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Resumen

Una generalizacién de la sucesién de Fibonacci es la sucesién k—Fibonacci F* cuyos
primeros k£ términos son 0,...,0,1 y cada término de ahi en adelante es la suma de los k
términos anteriores. La sucesién k—Pell P®), la cual es una generalizacién de la clésica
sucesi6n de Pell, se puede definir de manera similar. Aunque la sucesién F(*) ha sido am-
pliamente estudiada en los tltimos afios por varios autores, muy poco se sabe sobre P*),
En esta tesis investigamos P*) y presentamos relaciones de recurrencia, una férmula
tipo Binet y diferentes propiedades aritméticas para la anterior familia de sucesiones.
También deducimos modelos combinatorios e identidades que involucran niimeros gen-
eralizados tipo Fibonacci y estudiamos algunos problemas diofanticos con las sucesiones
F® y p®)  Especificamente, encontramos todos los nimeros de Fibonacci generaliza-
dos que son ntimeros curiosos y caracterizamos P®* N F® para k,¢ > 2, extendiendo
resultados previos conocidos en algunos casos particulares de k£ y £. Adicionalmente,
determinamos todos los términos de F*) cercanos a una potencia de 2, generalizando un
trabajo previo de Chern y Cui que investigd los nimeros de Fibonacci cercanos a una
potencia de 2. Las principales herramientas matemaéticas utilizadas en nuestra investi-
gacién son la teoria de Baker de formas lineales en logaritmos y una versién del método
de reduccién de Baker-Davenport perteneciente a la teoria de aproximacién Diofdntica.

Frases y palabras clave: Niumero generalizado de Fibonacci, niimero generalizado

de Pell, funcién generatriz, arreglo Riordan, forma lineal en logaritmos, método de re-
duccién, repdigit.
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Abstract

A generalization of the well known Fibonacci sequence is the k—Fibonacci sequence
F® whose first k terms are 0,...,0,1 and each term afterwards is the sum of the
preceding k terms. The k—Pell sequence P*), which is a generalization of the classical
Pell sequence, can be defined similarly. Although the sequence F(* has been extensively
studied in recent years by several authors, very little is known about P®). In this thesis,
we investigate P(*) and present recurrence relations, a Binet-type formula and different
arithmetic properties for the above family of sequences. Some combinatorial models and
interesting identities involving generalized Fibonacci-like numbers are also deduced. We
next study some Diophantine problems with the sequences F* and P®). Specifically, we
find all curious generalized Fibonacci numbers and characterize P*) N F® for k, £ > 2,
extending prior results which dealt with the above problem for some particular cases of
k and ¢. Additionally, we determine all terms of F(*®) close to a power of 2, generalizing
a previous work of Chern and Cui that investigated the Fibonacci numbers close to a
power of 2. The primary mathematical tools used in our investigation are the theory
of Baker of linear forms in logarithms and a version of the Baker-Davenport reduction
method belonging to the theory of Diophantine approximation.

Keywords: Generalized Fibonacci number, generalized Pell number, generating func-
tion, Riordan array, linear form in logarithms, reduction method, repdigit.
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Chapter

Introduction

Linear recurrence sequences have become relevant mathematical objects due to their
diverse applications in art, science, and technology. In mathematics and computer sci-
ence, we can find concrete examples in the theory of power series representing rational
functions, k—regular and automatic sequences, and cellular automata. Within num-
ber theory, the solutions of important Diophantine equations form linear recurrence
sequences. In this area, the most remarkable sequence is the Fibonacci sequence (F},),>0
defined by F,, = F,_1 + F,,_s for all n > 2 with initial conditions Fy = 0 and F; = 1.
The Fibonacci sequence is one of the most famous and curious numerical sequences in
mathematics and has been widely studied in the literature. Another important sequence
is the Pell sequence (P,),>¢ which is given by P, = 2P,y + P, for all n > 2 with
Py, = 0 and P, = 1. For additional information on linear recurrence sequences, we
suggest [6, 57, 87, 88] and the references commented therein.

There is currently an active research field in number theory and combinatorics whose
aim is to generalize the Fibonacci and Pell sequences from different points of view. Some
generalizations of the Fibonacci sequence preserve the initial conditions and alter the
recurrence relation slightly, while others preserve the recurrence relation and alter the
initial conditions (see [41, 73, 80, 84, 102, 104, 119]). For example, Milles [102] studied
a generalization of the Fibonacci sequence defined by a higher order recurrence relation.
Indeed, for an integer k£ > 2, he considered the k—Fibonacci sequence F'®*) = (F,Ek))nzo
given by

FO =pF® L F® 4 4 F®  forall n> 2
with initial values Fi(k) =0for0<7< k-2, and F| ,@1 = 1. However, many authors

1



2 Chapter 1. Introduction

have been working with the shifted sequence F®) for which the first nonzero value is
Fl(k), as seen in [51]. Throughout this thesis we consider the sequence F*) := (Fék))nzg_k
defined by the recurrence above but with Fi(k) =0for2—-k<7<0, and Fl(k) =1 as
initial conditions.

There are many papers in the literature dealing with Diophantine equations involving
Fibonacci or k—Fibonacci numbers. Just to mention a few examples, Gueye et al. [65]
showed that 4,16, 64,208,976 and 1936 are the only k—Fibonacci numbers of the form
(3¢ £1)(3° £ 1), where a and b are nonnegative integers. Gueye et al. [66] also found
all k—Fibonacci numbers which are products of two Fermat numbers, while Hernane et
al.[70]) solved the dual problem. In 2021, Gémez et al. [61] formulated the Diophantine
equation (Fr(Lk))s =pi' + -+ p*, where the p;’s form a list of prime numbers in increas-
ing order, and showed that this equation has only finitely many effectively computable
solutions. The last result allowed them to extend previos results of Marques [92] and
Togbé, Irmak and He [76] that dealt with the Diophantine equation (F,)* = 2%+ 3+ 5¢.
Finally, Rihane and Togbé [115] determined all k—Fibonacci numbers belonging either
to the Padovan sequence or the Perrin sequence (for more details about the two last
sequences, see [123, A000931 and A001608]). Other interesting properties about F*)
can be found in [89, 134].

Kilig and D. Tasci [83] considered a generalization of the Pell sequence called the
k—generalized Pell sequence or, for simplicity, the k—Pell sequence P*) := (P7(Lk)>n22_k
that satisfies

P =op® 4 p® . P forall n>2

with the initial conditions P;m =0for2—-—k<i<0,and Pl(k) =1.

Before proceeding further, we need to mention that the characteristic polynomial of
P® namely

Op(z) =af —22F 1 — b2 1,

is irreducible over Q[z] and has just one zero «y outside the unit circle. This single root
is located between 2 and 3 (see [135]) and is called the dominant root of P®*).

The k—Pell numbers and their properties have been studied (see [33, 80, 81, 83]).
Kili¢ [81] gave some relations involving Fibonacci and k—Pell numbers showing that
the k—Pell numbers can be expressed as a summation of certain Fibonacci numbers.
Kili¢ and D. Tasci [83] defined also P*) in matrix representation and showed that the
sums of the k—Pell numbers could be derived directly using this representation. Other
generalizations of the Pell sequence can be consulted in [50, 129, 133].



In this thesis, we are interested in studying some Diophantine problems involving
terms of F*) and P®) as well as arithmetic and combinatorial properties of generalized
Pell numbers. The main tools used here are Baker’s theory of linear forms in logarithms
of algebraic numbers and a version of the Baker-Davenport reduction method from Dio-
phantine approximation. Some results of continued fractions and the theory of Riordan
arrays that have played an important role in enumerative combinatorics over the last
three decades are also used.

This research is organized into eigth chapters and is written in such a way that, after
reading Chapter 2, the reader should be able to understand cach one of the following
chapters separately. The present chapter, as the title suggests, is introductory. Chapter
2 is divided into four sections in which we give the main tools and the preliminary results
that will be used in this work. Section 2.1 focuses on an overview of linear recurrence
sequences, whereas Section 2.2 collects the main results associated with k—Fibonacci
numbers. In Section 2.3, we introduce some relevant facts about Diophantine approx-
imation and the theory of continued fractions. This section also includes Lemma 2.7
due to Bravo, Gémez, and Luca [27], which is a small variation of a result showed by
Dujella and Petho in [52]. This result will be a key tool when reducing upper bounds
of the unknowns of certain Diophantine equations. Finally, Section 2.4 presents a brief
survey of linear forms in logarithms of algebraic numbers by emphasizing in a result due
to Matveev [96].

In Chapter 3, we investigate the family of sequences P*) and present recurrence
relations, a simplified Binet-style formula and different arithmetic properties. We also
deduce interesting identities involving Fibonacci and generalized Pell numbers and show
the exponential growth of the k—Pell numbers, extending a result known for the case
kE = 2. In Chapter 3 we reproduced [33] and proved the following main result.

Theorem (Chapter 3, Theorem 3.3). Let k > 2 be an integer. Then
(a) For alln > 2 —k, we have
k
P® =N "gi(vi)y and |P® — gi(1)7"] < 1/2,
i=1
where v = y1,%a, ..., are the roots of characteristic polynomial ®y(z) and

z—1
k+1)z2—3k‘z+k—1'

gr(2) = (

(b) For allm > 1, we have y" 2 < P < g1,



4 Chapter 1. Introduction

It is noteworthy that Theorem 3.3 has become an important tool for those interested in
studying generalized Pell sequences, and has already been used by other researchers to
address some Diophantine problems (see e.g., [22, 48, 60, 97, 109, 114]).

In combinatorics, the Fibonacci sequence frequently appears in many enumerative
models, which provide simple and intuitive proofs of identities involving them. By way of
example, F,, 15 can be interpreted either as the number of subsets of {1,2, ..., n} without
consecutive integers, or the number of binary strings of length n without consecutive
integers. In a similar spirit, F},.o counts the number of sequences of 1’s and 2’s whose
sum is n, and likewise Fj, 1o enumerates the ways to tile a 1 x n rectangle with 1 x 1
squares and 1 x 2 dominoes. Heberle [69] extended the above idea and showed that there
are Fél_?l distinct ways to tile a 1 X n rectangle with 1 x 1 squares and dominoes with
length at most k. Rispoli [117] showed also that k—Fibonacci numbers count the vertices
of a polytope made by the convex hull of the set of {0, 1}-vectors having d entries and
no consecutive k ones. Additional combinatorial interpretations of these numbers are
discussed in Chapter 4.

The Pell sequence also has a lot of combinatorial interpretations. To mention one
example, the Pell number P, ,; counts the tilings of a 1 x n rectangle with dominoes and
two colors of squares. A bijective argument allows us to show that P, ,; also counts the
number of bi—colored compositions of a positive integer n. By a bi—colored composition
of a positive integer n we mean a sequence of positive integers o = (01,09, ...,0,) such
that oy + 09 + -+ + 0¢ = n, 0; € {1,2}, and the summand 1 can come in one of two
different colors. The reader interested in the long and rich history of compositions can
find more information in [72], and for more combinatorial models of Pell numbers see

[13, 88).

On the other hand, a lattice is an infinite arrangement of points of some FKuclidean
space with a specific pattern. The simplest example of a lattice is Z™ which is formed
by all points in R™ with integral coordinates. In the integer context, a step set £ is a
finite set of vectors of Z™ which are called steps. With this terminology we say that an

n—step lattice path is a sequence of vectors v = (v, vs,...,v,), such that v; is in Z.
Geometrically, it may be interpreted as a sequence of points w = (wg, wy, . . ., w, ), where
w; € Z* (or another starting point), and w; —w;_; = v; for i = 1,2,... n. Lattice paths

occur naturally in many areas of mathematics and have applications in physics, computer
science, integer programming, cryptanalysis, crystallography, and sphere packing. We
refer the reader to [7, 75] for further details on lattice paths.

Chapter 4 deals with combinatorial aspects of generalized Pell sequences and a specific
family of lattice paths. This research uses the concept of Riordan arrays (introduced by



Shapiro et al. [120]) which is nowadays a central tool in algebraic combinatorics. In
broad terms, Riordan arrays generalize the properties of the Pascal triangle (see [118]),
and play an important role inside several proofs of combinatorial identities (see [99, 124]).

In a more formal mathematical language, a Riordan array is an infinite lower tri-
angular array (d,,x)nken defined by two formal power series (d(t), h(t)) satisfying the
relation

dn o = [t"]d(t)(h(1))".

Note that d(t)(h(t))* is the generating function of the kth column of the Riordan array
(dyk)nken. Additionally, the set of proper Riordan arrays can be equipped with a group
structure which allows us to establish an interpretation of the multiplication of two
Riordan arrays in terms of formal power series.

Chapter 4 is based on a paper authored together with Bravo and Ramirez [34] where
we use Riordan arrays to prove the following results.

Theorem (Chapter 4, Theorem 4.4). The k— Pell number P,E@l counts the number of

lattice paths from the point (0,0) to (n —i,i) fori=0,1,...,n, with step set
Sy ={H =(1,0), V=(0,1), D; = (1,1), Dy = (1,2), ..., Dy, = (1,k)}.

Theorem (Chapter 4, Theorem 4.5). The k— Pell numbers P coincide with the sum
of the elements on rising diagonal lines in the Riordan array

1 l+z+a?+-- +ah?
T .
1—2x’ 1—2x

Chapter 4 also focuses on generalized bi—colored compositions of a positive integer.
These compositions extend the idea of classical compositions by letting the summand 1
take two colors. Using this concept, we show the following theorem.

Theorem (Chapter 4, Theorem 4.7). The generalized Pell number P,Eli)l counts the num-
ber of compositions of n with parts in the set {1,2,..., k} such that the summand 1 can
take two colors.

As we stated above, Chapters 3 and 4 deal with arithmetical and combinatorial
aspects associated with generalized Pell sequences. In Chapter 5, we discuss the inter-
section between two linear recurrence sequences, which is a classical problem in number
theory. On this problem, Mignotte [100] showed that if U = (u,)n>0 and V = (v )n>0
are two linear recurrence sequences, then under some weak technical assumptions, the



6 Chapter 1. Introduction

Diophantine equation wu, = v,, has only finitely many solutions in positive integers n
and m. What he proved is that the intersection of two linear recurrence sequences is
finite unless the roots of their characteristic polynomials are multiplicatively dependent.
Thus, if the roots of the characteristic polynomials are multiplicatively independent, then
Mignotte’s result guarantees that ¢ NV is finite, so the challenge here is to determine
what the intersection is.

The intersection between linear recurrence sequences has been discussed by many
authors and there is currently a vast literature. For instance, Bravo and Luca [36]
and Marques [91] showed independently a conjecture proposed by Noe and Post [106]
about coincidences between terms of generalized Fibonacci sequences, while Alekseyev
[5] characterized the intersection between Fibonacci and Pell numbers. For our part, we
extend in some direction Alekseyev’s work by finding all generalized Fibonacci numbers
that are Pell numbers, and all Fibonacci numbers which are k—Pell numbers (see [24,
30, 71]). In Chapter 5, which is a joint work with Bravo and Luca [32], we solve a more
general Diophantine equation extending the previous works in [5, 18, 24, 30, 36, 91].
More precisely, we prove the following.

Theorem (Chapter 5, Theorem 5.1). The only solutions (n, k,m,£) of the Diophantine
equation
pék‘) — ¥

m

in positive integers n,k > 2, m, ¢ > 2 are:

(1) the parametric family of solutions (n,k,m, () with { = 2, namely

(n,k,m,0) = (t,k,2t —1,2) for 1<t<k+1;

(i7) the sporadic solutions:

1 = PP =FY  foral k>2 and (>3
1 = PP =FY  foral kt>2
0 = PM—FY  forall k>2 and (>3;
13 = PP =F®  forall k>3
29 = Py =FY,

An interesting fact about the generalized Fibonacci sequence F*) is that the first k
values after the initial conditions are powers of 2, namely

Fék) =2"2 forall 2<n<k+1.



Throughout this thesis, each element of the set

U{F® :2<n<k+1}

k>2

will be called a trivial power of 2. Tt is known that the only nontrivial power of 2 in the
Fibonacci sequence is Fy = 8. One proof of this fact follows from Carmichael’s Primitive
Divisor theorem [42], which states that for n > 12, the nth Fibonacci number F), has at
least one prime factor that is not a factor of any previous Fibonacci number. In 2012,
Bravo and Luca [35] generalized this problem by showing that there is no nontrivial
power of 2 in F® for k > 3. Shortly after, Gémez and Luca [62] delved deeper into
the problem of Powers of 2 in the family of generalized Fibonacci sequences and studied
the equation Fj, M — 95 ;) in positive integers n, m and s. We also mention the work of
Petho [110] (sce also [44]) about perfect powers in the Pell sequence which allows us to
establish that the only power of 2 in P® is 2. In the same line, one may wonder about
powers of 2 in the family of generalized Pell sequences. The following result, which is an
immediate consequence of Theorem 5.1, gives us an answer to this question.

Corollary (Chapter 5, Theorem 5.1). The only power of 2 in P%) s 2 namely,

PP =2 forall k>2.

In Chapter 6, we consider a Diophantine problem involving the notion of closeness
between two numbers introduced by Chern and Cui [43]. We say that an integer n is
close to a positive integer m if the inequality |n — m| < y/m holds. Using this notion,
Chern and Cui [43] got a nice result in the context of linear recurrence sequences; i.e., by
replacing n y m by members of linear recurrence sequences. Specifically, they found all
Fibonacci numbers which are close to a power of 2. In a paper co—authored with Bravo
and Gémez [26], we extend the previous work [43] and search for generalized Fibonacci
numbers that are close to a power of 2. Chapter 6 reproduces [26] and presents the
following main result.

Theorem (Chapter 6, Theorem 6.1). The Diophantine inequality

in non-negative integers n,k,m with k > 2 and n > 1, has two parametric families of
solutions (n,k,m) with n,k > 2 and m > 0, namely

(@) (n,k,m)=(t,k,t—2) for2<t<k+1, and

(b) (n,k,m) = (k+2+t, kk+1t) for 0 <t <max{w € Z:2+z < 21+k=2)/2}
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(¢) In addition, we have the sporadic solution (n,k,m) = (12,3,9).

The study of Diophantine equations involving Fibonacci numbers, their generaliza-
tions, and repdigits has attracted the attention of many mathematicians during the last
years. A repdigit (short for “repeated digit”) is a natural number composed of repeated
instances of the same digit in its decimal expansion. It all started in 2000 with the
Luca’s works [90], who found that 55 and 44 are the largest repdigits in the Fibonacci
and Lucas sequences, respectively. Later, Bravo and Luca [37] proved that there are no
repdigits with at least two digits in F*) for k > 3, which was somehow extended by
Alahmadi et al. [3] who determined all k—Fibonacci numbers that are concatenations of
two repdigits. We can also mention the work of Trojovsky [131] who found all Fibonacci
numbers with a prescribed block of digits (i.e., numbers of the form ab---ba---a). For
more research papers on this topic, we refer the reader to [130] and the references therein.

A curious number is a palindromic number whose base-ten representation has the
form a---ab---ba---a. We know little about curious numbers, which can be seen as
blocks of three repdigits with first and third blocks equal. In 2021, Borade and Mayle
[16] determined all curious numbers that are perfect squares. Blocks of three repdigits
in linear recurrence sequences have been also studied. For instance, Erduvan and Keskin
[55, 56] characterized Fibonacci and Lucas numbers which are blocks of three repdigits,
respectively. From the above result, it is possible to find all curious numbers in the
Fibonacci and Lucas sequences. Chapter 7 is a research collaboration with Bravo and
Gomez [25] in which we extend the works [3, 131] by finding all k—Fibonacci numbers
that are curious numbers.

Theorem (Chapter 7, Theorem 7.1). The only curious generalized Fibonacci number is
FY = 464.

The following is a consequence of Theorem 7.1 and tells us that curious numbers
never can be a power of 2.

Corollary (Chapter 7, Corollary 7.1). There are no powers of 2 that are curious num-
bers.

This completes the sketch of our thesis.



Chapter

Preliminaries

In this chapter, we give a brief overview about the theory of linear recurrence sequences
focusing on Fibonacci-like sequences. We also provide basic facts about Diophantine
approximation and the theory of continued fractions which will be helpful in this thesis.
In addition, we present some results about lower bounds for linear forms in logarithms
of algebraic numbers (Baker’s method).

2.1 Linear recurrence sequences

Linear recurrence sequences permeate a vast number of areas of mathematics, computer
science, and have been a central part of number theory for many years. In this section, we
begin by defining a linear recurrence sequence, and summarize results required through
our investigation.

To begin, let k > 2 be an integer number. A linear recurrence sequence of order k is
a sequence of complex numbers

u® = (U)o

which satisfies a recurrence relation of the form

ufﬂk = alug:)kfl + agufﬂH + - 4 apul® for all n >0, (2.1)
where aq, as, . .., a; are fixed integers which are usually called coefficients of u®). The
values u(()k), ugk), ceey ugi)l must be not all zero and are usually called the initial conditions
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of u®). For instance, when k = 2 we denote u(® = u and the recurrence (2.1) turns into
Upto = A1 Upt1 + Ao Uy, for n > 0.

For the purposes of this thesis, we next mention two particular cases of w. First, when
(uo,u1) = (0,1) and (ay,az) = (1,1), the sequence u is nothing more than the famous
Fibonacci sequence (F,)n>0, which appears in [123] as A000045 and satisfies the recur-
rence

F,=F, 1+ F, for all n > 2,

with initial conditions Fy = 0 and F} = 1. The first few Fibonacci numbers are:
0,1,1,2,3,5,8,13,21, 34, 55,89, 144, 233,377,610, . . ..

Second, for the parameters (ug, u;) = (0,1) and (a1, as) = (2, 1), the sequence u is known
as the Pell sequence (P,),>0 (see [123, A000129]) which satisfies the relation

P,=2P,_ 1+ P, for all n>2,
with initial conditions Fy = 0 and P, = 1. The first terms of the Pell sequence are:
0,1,2,5,12,29,70,169, 408,985, 2378, 5741, . ...

An important concept in the development of our work is the characteristic polynomial
of u*) which is defined by using the coefficients of the relation (2.1) as follows

Up(x) =2 — a2 —apr 2 — o — a1z — ay. (2.2)

Under the assumption that
t

Ui(x) = [ [(@ — ai)™, (2.3)

i=1
where aq, . .., q; are distinct complex numbers and oy, ..., 0 are positive integer whose
sum is k. Then there exist uniquely determined polynomials ¢;(z), ..., ¢:(z) with coef-

ficients in Q(ay, ..., q), degqi(x) < o; — 1 fori=1,...,t, such that
t
ulf) = Z g(n)al forall —n>0. (2.4)
i=1

For the proof of (2.4) we refer to [121, Theorem C.1]. The «;’s involved in (2.3) and (2.4)
are called the roots of the recurrence. In case that |a;| > |a;| for all i # j € {1,2,...,t},
we say that «; is the dominant root of u®) and q;(z) is the dominant polynomial of uk),
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A linear recurrence sequence u'®) is said to be simple if all the roots of W (x) are
simple, i.e., if o; = 1 in (2.3) fori = 1,...,¢ . Suppose that u® is simple. Then, we can
rewrite the expression (2.4) as

k
ult) = Z c oy for all n >0, (2.5)
=1
where ¢y, ..., ¢ are nonzero complex numbers. For the initial conditions

k k
@, u® ) =(0,...,01),

the constants ci, ..., ¢, in (2.5) were determined by Kalman [78]:

for all 1=1,..., k.

For the Fibonacci sequence, the expression (2.5) takes the following form

_ "

V5

where (p,%) = ((1 ++/5)/2,(1 —+/5)/2) are the roots of the characteristic equation
r? —x—1 = 0. The identity (2.6) is traditionally called Binet’s Formula of the Fibonacci
sequence in honor of the mathematician Jacques Binet (1786-1856). Following this
tradition, we say that (2.5) is the Binet-style expansion of u®) . An identity similar to
(2.6) holds for the Pell sequence, namely

F, for all n >0, (2.6)

b,
22

where (7,7%) = (1++/2,1—+/2) are the roots of the characteristic equation 22 —2x—1 = 0.

forall n >0, (2.7)

We now consider, for each integer k > 2, the function hy(z) defined by
hi(z) = (x — 1)Wg(2).
Clearly, hj(a;) = (o — 1)V () for all i = 1,..., k. So, we obtain from (2.5) that

k

1
a9 — ; <Z (%)) of  holdsforall n>0.

In 2013, Wu and Zang [135, Lemma 1] provided a sufficient condition on the coefficients
of a linear recurrence sequence for the existence of a dominant root. The explicit result
is shown below.



12 Preliminaries

Lemma 2.1. Let k > 2 be an integer and let ay,as, ..., ar be positive integers with
ay > az > --- > ap > 1.

Then, for the polynomial Vi (x) defined in (2.2) we have:

(a) Ui(z) has exactly one positive real zero a(k) with ay < a(k) < aj + 1.
(b) The remaining k — 1 zeros of Wi(x) lie within the unit circle in the complex plane.

(¢) Wi(x) is irreducible over Q|x].

Note that Lemma 2.1 (a) leads us to call «(k) the dominant root of ¥y (x) whenever its
coefficients satisfy that a1 > ay > -+ > a; > 1.

We finally present a result of Hubélovskd et al. [74, Lemma 2 and 3] which describes
the behavior of a linear recurrence sequence with a simple positive dominant root.

Lemma 2.2. Let u®) be a linear recurrence whose characteristic polynomial has a simple
positive dominant root o. Then

(a) The dominant polynomial of u®) s a positive constant.

(b) For any non-negative integers i and r, we have

u(k)v " 4
lim | =] =Ko,
n—00 o™
(k)

where K is the constant obtained in (a). In particular, up’ ~ Ka™.

2.2 Fibonacci—like sequences

For an integer k > 2, we consider the family of Fibonacci-like sequences
GW = (G )nzo-n
defined by the linear recurrence

G;k:) _ ngk—)l + szk—)2 44 Gg“)k for all n>2,
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and initial conditions G(f()kd) = G(fk()k%) =...= G(_kl) =0, G(()k) = a, and ng) = b, where
a and b are fixed integers no both zero. Note that the sequence G is a particular case
of the sequence u®) defined in Section 2.1 by using the parameters

ay=ay=---=a,=1,

(k) _ R lfl) k)

u—(k:—z) - U_(k_g) == u(, = 0, u(() =qa and ugk) = .

k) = F(®) is known as the k— generalized Fibonacci

sequence or, for simplicity, the k— Fibonacci sequence. We shall refer to F% as the
nth k— Fibonacci number. These numbers are also called Fibonacci k—step numbers or
k—bonacci numbers. Note that F*®) is a family of sequences where each new choice of k
produces a distinct sequence. For example, the usual Fibonacci numbers are obtained
with & = 2. For small values of k, these sequences are called Tribonacci (k = 3),
Tetranacci (k = 4), Pentanacci (k = 5), Hexanacci (k = 6), Heptanacci (k = 7) and
Octanacci (k = 8). The k—generalized Fibonacci sequences for k = 3,4,...,8 can
be found in [123] as sequences A000073, A000078, A001591, A001592, A001592 and
A122189, respectively. The first values of these numbers for 2 < k < 8 and n > 1 are
listed in Table 2.1.

In particular, when @ = 0 and b = 1, G!

Table 2.1: First nonzero k—Fibonacci numbers

k Name First nonzero terms

2 | Fibonacci | 1,1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . ..

3 | Tribonacci | 1,1, 2,4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, ...

4 | Tetranacci | 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, 2872, 5536, ...

5 | Pentanacci | 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, 3525, 6930, ...

6 | Hexanacci | 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, 3840, 7617, ...

7 | Heptanacci | 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, 504, 1004, 2000, 3984, 7936, ...
8 | Octanacci | 1,1, 2, 4, 8, 16, 32, 64, 128, 255, 509, 1016, 2028, 4048, 8080, ...

An interesting fact about F'®) is that the first k& + 1 nonzero terms are powers of 2,
namely
FW®) = gmaxtOn=2}  for all 1 <n <k+1, (2.8)

while the next term is F; ,ﬁg = 2K — 1. In fact, the inequality
E®) < 2m=2 holds for all n >k + 2 (2.9)

(see [35]). In general, Cooper and Howard [45, Theorem 2.4] proved the following nice
formula.
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Lemma 2.3. For k> 2 andn >k + 2,

n+k
\. k+1 J_l

k n— n—(k j—
P =on2 4 N O onHim2,
j=1

=[5 -(5)

In the above lemma, we used the convention that (Z) = 0 if either a < b or if one of a or
b is negative and denote |z]| the greatest integer less than or equal to x. For example,
assuming that k 4+ 2 <n < 2k + 2, Cooper and Howard’s formula becomes the identity

where

F® =9m=2 _(n —k).2"%3 forall k+2<n<2k+2. (2.10)

Another consequence of Lemma (2.3) is the following estimate due to Bravo, Gémez and
Luca (see [24, Section 3.3] or [28, Lemma 3]).

Lemma 2.4. Let k > 2 and suppose that r < 2¥/2. Then

N 1
F =272 (14 C(r, k) where [C(r,R)| < 5.

On the other hand, Lemma 2.1 implies that the characteristic polynomial of F*)
namely
Up(r) =ab =2 — - — 1,

is irreducible in Q[z]| and has just one zero real o := «(k) outside the unit circle. The
other roots are strictly inside the unit circle, so a(k) is a Pisot number! of degree k.
Moreover, it is well-known that

2(1 —27%) < a(k) < 2 (2.11)
(see [134, Lemma 3.6]). Thus a(k) approaches 2 as k tends to infinity.

Now, let us consider the function

rz—1
T2+ (k+ D)(z—2)

fr(x) (2.12)

LA Pisot number is a positive algebraic integer greater than 1, all of whose conjugates have absolute
value less than 1.
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for an integer k > 2 and z > 2(1 — 27%). It is easy to see that the inequalities
1/2 < fi(a) < 3/4 and | fr(aq)| < 1, 2<i<k (2.13)

hold, where a :== oy, g, . .., o are all the zeros of Uy (z). So, by computing norms from
Q(a) to Q, we deduce that the number

fr(@) is not an algebraic integer. (2.14)

Proofs of (2.13) and (2.14) can be found in [27, Lemma 2 (i)]. Another useful estimation
associated with the norm of fi(«) over Q(«) is the following (for a proof see [23, 62])

ok+1pk _ (k+ 1)k+1
No(ay/a(fr(@)) < P

With the above notation, Dresden and Du [51] showed that

for all k> 2. (2.15)

k
1
F(k) _ N1 d F(k) . n—1 - 21
; ;Manaz and  |F® = fi(a)a"] < 3 (2.16)
hold for all n > 1 and k£ > 2. This allows us to write
F® = fi(a)a™ ! + ex(n) where |ex(n)] < 1/2, (2.17)

for all n > 1 and k£ > 2. When k = 2, one can easily prove by mathematical induction
that
QA" I<F, <a™! for all n > 1. (2.18)

Bravo and Luca [37] proved that
a" 2 < FW <o 1 holds forall n>1 and k> 2, (2.19)

which shows that (2.18) holds for the k—Fibonacci sequence as well.

In addition, since G®) and F®) have the same recurrence relation, one may think
that there is some relationship between them. In this sense, Bravo and Luca [39] proved
that

G = aFéi)l +(b—a)FEW,

On the other hand, if we put @ = 2 and b = 1, then G*) is known as the k— Lucas

sequence denoted by L*¥) = (L%k))nzg_k. The first few values of nonzero k—Lucas

numbers are listed in Table 2.2. In the special case where £ = 2, we get the usual
Lucas sequence (see [123, A000032]). We point out that analogous properties to those
mentioned before hold for the k—Lucas numbers (see [39, Lemma 2]). For more details
on k—Lucas sequences, we refer the reader to [17, 113, 116].
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Table 2.2: First nonzero k—Lucas numbers
k Name First nonzero terms
2 Lucas 2,1,3,4,7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364,. ..
3 | 3—Lucas | 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, ...
4 | 4—Lucas | 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, ...
5| 5—Lucas | 2, 1, 3, 6, 12, 24, 46, 91, 179, 352, 692, 1360, 2674, 5257, 10335, ...

2.3 Diophantine approximation

In the following chapters, we will study some Diophantine problems by applying lower
bounds on linear forms in logarithms which is one of the modern and effective methods
for solving Diophantine equations. However, the constants appearing in the lower bounds
that the theory provides for linear forms in logarithms are rather large. Therefore, we
look for a procedure for reducing bounds to a size that can be more easily handled. In
general, the procedure used in this thesis to achieve this goal is the so—called Baker—
Davenport reduction method coming from the properties of the continued fractions.
In this section, we present a survey of the theory of continued fractions and some basic
elements of Diophantine approximation, which are necessary to understand the reduction
tools used throughout this work. The main references for this section are [1, Chapter 1,
Sections 1.2 and 1.3] and [125, Chapter 1, Section 1].

2.3.1 Good and bad approximations

Diophantine approximation is a branch of number theory which addresses the question of
how to approximate a real number through rational numbers. Since the rational numbers
are a dense subset of the real numbers, every real number « can be approximated by a
sequence of rational numbers converging to . However, such a sequence for an irrational
number has usually denominators that grow very fast. For instance, the sequence (ay,)n>1

defined by
1 n
A = (1 + —) for all n>1,
n

converges to the Euler number e, but its denominators are big, namely

47277 2567 31257 46656 = 823543 ' 167772167 387420489 '

(a) {2 9 64 625 7776 117649 2097152 43046721 1000000000 }
Qp)n>1 =
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Such approximations could improve by requiring rational numbers with comparatively
small denominators. One notable contribution in this research line is due to Dirich-
let (1805-1859), and his main result is announced below (for a detailed proof, see [I,
Theorem 1.1]).

Theorem 2.1. Let o be a real number and let N be a positive integer. Then, there exists
a rational number p/q with 0 < ¢ < N, satisfying the inequality

1 1
< <.
~gN <_q2>

As a consequence of Theorem 2.1, irrational numbers can be distinguish clearly from
rational numbers. Namely, the first ones are approximated by infinitely many rational
numbers p/q with an error less than 1/¢?, while the second ones do not satisfies such
property. The next corollary of Dirichlet Theorem formalizes the above remark and its
proof can be found in [1, Corollary 1.2].

p
a__

q

Corollary 2.1. Let a be a real number.

(a) If « is an irrational number, then there are infinitely many rational numbers p/q
with ¢ > 0 such that

1

o — 2—? < -
q q

b) For any rational number o and C' > 0, the inequalit
Y Y

C

o — ]—9‘ < )
q q

is satisfied for only finitely many rational numbers p/q.

Inspired by Corollary 2.1, we say that a rational number p/q with ¢ > 0 provides a
good approzimation of the irrational number « if the inequality

P 1
a—2 <« = 2.20
al ¢ (2:20)
holds. Whereas a real number « is said to be badly approzimable if there exists a constant
C > 0 such that

C
a— g > 5 (2.21)

holds for all rational number p/q # «a.

We next introduce the concept of continued fractions which play an important role
in the process of approximating irrational numbers with rational ones.
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2.3.2 Continued fractions

The Euclidean algorithm is the oldest and best—known method to compute the greatest
common divisor of two integers numbers. To illustrate this procedure, we consider two
integer numbers p and ¢, with ¢ > 0, and use the division algorithm recursively

P = apq+ro, 0<r<gq,

q = ay719+ 11, 0<r <rg,

o = G271+ T2, 0 <y <y, (2.22)
T'n—o = Ap Tp—1, 0 =1 <Tpaa < <79 <gq,

where all the a;’s and r;’s arc integers. It is well-known that the greatest common divisor
of p and ¢ is the last nonzero residue r,,_;. Additionally, by rewriting the equalities (2.22)
it follows that

T T
P wt+ 0< 21,
q q q
1 T
= ag+ —, 1 <111:::a1-+»—%
Q/To To To
1 T
= qyg+ ——, 0< —<1,
a; +11/7o To
1 To T
= agp+ R 1< —=a9s+ —
1 T1 ™
a; +
To/Tl
Continuing this way, we arrive at
P 1
g N 1
a
! 1
GQ—F" + 1
an—1'+ -
Qp,

The right-hand side of the above expression is called the continued fraction expansion
of the rational number p/q.
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In general, a finite continued fraction is an expression of the form

1
ag + , (2.23)

a; +

ag + -+ 1

Ap—1 + —

Qp,
where each a; is a real number and a; > 0 for ¢ > 1. To make the writing easier, we
also use the abbreviate notation [ag, a1, . . ., a,]. In particular, when each a; is an integer
number, we obtain a simple continued fraction. 1t is worth mentioning that by truncating
a continued fraction [ag,ay,...,a,] at the k—th place with 0 < k& < n, we get another

continued fraction Cy := |ag, ay, ..., a;] called the kth convergent of [ag,ay, ..., a,)].

Evidently, every finite simple continued fraction represents a rational number, and
conversely, we have already seen before that every rational number can be written as
a finite simple continued fraction. The discussion above allows us to identify rational
numbers with finite simple continued fractions, but such an identification is not unique.
For instance, for every integer n, there are exactly two different simple continued fraction
expansions representing n, namely n = [n] and n = [n — 1,1]. Furthermore, a rational
r can be represented by either [ag, ay, ..., a,] with a, > 2, or [ag, a1, ...,a,_1,a, — 1,1].
We next illustrate this situation:

5=0[]=[4,1 and 1/2=1[0,2]=10,1,1].

On the other hand, for a sequence (ay),>0 of real numbers with a; > 0 for ¢ > 1, one
can define the sequences p == (p,)n>—1 and q = (¢n)n>—_1 by

Pn = UpPpn_1 + Pn_2, and Gn = UnQn_1 + Qn_o for all n>1
joint with the initial conditions (p_1,po) = (1, a0) and (¢_1, ) = (0,1).

Keeping the previous notation and using induction, it is possible to show that for
any positive real number (,

o Cpnfl + Pn—2

ag, 1y ..., 0n_1,(] = )
90, a1 ' C] CGn-1+ Gn—2

Moreover, the terms of p and q satisfy the relation

Pr _
qk

C for all k> 0.
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By Induction, we can also deduce that

H [ai 1} _ [pn q"—l} holds for all ~ n > 0.

i1 10 dn  Pn-1

Thus, the convergents can be easily retrieved by matrix multiplication.

We next want to find a representation for irrational numbers using continued frac-
tions, but first we need to introduce some basic properties.

Lemma 2.5. Given a sequence of integer numbers (ay)n>0 with a; > 0 fori > 1, let
C,, = lag,a1,...,a,]. Then the following hold:

(@) prgr_1 — Pr1qe = (=1)FL for all k > 0,
(_1 k+1

(b) Cp — Cr1 = —————forallk >1,
qk—14k

(€) PrQr-2 — Dr—2qr = (—1)%;C forall k> 1,

—1)*
Ve ks

(d) Cp — Cya =
qrx—29k

() r=a1<1, @< @o1+qro andl=q¢ <@ <gp<g<--.

As an immediate consequence of Lemma 2.5 (b), we get that
Co<02<04<"', and "'<C5<03<01.

By Lemma 2.5 (b), we have that Cy; < Cy;qy for i > 0, and so Cy; < Cyj4q for all 4, j (it
is a good exercise for the reader). The last inequality implies that

1
‘02n+1 - CQn’ = ——0,
q2n+192n

where we have taken into account that ¢, —> oo by Lemma 2.5 (e). We are thus deducing
that the even and odd convergents are arbitrarily close. That is,

lim Cy, = lim Cy,11 =« exists,
n—o0 n—00

and
Oy < a0 < Cyjq for all 1,7 > 0. (2.24)
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Observations in the previous paragraph allow us to extend the idea of a simple continued
fraction to an infinite number of terms. For that, let (a,),>¢ be an integer sequence with

a; > 0 for i > 1. We define the real number « := [ag, aj, as, .. .] as
a = lim C, = lim [ag, ..., ay].
n—oo n—oo
In this context, C), is usually called the nth convergent of «, and [ag, ai, az, . ..] a simple

infinite continued fraction.

Using the information given above, one can prove that any infinite simple continued
fraction is an irrational number (see [1, Theorem 1.15(1)]). In addition, Leonhard Euler
(1707-1783) showed that any irrational number can be expressed as an infinite simple
continued fraction. So Euler’s result reads as follows (a proof can be found in [1, Theorem
1.15(3)] or [103, Exercise 8.2.3]).

Lemma 2.6. Let ©x = xzy be a positive irrational number. Define the sequence (a;)i>o
recursively as follows:

a; = |z;], and x4 = for i > 0.

T; — @

Then, x = [ag, a1, as, . ..] is a representation of x as a continued fraction.

In summary we can conclude that there is a one-to-one correspondence between

e all (finite and infinite) continued fractions [ag,aq,as,...] with an integer ay and
positive integers a; for ¢ > 1 (and the last term a, > 1 in the case of finite
continued fractions), and

e real numbers.

2.3.3 The best approximation

Let us recall that our main objective is to find good approximations for an irrational
number through rational numbers. In order to achieve it, we shall show that the conver-
gents of the continued fraction expansion of an irrational number provide the best and
unique good approximation in the sense of inequality (2.20).
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In the sequel of this section, we assume that o = [ag,aq,as,...] is an irrational
number, and C,, is its nth convergent. By (2.24) we know that « lies between two
consecutive convergents, which combined with Lemma 2.5 (b) gives

DPn
o — —

1
. <= for all n > 0. (2.25)

qndn+1 q,

<

So, C,, provides a good approximation to a. Since the sequence of convergents (Cy,)n>0
converges to «, the approximation gets better in each step, i.c.,

Pn
o — —

4n

Pn—1
Gn—1

< |&

holds for all n > 1. (2.26)

On the other hand, in Diophantine approximation is well-known that given a rational
number p/q with ¢ > 0,

lga — p| < |gnx — Dy implies q 2 qnt1- (2.27)

Property (2.27) tells us that C, = p,/q, is the fraction, among all fractions whose
denominator does not exceed ¢,,11, that provides the best approximation to a.. Formally,
implies q> Qnit- (2.28)

Pn
o — —
an

p
a——| <

q

We end this section by giving a famous result of Legendre (1752-1833) which is one
of the main reasons for studying continued fractions. Legendre’s result say that good
approximations of irrational numbers by rational numbers are given by the convergents
of continued fraction, and these are actually uniques in a certain sense (for more details
of Theorem 2.2, and properties (2.25) until (2.28), we refer the reader to [1, Section 1.3]).

Theorem 2.2 (Legendre’s Theorem). Let o = [ag, a1, a2,...] be an irrational number
and let p/q be a rational number in lowest term with ¢ > 0. Whenever p/q satisfies
P 1
a—=| < —,
ql  2¢?

then p/q is a convergent of the continued fraction of «, i.e.,

b_Dn for some n > 0.
q gn

Furthermore,
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2.3.4 Reduction tools

As mentioned before, most of this thesis deals with solving Diophantine problems in-
volving terms of Fibonacci-like sequences. To do this, we first need to get upper bounds
of the involved variables in our Diophantine equations. However, these upper bounds
are frequently very large, so it is required to reduce them to a small size in which the
solutions can be identified by using a computer. A common technique for reducing these
bounds is to apply a variation of a result due to Dujella and Pethé [52] based on the
Baker—Davenport reduction method [12]. In this thesis, we shall use the following version
given by Bravo, Gémez and Luca (see [27, Lemma 1]).

Lemma 2.7. Let 7 be an irrational number, and let A, B, ji be real numbers with A > 0
and B > 1. Assume that M is a positive integer. Let p/q be a convergent of the
continued fraction of T such that ¢ > 6M and put € = ||uq|| — M ||7q||, where ||-|| denotes
the distance from the nearest integer. If € > 0, then there is no solution of the inequality

0<|ur—v+p|l <AB™™

in positive integers u, v and w with uw < M and w > log(Aq/¢€)/log B.

The above lemma cannot be applied when g is an integer linear combination of 1
and 7, since then € < 0. In this case, we use the following nice property of continued
fractions (see [20, Lemma 2.8])

Lemma 2.8. Let p,/q, be the nth convergent of the continued fraction [ag, a4, ...] of the
irrational number . Let M be a positive integer and put ap = max{a; | 0 <i < N+1}
where N € N is such that qy < M < qn41. If v,y € Z with x > 0, then

1
|y — y| > CVEDE: for all x < M.

We finish this section with the following analytical tool, whose proof can be found in
(67, Lemma 7)), and a simple fact concerning the exponential function. We list them as
lemmas for further reference.

Lemma 2.9. If m > 1 is an integer and x and T are real numbers such that

T > (4m*™  and @ <T, then z < 2™T (logx)™.

Lemma 2.10. For any nonzero real number x, we have
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(a) If £ >0, then 0 <z < |e” —1].

(b) If £ <0 and |e* — 1| < 1/2, then |x| < 2]e” — 1].

Proof. The first part of the lemma follows immediately by using the fact that x < e* —1
for all z # 0. Now, if z < 0 and |e® — 1| < 1/2, then we get 1 — e” < 1/2 and so
e =el*l <2, Thus, 0 < |z| < elfl — 1 =ell|e” — 1| < 2™ — 1. O

2.4 Linear forms in logarithms

This section is devoted to showing the connection between the good approximation prob-
lem of irrational numbers and the theory of linear forms in logarithms. For achieving
this, we first present a summary of fundamental facts of algebraic and transcendental
numbers. We next study Baker’s theory emphasizing the importance within the devel-
opment of the theory of exponential Diophantine equations. We conclude by presenting
a result due to Matveev [96] that gives us a general lower bound for linear forms in
logarithms. This section is based on [125, Chapter 1, Sections 2] and [103].

2.4.1 Algebraic and transcendental numbers

We start by recalling that if K is a field containing another field F', then K is said to
be an extension field (or simply an extension) of F, denoted by K/F. It is clear that
the multiplication defined in K makes K into a vector space over F. The dimension of
the extension is called the degree of the extension, and it is abbreviated by [K : F|. The
extension is called finite if [K : ] < oo, and is said to be infinite otherwise.

For the aim of this thesis, we are particularly interested in algebraic number fields.
From now on, a field K C C is called an algebraic number field if it is a finite extension
field of Q. Additionally, a complex number « is said to be an algebraic number over QQ
(or simply an algebraic number) if there exists a nonzero polynomial f over Q such that
f(a) = 0. Whereas a transcendental number is a complex number that is not algebraic.
In particular, if « is the root of a monic polynomial with coefficients in Z, we say that
a is an algebraic integer. Notice that all algebraic integers are algebraic numbers, but
the converse is false. It is also possible to prove that the intersection between rational
numbers and algebraic integers coincides with integer numbers.
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The minimal polynomial f(x) of an algebraic number « is the monic polynomial
with rational coefficients of smallest degree such that f(a) = 0, and the degree of f(z)
is usually called the degree of a. Furthermore, if g(x) is another polynomial over @ such
that g(a) = 0, then f(z) divides g(x). To simplify the exposition, let us write ming(«)
and deg(a) to indicate the minimal polynomial and the degree of «, respectively. Finally,
algebraic numbers over Q with same minimal polynomial are named conjugates over Q.

As has already been mentioned, the problem of how well a real number « can be ap-
proximated by rational numbers was solved by means of continued fractions (see Subsec-
tion 2.3.3). Now, the main problem is to find sharp lower bounds for the approximations
in terms of the denominators used in the estimation. An important contribution to the
subject was made by Liouville in 1853, since he showed that algebraic numbers cannot
be too well approximated by rationals. For details see [103, Theorem 3.2.1].

Theorem 2.3 (Liouville’s theorem). Let a be a real algebraic number of degree d > 2.
Then there exists a constant c¢(a) > 0, depending only on «, such that

c(a)

qd

b
q

>

for all rational number p/q.

Theorem 2.3 is transcendental for mathematical culture, since this allowed to elabo-
rate the first explicit transcendental numbers. Years later, in 1873, Hermite proved that
e is transcendental, and Ferdinand von Lindemann in 1882 proved the transcendence of
7. Moreover, Hermite showed that e* is transcendental when a is algebraic and nonzero.
This property has been generalized to the nowadays called Lindemann-Weierstrass the-
orem.

Theorem 2.4 (Lindemann-Weierstrass theorem). Let (i, ..., 05, be nonzero algebraic
numbers and oo, . .., «a, be distinct algebraic numbers. Then

Bleul +--+ ﬂnean 7é 0.

In particular, from the Lindemann-Weierstrass theorem we obtain that if « is a
nonzero algebraic integer, then e, sin «, and cos a are transcendental numbers.

2.4.2 Baker’s theory

In 1900, at the International Congress of Mathematicians in Paris, Hilbert (1862-1943)
presented ten of twenty—three unsolved problems which were influential for the 20th—
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century mathematics. According to Hilbert, it would need new machinery and methods
for solving these problems.

The seventh problem, entitled “irrationality and transcendence of certain numbers”,
consisted into proving the transcendence of the number o for an algebraic a@ # 0,1
and an irrational algebraic . Hilbert expected that the seventh problem would be
solved later than Riemann hypothesis, and Fermat’s last theorem. However, this problem

was solved independently by Gelfond (1906-1968), and Schneider (1911-1988) in 1935.

Before presenting their result, we recall that the (real or complex) numbers aq, ..., a,
are called linearly dependent over Q (equivalently over Z) if there are rational numbers
(integer numbers) ry, ..., 7,, not all zero, such that

rioq + roqig + - - + rpa, = 0.

Moreover, if ay,...,a, are not linearly dependent over Q (over Z), they are linearly
independent over Q (over Z).

We next formulate the Gelfond—Schneider theorem.

Theorem 2.5. If ay,ay # 0 are algebraic numbers such that log ay,log as are linearly
independent over Q, then log ay and log as are linearly independent over the set of alge-
braic numbers, that is

Bilogan + By log an # 0,

for all algebraic numbers [y, Bs.

It is widely known that the Gelfond—Schneider theorem is equivalent to the following
result.

Theorem 2.6. (Seventh Hilbert’s problem) If o and f are algebraic numbers with o #
0,1 and 8 ¢ Q, then o is transcendental.

On the other hand, a linear form in logarithms of algebraic numbers is an expression
of the form

Bo + Bilog oy + Balog s + - - - + 3, log avy,

where each «; and ; are complex algebraic numbers, and log denotes any determination
of the logarithm. Note that linear forms in logarithms appear explicitly in Theorem 2.5,
and implicitly in Theorem 2.4. In the sequel, we are interested in the degenerate case,
which happens when 5y = 0 and ; € Z for ¢« > 1. We write usually §; = b; for ¢ > 1.

The most prolific research on linear forms in logarithms is due to Baker (1939-2018)
(see [95]). He gave an effective lower bound on the absolute value of a nonzero linear
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form in logarithms of algebraic numbers (for more information, see [8, 9, 10, 11]). This
work has allowed to efficiently solve equations whose unknowns are in the exponents.
These type of equations are known as exponential Diophantine equations. Baker also
extended in 1966 the Gelfond-Schneider theorem to arbitrarily many logarithms, which
turned into a new powerful analytic tool for solving several open problems in number
theory. For his contribution in transcendental number theory and Diophantine geometry,
Baker was awarded the Fields Medal in 1970. Finally, for this thesis, it is important to
highlight the following theorem since it was the start point for a new branch in number
theory called Baker’s theory. A proof can be found for instance in [8].

Theorem 2.7 (Baker’s theorem). If ay,...,«, # 0,1 are algebraic numbers such that
log aq,log as, . .., log oy, and 27i are linearly independent over Q, then

Bo+ Brlogan + Belogag + -+ + By logay, # 0
for any algebraic numbers By, b1, ..., Bn that are not all zero.
We finally comment that Baker’s works have allowed to solve a wide variety of Dio-
phantine equations of exponential type. Tijdeman [127, Section 5] and the references
therein describes Baker’s method in a nutshell, and summaries the main equations worked

by him and other authors. We next give some Diophantine equations worked at the mo-
ment with Baker’s techniques.

e f(z) = m, where f € Z|x,y] is an irreducible homogeneous polynomial of degree
n > 3 and m is a nonzero integer,
e y2 = 22 + m, where m is a nonzero integer,

o f(z) =y? where f(z) € Z[z] has at least three simple zeros,

o f(x)=1y™, where f(x) € Z[z] has at least two simple zeros and m > 3,

18 42k 4 ... 4 2% = ¢" for a given integer k and unknowns n, z, ¥,

Hle(:r + id) = y" for a given d, k and unknowns n, z, y,
e (2™ —1)/(x —1)=y" in integers x,y, m,n subject to some restriction,

e u, =y, where (u,),>¢ 1s a binary recurrence sequence and m, n,y are unknowns.
n ) n)n>0 y 10y
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2.4.3 Matveev’s theorem

We begin by underscoring that Theorem 2.7 tells us that any linear form in logarithms

Bo + Bilog oy + Balogay + - - - + 3, log avy,

where cach «; and §; arc nonzero algebraic numbers, vanishes only in trivial cases.
Nevertheless, for Diophantine applications, it is not enough to know when a linear form
is nonzero. Actually, we need strong enough lower bounds for the absolute value of
them. In this direction, Baker in [8] provides an interesting estimation when fy = 0 and
b1, ..., B, are rational integers, which we present below.

Theorem 2.8. Let ay,...,q, # 0,1 be algebraic numbers, and let by, ..., b, be rational
integers such that
by logay + by log g + - - - + b, log oy, #£ 0.

Then,

by log ay + bylogay + -+ - + by log | > (eB)™C,
where B = max{|by|,...,|b,|}, and C is an effectively computable constant?® depending
only onn and o, ..., Q.

Theorem 2.8 yields the following corollary which has a more convenient presentation
for applications.

Corollary 2.2. Let ay,...,a, # 0,1 be algebraic numbers, and let by, ..., b, be rational
integers such that
ol oalh —1 40,

Then,
afaf - --abr — 1] > (B) 7
where B := max{|bi|,...,|b,|}, and C" is an effectively computable constant depending
only onn and aq, ..., .
In the case that ay, ..., q, are rational numbers, Matveev [96] showed that the con-

stant C' in Corollary 2.2 is equal to

1 n
3¢ 3073 . pto H max{1,log H(a;)},

2The statement “C' is an effectively computable constant” means that by going through the proof
one can compute an explicit value of C.
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where the height H of a rational number o« = p/q with p,q € Z and gcd(p,q) = 1 is
defined by H(a) = max{|p|, |¢|}.

In order to prove our main results, we need to use a Baker type lower bound for
a nonzero linear form in logarithms of algebraic numbers. Such a bound was given by
Matveev in [96] and plays an important role in this thesis. Before presenting such a
theorem, we recall some basic notions from algebraic number theory.

Let 1 be an algebraic number of degree d over Q with minimal primitive polynomial

over the integers
d

o ][~ 1) € Zlal,

i=1
where the leading coefficient ag is positive and the n’s are the conjugates of 1. The
logarithmic height of 1 is given by

d
1 ,
h(n) = 7 (logao + E log max{|n?|, 1}) .

i=1
As a first illustration of the logarithmic height function, if n = p/q is a rational number
with ged(p, ¢) = 1 and g > 0, then it is not difficult to check that h(n) = log max{|p|, ¢}
Now, let 7 = a be the dominant root of the Fibonacci-like sequence G®) and let us
consider the function f; defined by (2.12). Knowing that the minimal primitive poly-
nomial of v is Wy (z), that Q(a) coincides with Q(f(a)) and that |f(a)| < 1 for all
1=1,...,k and k > 2, one can prove that

h(a) = (loga)/k < (log2)/k and h(fr(a)) <2logk forall k> 2. (2.29)
See [27] for further details of the proof of (2.29).

The following are some of the properties [132, Property 3.3| of the logarithmic height
function A(-), which will be used in the remaining of this document without reference.
For 7, v algebraic numbers and s € Z, we have

h(inty) < h(n)+h(y)+log2,  hiny™) < h(n) + h(v),
h(n) = h(n®),  h(’)=|slh(n) (s €Z).

Our main tool is the following lower bound for a nonzero linear form in logarithms of
algebraic numbers due to Matveev [96].

Theorem 2.9 (Matveev’s theorem). Let ny, ..., n be positive real algebraic numbers in a
real algebraic number field K of degree D, and let by, ..., b; be rational integers. Assume
that

A=t — 10,
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Then
|A| > exp (—1.4 x 30" x t*° x D*(1+1og D)(1+1log B)A; - -+ A;) ,
where A1, ..., Ay and B are real numbers such that
B > max{|by], ..., b}
and

A; > max{Dh(n;),|logn;|,0.16} for i=1,...t

To conclude this section, we give an important estimate that will be used in the
following chapters in several applications of Matveev’s theorem.

Lemma 2.11. Let k > 2 and s # 0 be integers and suppose that |s| < 10° for some

integer € > 1. Then
h (9fi(a)s™) < elog 10 + 2log k.

Furthermore, if e = 1, then
h (9fi(a)s™) < 6logk.



Chapter

On a generalization of the Pell sequence

The Pell sequence (P,),>0 is the second order linear recurrence P, = 2P, 1 + P,_ with
initial conditions Py = 0 and P, = 1. In this chapter, we investigate a generalization
of the Pell sequence called the k—generalized Pell sequence which is generated by a
recurrence relation of a higher order. We present recurrence relations, the generalized
Binet formula and different arithmetic properties for the above family of sequences.
Some interesting identities involving the Fibonacci and generalized Pell numbers are
also deduced.

3.1 Introduction

The Fibonacci sequence (F,),>o is one of the most known and studied sequences in
the history of mathematics. Nowadays, there is a wide bibliography dealing with its
properties and connections with other areas of knowledge (see e.g. [64, 87, 13]). All this
academic effort has led mathematicians to generalize the Fibonacci sequence in many
ways; some of them preserve the initial conditions and others preserve the recurrence
relation (see [41, 73, 80, 84, 104, 119, 134]).

Among the many generalizations of the Fibonacci sequence, we point out that F*)
is one of the most recently studied sequences. According to Kunth [85], this sequence
was studied for the first time by Schlegel [El Progreso Matematico 4 (1894), 173-174].
However, Kessler and Schiff [79] state that the paper of Miles [102] seems to be the

31
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oldest well-known formal paper on the subject. Dresden and Du [51] recently found a
Binet-style formula for F*) that can be used to produce the k—generalized Fibonacci
numbers and interesting arithmetic properties. For more details about F*) we refer the
interested reader to [4, 66, 70] and the references therein.

The Pell (P,),>0 and the Pell-Lucas (Q,).>0 sequences are infinite sequences of
integers known since ancient times and named in honor of mathematicians Jhon Pell
(1611-1685) and Frangois Edouard Anatole Lucas (1842-1891). These numbers may be
calculated by means of recurrence relations similar to that for the Fibonacci numbers.
The first one is defined by the recurrence

P,=2P,_1+ P,_s for all n > 2,
with Py = 0 and P; = 1 while the second one satisfies
Qn = QQn—l + Qn—Z for all n =2,

with Qo = 2 and @)y = 2. The last sequence coincides with entry A002203 in the OEIS
[123].

Within the great variety of properties of these sequences, we emphasize that (P,, @)
constitute the solutions of Pell’s equation z? — 2y* = (—1)" (see [88, Section 2.5]). Fur-
thermore, like Fibonacci and Lucas numbers, Pell and Pell-Lucas sequences are math-
ematical twins and for this reason, they share similar properties. For example, both
sequences grow exponentially and proportionally to powers of the silver ratio 1 + /2.
For further information about Pell and Pell-Lucas numbers, see [15, 82, 87, 88].

In this chapter we study, for an integer £ > 2, a generalization of the Pell se-
quence which is defined by a recurrence relation of higher order. Here, we consider the
k—generalized Pell sequence or, for simplicity, the k— Pell sequence P*) = (P,(Lk))nz,(k,m
given by the recurrence

P — 2P7§11)1 + P,(Lli)g +- 4 P:i)k for all n > 2, (3.1)
with the initial conditions PE@{_Q) = Pg&_l) =...= Po(k) =0 and Pl(k) = 1. We should

mention that this generalization of the Pell sequence is part of a family of sequences
proposed by Kilig and Tagci [83]. Other generalizations are also known, see e.g. [80, 86,
136, 129].

We shall refer to P as the nth k— Pell number. Note that each new choice of k
produces a distinct sequence. For example, when £ = 2 we obtain the usual Pell sequence
(Pn)n>0 while k = 3 leads to the Tripell sequence (see [123, A077939]). In Table 3.1 we
present the first nonzero values of the family of sequences P®*).
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Table 3.1: First nonzero k—Pell numbers

k | Name | First nonzero terms

2 Pell 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, ...

3 | Tripell | 1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, ...
4 | 4—Pell | 1, 2, 5, 13, 34, 88, 228, 591, 1532, 3971, 10293, 26680, 69156, ...
5| 5—Pell | 1, 2, 5, 13, 34, 89, 232, 605, 1578, 4116, 10736, 28003, 73041, ...
6 | 6—Pell | 1,2, 5, 13, 34, 89, 233, 609, 1592, 4162, 10881, 28447, 74371, ...

Y U

Tripell numbers and generalized Pell numbers have been studied by some authors in
21, 22] and [30, 31, 48, 81, 60, 83, 114], respectively. In 2013, Kili¢ [81] gave some
relations involving the usual Fibonacci and k—Pell numbers showing that some k—Pell
numbers can be expressed as the summation of the usual Fibonacci numbers. More
precisely, if £+ 2 <n < 2k + 2, then

n—k—1
PTE]“) — F2n71 — Z F2j71F2(n—k—j)- (32)

J=1

One the facts that Kilig [81] used to prove identity (3.2) was that the first £+ 1 nonzero
terms in P%*) are Fibonacci numbers with odd index, namely

P® = Fy, 1 forall 1<n<k+1, (3.3)

while the next term is P,g% = Fypis — F1Fy. The authors of [83] also defined P%) in

matrix representation and showed that the sums of the k—generalized Pell numbers could
be derived directly using this representation.

Throughout this chapter, we investigate the k—generalized Pell sequences and present
recurrence relations, a simplified Binet—style formula and different arithmetic properties
for P%*). Some interesting identities involving the Fibonacci and generalized Pell numbers
are also deduced and some well-known properties of P are generalized to the sequence
P®) We also exhibit a good approximation to the nth k—Pell number and show the
exponential growth of P*),

3.2 Preliminary results

First of all, we denote the characteristic polynomial of the k—Pell sequence P*) by

Op(r) =ab — 2281 — b2 - g — 1
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In 2013, Wu and Zang [135] showed that if a1, as, ..., a,, are positive integers satisfying
a; > as > -+ > ap,, then for the polynomial

p(r) = 2™ — a1 2™ — @™ — - = 1T — G,

we have:

(1) The polynomial p(z) has exactly one positive real zero o with a; < o < a3 + 1;

(#7) The others m — 1 zeros of p(x) lie within the unit circle in the complex plane.

From the above we deduce that ®(z) has just one real zero located between 2 and 3.
Throughout this document, v := (k) denotes that single zero which is a Pisot number
of degree k since the other zeros of ®(z) are strictly inside the unit circle. This important
property of v leads us to call it the dominant root of P*). Since ~ is a Pisot number of
minimal polynomial ®;(x), it follows that this polynomial is irreducible over Q[z]. To
simplify notation, we shall omit the dependence on k of v whenever no confusion may
arise.

We now consider, for each integer k£ > 2, the polynomial function hy(z) defined by

() = (z — 1)y (a)
=" 3% + 2 4 1 (3.4)

Since P%) is a linear recurrence of order k with characteristic polynomial ®(z) and
@y () divides hy(z), we deduce that P® is also a linear recurrence of order k + 1 with
characteristic polynomial hy(x). Hence, we obtain our first preliminary result which is
a “shift formula” that will be used in what follows.

Theorem 3.1. Let k > 2 be integer. Then

p7(l’f) — 3P£k_)1 — Pé’?Q — qui)kil for all n > 3.

As an application of Theorem 3.1, we give alternative proofs of identities (3.3) and (3.2),
which have already been proved by Kili¢ in [81] as mentioned before.

Let us begin by proving (3.3). We first observe that Pl(k) =1=F; and PQ(k) =2=1I};
therefore (3.3) is valid for n = 1,2. Let 3 < s < k be an integer and suppose that
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Pg(k) = Fy 4 for all 3 < ¢ < s. Hence, to complete the proof of (3.3) by mathematical

induction, we have to show that Ps(i)l = Foeyy.

Since s + 1 > 4, by Theorem 3.1, we have
P =3pk) _ p® _ p® (3.5)

s+1 s s— s—

By the induction hypothesis PP = Fy 1 and P(k)1 = I3, 3, and taking into account

S—

that Ps(f)k = 0 because 3 —k < s—k <0, we get
Ps(i)l = 3Fy-1 — Fas-3. (3.6)

We now observe that the recurrence relation of the Fibonacci sequence implies the re-

cursive formula
3F, — Fy o= F, 9, (3.7)

which holds for all n > 2. Consequently, it follows from (3.6) and (3.7) that

k
Ps(—ﬁ—)l = F2S+17

as we wanted.

We next prove (3.2). It follows from Theorem 3.1, (3.3) and (3.7) that

Y e O

and
Py, =3P%, — P, — PV = Fys — (FiFy + F3F).
Hence, (3.2) is valid for n = k +2 and n = k + 3. Now, let k+4 < s < 2k + 1 be an
integer and suppose that
—k—1
P = Fyy— Y Fyj1Fyyj holdsforall k+4<¢<s.
j=1
To complete the proof of (3.2) by mathematical induction, we have to prove that
s—k
P = o1 — Y Foj1 Faamiji). (3.8)
j=1
Indeed, since s + 1 > 7 we have by Theorem 3.1 that (3.5) holds again. Also, by (3.3)

we get that Ps(ﬁ)k = Fy(s_k)—1 because s — k € [4,k + 1]. From the above and using the

facts that
s—k—1

ps(k) =Fy 1 — Z Faj 1Fos—k—j)

Jj=1
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and
s—k—2
k
PS(_)1 = Foe_ 3 — Z Foj 1 Fo(s—k—j—1),
j=1
we obtain
s—k—2
k
P = BFs1 = Foys) = > Fay 1 (3Fa(s kg — Faokjo1) = 3Faek1)o1 = Faey1
7j=1

Consequently, from (3.7) and the last equality we get (3.8).

Another application of Theorem 3.1 will enable us to derive an extended version of
(3.2) in the following form:
Theorem 3.2. Let k > 2 be an integer. Then

n—k—1

fﬂk)__}gn L — j{: }%]}ﬁk

n—k—j>’

foralln >k + 2.

Note that Theorem 3.2 immediately shows that the nth k—Pell number does not
exceed the Fibonacci number with index 2n — 1, i.e.,

P®) < Fy. ¢ holds forall k>2 and n>k+2.

Proof. We shall prove Theorem 3.2 by induction on n. According to (3.2), we have
Pk(Jr)Q Fopys — 1= Fopys — Fy P} g

and
k k
PY, = Fops — 5 = Fopys — B — £ P,

Then the result holds for n = k+2 and n = £+ 3. Let s > k£ + 4 be an integer and
suppose that

l—k—1
P =Fy— Y PP, holdsforall k+4<(<s.

We have to prove that

Ps+1 Fospr — Z F2J s+1 k—j- (3~9)
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Indeed, by Theorem 3.1 and the induction hypothesis,

s—k—1 s—k—2

k k k k
P =3F 1 =3y FyPY  —Fus+ » PP - P
Jj=1 j=1
leading to
L s—k—1 . s—k—2 ) )
P\ = 3Fy 1 — Fyy_3—3 > F2jps(—)k—j+ > szps(—)l—k —3RPY_ — P
=2 j=1

From the above we have, after some elementary algebra, that

s—k—2

P = Pon - Z (38Fuja — Foy) PY)_ G+1) 3P, — P
j=1
and therefore
s—k
k . . i
Py = P = 3 PPl iy~ BiP, — FoP
j=3

of which it follows (3.9) as we wanted.

3.3 Main results

This section is devoted to stating and proving the results concerned with a simplified
generalized Binet-style formula for P*) and its exponential growth in which we prove
that the k—Pell numbers grow at an exponential rate equal to the dominant root ~,
extending a result known for the usual Pell numbers. We also show that a good approx-
imation to the nth k—Pell number is just the term of the Binet—style formula involving

the dominant root.

We summarize the main results in the following theorem.

Theorem 3.3. Let k > 2 be an integer. Then
(a) For allm > 2 — k, we have

k
PM = gy and |PF = gi(v)y"] < 1/2,
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where v := 1,72, - . ., Yk are the roots of characteristic polynomial ®x(x) and

z—1
(k+1)22—3kz+k—1

gk (z) = (3.10)

(b) For alln > 1, we have
A2 < pR) < AL (3.11)

In order to prove Theorem 3.3, we establish some lemmas which give us interesting
properties of the dominant root of P*), and we believe are of independent interest.

3.3.1 Generalized Binet—Style formula

In 1982, Kalman [78] proved that if (a,),>0 is a linear recurrence sequence of order k > 2
with initial conditions (ag, ay,...,ax_1) = (0,0,...,0,1) and recurrence

Opak = Ch_10nig—1 + -+ + C1apni1 + coa, forall n >0,

where cg, ¢, ..., c,_1 are integer constants, then

— P'(a)’
where P(t) = t* — ¢, _1t*71 — ... — ¢t — ¢p is the characteristic polynomial of (ay,)n>0
and g, g, ..., q, are the roots of P(t).

If we put a, = P,Eli)(k_Q) for all n > 0, then we have that P(t) = ®(t) and
hi(vi) = (i — D@ () forall 1<i<k,

where hy(z) is given by (3.4). So, by using the Kalman’s result above we obtain

b 1
g (k+1)? —Bk’yﬁ—k:—l

This proves the first part Theorem 3.3 (a). The above formula is a new way of repre-
senting k—Pell numbers, but hardly a new result. For instance, Kili¢ and Tasgci [83] gave
another way to do this. But, our formula is perhaps slightly easier to understand, and
it also allows us to do some analysis as we will see later.
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3.3.2 Properties of the dominant root

First of all, if we consider the function gp(x) defined in (3.10) as a function of a real
variable, then it is not difficult to see that gi(z) has a vertical asymptote in

3k Vk2 44
o 2(k+1)

c(k) :
and is positive and continuous in (¢(k), 4+00). Further,

k(22 =22 +2) 4 (x — 1)
(k(z2 =3z + 1)+ 22 —1)°

gr(@) = —

is negative in (c(k), +00), so gx(x) is decreasing in (c(k), +0o0). Put

3k+Vhk2+4 1
= + - + — forall k> 2.
2(k+1) k

Qg

We next show that the sequence (ay)g>2 is increasing and bounded. To do this, let f be
the real function defined by

_eaVhe?ed

/(@) 2(x+1) T
It is then a simple matter to show that
dr —4 3 1
fll)= + — =0

2(r +1)2/622 +4  2(x+1)2 2?2

implies that 4(z + 1)?(5z* — 1023 + 322 — 8z — 4) = 0. Thus, f has a critical point at
xro = 2.14813 ... and is increasing in [zg,00). This, of course, tells us that (ax)r>2 is an
increasing sequence. In addition, note that

3 1 10k + 1 3 1 3 V5
k 2

G\ T R k1 2kt D)

which implies that (ay)g>2 is bounded. Additionally,

lim a = ¢,
k—o0

where ¢ denotes the golden section, as usual. Consequently, ax < ©? for all & > 2 and
so c(k) < * —1/k for all k > 2.
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Finally, taking into account that k < ©*=2 for all k¥ > 6, it is easy to see that
©? —1/k < p*(1 — ¢7F) for all k > 6.
We summarize what we have proved so far in the following lemma.

Lemma 3.1. Let k > 2 be an integer. Then

(a) The function gp(x) is positive, decreasing and continuous in the interval (c(k),o0)
and gr(x) has a vertical asymptote in c(k).

(b) If k > 2, then c(k) < ¢* — 1/k. In addition, if k > 6, then the inequalities

ck) <p* =1k <p*(1—p")
hold.

Recall that each choice of k produces a distinct k—generalized Pell sequence which in
turn has an associated dominant root y(k). For the convenience of the reader, let us
denote by (v(k))x>2 the sequence of the dominant roots of the k—Pell family of sequences.

Next, we prove that this dominant root is strictly increasing as k increases. We also
prove that this dominant root approaches ¢? as k approaches infinity, and it is larger
than ©?(1 — ¢=%). The rest of the statements of the following lemma are some technical
results which will be used later.

Lemma 3.2. Let k, ¢ > 2 be integers. Then

(a) If k > £, then ~(k) > ().

(b) @*(1—9™") <y(k) < ¢
(¢) If k > 6, then
c(k) < ©* —1/k < o*(1 — o7%) < y(k) < 2.
(d) gu(¢®) =1/(0 +2).
(e) 0.276 < gr(v(k)) < 0.5 and |gr(ei)| <1 for 2 <i <k.

(f) gr() is not an algebraic integer for all k > 2.

Before proving this, we note, as an immediate consequence of the preceding lemma,

that
lim (k) = ¢°.

k—o0
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Proof. To prove (a) we proceed by contradiction by assuming that v(k) < ~(¢); hence
1/7(0)" < 1/v(k)" holds for all 7 > 1. Taking into account that ®,(v(¢)) = 0, one has
that

(V(0)" =2(v(0)" + (4(0) 2+ (0 + 11,

and, of course, the same conclusion remains valid for (k). From this, we get that

1= 2t o o]
) ()P () (v(0))*
2 1 1 1
< - - ot =1

(k) (v(R)? T (v(R))? (y(R)F
which is a contradiction.
We next prove (b). First, we rewrite the polynomial function (3.4) as
hi(z) = 2" (2 =3z + 1) + 1. (3.12)

Notice that ¢? is a root of #? — 3z + 1 because ¢ is a root of x> — x — 1. It then follows
from (3.12) that hi(p?) = 1 and therefore ®,(¢?) = 1/(¢*> — 1) = 1/¢ > 0. Since
®.(2) = 1 — 21 < 0 and recalling that ®(x) has just one positive real zero we find
that 2 < v < 2

On the other hand, by using once more the fact that ¢? is a root of 2> — 3z + 1 and
evaluating the polynomial function (3.12) at 7, we get the relations

' =30 +1=0 and > —3y+1=—1/7*"
Subtracting the above equations and rearranging some terms, one obtains
(* =N +7v=3)=1/7"""

From this and using the facts that ¢* + v — 3 > 1/¢ and ¢ < 7, which are easily seen,
we get that ©? — v < ¢?/¢* and so ¢?*(1 — ¢=%) < «. This finishes the proof of (b).

The proof of (¢) is a direct consequence of (b) and Lemma 3.1 (b). To prove (c¢), we
observe from (3.10) that

©?—1 2 1
k4+1)p*—=3k(p+1)+k—1 3p+1 ¢+2

Gk (902) = (

where we used the facts that ¢ and ©? are roots of 22 —x—1 and 2% — 3z + 1, respectively.
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We now prove (e). Using (¢), (d) and the fact that gi(x) is decreasing in the interval
(c(k),00), we have

1
m = gr(¢?) < gr(v(k)) < gi (802 - 1/k) .
But
1
2 902_E_1
ge(e™ —1/k) = 5
(k+1)(p2—12)" =3k (2 —1)+k—1
1
I
2
Pt
@
<
2¢ 1+1+2
Y TR R
< 0.5,

where the last inequality holds for all £ > 11. Hence, 0.276 < gi(v(k)) < 0.5 holds for all
k > 11. Finally, computationally we get that which shows that 0.276 < gx(v(k)) < 0.5
also holds for all k£ > 2 (see, Table 3.2).

For the second part of (e), we evaluate the polynomial function (3.12) at ; and
rearranging some terms of the resulting expression, we get the relation

W=+ l=—1/y"",

and so L
k(i =3+ 1)+ —1=7—-1—- 5.
Vi
Hence,
2 2 k 2 k 2
MO =3+ )+~ = | om — 00— | 2 g — e — L > R =2

where we used the fact that |v;| < 1 because 2 <1i < k. Consequently,

i — 1 2

< <1 forall k>4
3yt 1 k—2- M=

The cases k = 2 and 3 can be checked computationally.
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For the proof of (f), assume that gi(7y) is an algebraic integer. Then its norm (from
Q(a) to Q) is an integer. Applying the norm and taking absolute values, we obtain

1 < | Noy/(gx(7))] = gr(7) H |k ()]

However, gi(v) < 0.5 and |gr(:)| < 2/(k—2) < 1fori = 2,...,k and all £ > 4,
contradicting the above inequality. The case k = 2,3 are clear. This finishes the proof
of the lemma. O

Table 3.2: First values of gi(v(k))

k]2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
gr(v(k)) [ 0.35... [ 0.30... | 0.29... | 0.28... | 0.27... [ 0.27... | 0.27... | 0.27... | 0.27...

3.3.3 Sequence of errors

For an fixed integer k£ > 2 and n > 2—k, define E,Sk) to be the error of the approximation
of the nth k—Pell number with the dominant term of the Binet-style formula of P®*)
given in Theorem 3.3 (a), i.e.,

EY = P® — gu(y)7", (3.13)
for v the dominant root of ®(z) and gx(z) defined as in (3.10).

Given a polynomial f, it is well known that the set of all possible linear recurrence
sequences of real numbers having the characteristic equation f(z) = 0 is a vector space
over the real numbers. Since P*) and (7" )n>2 satisfy the characteristic equation ®(x) =

0, it follows from (3.13) that the sequence (Ey(Lk))nZQ_k satisfies the same recurrence
relation as the £k—Pell sequence. We record this as follows.

Lemma 3.3. Let k > 2 be an integer. Then
E®) — 2Eff’jl + ET(f_)Q +-+ Eg?k forall n > 2.

Furthermore, if n > 3, then

E?Sk) = 3E17(Lk—)1 - E7(Lk—)2 - nkf)kfl'
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The following and last result of this section shows that the error of the approxi-
mation defined in (3.13) is eventually zero, which yields that gx(v)y™ provides a good
approximation of P® for every sufficiently large n.

Lemma 3.4. For an fixed integer k > 2 we have

lim E%®) = 0.

n—oo

Proof. Using the fact that lim,_,. |y;|* = 0 for all 2 < j < k and taking into account

that
Z k()"

7=2

=

we deduce that
lim |[E®| = 0.

n—oo

This proves the lemma. O

To conclude this subsection, we prove the second part of Theorem 3.3 (a). Indeed,
with the notation above, we have to prove that

IEW| <1/2 forall k>2 and n>2—k.

In order to do this, we proof three claims.

Claim 1: |E,(1k)|<1/2 forall 2—k<n<0.

Proof. Because the initial conditions of P*®), we have that P}L’“) =0forall2—k <n <0,
so B = —gr(y)y" for all 2 — k < n < 0. For the case n = 0, we have, by Lemma 3.2
(e), that |Eék)| =gr(y) <05 If2—F%k <n < —1, then v" < y~! < 1 and therefore
ge(V)Y" < ge(y) < 1/2 for all k > 2. O

Claim 2: |E"| < 1/2.

Proof. First, note that E{k) = Pl(k)—gk(’y)’y = 1—gx(7)y. By Lemma 3.2 (e) we have that
0.276v < g (7) vy < 0.57. However, 0.66 < 0.276v(2) < 0.276y and 0.5y < 0.5¢% < 1.31,
and so 0.66 < gx(y)y < 1.31. Thus, —0.31 < 1 — gx(y)y < 0.34 which implies that

IEX| =1 = gu(y)| < 1/2 for all k& > 2. O
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Claim 3: |E |<1/2 for all n > 2.

Proof. Suppose for the sake of contradiction that |E(k)| > 1/2 for some integer n > 2,
and let no be the smallest positive integer such that |E(k)| > 1/2. Since |E,(,]Z)_1| <1/2

and |En0 ol < 1/2 we get ]E(k + E® | < 1. According to Lemma 3.3

no—k
k)
E?’Lo+1 - 3E7L];) (Eng 1 Er(m k)
and so
EW. | > 3ED - 1BY , + EP).
Hence
k)
B — [ED)| > 2 EW| - |BE, + B | >0
giving
k)
B | > [ED)].

no— pal < 1/2 < |E7(z’f, | < |E 0+1’ and therefore
|Er(f§) E(k k1l <2|E 0+1| By using this and Lemma 3.3, we obtain

Since ng — k + 1 < ng we infer that |E (k)

1EX ) > 31EX, | - |E® + B | > 31BW, | —2|EX, ).

Hence, |En0+2\ > |E 0+1|

(k)

Now suppose that |Epy| < |En0+1| < e < |E,(L];)+%1| for some integer ¢ > 4. We

distinguish two cases according to whether ng +¢—k —1 <mngor ng <ng+1—k — 1.
First, if ng +i — k — 1 < ng, then we get

| E"

k) (k
n0+z k— 1|<1/2§|E,,(£)‘<|E( +1|< |E )

no+i—1

If ng <mg+i—k—1<ng+i—1, then we obtain that |Eno—|—z w1l < \EHIZ)JFZ 1

In any case, we have that the inequality

k
EX < [BY

always holds. For this reason

k)
|Eno+z 2+E(0+z k— 1| <2|E( o+i— 1|

n
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k k k k
From Lemma 3.3 once more, we have that E,(L )ﬂ = 3E7(L0)+z 1 (E,(LO)JFF2 + ET(LO)Jrkal)
and so

Bl = 3Bl = 1By + Bl
> aggglﬁ__mEggzl
= Byl
Consequently,
Enguil > | Byinal > - > [E | > 1ER)
contradicting Lemma 3.4 which says that the error must eventually go to 0. O

The proof of the second part of Theorem 3.3 (a) is a direct consequence of the above
three claims.

3.3.4 Exponential growth

We begin by mentioning that for the Fibonacci sequence and the Pell sequence, it is

well-known that
"2 < F, <¢"' holds for all n > 1, (3.14)

and
A2 < P, <A™ ! holds for all n > 1. (3.15)

This exhibits an exponential growth of the Fibonacci and Pell numbers. In the above,
the value of v is v(2) = 1 + /2. We finally prove Theorem 3.3 (b) which shows that
the above inequality (3.15) holds for the k—Pell sequence as well. This will be done by
using mathematical induction on n.

To begin with, we show that inequality (3.11) holds for n = 1,2,... k. It is clear
that the result is true for n = 1 because v > 1. For n = 2,..., k we know, by (3.3), that

Pr(Lk) = I5,,_1, so we need to show that
VTR By <A for 2<n <k (3.16)
By Lemma 3.2 (b) and (3.14), we get
P e P e R I

and therefore the left-hand side of the above inequality (3.16) holds. Then, it remains

to prove that
Fop_1 <A™ ' holds for 2<n<k. (3.17)
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Then, by direct inspection one checks that the inequality (3.17) holds true for 2 < k < 6,
so we may assume that k& > 7. Now, by making use of (2.6), we get

" B S02n—1 + SO—(QTL—l) B ()OQ’IL—l . 1
2n—1 — \/g - \/g + ()04n—2 ’

Since @?™ (1 — pF)"~1 < 471 because ¢?(1 — ¢~ *) < v by Lemma 3.2 (b), it suffices

to prove that
2n—1
@ 1 . kv
(HW) <P - T

V5

which is equivalent to

L gu — ML (3.18)

1+ S
99477,—2

Using the fact that the function x — (1 — ¢%)*"! is increasing for x > 7 and taking
into account that 2 <n < k and k£ > 7, we deduce that

1 1
1+ — <1+ —=1.056572...,
S047172 Q06

whereas
5)
£(1 o QO_k)n_l 2
2

V5

5 (1 . (p—k)k—l Z \/_g

(1—¢ M0 =1.11987....
©

This proves inequality (3.18). Thus, we have proved that inequality (3.11) holds for the
first k& nonzero terms of P®*).

Finally, suppose that (3.11) holds for all terms P with m < n — 1 for some n > k.

It then follows from the recurrence relation of P*) that
27n73 + ,ynf4 R ry”*k*Q < Pr(Lk) < 27n72 + ryn73 44 ,Ynfkfl.
So
,yn—k—Q(Q,Yk—l + ,yk‘—Q R 1) S P,Ek) S 771—]&‘—1(27]&‘—1 + Fyk—Q et 1)7

which combined with the fact that v = 241 4- ~%¥=2 1 ... 11 gives the desired result.
Thus, inequality (3.11) holds for all positive integers n. So, the proof of Theorem 3.3 is
now complete.






Chapter

Combinatorial Interpretation of generalized
Pell numbers

In this chapter, we give combinatorial interpretations for the k—generalized Pell sequence
by means of lattice paths and generalized bi—colored compositions. We also derive some
basic relations and identities by using Riordan arrays.

4.1 Introduction

There are a lot of integer sequences which are used in almost every field of modern
sciences. For instance, the Fibonacci sequence F' == (F},),>0 is one of the most famous
and curious numerical sequences in mathematics and has been widely studied in the
literature. The Fibonacci numbers can be interpreted combinatorially as the number of
ways to tile a board of length n and height 1 using only squares (length 1, height 1) and
dominoes (length 2, height 1). They also count the number of binary sequences with no
consecutive zeros, the number of sequences of 1’s and 2’s which sum to a given number,
the number of independent sets of a path graph, among others.

Like the Fibonacci numbers, the k—Fibonacci numbers can also be interpreted com-
binatorially as the number of ways to tile a board of length n and height 1 using now tiles
of length at most k. This combinatorial interpretation has been used to provide simple
and intuitive proofs of several identities involving k—generalized Fibonacci numbers (see

49
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[69]). On the other hand, Bernini [14] provides, via a simple bijection, some interesting
relations involving k—Fibonacci numbers with the set of length n binary strings avoiding
k of consecutive 0’s, the set of length n strings avoiding k + 1 consecutive 0’s, and 1’s
with some more restriction on the first and last letter. In 2005, Egge and Mansour [53]
extended a work of Simion and Schmidt [122] by showing that the set of permutations
avoiding the patterns 12. ..k, 132 and 213 is counted by the (k—1)—Fibonacci numbers.
In later years, Juarna and Vajnovszki [77] generalized Egge and Mansour’s work.

The Pell sequence has also many interesting combinatorial properties similar to those
known for the Fibonacci sequence (see Koshy’s books [87, 88]). For instance, it is possible
to prove that P,.; counts the number of bi—colored compositions of a positive integer
n. By a bi—colored composition of a positive integer n we mean a sequence of positive
integers 0 = (01,09,...,0¢) such that oy + 09 + -+ + 0y = n, 0; € {1,2}, and the
summand 1 can come in one of two different colors. The colors of the summand 1 are
denoted by subscripts 1; and 1. For example, the bi—colored compositions of 3 are

2+1;, 241y, 1L, +2, 1L,+2, 1L1+1;,+1;, 1Lh+1,+1;, 1;+1+1y,
Li+1i+1, 11+10+1 1o+11+1 1Lh+1+1, 1+ 1+ 1o

This combinatorial interpretation can be translated into the language of tilings. As
mentioned before, it is well-known that the Fibonacci number F, ., can be interpreted
as the number of tilings of a board of length n with cells labeled 1 to n from left to right
with only squares and dominoes [13]. If we use white and black squares and non—colored
dominoes we obtain a different combinatorial interpretation for the Pell numbers. For
example, Figure 4.1 shows the different ways to tiling a 3—board.

NN Bl BN EENEE EEEeE B
HEN ([ B HEHE BEEm

Figure 4.1: Different ways to tile 3—boards.

In this chapter, we introduce new combinatorial interpretations for the k—Pell se-
quence by means of lattice paths and generalized bi—colored compositions. We also
use Riordan arrays to derive possibly new combinatorial identities and relations for the
k—Pell numbers.
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4.2 A combinatorial interpretation: lattice paths

Let S be a fixed subset of Z x Z. A lattice path T" of length ¢ with steps in S is a /—tuple
of directed steps of S. That is I' = (s1,...,$¢) where s; € S for 1 <i < (. Let a(n,m)
be the number of lattice paths from the point (0,0) to the point (n,m) with step set
S={H=(1,0),V =(0,1)}. It is clear that

a(n,m) = ("Zm)

Let A be the infinite lower triangular matrix defined by

A= [a(n —m,m)], .~ = K:)]nmzo

The matrix A coincides with the Pascal matrix. Among the many properties of the
Pascal matrix, it is known that the sum of the elements on the rising diagonal is the
Fibonacci sequence, i.e., for n > 1

= n—1i—1
From this combinatorial interpretation, we conclude that F}, counts the number of lattice
paths from (0,0) to (n —2¢ — 1,i) for i =0,1,...,|(n —1)/2]. For example, Figure 4.2
shows the paths for n = 5, i.e., the paths counted by the Fibonacci number F5 = 5.

271 271 27

(0,0) (4,0) (0,0) (0,0) (0,0) (0,0)

(0,2)

Figure 4.2: Lattices paths counted by the Fibonacci number Fj.

The goal of this section is to generalize the above results for the k—Pell numbers. In
particular, we introduce a family of matrices Py, from a family of generalized paths. These
matrices satisfy that the row sum coincides with the £—Pecll numbers; see Corollary 4.2.

Let Py(n,m) denote the set of lattice paths from the point (0,0) to the point (n,m)
with step set

Spi={H =(1,0), V = (0,1), Dy = (1,1), Do = (1,2), ..., D = (1, k)}.
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In Figure 4.3, we show all lattice paths of the set Py(1, 3).

RO

Figure 4.3: Lattices paths in Py(1, 3).

Let pr(n,m) be the number of lattice paths of Py(n,m), i.e., px(n,m) = |Px(n, m)]|.
Since the last step on any path from Py(n,m) is one of Si, we obtain the recurrence
relation:

pr(n,m) =pp(n —1,m) + pe(n,m —1) + pp(n —1,m — 1)
+pk(n—1,m—2)—|—~~+pk(n— l,m—k), (41)

with n > 1,m > k, and the initial conditions py(0,m) = 1 = pg(n,0). For example, for
k = 2 the first few values of the sequence py(n, m) are

m
A
1
1 12
1—9 33
/T
1/6 15 28
1 3 5 7 9
1 1 1 111 o,

Let PP (x) be the ordinary generating function of the sequence (pg(n,m))m>o. That

Prgk) (r) = Z pr(n,i)x

>0

is,

In Theorem 4.1 we find an expression for the generating function p (x).

Theorem 4.1. We have

(At z+at4 b
N (1 —z)ntl




4.2. A combinatorial interpretation: lattice paths 53

Proof. From equation (4.1), we obtain the relation
P(x) = P2y () + 2P (@) + o R0 (0) + 2 BE (@) + -+ 2 PE ().
Thus

1tz +a?+-+af
B 1—x
Since Py = 1/(1 — x), we obtain the desired result.

PP (x)

Corollary 4.1. The number of lattice paths px(n,m) is given by

n n+m-—1
pi(n,m) = Z (fo,&,---,fk)( n >7

Lo+L1++L=n

( n > n!
Niyeeos Ny, ni! - ny,!

is the multinomial coefficient.

where t = 3*_ sty and

Proof. From the multinomial theorem, the generating function
1 n+1i\
(1_x)n+1 _Z( 7 ):13,
i>0
and Theorem 4.1, we have that

(I+z+a®+- +ah)"
(1_x)n+1

=l 2 (zoelnzk)ﬁoﬂzcjl)x

Lo+Ll1+- -+l =n 120

=B 3L ) (éo,el,r.b. . ,ek) <n ; Z) =

Lo+l +L=n 1>0

p(n,m) = [2"] PP (2) = [2"]

n

where t = 2’;:0 sls. By comparing the m—th coefficient we obtain the desired result.

For example,

pin= ¥ ()T

lo+£41+l2=1

B (1,(1),0) @ i (0,1,0> @ " (0,(1),1> @ SR

O
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In Figure 4.3, we show the corresponding lattice paths.

Let Py, = [gr(n,m)],, .50 be the array defined by

(n,m) = pr(m,n—m), ifn>m;
AT = 0, ifn <m.

For example, the first few rows of the array P, are as follows (see sequence A102036 in
[123)).

100 0 0 0 00
1 1.0 0 0 0 00
13 1 0 0 0 00
16 5 1 0 0 00

Py=|1 915 7 1 0 00
1123 28 9 1 0 0
115 60 81 45 11 1 0
1 18 96 189 161 66 13 1

This new family of matrices Pj, are an example of a Riordan array. Remember that
an infinite lower triangular matrix is called a Riordan array [120] if its kth column
satisfies the generating function g(z) (f(x))" for k > 0, where g(x) and f(z) are formal
power series with g(0) # 0, f(0) = 0 and f(0) # 0. The matrix corresponding to
the pair f(z), g(x) is denoted by (g(z), f(x)). If we multiply (g, f) by a column vector
(co,c1,-..)T with the generating function h(z), then the resulting column vector has
generating function g(x)h(f(z)). This property is known as the fundamental theorem of
Riordan arrays or summation property.

The product of two Riordan arrays (g(z), f(x)) and (h(x),l(z)) is defined by
(9(x), f(x)) * (h(z),U(x)) = (g(x)h (f(2)), 1 (f(2)))-

We recall that the set of all Riordan matrices is a group under the operator “*” [120].
The identity element is I = (1,x), and the inverse of (g(x), f(x)) is

(g9(), f(@)) " = (1/ (90 f) (x), f(x)) .

where f(z) is the compositional inverse of f(x). For example, the Pascal matrix is given
by the Riordan array
1 x
l—2'1—2)"
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Several authors have used Riordan arrays to study lattice paths; see for example [49, 59,
98, 111, 112, 124, 137, 138, 139, 140].

From the definition of Riordan array and Theorem 4.1 we obtain the following theo-
rem.

Theorem 4.2. The matrix Py is a Riordan array given by

1 l+x+a*+---+aF
Pk: ,,f(;‘ .
1—= 11—z

Proof. The (n, m)—th entry of the Riordan array is given by

o1 ldo+a? 44"\ (I+xt+a®+. k)™
[2"] x = [z""]

-2z 11—z (1 — x)m+t
= P @)
= pr(m,n —m) = qx(n,m).

Hence the matrices are the same. O

Let Ri(x) be the generating function for the rows sums of the matrix Pj. In Theorem
4.3 we give a generating function for Ry (x).

Theorem 4.3. The generating function Ry(x) is given by

1
T 1 2n — a2 — .. gkl

Proof. From the summation property for the Riordan arrays we have

1 1 1 1
k(l') Pk; (1_3:) 1— 1 <1_x1+$+:f2__:,.+$k> 1—927¢ — 22 — ... — gk+1

By using standard methods, it is possible to prove that the ordinary generating
function of the k—Pell sequence is

1
Pk gn — .
Z n v 1 =920 — 12— ... — gk

n>0

Thus we have the following corollary.
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Corollary 4.2. The k— Pell numbers PY coincide with the row sum of the matriz Py_1.

For example, the row sum of the matrix P, coincides with the 3—Pell numbers (see
sequence A077939 in [123]):

1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, . ..

In Corollary 4.3 we deduce a new combinatorial identity for the k—Pell numbers.

Corollary 4.3. The k— Pell numbers PP are given by the combinatorial identity
P(k) _ 1 n
=0 lo+Ll1+ -+l _1=1

where t = z;:é gl;.

Proof. From Corollaries 4.1 and 4.2 we have

P,,(Lk):qu_l(n,z’):Zpk_l(i,n—i)zz Z (60 . i . 1) (n;t)
i=0 i=0 11y ey e

1=0 Lo+L41++L_1=i

O

Finally, from the relation pPW = > o Pk—1(i,n — i) we deduce the following combi-
natorial interpretation.

Theorem 4.4. The k— Pell number Pél_?l counts the number of lattice paths from the
point (0,0) to (n —i,i) fori=0,1,...,n, with step set
Sy ={H =(1,0), V=(0,1), Dy = (1,1), Dy = (1,2), ..., Dy = (1,k)}.

For example, the 3—Pell number P4(3) = 13 counts the paths of Figure 4.4.

I I

1001

Figure 4.4: Lattices paths counted by P4(3).
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We recall that the Fibonacci numbers are equal to the sum on the rising diagonal
in the Pascal matrix. In Theorem 4.5 we give an analogue of this result for the k—Pell
sequence.

Theorem 4.5. The k— Pell numbers P\") coincide with the sum of the elements on rising
diagonal lines in the Riordan array

1 l+x+a%+- - +ak2
Qr = .

, T
1—-2x 1—-2x

Proof. The generating function of the sum of the elements on rising diagonal lines in the
above Riordan array is

1 1 1
= =Y P¥z". O
1—2z \ 1 _ 2 (1+x+1:121-2~;+mk—2> 1—2x—a2—...— 2k nzzo n

For example, the diagonal sum of the Riordan array )y (see sequence A038207 in
[123]) coincides with the classical Pell numbers

1 0 0 0 0 0 0 0

2 1 0 0 0 0 00

4 4 1 0 0 0 0 0

8 12 6 1 0 0 0 0

Q2—( L = )_ 6 32 24 8 1 0 0 0
1 =2z 1—-2x 32 8 8 40 10 1 0 0

64 192 240 160 60 12 1 0

128 448 672 560 280 84 14 1

The diagonal sum of the Riordan array ()3 coincides with the 3—Pell numbers

1 0 0 0O 0 0 0 0

2 1 0 0O 0 0 0 0

4 5 1 O 0 0 0 0

8 16 8 1 0 0 00

ng( L ,me): 16 44 37 11 1 0 0 0
1 =2z 1-2x 32 112 134 67 14 1 0 0

64 272 424 305 106 17 1 0

128 640 1232 1168 584 154 20 1
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1 50 100 150
T T T

=1

Figure 4.5: Matrix Py (mod 2).

The Riordan arrays obtained in this section show interesting patterns if you evaluated
their entries mod 2. In Figure 4.5 we show the fractal structure of the matrix P,. Notice
that Merlini and Nocentini [105] have studied some relations between Riordan arrays
and fractal patterns. In a forthcoming paper we will study the p—adic valuation for the
k—Pell sequence.

4.3 The generalized bi—colored compositions

The goal of this section is to consider a generalization of the concept of a bi-colored
composition in order to give another combinatorial interpretation of the k—Pell numbers.
Here and below, n denotes a positive integer. In fact, we defined a generalized bi—
colored composition of n as a sequence of positive integers o = (01,09, ..., 0¢) such that
o1+ 09+ -+ 0, = n, and the summand 1 can take two colors. The colors of the
summand 1 are denoted by subscripts 1; and 1,. Further, the positive integers o, are
called parts of the composition. We let A, denote the set of all generalized bi—colored
compositions of n and let C'(n) denote the number of elements in A, i.e., C(n) = |A,].
We also use Ci(n) to denote the number of generalized bi—colored compositions of n with
parts in the set {1,2,... k}.



4.3. The generalized bi—colored compositions 59

For example,

A3={3,2+11,2+12,11+2,12+2,11+11+11,11+11+12,11+12+11,
L+ 4+ o+ + 1,1+ 1 + 1, 1, + 1, + 14, 1, + 1, + 1}

Therefore, C'(3) = 13. Finally, let F,, denote the set of classical compositions of n with
parts in {1,2}. It is well-know that

|F,| = F,y1 forall n>1.

With the above notation, we have the following theorem.

Theorem 4.6. There is a bijection from A, to Fsy,. So

|A,| = |Fon| = Fopyq forall n>1.

Proof. The result clearly holds for n = 1, so we assume that n > 2. We shall define the
map ¢ from A, to Iy, as follows:

(1) — (1, 1), (1) — (2),
(2) — (1,2,1),  (3)—(1,2,2,1), ... (n)—(1,2...,2,1)
——
(n—1)-times
For every composition o = (01,09, ...,0,) in A,,, we define

p(o) = (plo1),9(02), ..., p(00)).
For example,
90(3, 15,2,2,14, 4) = (1, 2,2,1,2,1,2,1,1,2,1,1,1,1,2,2,2, 1).

Note that if o € A,,, then ¢(0) is a composition of 2n with parts in {1, 2}, i.c., ¢(0) € Fy,
for all o € A,,. Thus ¢ is well defined.

Let (aq,...,am), (B1,...,0s) € A, and suppose that ¢(a1,..., @) = (B1,...,Bs).
By definition, we get that m = s and p(o;) = ¢(5;) for all i € {1,2,...,m}. Hence
a; = fp; for all {1,2,...,m} and so (aq,...,am) = (B1,-..,0s). Thus ¢ is injective.

It remains to prove that ¢ is surjective. In order to do so, let § = (f1,...,B¢) € Fa,.
Notice that g1 = 1 or #; = 2. Suppose first that 8, = 1. In this case, since 8 € Fy,,
we have that 3; = 1 for some i € {2,...,¢}. Let j € {2,...,¢} be the lowest index such
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that 8; = 1. If j = {, then g = p(¢ —1). If j = 2, then we get that § = (¢(11), ') for
some [ € Fy,,_o. Now, if 2 < j < ¢, then 5 = (p(j — 1), /) for some ' € Fa,_oj40. If,
on the contrary, §; = 2, then we have that § = (¢(1,), 8") for some (' € Fy,, .

We conclude from the previous analysis that § = ¢(£—1) or = (¢(ay), B') for some
ag € {13,15,j-1} and ' € Fo,,_o4,. If 5 = (£ —1), then we are through. Otherwise, we
repeat the argument given above with S replaced by . Repeating the above argument,
as many times as needed, we finally obtain that 8 = ¢(a, ..., ay,) for some m > 2 and
a; € {11,15,2,...,L—1} for alli € {1,...,m}. Thus ¢ is surjective, and so the proof of
Theorem 4.6 is complete. For example, if § = (2,1,2,1,1,1,1,2,2,1,2), then

ﬁ - (90(12)7§0(2>790(11)7§0(3>790(12))' U

By using the above theorem and taking into account that the compositions of n use
parts at most n, we have the following corollary.

Corollary 4.4. Let k > 2 an integer. Then
Cr(n) =|A,| = Foni1  holds for alln, 1<n <Ek.

The following result establishes a relationship between compositions with parts in
the set {14, 1,,2,...,k} and the k—generalized Pell numbers.

Theorem 4.7. The generalized Pell number P,(L]_?l counts the number of compositions
of n with parts in the set {1,2 ... k} such that the summand 1 can take two colors.
Namely,

Cr(n) = P:_?l, for all n > 1. (4.2)

Proof. Let o be a generalized bi—colored composition of n with parts in the set {1,2,... k}.
If o starts with 1, then it must be followed by a bi—colored generalized composition of
n — 1 with parts in the set {1,2,...,k}. Since the summand 1 can take two colors, we
have 2Cy(n — 1) possibilities for ¢ in this case. Now, if o starts with o1 € {2,3,...,k},
then o must be followed by a composition of n — ;. Thus, by the addition principle, the
number of generalized bi—colored compositions of n with parts in the set {1,2,... k} is
given by Ci(n) = 2Ck(n — 1) + Cx(n — 2) + -+ - + Cx(n — k). Finally, note that Ci(n)
satisfies the k—generalized Pell recurrence with Cy(1) =2 = PQ(k) and Ci(2) =5 = P3(k).
This proves (4.2). O

Finally, from Corollary 4.4 we deduce the following statement, which was also proved
by Kilig [81] by using arithmetic arguments.
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Corollary 4.5. Let k > 2 be an integer. Then

PY) = Foppr  holds for all 1<n <k






Chapter

Common values of generalized Fibonacci and
Pell sequences

In this chapter, we find all coincidences between /—Fibonacci and k—Pell numbers. That
is, we find all the solutions of the Diophantine equation PY = Y in positive integers
n, k,m,{ with k, ¢ > 2. This work continues and extends prior results which dealt with
the above problem for some particular cases of k and /. In particular, it extends the
previous work [5] that found all Fibonacci numbers in the Pell sequence.

5.1 Introduction

The Lucas sequences U, (P, Q) and V,,(P, Q) are certain linear recursive integer sequences
satisfying the relation
Ty = Pxn—l - an—%

where P and @) are fixed integers. Famous examples of Lucas sequences include the Fi-
bonacci numbers, Lucas numbers, Pell numbers, Pell-Lucas numbers, Mersenne numbers
(see [123, A000225]) and Fermat numbers (see [123, A000215]).

There are many papers in the literature which discuss the intersection problem be-
tween linear recurrence sequences. For example, in 2011, Alekseyev [5] established that
F@nP® =1{0,1,2,5} and L® N P? = {1,2,29} using properties of Lucas sequences,
homogeneous quadratic Diophantine equations and Thue equations. For linear recur-

63
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rence sequences of order k, we mention that Bravo, Gémez and Herrera [24] found all
generalized Fibonacci numbers which are Pell numbers, while Bravo and Herrera [29]
determined all k—Fibonacci and k—Lucas numbers which are Fermat numbers. In ad-
dition to this, Bravo et al. [23] looked for all k—Fibonacci numbers which are Mersenne
numbers, whereas Bravo and Herrera [30] found all Fibonacci numbers that are general-
ized Pell numbers. Recently, Hernane et.al. [70] characterized all Fermat and Mersenne
numbers that can be represented as a product of two k—Fibonacci numbers, while Nor-
menyo et al. [109] solved some intersection problems similar to those discussed above
but involving k—Pell numbers. For the intersection of generalized Lucas sequences, we
refer the reader to [116].

At this point, it is worth mentioning that Noe and Post [106] in 2013 proposed a
conjecture about coincidences between terms of generalized Fibonacci sequences, which
was proved by Bravo and Luca [36], and also independently by Marques [91]. A problem
similar to the previous one with k—Lucas sequences was studied by Bravo et.al. [18].

In a similar vein, in this chapter we investigate the problem of determining

U P® A F®O

k>2,6>2

extending the previous works in [5, 24, 30]. We mention that Mignotte (see [100])
proved that under some technical conditions (for example that the sequences have dom-
inant roots which are multiplicatively independent) only a finite number of coincidences
between two fixed linear recurrence sequences can occur. This applies to us (but see the
Conjecture in Section 5.1) in the context of showing that P*) N F® is finite for fixed
k,¢ > 2 but for us k, ¢ arc variables as well.

Here, we determine all the solutions of the Diophantine equation
PY = F, (5.1)
in positive integers n, k, m, ¢ with k, ¢ > 2. Our main result is as follows.
Theorem 5.1. The only solutions (n, k,m, () of Diophantine equation (5.1) in positive
integers n, k > 2, m,{ > 2 are:
(1) the parametric family of solutions (n,k,m,?) with { = 2, namely

(n,k,m,0) = (t,k,2t —1,2) for 1<t<k+1;
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(17) the sporadic solutions:

1 = PP =FY forall k>2 and (>3
I = Pl(k) = FQ(@ for all k,0>2;
2 = Pék) = Fg(g) forall k>2 and (> 3;
13 = P4(k) = FG(B) for all k> 3;
29 = Py=F",

Corollary 5.1. The only power of 2 in P%) is PQ(k) =2 forall k > 2.

To conclude this section we point out some differences between this work and pre-
vious ones. In the Fibonacci and Pell case, namely when k = ¢ = 2, several well
known divisibility properties were used by Alekseyev in [5] to solve the problem. Such
divisibility properties for higher order recurrences are not known and not expected to
hold and therefore it is necessary to attack the problem differently. Our proof combines
linear forms in logarithms, reduction techniques and some arithmetic properties of the
sequences P*) and F©),

Furthermore, equation (5.1) involves two distinct higher order sequences and 4 vari-
ables unlike the works in [5] and [24, 30] which involve only 2 or 3 variables, respectively.
In [36], Bravo and Luca solved a similar equation with 4 variables, namely F,gk) = F,sf)
but since this equation involved the same sequence, it was possible to use symmetry and
assume that k£ > ¢. In this paper, our equation connects different sequences therefore k
and ¢ are independent. In addition to this, in this last equation in order to make sure
that linear forms in logarithms involved are nonzero, the work [36] invoked the fact that
the largest roots of the characteristic equations for F'®) and F are multiplicatively
independent when k # ¢, a fact easily checked using Mignotte’s result on multiplicative
relations among conjugates of Pisot numbers. For us, we do not know if the largest roots
of F®) and P® are muliplicatively independent in general and propose this as a con-
jecture. However, for our practical purposes we only needed it to hold in a finite range
(k = ¢ < 800), where we checked numerically that it is true. In addition, we needed re-
sults and estimates for P%*) similar to those found previously for F which have not yet
appeared anywhere else in the literature. In particular, we needed to study the degree
and the logarithmic height of certain algebraic numbers appearing in the dominant term
of the Binet-type formula for P*). Such results will be useful in order to attack other
Diophantine problems involving P*) such that their largest prime factors, whether they
are repdigits, etc.
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5.2 Preliminary results

Next, we present three technical lemmas which are keys in the proof of Theorem 5.1. We
begin with an estimate of nth k—Pell number, which is a direct consequence of Lemma
2.2 from [30].

Lemma 5.1. Let k > 2 and suppose that 2n — 1 > k/2. If n < ©*/?, then

2n—1
o 32
Pk — —(1 + Cp) where ‘Cpl < S0/&:/2‘

" V5

Now, we need the following technical result to prove Lemma 5.3 and that will be
useful in Section 5.4.

Lemma 5.2. Consider the function gi(z) defined in (3.10). If  is an algebraic integer
of degree d, then gi(n) has degree d as well.

Proof. Let n,...,nq be all the conjugates of n. If gx(n) has degree smaller than d, then
there exist ¢ # j in {1,...,d} such that gi(n;) = gx(n;). Thus

0 = gr(m) — gr(n;)
(m: —n)(k + 1) (nin; —ni —my) + 2k + 1)
(k+1)m2 —3kn; + k—1)((k+ 1)77]2. —3kn; +k—1)

which implies
(k+1)(nin; —ni —n; +2) = 1.
Since 7; and 7); are algebraic integers, we get that (k+ 1) | 1, a contradiction. O

We end this section with the following upper bound for h(gk(7y)) that will also be
useful in Section 5.4.

Lemma 5.3. For k > 2, we have that h(gi(7y)) < 4logy + log(k + 1).

Proof. We first note that, by Lemma 5.2, gx(7y) has degree k. Let L := Q(v) and let ay,
be the leading coefficient of the minimal primitive polynomial of gx(vy) over Z. Put

Hy(x) = [[(x — ge()) € Qlz] and N =Npjg((k+1)y* = 3ky+k—1) € Z.

=1



5.3. A relation between n and m 67

Note that N Hy(z) € Z[x] vanishes at gi(7) and so a, divides |[N]. But

[T+ 172 = 3kv; + k- 1)

=1

k

TT (e — ) (s — )

=1

V| = = (k+1)F

Y

where

(5.2)

oy (k4 VAR 8k — VR 44
(ks di) = 2k+1)  2(k+1)

are the roots of (k+ 1)z? — 3kz + k — 1. Since

Foforall 0<y< ¢

[Pu(y)] < max{y®, 1 +y -+ +y" 7+ 2} < ?
and 0 < dj, < ¢ < 2, which are easily seen, it follows that a, < @*(k + 1)*. By using
this and Lemma 3.2(e), we obtain

d
1
h(gk(7)) = z <log ap+ Y logmax{|g(v)|, 1}> < 4logp +log(k +1). O

i=1

5.3 A relation between n and m

Assume from now on that (n,k,m,¥) is a solution of equation (5.1). Suppose further
that min{k, ¢} > 3 since the cases k = 2 and ¢ = 2 were already solved in [24] and
[30], respectively. With ¢ = 2 we obtain the parametric family of solutions (n, k, m,{) =
(t,k,2t —1,2) for 1 <t < k+ 1 and the solutions (n, k,m,?) = (1,k,2,2) for all k£ > 2,
while with & = 2 we get the solutions (n, k,m, () = (1,2,1,¢),(1,2,2,¢),(2,2,3, ) for all
¢ > 2 and the solution (n,k,m,?) = (5,2,7,4). We may also assume that m > 3 and
n > 2 since Fl(e) = FQ(Z) = Pl(k) =1forall k >2, (>2.

Let us now suppose that 3 < n < k+1. Then, by (3.3), equation (5.1) is transformed
into the equation Fy, 1 = FY to be resolved in positive integers n, m, ¢ with £ > 3. But
this last equation was studied by Bravo and Luca in [36]. By the main result of [36],
we have that the only possibilities are [} = Fl(e), F = FQ(Z), F; = Fgfé) for all £ > 3 and
Fr; = Fé?’). These give the solutions (n,k,m,l) = (1,k,1,0),(1,k,2,¢),(2,k,3,¢) for all
k.0 > 3 and (n,k,m,l) = (4,k,6,3) for all £ > 3. Thus, from now on we assume that
n >k + 2. A quick calculation reveals that equation (5.1) has no solution in the range
n € k+2,7. So,n > 8.
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Let us now get a relation between n and m. Indeed, it follows from the exponential
growth of F) and P%® (see (2.19) and Theorem 3.3 (b)) that

A2 < Pék”) = Féf) <2m 2 and a™?< ane) = Pék) <AL

From the above and using the fact that v < ¢?, we get 1.27n — 0.55 < m < 2n — 1.
Thus, the inequalities

12n <m <2n—1 hold for all n > 8. (5.3)

5.4 An inequality for n and m in terms of max{k, ¢}

For the remainder of this chapter, let us denote I' = max{k, ¢} and X\ := min{k, (}.
From (2.16) and Theorem 3.3 (a) we get that

gk ()" = fo(@)a™ ] = |(ge(N)" = P) + (B — fola)a™ )| < 1.

Dividing both sides of the above inequality by f;(a)a™ !, we conclude that

n  —(m—1) -1 4
R g (fela) ™ = 1| < P (5.4)
In order to apply Matveev’s result to the left-hand side of (5.4), we take ¢ := 3,

(m:b1) = (.n), (M, b2) = (o, =(m = 1)) and (13, b5) = (gu(7)(fe(a)) ", 1).

We note that 7, 79, n3 are positive real numbers and belong to K := Q(«, y). So, we can
take D :=I'? because [K : Q] < k¢ < T?2. Since h(n;) = (log~v)/k and h(n) = (loga)/¢,
we choose A; = 2I'log ¢ and A, :=I'log2. By Lemma 5.3, we get that

h(nz) < h(fe(@)) + h(gr(v)) < 2logl +4log ¢ +log(k +1) < 6logT,

where in the last inequality we used the facts that h(f(«)) < 2log¥ for all ¢ > 2 (by
(2.29)) and 4log ¢ + log(k + 1) < 4logk for all k£ > 3. So, we can take Az :== 6I"%logT.
Furthermore, by (5.3), we take B = m.

We now need to show that the left-hand side of (5.4) is not zero. Indeed, if this were
zero, we would then get that gi(7)y" = fo(a)a™ 1. First, we show that fi(a)a™ ! has
degree (. Indeed, if not, then like in the proof of Lemma 5.2 there exist i,7 € {1,...,¢},
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i < j, such that fy(a)a" ! = fg(aj)a;”’I. By conjugating with a Galois automorphism
which sends «; to a = (1), we may assume that ¢ = 1. Thus

2 m—1 o mil_’fé(aj”
7 S(!o?!) G

a contradiction. A similar argument yields that gx(y)y" has degree k. Since in fact
Q(fe(a)a™ 1) C Q(a) and have the same degree £, these two fields are equal and similarly
since Q(gx(7)7™) € Q(7v) and have the same degree k, these last two fields are also equal.
Consequently, we deduce that Q(«) = Q(y) and so k = ¢. Computing norms and taking
reciprocals we get

| Noay/a(fe(@)|™" = [Nag)algr())
The left-hand side was estimated in (2.15). It is

2k+1k,k _ (/{ 4 1)k+1 _ 2k+1kk
(k—1)? (k—1)%

We need to show that the right—hand side is bigger. The right—hand side is

f[ (k+1)%2—3k%+k—1‘
i=1 %1 ‘
The denominators is
k
10— | = 1@1)] = &.
i=1
For the numerator, we write it as:
k k—1/ 2 k—1( 72
lei (¢ — 3er + 1) + 1||d " (d — 3d. + 1) + 1]
(k+ D" [ [0y =) (i —di)| = (k+ 1) : ,
g [(cx = 1)(di — 1)

where (¢, di) is given by (5.2). In proof of Lemma 3.1, note that ¢, +1/k is an increasing
function of & which implies that c; is increasing as well. So, we have ¢, > ¢5 > 2.1 for
k > 5. Since the product of ¢; and dj is (k —1)/(k + 1) < 1, we get that dj < 1/2.1.
Thus,
6
|dE N (df —3dp +1) + 1| > 1~ 5qr > 08
for k > 5. Further,

(k+ 1) —3(k+ Ve + (k+1) = =3¢, + 2 < —4.3.
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So |2 — 3¢k + 1| > 4.3/(k + 1). Hence,
2151 x 4.3 - o+l
k+1 k41

Finally, by the Viete relations from the polynomial (k + 1)2? — 3kz + 1 for having ¢, dj,
as roots, we have

|2 — 3, + 1) + 1] >

k—1 3k k
|<Ck: - 1)(dk - 1)' = |dek - (Ck + dk) + 1| = k?—H - k?—‘f—l +1| = ki——f—l
Thus,

(k)R 208
| Nejo(ge ()7 > 2 S B 28 % 0.8 3

Then, it suffices that

(k‘—f-l)k - 2k+1kk
k2 (k—1)2

1+ 1’ > > kY
k 4\k—-1)
The left-hand side is increasing with a limit of e and the right—hand side is decreasing

with a limit of 5/4. Thus, the desired inequality is satisfied for k£ > 5. For k = 3,4 one
computes the corresponding norms. Hence, the left-hand side of (5.4) is not zero.

2R % 0.8

or equivalently

Applying Matveev’s theorem to the inequality (5.4), we obtain
—log ‘fy"a’(m’l)gk(y)(fg(a))’l — 1| < 3.45 x 10" I'*log® T log m, (5.5)

where we used that the inequalities 1 + log'? < 3logI’ and 1 + logm < 2logm hold
for all ', m > 3. Taking logarithms on both sides of (5.4) and comparing the resulting
inequality with (5.5) we get, after performing the respective calculations, that

< 7x 10" I'®log®T. (5.6)

logm

In order to find an upper bound on m in terms of I' and log ', we use the fact that the
inequality x/logx < T implies © < 2T log T whenever T > 4 (see Lemma 2.9). Putting
z:=mand T := 7 x 10'? T%log? T, incquality (5.6) yiclds m < 5.1 x 10'* I'*log®I". In
the above we used that logT" < 36log I holds for all I' > 3. In summary, we have proved
the following intermediate result.

Lemma 5.4. If (n,k,m,{) is a solution of equation (5.1) with A > 3 and n > k + 2,
thenn > 8, m > 10 and

1.2n < m < 5.1 x 10" T®1og*T.

In particular, n < m < T for all T > 800.
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5.5 An expression involving \ and I

Let us mention two important consequences of Lemma 5.4. We begin with the next
result, which is a key point for finding and reducing bounds for large values of T'.

Lemma 5.5. Let (n,k,m,{) be a solution of equation (5.1) with A > 3 and n > k + 2.
Suppose that n < ©*? and m < 22, Then

(a) A < 1.4 x 108 logn. Moreover, if T > 800, then A < 2 x 10 1ogT .

(b) If A > 18, then

log 2

logv5| 138
+Og\/_<
log ¢

0< )
log ¢ @2

(m —2)

(2n —1)

(5.7)

Proof. We begin by observing that Lemmas 2.4 and 5.1 together with equation (5.1)
imply that

S02n—1 2m_2 32 ¢2n—1 2m—2

\/5_ <¢k/2'\/5+24/2‘
We need to distinguish two cases. Suppose first that ¢?*~'/4/5 > 272 Dividing both
sides of (5.8) by ©>*~'/\/5, we get

(5.8)

32 1 33
k72 + 90/2 < o2

‘2m—280—(2n—1)\/5 . 1‘ <

Now, if ©**~1/4/5 < 272 then we can divide (5.8) by 22 to obtain

32 1 33

9—(m=2) 2n—1(, /E\-1 _ 1’ < < .
’ Y (\/_) Ok /2 + 22 T A2
In any case we have an expression like
25(m=2) ;=== (\/5)e _ 1| < ECHENY e {£1} 5.9
@ ) — Ve where ¢ . (5.9)

We next apply Matveev’s result to the left—-hand side of (5.9) with ¢ := 3 and the
parameters

(1 by) = (2,2(m —2)),  (m.be) = (0, —=(2n = 1)) and  (ms,b) = (5, ).
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Note that the algebraic number field K := Q(¢) contains 1, 12, 73 and has degree D = 2.
Moreover, the left—hand side of (5.9) is not zero. Indeed, if this were zero, we would
then get that 2m2 = @2"*1/\/5 and so ¢*"~2 € QQ, which is not possible.

Since h(n;) = log 2, h(n) = (log¢)/2 and h(n3) = (log5)/2, we can take A; = 2log 2,
Ay = log p and Az :=log 5. By (5.3), we can take B := 2n. Applying Matveev’s theorem
to inequality (5.9), we deduce that

— log 252,21 ({/5) — 1| < 3.2 x 10'? logn, (5.10)

where we used that 1+ log(2n) < 3logn holds for all n > 3. By comparing (5.9) with
(5.10) we get A < 1.4 x 10'3logn. For the second part of (a), since I' > 800, it follows
from Lemma 5.4 that logn < 14logI" and hence A < 2 x 10*logI". This proves (a). To
prove (b), we put

zi=€ <(m —2)log2 — (2n —1)logp + 10g(\/§)) .

and observe that (5.9) can be written as |e* — 1| < 33/¢*%  Note that z # 0. If
z > 0, then we can apply Lemma 2.10 (a) to obtain |z| < 33/¢™2. If, on the contrary,
z < 0, then |e* — 1| < 1/2 because A > 18. Thus, by Lemma 2.10 (b), we have
|z| < 2le* — 1] < 66/p2. In any case, we get that |z| < 66/¢*? holds for all A > 18.
Replacing z in the above inequality by its formula and dividing it across by log ¢, we
get that the inequalities

log 2 1 5 138
0<|(m—2) 8 (2n—1)+ 08(v/5) hold for all A > 18,
log ¢ logp |~ V2
where we used that 66/ log ¢ < 138. This completes the proof of the lemma. (I

By applying the above lemma, we derive the following result.

Lemma 5.6. The inequalities A < 2x 10 1log " and log A < 7log ' hold for all T > 800.

Proof. Suppose I' > 800. We consider the two possible cases for I'. If I' = k, then
n < ¢*? and m < k' by Lemma 5.4. Note that either 2¢/2 < m or m < 2/2. If 2¢/2 < m,
then ¢ < (2/log2)(14logk) < 41logk; i.c., A < 41logT. If, on the contrary, m < 22,
then A < 2 x 10 1ogT" by Lemma 5.5 (a). We now assume that I' = /. Here, by Lemma
5.4 once more, we get that m < 242 and n < ™. Similarly, if ©*/2 < n, then k < 59log ¢,
while if n < ¢*/2, then, by Lemma 5.5 (a), we obtain A < 2 x 10**logI". Thus, in any
case we have that A < 2x 10 1ogI", which in it turns implies that log A < 7log I because
I' > 800. This finishes the proof. (I
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5.6 The case of small I

In this section, we treat the cases when I' € [3,800]. We shall use several times Lemma
2.7 in order to lower the upper bounds for our variables. For this, we write

2 = nlogy — (m — 1)log a + log (g4(7) (fe(a) ™).

Therefore, inequality (5.4) can be rewritten as |e* — 1| < 4/a™. In this case, z # 0. If
z > 0, then we can apply Lemma 2.10 (a) to obtain |z| < 4/a™. Now, if z < 0, then
le* — 1| < 1/2 since m > 10. Thus, by Lemma 2.10 (b), we have that |z| < 2|e* — 1] <
8/a™. In any case, we get that |z| < 8/a™. Replacing z in the above inequality by its
formula and dividing it across by log a, we get that

O<|nT—(m—1)+pu <AB™™, (5.11)

where

log (gx(7)(fe(a))™)

log v

1
T=1(k, () = ogvj po=pu(k,l) = , A=16 and B :=a.
log v
We would like to know that 7 is an irrational number. Unfortunately, we do not know

that in general. So, we propose it as a conjecture:

Conjecture 5.1. Show that a = a(l) and v = v(k) are multiplicatively independent for
all k> 2, { > 2 except when k = = 2.

But we can prove it for the instances we need. Namely, assume that 7 = a/b for
some coprime positive integers a and b. Thus, a® = ~*. Using a similar argument to
that used for proving that the left-hand side of (5.4) is not zero, one shows easily that
a® and 4 have degrees ¢ and k, respectively. Hence, k = ¢ and therefore Q(a) = Q(7v).
Conjugating by Galois automorphisms and taking absolute values, we get that for each
i € {1,...,(} there exists j € {1,...,k} such that |o;|* = |v;|°. Since a and v are
Pisot numbers, it follows from a result of Mignotte [101], that |, | = |a| if and only if
a, and «, are complex conjugates and a similar result holds for the +’s. Since Uy has
exactly one real root when k£ is odd and two real roots when k is even and the rest are
complex conjugate, it follows that the set {|oy| : i =1,...,k} contains exactly |k/2] +1
distinct elements and the same is true for the set {|v;| : j = 1,...,k}. Let as, v, be
roots different than « and -y, respectively, of largest absolute values among the roots of
U and Py, respectively. Then the relation a® = 4° yields by conjugation |as|® = |y2|°.
This gives a procedure to check that in fact 7 is irrational. Namely, for each k € [4, 800],
we compute |as| and |ys|. If it were true that a® = ~?, then also |as|® = |72/’ so

logy _ log|y| (_ g)
loga  log|as '

b
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With the computer, we computed both sides of the above equality for all £ € [4,800] and
checked that they are in fact different. The above procedure fails when & = 3 because
lo| = a2, || = v72 so (logvy)/(loga) = (log |y2|)/(log|as]). In this case we
compute the discriminants Dy and Dg of the polynomials Ws(x) and ®3(x), respectively,
obtaining Dy = —44 and D¢ = —87. If it were true that Q(a) = Q(v)(= K), then we
would have Dy = AgI(a)? and Dg = Agl(7y)?, where Ag is the discriminant of K and
I(«), I(7) are the indices of Z[a], Z[y] in Ok, respectively. Thus, we should have that
I(y) =1 and so Dy/Dg = I(a)? is a square of an integer, which is not the case. Thus,
a, v are multiplicatively independent when k& = ¢ = 3 as well. Hence, 7 is irrational in
our range of T'.

In order to reduce our upper bound for m, we take Mp = [5.1 x 10" I'®log’T'|
(upper bound on n from Lemma 5.4) and we apply Lemma 2.7 to the inequality (5.11)
for each k& € [3,800] and ¢ € [3,800]. A computer search with Mathematica revealed that
m < 200. Then, k£ 4+ 2 < n < 200 implies k£ < 200.

Finally, we used Mathematica to conclude that equation (5.1) has no solutions in the

range 3 < k£ < 200, 3 < /£ <800, k+2<n <200 and 10 < m < 200. This completes
the analysis when I' € [3,800].

5.7 The case of large I

From now on, we assume that I' > 800. Here, it follows from Lemma 5.4 that
n<m<p? <2 and n<m<I"

In this section, our goal is to find absolute upper bounds for the variables of equation
(5.1). To do so, we shall distinguish the two possible cases for I'.

5.71 Casel =k

In this case we have that n < ©*/2. Combining (2.16) and Lemma 5.1 we can conclude
that

2n—1 2n—1
¥ m—1 32 2
— a)o <

7 e

1
S N —
SOk/Q \/g 2
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Multiplying both sides of the above inequality by v/5p~**~1) and taking into account
that ©®"~! > /2 we deduce that

34
am—lsp—(Qn—l)\/gfg(O[) -1 < W (512)
We now want to apply Matveev’s theorem to the left—hand side of (5.12). For it, we

take t := 3 and the parameters

(m1,b1) = (,m — 1), (m2,b2) == (¢, —(2n— 1)) and (n3,b3) = (V5 fe(),1).

The number field containing 1,72, 75 is K == Q(v/5, @) of degree D < 20. As we saw
before, h(n:) = (log )/, h(ny) = (log)/2 and h(ns) < log+/5 + log h( fi(a)) < 3log/
for all £ > 3 by (2.29). Consequently, we can take A; = 2log2, Ay = llogy and Az =
6¢1og ¢. Since n < 2m (see (5.3)), we take B := 2n. We need to check that the left—hand
side of (5.12) is not zero. Assuming it is, we get (v/5fi(a))? = 2?1 . o =20m=1) € O,
Let us show that this is false. By (2.13), we have

45
2 JE—
5fg(0é) < 16
Further, for 2 < i < /¢, we have
, B la; — 1 2 2
[felaa)] = 124+ (04 1)(a; — 2)] < +1)—-2 (-1
so that 90
5| folew)?| < =1

For ¢ > 6, the right—hand side is < 20/25 = 4/5. Hence, for such ¢,
45 (4\" 45 (47
Nov(a Hh< Z (2 < — (= 1

so 5fs(a)? cannot be an algebraic integer. One checks with Mathematica that 5f,(«)?
is not an algebraic integer for ¢ € {3,4,5} either. Hence, the left—-hand side of (5.12) is
nonzero.

It then follows from Matveev’s theorem that

— log am’lgo’@”’l)\/gfg(a) — 1] < 2.1 x 10" ¢*1og? £log n. (5.13)

By comparing (5.12) with (5.13) we get k < 8.8 x 10'3¢*log® £logn. But logn < 14log k
by Lemma 5.4. Hence, k < 1.3 x 10'5¢*log® ¢ log k. We next apply Lemma 5.6 to obtain
that

k< (1.3 x 10")(2 x 10" 1og k)*(7Tlog k)?logk < 1.1 x 10™ log” k,
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which implies k& < 2 x 10%. Thus, n < m < 1.2 x 10" by Lemma 5.4.

If m < 22 and ¢ > 18, then we apply Lemma 2.7 to inequality (5.7) with the
parameters
_log2 L TeVS L s B

log log ¢
Clearly 7 is an irrational number. We put M = 1.2 x 10™* which is an upper bound on
m — 2. Then, from Lemma 2.7 we obtain that ¢ < log(Aq/e)/log B, where ¢ > 6M is a
denominator of a convergent of the continued fraction of 7 with e = ||ug|| — M||7¢|| > 0.
A computer search with Mathematica revealed that log(Ag/e)/log B is < 7160. Thus,
¢ < 7160. Note that, if 22 < m < 1.2 x 10™*, then we get £ < 4950. We can then
conclude from the above analysis that ¢ € [3,7160].

T

We still need to lower some upper bounds for our variables. For this, we now put
z:=(m—1)loga — (2n — 1) log ¢ + log(V/5 fs()).

This allows us to rewrite inequality (5.12) as |e* — 1| < 34/p*/2. Note that z # 0 and
le* — 1| < 1/2 since k > 800. Hence, Lemma 2.10 gives |z| < 68/¢"2. Replacing z by
its formula and dividing it across by log ¢, we get that

0<|(m—1)7—2n—1)+pu < AB7*, (5.14)
where
1 1
T=7) = loga7 o= p(l) = M, A =142 and B = "%
og ¢ log ¢

We next apply Lemma 2.7 to inequality (5.14). For this purpose, we need to show that
7 is an irrational number. Indeed, if it were not, then 7 = a/b with coprime positive
integers @ and b, and so a® = ¢ The number in the right has only two conjugates namely
¢ and (—¢ 1) whereas the number in the left has ¢ > 3 conjugates, a contradiction.
So, T is irrational.

Taking M, := 1.2 x 10 (which is an upper bound on m — 1), we apply Lemma
2.7 to the inequality (5.14) for all ¢ € [3,7160]. Using Mathematica we found that the
maximum value of log(Ag/e)/log B is < 7200. Hence, k£ < 7200 and Lemma 5.4 gives
m < 2.6 x 10*8. With this new upper bound for m — 1 we repeated the process. That is
we apply again Lemma 2.7 to the inequality (5.7) with M = 2.6 x 10" and we obtain
that ¢ € [3,500]. With this new range for ¢ and the new upper bound for m, we apply
again Lemma 2.7 to the inequality (5.14) to finally obtain & < 530. But this contradicts
our assumption that I' = k& > 800.
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5.7.2 Casel' =/

In this case we have that m < 2¢/2. Similarly as before, from Lemma 2.4 and Theorem
3.3 (a), we obtain the inequality

N 2 1 3

where 6 := min{m, ¢/2}. We now apply Matveev’s theorem once again with the param-
eters t == 3,

(7717 bl) = (77 TL), (7727 b2) = (27 _(m - 2)) and (7737 b3) = (gk(7)7 1)

Here, we take K := Q(v) which has degree D := k. In this application of Matveev’s
theorem we take B = m, A; = 2logy, Ay = klog2 and A3 := 4klogk. Note that if
the left-hand side of (5.15) were zero, then we would get that gi(y) = 2" 2y~". But
this implies that gi() is an algebraic integer which contradicts Lemma 3.2 (f). Then,
Theorem 2.9 and inequality (5.15) yield, after doing some algebraic calculations, the
following upper bound for 6:

0 < 2.3 x 10" k*log® k log m. (5.16)

We now write
z=nlogy — (m —2)log2 + log(gk(7))-
Thus, from inequality (5.15) we conclude that |e* — 1| < 3/2%. Note that |e* — 1] < 1/2

since m > 10 and ¢ > 800. Hence, by Lemma 2.10, we get that |e* — 1| < 6/2¢. Dividing
the above inequality by log 2, we obtain

0<|nT—(m—2)+ul <AB (5.17)
where now
log log(gr(7))
=17(k) = = (k) = =222 A:=9 d B:=2.

We need to consider the following two subcases.

5.7.2.1 The case 0 =/(/2

Taking into account that logm < 14log/, it follows from inequality (5.16) that ¢ <
6.5 x 10" k*log? klog ¢. By using this and Lemma 5.6 we have that ¢ < 5.1 x 1072 log” £.
Hence, ¢ < 8 x 10% and so n < m < 7.4 x 1072 by Lemma 5.4.
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If ©¥/2 < n, then it is easy to check that k& < 7015. It remains to analyse the case
when n < %2 In this last case we apply Lemma 2.7 to the inequality (5.7) with
M = 7.4 x 10™2 (which is a upper bound for m — 2). Here, we get k < 7100. In any
case, we have that k € [3,7100].

Taking M = 7.4 x 10 and applying Lemma 2.7 to the inequality (5.17) for all
k € [3,7100], we conclude that £ < 5000. This bound for £ implies that n < m < 1.3x10%7
(see Lemma 5.4). The same reasoning as in the previous paragraph applies here to get
that k € [3,500], and later I' = ¢ < 360. This is impossible.

5.7.2.2 The case 0 =m

In this case, from (5.16) we have that m/logm < 2.3 x 10'? k*log* k. From this and
applying Lemma 2.9 with T := 2.3 x 10'2 k*log® k, one gets that n < 1.5 x 10" k*log® k.

Suppose k > 350. Then, n < 1.5 x 10" k*log® k < k'' < ©*/2. In particular, we have
that n < ©*/2 and m < 242, Hence, by Lemma 5.5 (a), we obtain that k& < 1.4x10' log n.
From this and using that logn < 11log k, we arrive at k < 1.6 x 10**log k, which implies
k <6 x10%. Thus, m < 1.9 x 10%.

Now, we apply again Lemma 2.7 with M := 1.9 x 10%? to the inequality (5.7). In this
case, we obtain that k < 830, and therefore m < 4.4 x 10?8, With this new upper bound
for m we repeated the process, obtaining that & < 310, which is a contradiction.

Finally, suppose that k € [3,350]. Taking M}, := |1.5 x 10™ k*log® k| and applying
Lemma 2.7 to the inequality (5.17) for each k € [3,350], we find that m < 100. Since
k+2<n<m,we get k < 100. By recalling that we are in the case § = m, we have
m < ¢/2 < ¢+ 1 and so Fr(ng) = 272 (Conscquently, all is reduced to scarching for
solutions to the equation
P®) —9m=2 ip therange 3 <k <100 and k+ 2 <mn < 100.

n

Using Mathematica, we check that the above equation has no solutions. This completes
the analysis in the case k € [3,350] and hence the proof of Theorem 5.1.



Chapter

k—Fibonacci numbers close to a power of 2

In this chapter, we find all the members of F*) which are close to a power of 2. This
work continues and extends the previous work of Chern and Cui which investigated the
Fibonacci numbers close to a power of 2.

6.1 Introduction

Many of the arithmetic properties of the Fibonacci sequence have recently been studied
in generalized Fibonacci sequences. For instance, to cite only a few examples, Fibonacci
numbers, and more generally k—Fibonacci numbers, which are repdigits, were studied in
[37, 90, 93]. It is also known nowadays that 8 is the largest power of 2 in the Fibonacci
sequence, a fact that follows from Carmichael’s Primitive Divisor theorem [42]. In 2012,
Bravo and Luca [35] extended the above result by determining all powers of 2 which
are k—Fibonacci numbers. Bravo and Goémez [27] later found all powers of 2 as sums
of two k—Fibonacci numbers. Following this research line, in 2014, Gémez and Luca
[62] showed that there are only two kinds of power of two—classes in a k—generalized
Fibonacci sequence. In this context two or more terms of k—Fibonacci sequences are
said to be in the same power of two—class if the largest odd factors of the terms are
identical. We refer to [38, 63] for results on the largest prime factor of k—Fibonacci
numbers.
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An integer n is said to be close to a positive integer m if it satisfies

In —m| < vm.

This closeness notion was first introduced by Chern and Cui [43] in 2014, and motivated
them to find all the Fibonacci numbers which are close to a power of 2. The above result
was extended by Hasanalizade [68] who found all sums of two Fibonacci numbers which
are close to a power of 2. Inspired by these results, Tripathy and Patel [128] generalized
the previous works [43, 68] by searching for the sum of three Fibonacci numbers which
are close to a power of 2.

In this chapter, we extend the previous work [43] and look for k—Fibonacci numbers
which are close to a power of 2. More precisely, we study the Diophantine inequality

|[E®) —om| < gm/2, (6.1)

in nonnegative integers n,k,m with £k > 2 and n > 1. If the k—Fibonacci number
involved in (6.1) equals 1, we then assume that its index is 2 in order to avoid trivial
cases. Our main result is the following.

Theorem 6.1. The Diophantine inequality (6.1) has two parametric families of solutions
(n,k,m) with n,k > 2 and m > 0, namely

(a) (n,k,m)=(t,k,t —2) for2<t<k+1, and
() (n,k,m) = (k+2+t k k+t) for0 <t <max{w € Z:2+z < 2122}
(¢) In addition, we have the sporadic solution (n,k,m) = (12,3,9).
We give a brief description of our method. We use Theorem 2.9 to bound n and
m polynomially in terms of k. For k small, we apply Lemma 2.7 to lower such bounds
to cases that allow us to treat our problem computationally. For large values of k, we

apply some ideas developed in [27, 35] for dealing with Diophantine equations involving
k—Fibonacci numbers.

6.2 Initial considerations

Assume throughout that (n,k,m) is a solution of inequality (6.1). Suppose further
that k > 3 since the case k = 2 was already studied by Chern and Cui in [43]. A
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straightforward computation shows that the solutions of (6.1) with m < 3 belong to the
parametric solutions described in Theorem 6.1 (a). So, from now on, we assume that
m > 4.

6.3 Bounds on m in terms of n

Let us now get a relation between n and m. Combining (6.1) with (2.9) and the left
inequality of (2.19), one gets that

ol <« F) < 9n=2  and "2 < FP < gmHL
Thus m <n —2 and

log 2
n<2+(m+1)12§a

<1.14m+3.14 < 2m (6.2)

for all m > 4, where we used that fact that (log2)/loga < 1.14 for all £ > 3. Hence

g<m§n—2. (6.3)

6.4 Case2<n<k+1

In this case, it follows from (6.1), (6.3) and (2.8) that
N2 _gm < 9m/2,

Note that, if m <n — 3, then 273 =272 —2n=3 < =2 _ 9™ < 2m/2 < 2(n=3)/2 \which
is impossible. Thus m = n — 2, and so the solutions in this case is the parametric family
of solutions given in Theorem 6.1 (a).

6.5 Casen>k+2and m=n—2

Here m > k, and we must to solve the inequality
IF®), —om| < 2m/2, (6.4)

To do this, we distinguish two cases on m, namely k£ < m < 2k and m > 2k.
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6.5.1 The case £k < m <2k

In this case we have that k +2 < m + 2 < 2k + 2 and so, by (2.10), we get that
FM, = 2™ — (m 42— k)2m L,

By substituting this expression into inequality (6.4) we obtain m + 2 — k < 2kF1=m/2,
If we write m = k + 1 for 0 < ¢ < k, then the above inequality is transformed into the
simpler inequality 2 + i < 27 =9/2 o be resolved for the integer i with 0 < i < k.
Defining s as the largest nonnegative integer for which 2 + s < 2+(#=%)/2 e have that
the triples

(n,k,m) e {(k+2+t,kk+1t):0<t<s}

are solutions of inequality (6.1). These solutions correspond to the parametric family of
solutions given in Theorem 6.1 (b).

6.5.2 The case m > 2k

At this point, we present the following Lemma, which shows that inequality (6.4) has no
solutions with m > 2k.

Lemma 6.1. Let k > 2 be an integer and suppose that r > 2k. Then

F(k) <9 — 27"/2.

r+2

Proof. We shall prove Lemma 6.1 by induction on r. First, we need to prove that the
result holds true for 2k + 1 < r < 3k. Indeed, using the Cooper and Howard’ formula in
Lemma 2.3, we have that

+2 -2k
1”(-1;:-)2 =2"—(r+2-k) B |:<T 5 ) _ 1:| . or—2k—2

for all 2k +1 <r < 3k. Writing r = 2k + ¢ with 1 < < k, then we must show that

|

1+ 2

)—1}.2” for 1<i<k,

which is equivalent to

g .
<Z; >—1§2k+1(k+2+i—212/2) for 1<i<k. (6.5)
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Since the function f(z) = x — 2!7%/2 is increasing, we get that
min{k +2+i -2 1<i<k}=k+3-V2

On the other hand, it is a simple matter to show that

() ()

Consequently, to prove (6.5), it is sufficient to show that
k(k+1) < 262(k 4+ 3 — V/2),

which clearly holds for all £ > 2. This proves the base case on the induction. Now
suppose that » > 3k and that the lemma holds for all ¢ such that ¢ < r — 1. It then
follows from the recurrence relation for F*) that

k (k k k
F?"(-I—)Q:Fr—&-)l_l_Fr()+”'+Fr(+)27k

<RI 424 4 25N 221 /V2+ (1/V2) 4 -+ (1/V2)F)
< or _ 27‘/27

as desired. Thus, Lemma 6.1 is proved. O

Finally, note that if (6.4) is satisfied for some m > 2k, then we should have that
2m —2m/2 < ng)r? which contradicts Lemma 6.1. Thus, inequality (6.4) has no solutions
with m > 2k.

6.6 Casen>kt+2and m<n-—3

Using once again (6.1) and (2.16) we get that

n— m 7 n— 7 m m 1
[frl@)a" ™t =2 < |FP = fi(a)a" | + [F — 2] < 27/ + 2

giving
1 o-m 2

In order to use the result of Matveev Theorem 2.9, we take ¢ := 3 and

(7717 bl) = (fk(CV), 1)7 (7727 b2) = ((Y?n - 1)> (773? b3) = (27 _m/)'
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We begin by noticing that the three numbers 7y, 19,13 are positive real numbers and
belong to K = Q(«), so we can take D = [K : Q] = k. The left-hand side of (6.6) is
not zero. Indeed, if this were zero, we would then get that f,(a) = 2™ - o~V and so
fx() would be an algebraic integer, contradicting (2.14). Note that ™! is an algebraic
integer because it is a root of the monic polynomial 25U, (1/z) € Z[z].

Since h(fr(a)) < 2logk, h(a) < (log2)/k (by (2.29)) and h(2) = log2, then we can
take Ay = 2klogk, Ay = log2 and A3 = klog2. Finally, by recalling that m < n — 3,
we can take B := n — 1. Then, Matveev’s theorem together with a straightforward
calculation gives

| fr(a) - a1 27" — 1| > exp(—5.51 x 10"'k* log® k log n), (6.7)

where we used that 1+ logk < 2logk and 1+ log(n — 1) < 2logn for all n > k+ 2 and
k > 3. Comparing (6.6) and (6.7), taking logarithms and then performing the respective
calculations, we get that

m < 1.59 x 10"2k*log? k log n.
Additionally, by (6.3) we have that n < 2m. So that

< 3.18 x 10"2k* log? k. (6.8)
logn

We next use the fact that the inequality x/logz < A implies x < 2Alog A whenever
A > 3 in order to get an upper bound for n depending on k. Indeed, taking = = n and
A = 3.18 x 10"2k*log® k, and performing the respective calculations, inequality (6.8)
yields n < 1.98 x 10*k*1log® k. We record what we have proved so far as a lemma.

Lemma 6.2. If (n, k,m) is a solution of inequality (6.1) withn > k+2 and m <n—3,
then
m+3<n<1.98 x 10"k log® k.

6.6.1 Subcase k > 170

In this case, the following inequalities hold

n < 1.98 x 10"k*log® k < 2¥/2,

We now use (6.1) and Lemma 2.4 (applied to r := n < 2¥/2) to obtain

n—2

n— m n— 3 9 m 2 m
2072 = 27 = (272 = B+ (F = 27)] < Sy + 272,
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and so
1

< ok/2 + on—2-—m/2

|1 —2m~(n=2)] < 0.36.

In the above we used the fact that n —2 —m/2 > 3/2 and k > 170. Since m < n — 3,
it follows that 0.5 < |1 — 2™~("=2)| < (.36 which is not possible. Therefore, inequality
(6.1) has no solutions for n > k42, m <n — 3 and k > 170.

6.6.2 Subcase 3 <k <170

In order to apply Lemma 2.7, we put
z:=(n—1)loga —mlog2 + log fi(a),

and then observe that (6.6) can be written as

Note that z # 0. If z > 0, then we can apply Lemma 2.10 (a) to obtain
2| < |e* — 1] < 2/2m/2.

If, on the contrary, z < 0, then |e* — 1| < 1/2 because m > 4. Thus, by Lemma 2.10 (b)
we have that
2] < 2|e* — 1] < 4/2m/2.

In any case, we get that |z| < 4/2"/2 holds for all m > 4. Replacing z in the above
inequality by its formula and dividing it across by log 2, we get that

(n—1) (@)_mJFM

a3 o2 | < 6-(vV2)™™. (6.9)

0<

Putting now

log «v fr(a)
= k _ — = ]{j = — A = 6 d B = 2
T T( ) 10g2’ /’l’ M( ) 10g2 ) an \/_7
the above inequality (6.9) implies
O<|(in—1)7—m+pul < AB™™. (6.10)

It is clear that 7 is an irrational number because 7 > 1 is a unit in Ok, the ring
of integers of K = Q(a). So «a and 2 are multiplicatively independent. We also
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put M, = |[1.98 x 10"k*log® k|, which is an upper bound on n — 1 from Lemma
6.2. Applying Lemma 2.7 to the inequality (6.10) for all k& € [3,170], we obtain that
m < log(Agq/e)/log B, where ¢ = q(k) > 6Mj is a denominator of a convergent of
the continued fraction of 7 such that ¢ = (k) = ||uq|| — My||7q|| > 0. A computer
search with Mathematica revealed that if k € [3,170], then the maximum value of
log(Ag/e)/log B is < 660. Hence m < 660.

6.6.3 The final computation

As we saw in the preceding subsection, it is enough to look for solutions to inequality
(6.1) in the range 4 < m < 660.

Suppose first that 4 < m < 60. Thus, by (6.3), we get that n < 120. Here, a brute
force search with Mathematica in the range

7<n<120, 3<k<min{l70,n -2} and 4 <m < min{60,n — 3}

gives the sporadic solution (n,k,m) = (12,3,9). Now, if 60 < m < 660, then by (6.2)
we get that n < 1.14m + 3.14 < 1.2m, and so n < 792. Then a brute force search done
in the range

7<n<792, 3<k<min{l70,n—2} and 60 <m < min{660,n — 3}

gives no solutions for the inequality (6.1) with 60 < m < 660. This completes the proof
of Theorem 6.1.



|Chapter 7

Curious generalized Fibonacci numbers

In this chapter, we find all £~Fibonacci numbers that are curious numbers (i.e., numbers
whose base ten representation have the form a---ab---ba---a). This work continues and
extends a prior result of Trojovsky who found all Fibonacci numbers with a prescribed
block of digits and a result of Alahmadi et al. who searched for k—Fibonacci numbers
which are concatenation of two repdigits.

7.1 Introduction

The concept of curious number begins with a problem called “calculator curiosity” which
can be found in the recreational mathematics book Professor Stewart’s Hoard of Math-
ematical Treasures [126]. Such a problem proposes the reader to check the following
equalities:

(8 x8)+13 =77
(8 x 88) + 13 = 717
(8 x 888) + 13 = 7117
(8 x 8888) + 13 = 71117
(8 x 88888) + 13 = 711117
(8 x 888888) + 13 = 7111117
(8 x 8888888) + 13 = 71111117.

87



88 Curious generalized Fibonacci numbers

The numbers on the right side of the equalities above are examples of what we call curious
numbers. Formally, given a couple of nonnegative integers ¢ and m, we shall define the
(£, m)-curious number as a natural number with the following base ten representation

a...ab---ba...a7
\\[./\V./\\[_z
m

where a and b are integers such that a,b € {0,1,...,9}. A nonnegative integer is called
a curious number if it is an (¢, m)-curious number for some integers ¢, m with £ > 0 and
m > 1. Note that a (0, m)—curious number is not more than a repdigit, i.e., a positive
integer with only one distinct digit in its decimal representation. The smallest curious
number that is not a repdigit is 101. The first curious numbers are

0,1,2,3,4,5,6,7,8,9,11,22, 33,44, 55,66, 77, 88,99, 101, 111,121, 131, 141, . . .,

and this matches with the sequence A335779 in Sloane’s On-Line Encyclopedia of Integer
sequences [123]. Few properties of curious numbers are currently known. For instance,
Borade and Mayle [16] determined all curious number that are perfect squares.

Diophantine problems involving repdigits and terms of certain linear recurrence se-
quences have been recently an active research field in number theory. It should be
mentioned that Luca [90] in 2000 showed that 55 and 11 are the largest repdigits in
the Fibonacci and Lucas sequences, respectively. Further, Faye and Luca [58] looked for
repdigits in the usual Pell sequence and using some elementary methods they concluded
that there are no Pell numbers larger than 10 which are repdigits. The above results has
been generalized and extended in various directions. For example, a conjecture (proposed
by Marques [93]) about repdigits in k—Fibonacci sequences was proved by Bravo-Luca
[37]. Alahmadi et al. [2] generalized recently the results mentioned above by showing
that only repdigits with at least two digits as product of ¢ consecutive k—Fibonacci num-
bers occur only for (k,¢) = (2,1),(3,1), extending the works [19, 94] which dealt with the
particular cases of Fibonacci and Tribonacci numbers. Alahmadi et al. [3] determined
all k—Fibonacci numbers that are concatenations of two repdigits, while Trojovsky [131]
found all Fibonacci numbers with a prescribed block of digits. Finally, Bravo et al. [17]
studied a problem similar to the one worked in [3] but focused on the k—Lucas sequence.

Diophantine equations involving sums and products have been also discussed. For
example, Erduvan and Keskin [54] found all repdigits expressible as products of two
Fibonacci or Lucas numbers. We also mention the work of Normenyo, Luca and Toghé
[107] who found all repdigits expressible as sums of three Pell numbers. Shortly af-
terwards, they extended their work to four Pell numbers [108]. For linear recurrence
sequence of order k, it is known that Bravo-Luca [40] found all repdigits which are sums
of two k—Fibonacci numbers (see [46] for a product version), while Rayaguru and Bravo
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[113] determine all repdigits expressible as sums of two k—Lucas numbers. The last work
generalizes a prior result of Siar and Keskin [47] who dealt with the above problem for
the particular case of Lucas numbers and a result of Bravo and Luca [39] who searched
for repdigits that are k—Lucas numbers.

In this chapter, we determine all curious numbers which are k—Fibonacci numbers,
ie.,

Fﬁk):a---ab---ba---a,
\\[./\\,./;\[_/

which continues and extends the works in [3] and [131]. Since curious numbers can be
expressed algebraically as

106 —1 10m —1 106 —1
a---ab---ba---a—l()“ma( >+10£b(—)—|—a( >,
S N -~ 9 9 9

4 m l

we look for all the solutions of the Diophantine equation
1
2 5 (a-10*™ — (@ —b) - 10" 4 (a — b) - 10" — a) (7.1)
in positive integers n, k,m,¢,a and b with k > 2, a,b € {0,1,...,9} and a # b.

Before presenting our main theorem, it is important to mention that in equation
(7.1) we assumed ¢, m > 1 and a # b since otherwise the problem reduces to finding all
k—Fibonacci numbers that are repdigits or concatenations of two repdigits, and these
problems have been already solved in [37] and [3], respectively. In addition, note that
when a = 0, our problem also reduces to determining all k—Fibonacci numbers that are
concatenations of two repdigits. Thus, throughout this paper we also assume that a > 1.
Our result is the following.

Theorem 7.1. The only curious generalized Fibonacci number is Fl(f) = 464.

As an immediate consequence of Theorem 7.1 we have the following corollary.

Corollary 7.1. There are no curious numbers that are powers of 2.

7.2 Initial considerations

Assume throughout that (n,k,a,b, ¢, m) is a solution of the equation (7.1). First, we
note that n < 3 is impossible since F™ must have at least 3 digits in its decimal
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representation. Thus, we assume n > 4. We now want to establish a relationship
between the variables of (7.1). For this purpose, we combine inequalities (2.9) and
(2.19) in equation (7.1) to get

102@+m71 < F7Ek) < 2n72 and aan < Fr(zk) < 102£+m’ (72)

from which it follows that

log 2 log 10
2€+m<(n—2)(100gg10)+1 and n—2<(2£+m)<1c())gga>.

In particular
(20 +m)+2<n<6(204+m) holds for all n > 4. (7.3)

7.3 Powers of two which are curious numbers

Assuming 4 < n < k+ 1 and taking into account (2.8), we can rewrite equation (7.1) as
a-10**" — (a —b) - 10 + (a — b) - 10° = 9-2"? = q. (7.4)

Since ¢ < n — 2 by (7.3), it follows from (7.4) that 2° | @ and so ¢ < 3. We now use (7.4)
once again to obtain that

a-10*t" — (@ —b)- 107%™ —9.2"2 =g — (a —b) - 10° € R, (7.5)
where R = ([-8991,0) U (0,8001]) N Z.
Now, since the largest 2—adic valuation® of integers of the interval R is 7, we get that
¢ +m < 7by (7.5). So, m < 6. Finally, a numerical check with Mathematica revealed
that equation (7.1) has no solutions in the range

4<n<k+1, 1</<3 1<m<6, 1<a<9 and 0<b<09.

Thus, from now on we suppose that n > k + 2.

IThe 2—adic valuation of a positive integer number n is the exponent of the greatest power of 2 that
divides n.
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7.4 Bounding n in terms of k

In this subsection we want to find an upper bound for n in terms of k. To do this, we
put X :=a-10° — (a — b) and rewrite (7.1) using (2.17) in two different forms, namely

9fp()a™ ! —a-10#+t™ = —9ep(n) — (a — b) - 104™ + (a — b) - 10° — a, and

9fp()a™ ! =104 X = —9¢(n) + (a —b) - 10° — a.
(7.6)

For future calculations it will be important to note that
1< X <107 (7.7)

We now take absolute value in relations given by (7.6) and doing some straightforward
calculations we obtain

9fi(a)am ! —a-10%*T™| < 11-10%™,  and

19 fr(a)am~t =10 X | < 11 - 10%. (7.8)

Dividing both sides of each one of the above inequalities (7.8) by a-10**™ and 10+™ X,
respectively, and rearranging some terms, we get

Q. 10~ @) (M) - 1‘ <11/10Y,  and (7.9)
Q1. 107 m) (gfkT“")) - 1‘ < 11/10™. (7.10)

At this point, we claim that the left—-hand side of (7.9) and (7.10) are not zero. Indeed,
if these were zero, we would obtain respectively

a-102*"™ =9f(a)a" ' and 10" X = 9f,(a)a L.
Conjugating the above equalities with an automorphism o of the Galois group of Wy (z)
over Q such that o(a) = a; for some ¢ > 1, taking absolute values and using the fact
that [9f(c;)al ™| < 9, we obtain
a-10**" <9 and 107X <9,

respectively. However, these lead to a contradiction since

a-102" >10° and 10X > 10%
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We shall now apply Matveev’s Theorem on inequalities (7.9) and (7.10) (in that order).
To do this, we take the following parameters:

t:= 37 = q, 2 = 107 3,1 = gfk(a)/a'v 3,2 = 9fk(a)/X7
by =n—1, boy = —(20 +m), bap = —({+m), bs = 1.

The real number field containing 7y, 72,131,732 is K := Q(«). From this and (7.3), we
can take D = [K: Q] = k and B := n in any application of Matveev’s Theorem.

On the other hand, since h(m) < (log2)/k (by (2.29)) and h(n;) = log 10, we can
always take A; :=log?2 and As := klog10. Furthermore, from Lemma 2.11 and (7.7) we
get that

h(ns,1) < 6logk, and (7.11)
h(nsz2) < 2logk + (¢ + 1)log 10. (7.12)

7.4.1 An inequality for / in terms of k

In order to apply Matveev’s Theorem on (7.9) with the parameters 7,7, and 73, we
take Ay, Ay as mentioned before and As = 6klogk (by (7.11)) to obtain

9
"t 10” M) (M) — 1‘ > exp (—9 x 10%k* log” klogn) , (7.13)
a

where we used that 1+logk < 3logk and 14+logn < 2logn hold for all £ > 2 and n > 4,
respectively. Comparing (7.9) and (7.13) and performing the respective calculations, we
get

¢ < 4 x 10" k*log? klogn. (7.14)

7.4.2 An inequality for m in terms of &

In the light of (7.12) and (7.14) we deduce that
h(ns2) < 10" k*log? k log n.

This allows us to choose now Az := 10 k° log? k log n. We then apply Matveev’s Theo-
rem on (7.10) with the parameters 7,72 and 732 to get

am 107 <9f—()> — 1| > exp (=2 x 10® k%log® k log”n) . (7.15)

kv
X
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Using now (7.10) and (7.15), it follows that

m < 10% k®log® klog” n. (7.16)

7.4.3 An inequality for n in terms of k

We finally use (7.14) and (7.16) combined with (7.3) to assert that

< 12x 10% k5 log? k. (7.17)

log”n

In order to find an upper bound on n in terms of k£ and log k, we apply Lemma 2.9 with
parameters T == 1.2 x 102 k®log® k and m = 2. From the above, we get from (7.17) the
following lemma.

Lemma 7.1. If (n,k,a,b,{,m) is a solution of equation (7.1) with n > k + 2, then

204+m <n<b5x10%0 k¥ log’ k.

7.5 The case of large k

Suppose that £ > 430. Note that for such values of k we have
5 x 10% k¥ log® k < 28/2.

Then by Lemma 7.1, we get that the inequality n < 2%/2 is satisfied when k& > 430
and therefore we are in the hypothesis of Lemma 2.4. Applying the above lemma and
equation (7.1) we obtain

{+m
T 3-10 L 30, 1
51022 || < S+ 50 <15+ 35
where we have used that 104 /2"=2 < 10/10 (see (7.2)). Consequently
a qn2tm  9—(n—2) _ 30 1 31
(5-10 2 1‘<%+2m§2—w (7.18)

where 6 := (log 10)/(log2) and X\ := min{k/2,¢0}. Again, in order to use the result of
Matveev, we take t = 3,

(m,b1) = (a/9,1), (n2,b2) :=(10,204+m) and (n3,b3) = (2,—(n —2)).
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We begin by noticing that the three numbers 1y, 79,13 are positive rational numbers, so
we can take K := Q for which D := 1. To see why the left—-hand side of (7.18) is not
zero, note that otherwise, we would get that a - 102t™ = 9. 27=2 which is impossible
since its left-hand side is divisible by 5 while its right-hand side is not.

Clearly, we can take A; :=log9, Ay :=log 10 and A3 := log 2. Here, we can also take
B :=n. Then, Matveev’s Theorem together with a straightforward calculation gives

g 02 L 9= (1=2) _ 1) > exp (—1.1 x 102logn) , (7.19)
where we used again that 1+ logn < 2logn holds for all n > 4. Comparing (7.18) and
(7.19), taking logarithms and then performing the respective calculations, we arrive at

A < 1.8 x 10 logn.

Note that, if A\ = k/2, then k < 3.6 x 10?logn. Since logn < 73logk holds for all
k > 430 by Lemma 7.1, we get k < 2.7 x 10 log k giving k < 10'®. For the case when
A = (0, we have ¢ < 5.5 x 10" logn. Here, proceeding as in (7.18), we obtain

200 2 ok/2 2 3

X L+m —(n—2)
51072 <ot o < o T g = g (7.20)

The same argument used before also shows that the left-hand side of (7.20) is not zero.
With a view towards applying Matveev’s Theorem, we take the same parameters as in
the previous application, except by 7; and by which in this case are given by X/9 and
¢ + m, respectively. As before, K := Q, D =1, Ay = log10, A3 := log2 and B := n.
Moreover, by (7.7), we have that

h(n) =log X < (¢4 1)log10 < 1.3 x 10" logn.

Hence, we can take A; = 1.3 x 102log n. This time Matveev’s theorem leads to

3

‘ X
exp (—6 x 10*log”n) < 5 104m . 2=(=2) _ 1) < T

which implies k& < 9.4 x 10*log® k. Hence k < 5 x 10%°, and so by Lemma 7.1 we get
that n < 3.5 x 10%®°. At this point, we shall summarize what we have obtained so far on
the upper bounds for £ and n. The result is the following.

Lemma 7.2. If (n, k,a,b,{,m) is a solution of equation (7.1) with k > 430 andn > k+2,
then inequalities
k<5x10° and 20+m <n<3.5x 10

hold.
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7.6 Reducing the bound on k&

We now want to reduce our bound on & by using Lemma 2.7. Let
I'y :=log(a/9) + (2 4+ m)log 10 — (n — 2)log 2.

Then, from (7.18) we get that |e!'* — 1] < 31/2*. Note that 31/2* < 1/2 whenever A > 6.
Now, assuming that A > 6, we obtain |e!* — 1] < 1/2 and so Lemma 2.10 shows that
0 < |I'1] < 2]ef — 1| < 62/2*. Dividing the above inequality through log 2 gives

0<[(20+m)f —n+p,| <90-27  forall \>6, (7.21)
where p, = 2 + (log(a/9))/(log2). Taking M = 3.5 x 10%° we get that 2 +m < M.

Applying now Lemma 2.7 to inequality (7.21) for each a € {1,2,...,8}, we found with
the help of Mathematica that A < 960.

For the case a = 9, we can not use Lemma 2.7 because the corresponding value of
€ is always negative. However, one can see that if a = 9, then the resulting inequality
from (7.21) has the shape

lzy —y| < 90- 277, (7.22)
with v := 6 being an irrational number and x := 20+m, y :=n—2 € Z. In order to apply
Lemma 2.8 on the left-hand side of (7.22), we define [ag, ai, a2, as,...] =[3,3,9,2,...] as

the continued fraction of y and p; /¢; its ith convergent. We can also take M = 3.5 x 10%°
so that x < M by Lemma 7.2. A quick inspection using Mathematica reveals that
gs73 < M < @574 and therefore ay; == max{a; | 0 < i < 574} = ay35 = 5393. Hence, by
Lemma 2.8, we obtain that |zy —y| > 1/(5395(2¢ + m)) and after a comparison with
(7.22), we get that A < 967. Thus, A < 967 always holds.

Note that if A = k/2, then k£ < 1934. On the other hand, if A = ¢0 then we have
¢ < 291. Now, we put
[y == (¢ +m)log10 — (n — 2)log 2 + log(X/9).

Here, (7.20) yields |e'? — 1| < 3/2%/2. Since k > 430, we get that |ef2 — 1] < 1/2.
Using Lemma 2.10 again, we deduce that 0 < |T'y| < 6/2*/2. Dividing through the above
inequality by log 2 gives

0<|(l+m)d—n+ pu(a,b )] <9 2752 (7.23)

where u(a,b,0) = 2 + (log(X/9)/(log?2)). Here, we also take M := 3.5 x 10?% and
apply Lemma 2.7 to inequality (7.23) for all a,b € {0,1,...,9} with a > 1, a # b and
1 </ <291, except when

(a,b,¢) € {(1,0,1),(1,9,1),(2,0,1),(3,9,1),(4,0,1),(7,9,1),(8,0,1),(4,9,1),(5,0,1)}
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and (a,b,f) = (9,9,¢) for all £ > 1. Indeed, A computer search with Mathematica
revealed that &£ < 1955. Now, we deal with the special cases mentioned just before.
First of all, it is a straightforward exercise to check that in these cases we have

(

2, if (a,b,0) =(1,0,1);
3, i (a.b,0)=(1,9,1),(2,0,1)
)4 (ab0) = (3,9,1),(4,0,1);
mab =905 it (abt) = (7.9.1),(8.0, 1):
14+60, if (a,b,0)=(4,9,1),(5,0,1);
| 1106, if (a,b,0) = (9,9,0), (> 1.

In such cases, the inequality (7.23) turns into

(m+1)0 — (n—1d)| <9-27%2  (for i=234,5), or
[(m+2)0 — (n—1)| <9-27%2 or (20 4+m)0 — (n—1)| <9-27%2,

In any case, by the same arguments used to get inequality (7.22), we obtain 2¥/? <
1.7 x 10?°°, which implies that & < 1928. Thus, k < 1955 holds for any choice of .
Then, by Lemma 7.1, 20 +m < 2.7 x 10%! := M. With this new choice of M, Lemma 2.7
applied to inequality (7.21) implies that A < 222 (including the case a = 9). If A = k/2,
then k£ < 444, while if A = ¢6, we have that ¢ < 66. We finally apply Lemma 2.7 with
M = 2.7 x 10% to inequality (7.23) for all a,b € {0,1,...,9} with a # b, @ > 1 and
1 <7 <66, except in the special cases mentioned above. With the help of Mathematica
we found that & < 457. The same upper bound for k£ holds in the special cases. So,
k < 457 holds for any choice of X. Finally, taking M = 8.2 x 10° and repeating
the previous procedure, we obtain that £ < 422, which is a contradiction. Hence, the
equation (7.1) has no solutions for k > 430.

7.7 The case of small k

Suppose now that k € [2,430]. Note that for each of these values of k, Lemma 7.1 gives
us absolute upper bounds for n. However, these upper bounds are so large and will be
reduced by using Lemma 2.7 once again. To do this we put

0. [Ql] _ [(n —1)loga — (20 +m)log 10 + log((9fx())/a)
LY (n—1)loga — (£ +m)log 10 + log((9 fi(c))/X)

Thus, (7.9) and (7.10) can be rewritten respectively as

11 11
N < — and le2 — 1] < —.

e 100 10m
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Now assuming £ > 2 and m > 2, we see that |e% — 1| < 1/2 for all i € {1,2}. Using
Lemma 2.10, we deduce that

0<|Q]<22/10° and 0 < [y < 22/10™.

Dividing both inequalities by log 10, we get

0<|(n—1)7m — (204+m)+u(k,a) <10-10~°,  and (7.24)
0<|(n—1)m — (L+m)+ pa(k,l,a,b)] < 10-10™, (7.25)
where ((9fk(a))/a)
log((9fk(a))/a
S log « nd pi(k,a) | %
" log 10 ok, €0, b) | " | toa(0fute) /)
og 10

Note that 7 clearly is an irrational number because o and 10 are multiplicatively
independent. Next, we shall apply Lemma 2.7 to (7.24) and (7.25). For this purpose,
we put also My =5 x 100 k®log® k, which is an upper bound on n — 1 by Lemma 7.1.

In the first application, we choose the following parameters
T =1, o=k, a), A=10 and B = 10.

A computer search with Mathematica revealed that if k € [2,430] and a € {1,2,...,9},
then the maximum value of [log(Ag/e€)/log B| is 130. Then, every possible solution
(n,k,a,b,¢,m) of equation (7.1) for which (k,a) € [2,430] x [1,9] has ¢ € [1,130].

For the second application, we take
T =T, po= pao(k,l, a,b), A =10 and B = 10.

In this case, Mathematica shows that for each a,b € {0,1,...,9}, a > 1, a # b, k €
[2,430] and ¢ € [1,130], the maximum value of |log(Ag/¢€)/log B] is 130. Thus,

m € [1,130] and so n € [1,2340].

Finally, we use Mathematica to display the values of F\" for (k,n) € [2,430] x
[4,2340], and check that the equation (7.1) has only the solution listed in Theorem 7.1.
This completes the analysis in the case k € [2,430] and ends the proof.
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