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Abstract

The volume and heterogeneity of computer network traffic are exponentially in-

creasing. In consequence, managing the traffic that flows through the network is a

challenge. Over recent years, an essential tool used in network traffic management

is flow classification. In traffic flow classification a significant objective is to identify

and classify flows that exhibit heavy-tailed or long-tailed distribution. An inferable

observation from heavy-tailed distribution is that a very small percentage of flows

carry the bulk of the traffic (in bytes). These flows are most commonly referred to

as Heavy-Hitters (HHs).

One of the consequences of unsupervised (uncontrolled) forwarding of HHs is that it

often leads to network congestion and, subsequently, to overall network performance

degradation. The main motivation for HHs identification includes flow scheduling,

QoS provisioning, and load balancing, especially applied to Data Centre Networks

(DCNs). Therefore, the identification and classification of HHs remain to attract

interest.

Most of the existing approaches to identify HHs are based on thresholds, i.e., if

the flow exceeds a predefined threshold, it will be marked as a HH; otherwise, it

will be classified as a non-HH. However, these approaches present two significant

issues. First, there is no consistent and accepted threshold that would reliably

classify flows. Second, they use counters (duration, packets, and bytes), which

their accuracy depends on how complete the flow information is. Thus, the goal

of this master dissertation is to investigate the feasibility on using per-flow packet

size distribution as an effective, in terms of Precision, Recall, F-measure, and ROC

curve, approach for identifying HHs.
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To achieve the raised goal, this master dissertation introduces a novel HHs identifi-

cation approach based on per-flow Packet Size Distribution (PSD) and the Template

Matching (TM). An extensive analysis of the approach was conducted on different

dataset from DCNs. The results of the analysis have provided directions and evi-

dence that corroborate the feasibility of using per-flow PSD and TM as an effective

approach for identifying HHs. The approach proposed achieves up to 96% accuracy

while using only the first 14 packets of a flow. Furthermore, this accuracy remains

consistent throughout all classifications while existing approaches yield different ac-

curacies for different flow size-based threshold

Keywords: Heavy-Hitters, flow, elephant, mice, data centre networks, packet size

distribution, threshold, software-defined networking, template matching



Resumen

El volumen y la heterogeneidad del tráfico de la red aumentan exponencialmente.

En consecuencia, administrar el tráfico que fluye a través de la red es un desaf́ıo. En

los últimos años, la clasificación de flujos ha sido una herramienta esencial para la

gestión de tráfico de red. Uno de los objetivos más importantes en la clasificación del

flujo de tráfico de red, es identificar y clasificar los flujos que exhiben una distribución

de cola larga o cola pesada. Una observación común de la distribución de cola pesada

es que un porcentaje muy pequeño de flujos transporta la mayor parte del tráfico

(en bytes). Estos flujos se conocen comúnmente como Heavy-Hitters (HHs).

Una de las consecuencias del reenv́ıo no supervisado (descontrolado) de HHs, es que

pueden dirigir a la congestión de la red y, posteriormente, a la degradación general

del rendimiento de la red. La principal motivación para identificar HHs incluye la

programación de rutas para flujos, el aprovisionamiento de QoS y el equilibrio de

carga, especialmente aplicado a las Redes de Centros de Datos (Data Centre Net-

work, DCN). Por lo tanto, la identificación y clasificación de HHs siguen atrayendo

interés.

La mayoŕıa de los enfoques existentes para identificar HH se basan en umbrales, es

decir, si el flujo excede un umbral predefinido, se marcará como HH; de lo contrario,

se clasificará como no HH. Sin embargo, estos enfoques presentan dos limitantes im-

portantes. En primer lugar, no hay un umbral consistente y aceptado que clasifique

de manera confiable los flujos. En segundo lugar, los enfoques basados en umbrales

hacen uso de contadores (duración, paquetes y bytes), cuya precisión depende de

qué tan completa sea la información del flujo. Por lo tanto, el objetivo de esta dis-

ertación de maestŕıa es investigar la viabilidad del uso de la distribución del tamaño
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de paquete por flujo, como un enfoque eficaz, en términos de precisión, recuperación,

medida F y curva ROC, para identificar HH.

Para lograr el objetivo planteado, se presenta un nuevo enfoque de identificación de

HHs basado en la Distribución de tamaño de paquetes (PSD) por flujo y la Coinci-

dencia de plantillas (TM). Se realizó un análisis exhaustivo del enfoque en diferentes

conjuntos de datos de DCN. Los resultados del análisis han proporcionado instruc-

ciones y evidencia que corroboran la viabilidad de usar PSD y TM por flujo como

un enfoque efectivo para identificar HH. El enfoque propuesto logra una precisión de

hasta el 96% mientras usa solo los primeros 14 paquetes de un flujo. Además, esta

precisión se mantiene constante ante todas las clasificaciones, mientras que los en-

foques existentes presentan diferentes precisiones para diferentes umbrales basados

en el tamaño del flujo

Palabras Claves: Heavy-Hitters, flujos, elefantes, ratones, redes de centros de

datos, distribución de tamaño de paquete, umbral, redes definidas por software,

concidencia de plantillas
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Chapter 1

Introduction

1.1 Problem Statement

In the last few decades, Data Centre Networks (DCN) have become vital compo-

nents of a wide range of applications, such as big data processing, cloud computing

infrastructure, and multimedia content delivery. A traditional DCN comprises a

very high number of network devices that support the seamless exchange of traf-

fic between the virtual machines/servers and the Internet. These devices include

switches that interconnect hosts, routers that forward the traffic, and gateways that

act as a junction between the DCN and the Internet. The main DCN limitations

have been scalability and growing management complexity.

To overcome these limitations, new networking paradigms such as Software-Defined

Networking (SDN) have been introduced into DCNs. SDN enables network pro-

grammability and provides a flexible architecture for managing more efficiently the

computer networks [1]. SDN separates the control plane from the data plane, en-

abling a logically centralised control of network devices [2]. By moving the con-

trol logic from the forwarding devices to a logically centralised device, namely, the

Controller, the network devices become simple forwarders that are programmable

through a standardised protocol such as OpenFlow [3]. Data Centres implemented

using SDN are referred to as Software-Defined Data Centre Networks (SDDCNs).
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1.1. Problem Statement 2

One of the main benefits of SDDCN is the centralised view of the network and,

most importantly, its traffic flows. However, the clear and well-defined benefits of

central network traffic control cannot guarantee that the network performance will

not degrade when traffic volume increases. Applications and services have increasing

Quality of Service (QoS) requirements. In consequence, managing the traffic that

flows through the network remains a challenge [4]. An essential tool to ensure the

reliable operation of networks is traffic flow classification, which provides inputs

for a variety of network managerial related activities [5]. In network performance

maintenance a significant objective is to identify and classify flows that exhibit

heavy-tailed or long-tailed distribution.

Examination of heavy-tailed distribution in flows has been an objective of several

research efforts. An inferable observation from these works is that a very small per-

centage of flows carry the bulk of the traffic [6], [7]. These flows are most commonly

referred to as Heavy-Hitters (HHs). One of the consequences of unsupervised for-

warding of HHs flows is that it often leads to network congestion and, subsequently,

to overall network performance degradation [6], [8].

Most HHs detection approaches are based on a static threshold [9]–[11]. The static

threshold is usually specified at the start of the detection phase and remains un-

changed until the end of the measurement or unless the detector is required to be

reconfigured and restarted. Despite static-threshold based techniques have been

shown to achieve promising results, it come short in taking into consideration the

network traffic dynamics. To reflect the dynamic nature of the network in HHs

detection, whenever the threshold needs to be changed, the classification must be

restarted. However, network traffic condition changes are in-deterministic and rapid,

making manual threshold adjustment impractical.

In addition, the existing threshold–based approaches share two significant issues.

First, there is no consistent and accepted threshold that would reliably classify

flows. Second, they use counters (duration, packets, and bytes), which their accuracy

depends on how complete the flow information is. The identification of HHs provides

inputs for a variety of network managerial related activities, such as flow scheduling,

QoS provisioning, and load balancing.
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Considering that HHs identification can improve the overall network performance in

SDN, this dissertation highlights that such an identification process needs to be done

in an early stage of the flow, that is, without complete information of the flow. This

dissertation argues that the ability to predict which flow will have an impact size in

an early stage allows may assist in improving network performance and minimising

the overall network degradation. Therefore, this dissertation focuses on addressing

the following research question:

How to predict what flow is going to be an HH or non-HH without its

completed information?

1.2 Hypothesis

To address the research question stated in Section 1.1, this master dissertation raises

the following hypothesis: using per-flow Packet Size Distribution (PSD) allows cap-

turing the behaviour and dynamics of network traffic flow more accurately than the

counters used by the threshold-based approach. In addition, the use of networking

paradigms as Knowledge-Defined Networking (KDN) which takes advantages of the

Artificial Intelligent concept, allows integrating behavioural models that can auto-

matically detect patterns in data. For instance, in a per-flow PSD scenario, the

uncovered patterns can be use to predict what flow is going to be HH or non–HH.

1.3 Goals

1.3.1 Main Goal

Introduce a mechanism to identify HHs in an early stage of the flow, that is, without

complete information about the flow, aiming to improve network performance.
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1.3.2 Specific goals

• Design a mechanism to HHs in SDN.

• Implement a prototype of the proposed mechanism.

• Evaluate the mechanism proposed regarding classification performance metrics

(i.e., Precision, recall, F-measure, ROC curve).

1.4 Contributions

The investigation about the feasibility of using per-flow PSD as an effective approach

for identifying HHs led to the following major contributions

• A Knowledge-Defined Networking approach to identifying HH.

• A deeper analysis of the challenges for identifying heavy-hitter flows.

• An approach of Knowledge Discovery in Databases (KDD) for analysing the

behavior of heavy-hitters flows.

• An heavy-hitter identification system based on per-flow PSD and template

matching technique.

The above-mentioned contributions were reported to the scientific community through

paper submissions to renowned conferences and journals (see Appendix A).

• A. Duque-Torres, F. Amezquita-Suarez, O.M. Caicedo Rendon, A Ordoñez,

and W.Y. Campos, ”An Approach based on Knowledge-Defined Networking

for Identifying Heavy-Hitter Flows in Data Center Networks”. Applied Sci-

ence. 2019, 9, 4808. PUBLINDEX: A2, JCR: 2.17, JSR: Q2
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• A. Duque-Torres, A. Pekar, W.K.G Seah, and O.M.C Rendon, ”Heavy-

Hitter Flow Identification in Data Centre Networks Using Template Match-

ing.” Accepted, presented and to appear in the 44th IEEE Conference on Local

. CORE: A, H-index: 18 .

• A. Duque-Torres, A. Pekar, W.K.G Seah, and O.M.C Rendon, ”Clustering-

based analysis for heavy-hitter detection.” Accepted and presented in the

Asia Pacific Regional Internet Conference on Operational Technologies (APRI-

COT), Daejon, South Korea.

• A. Duque-Torres, A. Pekar, W.K.G Seah, and O.M.C Rendon, ”Knowledge

Discovery: A shed light on heavy-hitter detection.” Submitted to the IEEE

Transaction on Knowledge and Data Engineering. PUBLINDEX: A1, JCR:

8.1, JSR: Q1

• A. Pekar, A. Duque-Torres, W.K.G Seah, and O.M.C Rendon, ”Per-Flow

Packet Size Distribution for Heavy-Hitter Flow Detection.” Submitted to Com-

pute Networks PUBLINDEX: A1, JCR: 7.1, JSR: Q1

1.5 Methodology

Figure 1.1 depicts the phases of the scientific research process followed in this disser-

tation: Problem Statement, Hypothesis Construction, Experimentation, Conclusion,

and Publication. In Problem Statement, the research question has been identified

and defined. In Hypothesis Construction, the hypothesis and associated fundamen-

tal questions have been formulated. Furthermore, in such phase, the conceptual and

technological proposals have been defined and carried out. In Experimentation, the

hypothesis and evaluation results have been tested and analyzed, respectively. In

Conclusion, conclusions and future works have been outlined. Note that Hypothesis

Construction has been reffed after Experimentation and Conclusion. In Publication,

papers for renowned conferences and journals have been submitted and published.

This document was also written during such last phase.
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Problem
Definition

Hypothesis 
Construction

Experimentation Conclusion Publish 
Findings

How to predict what 
flow is going to be 
an HH or non-HH 

without its completed 
information?

The employment of the 
per-flow Packet Size 

Distribution (PSD) allows 
capturing the behaviour 
and dynamics of network 

traffic flow more 
accurately than the 
counters used by the 

threshold-based approach. 

- Test of the hypothesis
- Analysis if the test
  results

- Major results
- Future works

- 1 Journal A1
- 1 Conference A

Figure 1.1: Thesis phases

1.6 Document Structure

This document has been divided into chapters described below

• This introductory chapter presents the problem statement, raises the hy-

pothesis, exposes the goals, summarises the contributions,and describes the

overall structure of this dissertation.

• Chapter 2 presents the Background of the main research topics touched in

this dissertation. These topics include SDN, KDN, SDDCN, and HHs.

• Chapter 3 presents the Related Work that describes the related works closer

to this dissertation. In addition, this chapter presents the challenges of the

existing approaches for identifying HHs.

• Chapter 4 describes the HHs identification system based on per-flow

PSD, the experiments conducted to test the system, discusses the correspond-

ing results, and presents implementations highlights.

• Chapter 6 presents Conclusions and Future work. In this chapter is pro-

vided the main conclusion of the presented work and exposes implications.



Chapter 2

Background

The goal of this chapter is to present the background of the main research topics

touched in this dissertation. In this way, first, this chapter starts discussing some

important HHs aspects as its definition and mainly features. Second, this chapter

presents the SDN paradigm and its architecture followed by a brief SDDCN overview.

This chapter finished presenting the KDN concept.

2.1 Heavy-Hitter Flow

A flow as a set of packets passing an observation point during a specific time interval

[12]. Packets sharing certain attributes belong to the same flow. Usually, such

attributes are the source and destination IP addresses, source and destination port

numbers, and the protocol identifier. Examination of various phenomena in flows

that can be statistically described by heavy-tailed distribution has been an objective

of several research activities [10], [13]. A common observation is that a very small

percentage of flows carry the bulk of the traffic. These flows are often termed as

HHs.

A heavy-tailed distribution assigns relatively high probabilities to regions far from

the mean or median. It behaves differently from the distributions commonly used

7
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in performance evaluation (e.g. exponential, normal, Poisson, etc.). For example,

if α ≤ 2, then the distribution has infinite variance; if α ≤ 1, then the distribution

has infinite mean. In consequence, as α decreases, an arbitrarily large portion of

probability mass may be present in the tail of the distribution [14]. As such, heavy-

tailed distributions give a significant probability of extremely large values being

produced.

Since each HH exhibits a uniquely distinguishable phenomenon (e.g. heavy-tailed

distribution), various schemes have been proposed for their classification. Usually,

HHs can be classified in four different dimensions:

1. Duration – time elapsed between the first and last packet of the flow.

2. Size – total number of octets (bytes) transmitted.

3. Rate – is given by the size divided by the duration.

4. Burstiness – A burst is a group of consecutive packets with shorter inter-

packet gaps than packets arriving before or after the burst of packets [15].

These packets can be from the same flow or from different flows.

Each flow type, based on its duration, size, rate and burstiness, can be classified into

two groups – HH and non-HH. This dichotomy of the flow types is achieved using a

threshold which varies depending on the classification scheme used. To emphasise the

dichotomy between the characteristics, the flows within the individual classification

schemes (categories) are usually termed with a zoological flair as follows [10]:

1. Duration: Flows that have a duration longer than a certain period of time d

are tortoises. Flows with a duration less than or equal to d are dragonflies.

2. Size: Flows that have a size larger than s B (bytes) are elephants. Flows with

a size less than or equal to s B are mice.

3. Rate: Cheetahs are flows with a rate greater than r Bps while snails are flows

with a rate less than or equal to r Bps.
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4. Burstiness: Flows with burstiness greater than b B are called porcupines while

those with burstiness less than or equal to b B are stingrays.

Table 2.1 summarises the main characteristics of HH flows as described by Lan et

al. [10]. In general, tortoise flows do not consume a lot of bandwidth. Elephants flows

are long-lived and have a large size, but they are neither fast nor bursty. Cheetahs

are small and bursty. The occurrence of porcupine flows is very likely due to the

increasing trends in downloading large files over fast links.

Burstiness as a feature for HH classification is rarely used in SDDCN due to its

computational complexity. Existing approaches identify HHs using the duration,

size, and rate features, which can be all collected through the OpenFlow protocol.

In the OpenFlow terminology, duration indicates the elapsed time the flow entry has

been installed. Although this does not match exactly the above-mentioned definition

of flow duration, it provides the same metric. Byte count represents the number of

octets in packets matched by a flow entry and so it serves as the size feature. Both

flow duration and byte count are default counters that can be computed on a per-

flow basis, this enable to derive the rate using these two flow meters. While the

main application of per-flow meters is to rate limit packets sent to the controller,

they can be also used to measure the rate of the flow [16].

The HHs threshold-based classification approach and its gaps are later addressed in

Chapter 3.

Table 2.1: Taxonomy of heavy-hitter flows as per [10]

Category Long-lived (dur.) Large-size Fast (rate) Bursty

Tortoise Y N N N
Elephant Y Y N N
Cheetahs N N Y Y
Porcupine N Y Y Y
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2.2 Software-Defined Networking

SDN is an architecture flexible, scalable, efficient and adaptable to the changing

needs of modern networks. Three elements characterize SDN [17], [18].

• The Control and Data planes are decoupled, i.e., the control functionalities are

removed from network devices that will become simple forwarding elements.

The Control Plane can be called as the “network brain”.

• The control functions are logically centralized, i.e., the control logic is moved

to an external entity called Controller. This Controller acts as an intermediary

between the applications and the network devices. Furthermore, the Controller

provides a global network view and the essential resources to facilitate the

forwarding devices programming.

• The implementation of the control function in software, i.e., the network is

programmable by software applications running on top of the Controller that

interacts with the underlying Data Plane.

The SDN architecture comprises four planes [19]–[21]: Data Plane, Control Plane,

Application Plane, and Management Plane. They are described in detail below.

• The Data Plane includes the interconnected forwarding devices. These devices

are typically composed of programmable forwarding hardware. Furthermore,

they have local knowledge of the network, and rely on the Control Plane to

populate their forwarding tables and update their configuration.

• The Control Plane consists of one or more NorthBound Interfaces (NBIs), the

SDN Controller, and one or more SouthBound Interfaces (SBIs). NBIs allow

the Control Plane to communicate with the Application Plane, and provide the

abstract network view for expressing the network behavior and requirements.

The Controller is responsible for programming the forwarding elements via

SBIs. SBIs allow the communication between the Control Plane and the Data
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Plane, providing: programmatic control of all forwarding operations, capabil-

ities advertisement, statistics reporting; and event notification [17].

• The Application Plane is composed of network programs that explicitly, di-

rectly, and programmatically communicate their requirements and desired net-

work behavior to the SDN Controller via NBIs.

• The Management Plane ensures the accurate network monitoring to pro-

vide critical network analytics. For this purpose, Management Plane collects

telemetry information from the Data Plane while keeping a historical record

of the network state and events [22]. The management plane is orthogonal to

the control and data planes and typically operates at larger time-scales [22].

2.3 Software-Defined Data Centre Networks

A typical DCN comprises a conglomeration of network elements that ensures the ex-

change of traffic between machines/serves and the Internet. These networks elements

include servers that manage workloads and respond to different requests, switches

that connect devices, routers that perform packet forwarding functions, gateways

that serve as the junctions between the DCN and the Internet [23]. Despite the

DCNs importance, their architecture are still far from being optimal. Traditionally,

DCNs use dedicated servers to run applications, resulting in poor server utilisation

and high operational cost. To overcome this situation the emergence of server vir-

tualisation technologies allows multiple virtual machines (VMs) to be allocated on

a single physical machine. These technologies can provide performance isolation be-

tween collocated VMs to improve application performance and prevent interference

attacks. However, server virtualisation itself is insufficient to address all limitations

of scalability and managing the growing traffic in DCNs [23], [24].

Motivated by the limitations aforementioned, there is an emerging trend towards

the use of networking paradigms as SDN in DCNs, also known as SDDCN. An

SDDCN combines virtualised compute, storage, and networking resources with a
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standardised platform for managing the entire integrated environment. Following

Faizul Bari et al. [23], the major foundations of an SDDCN are:

• Network virtualisation – combines network resources by splitting the available

bandwidth into independent channels that can be assigned or reassigned to a

particular server or device in real-time.

• Storage virtualisation – pools the physically available storage capacity from

multiple network devices. The storage virtualisation is managed from a central

console.

• Server virtualisation – masks server resources from server users. The intention

is to spare users from managing complicated server-resource details. It also

increases resource sharing and utilisation while keeping the ability to expand

capacity.

Figure 2.1 shows a SDDCN with a conventional topology. In this SDDCN, the

Controller (or set of controllers) and the network applications running on it are

...

...

.........

ToR ToR

...

...

...

ToR ToR

Core

Aggregation

Edge

SDN Controller

Figure 2.1: SDDCN structure with a conventional topology
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responsible for handling the data plane. This plane includes a fat-tree topology

that is composed by Top-of-Rack (ToR), Edge, Aggregation, and Core switches.

ToR switch in the access layer provides connectivity to the servers mounted on

every rack. Each aggregation switch in the aggregation layer (sometimes referred

to as the distribution layer) forwards traffic from multiple access layer switches to

the core layer. Every ToR switch is connected to multiple aggregation switches

for redundancy. The core layer provides secure connectivity between aggregation

switches and core routers connected to the Internet [25].

2.4 Knowledge-Defined Networking

2.4.1 Overview

In 2003, D. Clark suggested the addition of a Knowledge Plane (KP) to the tradi-

tional computers network architecture formed by the Control Plane and Data Plane.

KP adopts the Artificial Intelligence (AI) [26] to perform tasks that are human in-

telligence characteristic, i.e., systems with the abilities to reason, discover meaning,

generalize, or learn from past experiences [27]. To achieve these abilities, KP pro-

posed the use of Machine Learning (ML) techniques. By ML, KP offers advantages

to the networking, such as automation processes (recognize-act), recommendation

systems (recognize-explain-suggest), and data prediction. These advantages bring

the possibility of having a smart network operation and management [22].

Although KP offers a new and a better way to operate, optimize and troubleshoot

computer networks, its deployment in traditional networks was constrained because

of two main shortcomings. First, KP needs to obtain a rich view and control over the

network. In traditional networks, the switches and routers only have a partial view

and control. Second, KP is responsible for learning the behavior of the network.

To learn the network behavior, the network devices should have high capabilities of

storage and computing.

Nowadays, the deficiencies above mentioned may be overcomed because, first, SDN
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offers full network view via a logically centralized Controller. Furthermore, SDN

improves the network control functions that facilitate the gathering of information

about the network state in real-time [22]. Second, the capabilities of network devices

have significantly improved, facilitating the gather of information in real-time about

packets and flow-granularity [17].

2.4.2 Machine Learning

ML uses computers to simulate human learning and allows computers to identify and

acquire knowledge from the real world, and improve performance of some tasks based

on this new knowledge [28]. Formally, ML is a set of methods that can automatically

detect patterns in data, aiming to use the uncovered patterns to predict future data,

and, consequently, to facilitate the decision-making processes [27]. Overall, ML

can be divided into Supervised Learning (SL), Unsupervised Learning (UL), Semi-

supervised Learning (SSL), and Reinforcement Learning (RL).

SL focuses on modelling the input/output relationships through labelled training

datasets. The training data consists of a set of attributes and an objective variable

also called class [29]. Typically, SL is used to solve classification and regression

problems that pertain to predicting outcomes such as traffic prediction [30], end-to-

end path bandwidth prediction [31], and link load prediction [32]. Unlike SL, UL

uses unlabeled training datasets to create models that can discriminate patterns in

the data. UL can highlight correlations in the data that the Administrator may

be unaware of. This kind of learning is most suited for clustering problems. For

instance, flow feature-based traffic classification [33], packet loss estimation [34], and

resource allocation [35].

SSL occupies the middle ground, between supervised learning (in which all training

data are labelled) and unsupervised learning (in which no label data are given) [36].

Interest in SSL has increased in recent years, particularly because of application

domains in which unlabeled data are plentiful, such as classification of network data

using very few labels [37], network traffic classification [38], and verification networks

[39] RL is an iterative process in which an agent aims to discover which actions lead
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to an optimal configuration. To discover the actions, the agent is status aware of

the environment and takes actions that produce changes of state. For each action,

the agent can receive or not receive a reward. The reward depends on how good the

action taken was [40]. RL is suited for making cognitive choices, such as decision

making, planning, and scheduling. For instance, routing scheme for delay tolerant

networks [33], and multicast routing and congestion control mechanisms [41].

2.4.3 KDN Architecture and Operation

The addition of KP to the traditional SDN architecture is called KDN [22]. The

KDN architecture comprises four planes: Data Plane, Control Plane, Management

Plane and Knowledge Plane.

• Data plane is responsible for generating metadata by the forwarding network

devices. This metadata is extracted and transmitted to the Management plane.

• Control plane provides the interfaces to receive the instructions from the KP;

then the Controller transmits the instructions to forwarding devices. Further-

more, the Control plane sends metadata to the Management plane about the

network state.

• Management plane stores the metadata sent by the Control and Data planes.

Furthermore, the Management plane provides a basic analysis of statistics

per-flow and per forwarding devices to the KP

• Knowledge plane sends to the Controller one or a set of instructions about the

what the network is supposed to do.

KDN works by employing a control loop. Formally, a control loop can be described

as a system that is used to maintain the desired output, in spite of environmental

disturbances. Overall, the components of a control loop include a Data Acqui-

sition Module (DAM), Data Analyser Module (DANM), and APplication Module

(APM) [42]. Figure 2.2 overviews the KDN control loop. In a high-abstraction level,

the KDN control loop operates as follows [43], [44].
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SDN Controller

E/ M Flag

Packet Observation
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Data Acquisition 
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Figure 2.2: High-Level KDN Control Loop

1. Forwarding Devices → Packet Observation. Packet Observation performs

packets capture from Observation Points in the network devices, e.g., line card

or interfaces of packet forwarding devices. Before starting to send the packets

to the Data Collector, the packets can be pre-processed, trough sampling and

filtering rules.

2. Packet Observation → Data Collector. In the Data Collector, the packets

provided by DAM are organised and stored into flows. This Collector aims at

gathering enough information to offer a global view of the network behaviour.

3. Data Collector → ML Techniques. Data Collector feeds the ML Techniques

with current and historical data. Thus, the certain application or system can

learn from the network behaviour and generate knowledge (e.g., a model of

the network).

4. ML Techniques → Flag → SDN Controller. The Flag eases the transition be-

tween the model-generated by the ML Technique sub-module and the control
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of specific actions. Based on KDN control loop, this step can be either open

or closed. If the Administrator is responsible for deciding on the network,

the control loop is open. In this case, APM offers validations and recommen-

dations, which the Administrator can consider when making decisions. For

instance, in a control congestion case, the Administrator can query the model

(e.g., HHs traffic prediction model, HHs classification model, and link load

model) to validate the tentative changes to the configuration before applying

them to the network. In the closed control loop, the Administrator is not

responsible for deciding on the network. In this case, the model obtained from

ML Techniques sub-module can be used to automate tasks, since APM can

make decisions automatically on behalf of the Administrator. Furthermore,

the model can be used to optimise the existing network configuration [22]. For

instance, the model can learn adaptively according to the traffic change, and

find the optimal configuration to routing HHs and, thus, avoid congestion
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2.5 Final remarks

In this chapter, the fundamental concepts of this dissertation were introduced. This

dissertation considers such concepts for proposing an approach (see Chapter 4) that

focuses on carrying out HHs identification in an effective way.



Chapter 3

Heavy-Hitters Identification

This chapter provides an extensive study of the existing approach for identifying HHs

and their challenges. Next, motivated by those challenges, this chapter presents a fi-

nal discussion regarding HHs identification. Finally, this chapter finishes introducing

the novel HHs identification approach using per–flow PSD and its main concepts.

3.1 Threshold-Based Heavy-Hitters Identification

The identification of HHs has two major processes: flow measurement, in which

packets are organised into flows, and flow marking that assigns the ‘HH’ or ‘non-

HH’ labels to the individual flows. Label assignment is based on a threshold. If a

flow exceeds the threshold, it will be marked as a HH. Otherwise, a non-HH label

will be assigned to the flow. There are two type of thresholds, static and adaptive

threshold (see Figure 3.1). Irregardless of which approach is adopted, static or

adaptive, the determination of the threshold is far from being obvious. In practice,

several challenges can arise during both processes, the flow measurement and the

flow marking.

The following subsections detail such challenges. In this way, first, It is discusses

static and adaptive thresholds. Then, the feature selection and the threshold value

19
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(a) A static threshold separates
flows into HH and no–HH during the
entire duration of classification

(b) An adaptive threshold is a se-
quence of different static thresholds
that change over time

Figure 3.1: The comparison of static and adaptive thresholds

estimation challenges are detailed. Lastly, the challenges regarding the flow mea-

surements are discussed.

3.1.1 Static and Adaptive Thresholds

Most HH detection approaches are based on a static threshold [9]–[11]. In the

former, the static threshold is usually specified at the start of the detection phase

and remains unchanged until the end of the measurement or unless the detector

is required to be reconfigured and restarted (see Figure 3.1(a)). Despite static-

threshold based techniques have been shown to achieve promising results, it come

short in taking into consideration the network traffic dynamics.

Network traffic has a dynamic rather than a static character. Network traffic char-

acteristic can change over time depending on various factors such as the time of the

day, reconfigurations, failures or changes in the topology and instrumentation. To

reflect the dynamic nature of the network in HHs detection, whenever the thresh-

old needs to be changed, the classification must be restarted. However, network

traffic condition changes are indeterministic and rapid, making manual threshold

adjustment impractical.

A static threshold can also yield classification errors. Some studies have shown

that variations in network traffic cause a number of false positive and false negative

errors [45], [46]. Thus, although the static threshold would be suitable for the

identification of flows at one point in time (in those specific conditions in which the
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threshold was determined, e.g. t), it would be very likely unsuitable at another point

in time (such as, t + 1, . . . , t + n, . . .). In consequence, approaches using a static

threshold are considered to bring certain inaccuracy into HHs detection.

In an attempt to improve HHs identification, adaptive threshold adjustment mech-

anisms [45]–[47] have been proposed. Adaptive HHs detection aims to overcome the

challenges of static techniques by adjusting the threshold in response to the changes

in the network traffic. The changes that trigger threshold adjustment can be, for

example, the size of the flow (in bytes) and the link bandwidth utilisation. The idea

of adaptive HH detection is clear and well defined, however, it faces a problem, as

shown in Figure 3.1(b).

Despite the threshold being adjusted to the changes in traffic behaviour, this change

takes place at specific time intervals, for example, every 20 seconds. Between the

changes (for 20 seconds) this threshold is still static. If a change occurs at the

third second, the adaptive mechanism does not learn about this change for another

17 seconds. This delay can have a critical impact on some services such as DDoS

detection that may rely, among others, on HH identification. In conclusion, adaptive

threshold adjustment mechanisms can be considered as a continuous sequence of

different static thresholds, and they still yield similar challenges as static threshold-

based approaches.

3.1.2 Feature Selection and Threshold Estimation

HHs identification requires the knowledge of certain statistics about flows. The ma-

jority of existing approaches identify HHs using the duration, size, and rate features,

mainly due to the fact that most measurement devices provide these flow statistics

by default. Burstiness, on the other hand, is rarely used due to its computational

complexity [6]. A common observation from related work is that there is no consen-

sus about the threshold that reliably separates the flows into HHs and non-HHs.

Table 3.1 summarise some of the existing related work. From Table 3.1 it is evident

that there is no consensus about what feature or set of features (e.g. size, duration,

and rate) should be selected as well as what value(s) to assign to s, d, and r as
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Table 3.1: Related work in the domain of SDDCN

Work Citations Year Appeared In Threshold Value Static Adaptive

Curtis et al. [11] 326 2011 IEEE INFOCOM Flow Size 128KB, 1MB and 100MB X
Sivaraman et al. [56] 79 2017 Symposium on SDN Research Number of packets Not specified X
Chiesa et al. [57] 68 2016 IEEE/ACM Trans. Netw. Bandwidth 10% X
Trestian et al. [58] 32 2013 IFIP/IEEE IM Rate Not specified X
Liu et al. [59] 24 2013 IEEE Commun. Lett. Rate 1-10 Mbps X
Lin et al. [60] 18 2014 IEEE GLOBECOM Flow Size 100 MB X
Bi et al. [45] 11 2013 IEEE GLOBECOM Flow Size Not specified X
Poupart et al. [61] 10 2016 IEEE ICNP Workshop Flow Size 10 Kb to 1 Mb X
Liu et al. [46] 2 2017 Wiley Int. J. Netw. Man. Flow Size Not specified X

thresholds for accurate HHs identification. In consequence, some techniques rely

on size while other approaches use rate or duration as a threshold. Other features

such as the number of packets transmitted in the flow are also used as a threshold.

In addition, it is not uncommon to see the combination of two or more features.

The combination of features is a common technique to increase the classification

accuracy. However, if these features (for instance, duration and packet count) are not

treated carefully, they can lead to an opposite effect, i.e., a drop in the classification

accuracy.

The threshold selection strategy of the advocates of one approach or the other is

usually conditioned by the traffic and performance characteristics that are very

specific to their networks. However, to date, there is no generally accepted and

widely recognised uniform threshold for HHs detection. Indeed, different works use

different thresholds without a detailed or systematic justification (reinforcement).

A trend that is not uncommon to see through several works is that most papers

cite previous works that also cited formerly published works, and at the end of the

citation chain there is no reasoning for the selected threshold. Instead, they are

provided on an ‘as is’ basis. Examples of such chains include [48], [49]⇒ [50]⇒[51];

[52] ⇒ [53] ⇒[54]; and [2], [55]⇒[6].
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3.1.3 Flow Measurements Challenges

3.1.3.1 Effects of Sampling in HH Detection

To avoid network overload and latency, adaptive approaches such as [45], [46], [62]

as well as static-threshold based techniques (see Table 3.1) utilise sampling for data

collection, in particular, the sFlow protocol [63] which is an industry standard for

monitoring high speed switched networks. However, packet sampling has a num-

ber of effects on HH identification that the approaches utilising it fail to take into

consideration.

First, packet sampling extends the duration required to collect a minimum number

of packets to reliably identify HHs. To classify a HH flow, a certain number of

packets must be observed before a decision can be made. This number is usually

kept at a minimum to achieve real-time classification (e.g. between ten and thirty).

However, the packets belonging to various flows pass through the data plane in an

indeterministic sequence. As a result, it is not uncommon to see that packets be-

longing to the same flow are captured with intervals of more than tens of seconds.

Therefore, to achieve real-time classification, a time limit for per-flow packet collec-

tion is usually implemented. This way the classifier does not have to wait too long

to see a specific number of packets before it makes a decision.

sFlow samples packets at the switch port uniformly at a random rate. With a

sampling rate of 1/100, sFlow may skip a number of packets that belong to the

same flow and the time specified to collect a minimum number of packets for HH

classification may need to be extended. On the other hand, if time duration to

collect per-flow packets is not extended, a classification may be performed on flows

with not enough packets to make an accurate decision.

Second, packet sampling may completely miss some flows. With the advent of IoT,

the number of non-HHs rapidly increases [64]. These flows, are typically short in

their lifetime and account for a small volume of data, usually transmitted in only

a few packets. When sFlow is used, these packets may be overseen (missed). In

conclusion, sampling may also negatively affects the classifiers ability to capture
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certain flows.

Third, sampling may also cause a change in the proportion of HHs/non-HHs in any

given time period in a data centre. Assume that a 10 KB threshold and a sampling

rate of 1/100 yield a 10% / 80% proportion of HHs / non-HHs. However, if the

flows were identified on a per-packet basis, this proportion can change to 7% / 93%,

demonstrating one consequence of sampling that is the number of bytes captured

within a flow decreases and affects the distribution of the detected HH/non-HH flows

in the data centre.

To quantify the consequence of sampling, the same dataset without sampling and

with 1/100 sampling were processed. The results shown in Table 3.2 used the ref-

erenced dataset UNIV1 [6]. This dataset contains roughly twenty million packets

collected in a university campus data centre network.Only the first fifteen million

packets into flows were organised and only TCP and UDP packets were considered.

For flow expiration, an idle timeout of 150 seconds was used. Lastly, the threshold

Table 3.2: Flow statistics of the UNIV1 [6] dataset

Sampling OFF ON

F
lo

w
s Total no. 396,581 6,133

HHs 59,919 706
non-HHs 336,662 45,427

P
ac

ke
ts

Min. 1 1
Max. 1,188,676 11,899
Mean 33 3
Std. dev. 2,278 63

B
y
te

s

Min. 31 29
Max. 1,128,826,300 11,219,892
Mean 21,603 1,847
Std. dev. 2,003,929 57,279

D
u
ra

t.
[s

] Min. 0† 0.00131
Max. 3,667.72 1,510.2
Mean 7 6
Std. dev. 118 22
†Single packet flow is deemed to have duration 0 sec.
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used for HH classification was set to 10 KB [61].

Table 3.2 provides statistics for both the total dataset (Flows) as well as per-flow

statistics (Packets, Bytes, and Duration). Table 3.2 clearly shows that one conse-

quence of sampling is the loss of a considerable amount of packets. Ideally, these

packets should belong equally to all the flows at a given period of time, but in re-

ality, they constitute entire flows. Therefore, sampling brings certain bias into the

measurements and so into the classification accuracy of HHs.

3.1.3.2 Complete Flow Information

Accurate HH identification supposed to be relatively simple if the HHs identification

system has complete information of flows while is highly complex when performing

real-time detection (i.e., at any given time period only part of the flow is known,

also often referred to as sub-flow [65]). In reality, however, even if complete flows are

known, the selection of the flow feature(s) (see Section 3.1.2) and the determination

of the threshold value(s) is still far off.

Using the UNIV1 dataset as a test case the following analysis was performed, first,

the dataset was sorted based on their size (i.e., the total number of bytes) and plot

them from the largest (left) to the smallest (right) as shown in Figure 3.2. Similarly,

in Figure 3.3, the dataset was sorted and plot the flows based on the number of

packets per flow.

Beyond the largest 50 flows, the sizes of the smaller flows differ marginally. If a

threshold value of 10 KB is selected, almost 60K flows will be classified as HHs.

Among these 60K flows, only a small proportion will be clearly larger than the

threshold value. Flows with a size close to the threshold are almost indistinguishable

in size among one another, increasing the probability of misclassification.

From Figure 3.2, it is evident various “steps” showing significantly larger differences

in sizes between flows where an appropriate threshold value can be picked, e.g.,

100 MB [11], which clearly differentiates the flow that is greater than 100 MB from

the next largest flow. In Figure 3.3, it is possible to see a similar phenomenon if we
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100 MB threshold [16]

Largest 50 flows in terms of size 
(based on the number of bytes)

Possible
thresholds

Figure 3.2: The largest 150 flows in the UNIV1 dataset. The flows are sorted by
their size (from left to right)

Largest 50 flows in terms 
of number of packets

Possible threshold: 15,000 — 16,000 packets

Possible 
thresholds

Figure 3.3: The largest 150 flows in the UNIV1 dataset. The flows are sorted by
their number of packets (from left to right)

attempt to classify flows based on the number of packets. Beyond the first 50 largest

flows, there is a very gradual decrease in the number of packets per flow, such that

a threshold value of below 15K packets per flow can easily lead to misclassification.

An intuitive conclusion would be to pick a threshold value located in one of the

“steps”.
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3.2 Discussion

Traffic patterns of DC have changed over the last few years. Conventional data centre

networks were designed to handle traffic between a data centre and the outside

network (also often referred to as north-south traffic). However, the data-driven

trend of digital businesses (the more the better) has led to a substantial increase in

traffic within a data centre (i.e. east-west traffic). Big data analytics, micro-services

architecture (a paradigm to break apart large monolithic applications into sets of

small, discrete components), containers, virtual machines, and automation are all

added contributors to the massive east-west traffic.

Considering the current trends in networking, a let-up in data expansion is unlikely.

On the contrary, the changes in the traffic patterns will be amplified. To adequately

support the demand and scale of the continuously increasing workloads, as well as

business flexibility and agility, heavy-hitter traffic flow classification will continue to

play a key role. However, as discussed earlier, HH detection in the current SDDCN

environment is still challenging, especially with regard to traffic flow statistics col-

lection and threshold estimation. Motivated by this, this dissertation formulate the

following questions.

Is the threshold-based approach accurate for HH detection? The threshold classifies

the flows from the perspective of the metering process rather than the entire network.

A 10 KB threshold will result in a different number of HHs than when an 80 KB

threshold is used. Obviously, a higher threshold will result in fewer HHs. But this

does not mean that the flows classified as non-HHs are really not HHs. It is only the

metering process that perceives the flows to be so. This yields certain a error-rate

that is not uncommon to see across various HH detection approaches. Consider, for

example, the UNIV1 dataset introduced in Section 3.1.3.1.

Table 3.3 shows the PSD of the TCP and UDP packets. From Table 3.3 it is possible

to observe, that the packets with the highest occurrence have a size between 1,280

and 2,559 bytes while the average packet size within this range is around 1,377 bytes.

On the other hand, Figure 3.4 illustrates the error-rate that one such a packet can

cause.
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Table 3.2 shows the results in the classification of 59.919 HHs and 336,662 non-HHs

with a 10 KB as a threshold. If the classifier includes only one extra packet with

a size of 1,377, a total number of 2,866 non-HHs are going to be classified as HHs.

Conversely, if the classifier excludes (misses) only one such a packet, it will result

in 1,981 HHs identified as non-HHs. In another interpretation, a threshold becomes

a range rather than a single value. Flows with sizes within this range are so close

to the threshold (10 KB) such that the line which separates them into HHs and

non-HHs is very thin. This results in a miss-classification zone (error-rate) caused

only by one large packet (of a size of 1,377 bytes).

Table 3.3: Packet size distribution of the UNIV1 [6] dataset

Packet Sizes [bytes] Count Average Percent [%]

40 - 79 5,464,671 66.43 23.32 %
80 - 159 1,802,464 117.63 19.95 %

160 - 319 1,328,662 228.25 16.62 %
320 - 639 546,572 421.43 2.90 %
640 - 1,279 1,353,270 1,004.43 5.50 %

1,280 - 2,559 6,828,810 1,376.95 31.73 %

Total 17,324,449 592.32 100.00 %

Figure 3.4: Miss-classification one large packet can cause

Is it necessary to identify HHs accurately? Whether the error rate is acceptable

or not is a different question. If the main goal of HH identification is to achieve

the highest possible accuracy, then threshold-based HH detection is probably not

the best solution. However, from a different perspective, the motivation for HH
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detection is to improve network performance while not overloading the components

that facilitate the measurement/classification. In this case, maintaining network

performance is more important than the accurate identification of HHs. Nonetheless,

accurate HH identification is still required for some network management related

tasks such as accounting purposes where operators want to identify flows that create

loads on certain links. As such, accuracy plays a considerate role.

Is there a measure (metric) that could truly replace threshold-based HH detection? So

far, the threshold-based approach is the most appropriate approach for HH detection.

However, a recent traffic classification method that is gaining popularity is traffic

classification using sophisticated statistical features. It is based on the assumption

that, on a flow level, different applications exhibit various statistical features that

make different types of traffic flows distinguishable. Statistical classification uses an

underlying model to calculate the probability of a case belonging to a class. Besides

its usefulness in determining the types of applications that generate the traffic, it

is also efficient in identifying network attacks and anomalies. This dissertation

believe that they capture the behaviour and dynamics of network traffic flows more

accurately than the counters (duration, packets, and bytes) used by existing HH

detection approaches, especially with respect to their heavy-tailed distribution.

3.3 Final Remarks

Despite the simple methodology of HH detection as well as the clear and well-defined

benefits of a centralized network traffic view (control), existing approaches to identify

HHs in SDN environments, it is still face challenges. The existing approaches to

identify HHs are based on thresholds, i.e., if the flow exceeds a predefined threshold,

it will be marked as a HH; otherwise, it will be classified as a non-HH. The threshold

can be static or adaptive.

The static threshold comes short in taking into consideration the network traffic

character. On the other hand, an adaptive threshold is a sequence of static thresholds

that change according to a temporal aspect and so also yields similar challenges as

static threshold-based approaches. Furthermore, irregardless of which approach is
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adopted, static or adaptive, the threshold–based approach presents two significant

issues. First, there is no consistent and accepted threshold that would reliably

classify flows. Second, they use counters (duration, packets, and bytes), which their

accuracy depends on how complete the flow information is.



Chapter 4

A Threshold Estimation Based on

Cluster Analysis

As discussed in the Section 3.1.3.2, identifying a flow is relatively simple when com-

plete flow knowledge is available. However, the identification accuracy is challenging

when at any given period only part of the flow is known or if there are too few pack-

ets in the flow. To overcome this challenge, a feature is required that captures the

flow behaviour (HH or non-HH) well even if only a few packets are known in the

flow. In this sense, it is well known that a flow level, different applications ex-

hibit various statistical features (e.g., PSD) that make different types of traffic flows

distinguishable [30].

PSD captures the behaviour and dynamics of network traffic flows as accurately as

the traditional counters (duration, packets, and bytes) that are used by existing HH

identification approaches, especially with respect to their heavy-tailed distribution.

The advantage of PSD over traditional counters is that it can perform reliably even

if only limited information is available about the flow. An important consideration

when analysing the viability of PSD for identifying HH flows is the minimum number

of packets. This number represents a ‘window’ in which the PSDs are going to be

analysed. The determination of such ‘window’ is named ‘Ground Truth’.

This chapter provides an extensive study about how to get the ground truth for

31
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identifying HHs using the PSD approach. In this way, a Knowledge Discovery in

Database (KDD) method was used to solving the following research question, It is

possible to determine an optimal threshold or set of thresholds that would optimally

separate the flows into HHs and non-HHs in a variety of network and traffic condi-

tions?. The chapter starts discussing KDD analysis. Then, the Six-steps Knowledge

Discovery Process (KDP) is detailed. Lastly, a final discussion is presented.

4.1 Knowledge Discovery in Database Analysis

Statistical analysis has been shown to be highly efficient in tasks related to big data.

Consequently, it is becoming widely-adapted by both the industry and academia

to make an operational sense out of large datasets. Data analysis has three major

components: Knowledge Discovery in Data (KDD), Data Mining (DM), and ML.

These components often cause confusion as they generally employ similar (or iden-

tical) sets of tools and methods. KDD is used for the automated and systematic

extraction of patterns representing knowledge implicitly stored or captured in large

datasets, data streams, and massive information repositories. DM extracts patterns

from data through ML algorithms. ML uses algorithms that can automatically learn

the patterns in the data [27].

Following Fayyad et al. [66], this dissertation defines KDD as the multi-step pro-

cess of discovering useful knowledge from the data and use DM as a particular step

in this process. KDD has applications in several domains including computer net-

works, databases, and statistics [67]. In the networking domain, KDD is mainly

used to comprehend massive traffic traces and find patterns that can help in tasks

such as traffic classification and anomaly detection. One of the most commonly

used methodologies is Cross Industry Standard Process for Data Mining (CRISP-

DM) that was primarily used in the industry. In recent years, CRISP-DM has

continuously gained popularity in the academic field, mainly due to the modifica-

tions that make it simpler to apply to academic research. Another methodology

for KDD is Knowledge Discovery Process of Six-step (KDP) developed by Cios et

al. [68]. KDP, as shown in Figure 4.1, consists of six steps and provides several
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feedback loops that aim to improve the overall understanding of the analysed data.

The description of the individual steps is as follows [68]:

Figure 4.1: Knowledge Discovery Process Model

1. Understanding the problem domain: This initial step involves working closely

with domain experts to define the problem and determine the project goals,

identifying key people, and learning about current solutions to the problem. It

also involves learning domain-specific terminology. A description of the prob-

lem, including its restrictions, is prepared. Finally, project goals are translated

into DM goals, and the initial selection of DM tools to be used later in the

process is performed.

2. Understanding the data: This step includes collecting sample data and de-

ciding which data, including format and size, will be needed. Background

knowledge can be used to guide these efforts. Data are checked for complete-

ness, redundancy, missing values, plausibility of attribute values, etc. Finally,
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the step includes verification of the usefulness of the data with respect to the

DM goals.

3. Data preparation: This step concerns deciding which data will be used as in-

put for DM methods in the subsequent step. It involves sampling, running

correlation and significance tests, and data cleaning, which includes checking

the completeness of data records, removing or correcting for noise and missing

values, etc. The cleaned data may be further processed by feature selection

and extraction algorithms (to reduce dimensionality), by derivation of new

attributes (say, by discretization), and by summarization of data (data granu-

larization). The end results are data that meet the specific input requirements

for the DM tools selected in Step 1.

4. Data mining: This step involves using a specific ML algorithm (or a combi-

nation of them) to derive knowledge from pre-processed data. If the obtained

results by the selected ML algorithm are unsatisfactoriness, requiring modifi-

cation of the project’s goals needs to be done.

5. Evaluation of the discovered knowledge: Evaluation includes understanding the

results, checking whether the discovered knowledge is novel and interesting,

interpretation of the results by domain experts, and checking the impact of

the discovered knowledge. Only approved models are retained, and the entire

process is revisited to identify which alternative actions could have been taken

to improve the results. A list of errors made in the process is prepared.

6. Use of the discovered knowledge: This final step consists of planning where

and how to use the discovered knowledge. The application area in the current

domain may be extended to other domains. A plan to monitor the implementa-

tion of the discovered knowledge is created and the entire project documented.

Finally, the discovered knowledge is deployed.
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4.2 Six-step KDP-based Threshold Estimation

This section provides an exhaustible analysis for estimating an optimal threshold

that can separate HHs from non-HHs. In this sense, a detailed description of the

six-step KDP model applied to different dataset is provided.

4.2.1 Understanding the Problem Domain

In general, two HH detection approaches exist: static and dynamic threshold-based

techniques. In the former, the threshold is usually specified at the start of the de-

tection phase and remains unchanged until the end of the measurement or unless

the detector is required to be reconfigured and restarted. In the latter, also often

referred to as the adaptive approach, the threshold is adjusted in specific time in-

tervals based on changes in network conditions such as the variation of the traffic

load.

Irregardless of which approach is adopted, the determination of the threshold is far

from being obvious. A common observation from related work is that there is no

consensus about the threshold that reliably separates the flows into HHs and non-

HHs. In addition, there is also an ongoing discussion regarding the feature or set of

features (e.g., size, duration, and rate) that should be used. It is useful to advise

the reader that the problem was dentally explained in Section 3.1.

4.2.2 Understanding the Data

Four publicly accessible traffic traces collected from four different networks, stored in

PCAP (Packet CAPture) format were used. To illustrate the packet size distribution,

Table 4.1 provides a summary of the first ten million packets only for comparison

as the datasets differ in size.

The traffic traces denoted as UNIV1 and UNIV2 were captured in university data

centre networks and contain roughly 20 million packets (mainly TCP and UDP).
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Table 4.1: Packet size distribution of UNIV1, UNIV2, CAIDA2016 and CAIDA2018

TCP UDP Total
Packet Size [B] Dataset Count [%] Average Count [%] Average Count [%] Average

40 to 70

UNIV1 2 614 663 37.97 65.77 203 256 13.99 66.02 4 077 529 40.78 65.49
UNIV2 4412 72.42 68.04 111 982 1.13 68.54 237 744 2.38 65.86
CAIDA2016 5 112 471 56.70 55.68 171 611 18.64 55.72 5 299 305 53.02 55.72
CAIDA2018 1 770 745 21.53 55.36 415 214 25.23 55.70 2 212 466 22.16 55.49

80 to 159

UNIV1 398 815 5.79 112.15 542 922 37.36 117.84 1 093 850 10.94 115.84
UNIV2 594 9.75 131.50 4 446 370 45.05 105.83 4 449 030 44.49 105.83
CAIDA2016 530 109 5.88 97.02 240 413 26.12 125.26 786 351 7.87 105.87
CAIDA2018 331 862 4.03 107.85 285 618 17.65 116.04 660 792 6.62 111.14

160 to 319

UNIV1 293 073 4.26 230.87 372 315 25.62 242.09 730 384 7.30 233.76
UNIV2 336 5.52 220.90 619 348 6.28 192.74 619 728 6.20 192.76
CAIDA2016 185 470 2.06 237.59 265 265 28.82 206.94 458 989 4.59 219.31
CAIDA2018 297 903 3.62 254.00 125 710 7.77 226.09 437 883 4.39 244.46

320 to 639

UNIV1 310 571 4.51 447.95 25 405 1.75 417.10 346 474 3.46 445.85
UNIV2 292 4.79 474.30 57 714 0.58 470.53 58 130 0.58 470.50
CAIDA2016 274 319 3.04 502.00 33 812 3.67 491.80 310 219 3.10 500.60
CAIDA2018 286 216 3.48 483.27 76 783 4.74 432.34 366 130 3.67 472.53

640 to 1279

UNIV1 790 563 11.48 1004.80 29 892 2.06 960.95 849 156 8.49 1005.77
UNIV2 114 1.87 876.35 55 924 0.57 1030.12 56 140 0.56 1029.70
CAIDA2016 365 397 4.05 1070.11 39 660 4.31 1047.44 408 903 4.09 1066.23
CAIDA2018 346 840 4.22 1005.57 118 125 7.30 1044.11 473 519 4.74 1014.76

1280 to 2559

UNIV1 2 478 370 35.99 1483.37 279 513 19.23 1291.59 2 902 224 29.02 1465.33
UNIV2 344 5.65 1512.71 4 578 640 46.39 1485.47 4 579 184 45.79 1485.48
CAIDA2016 2 549 241 28.27 1473.25 169 656 18.43 1451.42 2 730 430 27.32 1471.52
CAIDA2018 5 192 165 63.12 1483.68 597 074 36.89 1425 5 831 850 58.42 1477.51

Total

UNIV1 6 886 055 100 710.74 1 453 303 100 390.74 9 999 617 100 582.60
UNIV2 6092 100 198.84 9 869 978 100 758.24 9 999 956 100 749.34
CAIDA2016 9 017 007 100 517.31 920 417 100 433.62 9 994 197 100 509.13
CAIDA2018 8 225 731 100 1021.20 1 618 524 100 674.91 9 982 640 100 959.00

From Benson et al. [6] is known that all traces were captured using a Cisco port

span. To account for delay introduced by the packet duplication mechanism and for

end host clock skew, the authors binned results from the spans into 10 microsecond

bins. The datasets denoted as CAIDA2016 and CAIDA2018 are raw traffic traces

captured on high-speed commercial backbone links and contain roughly 16 million

packets (also mainly TCP and UDP). The CAIDA2016 dataset was collected by the

‘equinix-chicago’ high-speed monitor and contains a mix of 6.3M TCP, UDP and

ICMP packets. The weight of each packed is defined as the size of its payload, not

including the header. The CAIDA2018 was collected by the ‘equinix-sanjose’ high-

speed monitor and contains a mix of 20.2M TCP, UDP and ICMP packets. The

weight of each packet is defined as the size of its payload, not including
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4.2.3 Preparation of the Data

A flow refers to a set of packets sharing some common properties that traverse an ob-

servation point during a certain period of time, usually defined by a 5-tuple, namely,

the source and destination IP addresses and port numbers, and the protocol iden-

tifier. Flow records contain traffic information such as flow features (e.g., the total

number of octets of all packets belonging to a certain flow) and the flow properties.

The traffic traces (UNIV1, UNIV2, CAIDA2016, and CAIDA2018) were processed

and organised into flow records using the flowRecorder tool [69]. This tool, written

in Python, turns IP packets, either in the form of PCAP files or sniffed live from a

network interface, into flow records and stores them in a CSV (Comma-Separated

Values) file. Algorithm 1 shows pseudocode for the flow record that was executed

for organizing packets into flows and extracts the information and features about

the flows.

Algorithm 1 Flow Recorder

1: procedure flowRecorder(i, fito, o) . i: trace input (pcap format), o:
Output file name (csv format)

2: function IsFlowPresent(key, fcache)
3: if key in fcache then
4: return True
5: else
6: return False
7: function IsExpired(key, fcache, fito, tstp)
8: if key in fcache then
9: t = tstp − flowcache[key][fend]

10: if t > fito then
11: return True
12: else
13: return False
14: function NewID(fid, fcache)
15: fcache[fid + fstart] = fcache[fid]

16: function CreateFlow(fid, fcache, FlowFeatures)
17: fcache[fid] = FlowFeatures

Flows composed only of packets sent from a single endpoint to another single end-

point are usually termed as unidirectional flows. When information about flows
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Table 4.2: List of the flow features used for KDP

Feature name Feature description
Direction
F† B†

min ps Packet with minimum size in the flow X X
max ps Packet with maximum size in the flow X X
avg ps Average packet size X X
std ps Standard deviation of packet sizes X X

min piat Minimum packet inter-arrival time X X
max piat Maximum packet inter-arrival time X X
avg piat Average packet inter-arrival time X X
std piat Stand. dev. of packet inter-arrival times X X

octTotCount Number of transmitted bytes in the flow X X
pktTotCount Number of transmitted pkts in the flow X X
flowDur Duration of the flow (in seconds)
proto Protocol identifier (e.g. TCP/UDP)

† F: Forward; B: Backward

composed of packets sent in both directions between two endpoints are required

(two unidirectional flows in opposite directions), bidirectional flows may be consid-

ered. flowRecorder supports the measurement of flow features in both unidirectional

and bidirectional modes. Table 4.2 lists 22 statistical flow features supported by

flowRecorder that were used for the analysis. As the table shows, each feature was

computed in both directions except the flow duration and the protocol identifier.

Depending on the properties of the observed (incoming) packets, either new flow

records were created or the flow features of existing ones were updated.

Flow expiration is another key consideration [12]. A flow is deemed to be expired if

no packets belonging to the flow have been observed for a certain period of time. This

time is most commonly termed as passive or idle time (fito). Passive expiration of

flows is required to prevent identifying two different flows as the same. Consider two

hosts where one initiates many new TCP connections to the other. Each new TCP

connection gets a new source port from a fixed range of ephemeral ports, generally

incremented by one from the previous allocation. Over time, the TCP port numbers

will roll over the range, starting from the smallest number again. In consequence,
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Table 4.3: Flows size distributions per each dataset

Flow Size [KB/MB] DataSet TCP [%] UDP [%] Total [%]

fs ≤ 10KB

UNIV1 74 915 25.48 175 029 59.54 249 944 85.02
UNIV2 495 2.74 14 926 82.66 15 421 85.40
CAIDA2016 354 299 78.44 79 050 17.50 433 349 95.94
CAIDA2018 340 818 60.44 193 704 34.35 534 522 94.79

10KB < fs ≤ 100KB

UNIV1 38 775 13.19 195 0.07 38 970 13.26
UNIV2 12 0.07 1 951 10.80 1 963 10.87
CAIDA2016 13 986 3.10 543 0.12 14 529 3.22
CAIDA2018 18 286 3.24 1 265 0.22 19 551 3.47

100KB < fs ≤ 1MB

UNIV1 4 446 1.51 86 0.03 4 532 1.54
UNIV2 0 0 543 3.01 543 3.01
CAIDA2016 2 566 0.57 429 0.09 2 995 0.66
CAIDA2018 7 480 1.33 811 0.14 8 291 1.47

1MB < fs ≤ 10MB

UNIV1 457 0.16 17 0.01 474 0.16
UNIV2 0 0 67 0.37 67 0.37
CAIDA2016 721 0.16 74 0.02 795 0.18
CAIDA2018 1 214 0.22 197 0.03 1 411 0.25

fs < 10MB

UNIV1 46 0.02 4 0.0 50 0.02
UNIV2 0 0 63 0.35 63 0.35
CAIDA2016 32 0.01 5 0.0 37 0.01
CAIDA2018 88 0.02 9 0.0 97 0.02

Total

UNIV1 118 639 40.4 175 331 59.6 293 970 100
UNIV2 507 2.8 17 550 97.2 18 057 100
CAIDA2016 371 604 82.9 80 101 17.7 451 705 100
CAIDA2018 367 886 65.2 195 986 34.8 563 870 100

this creates a problem as a new flow will have the same five-tuple as an earlier flow.

A common method to address this problem is to use the idle time.

Typical values for fito range from 15 sec to 300 sec [12]. A number of pilot mea-

surements using all four traffic traces were performed. This pilot measurements

were focused on the correct expiration without identifying two different flows as the

same. The obtained results cover the entire range between 15sec and 300sec. This

dissertation uses a value that is from the middle of this range, specifically 150sec.

Using this idle time, the traffic traces were processed yielding four different datasets.

Table 4.3 summarizes the flows size distribution obtained of the these traces.
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4.2.4 Data Mining

Clustering is an essential tool in data exploration. Cluster analysis examines unla-

belled data by either constructing a hierarchical structure or forming a set of groups.

Data points belonging to the same cluster exhibit features with similar character-

istics [70]. In a nutshell, clustering is about abstraction-discovering structure in

collections of data.

In this analysis, it was decided to use K-means mainly because of its simplicity,

speed, and accuracy [71]. In addition, several research works also report on its high

efficacy when deployed on network traffic data [34], [72]. K-means is an iterative

algorithm that seeks to cluster homogeneous or similar subgroups in data. If two

data points are similar, they are considered as part of one cluster. The main goal of

K-means is to group data points in one cluster to be as close to each other, i.e., to

minimise the distance between observations within one cluster, across all clusters.

The similarity amongst the observations were determined via the Euclidean distance

function [73] between data points. In addition, to provides a better data visualiza-

tion, an unsupervised technique for reducing the number of dimensions was used.

Principal Component Analysis (PCA) is a technique that performs linear transfor-

mations process resulting in primary components [74]. A PCA transformation was

performed on the 22-dimensional datasets created by the employed features.

K-means requires the number of clusters as input. Several methods for determining

the number of clusters exist including V-measure, Adjusted rank Index, and Homo-

geneity Score [75]. The V-Measure is defined as the harmonic mean of homogeneity

and completeness of the clustering. The Rand index is a measure of the similarity

between two data clustering. The Homogeneity Score is a metric which provides a

confidence value of a cluster labeling given a ground truth [75].

The mentioned above methods are usually used with labelled datasets. Since the

datasets used by this dissertation are not labelled, Silhouette score method is used.

The silhouette score method does not require labelled data. In addition, the Silhou-

ette method was also shown to be an effective approach for determining the number

of clusters in data as well as for validation [76]. The Silhouette method provides a
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Silhouette coefficient Si which measures how well an observation is clustered while it

estimates the average distance between the clusters [74]. The values of the measure

range between -1 and 1, and the closer the values are to 1, the better the samples

are clustered.

Per each dataset was computed the Si values corresponding to the number of clusters

(denoted by k), as shown in Figure 4.2. The number of clusters that yield a relatively

strong basis for cluster analysis (i.e., 0.5 < Si ≤ 1) is up to 15. With a higher number

of clusters the Si values drop significantly. All the Silhouette scores range between

0.5 and 1 with 10 scores (six for CAIDA2016 and four for CAIDA2018) having a

value below 0.6; these values are relatively far from the optimal score of 1, and

indicate a low basis for clustering. Among all the traffic traces, UNIV2 provides the

most stable values that can eventually lead to more than 15 clusters. Candidate

values for cluster analysis ranged between 2 and 9 as these cluster numbers got a

Silhouette scores higher than 0.9.

The optimal value for k is given by the highest Si score. In the analysed datasets, k =

2 corresponds to Si = 1. However, using two clusters leads to a significant imbalance

between them. This is evident from Figure 4.3 which shows the PCA representation

– one cluster contains a large number of flows while the other extremely few. The

specific numbers of this distribution is provided in Table 4.4.

Table 4.4: Flow distribution with k = 2

Dataset Class I Class II Total

UNIV1 293 962 8 293 970
UNIV2 18 056 1 18 057
CAIDA2016 451 696 9 451 705
CAIDA2018 563 869 3 563 872

Such a significant imbalance can result in a deterioration of the classifier’s perfor-

mance, especially in the case of those patterns that belong to the less represented

classes. Intuitively, to achieve a better distribution of flows between the individual

clusters, it is needed to select a higher k value. Figure 4.2 shows that the Silhouette

coefficients provide stable results for up to 9 clusters. Consequently, it is reasonable

to select the number of clusters with Si value closest to 1 yet segment the dataset
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Figure 4.2: Silhouette coefficients for the datasets.

into as many classes as possible, i.e., k = 4. The visualisation of the results along the

two first principal components obtained with k = 4 is provided in Figure 4.4. As a

complement to Figure 4.4, Table 4.5 provides further detail on the obtained results.

The analysis focuses on the network traffic flow statistical features, in particular,

the flow size, number of packets, and flow duration.

Table 4.5: Flows sizes, packet counts, and flow durations obtained using k = 4

Flow Size [MB] Number of Packets Flow Duration [s]
Class Dataset No. of Flows Max Min Average Max Min Average Max Min Average

I

UNIV1 293 709 1.88 0.000032 0.008 47 11 394 1 16.09 2 643.73 0 6.76
UNIV2 17 979 6.50 0.000064 0.002 12 18 180 2 103.81 455.32 0 33.87
CAIDA2016 451 051 1.34 0.000028 0.004 21 33 043 1 16.78 20.202 0 3.23
CAIDA2018 563 472 3.73 0.000029 0.009 48 14 258 1 12.4 22.40 0 2.39

II

UNIV1 6 194.11 145.39 167.37 281 168 149 047 219 806 2 643.13 151.97 1 061.68
UNIV2 6 250.30 107.610 178.96 284 648 108 230 194 204 455.29 393.25 428.88
CAIDA2016 7 42.65 31.14 37.60 28 465 20 775 25 357 20.19 15.8 15.86
CAIDA2018 21 66.22 21.45 34.08 44 251 14 784 23 489 22.39 7.04 19.45

III

UNIV1 26 86.80 18.15 30.35 85 848 14 987 29 760.5 2 641.51 2.27 282.62
UNIV2 32 95.63 32.53 57.94 118 060 32 590 61 127.50 454.52 48.34 402.615
CAIDA2016 2 100.05 70.93 85.49 66 743 47 373 57 058 20.20 20.19 20.19
CAIDA2018 376 19.81 3.76 7.46 14 658 2 513 5 162.06 22.40 0.26 17.25

IV

UNIV1 229 17.64 1.93 4.42 79 661 1 418 6 582.16 2 643.89 1.39 507.30
UNIV2 36 28.87 7.081 13.10 40 486 8 256 17 376.44 454.52 48.34 402.61
CAIDA2016 644 22.66 1.35 3.52 24 140 904 2 660.75 20.202 0.028 15.21
CAIDA2018 3 277.62 143.45 191.33 190 733 98 909 130 531.66 22.29 21.09 21.89
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(a) UNIV1 (b) UNIV2

(c) CAIDA2016 (d) CAIDA2018

Figure 4.3: Visualisation of K-means along the two first principal components with
k = 2

4.2.5 Evaluation of the Discovered Knowledge

Overall, class I contains the flows that are the smallest in size. UNIV2 seems to

be an outlier as the obtained results significantly differ from the other datasets.

For UNIV1, CAIDA2016, and CAIDA2018 the flow sizes range between 28 Band

3.73 MB while the average size is roughly 7.5 KB. The flow sizes for UNIV2

range between 64 Band 6.5 MBwhile the average size is 21.24 KB. In terms of

packet counts, UNIV1, CAIDA2016, and CAIDA2018 have an average packet count

of roughly 15 while in UNIV2 this value is 103.81. The difference between UNIV2

and the other datasets is significant. Table 3.3 shed some light on the reason for

this difference. When compared to UNIV1, CAIDA2016, and CAIDA2018, UNIV2

have a large number of UDP packets within the 80 to 159 and 1280 to 2559 ranges.

On the other hand, UNIV1, CAIDA2016, and CAIDA2018 have a large number of

TCP packets in all the ranges, in contrast to UNIV2.
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(a) UNIV1 (b) UNIV2

(c) CAIDA2016 (d) CAIDA2018

Figure 4.4: Visualisation of K-means along the two first principal components with
k = 4

While k = 4 provides better results than clustering with k = 2, in terms of flow

distribution, the imbalance is still noticeable. The results show class I as the most

dominant class while class II to IV seem to be outliers. This distance is evident

from both Figure 4.4 and Table 4.5. In general, classes II to IV can sometimes be

considered as outliers caused by measurement errors or anomalies. However, this is

not the case as they show a strong relationship with the flow size feature. Therefore,

they are deemed as correct flows requiring the same attention as the flows in class I.

An important observation that can be derived from Figure 4.4 and Table 4.5 is that

there is a class of flows that can be relatively simple to separate from the other flows,

especially due to the large distance between them (i.e., the gaps between the groups

in Figures 4.3 and 4.4) that make them clearly distinguishable. In UNIV1, UNIV2,

CAIDA2016, and CAIDA2018, the flows that are relatively simple to classify belong
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to classes II to IV. However, the classification of flows belonging to class I is not

that obvious as it contains ambiguous flows, viz. flows that can be both HH as well

as non-HH. Motivated by this, an analyse of class I in greater detail was performed.

The analysis of flows belonging to class I followed the same steps that were described

in Section 4.1 and applied previously. Figure 4.5 shows that clustering with k higher

than 2 yields Si values not sufficiently close to 1. Therefore, only two clusters (k = 2)

were used since the Silhouette analysis yields similar scores for all the datasets.

Table 4.6: Flows sizes, packet counts and flow durations for the ambiguous flows
using k = 2

Flow Size [MB] Number of Packets Flow Duration [s]
Class Dataset No. of Flows Max Min Average Max Min Average Max Min Average

I

UNIV1 293 002 0.456 0.000032 0.006 29 4 296 1 13.05 2 643.73 0 6.09
UNIV2 17 979 6.5 0.000064 0.0214 18 180 2 103.81 455.32 0 33.87
CAIDA2016 449 904 0.324 0.000028 0.0066 7 601 1 14.7 20.20 0 3.29
CAIDA2018 562 273 0.922 0.000029 0.005 58 14 258 1 13.53 22.40 0 2.36

II

UNIV1 707 1.88 0.458 0.309 11 394 349 1 275 2 643.05 0.379 0.379
UNIV2 36 28.87 7.08 13.10 40 486 8 256 17 376 453.71 16.06 339.58
CAIDA2016 1 147 1.34 0.325 0.647 33 043 220 834 20.20 0.05 15.65
CAIDA2018 1 199 3.734 0.923 1.83 9 008 620 1 356.28 22.403 0.030 15.52
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Figure 4.5: Silhouette coefficient scores for class I flows
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4.3 Final Remarks

The question researched in this Chapter 4 is as follows: Is it possible to determine

a threshold or set of thresholds that would separate the flows into HHs and non-

HHs in a variety of network and traffic conditions? The answer to this question

is: no. Based on the results obtained when analysing four data traces collected

in four different networks, it can conclude that there is no threshold that could

unambiguously classify HH flows.

4.3.1 Significance of Network and Traffic Characteristics

Table 4.6 shows as possibles thresholds for HH classification are as follow (see class

I for UNIV1, CAIDA2016, and CAIDA2018 averages):

flow size θs = 6KB,

packet count θpkt = 14.

When compared to existing approaches that evaluate their solution using the same

datasets, it can conclude that neither θs nor θpkt match any of the thresholds used

by related works. For example, Sivaraman et al. [56] use packet counts between 60

and 300, Poupart et al. [61] use flow size between 10 KB and 1 MB, and Chao et

al. [47] use a rate of 10 MBps. Unlike what this dissertation have provided in this

analysis, these related works do not provide any explanation nor justification for

selecting the thresholds they use. As the results show, threshold selection without

analysing the network and its traffic can lead to suboptimal results. For example,

while in the case of UNIV1, CAIDA2016 and CAIDA2018, θs and θpkt are roughly

the same and could be considered as optimal thresholds, they would be unsuitable

when used in UNIV2 (the presented results show a flow size of 20KBand a packet

count of 104 packets as optimal thresholds for UNIV2). Therefore, works in the field

of HH detection should always consider the network and its traffic when specifying

the used thresholds.
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4.3.2 Distribution of TCP and UDP Flows

As noted above, UNIV1 and UNIV2 were captured in data centres while CAIDA2016

and CAIDA2018 in backbone networks. Even though all the datasets contain the

same number of packets that were organised into flows using the same fito, Table 4.3

shows that they yield a different amount of total flows. Another observable difference

that can be related to these two network types is the distribution of TCP and UDP

flows. UDP flows dominate in data centre networks but TCP flows account for most

flows in backbone networks.

In terms of flow size distribution, 85% of the flows in UNIV1 and UNIV2 are smaller

than 10KB. The second most significant flow size in UNIV1 and UNIV2 accounts

for roughly 12% of all the flows and falls in the range between 10KB and 100KB.

In CAIDA2016 and CAIDA2018, flows with a size less than 10KB account for

approximately 95% of all the flows. Flows with a size between 10KB and 100KB

account for around 3% of the total number of flows in these two data sets. Flows

with a size above 100KB are not common for any of the four datasets.

4.3.3 Time Barrier

While analysing complete flows can help to obtain more insights into threshold

determination for HH detection, real-time classification of flows is more important.

Timely HH detection does not have complete flow information. Ideally, the flow

should be classified based on the minimum number of octets (minimum size), packets

or the shortest duration. In terms of flow duration, the obtained results above do not

show a strong correlation. However, time is still required for real-time classification.

This creates a challenge that has not been researched to date.



4.3. Final Remarks 48



Chapter 5

Carrying Out Heavy-Hitter

Identification using Packet Size

Distribution

This chapter provides an extensive study about how to perform HHs identification

using PSD. In this sense, this chapter starts introducing a novel approach to clas-

sify HHs using per-flow PSD and Template Matching (TM) technique. Next, this

chapter presents an extensive evaluation of the approach proposed. Lastly, the final

discussions are presented.

5.1 Heavy-Hitter Flow Identification Using Packet

Size Distribution and Template Matching

As discussed in the Chapter 4, an important consideration when analysing the vi-

ability of PSD for identifying HH flows is the minimum number of packets. This

number represents a ‘window’ in which the PSDs are going to be analysed. In this

dissertation the threshold found by the KDP analysis performed are used.

49
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flow size θs = 6KB,

packet count θpkt = 14.

Using θs and θpkt defined above, it is possible to specify three regions of small non-

HH flows, as shown in Figure 5.1. ‘Region 1’ contains extremely small non-HHs,

less than 6KB and less than 14 packets. ‘Region 2’ also contains non-HHs, however,

these flows can have more than 14 packets but still less than 6KB in size. ‘Region

3’ contains non-HHs as well, flows with less than 14 packets but more than 10KB

in size. Lastly, the ‘Region 4’ contains flows where granularity is very significant as

this region contains HHs, some of which are extremely large. The combination of

features appears to be an appropriate technique to increase the classification efficacy

and accuracy.

Flow size
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Region 3

Figure 5.1: Regions created by θs and θpkt

Figure 5.2 provides an example of the packet size distribution of an arbitrary flow

belonging to each of the four regions. The flows in Regions 1 (Figure 5.2(a)) and

4 (Figure 5.2(d)) represent the minimums and maximums, i.e., non-HHs and HHs,

respectively. The difference in terms of per-flow PSD is clear and simple to recognise

without the need for a detailed investigation of the flow. Regions 2 (Figure 5.2(b))

and 3 (Figure 5.2(c)) are, however, not that obvious as the flows exhibit similar

characteristics in terms of PSD. The classification of these flows requires an in-depth

investigation.
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(a) PSD of an arbitrary flow from Region 1
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(b) PSD of an arbitrary flow from Region 2
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(c) PSD of an arbitrary flow from Region 3
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(d) PSD of an arbitrary flow from Region 4

Figure 5.2: Flow samples with various per-flow PSDs

As Figure 5.2 shows, the per-flow PSD can be considered as a collection of points. To

obtain a more efficient representation of PSD, the packet sizes can also be considered

as a continuous random variable with different values. In this way, it is possible to

generate a function which describes how such variable is distributed in a range given.

The probability density function (pdf) is a statistical feature that is suitable for

describing this phenomenon. It defines the probability distribution of a continuous

random variable.

The continuous random variable representing each packet size belonging to a certain

flow is denoted as xpkt. The pdf provides the value of the function at any given xpkt.

It is important to emphasise that pdf does not directly provide the probability of
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xpkt. Instead, it yields the probability P that xpkt will take on a value within a given

interval [a, b]. This can be formally expressed as:

P [a <= xpkt <= b] =

∫ b

a

pdf(xpkt)dxpkt. (5.1)

This dissertation introduce an approach to identify HHs based on per-flow PSD and

TM. The PSD is able to capture the behaviour and dynamics of network traffic, and

TM is used for pattern recognition [77]. A crucial point of TM when used in pattern

recognition is to adopt an appropriate “measure” to quantify similarity given an

input and a template. In the HHs identification demine, the input is a flow, which

is expressed as

fs =
N∑
i=1

xpkt(i), (5.2)

where xpkt represents the size of packet belonging to a certain flow. The templates

represent the flow size behaviours in a particular region, i.e., a pdf class. The system

proposed provides a similarity measure per-template given an input. The higher the

similarity, the more probable is that the input (i.e., a flow) belongs to the region.

Figure 5.3 shows the architecture of the proposed approach. It is composed of

three main components: Density Estimation, Template Generator, and Template

Matching. Each module is detailed below.

Template 
DB

Density Estimation 
Module

Template Generator
Module

Template Adaption

Template Matching
Module

Figure 5.3: Architecture of the system prototype
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5.1.1 Density Estimation Module

This module is responsible for estimating the pdf of the incoming flow. Several

techniques exist to estimate the pdf of a random variable. In general, the density

estimator can be classified into two types: parametric and non-parametric [78]. The

parametric estimators need a fixed form or structure of the data and depend on the

previous data point while the non-parametric estimators have no fixed structure and

depend on all the input data points. This dissertation make use of Kernel Density

Estimation (kde) to estimate pdf(xpkt); formally expressed as:

kde(xpkt) =
1

N

N∑
i=1

Kh(x− xi), (5.3)

where Kh is a kernel function, and x represents each point of xpkt. The kde is a

non-parametric method in which does not require any preceding models. Moreover,

in contrast to other non-parametric methods such as the histograms, its density

estimates are smoother, continuous and differentiable [79].

This dissertation uses kde, in particular Gaussian Kernel to estimate the pdf since it

has been shown to yield good performance under general smoothness assumptions.

In addition, it has good performance when no additional knowledge of the data is

available [70].

5.1.2 Template Generator

This module is composed of the Template Database and Template Adaption compo-

nents. Template Database is responsible for storing the individual templates. Con-

sider R = [R1, R2, R3, R4] as the set of the four regions introduced in Figure 5.2

while Rn = [fs1 , fs2 , ..., fsN ] denotes an arbitrary region composed of a set of N

flows.

Templates per each region are generated based on the TemplateGenerator procedure as

per Algorithm 2. This procedure has three main functions: pktExtractor, kdeEstima-
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tion, and FinalTemplate. pktExtractor is responsible for extracting the first θpkt packets

that are necessary to be collected before a flow can be classified. pdfEstimation com-

putes the pdf estimation. The output of this function is a template for each flow in

Rn. The prototype is implemented in Python, each template is a floating-point real

value while these values (templates) are stored (per each region) as a list of floats.

Algorithm 2 TemplateGenerator

1: procedure TemplateGenerator(i, θpkt)
2: . pd : Python pandas library
3: function FinalTemplate(Xkde, Ykde)
4: global mainT
5: if len(mainT) ! = 0 then
6: for j in range(0, len(Ykde)): do
7: yaux = mainT[y][i].max()
8: yaux2 = Ykde[i].max()
9: if yaux < yaux2 then

10: mainT = {‘x’: Xkde,‘y’: yaux2}
11: else
12: mainT = {‘x’: Xkde,‘y’: yaux}
13: else
14: mainT = {‘x’: Xkde,‘y’: Ykde}
15: return Template

16: function pdfEstimation(y)
17: kde = KernelDensity(kernel, bandwidth)
18: kde.fit(Ykde[:, None])
19: return Xkde, Ykde

20: function pktExtractor(i, θpkt)
21: for index, row in i.iterrows: do
22: if index < len(i)−1 then
23: flowIDaux = i[ index+1, fkey ]
24: if flowIDaux ! = i[ index, fkey ] then
25: data = i.copy()
26: data.drop[data[ fkey ] != i[index−1, fkey]
27: y = data.head(θpkt)
28: if len(y) == θpkt then
29: Xkde, Ykde = kdeEstimation(y)
30: r = FinalTemplate(Xkde, Ykde)

31: return r . Final template

32: Template = pktExtractor(i, θpkt)
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Figure 5.4: Template adaptation for efficient matching

The number of templates in Rn depends on the numbers of flows in the region.

This, however, can lead to challenges in real-world applications (e.g., in terms of

resource, time, and memory constraints). To minimise the computing demands, a

reduction the number of templates per each region was performed. More specifically,

instead of maintaining hundreds of thousands of templates, the algorithm compute

only one ‘master’ template per each region. To achieve this, the algorithm use

the FinalTemplate function that computes the maximum value of each template in a

particular region. As new flows are observed, new templates are generated and so

the maximum values continuously update the final template.

Lastly, Template Adaption adapts the templates to the pdf of the observed flow (that

is going to be classified). Figure 5.4(b) compares a pdf of a flow (see Figure 5.4(a))

calculated by the Density Estimation Module to a template of a particular region

provided by the Template Database. From Figure 5.4(b) is evident that not all the

data points are equally significant in terms of matching. In addition, the point-

by-point comparison of each data point between the flow to be classified and the

template is a computationally complex task especially with respect to memory and

computing resources. To improve the performance, before the matching takes place,

the template is adapted to the input flow so that only those data points that are

required for accurate classification are preserved. An example of such adaptation is

provided in Figure 5.4(c).
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5.1.3 Template Matching Module

This module is responsible for performing a similarity measure between the pdf of the

observed flows and the templates. In practice, this means that the pdf is compared

with each ‘master’ template (one out of the four) in the template database and is

classified into that class that yields the highest similarity measure. The similarity

measure is usually calculated using distance or correlation metrics [77]. In this

module, Pearson correlation and Dynamic Time Warp (DTW) similarity measures

were used. The computational demand of obtaining Pearson correlation is relatively

low, and the DTW is sensitive to a linear relationship between the variables [80].

Pearson correlation is a number between −1 and 1 that indicates how much two

variables are linearly related. A correlation of −1 indicates that the input and the

observed template have a perfect inverse linear correlation. A correlation of 0 means

no linear relation. Finally, a correlation equal to 1 means that both the input and

the template have a perfect direct linear correlation. DTW, on the other hand, is

a distance measure which allows two-time series that are similar but locally out of

phase to align in a non-linear manner [81]. DTW computation follows three major

steps [81]:

1. Compare each point in pdf(f) with every point in Xr, generating a matrix.

2. Work through the matrix and calculate the lowest cumulative distance for each

cell. Subsequently, add the value to the distance of the focal cell.

3. The distance between the two signals is then calculated based on the most

efficient pathway through the matrix.

Similarity measure between the input and each template is implemented based on

Algorithm 3. The algorithm query the templates stored in the Template Database,

and perform similarity measurement first using Pearson correlation and then with

DTW. The Pearson correlation is computed using the Python scipy library [82]

while DTW is calculated via the DTAIDistance library [83].
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Algorithm 3 Match

1: procedure Match(fpkt, Tn)
2: . fpkt: pdf of incoming flow
3: . Tn: Template per-region
4: Tn = [ Xr1 , Xr2 , Xr3 , Xr4 ]
5: corrResult [1] = pearsonr(Xr1 , fpkt) . Region 1
6: DWTResults [1] = dtw.warping(Xr1 , fpkt)
7: corrResult [2] = pearsonr(Xr2 , fpkt) . Region 2
8: DWTResults [2] = dtw.warping(Xr2 , fpkt)
9: corrResult [3] = pearsonr(Xr3 , fpkt) . Region 3

10: DWTResults [3] = dtw.warping(Xr3 , fpkt)
11: corrResult [4] = pearsonr(Xr4 , fpkt) . Region 4
12: DWTResults [4] = dtw.warping(Xr4 , fpkt)

5.2 Evaluations and Results

This section provides an extensive evaluation about the feasibility of using per-flow

PSD and TM approach for carrying out HHs identification. In this way, first, the

dataset used and the setup are detailed in Section 5.2.1. Then, in Section 5.2.2, a val-

idation using different performance measures are presented. Finally, in Section 5.2.3,

a comparison with another approaches is performed.

5.2.1 Dataset

In order to evaluate feasibility of using per-flow PSD and TM approach for carrying

out HHs identification. The UNIV1 dataset was used. The traffic traces (UNIV1)

were processed and organized into flow records. It is useful to advise the reader that

the UNIV1 dataset was dentally explained in Section 4.2.2. This dataset contains a

sample of 34 788 flows — 13 457 belonging to R1, 6894 belonging to R2, 391 belonging

to R3, and 14 046 belonging to R4. This dataset was split into training and test sets

with a 70/30 ratio while cross validation was also used to increase the effectiveness

of the model. To compute the templated was used the training set. To create the

templates for the regions, as shown Figure 5.1, θpkt = 14 and flow size θs = 6KB

were also used. It is important to highlight that those values were determined via
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KDP analysis in Section 4.1. Figure 5.5 shows the templates generated.
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Figure 5.5: Template per-region for UNIV1

5.2.2 Performance measures

The performance measures in this paper are given by five metrics derived from the

Confusion Matrix , viz., True Positive Rate, False Positive Rate, Accuracy, Preci-

sion, and f-measure. The confusion matrix is a specific table layout that allows

visualisation of the performance of a certain classification system. Each row of the

matrix represents the instances in a classified class while each column represents the

instances in an actual class. Let A denoted the instances in an actual class and A′

the instances in a classified class. Then each reference standard metric is expressed
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as a function of the relationship between the True Positive (TP), True Negative

(TN), False Positive, (FP) and False Negative (FN).

Table 5.2 shows a typical confusion matrix of a binary classification. The TP repre-

sents a successful classification, e.g., a particular sample belonging to Rn, which was

classified in class Rn. TN depicts successful classification in which the sample did

not belong to Rn and was classified as Non-Rn. FP refers to an unsuccessful classi-

fication, e.g., a sample belonging to Non-Rn was classified as Rn. FN represents an

unsuccessful classification as well. In this case, a sample belongs to Rn is classified

as Non-Rn .

Table 5.2: Confusion Matrix for Rn

A′
A

Rn Non-Rn

Rn TP FP
Non-Rn FN TN

The classification system has been trained to distinguish between R1, R2, R3, and R4.

The performance measures were conducted per each region. Table 5.3 reports the

confusion matrix for each region. Also, the performance measures are summarised

in Table 5.4.

The True Positive Rate (TPR) (or recall) is the ratio of successful classifications in

a certain region. It is computed by the following equation:

TPR =
TP

TP + FN
. (5.4)

The results obtained indicate that the region with highest TPR is Region 3, with

TPR value of 0.9847, and the reason behind this is related to the number of flows

belonging to this region. In contrast to the other regions, Region 3 contains very

few flows, roughly 391. It is likely that, when the templates were generated, most

of the flows belonged to Region 3. This results in a better representation of the flow

behaviour. The region having the lowest TPR is the Region 2 with 0.8860. This can

be regarded as the opposite of Region 3, i.e., when the templates were generated,
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Table 5.3: Confusion matrix per-region

Region 1 Region 2 Region 3 Region 4

A′
A R1 Non-R1 A′

A R2 Non-R2 A′
A R3 Non-R3 A′

A R4 Non-R4

R1 12 930 780 R2 6108 667 R3 385 919 R4 12 955 44
Non-R1 527 20 080 Non-R2 786 27 227 Non-R3 6 33 478 Non-R4 1091 20 698

Table 5.4: Performance measures for UNIV1 dataset

TPR FPR Accuracy Precision f-measure
R1 0.9608 0.037 0.9619 0.9431 0.9519
R2 0.8860 0.024 0.9582 0.9018 0.8937
R3 0.9847 0.027 0.9734 0.2952 0.9628
R4 0.9223 0.002 0.9673 0.9966 0.9580

Mean 0.9385 0.020 0.9623 0.7841 0.9362

few flows belonged to Region 2. Overall, the proposed approach achieves a TPR of

0.9385 which means the approach has high sensitivity.

The False Positive Rate (FPR) is the ratio of unsuccessful classifications in a certain

region, with the best value being zero. FPR is computed by the number of all FPs,

divided by the total number of TNs and FPs:

FPR =
FP

TN + FP
. (5.5)

The best FPR value is 0.002 which corresponds to Region 4. The highest value

obtained is for Region 1 with 0.037. Notwithstanding this region has the highest

value, it still is near to zero, which indicates good performance. The general result

obtained shows an average of 0.020 which means that the approach has a low false

positive rate.

The Accuracy is the ratio of successful predictions made to both classes and is

calculated as the total number of two correct predictions divided by the total number

of the dataset. It is computed by the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
. (5.6)
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The best accuracy result is 1, whereas the worst is 0. Region 3 has the accuracy

of 0.9734, while Region 2 is the region with lowest value, 0.9582. The reason is the

same as that for TPR. The approach achieves an average accuracy of 0.96

Precision, also known as the positive predictive value, is the ratio of correct classifi-

cation. Formally, the precision shows the ratio of correctly classified positive values

to the total classified positive values. This metric highlights the correct positive pre-

dictions out of all the positive predictions. It is calculated as the number of correct

positive predictions (TP) divided by the total number of positive predictions (TP

+ FP):

Precision =
TP

TP + FP
. (5.7)

There is a natural trade-off between TPR and precision, which is why the region

that performs best on one measure is not usually the one that perform best on the

other measure. This is the case of Region 3. The precision value for Region 3 is

0.2952, while the other regions’ values are over 0.9018. Such a low value for the

Region 3 indicates that flows belonging to the other regions tend to be classified as

Region 3 mostly. The overall precision is 0.7841 giving the per-flow PSD approach

an acceptable false positive rate.

The f-measure statistic (or F1 score) considers both the TPR and precision of a

classifier to measure its quality:

f-measure = 2× TPR× Precision
TPR + Precision

. (5.8)

An f-measure score reaches its best value at 1 and worst value at 0. A low f-measure

score is an indication of both poor precision and poor recall. The average of both

recall and precision of the per-flow PSD approach is high. Thus, the intuitive f-

measure score for the proposed approach is high, nearly 1.
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5.2.3 Performance comparison

The obtained results were compared with classification techniques used by Poupart

et al. [61]. Poupart et al. [61] report the TPR obtained using Neural Networks

(NN), Gaussian Processes Regression (GPR), and Online Bayesian Moment Match-

ing (oBMM) to classify HHs.

NN is a series of algorithms that endeavours to recognize underlying relationships

in a set of data through a process that mimics the way the human brain operates.

Also, NN can adapt to changing input; so the network generates the best possible

result without needing to redesign the output criteria. Furthermore, NN is consid-

ered as one of the most flexible predictors in the sense that it can approximate any

function when using sufficiently many nodes and data [27]. The GPR models are

non-parametric kernel-based probabilistic models that are belonging to supervised

learning. The GPR calculates the probability distribution over all admissible func-

tions that fit by using the training data [65]. oBMM is a tractable online Bayesian

learning algorithm for learning mixture models using the method of moments [61].

Figure 5.6 shows the TPR of each algorithm, and per-flow PSD using TM approach

which is denoted as TM. It is evident that the proposed approach achieves only

comparable results. However, there are some significant considerations.
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Figure 5.6: True positive rate comparison
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1. In this comparison, it is performed only TPR results as Poupart et al. [61] does

not provide any information on the other measures. As such, the comparison

is only partial while it is also likely that the thresholds selected by Poupart et

al. were selected optimally for their purposes.

2. GPR and NN cannot maintain the same performance when the threshold is

changed. The per-flow PSD using TM approach achieves the same performance

in different thresholds.

3. The NN and oBMM approaches tend to be affected by class imbalances more

than the Gaussian process, which explains why their accuracy often suffers as

the classification threshold increases. In the proposed approach, the imbalance

in the regions is not a problem, since each flow is analysed in the same packet

window. Also, the template is generated by the same packet window.

4. Considering Table 5.4, the achieved results are promising. Per-flow PSD is

capable of capturing the behaviour and dynamics of traffic flows and as such, it

is suitable for HH detection. Using TM, it can achieve a classification accuracy

of 96% and higher per each class.

5.3 Final Remarks

In this chapter provides an extensive study about how to carry out HHs identification

using per-flow PSD and TM. Also, the chapter provides an exhaustible evaluation of

approach proposed. In this way, first, the evaluation performed shows the usefulness

of per-flow PSD in describing the flow behaviour. Second, using the PSD and TM

to classify, it possible achieve an overall accuracy of 96% in early stage of the flow.

Third, this approach does not require any modification to the applications or end

hosts and it provides an indication of which flow is leading to be a HH upon the

start of each flow. The ability to predict which flow will have an impactful size in an

early stage allows improving several activities related to the network such as routing

mechanisms, QoS provisioning, and so on. In particular, for the routing mechanisms,

it helps to avoid congestion and to mitigate the need for load balancing. However,
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the time required to collect enough flow details for reliable classification can still be

a challenge and requires further research.



Chapter 6

Conclusions

This chapter starts summarising the research work carried out in this dissertation.

Then, it provides the answers for the fundamental questions that guided the ver-

ification of the hypothesis defended in this dissertation. Afterwards, the chapter

overviews the main contributions achieved when conducting such verification. The

last section outlines directions for future work.

6.1 Answers for the fundamental question

At first, this dissertation defined the following question: How to predict what

flow is going to be an HH flow or non-HH without its completed infor-

mation?

To get the answer, this dissertation presented the investigation carried out to verify

the hypothesis: using per-flow PSD allows capturing the behaviour and

dynamics of network traffic flow more accurately than the counters in

the early stage of the flow. Based on the hypothesis, this work proposed a novel

HH identification approach based on PSD and TM.

This dissertation also displayed the reference implementation of the proposed ap-

proach as well as an extensive evaluation and analysis about effectively carrying

65
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out HHs identification in SDDCNs. The evaluation performed shows, first, the use-

fulness of per-flow PSD in describing the flow behaviour. Second, the approach

proposed can achieves up to 96% accuracy while using only the first 14 packets

of a flow. Furthermore, this accuracy remains consistent throughout all classifica-

tions while existing approaches yield different accuracies for different flow size-based

thresholds.

This approach does not require any modification to the applications or end hosts

and it provides an indication of which flow is leading to be a HH upon the start

of each flow. The ability to predict which flow will have an impactful size in an

early stage allows improving several activities related to the network, such as routing

mechanisms, QoS provisioning, and so on. In particular, for the routing mechanisms,

it helps to avoid congestion and to mitigate the need for load balancing.

6.2 Future work

Although this dissertation has achieved promising results in the experiments per-

formed, this dissertation does not study the impact of time. Time is a critical factor

in HH detection. The packets belonging to various flows pass through the data plane

in an indeterministic sequence. As a result, it is not uncommon for packets belong-

ing to the same flow to be captured with intervals of more than tens of seconds. In

real-time HH detection, waiting for tens of seconds or longer is not acceptable.

For instance, the achieved accuracy for the approach proposed is up to 96%, when

classifying UNIV1 with θs = 6, 10, 100 and 1000 KB and θpkt = 14 packets. How-

ever, for some flows, it takes up to 460 seconds to collect enough packets/bytes to

meet these thresholds, which is unacceptable for timely classification. A time limit

set for per-flow packet collection could resolve this problem simply. This way the

classifier does not have to wait too long to see a specific number of packets before it

makes a decision. However, this also raises degradation in accuracy due to too few

packets captured per flow within the time duration. Real-time classification might

be achieved but at the expense of collecting too few packets to make an accurate

detection.
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Appendix A

The research work presented in this dissertation was reported to the scientific com-

munity through paper submissions to renowned conferences and journals. The pro-

cess of doing research, submitting paper, gathering feedback, and improving the

work helped to achieve the maturity hereby presented.

A.1 Papers: accepted and on reviewing

A.1.1 Accepted

1. A. Duque-Torres, F. Amezquita-Suarez, O.M. Caicedo Rendon, A Ordoñez,

and W.Y. Campos, ”An Approach based on Knowledge-Defined Networking

for Identifying Heavy-Hitter Flows in Data Center Networks”. Applied Sci-

ence. 2019, 9, 4808.

• Type: Journal – Applied Science

• Status: Submitted, accepted and published

• Colciencias index: A2

• JCR: 2.71

• JSR: Q2
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2. A. Duque-Torres, A. Pekar, W.K.G Seah, and O.M.C Rendon, ”Heavy-

Hitter Flow Identification in Data Centre Networks Using Template Match-

ing,” accepted to the 44th IEEE Conference on Local.

• Type: Conference - 44th IEEE Conference on Local

• Status: Submitted, accepted and presented.

• core index: A

3. A. Duque-Torres, A. Pekar, W.K.G Seah, and O.M.C Rendon, ”Clustering-

based analysis for heavy-hitter detection,” presented in the Asia Pacific Re-

gional Internet Conference on Operational Technologies (APRICOT), Daejon,

South Korea.

• Type: Conference

• Status: Submitted, accepted and presented.

A.1.2 On Revision

1. A. Duque-Torres, A. Pekar, W.K.G Seah, and O.M.C Rendon, ”Knowledge

Discovery: A shed light on heavy-hitter detection.”

• Type: Journal – IEEE Transaction on Knowledge and Data Engineering

• Status: Submitted

• Colciencias index: A1

• JCR: 8.71

• JSR: Q1

2. A. Pekar, A. Duque-Torres, W.K.G Seah, and O.M.C Rendon, ”Per-Flow

Packet Size Distribution for Heavy-Hitter Flow Detection.”

• Type: Journal – Computer Networks

• Status: Submitted
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• Colciencias index: A1

• JCR: 7.71

• JSR: Q1

A.1.3 Other Publications

1. Duque-Torres A, Rodriguez-Pabon C, Ruiz-Rosero J et al. A new envi-

ronmental monitoring system for silkworm incubators. F1000Research 2018,

7:248

• Type: Journal – F1000Research

• Status: Submitted, accepted and published

• Colciencias index: A1

• JSR: Q1
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Appendix B

The scripts developed and presented in this dissertation was reported to the scientific

community through GitHub

B.1 Flow Recorder Tool

https://github.com/drnpkr/flowRecorder [69]

B.2 A Threshold Estimation Based on Cluster Analysis

https://github.com/aduquet/KDP-Clustering-HHs

B.3 HHs Flow Classification System using per-flow PSD and TM

https://github.com/aduquet/PSD-TM
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