and Distance Scaling: The main difference between classical MDS and distance
scaling, is that classical MDS is performed by a single eigen-decomposition, while distance
scaling requires an iterative process in which a MDS result is modified and compared with
the ideal dissimilarities or distances between all pair of points, until the result reaches a
fitting threshold with the original or ideal map. Distance scaling is performed by optimiz-
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ing the resulting MDS configuration trying to reduce the cost or stress function until a
minimium specified threshold.

Thus, MDS result is a topology: a MDS configuration consisting of a set of points in a
space. This configuration can be easier looked by applying transformations, such transformations
should be only admissible ones, i.e. those which leave the shape (but not necessarily the size)
of a figure unchanged: rotations, translations, reflections, dilations (enlargements or reductions
of the entire configuration). [11]
Suppose we have a set of n objects and we are somehow able to estimate the proximity or

similarity pij between object i and j. Lets consider the matrix X shown in equation 5.1 as the
matrix of n × m size which represents the position of the n objects in a dimensions, so xna

represents the position (or coordinate) of object n in dimension a.

X =

 x11 . . . x1m
... . . . ...
xn1 . . . xnm


[n×m]

(5.1)

The euclidean distance between any two objects in our representation will be given by equation
5.2:

dij =
m∑

a=1

√
xia − xja (5.2)

As the information we have is about similarity between pairs of objects, we want to obtain
the representation X such that the distance between any two points matches their dissimilarity
as closely as possible. We should then find a way to map proximities into dissimilarities that
can be compared with the distances between any two points of a representation. Assuming an
error of representation given by equation 5.3:

e2
ij = (dij − δij)2 (5.3)

Being δij the mapping of proximity pij into a dissimilarity. There are many posibilities to
do this mapping, from linear mapping which is used in ratio MDS, so δij = bpij , logarithmic,
exponential, and more non-linear models, as polynomial mappings, for example a quadratic
mapping given by equation 5.4

δij = ap2
ij + bpij + c (5.4)

The interested reader on such mappings is invited to take a look at chapter 9 in [11]. Once the
proximities are mapped as disimilarities, summing equation 5.3 over i and j produces equation
5.5 the total error (of approximation) of the MDS representation.

σr (X) =
∑
i<j

(dij − δij)2 (5.5)

The relation i < j indicates that it is sufficient to sum over half of the data due to the
symmetric nature of the dissimmilarities. In more general cases, some dissimilarity values can
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not necessary be available, they can be undefined, in that case, the undefined values play no
role in any distance in X, so the total error can be written as equation 5.6:

σr (X) =
∑
i<j

wij (dij − δij)2 (5.6)

The weights wij are generally defined as wij=1 if δij is known and wij=0 if δij is unknown,
however other values are also used [11]. The above equation 5.6 is referred as raw Stress
(Kruskal, 1964b).
For every X, a stress can be computed. There are also many forms of stress functions or ’cost

functions’ to measure the goodness or badness of fit of a determinated representation. However
and according to [11], stress is more a measure of scientific significance. It is important to
take into account the degree to which an MDS solution can be brought into a meaningful
and replicable correspondence with prior knowledge or with theory about the scaled objects.
It is, a particular value of stress can be relatively large, but it does not necessary mean that
the representation is a bad one. Sometimes this functions are normalized in order to obtain a
bounded value.
It is possible to make himself an idea on what MDS does by looking at the concept of squared

distance in some matrix X, the squared distance between any two points i, j would be given by
equation 5.7:

d2
ij (X) = d2

ij =
m∑

a=1
(xia − xja)2 =

m∑
a=1

(
x2

ia + x2
ja − 2 (xiaxja)

)
(5.7)

Which in matrices representation would be given by equation 5.8:

D2 (X) =

 d2
11 . . . d2

1n
... . . . ...
d2

n1 . . . d2
nn


[n×n]

=
m∑

a=1


x2

1a x2
1a . . . x2

1a

x2
2a x2

2a . . . x2
2a

...
... . . . ...

x2
na x2

na . . . x2
na


[n×n]

+
m∑

a=1


x2

1a x2
2a . . . x2

na

x2
1a x2

2a . . . x2
na

...
... . . . ...

x2
1a x2

2a . . . x2
na


[n×n]

− 2
m∑

a=1


x1ax1a x1ax2a . . . x1axna

x2ax1a x2ax2a . . . x2axna
...

... . . . ...
xnax1a xnax2a . . . xnaxna


[n×n]

(5.8)

This leads to equation 5.9:

d2
ij (X) = c1T + 1cT − 2

m∑
a=1

(
xaxT

a

)
= c1T + 1cT − 2XXT (5.9)

Where xa is column a of matrix X, 1 is a nx1 vector of ones, and c is a vector that contains
the elements

∑m
a=1 x

2
ia, i.e. the diagonal elements of XXT . The matrix B = XXT is called the

scalar product matrix. So assuming that the matrix X, which is the representation of points,
to be unknown, by knowing the squared distances matrix from X which is in the left side of
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equation 5.9 one could think that it could be possible to find the matrix X itself. This is what
MDS does, starting from a matrix of quadratic distances or dissimilarities, represented on the
left side of equation 5.9, the first two terms on the right are removed by extracting the row
and column means, process known as double centering, the constant −2 is removed multiplying
by −1/2 reducing the matrix of quadratic distances to the matrix B = XXT , from this point
matrix X can be obtained by the process described below.

Now, every nxn matrix can be decomposed into the product of several matrices. There is
one useful case called the eigen-decomposition which can be constructed for most matrices, but
always for symmetric ones, as equation 5.10.

A = QΛQT (5.10)

With Q and QT orthonormal, i.e. QQT = QT Q = I, being I the identity matrix (matrix
with main diagonal full of ones and all other values set to zero) and Λ diagonal. The eigen-
decomposition is a procedure that can be performed in a computerized way, there exists many
methods to do it based on trial and error. At this point, we could suppose that matrix B = XXT

can be eigendecomposed: B = XXT = QΛQT , as the scalar product matrices X and XT are
symmetric and have non-negative values, one can write equation 5.11:

B =
(
QΛ1/2

) (
QΛ1/2

)T
= UUT (5.11)

Here we can see that the matrix U =
(
QΛ1/2

)
is the matrix that gives the coordinates that

reconstruct B. The coordinates in B differ from those in X due to the reason that they may be
related to different coordinate systems, but it can be solved by rotating the configuration.
On this way, if we refer to 5.7, it can be seen that a configuration of points can be obtained

through an eigen-decomposition after relating the similarities to distances, and in fact it is what
the classical MDS algorithm does.
Classical MDS algorithm for a set of n points works as follows:

• The matrix of squared distances is computed: D2 = d2
ij (X).

• Compute the matrix: J = I− 1
n · 1 · 1

T .

• Apply double centering to the distance matrix: B = −1
2JD2J.

• Compute the eigen-decomposition: B = QΛQT .

• As the matrix Λ1/2 is diagonal with decreasing order, and contains the eigenvalues of the
eigen-decomposition, according to the theory, the reconstruction is obtained by using the
i ≥ 1 largest eigenvalues. Thus the matrix U = QiΛ

1/2
i being i the firs i columns of the

matrix Q represent the coordinate matrix or the representation in i dimensions for the
set of points.

As said before, the resulting coordinate matrix does not necessarily fit the original configu-
ration of points, it is necessary to apply transformations as rotations, translations, reflections
and dilations, in order to try to fit to the original topology as close as possible.
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5.2. Topology Reconstruction
We are interested in evaluating a localization technique or method without relying on GPS
information, except for some anchor points which are required. There are many MDS methods
that make use of iterations to reduce the stress, it is, the mean squared error of a configuration
matrix such that its interdistances are as equal as possible as the initial distances between
all pair of elements. This process is based on comparing the MDS obtained result constantly
with the initial distance matrix entered into the MDS algorithm, however the initial distance
or dissimilarity matrices that in the present work we use to feed the MDS algorithm are indeed
inaccurate, as they are obtained from a similarity estimation that is not necessarily a precise
representation of the real separation distance.

Hence, the use of an iterative approach to try to fit the MDS resulting topology to the
dissimilarity or distance matrix, would be a computational expensive process that would intend
to fit as close as possible the resulting MDS configuration to a final configuration, based on
information that has exhibit a random behaviour. For the present work we assume that an
iterative stress minimizing approach is still not a good option, as it would require us to rely on
GPS information which we consider as ground truth, and that is precisely the information we
want to leave aside.

To understand the potential of an MDS-based topology estimation, we first evaluated the
accuracy of the approach by using ground truth GPS information as input. Out of the GPS
location information we calculated the pairwise spatial distance between all fingerpints and fed
them into the MDS algorithm to obtain a topology estimation. The result in Figure 5.2 shows
a good matching between the real locations (red) and the estimations (blue).
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Figure 5.2.: Histogram and cumulative distribution function of GPS accuracy over the complete
data set. The accuracy value defines the radius of 95% confidence circle.

The error between the resulting topology represented by the blue points and the original GPS
information represented by the red points is below 6.58 meters. It means that the accuracy we
should expect depends on the precision to estimate the separation distance between each pair
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of fingerprints, which for the fingerprints we use for localization purposes,means how accurate
the dissimilarities represent the real separation distances between fingerprints.
Based on the similarity estimation results, we saw that for high separation distances the

estimations are not so differentiable i.e. low similarites are expected to be found in a large set
of separation distances while high similarity values are expected to be found in a short set of
separation distances, further there are estimations that exhibit a zero similarity. We assume and
experienced that a direct use of the whole similarity estimation matrix in the MDS algorithm
leads to high resulting error, as the low similarities do not represent in a clear way the real
separation distance, and the fact that we need to convert similarities into dissimilarities leads
to a matematical problem when a zero similarity value is present. For example: a similarity
below 0.1 can be found at any point beyond 200 meters. As the underlying data exhibits some
randomness in its link structure, the separation distances are not correctly represented. This
randomness leads to a folding effect in the MDS result. Using directly MDS to obtain a topology
reconstruction would lead to a result like figure 5.3:

(a) (b)

Figure 5.3.: Raw topology reconstrucion

The problem is how to make a good estimation of the separation distance between fingerprints
that are far away. To face this problem, we refer to the previous chapter where we saw that high
similarity values are not expected to be found for high separation distances, we assume that
high similarities represent with lower error the separation distance between fingerprints, thus
based on the initial similarity matrix, we build a dissimilary graph, where each node represents
a fingerprint and each edge represents the dissimilarity between two fingerprints. Similarities
below a determinated threshold are not transformed into edges, with this process we eliminate
those incorrect nodes and links which produce folding in the MDS result. Then a shortest path
calculation between all pairs of nodes is performed.
At this point, an issue arises: in order to be able to build a complete graph based on high

similarities between fingerprints we require a large set of fingerprints that allow us to link
fingerprints that are far away from each other by calculating their shortests paths through
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the existing set of fingerprints, thus a high scanning rate would be required, should a system
based on such an approach intends to be implemented, we noticed this problem after making an
inital recording experiment with a 30 seconds scanning rate, which for non-stopping pedestrian
speed could represent a 30 meters walked distance, thus a device would report just about 3
fingerprints every 100 meters, and just in case all these three fingerprints pass the filtering
process where fingerprints containing inconsistent data are discarded. It leads just to a very
short set of available fingerprints to correctly represent their separation distances based on
their similarity estimations. Thus a second record was done with 5 seconds scanning rate.

The localization accuracy shows different results based principally on the number of available
fingerprints, these fingerprints are obtained out from scans of WiFi, GSM information, thus the
number of available fingerprints depends on the scanning rate, because not all scans will be part
of a fingerprint, as said in section 3.3. The density of WiFi access points in a determinated zone
is not necessarily an indicator of a good or bad estimation, it basically depends on how good
the devices detect the available networks. However, a high density of access points is desired if
one wants to use WiFi information to estimate long separation distances, because the existence
of many access points between two far fingerprints represent more possible links to estimate
their separation, considering of course that there are fingerprints in between. WiFi fingerprints
exhibit a good performance for short-range localization estimation, as their similarities are good
differentiable in short separation distances, for mid and high range localization WiFi information
may be used but exhibits problems to estimate long separations. The combination of WiFi/GSM
fingerprints reported a good performance for short, mid and high range localization, when a high
density of fingerprints is avaliable, when a low density of fingerprints is available the algorithms
face the same problem as WiFi fingerprints to correctly estimate separations.

GSM fingerprints are interesting ones. Due to the GSM system characteristics and the GSM
cells range they are suitable to estimate long separations even when a small density of finger-
prints is available in the considered zone. In fact, when a low density of fingerprints is available
they exhibit better behaviour than WiFi and WiFi/GSM fingerprints. The reason that explains
the better behaviour of GSM fingerprints over WiFi/GSM fingerprints is that when long dis-
tances are considered and a small fingerprints density is available, GSM similarities are better
differentiable than WiFi/GSM similarities because WiFi similarities are not good differentiable
in long separation distances when mixed with GSM information they mix their behaviour with
the GSM data resulting on a reduction of the differentiability that GSM information provides
for long separations. However, GSM fingerprints provide no good differentiation for short range
separations. The following section presents the mentioned phenomena, its effects and the be-
haviour of the different type of fingerprints.

5.2.1. Topology Results Phenomena

To ilustrate and get a better understanding of the problems and phenomena that an approach
like the studied in the present work faces, the following example is introduced. We take a
fingerprint out from our data set and want to locate it supposing it is an unknown fingerprint
that arrived to the system. As initial step, an iterative process is performed to locate the
closest fingerprints available in our dataset by choosing a specific similarity measure, a minimum
threshold (one that we use as minimum similarity value in order to expect good results) is settled,
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and by continuous iterations we look in our dataset for the closest fingerprints which have a
similarity with the fingerprint we want to locate, superior to the settled threshold. As soon the
closest fingerprints (more than 2) with highest similarity with the one we want to locate are
found, the iterations stop and the set of closest fingerprints is taken as anchor points, either they
are the original anchor points or added anchor points through previous MDS reconstructions.
Then we add to this set of closeset fingerprints the fingerprint to be located and proceed to
build a graph. The first step to build a graph is constructing a new similarity matrix for the
set of closest fingerprints and the fingerprint to be located, then based on this similarity matrix
a graph is constructed where a minimium threshold is settled, to specify which similarities are
going to be mapped into edges by transforming them into dissimilarities or distances either by
an inverse transformation of the dissimilarities, or through a distance estimation based on its
expected value. With this process we eliminate links and fingerprints that are not reliable for
the present localization intent.
The next step is to calculate the shortest paths for our graph and build a matrix of dissimi-

larites or distances with the shortest paths for each pair of fingerprints. This matrix is passed
through the MDS algorithm explained in the first section of this chapter obtaining a matrix of
configuration of points whose pairwise euclidean distances are supposed to represent as close
as possible the initial dissimilarity or distance matrix. This configuration contains a topology,
however, it needs to be fixed using the anchor points. The process of fixing this matrix consists
of another iterative process that consists of a series of iterations, the number of iterations is
equal to the number of anchor points or close fingerprints encountered.
To fix the encountered MDS topology we count with the locations of the closest fingerprints,

so two maps are available: the one for the anchor points and the one encountered through the
present MDS process, the idea is to fit the anchor points in MDS map to its known locations
which can be considered as another map which from now we will call the anchor points’ map.
Out from the anchor points or closest fingerprints encountered and filtered through the graph
construction one fingerprint is selected to be the center of the MDS map and the anchor points’
map, for the following steps the next consideration is taken.

• The anchor points’ map is a GPS coordinate map. It is known that the GPS coordinate
system has a spherical geometry and the MAP obtained through MDS has a bi-dimensional
geometry, however we will assume that the zone in consideration is relatively small com-
pared with the entire surface of the earth, thus we will ignore the earth curvature and the
GPS coordinate map will be considered as locally flat.

Then we can proceed to fix the MDS map.

• Both maps are centered at the same point, i.e. one of the anchor points, at this point,
as presented in equation 5.12, the center has different coordinates both in the MDS map
and in the anchors map.

x̂i = xmds i − xc

ŷi = ymds i − yc

x̂anchors i = xanchors i − xcenter

ŷanchors i = yanchors i − ycenter (5.12)
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• There exists the possibility that the MDS map is actually mirrored, thus a second MDS
map is considered. We also do not know whether the horizontal axis is the real horizontal
axis or the vertical axis is the real vertical axis, however by mirroring either the horizontal
axis or the vertical axis the MDS map, the rest of the fit can be obtained through a
rotation. We take the mirror MDS map by mirroring in the horizontal axis, the vertical
coordinates keep unchanged.

x̂′i = (−1) · x̂i (5.13)

• The MDS map and its mirror are scaled by taking the average ratio between the euclidean
distance between each pair of anchor points in the anchors’ map and in the MDS map
being evaluated i.e. the mirrored or the not mirrored, this scaling represents the mapping
from spatial coordinates to geographical coordinates, as it is being scaled to the considered
flat GPS coordinate system, thus we can see that this mapping is different for each MDS
map being fitted.

• Now both maps are passed through a rotation process that consists on a loop that rotates
around their centers both MDS maps (not mirrored and mirrored) previously centered
and scaled, from 0 to 2π radians, and finds a rotation angle for the MDS map, which
provides the lowest average location error between the position of all anchor points in the
anchors’ map and in the MDS map. The rotation is performed for the not mirrored and
mirrored MDS map, the rotation angles for the not mirrored map and for the mirrored
map are generally different. The average location error for all anchor points is estimated
by calculating the distance in meters between the location of each anchor point in the
anchors’ map and in a MDS map. As the MDS map has been previously scaled into a
GPS coordinate system, the distances are calculated by using the Haversine Formula.
Then the average distance between all anchor points in the anchors’ map and MDS map
is considered as the average error. The rotation process for each point in a MDS map can
be done in the following way: First the angle βi of each point with respect to the positive
horizontal axis is calculated by equation 5.14.

βi =



arctan
(
ŷi
xi

)
if xi > 0 and ŷi ≥ 0 ∀i ∈ {1, ..., n}

π − arctan
(

ŷi
−1 · xi

)
if xi ≤ 0 and ŷi > 0 ∀i ∈ {1, ..., n}

π + arctan
(
−1 · ŷi
−1 · xi

)
if xi < 0 and ŷi ≤ 0 ∀i ∈ {1, ..., n}

2π − arctan
(
−1 · ŷi
xi

)
if xi ≥ 0 and ŷi < 0 ∀i ∈ {1, ..., n}

(5.14)

In the previous and next equations, xi represents the centered and scaled points x̂i or
their mirrors x̂′i depending on which map is being rotated, the vertical components in the
mirrored and not mirrored maps are the same. Subsenquently each point is rotated an
angle α by applying equation 5.15.

xi = di · cos (α+ βi) ∀i ∈ {1, ..., n}
ŷi = di · sin (α+ βi) ∀i ∈ {1, ..., n} (5.15)



5.2 Topology Reconstruction 43

Being di given by equation 5.16:

di =
√
x2

i + ŷ2
i (5.16)

• Finally the rotated map (mirrored or not mirrored) with the lowest average location error
for all anchor points is taken as the fitted MDS map and the initial translation is reverted.
At this point, we know that both centers are in the same geographical position, so the
translation is reverted with respect to the anchor’s point center, as equation 5.17 shows.

xi = xi + xcenter

ŷi = ŷi + ycenter

x̂anchors i = xanchors i + xcenter

ŷanchors i = yanchors i + ycenter (5.17)

The previously mentioned steps describe the fitting process, which is done considering every
anchor point as center, and finally the fitted map with lowest average error for the anchor points
is taken as the final MDS reconstruction. In case this average error results under a determinated
threshold, for example one meter, the currently located fingerprint can be added as a new anchor
point in case of a low densitiy of fingerprints and high similarity between the anchor points and
the fingerprint being located (conditions that are specified through the minimum thresholds for
finding closest fingerprints and adding edges by transforming similarities into dissimilarities in
the building graph step), as it would mean that the area being considered is a small one, and
the error in the location of the present fingerprint should not be high. A lower error for all
anchor points does not necessarily mean that the error in the localization of a fingerprint is low,
it just means that the present configuration is the one which best fits the existing information.
If a particular fingerprint with high error in its own location is added to the map, it would not
necessarily affect the localization of another fingerprint, as it would be discarded as an anchor
point in the graph construction steps.

To ilustrate the phenomena of folding and the behaviour of WiFi and GSM information the
figures 5.4, 5.5 show the localization of a fingerprint. The full experiment area is considered, the
non-desired case of low fingerprint density available and long separation distances are taken to
give a better idea of the phenomena. In this scenario we only consider GSM-only and WiFi/GSM
information, as according to WiFi-only information there is only one close fingerprint, thus
in this scenario we can not locate the desired fingerprint using WiFi-based fingerprints. The
similarity measure used in this example was the cosine similarity, similarities are mapped into
dissimilarities as its inverse.
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Figure 5.4.: Ground Truth of the fingerprint to be located

(a) (b)

Figure 5.5.: Initial Maps: left column GSM Information, right column WiFi/GSM Information.

Figure 5.5 is divided in two columns, the first column corresponds to the mapping using
GSM-only information, the second column corresponds to the use of WiFi/GSM information.
The red dots represent the position according to GPS information that we consider as ground
truth, the blue dots correspond to the estimated locations according to the MDS process. All
pair of ’true’ and estimated locations (blue and red dots) are connected by lines, the broader
line connects the ’true’ and estimated locations of the fingerprint we want to locate. The left
picture above shows the initial mapping using a standard MDS reconstruction, in this part
and for matematical reasons (to avoid by zero divisions) all the close fingerprints that yield a
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similarity over zero are considered. The fingerprint we want to locate is the one showed in figure
5.4. As we can see, there is a lot of folding in both maps. In the left upper map that corresponds
to the reconstruction using GSM-only information, the GSM behaviour can be seen, due to the
characteristics of the GSM system and the range of the GSM cells, GSM similarity estimation
is unable to differentiate close separations, or separations within the range of a GSM cell. Inside
the green circle we have enclose those fingerprints that are more close to the one we want to
locate, as it can be seen, they seem to be almost at very similar distance between each other
despite geographically it is not like that, it occurs because in separations that are too short
in comparison to the range of a GSM cell, all the reported GSM information is very similar,
thus the estimated separation distance is also very similar, causing folding effect in the MDS
reconstruction. The initial error in this reconstruction is 231 meters. Although graphically we
can see that the fingerprint we want to locate is actually really close to its real location, in a
real situation we do not know anything about the real location of this fingerprint, thus we can
only measure distances estimation errors by looking at the error in relation to the anchor points
we use.

The right side of figure 5.6 shows the reconstruction using WiFi/GSM information. Now the
behaviour has changed. Due to WiFi access points range in comparison to the GSM cells size,
similarity estimations based onWiFi-only data are highly sensitive to short separation distances,
i.e. WiFi information allows a better differentiation between fingerprints close to each other.
Even more, the use of received signal strenght values provides a better differentiation. Figure
5.6 shows that the closest fingerprints to the one we want to locate, enclosed by the green circle,
are now placed more separated between each other, it is because of the fact that in short ranges
WiFi information has more weight in the similarity estimation, as GSM-only data provides
very similar values in short range distances. WiFi introduce a differentiation to these very
similar values causing a different distance estimation. However, the purple circles show those
fingerprints more separated between each other, we can see that they are far away from its real
location, it occurs because WiFi provides no differentiation for large separations, thus GSM is
the information that actually leads to the similarity estimation, and as said before, it provides
very similar values for short separation distances (distances within the range of a GSM cell).
There is also further phenomena, when using WiFi/GSM-data a path between two fingerprints
is estimated in different ways, when the fingerprints are close enough to each other that exists
some WiFi similarity, then WiFi information has more weight in the similarity estimation,
however when they are far away and there are no other fingerprints in between, GSM has more
weight in the similarity estimation, but if they are not separated enough then from GSM-data
one can not differentiate very well the separation. Now, in the case that there are fingerprints
in-between the two whose similarity is being estimated, and between those fingerprints some
WiFi similarity exists, then WiFi information would have more weight when estimating their
similarities. However, the low density of fingerprints causes problems to correctly estimate the
similarities, all of these factors lead to the folding effect we see on figure 5.6. The initial error for
this estimation was 260 meters, it shows under these conditions, despite the unwanted effects
GSM provides a better estimation, as the introduction of WiFi information when there is a low
density of fingerprints just leads to a bigger folding in the reconstruction.
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(a) (b)

Figure 5.6.: Use of Close Fingerprints Threshold: left column GSM Information, right column
WiFi/GSM Information.

Figure 5.6 shows the effect of incrementing the threshold for detecting close fingerprints,
now those far away fingerprints to the one being located are not considered, but as there is no
threshold when calculating the shortest paths between fingerprints, then a folding effect is still
present. For WiFi/GSM we see the same effect of WiFi information having more weight in the
similarity estimation for short separations and GSM having more weight for larger separations,
but the same problem of not large enough separations still exists causing problems to differen-
tiate them. For GSM only information the problem is even bigger, as the area being considered
is not large enough to differentiate direct similarities between each pair of fingerprints, and no
similarity prunning is applied, direct similarities are used as edges. With this procedure the
average error for GSM is 108 meters and for WiFi/GSM is 160 meters
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(a) (b)

Figure 5.7.: Use of Edges Threshold: left column GSM Information, right column WiFi/GSM
Information.

Figure 5.7 shows the effect of incrementing a threshold for adding edges when building the
graph of fingerprints. For WiFi/GSM we now see that some of those fingerprints close to the
one we want to locate have been removed, as their similarity with other fingerprints is under
the set threshold, it is because WiFi provide a high differentiation for them and thus a low
similarity. However for those far fingerprints to the one being located, GSM has the weight in
the similarity estimation, then they are reported to be very similar with the one we are locating
(as they are not far away enough for GSM purposes), then the still persists, and the initial effect
of perceiving them as similarly separated between each other can be seen. This is also caused by
insufficient amount of fingerprints close enough to report some good WiFi similarity to the one
being located, then the threshold eliminates those who are in the mid-separation affected by
low WiFi similarity and keeps those large separated helped by their GSM reported information.
The average error in this process is of 217 meters for WiFi/GSM information, and 108 meters
for GSM information. GSM performs very similar as reducing the number of closefingerprints
because even though they are geographically distant, it is not large enough separation to report
enough difference in GSM information.
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(a) (b)

Figure 5.8.: Algorithm Operation: left column GSM Information, right column WiFi/GSM In-
formation.

Figure 5.8 shows the effect of the entire algorithm reducing the number of close fingerprints
used as anchors, and removing low similarity edges between fingerprints. Now we see that
WiFi/GSM has reconstructed a similar topology, eliminating somehow the folding effect, it is
by not considering those fingerprints far away, and considering edges over a threshold, then
we see that the folding caused by distant fingerprints reporting similar GSM information is no
longer there, only those closest fingerprints are being considered, and as there is an edge removal
the estimated dissimilarity between some fingerprints is basically estimated by the sum of the
dissimilarites between the fingerprints in between, avoiding GSM folding, but still reporting
some folding due to the lack of fingerprints close enough to report good WiFi similarity. Despite
the average error is of 112meters we see that the topology is no longer under the extreme folding
effects perceived without using the algorithm, and in fact the fingerprint being located is close
to its real position. However we do not consider this error because for us the important matter
is how good the new map fits with our old map (the one without the new fingerprint that has
been located). For the GSM reconstruction, the behaviour has not changed that much, due to
the fact already exposed of fingerprints not far away enough to see good differences in their
GSM information the average error keeps constant 108 meters.

We have now presented the algorithm operation in one of the undesired scenarions, where
a low densitiy of fingerprints is present and the separation distances are geographically large,
which for our purposes means more than 200 meters. We can also see how the algorithm improves
the folding effects and the average error present when a clasical MDS algorithm is used just
by building feeding an MDS algorithm with similarities transformed into dissimilarities. The
algorithm in this unwanted scenario has shown to improve the average fitting error in about
250 meters, and the final average localization error of around 100 meters in the considered area
which size is about 400 meters radius, according to [31] would be still suitable for localization
purposes, however it would be on the upper acceptance limit. Despite that in this case we know
that the calculated location is in fact really close to the GPS reported location, we just take into
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account the average error for the selected anchor points, as the real location of a new fingerprint
in a live scenario would be unknown.

5.2.2. Algorithm Operation Limitations

Despite we have now seen how the whole approach operates and presented how it reduces
the folding effects due to the characteristics of the data being considered and analized, it is
important to have in mind that there are some limits that should not be trepassed. There are
some limitations ineherent to the algorithm itself that can lead to unaccurate results, the most
important of them is how many anchor points which for us are how many close fingerprints we
intend to use, and how high should be the threshold for edges removal.
There are two types of answers for the first question, from the mathematical point of view,

we need more than one close fingerprints in order to be able to perform the fitting process
previously described, however, the matter is not how many is the minimium number of close
fingerprints or anchor points we need, but how a certain number leads to better results. From
this point of view it would be recommendable to use at least more than 2 close fingerprints or
anchor points, it means, finding more than two closest fingerprints preferably close enough to
report usable WiFi similarity. In this aspect the computational charge plays an important role,
as the more anchor points being considered, the higher the computational effort, due to the
iterative processes involved.
The second question is of high importance, as we have found that edge removal must be done

in a careful manner, specially when the closest fingerprints detected are actually separated, i.e.
closest fingerprints with low similarity had been detected, which is a consecuence of low density
of fingerprints in a specific zone. To ilustrate it, figure 5.9 is presented.

Figure 5.9.: Excessive edge removal effect

It corresponds to the same fingerprint being located previously, but now the edge removal has
gone too far, due to the low density of fingerprints and the separation between the fingerprints,
we saw that WiFi information has more weight in the closest area, but as the closest fingerprints
are not close enough to report good WiFi similarity, the estimation results on a low similarity
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between the fingerprint being located and the closest one. All other fingerprints have been
removed as there are no edges to connect them, however the fingerprint in the low part which
is actually the more distant to the one being located is far enough to report no WiFi similarity
at all, thus GSM has the influence in this estimation, and as said before, with GSM data they
report a higher similarity than the reported for the closest fingerprint, as they are not far away
enough to be differentiable.

When the edges removal threshold is setted too high, then the edge to the closest fingerprint
is removed and the fingerprint being located seems to be now closer to the distant one than to
the really closer fingerprint, it leads to an erroneous localization shown in figure 5.9. Despite the
average error for us in this map is really low, the real localization error is high. It would be then
recommendable to set a edge removal threshold similar the the closest fingerprints threshold,
but not above it. Special care must be taken when a low density of fingerprints is being handled.

We have also found that the density of WiFi access points is not as important as the density
of fingerprints, a high density of access points has the potential of providing a better differentia-
bility but if there is not enough density of fingerprints, this potential becomes useless. On the
other hand, a high density of fingerprints leads to better estimations and results, due to the fact
that we can better estimate separations between fingerprints through the elimination of edges,
i.e. it allows the algorithm to set a higher threshold to convert similarities into dissimilarities
or separation edges or links.

5.3. Proposed Algorithm

Consider figure 5.10, suppose that we want to locate the blue fingerprint, the red points represent
the known map i.e. they are our actual anchor points. As there is a bulding between the
fingerprints, very probably fingerprints 1 and 10 will report a low similarity, as the building
between blocks the WiFi signals. However, Fingerprint 1 and 2, 2 and 3, and so on will report
high similarity values. If we consider all the anchor points to estimate a new map that includes
the blue fingerprint, the blue fingerprint that we want to locate will report low similarity with
fingerprints in the other side of the building, so if we read these direct similarity estimations,
their separation distance would seem to be longer than it really is, causing folding. If we consider
all the anchor points, but ignore low direct similarities and consider hops, the blue fingerprint
would see the fingerprints on the other side of the building through fingerprints 1, 2, 3, an so
on, the summation of these similarities would again estimate longer separation distances than
the real geographical separation distances, this wrong estimation of the pairwise separation
distances causes folding in the MDS topology result. So, one solution is only to consider the
closest vicinitiy to the blue fingerprint, calculate a little submap which can be joined afterwards
to the actual known map, updating its size and increasing its coverage. This update should only
be done if the estimated locations in the little submap for the subset of anchor points that are in
the closest vicinity to the blue fingerprint, do not differ beyond a determinated limit with their
actual known locations; in that case the blue fingerprint can be added as a red fingerprint (new
anchor point) and its estimated location becomes its known location. That is in short words
what our algorithm intends to do, to calculate little maps for each fingerprint that arrives to the
system, and then update the actual big map if the addition of a new point does not introduce
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significant error to the existing big map.

Figure 5.10.: Localization Problem Overview

In the previous subsection we described the operation of the proposed algorithm by introduc-
ing a scenario where the folding phenomena was clearly visible. Now we present the proposed
algorithm as a diagram in figure 5.11.
Our localization approach consists of three steps: 1) Building a reference topology from a

set of training fingerprints. 2) Providing a location estimation for new fingerprints using the
reference topology. 3) Including the new fingerprint in the reference topology to refine and
extend it.
Figure 5.11 schematically shows the process to build the reference topology (top) and to obtain

a location estimation (bottom). To generate a reference topology, WiFi and GSM fingerprints
are collected À. Among all fingerprints, a pairwise similarity measure is calculated Á. Unreliable
similarity measures are removed during the pruning process Â. By applying MDS, a topology
estimation can be generated Ã. Hereby, MDS tries to optimally place the fingerprints into a two-
dimensional configuration that retains the similarity relations between fingerprint pairs. Using
a minimal set of geo-referenced fingerprints serving as anchor points, a non-linear mapping to
geographical locations is determined Ä.
To obtain a location estimation of a new fingerprint, the same procedure is applied on a

subset of the graph. Besides obtaining a location estimation, the fingerprint can also be added
to the list of fingerprints of the reference topology which then gets refined and can grow in size.
These steps are described in more detail in the following sections.
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Figure 5.11.: Process to build the reference topology (top) and to obtain a location estimation
(bottom).

5.3.1. Generating a reference topology

Collecting fingerprints and generating a similarity matrix A fingerprint contains signal strength
readings of detectable APs and base stations referenced by their IDs at a given location. Hereby,
the set of fingerprints should ideally have the following properties:

• Each fingerprint should be unique across the space to uniquely reference a geographical
location. I.e. if two fingerprints are identical, they stem from the same location.

• For a given location, the fingerprints should not vary over time.

• The similarity between fingerprints should correlate to the distance between their record-
ings. Close fingerprints should have a higher similarity compared to those far apart.

However, in practice the fingerprints are effected by both multipath and shadow fading. Our
approach provides robustness to mitigate their influences.

The last property is of great importance for our method. We used the Tanimoto coefficient [27]
as a metric to determine the similarity between two fingerprints. This measure has been used
in other works for the comparison of fingerprints [29]. The metric considers each fingerprint
as a n-dimensional vector ~Fi with one dimension for each visible access point and the signal
strength as the magnitude in the corresponding direction. The Tanimoto coefficient between
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two fingerprints ~F1 and ~F2 is then calculated according to Equation 5.18.

T ( ~F1, ~F2) =
~F1 · ~F2∣∣∣∣∣∣ ~F1

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ ~F2

∣∣∣∣∣∣2 − ~F1 · ~F2

(5.18)

The coefficient is bounded between 0 and 1, with T (F1, F2) = 0 if F1 and F2 have no APs in
common and T (F1, F2) = 1 if F1 and F2 being the same fingerprint. The similarity matrix is
then given by equation 5.19

S =

 s11 · · · s1m
... . . . ...
sn1 · · · snm

 ; sij = T (Fi, Fj) (5.19)

Pruning the similarity matrix to increase robustness As we will evaluate in Section 6.1.1, the
relation between the Tanimoto similarity measure and the distance between two fingerprints is
a monotone, non-linear decaying function. A characteristic of this function is its good discrim-
ination capability within small distances between two fingerprints and its weak performance
when the distance is large.

To increase robustness against error introduced by the variance of the similarity estimation
from fingerprint-pairs far apart, we disregard similarity values from fingerprint pairs far apart.
To do so, we consider our similarity matrix S as a graph G with vertices for each fingerprint
and edges for all pairwise similarities. Hereby, we prune the graph by removing all edges with
similarity values below a threshold θ. As next step, we find fully connected subgraphs with
n > 3 nodes. Each subgraph is then fed into the MDS algorithm to obtain an embedding into
a two-dimensional space.

Topology estimation using MDS Multi dimensional scaling is a method which represents
measurements of dissimilarity among pairs of objects as distances between points in a low di-
mensional space. Through the analysis of dissimilarities between pairs of objects, MDS estimates
a mapping into a geometric configuration in a low dimensional space by trying to keep the pair-
wise original dissimilarity relations [40]. The MDS method takes dissimilarity values as input.
We take each subgraph from the previous step and transform all edges into dissimilarities as
follows:

s̄ij = 1/sij (5.20)

By calculating all shortest paths, we obtain a dissimilarity matrix S̄ for each subgraph which
can be fed into MDS. Supposed we have a set of n fingerprints and we are able to estimate the
dissimilarity s̄ij between all pairs of fingerprints i and j, MDS finds a configuration represented
by a matrix X of size n×m where the entries represent the positions of the n fingerprints in m
dimensions. So xia represents the relative position (or coordinate) of fingerprint i in dimension
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a. Hence, the output of the MDS method is X with 5.21

X =

 x11 . . . x1m
... . . . ...
xn1 . . . xnm


[n×m]

(5.21)

such that the euclidean distance dij for any two points is 5.22:

dij =
m∑

a=1

√
(xia − xja)2 (5.22)

As this is an optimization problem and dij is an estimation, an error of estimation eij is
introduced 5.23

e2
ij = (dij − s̄ij)2 (5.23)

Being s̄ij the dissimilarity, and dij the euclidean distance in the MDS representation. Aver-
aging e2

ij over all pairs gives a measure of the error σr for the entire MDS representation, called
Raw Stress [40]. MDS tries to find a configuration X which minimizes σr 5.24.

σr (X) = min

∑
i<j

e2
ij

 = min

∑
i<j

(dij − s̄ij)2

 (5.24)

An MDS embedding is performed for every subgraph obtained during the pruning process.

Anchoring of the MDS output to geographical coordinates The position of the fingerprints
estimated by MDS are relative positions in an arbitrary two-dimensional space. A transfor-
mation has to be applied to map the MDS topology to geographical coordinates. Knowing
the geographical position of at least three fingerprints included in the MDS topology, such a
transformation can be found. Hence, the output of the MDS method is passed through an an-
choring process to obtain a transformation into geographical locations. The anchoring process
is a regression problem. Our method is comparable to the approach presented in [40]. When all
subgraphs have been passed through the anchoring process, a global representation is obtained.
We now have a reference topology where all fingerprints are assigned to a geographical location.

Fingerprint localization and updating the reference topology The obtained reference topol-
ogy can be used for locating new fingerprints, i.e. fingerprints which were not located in the
initial topology e.g. coming from new inquiries. To locate such a new fingerprint, the similar-
ity between a new fingerprint and each fingerprint in the current topology is determined. The
subset of all fingerprints which yield a similarity value greater than θ with the new fingerprint
is selected and the same process as described previously of calculating the dissimilarity matrix,
applying MDS and anchoring the map is performed for this subset. The result is a location es-
timation of the fingerprint. Additionally, this fingerprint can now be included into the reference
database and help the topology map to grow. However, we only add the new fingerprint to our
reference database if the distortion of the topology is low. To evaluate this, we determine the
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Figure 5.12.: Operation scheme to locate a new fingerprint and to consider its inclusion into the
reference topology.

fingerprint’s influence on the existing topology by calculating the average displacement of the
nodes in the subgraph before and after the insertion of the new fingerprint using the Haversine
Formula [41] with Equation 5.25.

e = 1
n

n∑
i=1

distance ([lati, longi] , [lati′ , longi′ ]) (5.25)

Hereby [lati, longi] and [lati′ , longi′ ] are the current and proposed locations of fingerprint i
in the subgraph, respectively. If e < λ with λ a given error threshold in meters, the current
topology map is updated adding the newly located fingerprint to it. Figure 5.12 summarizes
the process.
Figures 5.13, 5.14, 5.15, and 5.16 present in more detail the steps made in the process shown

in figure 5.12.
Fingerprints are recorded locally on each mobile device by independent threads, stored in

the device’s memory as an XML file and then sent to the server. At the server side once this
information arrives, it is stored in a database and can be accesed for analysis purposes. However
the information that the device sents and that is stored in the server represents the building
blocks of a fingerprint, fingerprints must be built up. This building up process is made in two
steps, first a filtering process is performed where inconsistent arrived information is discarded
eg.: possitive values for received signal strenghts, negative values for cell IDs, or simply empty
records. Subsequently WiFi and GSM information is filtered by their time stamps and the user
who generated each package, responding in this way to the question: who generated what when?
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After building up a consistent fingerprint, process in figure 5.13 is performed.

Figure 5.13.: Processing a new Fingeprint

Basically this process evaluates if the fingerprint actually lives in the WiFi/GSM spaces, we
previously said that these built spaces are basically the set containing the union of all cell IDs
and BSSIDs reported by all fingerprints in the initial map, which is lets say the first initial
information whose geographical location is known. If the fingerprint contains a Cell ID or a
BSSID not alredy known, the unknown information is added into the respective space. After
this process the algorithm starts the localization process.
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Figure 5.14.: Algorithm operation diagram
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When the fingerprint arrives, the minimum thresholds are set, and the closest fingerprints to
the fingerprint being located are searched and selected. If no closest fingerprints are found, the
fingerprint can not be located

A similarity matrix containing the direct similarity values for the selected set of fingerprints
is built, this similarity matrix is then used to build the graph, where direct similarities that
are above the threshold are converted into edges, this process eliminates fingerprints that do
not report any good connection with the others or those subsets of fingerprints inside the set
of closest fingerprints that are isolated by reporting high similarity values between them but
have no good link to the fingerprint being located. The fingerprint being located can also be
eliminated, but it only occurs when the close fingerprints threshold is higher than the threshold
used for prunning edges, as initally a set of closest fingerprints can be found, but if their direct
similarities with the fingerprint being located are not above the threshold, all those links are
removed, leaving isolated the fingerprint that was intented to be located, if this is the case, the
algorithm also returns a reponse that the fingerprint can not be located. Figure 5.15 illustrates
this process.

Figure 5.15.: Building Graph Process
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Then the shortest paths are computed, and the final dissimilarity matrix containing the
pairwise distances or dissimilarities between all pairs of closest fingerprints is obtained.

Figure 5.16.: Fixing Map process diagram
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5.3.2. Density Considerations
In the last subsections we introduced the algorithm operation and showed its performance for
one scenario. We talked about large and short separation distances, about WiFi being dominant
in the short range and GSM in the large range, however we have not characterized what we mean
about large and short distances. When we refer to separations that allow WiFi differentiability,
we are referring mostly to separation distances below 20 or 30 meters, preferring separations up
to 10 meters. Why do we do that? If we take a look at the figures in chapter 4, we will see that
for all WiFi similarity estimations there is a continuous zero level line beyond 30 meters, that
precisely shows the WiFi network access points ranges, and tells that for separations bigger
than that, we will have mostly no direct WiFi similarity. Thus, WiFi-based estimations should
require a density of about 1 fingerprint every 10 meters to provide good and more or less reliable
estimations. It also implies a bigger computational effort, as for a single zone many fingerprints
would be needed to estimate a location.

On the other hand GSM figures show that we only start to see zero similarities beyond
separations of 250 meters approximately. That would be precisely the range of GSM cells. We
can also see constant similarity estimations for a large range of separation distances, which
means that GSM does not provide a good differentiation for fingerprints not separated more
than 200 meters at least. It means that GSM provides information for large separations, but as
showed is not a good option for separation distances in between, as it causes folding in the short
range. It also requires a lower density of fingerprints and thus a lower computational effort.

Finally WiFi/GSM is an interesting one, it combines both mentioned characteristics, which
under a good density of fingerprints will increment the WiFi influence range and reduce the
GSM influence range, requiring a lower densitiy of fingerprints for a localization estimation
and thus reducing the computational effort without necessarily reducing the differentiation
capability. According to our figures and results, WiFi/GSM shows low similarities beyond 100
meters separation distances, which means that it can reduce the required density of fingerprints
and thus the required computational effort (despite the similarity estimation requires a bit more
resources) in WiFi-based localization estimations by a factor of 3 or 4, because a smaller set of
fingerprints needs to be treated, then a smaller set of iterations needs to be performed.



CHAPTER 6

Results

6.1. Simulation
In this section we first evaluate the relationship between the similarity measure and the recording
distance between two fingerprints. Afterwards, we investigate the accuracy of our MDS-based
topology estimation. Hereby, we investigate the influence of different pruning thresholds θ.
For each evaluation step, we compare the approach with fingerprints generated i) with WiFi
information, ii) GSM information, and iii) WiFi+GSM information. As our approach is designed
for a collaborative system which gradually grows as people use it, we further evaluate the
evolution of the location accuracy as new fingerprints are added. We use GPS information as
ground truth for the evaluation.
One of the main motivations for the present work has been to get a better understanding

of an alternative localization method to GPS. Until this point we have shown and presented
an algorithm which by means of MDS can provide localization. To evaluate the algorithm
performance a simulation using the recorded dataset was performed. The designed algorithm
is intended to serve as a localization method, receiving radio scanning results from lets say, a
user wearing a mobile device and running an application who sends a request to know or see
its location. The algorithm presented in the last chapter receives a fingerprint, performs its
designed process and returns, if available, an estimated location for the received fingerprint as a
GPS coordinate. This coordinate can be then sent back to the user which performed the initial
request and can easily be displayed in a map on the user’s mobile device providing him with a
result for his request.

6.1.1. Fingerprint Similarity vs. Distance

We evaluate the relationship between the Tanimoto similarity measure of two fingerprints and
the distance between their recordings. To do so, we calculate similarity values between all finger-
print pairs in our data set The relation between similarity measure and distance is illustrated in
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Figure 6.1.: Mean and variance valuess for Tanimoto Similarity Measures. a)WiFi, b)GSM,
c)WiFi+GSM

Figure 6.1 for the three different fingerprint sets WiFi, GSM and WiFi+GSM. The plots show
for each distance value (obtained from GPS information) the mean similarity value together
with the variance. The relationship follows a non-linear, monotonic decaying curve. The flatten-
ing for smaller similarities or larger distances, respectively, causes an increased error rate in the
distance estimation by given similarity due to the non-negligible influence of the variance. For
example a similarity below 0.1 can be found at any point beyond 200m. Thus, no clear discrim-
ination of distances is possible in the low similarity range. This effect is less influential for large
similarities or small distances, respectively. By comparing the three relations, the figures show
that GSM has the highest variance. WiFi presents a steeper slope in the low distance range
than WiFi+GSM which is required for good discrimination. However, WiFi+GSM has a lower
variance, providing a larger discrimination range for distances than WiFi and is thus favoured.

6.1.2. Topology Estimation

We are now going to evaluate the localization accuracy of our approach. Table 6.2 to Table 6.4
list the localization accuracy together with additional parameters. Table 6.1 gives a descrip-
tion of the parameters. θ is the pruning parameter as introduced previously, ẽ is the median
localization error in comparison to the GPS ground truth information, α and β are the 25%
and 75% error quantiles in meters, respectively. For each threshold, we rerun the localization
process 100 times with random starting configurations. σ is the variance of the median error
for these iterations, δ represents the percentage of fingerprints out of the data set that were
localized (and hence not pruned), ρ represents the percentage of fingerprints out of the data set
that were used as anchor points.



6.1 Simulation 63

Parameter Description
θ Pruning parameter, 0 ≤ θ ≤ 1
ẽ median localization error [m]
α 25% error quantiles [m]
β 75% error quantiles [m]
σ Variance of the median error
δ ratio of localized fingerprints [%]
ρ ratio of anchor points [%]

Table 6.1.: Overview of evaluated parameter

θ ẽ [m] α [m] β [m] σ δ [%] ρ [%]
0.6 17 9 31 0.6 9 2.9
0.5 42 18 78 0.4 23 3.6
0.4 33 13 54 0.7 45 8.1
0.3 88 28 175 0.4 72 8.8
0.2 377 190 390 0.6 92 2.2
0.1 383 256 525 0.8 96 0.7
0.0 431 324 615 0.6 100 0.3

Table 6.2.: Summary of the algorithm performance for different thresholds θ using WiFi-based
fingerprints.

θ ẽ [m] α [m] β [m] σ δ [%] ρ [%]
0.6 286 161 708 0.16 94 1.8
0.5 201 130 309 0.06 98 0.3
0.4 273 160 397 0.08 99 0.3
0.3 300 191 605 0.12 99 0.3
0.2 466 259 859 0.11 100 0.3
0.1 577 389 733 0.09 100 0.3
0.0 640 483 893 0.13 100 0.3

Table 6.3.: Summary of the algorithm performance for different thresholds θ using GSM-based
fingerprints.

θ ẽ [m] α [m] β [m] σ δ [%] ρ [%]
0.6 26 10 44 1.6 14 3.6
0.5 30 14 57 1.4 36 7.3
0.4 56 18 114 1.7 70 10.6
0.3 201 84 316 1.4 95 5.5
0.2 366 211 511 1.6 99 0.3
0.1 264 158 396 1.8 100 0.3
0.0 574 457 640 1.5 100 0.3

Table 6.4.: Summary of the algorithm performance for different thresholds θ using WiFi+GSM-
based fingerprints.
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(a) (b)

Figure 6.2.: No pruning: Topology reconstruction and localization error for WiFi+GSM finger-
prints. Threshold: θ = 0.0

Let us now have a closer look at some of the obtained results. Generally, we obtain better
results by considering WiFi+GSM fingerprints compared to using only WiFi or only GSM. By
setting θ = 0, the similarity graph is not pruned. Figure 6.2a shows the reference topology
results from the WiFi+GSM fingerprints in blue together with the GPS ground truth in red.
Ideally, the two graphs completely overlap. Figure 6.2b shows a histogram of the corresponding
error distribution. The median error localization is 574m. By increasing θ, the similarity graph is
being pruned. Figure 6.3 shows the MDS-based topology reconstruction by applying a pruning
threshold θ = 0.5 on the WiFi+GSM fingerprints. As listed in Table 6.4, of WiFi+GSM,
only δ = 36% of the fingerprints can be used for the reference topology while the rest of the
fingerprints do not fulfill the required similarity criteria. However, the median accuracy is now
30m. With a pruning threshold θ = 0.6, we achieve a median accuracy of 26m while being able
to localize 14% of the fingerprints. With this, we see that by removing low similarity values we
are not able to locate all fingerprints anymore but, on the other hand, the localization accuracy
increases significantly. Hence, our method can automatically detect fingerprints which can not
be located reliably and for the others provide a location estimation with accuracy in a similar
range as related work [3]. Only 7% of all fingerprints in the reference topology need to be
geo-referenced. This is far less than the 100% required in state-of-the-art systems.
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(a) (b)

Figure 6.3.: Topology reconstruction and localization error for WiFi+GSM fingerprints. Thresh-
old: θ = 0.5

6.1.3. Evolution of the reference topology

Our approach fits a collaborative approach where the localization estimation starts with a few
fingerprints and gradually grows by adding new ones. Hereby, at the beginning, when only a
few data points are present, the provided localization is expected to be rather inaccurate or a
localization is not possible at all as the majority of similarities stem from long distance measures
and hence get pruned. However, gradually, we expect a denser sampling of the region resulting
in smaller distances between fingerprints and thus larger similarity values can be expected
which remain during the pruning step. With this, we expect the localization method to provide
more accurate results over time. To investigate this behavior, we observe the relation between
median error rate and the number of considered samples by adding samples. We start with a
minimal set of three fingerprints and gradually add new ones. Only fingerprints that can be
localized are considered. Figure 6.4 shows that the obtained result follows the expected trend
that the localization error decreases by gradually adding new fingerprints arrive. The dotted red
line represents the median location accuracy obtained by Place Lab [3]. We see a convergence
towards a comparable error rate.

Figure 6.3 shows the MDS-based topology reconstructions for different threshold θ on the
WiFi+GSM fingerprints. The effect of our prunning threshold θ can be seen in the error his-
tograms for different values of θ.
According to these results, better accuracy can be expected calculating the expected separa-

tion distances instead of using inverse similarities to estimate the separation distance within a
set fingerprints in order to calculate a topology. However, in order to be able to use expected
separations, several previous information from the area where the system intends to operate is
necessary to model the similarity behaviour, thus, we would rely preferably on using dissimi-
larities despite they show a lower accuracy, but anyway comparable to the achieved through
calculating expected separation distances.
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Figure 6.4.: Evolution of the localization error by gradually adding new fingerprints to the
reference topology. Threshold θ = 0.5

Another important note is that according to our results, the considered area in the experiment
has a WiFi space of 2028 dimensions i.e. access points, and a GSM space of 66 dimensions i.e.
GSM cells. That means that the density of WiFi access points is 30.73 access points per GSM
cell. In terms of area units, and considering GSM cells as circular areas of 200 square meters
size, would be a density of 1.5 access points every 10 square meters, or 0.15 access points per
square meter.
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Figure 6.5.: Topology reconstruction and localization error. (a),(b) θ = 0.2, (c),(d) θ = 0.3,
(e),(f) θ = 0.4, (g),(h) θ = 0.6



CHAPTER 7

Discussion

The present chapter summarizes the work, presents a review of the major findings and achieve-
ments, gives a look at the expected limitations of implementing such an approach, provides a
conclusion and propose possible further work that could be done in this direction.

7.1. Summary and Contributions

The aim of this work was to evaluate, to get a better understanding of the potential behind a
localization method relying on the existing WiFi, GSM infraestructure, by using a fingerprinting
approach without requiring the previous elaboration of a radio map. Fingerprinting is not novel
per se, a lot of related work in both with WiFi and GSM information has been done so far,
and its is proved that typical fingerprinting approaches are suitable for localization purposes.
The main drawback of mostly all the fingerprinting methods is that they do require a training
phase, where a lot of fingerprints must be recorded and associated with a geographical location.
Normally these training phases can be done through the so called war driving process where a
radio map containing a access points associated to a geographical position in a determinated
area is obtained and stored in a database, then the system can estimate user locations by
comparing a fingerprint with unknown location to those previously stored.

The present work intended to evaluate the feasibility of a localization method without re-
quiring an initial radio map construction, avoiding the use of GPS. As potentially useful in
the so-called Urban Canyons or inside buildings where GPS is not available i.e. in GPS less
enviroments.

The use of multidimensional scaling for localization purposes has been addressed for sen-
sor networks and for WiFi infraestructure in controlled enviroments. A experiment in a non-
controlled enviroment with the purpose of obtaining a dataset to develop and evaluate an
algorithm was performed. The obtained dataset consists of GPS location traces, WiFi finger-
prints, and GSM fingerprints, this data set was examined, processed and analized to learn about
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its behaviour and how its particular characteristics could allow the design and implementation
of localization method.
Based on the findings about the dataset behaviour, and on previous work, an algorithm was

designed which starting with a small set of known information can provide localization and at
the same time incrementally expand its known information i.e. reconstruct an approximated
topology. The algorithm was evaluated on our dataset to assess its accuracy and to answer our
research questions.

7.2. Findings, Achievements and Conclusions
This work presents a fingerprinting method for localizing mobile devices in urban spaces using
MDS-based embedding of WiFi+GSM fingerprints to obtain a reference topology. The novelty
of our method is threefold:

• Only a fraction of the training set’s fingerprints needs to be geo-referenced. This allows
to include fingerprints into reference databases also in the absence of GPS reception and
does not require a manual labeling.

• By removing low similarity values, increased robustness against multipath, shadow fading
and other influences that affect similarity estimations can be provided.

• The method is ideal for a collaborative approach: Users provide a fingerprint to receive a
location estimation. Simulteneously, this fingerprint can be used to refine and extend the
topology estimation. Hence, we can gradually increase the covered space without requiring
further efforts by the users.

Our evaluation shows that by increasing the pruning threshold θ, more fingerprints are dis-
carded and cannot be located. However, for the remaining fingerprints, the accuracy of the
localization increases. For θ = 0.5, our method could locate 36% of the fingerprints with a
median error of 30m. Only 7% of the fingerprints were geo-referenced and the rest could be
positioned witout any corresponding location informat but only considering their similarity. We
further show with our data set that the localization error decreases as new fingerprints are added
and converges to an accuracy comparable to related work. The reason that a fingerprint cannot
be localized is that there are not enough similar fingerprints to be found. A dense, uniform
sampling of the space could increase the ratio of fingerprints that can be localized. Further, a
minimal density of WiFi access points in an urban area is required so that signal from different
networks overlap. The density of access points in our experiment area was on average 1.5 access
points every 10m2 circular area. We expect this number to be reasonable for many urban areas
and indoor venues and hence, comparable results can be expected.

For a real-time implementation, the computational complexity is a key factor: At the core
of MDS is an eigen-decomposition on an n× n symmetric matrix which for classic MDS takes
O
(
n3) time. However, it can be reduced to O (n lgn) steps and easily parallelized for use with

large datasets [42]. When a new fingerprint arrives, it takes O
(
C ·m · n+m(n+ 1)3) time for

our algorithm to generate location results. Hereby, n is the number of closest fingerprints, m
the number of anchor points, usually m = 3, and C the cost of computing and accessing each
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entry of the dissimilarity matrix built with the new and the closest fingerprints. We expect the
method to be scalable to also work with large data sets.

7.3. Limitations
WiFi fingerprints provide differentiation in a very short range, up to 30 meters more precisely.
This situation is explained by the area being considered where basically streets are surrounded
by high buildings, these structures block WiFi signals, thus the mobile devices will likely record
very different WiFi fingerprints beyond a separation distance of 30 to 40 meters. It leads to the
problem that WiFi fingerprints can not be used to estimate long separations with proper accu-
racy, because they can provide no reliable or even no similarity for large separation distances.
GSM signals however have a broader and more constant range, but their use as fingerprints fail
to differentiate short separation distances, i.e. fingerprints inside the same GSM cell.

The major problem of our approach is to correctly represent the separation distance through
similarities. The best we can do to avoid completely undesired results is to estimate separations
by hops. But to do this, a high density of data is required. Another limitation is the possible
slow growth of covered area, in this case, a collaborative approach could benefit a fast growth,
for example, many users providing information at the same time allow the rapid expansion of
the topology. However, there is a real and important limitation that arises when the known
topology becomes too big, as a larger set of fingerprints must be treated, and the number
of known networks becomes bigger, the computational complexity and required amount of
calculations, and thus the required processing time to provide results becomes longer. Further,
processing multiple requests at the same time could mean a very high computational effort. In
this case, a distributed approach could be considered.

7.4. Outlook
Our results suggest that WiFi & GSM based algorithm should be able to operate in areas
without reliable GPS reception or indoors, providing simultaneously localization and topological
results. However, it is far away from being perfect. For example, the percentage of the initial
topology that could be reconstructed is not even a half. This is due to the characteristics of our
dataset, as previously said, the higher the fingerprints density, the better and bigger number of
expected results.

According to [31] a localization method should have a location resolution between 100 meters,
and the timeliness should be in seconds, thus our present work clearly fullfills these conditions,
and gives a promising insight into what could be achieved specially for indoor localization.
However there is a lot of research ahead, specially in optimization of topology estimations.
For example, in the present work we did not considered a iterative MDS approach because we
assumed that it would have no sense to increase computational complexity trying to fit a result
to a expected result which accuracy we are not sure about. However, this expected result that
in our case are dissmilarities, within a certain range, up to some point still represent somehow
the real separation distances, thus an evaluation on how an iterative MDS could improve the
results would be interesting.
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On the other side, the real world applicability of such an approach should require further
considerations, specially if a collaborative approach is desired. These considerations are mostly
related to the required computational effort which is proportional to the size of the geographical
zone, the density of access points and the amount of users that intend to make use of such a sys-
tem. Further, another measurements that can provide better representation of the geographical
separation distances could be considered. Finally, despite the promising results of an approach
like the one we have presented, we should say that GPS is still a reliable localization method
for those areas where WiFi and GSM networks are not widely spread. Our approach is suitable
for providing location estimations in regions where GPS information is either unreliable or not
present at all and hence ideal for urban spaces and indoor venues. We see a promising appli-
cation of our method by combining it with existing systems such as Place Lab [3] to extend
their functionality into areas where a GPS-based indexing is not possible. GPS-referenced fin-
gerprints obtained in regions with good reception can serve as anchor points. With our method
the covered space can gradually grow as people are using the system without the requirement
of manual labeling of fingerprints.
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GSMWorker.java

1 package com.coenosense.logger.worker;
2
3 import java.util.HashMap;
26
27 /**
28  * Performs GSM Scans at regular intervals (set by mInterval) and adds 
29  * the result directly to the Publisher.
30  * 
31  * TODO: Currently, the doWork() function requests a new scan to be performed 
32  * and the immediately reads the scan results. It also performs GSM information
33  * readings when a change in the signal strength or in the cell location is 
34  * detected, by starting a PhoneStateListener object. 
35  * The logic steps follows the structure of the previously existing workers
36  * in order to keep consistency with the entire application.
37  * 
38  * @author Kristian Cugia
39  */
40
41 public class GSMWorker extends BackgroundWorker{
42
43 protected static final String TAG = "GSMWorker";
44 private ExecutorService mExecutor;
45 private TelephonyManager tphoneManager;
46 private SignalStrength signalStrength;
47 private GsmCellLocation cellLoc;
48 private List<NeighboringCellInfo> neighboringCells;
49 //private MyPhoneStateListener mPhoneListener;
50 //JSONObject jsonEncoder;
51 private MyPhoneStateListener mPhoneListener;
52
53 public GSMWorker(Context ctx, BackgroundService bgs, Publisher pub) {
54 super(ctx, bgs, pub);
55 tphoneManager = 

(TelephonyManager)ctx.getSystemService(Context.TELEPHONY_SERVICE);
56 mInterval = new Long(5000); //Interval to perform GSM Scans
57
58 /*The SignalStrength information is fetched from the API to a 

PhoneStateListener, this 
59  * runs as another thread and due to the architecture of the application 

must be started as a 
60  * simultaneous thread, to avoid interferences with the GSMWorker thread 

and its scanning loops */
61 Handler h = new Handler(Looper.getMainLooper());
62 Runnable r = new Runnable() {
63 public void run() {
64 try{
65 mPhoneListener = new MyPhoneStateListener();
66 }catch(Exception ite){
67 Log.i("EXEP",ite.getMessage());
68 }
69 tphoneManager.listen(mPhoneListener, 

PhoneStateListener.LISTEN_SIGNAL_STRENGTHS | 
PhoneStateListener.LISTEN_CELL_LOCATION);

70 }
71 };
72 h.post(r);
73 // TODO Auto-generated constructor stub
74 }
75
76 @Override
77 void doWork() {
78 Log.d(TAG, "doWork()");
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79 mExecutor = Executors.newSingleThreadExecutor();
80 mExecutor.execute(new Runnable() {
81 //@Override
82 public void run() {
83 processGsmInfo();
84 }
85 });
86 }
87
88 public void processGsmInfo(){
89 // GSM is "always active, unless some operator unavailability issue, not 

necessary to query for GSM state"
90
91 cellLoc = (GsmCellLocation)tphoneManager.getCellLocation(); 
92 JSONArray jsonArray;
93 JSONObject jsonEncoder;
94 if(cellLoc!=null){
95
96 //GSM Information for Neighboring Cells
97 neighboringCells= tphoneManager.getNeighboringCellInfo();
98 Log.i(TAG, "Found " + (neighboringCells.size()+1) + "Cells");
99
100 jsonArray = new JSONArray();
101 jsonEncoder = new JSONObject();
102 try {
103 //GSM Information for current Cell
104 jsonEncoder.put("CELLID", cellLoc.getCid());
105 jsonEncoder.put("RSSI", (-113 + 

2*signalStrength.getGsmSignalStrength()));
106 jsonEncoder.put("LAC", cellLoc.getLac());
107 //jsonEncoder.put("PSC", cellLoc.getPsc());
108 jsonEncoder.put("NETTYPE", tphoneManager.getNetworkType());
109 jsonEncoder.put("BER", signalStrength.getGsmBitErrorRate());
110 jsonEncoder.put("NETNAME", tphoneManager.getNetworkOperatorName());
111 if(tphoneManager.getSimState() == 

android.telephony.TelephonyManager.SIM_STATE_READY)
112 jsonEncoder.put("SIMNAME", tphoneManager.getSimOperatorName());
113 jsonArray.put(jsonEncoder);
114
115
116 //Get Information from Neighboring Cells
117 for(NeighboringCellInfo ncinfo : neighboringCells){
118 jsonEncoder = new JSONObject();
119 jsonEncoder.put("CELLID", ncinfo.getCid()); //Cell ID
120 Log.d("NCELLID","="+ ncinfo.getCid());
121 jsonEncoder.put("RSSI", (-113 + 

2*ncinfo.getRssi())); //Received Signal Strength
122 jsonEncoder.put("LAC", ncinfo.getLac()); //Location Area 

Code
123 //jsonEncoder.put("PSC", ncinfo.getPsc()); //Primary 

Scrambling Code
124 jsonEncoder.put("NETTYPE", 

ncinfo.getNetworkType()); //Network Type. i.e. GPRS
125 jsonArray.put(jsonEncoder);
126 }
127 } catch (JSONException e) {
128 Log.w(TAG, "JSONException while building JSON of Scan-Results. 

" + e.getMessage());
129 }
130
131
132 HashMap<String, Object> toPublisher = new HashMap<String, Object>();
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133
134 toPublisher.put(Publisher.INTERNAL_TYPE, "gsm_scan");
135 toPublisher.put(Publisher.INTERNAL_TS, Publisher.getSensorTimestamp());
136 toPublisher.put(Publisher.INTERNAL_UNIXTS, System.currentTimeMillis());
137 toPublisher.put(Publisher.INTERNAL_WINDOW, "");
138
139 toPublisher.put("gsm_info", jsonArray.toString());
140 mPublisher.incomingQueue.add(toPublisher);
141
142 Log.d(TAG, "Finished GSM-Scan");
143 }else{
144 Log.i(TAG, "No Networks found!");
145 }
146 }
147
148 @Override
149 public int getSensorType() {
150 return ProcessorManager.TYPE_GSM;
151 }
152
153 private class MyPhoneStateListener extends PhoneStateListener{
154         @Override
155         public void onSignalStrengthsChanged(SignalStrength signalStrength){
156              super.onSignalStrengthsChanged(signalStrength);
157              GSMWorker.this.signalStrength = signalStrength; //To Use on the GSM 

scans
158              //processGsmInfo();
159              Log.i("RSSI","now" + signalStrength.getGsmSignalStrength());
160         }
161         @Override
162         public void onCellLocationChanged(CellLocation location) {
163              super.onCellLocationChanged(location);
164              if(signalStrength != null){ //The first activation results on a 

change in the cellLocation, but it may not have fetched signalChanges yet
165             //  processGsmInfo();
166              }
167              Log.i("Location","Changed");
168         }
169    }; 
170
171 @Override
172 public void stop() {
173 super.stop();
174 tphoneManager.listen(mPhoneListener, PhoneStateListener.LISTEN_NONE);
175 }
176
177 }
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APPENDIX B

Similarity Measurement Results

As described in section 4.1 the following similarity measurements were applied to our dataset.

Jaccard Index Given by equation 2.3, it estimates similarity between pair of sets. We used it to
compare our fingerprints. For WiFi, it only uses the BSSID of the networks in each fingerprint.
For GSM only the Cell IDs of each fingerprint, a WiFi+GSM fingerprint is obtained by merging
a WiFi and a GSM fingerprint. If A is a fingerprint and B another, the measurement is made
basically by dividing the number of common networks and/or cells between the two fingerprints
by the total number of networks and/or cells present in the two fingerprints.

Sørensen Index Given by equation 2.4 works in a similar way as the Jaccard index, it evaluates
only binary data. For WiFi it only uses the BSSID of the networks in each fingerprint. For GSM
only the Cell IDs of each fingerprint, a WiFi+GSM fingerprint is obtained by merging a WiFi
and a GSM fingerprint.

First Kulczynski Index Given by equation 2.8 as the previous indices, it works under binary
samples, comparing the common data and the total data in a specific way. The main problem
of using this index is that it is not defined for two completely similar fingerprints, in which
case results in division by zero, and as it only makes use of simple network names and/or GSM
cell’s ID, there could be many equal fingerprints, which result in an undefined similarity. We
modified the implementation of this index to give a similarity of 1 when two equal fingerprints
are compared. But of course, it results in an unaccurate and not reliable index for the similarity
estimation purposes of the present approach.

Second Kulczynski Index Given by equation 2.9, it works in a similar way as the previous
index, in fact it is a modification of the First Kulczynski Index, but it do not present the
undefined result for a two equal fingerprints comparison.
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(a) (b)

(c) (d)

(e) (f)

Figure B.1.: Similarities using Jaccard Index. Curves show different order polynomial regres-
sions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM
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(a) (b)

(c) (d)

(e) (f)

Figure B.2.: Similarities using Sørensen Index. Curves show different order polynomial regres-
sions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM
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(a) (b)

(c) (d)

(e) (f)

Figure B.3.: Similarities using First Kulczynski Index. Curves show different order polynomial
regressions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM
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(a) (b)

(c) (d)

(e) (f)

Figure B.4.: Similarities using Second Kulczynski Index. Curves show different order polynomial
regressions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM
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Vectorial Approaches
The following two estimations differ as the previously shown ones, in the fact that are statistics
comparing non-binary data, in fact comparing vectors with magnitude and direction. We expect
this kind of measurements to be more reliable and more accurate, as they evaluates in a broader
sense our set of fingerprints. But the use of this measurement required a modification in the
approach, as they compute dot vectorial products and these kind of operation is only possible
between vectors of equal size. The approach is to build a space, in which all the fingerprints
live. So, for the wifi fingerprints we builded a n-dimensional wifi space, where every BSSID of
a network is dimension, and the signal level the component of the vector in this dimension.
Similarly for the GSM fingerprints, every cellID is a dimension and the associated RSSI is the
magnitude of this component. For the WiFi+GSM fingerprints, the two spaces are merged. This
approach requires all the fingerprints to ’know’ all the network names and/or cellIDs existing
in all the fingerprints. Basically the space is the union of all the BSSID’s and/or GSM cell
IDs. Every fingerprint is extended to have a component in this n-dimensional space, but when
originally a fingerprint do not see a particular BSSID and/or GSM cell, the magnitude of this
component in the n-dimensional space is zero. With this approach it is expected to obtain better
and more accurate similarity estimations.

Tanimoto Coefficient Given by equation 2.7, this statistic compares non-binary samples, it
assumes the compared samples as vectors with a magnitude and direction.

Cosine Similarity Given by equation 2.6, this statistic uses a vectorial approach to estimate
similarity between data. It is commonly used in information retrieval for example to compare
how similar two documents are. The output is the cosine of an angle, which yields the value
of -1 as meaning exactly opposite, 0 meaning independent and +1 meaning exactly the same.
In our data, the obtained results are to be from 0 to +1, as there are no opposite fingerprints
in the a meaningful sense, as it would require an absolute negative received signal strength (or
positive dBm value), which is not possible, as the lower possible signal is no signal, not negative
values.
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(a) (b)

(c) (d)

(e) (f)

Figure B.5.: Similarities using Tanimoto Coefficient. Curves show different order polynomial
regressions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM
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(a) (b)

(c) (d)

(e) (f)

Figure B.6.: Similarities using Cosine Similarity. Curves show different order polynomial regres-
sions. a,b)WiFi, c,d)GSM, e,f)WiFi+GSM
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Four polynomial regressions were made to the data shown in each figure. A polynomial
regression finds a curve that represents in a least square sense a set of points in a plot. The
polynomial form would be like equations B.1 and B.2.

f (x) =
n∑

i=0
aix

i (B.1)

f (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 (B.2)

With n representing the polynomial order, and ai representing the coefficients. The following
table shows the coefficients derived from each regression for the data set obtained in the first
part of the experiment described in chapter 3.

Jaccard Index a4 a3 a2 a1 a0

WiFi

-0.0003 0.1325
2.29x10−6 -0.0018 0.3157

-1.38x10−8 1.53x10−5 -0.0051 0.5160
7.28x10−11 -1.03x10−7 5.11x10−5 -0.0102 0.6753

GSM

-0.0007 0.4867
1.71x10−6 -0.0018 0.6236

-7.31x10−9 8.59x10−6 -0.0036 0.7291
3.37x10−11 -4.88x10−8 2.51x10−5 -0.0059 0.8029

WiFi/GSM

-0.0004 0.2316
2.10x10−6 -0.0017 0.3997

-1.23x10−8 1.37x10−5 -0.0047 0.5775
6.27x10−11 -8.94x10−8 4.45x10−5 -0.0090 0.7146

Table B.1.: Regression coefficients for Jaccard Index, planned walk.

Sørensen Index a4 a3 a2 a1 a0

WiFi

-0.0003 0.1635
2.61x10−6 -0.0020 0.3725

-1.46x10−8 1.64x10−5 -0.0056 0.5845
7.04x10−11 -1.01x10−7 5.10x10−5 -0.0105 0.7383

GSM

-0.0008 0.6359
1.25x10−6 -0.0016 0.7362

-5.11x10−9 6.07x10−6 -0.0028 0.8101
2.29x10−11 -3.33x10−8 1.73x10−5 -0.0044 0.8602

WiFi/GSM

-0.0005 0.3306
2.15x10−6 -0.0019 0.5028

-1.16x10−8 1.31x10−5 -0.0047 0.6714
5.39x10−11 -7.80x10−8 3.96x10−5 -0.0084 0.7893

Table B.2.: Regression coefficients for Sørensen Index, planned walk.
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1st Kulczynski Index a4 a3 a2 a1 a0

WiFi

-0.0005 0.2443
3.79x10−6 -0.003 0.5475

-1.95x10−8 2.21x10−5 -0.0077 0.8293
7.79x10−11 -1.15x10−7 6.04x10−5 -0.0131 0.9996

GSM

-0.0029 1.8031
5.59x10−6 -0.0065 2.2501

2.83x10−9 2.93x10−6 -0.0058 2.2092
-1.28x10−10 1.60x10−7 -6.00x10−5 0.0029 1.9292

WiFi/GSM

-0.0008 0.5111
3.89x10−6 -0.0034 0.8223

-1.73x10−8 2.02x10−5 -0.0076 1.0732
5.19x10−11 -8.12x10−8 4.57x10−5 -0.0112 1.1866

Table B.3.: Regression coefficients for 1st Kulczynski Index, planned walk.

2st Kulczynski Index a4 a3 a2 a1 a0

WiFi

-0.0007 0.3421
5.38x10−6 -0.0042 0.7718

-2.96x10−8 3.32x10−5 -0.0115 1.1999
1.38x10−10 -2.00x10−7 0.0001 -0.0210 1.5029

GSM

-0.0016 1.2842
2.46x10−6 -0.0032 1.4811

-1.01x10−8 1.19x10−5 -0.0056 1.6271
4.50x10−11 -6.55x10−8 3.41x10−5 -0.0087 1.7256

WiFi/GSM

-0.0010 0.6840
4.26x10−6 -0.0038 1.0243

-2.29x10−8 2.58x10−5 -0.0094 1.3560
1.057x10−10 -1.53x10−7 7.78x10−5 -0.0167 1.5871

Table B.4.: Regression coefficients for 2st Kulczynski Index, planned walk.
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Tanimoto Coefficient a4 a3 a2 a1 a0

WiFi

-0.0003 0.1308
2.26x10−6 -0.0017 0.3120

-1.37x10−8 1.52x10−5 -0.0051 0.5109
7.28x10−11 -1.03x10−7 5.09x10−5 -0.0101 0.6700

GSM

-0.0006 0.4666
1.83x10−6 -0.0018 0.6134

-7.74x10−9 9.12x10−6 -0.0037 0.7251
3.49x10−11 -5.07x10−8 2.62x10−5 -0.0061 0.8015

WiFi/GSM

-0.0003 0.2162
2.12x10−6 -0.0017 0.3856

-1.24x10−8 1.38x10−5 -0.0047 0.5649
6.43x10−11 -9.15x10−8 4.54x10−5 -0.0092 0.7055

Table B.5.: Regression coefficients for Tanimoto Coefficient, planned walk.

Cosine Similarity a4 a3 a2 a1 a0

WiFi

-0.0003 0.1648
2.62x10−6 -0.0020 0.3741

-1.46x10−8 1.64x10−5 -0.0056 0.5856
6.99x10−11 -1.00x10−7 5.07x10−5 -0.0104 0.7384

GSM

-0.0007 0.6207
1.37x10−6 -0.0016 0.7304

-5.44x10−9 6.50x10−6 -0.0030 0.8090
2.33x10−11 -3.41x10−8 1.79x10−5 -0.0046 0.8599

WiFi/GSM

-0.0005 0.3136
2.21x10−6 -0.0019 0.4897

-1.18x10−8 1.33x10−5 -0.0048 0.6602
5.59x10−11 -8.06x10−8 4.07x10−5 -0.0086 0.7824

Table B.6.: Regression coefficients for Cosine Similarity, planned walk.

To have an approximated idea of the behaviour of the obtained and plotted data, the mean
square error to each obtained regression was calculated, for all the data observed in each figure,
and for the the sections below 100 meters and 200 meters. For the first order regression the
results are shown in table B.7.
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Similarity Distance WiFi GSM WiFi/Gsm

Jaccard <100 0.3949 0.3097 0.3537
>100 0.1412 0.2301 0.1510

Sørensen <100 0.4099 0.2622 0.3364
>100 0.1585 0.2608 0.1784

1st Kulczynski <100 0.7688 2.1149 0.8034
>100 0.2713 1.1892 0.3452

2nd Kulczynski <100 0.8287 0.5207 0.6675
>100 0.3264 0.5255 0.3629

Tanimoto <100 0.3937 0.3377 0.3606
>100 0.1402 0.2289 0.1492

Cosine <100 0.4095 0.3121 0.3484
>100 0.1590 0.2627 0.1777

Table B.7.: Mean Square Errors for a first order regression. Planned Walk

For the second order regressions.

Similarity Distance WiFi GSM WiFi/Gsm

Jaccard 100 0.3716 0.2995 0.3337
>100 0.1612 0.2450 0.1703

Sørensen 100 0.3788 0.2576 0.3141
>100 0.1816 0.2710 0.1980

1st Kulczynski 100 0.7270 2.1030 0.7655
>100 0.3011 1.2254 0.3760

2nd Kulczynski 100 0.7630 0.5118 0.6241
>100 0.3738 0.5453 0.4009

Tanimoto 100 0.3709 0.3260 0.3405
>100 0.1599 0.2456 0.1702

Cosine 100 0.3782 0.3064 0.3254
>100 0.1822 0.2743 0.2000

Table B.8.: Mean Square Errors for a second order regression. Planned Walk
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For the third order regression:

Similarity Distance WiFi GSM WiFi/Gsm

Jaccard 100 0.3903 0.3114 0.3527
>100 0.1828 0.2501 0.1873

Sørensen 100 0.3989 0.2661 0.3333
>100 0.2043 0.2735 0.2137

1st Kulczynski 100 0.7404 2.1012 0.7808
>100 0.3280 1.2245 0.3956

2nd Kulczynski 100 0.8033 0.5287 0.6620
>100 0.4196 0.5499 0.4290

Tanimoto 100 0.3894 0.3387 0.3593
>100 0.1814 0.2517 0.1880

Cosine 100 0.3981 0.3154 0.3445
>100 0.2049 0.2773 0.2153

Table B.9.: Mean Square Errors for a third order regression. Planned Walk

For the fourth order regressions.

Similarity Distance WiFi GSM WiFi/Gsm

Jaccard 100 0.4192 0.3244 0.3793
>100 0.1899 0.2499 0.1910

Sørensen 100 0.4279 0.2745 0.3573
>100 0.2102 0.2728 0.2137

1st Kulczynski 100 0.7618 2.0866 0.7956
>100 0.3322 1.2320 0.3956

2nd Kulczynski 100 0.8605 0.5451 0.7088
>100 0.4306 0.5486 0.4316

Tanimoto 100 0.4182 0.3530 0.3865
100 0.1885 0.2517 0.1919

Cosine 100 0.4268 0.3250 0.3698
>100 0.2107 0.2767 0.2168

Table B.10.: Mean Square Errors for a fourth order regression. Planned Walk
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