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STRUCTURED ABSTRACT 

 
The expansion of mobile communications and OTT applications have caused mobile 

operators to have a high level of uncertainty regarding the quality indicators of the services 

of the application layer that they offer, this is caused because today the encrypted information 

that the applications handle makes this task more difficult. As network operators do not have 

enough information on the customer side, and having in mind that the little information that 

these operators collect from users, is used mostly for marketing purposes, it causes that they 

cannot offer personalized plans, better quality of service and a better user experience. 

 

With this in mind, the objective of this project is to monitor and classify the consumption of 

a user's OTT services within the framework of an LTE network data plan. However, as there 

is no access to a real LTE network, in this case a simulated LTE network will be taken.  

 

To supply the need above, it is proposed to take a simulated LTE network that is installed 

within the network of the Universidad del Cauca, in which it is possible to simulate different 

Internet users and servers and through which information is exchanged. However, the main 

objective of this undergraduate thesis is to exchange information of specific OTT 

applications, something that this simulator does not have, since its traffic generator only 

creates generic Internet traffic. For this reason, it was decided to investigate different traffic 

generators in the hope of finding one that would adapt to the needs of this research project. 

Despite this exhaustive research, it was concluded that no current traffic generator is capable 

of creating traffic from specific OTT applications, and for this reason it was decided to create 

a synthetic OTT application generator.  

 

This synthetic generator creates flow of applications such as WhatsApp, YouTube, Skype, 

Google and Spotify, resulting, after a long process, different datasets of the applications 

mentioned above. With these datasets, cleaning processes were followed with the CRISP-

DM methodology, later they were grouped to form a single dataset and finally this dataset 

was validated with different machine learning algorithms such as J48, Bagging, IBK, 

NaiveBayes, among others.  

 

As future works, it is proposed to do the modeling and the synthetic generation of other OTT 

applications, to create an IDE that everybody can handle and be able to use the generator in 

a more intuitive way, to validate the datasets using other machine learning algorithms, among 

others.  

 

Keywords: OTT applications, LTE network, machine learning, data set, traffic 

classification, traffic generators. 
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RESUMEN ESTRUCTURADO 

 
La expansión de las comunicaciones móviles y las aplicaciones OTT han provocado que los 

operadores móviles tengan un alto nivel de incertidumbre frente a los indicadores de calidad 

de los servicios de la capa de aplicación que ellos mismos ofrecen, siendo esto, gracias a que 

hoy en día la información encriptada que las aplicaciones manejan hace mas difícil esta tarea. 

Como los operadores de red no tienen la suficiente información del lado del cliente, y 

teniendo en cuenta que la poca información que estos operadores recolectan de los usuarios, 

es mas que todo usada para fines de marketing, provoca que no se puedan ofrecer planes 

personalizados ni que puedan ofrecer una mejor calidad de servicio y una mejor experiencia 

de usuario. 

 

Teniendo en cuenta lo anterior, el objetivo de este proyecto es monitorizar y clasificar el 

consumo de los servicios OTT de un usuario en el marco del plan de datos de una red LTE. 

Sin embargo, como no se tiene acceso a una red LTE verdadera, en este caso se va tomar una 

red LTE simulada.  

 

Para cumplir el objetivo anterior, se plantea tomar una red LTE simulada que esta instalada 

en la red de la Universidad del Cauca, en la cual es posible simular diferentes usuarios y 

servidores de Internet y a través de la cual se hace intercambio de información. Sin embargo, 

el objetivo principal de esta tesis de pregrado es poder intercambiar información de 

aplicaciones OTT específicas, algo que este simulador no posee, ya que su generador de 

tráfico solo crea tráfico genérico de Internet. Por esto, se tomo la decisión de investigar 

diferentes generadores de tráfico con la esperanza de poder encontrar uno que se adaptara a 

las necesidades de este proyecto de investigación. A pesar de esta exhaustiva investigación, 

se llego a la conclusión de que ningún generador de tráfico actual es capaz de crear tráfico 

de aplicaciones OTT especificas, y por este motivo se opto por crear un generador sintético 

de aplicaciones OTT.  

 

Este generador sintético, crea flujo de aplicaciones como WhatsApp, YouTube, Skype, 

Google y Spotify, dando como resultado, después de un largo proceso, diferentes datasets de 

las aplicaciones mencionadas anteriormente. Con estos datasets se siguieron procesos de 

limpieza con la metodología CRISP-DM, posteriormente se agruparon para formar un solo 

dataset y finalmente este dataset se valido con diferentes algoritmos de Machine learning 

como lo son, J48, Bagging, IBK, NaiveBayes, entre otros.  

 

Como trabajos futuros, se propone hacer el modelamiento y la generación sintética de flujos 

de otras aplicaciones OTT, crear un IDE para que todo el mundo pueda manejar el generador 
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de manera mas intuitiva, validar el conjunto de datos usando otros algoritmos de machine 

learning, entre otros.  

 

 

Palabras clave: Aplicaciones OTT, red LTE, aprendizaje de maquina, conjunto de datos, 

clasificación de tráfico, generadores de tráfico.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Context 
 

Currently, new applications and services are in constant developing and evolution in an 

exponential way, supported by the expansion and deployment of LTE1 networks around the 

world, this being one of the largest solutions of next-generation mobile systems [1]. LTE has 

allowed a large increase in Internet traffic [2] as it is a data-oriented mobile network. Its 

modern architecture offers higher speeds in data link, low latency, requires a simple and 

economical maintenance [2], improves QoS2 [3] and also allows the offer of various services 

to users, which allows them to enjoy better experiences in the consumption of applications. 

 

Considering the previous paragraph, it is clear that the Internet is undergoing major changes 

in recent times, presenting a constant transformation and introducing different applications 

and services known as OTT3. These kind of applications provide a service over a data 

channel, either through a wired network, Wi-Fi or through mobile networks, taking advantage 

of the large providers’ infrastructures, providing similar services, obtaining a higher profit 

margin as services on demand while avoiding infrastructure costs. All of this has caused that 

the business models of the traditional operators are affected in a negative way since the users 

prefer the OTT applications and services instead of the conventional services offered by 

traditional operators, generating economic losses for them; Examples of OTT applications 

are VoIP4, VoD5, video streaming, P2P6, Web, among others. 

 

 

1.2 Motivation 
 

Nowadays, the expansion of encrypted communications has caused network operators to 

have a high level of uncertainty when it comes to quality indicators at the application layer, 

 
1 Long Term Evolution 
2 Quality of Service 
3 Over the Top 
4 Voice over Internet Protocol 
5 Video on Demand 
6 Peer to Peer 
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such as video or audio quality, blocking duration, among others [4]. Furthermore, there is a 

lack of extensive knowledge related to the behavior of users within the network, which 

implies that QoS management represents a significant challenge for operators as they cannot 

offer personalized plans or do not know what kind of services or mobile devices fit their 

clients’ preferences. Currently, the information that the network operators have, is collected 

from Datasets, such as the CDR7s, and they are mainly used for marketing purposes, only 

generating the data plans offered to the users, whether prepaid or postpaid. Hence, the 

information gathered by traditional operators does not take into consideration the QoE8 of 

users when they are using the applications on their smartphones, which sometimes leads to a 

stalemate in the improvement of services [5]. 

 

Therefore, mechanisms such as network monitoring (control and surveillance of the network) 

and traffic classification (categorization of the network information) play an important role 

since they permit to capture different Internet flows, gathering data that allows to obtain an 

adequate perspective of the information exchanged inside the network [6], enabling network 

administrators to detect threats, maintain the quality of the service, prevent the collapse of 

networks, among other functionalities [7]. 

 

 

1.3 Problem Definition 
 

Given that applications and the world of smartphones and devices with Internet connection 

capabilities are increasing and each time are more sophisticated, network operators must be 

able to provide users with a better quality of service and user experience. With this in mind, 

traditional operators have to find the most suitable way to not be left behind in front of the 

exponential gains that the OTT applications providers are obtaining. Therefore, traditional 

operators need to leverage all the data that is exchanged inside their networks in order to 

obtain a complete knowledge of their customers’ behavior and needs in terms of services and 

applications. 

 

In view of the above, there is a need to design and implement an environment or mechanism 

that supports the monitoring of an LTE mobile network, allowing the construction of datasets, 

in order to gather information that holds the Internet consumption behavior of users within a 

network in an implicit way (without bothering the user), in such a way that the operators can 

take advantage of the benefit that this type of information can offer. Based on what has been 

previously described, this undergraduate thesis presents the following research question: 

 

 
7 Call detail record 
8 Quality of experience 
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How to implicitly monitor an LTE network to classify consumption trends of 

OTT services from mobile users? 

 

1.4 Objectives 
Considering the previous motivation and the research question, this project aims to monitor 

and classify the consumption of a user’s OTT services in the framework of the data plan of 

a simulated LTE network. 

 

In order to accomplish the objective an identification of a tool that allows the simulation of 

a LTE network infrastructure must be done, to be able to capture the OTT service 

consumption traffic such as video, messaging, browsing and audio generated on the 

simulated network users.  A dataset will be collected, containing the network attributes 

related to the consumption of OTT services by user. An implicit classification of the 

consumption of OTT services will be perform through machine learning algorithms, 

validating the dataset obtained. 

 

1.5 Research Contributions 
 

The contributions that are expected with this undergraduate thesis are: 

• The construction of an environment in which it is possible to monitor and collect 

traffic from OTT applications generated by users connected to an LTE mobile 

network. 

• A list of attributes that must be monitored in an LTE network in order to facilitate the 

construction of datasets related to the consumption of OTT applications done by 

users. 

• A dataset with the attributes taken from the LTE network that enable a posterior 

classification of OTT services. 

1.6 Document Structure 
This document has been divided into 7 chapters described below. 

 

• Chapter 1 presents the Context, Motivation, Problem statement, Objectives, Research 

Contributions, and the structure of this document . 

• Chapter 2 presents the background about the relevant topics concerning this research. 

This topics include mobile networks, traffic capturers, traffic generators, dataset, LTE 

simulators, OTT applications, traffic classification and machine learning. It also 

contains the related works that describes this proposal. 

• Chapter 3 presents the research that was done regarding the traffic generators and the 

integration with the simulated environment. 
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• Chapter 4 presents the process that was performed in order to obtain a synthetic 

generator of OTT applications and the datasets obtained alongside with the cleaning 

process. 

• Chapter 5 presents the tests implementing the classification through machine learning 

algorithms and its results. 

• Chapter 6 presents conclusions and future work. 
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CHAPTER 2 

STATE OF THE ART 

 

2.1 Background 
 

In this chapter, the concepts that were necessary for the development of this project are 

presented. The initial description is about mobile networks, traffic capturers, traffic 

generators, traffic classification, dataset and OTT applications. Subsequently the concept of 

machine learning is introduced. Finally, a brief survey of an LTE network simulator and its 

components is presented. Additionally, a set of related works about LTE simulators, traffic 

monitoring, datasets, traffic classification and OTT applications is presented. 

 

2.1.2 Mobile Networks: 

 

Mobile networks are those that allow the transmission of both, voice and multimedia data, 

through a mobile or cellular device, without having to be connected to any physical link, 

sending information through microwaves. It could be described as the capacity of using 

mobile technology while on the move [8]. 

These networks have evolved over the years and the use of smart phones and tablets has 

increased in the growth of mobile data traffic and signaling traffic [9]. The standards for these 

networks are changing and the evolution can be seen in standards such as 2G9, 3G10, 4G11, 

WiMax, EDGE12, GPRS13, among others, being LTE one of the most used networks in the 

world [8]. This technologies are introduced by the 3GPP14, who is the one in charge to define 

specifications and produce reports of these standards. It covers cellular telecommunications, 

including radio access, the core transport network, and service capabilities - including work 

on codecs, security, quality of service - and thus provides complete system specifications 

[10]. 

 

 

 
9 Second generation 
10 Third generation 
11 Fourth generation 
12 Enhanced Data rates for GSM Evolution 
13 General Packet Radio Service 
14 3th Generation Partnership Project 
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2.1.3 Traffic Captors: 

 

The tools that capture the traffic of the current networks, usually called Sniffers, are 

mechanisms that are responsible for the monitoring and analysis of the network traffic. Its 

main function is to examine packets, protocols and frames that are sent over the Internet, 

allowing the capture and visualization of the data. These can be based on software or 

hardware, collect the necessary data from a data network and then provide the possibility of 

using the information as needed. Normally these Sniffers are used only to capture the traffic 

of a local network, which means, it only captures the traffic from the network it belongs. If 

the problem is to capture traffic from other networks, other tools should be used or a change 

of the network’s infrastructure must be done [11]. 

 

2.1.4 Traffic Generators: 

 

The evolution of mobile networks is highly accelerated, which makes networks very diverse 

in terms of protocols, applications, technologies and devices [12]. This evolution created the 

need of increasing the Internet bandwidth having in mind that the traffic of end users must 

be well supported. For this reason, traffic generators are vital in the design, development and 

administration of networks. At the same time, network security has become imminent and 

tools are created to adequately reflect network conditions and topologies that allow testing 

the characteristics, problems and advantages of a network [13]. 

 

Traffic generators are a tool used to inject packets into a network in a controlled manner. 

These tools inject network packets of synthetic traffic and are capable of adapting to different 

network conditions [14]. 

 

2.1.5 Traffic Classification: 

 

Traffic classification is an automatic way to categorize the traffic that comes from the 

network in order to regulate it as data flows [15]. This characterization depends on various 

parameters such as protocols or techniques such as the port-based technique, the technique 

based on payload, statistical classification and DPI15 [16]. With this classification, network 

traffic can be handled in different classes or services, or users can be differentiated within a 

network. 

 

 

 

 
15 Deep packet inspection 
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2.1.6 Dataset: 

 

Datasets are sets of data that collect, capture and retain a large amount of information 

organized in byte streams and stored in logical registers [17]. In the present, datasets can 

contain any type of information, e.g. medical or insurance records, and these records can be 

stored in a program that will eventually make use of them. These datasets can be cataloged 

as appropriate, they can be viewed and they can be organized in different ways, according to 

how the information is planned to be accessed [18]. The data that is collected in the dataset 

is usually collected because it needs to be analyzed, an example of a tool for the analysis of 

datasets can be Microsoft Excel, since it allows to store different types of data and later 

analyze or manipulate them according to what is needed. 

 

2.1.7 Over-The-Top Applications 

 

Over The Top applications are Internet applications that provide different services or 

functionalities to end users by leveraging the ISPs16 infrastructure. Some of the most common 

functionalities are video calls, voice calls, video streaming, video conferencing, IM17, among 

others. Besides these applications are often the ones competing with the applications 

provided by the operators of telephony and internet [19]. 

 

 

2.1.8 Machine Learning 

 

Machine learning is a branch of AI18 that has been investigated since the 90's [20]. It belongs 

to a computational branch of algorithms that has evolved, and are designed to imitate human 

intelligence, learning from different environments. The algorithms that compose machine 

learning are computational algorithms that are not programmed to produce a specific output, 

on the contrary, they are programmed in such a way that these algorithms change their 

infrastructure as they have more experience (training) to be better each time [21]. 

In view of the above, machine learning is being used in different branches of research recently 

being used for the evaluation and classification of network traffic, such as HTTP19, FTP20, 

SMTP21, etc., helping the quality of service, monitoring and analysis of networks [22]. 

 
16 Internet Service Providers 
17 Instant messaging 
18 Artificial intelligence 
19 Hypertext Transfer Protocol 
20 File Transfer Protocol 
21 Simple Mail Transfer Protocol 
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Most of all, it is a tool used by the ISPs, to know what kind of applications goes through their 

network, and along with the traffic classification service providers can have a map containing 

the performance of the network [23]. 

 

Machine learning is divided into different techniques, and the most used are: supervised 

learning and unsupervised learning, a brief description of them is given below. 

 

2.1.8.1 Supervised learning 

 

Each input data training element is matched with a known classification label allowing the 

algorithm to see similarities and differences between the objects it is going to classify. It 

learns to identify the most important qualities of the datasets. This is done so the algorithm 

can be able to recognize instances that have not been seen by it before and classify them 

properly [21]. 

 

2.1.8.2 Unsupervised learning 

 

Unlike supervised learning, these algorithms do not have a set of output tags that allow the 

algorithm to make comparison between one element or another [21], that is, they do not have 

a previous guide treating the instances as random variables. These algorithms take the 

datasets and learn on the move, being able to adjust what was learned earlier and changing it 

as the learning is being done. At the output of this learning a data classification model is 

formed [24]. 

 

2.1.9 LTE Simulator 

 

LTE represents an emerging technology that provides mobile users the opportunity to access 

broadband internet through their smartphones. It is clear that the aspects of LTE networks is 

a topic that is worth investigating for both industrial and academic communities [25]. For 

this reason the results obtained in the master's thesis titled "Virtualized Evolved Packet Core 

for LTE Networks" developed in Universidad Del Cauca is taken into account within this 

project, where an LTE simulator based on the EPC22 architecture is presented. 

 

This simulator contains the modules (MME23, HSS24, SGW25, PGW26) along with a RAN27 

simulator and a SINK node [9]. These modules act as a server or client in each of their ports. 

 
22 Evolved Packet Core 
23 Mobility Management Entity 
24 Home Subscriber Server 
25 Serving Gateway 
26 Packet Data Network Gateway 
27 Radio Access Network 



9 

The control and the communication of data pass through the objects sending requests and 

answers between several entities of the system. To use this simulator it is necessary to have 

access to virtual machines based on Linux OS28 (Ubuntu 14.04). Six different virtual 

machines are needed, where each one of the machines represents a different network module.  

 

Figure 1 illustrates the architecture is shown below and a brief description of the modules 

that integrate this LTE EPC network is given: 

 

 
Figure 1. NFV29-Based LTE EPC System 

 [9] 

 

• RAN: Combines the UE30 and eNodeB31 modules, where UE represents the device 

used by the end users and the eNodeB represents the base station for the coverage of 

mobile users. It generates control and data traffic in the EPC network. This RAN 

simulator creates threads for each client object that is created, and what it does is to 

handle the communication of the control plane and the data plane with MME and 

SGW respectively [26]. 

 

• MME: This module communicates with the HSS to find the client's login 

information, looking for information related to it and updating the location. It also 

communicates with the SGW module for procedures related to the session and the 

carrier. It maintains a global map where all the communications are located and stores 

the information related to the connection and the status of the UEs. This hash map is 

accessed or updated on requests and responses from UE, HSS and SGW. [26] 

 

 
28 Operative System 
29 Network Functions Virtualization 
30 User Equipment 
31 Evolved NodeB 
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• HSS: Does operations related to databases and behaves as a client for the 

communication with the MME module. It is used to store information related to the 

UE such as authentication, subscription profile, and location tracking. It is in charge 

of answering the questions of the MME module with the information he seeks and 

processes from the database [26]. 

 

• SGW: This module manages the communication of the control plane with MME and 

the information of the data plane with PGW. It uses an upload server object and a 

download client object. Also similar to the MME, it maintains a hash map to store all 

the context information of the UE [26]. 

 

• PGW: Manages data plane communication with SGW and the SINK module. The 

information related to the UE is accessed or updated in a separate hash map. It has an 

IP32 table map that is used to assign static IP addresses for each UE that connects to 

the network [26]. 

 

• SINK: This module is used to represent a PDN33 server. Its purpose is to receive the 

generated traffic load and return the knowledge as a traffic download. The module 

uses a client/server object for the data transfer of uploading and downloading with 

PGW [26]. 

 

2.2 Related works 

 
In this section a brief description of the most relevant related works is presented, taking into 

account the research question previously presented. It should be noted that at the moment 

there are no similar works or contributions made for the specific area of study. For this, it 

was implemented a systematic mapping of academic documents, based on the methodology 

proposed in [27], that allows to find different papers related to this project. The sources used 

for the collection of information were: IEEExplore, Springerlink, ResearchGate and Scopus, 

using Springerlink as the main source of information.  

 

The topics of interest for this project are: traffic monitoring, which was divided into two 

topics: detection of intruders and traffic captors; LTE simulators, datasets, aimed at detecting 

intruders and mobile networks; the classification of traffic, centered on classification 

techniques and classification in mobile networks; and finally the OTT applications. With the 

topics of interest already identified, a review of the articles that were found is made, 

discarding those that do not contribute to the research project, distributing the remaining 

 
32 Internet protocol 
33 Packet Data Network 
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articles or works in the following way: 3 Documents for traffic monitoring, 2 Documents for 

LTE simulators , 4 Documents for datasets, 3 Documents for traffic classification and finally 

2 Documents for OTT applications. 

 

2.2.1 Traffic Monitoring - related works 

 

As mentioned before, for this thematic core different approaches defined as traffic captors 

and intrusion detection were considered. 

 

Starting with the traffic captors, in article [11] the importance of the captors is explained, 

emphasizing that these tools are good for data analysis, helping to examine packages, 

protocols and frames sent over the networks, whether they are wired or not, showing the 

content of the packet, which helps to understand the behavior of the network, make good use 

of bandwidth resources and detect anomalies in the network security. These tools are usually 

called sniffers and can be based on hardware or software, but they always collect traffic 

information locally. In this work they also make a brief characterization of different sniffers 

such as Tcpdump, which is a tool that runs in console mode and is available for almost all 

operating systems and is a free software; Wireshark, is one of the most used sniffer, because 

it allows to observe the fields content with the highest level of detail possible; CommView, 

is a commercial tool designed for Windows and requires an Ethernet network of 10/100/1000 

Mbps; Kismet, is a program that works in various operating systems, operates through the 

console. But before starting using this tool, the wireless cards driver must be understood and 

administrator permissions must be obtain to change different configurations settings; 

NetworkMiner is a tool that works mainly for Windows systems, this tool does not aim to 

collect information about network traffic, but to collect information about the host; and 

finally there is OmniPeek, which is a commercial network analyzer that has a very easy-to-

use GUI34, designed for both wireless and Ethernet networks. The above tools are the most 

used, however, there are other tools that are not like traditional sniffer, and have many more 

features. These tools are: InSSIDer and NetStumbler. 

 

In [28], they speak of the indispensable thing that is the monitoring of the network to be able 

to increase the safety of the same and to be able to understand the performance of modern 

networks. However, there is a very large gap between monitoring applications and traffic 

capture tools, since today's applications work in high-level layers, such as the transportation 

layer, and these tools work in the network layer. This sometimes causes irrelevant or 

duplicate packets of traffic to be captured. That is why they present a tool called Scap, an 

API35 that works in the transport layer and allows to capture traffic with very few packet 

losses, besides it helps different tools to improve their performance in a significant way. It is 

 
34 Graphical user interface 
35 Application programming interface 
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based on aggressive optimizations at the kernel level and the NIC36s. Therefore, they 

conclude that the approach they gave to this tool is the most adequate to close the gap in the 

capture and monitoring of traffic, as networks become faster and the applications more 

sophisticated. 

 

In the second defined approach (Intrusion Detection) there is [29], which talks about how the 

continuous analysis and monitoring of the network is a very heavy task. The capture and 

processing of the packets in a continuous way is demanding computationally speaking, and 

it is even more when in the day there are peaks of traffic that can over dimension the network. 

For an intrusion detection environment the information must be delivered as quickly as 

possible and thus be able to make an early detection of insecurities. However, the oversized 

networks at peak times cause this information to be delayed and therefore the network data 

starts to pile up. Because of it, they present a simulated environment tool with variable 

network loads and large datasets based on Hadoop, which uses cloud bursting to break some 

traffic and improve the load network performance up to a 50%. 

 

2.2.2 LTE simulators - related works 

 

For LTE simulators, only the papers after 2014 were taken into account. This decision was 

made since some of the simulators were developed with a prior infrastructure, only providing 

the physical layer of the network. Also, some of the simulators did not focus on the data 

exchange within the network, they were not scalable and were used for an only purpose. 

 

In the first article, [30], they explain how networks simulation is an optimal way for research 

on LTE networks. However, there are no simulators that allow monitoring specific 

applications, since within the networks generic data is sent. They created the LTE Open-Sim 

open simulator, which allows the transport and application layers to be implemented and do 

not have the limitation of the other simulators. It simulates a virtual LTE network, with the 

ability to connect real hosts through a real-time wired link. In this case, this simulator is made 

and optimized to track video streaming applications and focus on QoE research in the 

transmission of video through an LTE network. They present a simple simulator that consists 

of 3 modules in its main architecture, the Virtual LTE network module, Transit gateway and 

Routing table. The first is used to provide the simulated LTE network with IP connectivity. 

The second is used so that data packets can be transferred and received within the network, 

and the last one is used to give the routing rules when the packets are sent on the network. 

 

In the article [31], a SimuLTE simulator based on OMNeT ++ is presented. It has a modular 

architecture, which facilitates the expansion and integration of the modules. It also allows to 

the LTE network not being the only available network, and allows it to be a part of a much 

 
36 Network Interface Cards 
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wider network. SimuLTE simulates the data plane of the RAN. The modules communicate 

through messages that are sent by gateways that act as interfaces. It presents a complete 

protocol stack, a realistic physical layer and programming capabilities. It is a simulator that 

has the ability to evolve according to the evolution that real networks are presenting and the 

authors of the article are still working on its improvement and include new features to the 

simulator. 

 

2.2.3 Datasets - related works 

 

The papers found in relation to the thematic core dataset core were divided into two different 

subtopics. The dataset oriented to intrusion detection and the dataset oriented to mobile 

networks. 

 

Starting with the datasets oriented to IDS37, in the paper [32] they talk about how IDS’ are 

very important to detect malware in networks and how the non-optimization of these tools 

makes this task a very complicated one, since computational time is very high. They take 

different datasets that contain network traffic, taking into account only the attributes that can 

contribute to the identification of Malware, since many of these attributes may not be 

relevant, may be redundant or may not contain information on the intrusion detection; and 

then test these new datasets with classifiers like NaiveBayes, J48 and PART. They conclude 

that the technique used reduces by 82.93% the attributes that are computed and has an 

acceptable accuracy. 

 

In paper [33] they talk about the importance of the defense against the attack mechanisms in 

the networks, and therefore they create a toolkit called Intrusion Detection dataset. This 

toolkit facilitates the creation of datasets that are ruled by four requirements: named attacks, 

high data quality, both attacks and normal traffic, publicly available to be reproducible and  

flexibility to test them in different scenarios. This tool lets inject traffic from named attacks 

in an environment that is totally controlled and allows to create the pcap files that contain the 

attacks and then be able to do the analysis. 

 

The second subtopic for the Dataset are those oriented to mobile networks. In this part it was 

found the paper [34], where the authors based their research on the CDRs that are collected 

in the mobile networks. These CDRs contain information about users, how, when and with 

whom they are communicating. They may also contain location data and in some cases the 

age and gender of the person. These datasets allows to observe the users’ behavior from a 

very high point of view, finding that the behavior of the people’s mobility is very predictable, 

being able to monitor daily life and the response to catastrophes in a populations. These 

 
37 Intrusion Detection System 
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dataset are not for public knowledge and companies only give a certain amount of 

information to a few research groups to be managed.  

 

The article [35] takes a dataset of cellular networks obtained by Orange, where they applied 

identification strategies for social influence. They emphasize that MNO38s take into account 

this data just for operational use or for the billing details. But these datasets have a lot of 

information about the initiator and receiver of the calls, the date and even the geolocation of 

the individuals, and sometimes it can be inferred the work place and home of the subscribers, 

and also give socio-economic information of the environment. The study shows that social 

influence has a great impact on customers and that MNOs can benefit from these analysis in 

order to improve the user's QoE. 

 

2.2.4 Traffic Classification - related works 

 

This thematic core is also divided by two subtopics: traffic classification techniques and 

traffic classification on mobile networks. 

 

In the articles related to traffic classification techniques, it has been found [36], where they 

talk about how difficult it has become to classify traffic in encrypted networks. For this 

reason, they propose a classification of traffic based on neuronal networks. This method 

integrates the extraction of features, the selection of features and a classifier in the same 

frame. It is a method based on deep learning and is used 1D-CNN39 as a learning algorithm 

using an end-to-end strategy. This technique does not divide the problem into parts, instead, 

directly learns the non-linear relationship between the traffic input and the output label. They 

conclude that CNN-based algorithms have a good potential for classifying traffic since there 

were significant improvements respect to the previously used algorithms, as is the case of the 

traditional method of encrypted traffic classification using the strategy of dividing the 

problem in several parts. 

 

In work [37], they talk about the different approaches that have been used over the years for 

the traffic classification, and emphasizes that these techniques cannot explain the relationship 

between the characteristics that describe the traffic flow and classes of the corresponding 

traffic. For this reason, they use the MOEFC fuzzy classifier that has good precision and 

interpretability. 

They used two different dataset extracted from a real internet traffic network. Their results 

showed that this technique reaches a precision of 93% and the models generated are 

characterized by high levels of interpretability. This was done by taking a set of data to train 

 
38 Mobile network operators 
39 Convolutional neural networks 
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the classifier and then using the other for testing reasons, finding that the classification rate, 

the rate of true positives and the rate of false positives have an acceptable level of precision. 

 

In the traffic classification oriented to mobile networks, paper [38] talks about how in 

telecommunications networks it is needed a lot of detection and classification of anomalous 

behaviors for a quick response to any occurring failure. They show that if a project is working 

with a  dataset with the majority of the traffic being anomalous, the learning systems will 

take this behavior as something normal and those failures will not be able to be classified 

properly. Therefore, this paper proposes a method for detecting anomalies given in two 

stages: datasets filtering and anomalies classification by an automated process. They made 

use of the mobile network, Nokia Serve atOnce Traffica, which allowed them to monitor the 

QoS in real time, the service use and the traffic passing through the entire mobile network. 

They found that the proposed FSM40 method detected a greater number of anomalies by 

obtaining the data in a live LTE network. This method does not seek to replace the methods 

that are normally used for the anomalies detection, but complements the existing methods. 

 

2.2.5 OTT Applications - related works 

For this subsection, the papers related to OTT applications are oriented to mobile networks. 

Taking into account the gaps that mobile services providers have when it comes to these 

technologies.  

 

In [39] the authors introduce the experience quality function for services based on SDN41. 

They talk about how the MNOs are falling behind with the earnings, while the OTT 

applications are gaining momentum and are keeping the earnings. This approach allows the 

MNOs to offer a better service for OTT applications, ensuring good performance of these 

through traffic management mechanisms. Thus, QoE-Serv allows operators to be in the 

middle of OTT providers and customers, offering free services or more advanced qualities 

for premium users. So, this approach will leave a gap open to introduce new business models 

for both OTT providers and MNOs. 

 

In [5], the authors talk about how LTE network operators do not take into account the 

application or the content that is being transmitted in the network. Therefore the client’s 

experience in terms of the use of OTT applications is not very good, since each session has 

a demand for individual bandwidth and is very dynamic. What network operators do 

nowadays is to maximize spectral efficiency, but this is not linked to the user experience. For 

that matter, it is proposed an experience quality manager that formulates dynamically the 

QoE objectives for the applications, adapts the bandwidth for the specific QoE of the 

application, ensuring that each session has the correct amount of resources needed for a good 

 
40 failure significance metric 
41 Software defined networks 
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QoE, instead of providing circumstantial improvements. To achieve this, they are based on 

the type, content characteristics and traffic patterns of the OTT applications, and thus make 

the user experience much better within mobile networks. 

 

The table below presents a summary of the proposed scheme for the classification of articles, 

along with a brief description of each defined thematic group. 

 

 

Thematic Groups Categories 
Related 

works 
Description 

TRAFFIC 

MONITORING 

Intrusion 

Detection 
[29] 

In this paper they talk about the traffic 

detection in networks, but more 

specifically about the intrusion 

detection. Taking into account the 

different tools that allow capturing 

traffic, they talk about how sometimes 

the capture and analysis of traffic 

becomes a heavy task and present a 

solution to this problem, allowing a 

reduction in the traffic processing 

time. 

Traffic captor  
[11], 

[28] 

These papers talk about the different 

traffic captors used for different 

purposes in the networks. They show 

the most used Sniffers and how these 

tools are the ones used for the 

monitoring and analysis of traffic on 

the networks. 

LTE 

SIMULATORS 

LTE network 

Simulator 

[30], 

[31] 

These works focus on different LTE 

network simulators. They expose the 

tools they have used and which of 

these tools are used in the simulators 

proposed. What stands out is that all 

the simulators presented in this part 

are proprietary. 

DATASETS 
Intrusion 

Detection  

[32], 

[33] 

These research projects expose the 

great need to cover the data with a 

good security system. They mainly 

speak about the characteristics that the 

different network information has, 
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emphasizing on the attributes that 

must be taken into account when 

processing the dataset for the 

intrusion detection and malware. 

Mobile 

Networks  

[34], 

[35] 

These papers are focused on the traffic 

generated in the mobile network 

through different applications existing 

today, through smartphones. They 

talk about how the mobile network 

provides a large amount of 

information which can be used to 

create market strategies. 

TRAFFIC 

CLASSIFICATION 

Traffic 

classification 

techniques 

[36], 

[37] 

These articles talk about the different 

traffic classification techniques that 

exist at the moment. They are also 

focused on the existing problem with 

the network encrypted data and how 

they can have an optimization of the 

working time for computers when the 

information classification is being 

done. 

Traffic 

classification 

on mobile 

networks  

[38] 

In this paper they talk about how 

network administrators need to 

adequate tools to make a more 

efficient management of LTE 

networks.  The network can behave 

abnormally and introduce errors 

without network administrators 

realizing it. In order to fulfill this 

purpose, they created the FSM 

method to be able to provide greater 

accuracy when detecting anomalies in 

the networks. 

OTT 

APPLICATIONS 

Mobile 

networks 
[39], [5] 

These works are focused on OTT 

applications in current mobile 

networks. They talk about the quality 

of service in LTE networks, and how 

these applications have affected 

mobile service providers. They 

explain how MNOs can take 
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advantage of the information that 

OTT applications deliver regarding 

customers. 

Table 1. Related Works classification. 

 

2.3 Gaps 
 

Previously it was presented the different approaches of the works related to the proposed 

thematic groups. It can be seen that in the topics of traffic monitoring and dataset, intrusion 

detection approaches were found, this being one of the most treated topics, since the security 

in data networks is an issue that concerns everybody. Very few works were found concerning 

mobile networks, and more specifically to LTE networks. In these papers they generalize the 

capture, analysis and monitoring of network traffic for generic networks. On the other hand, 

LTE simulators have a good approach in terms of network management, taking into account 

the real networks and scalability, so various purposes can be fulfilled with them, such as 

having a simulator capable of working in the transport and application layer of a network or 

have a realistic physical layer with the complete protocol stack. In the thematic core of OTT 

applications, they want to demonstrate that with network monitoring operators, mobile 

service providers can benefit by taking advantage of the QoE. In the traffic classification 

techniques, they talk about different approaches that can be used to have the most optimal 

classification for the different types of traffic. 

 

The following table will show the identified gaps of the works that were most relevant 

according to the thematic nuclei: 

 

Some of these works are related to the construction or use of datasets. However, not many of 

them take into account the harvest of OTT application traffic generated by users within a 

mobile network. 

 

In none of the works mentioned above an evidence of a data classification in mobile networks 

was found, from the OTT applications that users use, to obtain a better quality of service. 

 

None of the works considered an integration of the LTE network simulator and the data 

capture, as this project aims, since they all talk about the tools needed to perform this but 

separately, that is, they do not talk about the interaction between the simulator with the data 

capture tools, nor the creation of a dataset from the integration of these tools. 

 

 

 



19 

Traffic monitoring related works 

Related work Contributions Gaps 

[11] It talks about the most used 

tools for capturing traffic, 

describes each one in a brief 

but accurate way. 

It has no relationship with 

any specific type of traffic or 

with LTE networks. 

[28] With its Scap tool, it allows 

to capture traffic from the 

transport layer and not from 

the network layer. 

Its orientation is general and 

does not cover the capture of 

specific applications. 

[29] They present a simulated 

tool, based on cloud bursting 

helping to minimize the 

weight of a network load is 

so the traffic processing is 

done in a much faster way. 

Does not talk about specific 

traffic and does not include 

LTE networks. 

LTE Simulators related works 

Related work Contributions Gaps 

[30] They present a simulator 

that works in the transport 

and application layer, with 

the ability to connect real 

hosts to the network. 

They focus on QoE for 

video transmission and do 

not cover other applications 

such as VoIP or IM. 

[31] They make a simulator 

based on OMNeT ++, with 

great scalability of the 

network so  it can evolve as 

the LTE networks progress. 

It is a much more focused 

simulator in the physical 

layer and the RAN data 

plane. It does not focus on 

OTT applications or the 

different ways of capturing 

the traffic that goes through 

the network. 

Dataset related works 

Related work Contributions Gaps 

[32] They let know that the 

cleaning of the dataset 

reduces the computational 

time and in addition it can 

increase the accuracy with 

which the classifiers work. 

They only take into account 

the IDS and do not talk 

about mobile network traffic 

or OTT applications. 
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[33] They create a tool capable of 

injecting attacks traffic to 

the networks, later being 

able to extract the dataset for 

its later analysis. 

The generated traffic is only 

malicious traffic, which 

contains attacks on the 

networks. 

[34] They talk about the CDRs 

that companies collect, and 

that from these data 

behaviors can be inferred of 

certain groups of users, such 

as knowing how they can 

respond to catastrophes. 

They do not focus on 

specific applications, they 

only monitor the mobility of 

users and how predictable 

their behavior can be. 

[35] They talk about how MNOs 

can benefit from the 

information they collect 

from CDRs. Inferring the 

work or house place of a 

person. 

Despite being based on a 

dataset provided by a 

cellular company, it does not 

take into account much 

information that CDRs may 

contain regarding traffic. 

Traffic classification related works 

Related work Contributions Gaps 

[36] It proposes a traffic 

classification based on 

neural networks. 

It talks about the 

classification of encrypted 

traffic, but does not take into 

account the traffic 

classification of specific 

applications. 

[37] Sometimes the classifiers 

cannot give an exact 

relationship between the 

characteristics that describe 

the traffic flow and the 

classes corresponding to the 

traffic. That is why they 

proposed the MOEFC 

classifier which gives a good 

precision and has good 

interpretability. 

The traffic they take for this 

project is generic and does 

not come from LTE 

networks. 

[38] For contemporary LTE 

networks, a quick response 

system is needed in real 

Despite working on a 

simulated LTE network, the 

traffic they collect is for the 
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time. Therefore they 

propose a method that 

allows to detect anomalies in 

the network in an effective 

way. 

evaluation of anomalies and 

not for the traffic of OTT 

applications. 

OTT Applications related works 

Related work Contributions Gaps 

[39] They show how MNOs can 

take advantage of OTT 

applications to introduce 

new business models. 

They do not talk about a 

system that allows the 

capture of traffic implicitly 

for its analysis. 

[5] They talk about how the 

network operators are 

failing respect to the users’ 

QoE and present an 

alternative based on the type 

of traffic, the content 

characteristics and the 

traffic patterns of the OTT 

applications so the QoE 

improves exponentially. 

Although they take into 

account the traffic 

characteristics of OTT 

applications, they do not 

focus on specific 

applications. 

Table 2. Identified gaps. 
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Summary 
 

In this chapter there is a brief explanation of the necessary concepts for this undergraduate 

thesis such as mobile networks, traffic capturers, traffic generators, traffic classification, 

dataset and OTT applications, also giving a brief description of the LTE simulator that was 

chosen for this project. Following are the works related to traffic monitoring, LTE simulators, 

OTT applications, traffic classification and datasets. 

 

Consequently, the gaps that the investigated works have with this undergraduate thesis are 

exposed, showing the contributions and taking into account the objectives proposed in the 

first chapter of this document. 
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CHAPTER 3 

TRAFFIC GENERATORS 

COMPARISON AND INTEGRATION 

TESTS 

 

In this chapter, the different traffic generators that were found, the characteristics that each 

of them has and why the integration could not be performed, since the tools that were found 

did not fulfill the project’s objectives, are presenter. To give a brief context of what was 

looked for in the generators some of the main characteristics that were needed are mentioned 

as follows. The traffic generator should: have a client-server architecture, generate traffic of 

specific OTT applications, to be able to manipulate the protocols, be an open source software, 

among others. Further on, it will be explained in a specific way why the integration between 

the generator and the LTE simulator could not be done, and a small architecture and 

description of what was wanted with these tools will be given. 

3.1 Traffic generators comparison 

 
As it is known, traffic generators are very useful tools nowadays, because they allow to 

design, develop and test networks. They are usually implemented by network administrators 

in order to generate synthetic or real traffic in a controlled environment to check the status 

of networks, not only on their topologies but also on the elements that integrate them such as 

routers, firewall, IDS systems, etc. 

 

These traffic generators have different categories according to their characteristics, some of 

them are shown below: 

 

3.1.1 Reproduction engines 

 

They take as a reference the previously captured traffic to send the packets through the 

network [13]. 
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• Tcpreplay: It was created by Matt Undy in 1999, since then this tool has had a lot of 

collaborators over the years and it is a suite of GPLv342. This generator edits and 

reproduces network traffic that was previously captured by tools such as Wireshark 

or tcdump. It allows to classify traffic as a client or server, rewrite packets from layer 

2, 3 and 4 [13], and reproduce traffic back on the network through devices such as 

switches, routers, firewalls, etc. It is an open source software for UNIX OS and it can 

also work on Windows under Cygwin43. The traffic sent through Tcpreplay is a layer 

2 traffic and this tool does not have a client – server architecture [40]. 

• TCPivo: It is an open source Linux based traffic replayer. It is a high-performance 

packet replay tool that employs mechanisms for managing trace files and accurate 

low-overhead timers to achieve high throughput and accuracy. It replays packets at a 

very high rate on an x86-based server and using low-latency kernel patches [41]. Its 

previous name was NetVCR and it is supported by the National Science Foundation 

under Grant EIA-0130344 and the generous donations of Intel Corporation [42]. 

 

3.1.2 High performance generators 

These performance generators are generally used to test the network from end to end, 

working normally at high speed rates [13]. 

 

• iPerf: It was created by ESnet and Lawrence Berkeley National Laboratory under the 

BSD License. It is an open source program and it can run on various platforms like 

Windows, Linux, Android, MacOS X, among others [43]. It is mostly used for 

bandwidth tests, jitter delay and loss rate [13]. It allows to measure and adjust the 

performance of the network. It has the client-server functionality and can create data 

flows to measure the performance between the two ends in one or both directions and 

it can create different simultaneous connections between client and server [43]. 

• BRUTE: Its name means Brawny and RobUst Traffic Engine. BRUTE has been 

developed as a part of a project founded by the Italian Ministry of education, 

University and Research [44]. It is a packet traffic generator working at the Linux 

kernel level that guarantees controllable behavior [13]. It has been designed to 

produce high load of customizable network traffic. It can accurately generate traffic 

flows up to very high bit rates, achieving high precision and performance in the traffic 

generation [45]. To achieve this, it uses traffic patterns like constant bit rate, Poisson, 

Poisson Arrival of Burst, constant inter-departure time, etc [46]. It has a modular 

architecture and sends traffic for IPv4 and IPv6 networks. 

• Bruno: It is a traffic generator based on BRUTE, which combines the flexibility of 

the software with the performance the hardware provides [46]. It gives higher 

 
42 General Public License version 3.  
43 Is a  large collection of GNU and Open Source tools which provide functionality similar to a Linux 

distribution on Windows [103]. 
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precision values, in both, performance and ipt44 level [14]. It is also able to obtain a 

great number of simultaneous flows, unlike BRUTE, and it was used with an 

ENP2611 Radisys pci-board equipped with the Intel IXP2400NP [46]. 

• KUTE: Its acronym means Kernel-based Traffic Engine. It is a packet generator at 

the Linux kernel level. It can be configured for any type of package [14]. It has been 

developed as a high performance traffic generator and receiver, to be used mainly 

with Gigabit Ethernet [47]. It can be used to test the performance of hardware, routers, 

switches, etc. It can accurately measure high packet speeds. 

• Ostinato: It was created by P. Srivats back in 2010. It was an open-source generator 

licensed under GNU GPLv3, but since 2016 its creator is charging for binary 

downloads. It generates and analyzes traffic network and it is mainly used to test the 

network upstream and downstream links. It is used through a graphical user interface 

or a Python API. The interface level receives and transmits statistics and monitoring 

rates in the real-time network [48]. Users can define various traffic flows through the 

interface and easily transmit it to the network interface [13]. Supports protocols like: 

ARP45, IPv446, IPv647, UDP48, ICMP49, IGMP50, MLD51, HTTP, SIP52, RTSP53, 

NNTP54, VLAN55, Ethernet [48]. 

 

3.1.3 Model based generators 

These traffic generators use different stochastic models for various statistics such as the 

distribution of the package size and the correlation. Its main approach is to know if the 

generated traffic follows the statistics that are being established by the model [13]. 

• Mgen: Its name means Multi-generator and is open source software developed by the 

Naval Research Laboratory (NRL) PROTocol Engineering Advanced Networking 

(PROTEAN) Research Group. It has the capacity to perform tests and performance 

measurements of IP networks using TCP56 and UDP traffic, using a client-server 

architecture, supporting storage of the transport buffer, message counting and 

improvement of the payload. This tool generates traffic patterns in real time so that 

 
44 It is a user space utility program that allows a system administrator to make configurations of the tables 

provided by the linux kernel firewall and the chains and rules it stores (iptable) 
45 Address Resolution Protocol 
46 Internet protocol version 4 
4747 Internet protocol version 6 
48 User Datagram Protocol 
49 Internet Control Message Protocol 
50 Internet Group Management Protocol 
51 Multicast Listener Discovery 
52 Session Initiation Protocol 
53 Real Time Streaming Protocol 
54 Network News Transport Protocol 
55 virtual LAN 
56 Transmission Control Protocol 
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the network can be loaded in several ways. The generated traffic is received and saved 

and then it can be analyzed [49]. 

 

3.1.4 High-level and self-configurable generators 

They are based on the highest level of the network traffic model and are able to automatically 

configure their parameters based on live measurements, therefore the traffic that is seen at 

the exit is almost identical to the traffic presented in the network [13]. 

 

• Harpoon: It was created by Joel E. Sommers in 2005. It is a flow level traffic 

generator. Harpoon uses a set of distribution parameters to generate artificial traffic 

flows with characteristics that exhibit the same qualities as the actual traffic measures, 

including spatial and temporal characteristics. Harpoon can be used to generate traffic 

for testing applications or protocols, or to test network switching hardware. It is a free 

software with a client-server architecture [50]. It does not generate traffic from 

specific applications, just TCP and UDP generic traffic. 

• Swing: It was created by Kashi Venkatesh Vishwanath and Amin Vahdat back in 

2005. It is a free software and it has only been design for Linux OS. Swing is a high-

level generator that models the precise behavior of the user, network and application, 

based on the traffic observed in a single point, obtaining the distributions and the 

behavior of the network. It is a responsive traffic generator that accurately captures 

the packet interactions of a range of applications using a simple structural model. It 

is very configurable and allows the user to change the conditions of the network, the 

combination of applications and the characteristics of the application in order to 

generate new traffic (this generator replicates the protocol from different applications 

but it does not label as YouTube, WhatsApp, among others.). It has a client-server 

architecture and it is mostly used to emulate a trace between client and server within 

a link. Its authors implemented custom generators and listeners based on the 

application characteristics they extracted, they generate traffic for HTTP, UDP, FTP, 

SMTP, among others [51]. 

• TMIX: It is a generator capable of producing realistic synthetic traffic based on 

vectors, taking a packet header previously captured from a network link as input. It 

works for environments like ns57-2 or ns-3, GTNets software simulators and Linux 

and BSD58-based testbeds [52]. Its authors used a trace of TCP/IP header previously 

taken from different network links like campus networks, wide-area backbone 

networks, corporate intranets, wireless networks, etc., and constructed a model for all 

the TCP connection found in the network. TMIX takes a set of connection vectors 

and emulates the behavior at the socket level of the source application, like ftp or web 

servers, that originally created the connection in the network, this set of connection 

 
57 The Network Simulator 
58 Berkeley Software Distribution 
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vectors is what drives the traffic generation [53]. The output of TMIX is validated by 

the performance, RTT59 and the size of the flows of the distributions [13]. 

• LiTGen: Its acronym means Light Traffic Generator. This tool plays application 

traffic like web, mail and P2P, based on real parameters extracted from sessions and 

objects characteristics [14]. It is an easy-to-use open loop traffic generator that 

statistically models wireless traffic per user and per application. This traffic generator 

is based on a user-oriented approach and a hierarchical model. This model is made 

up of several semantically significant levels each characterized by a specific traffic 

entity. For each traffic entity, a set of random variables are defined, whether related 

to time or size. LiTGEN generates traffic from higher-level entities (sessions) to 

lower-level entities (packages). It is used to generate traffic corresponding to different 

user applications. Traffic is generated for each user independently. The final synthetic 

trace is obtained by superimposing the synthetic traffic of all users and all 

applications. It is validated by two types of metrics: wavelet based analysis for scaling 

behavior of the packet arrival process and queuing model fitting for performance 

characteristics. In an operational network, these statistics can be derived from the 

knowledge of the operator of the customer's subscription services [54]. The download 

source of this generator wasn’t found. 

• D-ITG: Its name means Distributed Internet Traffic Generator. It is a platform 

capable to produce Ipv4 and Ipv6 traffic by accurately replicating the workload of 

current internet applications such as VoIP, without labeling them. D-ITG is available 

on Linux, Windows OSX and FreeBSD and it is a completely free open source 

program. It was created by COMICS60 group from the University of Napoli Federico 

II [55]. It is a network measurement tool capable of measuring the most common 

performance metrics (packet loss, delay) at the packet level. It can generate traffic by 

following stochastic models for the packet size and the time between outputs to mimic 

the protocol behavior at the application level. It can replicate traffic’s statistical 

properties of different known applications (telnet, VoIP, voice activity detection, 

RTP61, DNS62 and network games) and allows TCP, UDP, SCTP163, ACCP164 and 

ICMP protocols. The passive FTP-type protocol is also allowed to perform 

experiments in the presence of NAT65. D-ITG is capable of generating multiple 

unidirectional flows from many senders to many receivers [56]. 

 

 
59 Round trip time 
60 COMputer for Interaction and CommunicationS 
61 Real Time Transport Protocol 
62 Domain Name System  
63 Stream Control Transmission Protocol 
64 Adaptive congestion control protocol 
65 Network Address Translation 
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3.1.5 Other generators 

 

• Tomahawk: It was created by Brian Smith and TippingPiont Inc. under the 

Reciprocal Public License and it is an open source tool [57]. This generator is 

designed specifically to measure the insecurity of NIPS66 systems and replay network 

traffic previously saved with Tcpdump. It sends packets containing some of the most 

known attacks and waits for the NIPS system to fail [13]. A single Tomahawk server 

can generate 200-450 Mbps of traffic and multiple servers can generate up to 1 Gbps, 

playing one or more network captures in pcap / tcpcump format. It can also perform 

assessments of NIPS behavior under extreme attack loads. A single PC can generate 

25-50 thousand connections/second of network traffic and it is only available for 

Linux based OS [57]. 

• Bit-Twist: It was developed by Addy Yeow Chin Heng and it was released in 2006. 

Bit-Twist is a simple but powerful generator of Ethernet packages based on libpcap. 

This tool can regenerate traffic captured on a live network and is useful for simulating 

network traffic, testing firewall, IDS, IPS and solving various problems in the 

network sending multiple tracking files at once. It has a complete editor of tracking 

files having control over most of the fields in Ethernet, ARP, IP, ICMP, TCP and 

UDP headers with correction of automatic composition addition of the header. Adds 

the user's payload to existing packages and saves them into another trace file. Highly 

programmable, with proper handling it can become a very flexible tool to generate 

packages. Runs in different OS like MacOS X, Linux and Windows, and it is a free 

software [58]. 

• PackETH: Miha Jemec developed this generator under the GPL license in 2003 and 

it is an open source tool. It is a GUI and CLI67 tool that generates Ethernet packets. 

Allows to send or create a possible packet or sequence of packets in the Ethernet link. 

Supports Ethernet II, ARP, IPv4, IPv6 protocols, user-defined network layer payload, 

UDP, TCP, ICMP, IGMP, user-defined transport layer payload, RTP, jumbo frames. 

It gives the time between packages, number of packages to send, sending with 

maximum speed, change parameters during the shipment, save the configuration in a 

file and upload from there, supports pcap format [59]. 

• Rude / Crude: It was developed in 2000 by Juha Laine, Sampo Saaristo and Rui 

Prior, and it is distributed under the GPLv2 license. It name stands by Real time UDP 

data emmiter / collector for rude. It is a small and flexible program that generates 

network traffic and can receive and register on another side of the network with crude. 

Currently these programs can only generate and measure UDP traffic [60].  

 
66 Network-based intrusion prevention systems 
67 Command-line interface 
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• OTG (Openairinterface traffic generator): It is a realistic tool for traffic generation 

at the packet level for scenarios of emerging applications. It is developed in C, which 

allows traffic to be generated with a restriction in real time and duration in real time. 

If OTG is directly connected to the user plane protocols, it is able to reproduce packet 

headers as in a real network protocol stack according to the user defined 

configuration. Both transmitter and receiver traffic statistics are generated and 

analyzed to derive the various measurements in the application-specific key 

performance indicators (performance, loss rate, latency, jitter). Its authors concentrate 

their efforts on applications like online gaming and M2M68. It was created in 2012 

[61]. 

• Pktgen: Its name stands by Packet generator. It is a traffic generator based on 

software driven by the DPDK69 fast packet processing framework powered by Intel's 

DPDK at 10Gbit wire rate traffic with 64 byte frames. It can act as a transmitter or as 

a receiver. It has a runtime environment to configure and start and stop traffic flows. 

It can show metrics in real time for several ports. It can generate packets in sequence 

when it iterates MAC70, IP addresses or source ports or destinations. It can handle 

UDP, TCP, ARP, ICMP, MPLS71, GRE72 packets. It can be controlled remotely 

through a TCP connection. It can run command scripts to configure repeatable test 

cases [62]. 

• Trafgen: It was created by Daniel Borkmann for the Linux Netsniff-ng toolkit 

project, and it is maintained by Tobias Klauser. It is a multi-threaded network traffic 

generator, based on nmap mechanisms. It uses the socket interface of the Linux 

package that postpones full control over the data packets and the headers of the 

packages in the user space. It has a powerful packet configuration language, which is 

quite low and is not limited to particular protocols. This generator is very useful for 

many types of load tests in order to analyze and subsequently improve the behavior 

of systems in attack situations. It has the potential to perform fuzz tests, which means 

that it can generate a configuration of packets with random numbers in all or certain 

packet offsets that are generated recently when a packet is sent. The low level nature 

of trafgen makes it independent of protocols and that is why it is very useful in 

scenarios where stress tests are needed. The pcap traces can also be converted into a 

trafgen packet configuration [63]. 

• Mausezahn: As the generator above, is was created for Netsniff-ng and its author is 

Herbert Haas [64]. It is a high-level packet generator that can be run on a hardware-

software device and comes with a CLI. Any diversity of packages can be elaborated. 

For example, it can be used to test the behavior of the network in extreme 

 
68 Machine-to-Machine 
69 Data Plane Development Kit 
70 Medium access control 
71 Multiprotocol Label Switching 
72 Generic Routing Encapsulation 
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circumstances (stress tests, malformed packages) or test the hardware-software 

devices for different attacks [13]. It is a free traffic generator written in C, which 

allows a user to send all possible packets. Its speed is close to the Ethernet limit and 

it depends on the hardware platform. The types of packages currently supported are 

ARP, BPDU73, IP, TCP, RTP, and DNS with limited support for ICMP. It has been 

designed as a fast traffic generator, so it can quickly overwhelm a LAN74 segment 

with undefined packets. It also supports security audits, it is very likely to create 

malicious packets, SVN75 floods, specify port ranges and addresses, DNS and ARP 

poisoning [64]. 

• Packet generator tool (NetScan Tools): The purpose of this tool is to create TCP, 

UDP, ICMP, ARP, CDP76 or RAW format packet or set of packets to send to target, 

then observe the target's response with a packet capturing tool like Wireshark. The 

tool can also playback previously captured packet files. It allows to have full control 

over the headers: ethernet source and destination MAC addresses, IP, TCP, UDP or 

ICMP header fields. It can send different types of packets in succession using 

scripting. It can also play back to previously saved packet capture file. This tool is 

not used to saturate an interface, and it is not a high speed traffic generator. The traffic 

created by this generator is unidirectional and uses WinPcap to send the packets [65]. 

• Multistream packet generator and analyzer: Multi Stream UDP / TCP Traffic 

Generator and Analyzer is a hardware-based Ethernet capable of generating multi-

stream Ethernet traffic of varying packet length and also analyze the loopback traffic. 

It has the capability to Generate and Analyze up to 16 UDP streams of traffic of 

various packet lengths. This tool finds itself especially useful for end-to-end testing 

of 1 Gbps and 10 Gbps WAN77 links [66]. 

• TCPcopy: It was created by NetEase. It is a replay tool that copies the live behavior 

of a TCP flow from an online server to a target server. It allows to modify TCP/IP 

headers and send this modify packets to the target server, so the target server would 

receive them as an online request form end-users. This is useful because networks 

administrator can do a live testing and reduce errors before the system is deployed. It 

is also able to overwhelm a server with traffic copying real-world data. This generator 

can be used for application based on HTTP, Memcached, POP378, SMTP, MySQL, 

etc. Its architecture has two objects, an online server, and a test server [67]. 

• Caliper: It is a tool that creates precise and responsive traffic. It was made for Gigabit 

Ethernet networks. Caliper takes the packet previously capture and send them into 

the network with a precise inter-transmission times, injects dynamically created 

 
73 Bridge Protocol Data Units 
74 Local Area Network 
75 Supervised Visitation Network 
76 Cisco Discovery Protocol 
77 Wide Area Network 
78 Post Office Protocol  
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packets of TCP and other protocols. Caliper is not a software itself and has been built 

on NetFPGA board to achieve high accuracy for the inter-arrival times of packages. 

It integrates with existing software tools like NetThreads that is a tool which allows 

to run threaded software on the NetFPGA. Both, Caliper and NetThreads are available 

as a free software [68]. 

 

3.1.6 Evaluation criteria and analysis 

 

This part will evaluate the criteria chosen to select the generator that best suits the purposes 

that this project has. First, a description of the parameters that were taken into account will 

be given, justifying why they are important for this part. Then, a comparative table will be 

shown among all the generators that were investigated showing which ones meet the chosen 

criteria and which ones do not.  

 

Initially, the first criteria chosen was that the generator should be open source, meaning that 

anyone could download it without having to pay or donate to the developers. This part is 

important because for this undergraduate work was not taken into account the purchase of 

any software, adding that when the programs are free, it is easier to manipulate and make 

changes if necessary, something that cannot be done when the software is proprietary. The 

second criteria was that the generator had a client/server architecture. This was taken into 

account since the LTE simulator, presented in chapter 2, consists of 6 different virtual 

machines in which the different modules of a physical LTE network are simulated. This leads 

to the existence of a client part, a server part, and a module responsible for carrying out the 

communication of the respective modules (the simulator will be explained in detail in the 

next section). Without a traffic generator that cannot be added to this kind of architecture, 

the data passing through the network would remain on a single virtual machine and there 

would not be a correct simulation of the communication performed by the clients and the 

servers within an LTE network, therefore the simulator would not be used correctly.  

 

The next criteria is that the generator should be capable of generating multiple flows within 

the network. As mentioned before, a client/server architecture is needed, hence the fact that 

the generator must be able to create several clients and several servers exchanging data 

simultaneously is needed. This is important because it is the way an LTE network behaves 

in real life. Not only one user is connected and not only a single server fulfills all the user’s 

requests, on the contrary, several thousand users are connected to the network and constantly 

exchange data packets and this is the objective considered in this undergraduate thesis. 

 

The next criteria, and perhaps the most important criteria of all, is that the generator should 

be capable of creating traffic from specific OTT applications. As mentioned earlier, now the 

Internet is changing very quickly and that involves the creation and development of different 
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and new applications that come to the market. A part of this are the OTT applications. For 

this reason, a generator that is able to create the flow of a specific OTT application, ensuring 

that such flow belongs to that exact application, is needed. This means, creating a flow for 

Spotify or Skype while being able to identify which packets belong to which application 

without an invasive process like DPI. 

 

The last criteria taken into account has to do with the documentation that could be found for 

each of the generators. This part is quite important because it lets know how the tool works 

and how it is installed, letting see the objectives for which the developers created the different 

generators. Without this documentation or installation guide the generators cannot be 

properly manipulated and there would be no clear idea of what each of them can do. 

Taking these criteria into account, table 3 presents a comparison with all the generators that 

were researched in the previous section are shown below.  

 

Generator 

Open 

source 

software 

Client/Server 

architecture 

Multiple 

flows 

Specific 

application 

traffic 

Documentation 

TCPreplay 
✓    ✓ 

TCPivo 
✓    ✓ 

Iperf 
✓ ✓ ✓  ✓ 

Brute 
✓  ✓  ✓ 

Bruno 
✓     

Kute 
✓    ✓ 

Ostinato 
  ✓  ✓ 

Mgen 
✓ ✓   ✓ 

Harpoon 
✓ ✓   ✓ 

Swing 
✓ ✓   ✓ 

TMIX 
✓     

LiTGen 
✓ ✓    

D-ITG 
✓ ✓   ✓ 

Tomahawk 
✓    ✓ 
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Bit-Twist 
✓  ✓  ✓ 

PackETH 
✓    ✓ 

Rude/Crude 
✓     

OTG 
✓     

Pktgen 
✓    ✓ 

Trafgen 
✓    ✓ 

Mausezahn 
✓    ✓ 

Packet 

generator 

Tool 

✓    ✓ 

Multistream 

packet 

generator 

and analyzer 

     

TCPcopy 
✓     

Caliper 
     

Table 3. Qualification of the generators characteristics. 

 

As it can be seen in table 3, almost all generators are open source, something that is quite 

suitable for what is needed in the project. On the contrary, It can be seen that three of them 

do not meet this criteria; Ostinato is a software that was initially free, but for a couple of 

years its developer has been asking for donations for every download that is made of the last 

version that is released, Caliper is a generator that has two parts, a part in software and a part 

in hardware. According to its developers, the software is completely free, but the fact of being 

based on a hardware element makes it generate an additional cost; Finally the Multistream 

packet generator and analyzer is a generator based entirely on hardware, which must be 

purchased for an additional cost. 

 

The next evaluation criteria that can be seen in the table is the client/server architecture that 

the generators have. Here it can be seen that the list of generators is reduced to six, concluding 

that most generators are only used to inject traffic into networks for the sole purpose of testing 

them, either to repair damage or failure or to develop new networks. 
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For generators that are capable of creating multiple data streams the list is reduced to four. 

Almost all generators are able to create a single thread of information exchange within the 

network, being unable to send different data streams at the same time. 

 

For the most important criterion, as mentioned above, it can be noted that there is no generator 

that supplies the desired feature, which is that the tool should be capable of generating traffic 

from specific OTT application. This leads to the conclusion that there is no traffic generator 

that can meet the objective of the project. 

 

Finally, the documentation found for the generators is very diverse. Many of them are 

generators that are on the market, they have their own web pages, help forums and manuals. 

However many others despite having articles that explain and appreciate the vision of their 

developers, do not have pages on the Internet where it can be reviewed or found the download 

links. For some, there needs to be a direct communication with the developers, in order to be 

able to have the software. Others are obsolete or have not been worked on in recent years. 

From others a reliable documentation couldn’t be found and another part of the generators 

were not developed by the same people, meaning that the community in general can 

contribute to the code creating new features, but without having the proper support for 

failures and functioning of the tool. 

 

3.2 Integration and Tests 
 

This part talks about the integration and the tests that were made to be able to fulfill the 

objectives of the project. First a brief introduction is given to the LTE simulator that was 

chosen; this simulator was taken into account because it is the simulator that has been 

working previously in the network of the University of Cauca. Next the revision of the 

generators is presented and how they were discarded one by one to be able to find the ideal 

generator that supplied the objective of the thesis. 

 

As it was said before, for this project the LTE simulator mentioned in chapter 2, section 2.1.9 

was taken into account. As it could be seen there, this simulator consists of 6 modules, RAN, 

MME, HSS, SGW, PGW and Sink. These 6 modules were installed in 6 different virtual 

machines on the Linux OS Ubuntu 14.04. This simulator has a traffic generator called Iperf3 

installed in the RAN and Sink module, and it has the Wireshark sniffer installed in the PGW 

machine. 

 

Before starting, to use the modules on each machine, it must be ensured that there is a 

connection between them by sending the PING79 command with the corresponding IP 

 
79 Command that allows the verification of the state of a connection between two hosts 
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addresses. Then, inside of each virtual machine, there is a folder with the name corresponding 

to the module of the machine. In that folder there is a .cpp file (for example mme.cpp), that 

file must be edited to add the IP addresses corresponding to the links a module has with the 

rest of the others (see figure 2), and thus guarantee the correct data flow between them. 

 

 
Figure 2. Connection between virtual machines. 

 [69] 

 

 

This simulator generates two types of traffic, control traffic, and data traffic. 

 

The control traffic occurs when the UE's in the RAN module continuously make the process 

of connection and disconnection to the network to create the control traffic. This traffic is the 

one that goes through the RAN, MME and HSS modules, remember that MME and HSS are 

the modules that store user information, such as location, connection and user authentication. 

Despite this being an important part, control traffic is not of great importance for this project. 

Data traffic, on the other hand, is where this work is centered. 

 

For this part, the LTE simulator has a traffic generator called Iperf3, with which TCP data 

can be sent with certain bandwidth and a certain time duration. To begin with the exchange 

of traffic, it must be launch the iperf3 server in the Sink module and the client in the RAN 

module, along with the commands to initialize the other modules in the simulator. In order 

to capture this traffic, Wireshark was used, which is installed in the PGW module. It is 

important to mention that the PGW module is an intermediary between the RAN and Sink, 

and through it the information that is uploaded and downloaded in the network will go 

through it. 

  

In spite of all the above, in order to fulfill the first objective of this project, an open source 

generator is needed, it has to have a client/server architecture, that is capable of generating 
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multiple data flows in the network and more important, that it is capable of generating traffic 

of specific OTT applications. 

 

In the previous section, it can be seen that there was a review of 25 generators, all with 

different characteristics. The first generators that were taken into account were those that 

were open source, and with a client/server architecture, these were: Iperf, Mgen, Harpoon, 

Swing, and D-ITG. The other generators were not taken into account since they do not have 

a client/server architecture, besides two of them (Multistream packet generator and analyzer 

and Caliper) are based on hardware elements, they were dismissed because these hardware 

elements have to be bought and as mentioned before, one of the criteria is that they do not 

have an additional cost, furthermore they work only injecting traffic into the network. For 

some of them, the download source was not found and there was not much information about 

them. Others are based on information previously collected with traffic capture tools such as 

Tcpdump, to replay among the network, some generators were focused on the precision with 

which the packets are sent, such as arrival times and packet loss. The others were more 

focused on testing networks for its design, development, and deployment, also counting those 

used for Intrusion Detection Systems and Ostinato presents its own graphic user interface 

and it is a non-free generator. 

 

Continuing with the generators that were chosen, Mgen and Harpoon were the first to be 

dismissed from this part, because they only are able to generate TCP and UDP traffic. D-ITG 

and Swing seemed the most suitable for this work since these generators can send data traffic 

such as HTTP, SMTP or RTP, which are the protocols used for browsing or VoIP. However, 

this was not enough, because although they allow to choose the application protocol that is 

being sent, there is no way to label the traffic as generated by an application, that is, it cannot 

be ensure that a flow created with these generators is from an OTT application like WhatsApp 

or YouTube. 

 

Therefore in order to find a traffic generator that fulfilled the project’s needs, the following 

alternative was found. The Wireshark sniffer was used along with nDPI80 library, a plugin 

that helps to label the captured packages by application, this plugin is part of the ntopng tool 

that will be introduced in the next chapter. nDPI helps to control and classify traffic 

accurately because it analyzes both, the content and the header of the packets, looking for 

any signature to specify which application data goes through the network (DPI using Quotient 

Filter). With the help of this tool, applications like WhatsApp, YouTube, Spotify, Skype and 

Google could be identified and used for the purpose of the project. In figure 3 it can be seen 

an architecture of how this tools integrate with each other and what is the output of the 

system. 

 
80 Ntopng Deep Packet Inspection 



37 

 
Figure 3. How Wireshark and nDPI work. 

 

After this, a program made with Python programming language named pcap_to_ditg was 

found. This program allows to pass flows from pcap files to D-ITG. However, this process 

could not be done since the tool did not work as easily as it is presented in its documentation 

(). In order to know what was causing the failure, the core script from pcap_to_ditg should 

be understood and modified and it was necessary to understand how to integrate a new plugin 

to D-ITG, which was not a trivial task. 

 

Furthermore, since the traffic generator implemented by pcap_to_ditg was D-ITG, it was 

necessary to perform a modification within the core of the LTE simulator which had iPerf3 

as its only traffic generator. To achieve such change, all the scripts of each of the six machines 

had to be modified, knowing exactly where to perform the traffic generator replacement. The 

previously described tasks would require an important amount of time and effort delaying 

the course of the investigation  without guaranteeing that what was needed within the project 

would be fulfilled. Therefore another alternative was needed. 

 

With this in mind, considering that iPerf3 was the traffic generator within the LTE simulator, 

another alternative was taken into account. With this generator the collected information, 

between the communication established by clients and servers, could be ordered by server, 

indicating that the traffic going to a specific server belongs to a specific application. Such 

possibility would allow to differentiate the traffic generated by each OTT application. 

However, it is an inadequate alternative since this tool is only capable of generating generic 

traffic without the possibility of protocol manipulation nor the data exchanged in the traffic 

that is being sent. Therefore, it is not possible to ensure that the generated traffic closely 

simulates a communication between a client and an OTT application. 
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As a final alternative, using a replay generator such as TCPreplay was considered since this 

tool allows to replay the traffic from specific OTT applications previously captured and 

identified with Wireshark and nDPI. This tool reproduced the pcap files without any 

difficulty. However, with this approach the tool does not present a client/server architecture, 

therefore it does not fulfill the established evaluation criteria. 

 

After all the previous integration tests, it was concluded that there is not a generator that 

meets the needs of this project and therefore in order to fulfill the first specific objective 

another solution had to be carried out. 

 

In the next chapter, an alternative capable of fulfilling the proposed objectives and proceed 

with the research work will be given. 
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Summary 
 

This chapter presented the research done for the different existing traffic generators. It was 

found that these generators are divided into different categories such as reproduction engines, 

high performance generators, generators based on models, and high level and self-

configurable generators, also finding others that were not within these categories. 

 

These generators serve different purposes and were created to meet goals needed by their 

authors. Many of them were created for network testing, their design, configuration and 

deployment. Others were created to test IDS’s, which send attacks through networks and 

enables the network administrators to have the ability to see the faults and errors found, to 

fix them. Other generators based on hardware systems were also found, which are able to 

send packets with a much higher speed than software-based generators can send. Some others 

were focused on the precision of the packages, so the research for these generators is based 

on the jitter, the inter-arrival times of the packets, the packet loss rate, among others. 

 

What was found was that all the generators send generic traffic through the networks and 

none, until now, is specialized in sending traffic of specific OTT applications such as 

WhatsApp, YouTube, Netflix, Skype, etc. 

 

Finally, a description of the simulator with the traffic generator integration is made and the 

justification of why the project could not fulfill its first specific objective is given. 
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CHAPTER 4 

 

SYNTHETIC GENERATOR OF 

TRAFFIC FROM OTT APPLICATIONS 

AND TESTS 
 

This chapter presents in detail the synthetic generator of traffic from OTT applications  traffic 

(SYNGEN) that had to be developed, taking into account that in the previous chapter it was 

concluded that none of the investigated traffic generation tools fulfilled the expected 

requirements to carry out this undergraduate thesis.  

 

First, there is a brief description of the dataset that was taken as a model for the creation of 

SYNGEN and why this dataset is useful for the purposes of this undergraduate thesis. 

Subsequently, the different environments implemented to obtain this dataset are presented. 

Consequently, a description about the process of generating traffic of OTT applications in a 

synthetic way is given, and finally the different generated datasets and the cleaning process 

applied to them are explained. 

 

4.1 Dataset description 
 

In order to be able to generate synthetic traffic from OTT applications, first it is mandatory 

to have a dataset that serves as a model from which the information can be extracted. This 

dataset must have labeled flows of  different OTT applications, i.e., for each flow that is 

stored, it necessary to be certain that this flow belongs to a given application. The dataset that 

was chosen, was taken from the paper [70]. In the paper the authors explain that the dataset 

was captured in one of the routers of the Universidad del Cauca during 6 days in 2017, 

collecting all the information that came from laptops, tablets and smartphones connected to 

the network.  

 

In the paper they expose the process of data collection as illustrated in the following figure, 

showing the architecture of the system to obtain the desired dataset: 
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Figure 3. Process to obtain the model dataset. 

[71] 

The architecture shown in the previous figure shows clearly the programs and files that were 

used to fulfill the purpose of creating a dataset in the proper way. To begin with, a computer, 

where Wireshark was installed, was taken into a network core as a packet capturer. All data 

packets captured from IP traffic were stored and saved in a set of files with the extension 

.pcap. Subsequently, and having in mind that the packets captured by the Wireshark tool do 

not hold the information of the application that is being consumed on the flow, this files were 

taken as input to the CICFlowMeter and ntopng programs separately. CICFlowMeter is a 

tool that generates bi-directional IP flows from the provided pcap file, generating a total of 

85 attributes, where the 6 most important attributes are: FlowID, SourceIP, SourcePort, 

DestinationIP, DestinationPort and Protocol.  

 

Later, and considering that the key purpose of the authors was to be able to identify the OTT 

application being consumed on each IP flow (e.g. YouTube, WhatsApp, Skype, among 

others). With the help of ntopng, a tool capable of taking the pcap files as input, and then 

obtain the layer 7 protocols using an embedded library called nDPI, which performs a deep 

inspection on the packages, such purpose was achieved. Consequently, those two files that 

are obtained separately by each software application, are passed through the next software, 

the Java Labeling App which labels each IP flow. This application takes the two files and 

compares them through 4 attributes, source and destination IP addresses, and source and 

destination ports. Taking into account that these 4 attributes are the same in both files, this 

software adds two new attributes to the CICFlowMeter file: an application code, which is an 

integer from 0 to 226 and the name of the application that is being consumed on that IP flow. 

 

The most important thing to note is that the file obtained, after the process done by the three 

software applications (CICFlowMeter, ntopng and Java Labeling App), is a dataset suitable 

for the objectives in this research project, since it contains IP flows labeled with their 

respective OTT applications which can serve as a model for the construction of the synthetic 

traffic generator. 
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4.1.1 Implemented software applications 

 

This subsection gives a brief technical description of the software tools shown in the figure 

3. 

 

Wireshark: It is a free software package analyzer, under the GNU GPLv2 license. It captures 

the traffic that runs over the network from a host and is normally used for network 

troubleshooting, analysis, software development and communications protocol and also for 

academic purposes. It runs on almost all OS like Windows, Linux and MacOS [72]. 

 

CICFlowMeter: It is a network traffic flow generator and analyzer created by the Canadian 

Institute for Cybersecurity at the University of New Brunswick. It is a tool capable of creating 

bi-directional flow, that is, in forward direction (source to destination) and in backward 

direction (destination to source), providing more than 80 statistical attributes such as 

duration, number of packets, number of bytes, among others, doing this in both directions. 

To the exit it delivers a file with CSV format, where there are 6 columns labeled for each 

flow, flowID, SourceIP, DestinationIP, SourcePort, DestinationPort and protocol [73].  

 

Ntopng: Is a more advanced version of ntop. It works on Linux, MacOS and Windows 

platforms. Among its features are: display network traffic in real time, monitor and report 

performance in real time (network latencies and applications, Time to and back (RTT), TCP 

statistics, such as retransmissions, off-order packets, lost packets, and transmitted bytes and 

packets). With the help of ntopng it was possible to obtain the layer 7 protocol (e.g., 

YouTube, Facebook, WhatsApp, etc.), since with CICFlowMeter this feature is not available. 

For this, DPI is used, through the nDPI tool embedded in ntopng [74]. 

 

Java Labeling Application: This application was developed in the article (Reference). What 

it does is a comparison of the files obtained from CICFlowMeter and ntopng, this comparison 

is done with four different attributes (source and destination IP addresses and source and 

destination ports). If these conditions in the two files are equal, then two more fields are 

added to the CICFlowMeter file, the application code which is an integer between 0 and 226, 

and the name of the application to which that stream belongs be it YouTube, Google, among 

others [71].  

 

4.1.2 Dataset attributes description  
 

For this section, CRISP-DM81 methodology [75] was used, which is a methodology described 

as a model of hierarchical processes that has four groups of tasks: phase, generic task, task 

 
81 Cross Industry Standard Process for Data Mining 
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specialized, and process instance; and which is divided into some phases of the reference 

model, they are: Business understanding, Data understanding, Data preparation, Modeling, 

Evaluation and Deployment [76].  

 

As mentioned before, the dataset obtained from Wireshark was passed through 

CICFlowMeter and ntopng separately. Then these two files were compared with Java 

Labeling Application and after this step it was obtained a single file where were the attributes 

analyzed with CICFlowMeter, adding the code and name of the application. This is part of 

business understanding, since it is known what is needed to achieve the objective. Next, the 

data understanding phase of the CRISP-DM methodology takes place and a brief description 

of the attributes that were obtained from the captured data stream is provided [70]. 

 

• Flow.ID: a flow identifier following the next format: SourceIP-DestinationIP-

SourcePort-DestinationPort-TransportProtocol 

• Source.IP: The source IP address of the flow. 

• Source.Port: The source port number 

• Destination.IP: The destination IP address. 

• Destination.Port: The destination port number. 

• Protocol: The transport layer protocol number identification (i.e.,TCP = 6, UDP = 

17). 

• Timestamp: The instant the packet was captured stored in the next date format: 

Dd/mm/yyyy HH:MM:SS 

• Flow.Duration: The total duration of the flow 

• Total.Fwd.Packets: The total number of packets in the forward direction. 

• Total.Backward.Packets: The total number of packets in the backward direction. 

• Total.Length.of.Fwd.Packets: The total quantity of bytes in the forward direction 

obtained from all the flow (all the packets transmitted). This is obtained from the 

Total Length field stored on the packets header. 

• Total.Length.of.Bwd.Packets: The total quantity of bytes in the backward direction 

obtained from all the flow (all the packets transmitted). This is obtained from the 

Total Length field stored on the packets header. 

• Fwd.Packet.Length.Max: The maximum value in bytes of the packets length in the 

forward direction. 

• Fwd.Packet.Length.Min: The minimum value in bytes of the packets length in the 

forward direction. 

• Fwd.Packet.Length.Mean: The mean value in bytes of the packets length in the 

forward direction. 

• Fwd.Packet.Length.Std: The standard deviation in bytes of the packets length in the 

forward direction. 
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• Bwd.Packet.Length.Max: The maximum value in bytes of the packets length in the 

backward direction. 

• Bwd.Packet.Length.Min: The minimum value in bytes of the packets length in the 

backward direction. 

• Bwd.Packet.Length.Mean: The mean value in bytes of the packets length in the 

backward direction. 

• Bwd.Packet.Length.Std: The standard deviation in bytes of the packets length in the 

backward direction. 

• Flow.Bytes.s: The number of bytes per second in the flow. 

• Flow.Packets.s: The number of packets per second in the flow. 

• Flow.IAT.Mean: The mean value of the inter-arrival time of the flow (in both 

directions). 

• Flow.IAT.Std: The standard deviation of the inter-arrival time of the flow (in both 

directions). 

• Flow.IAT.Max: The maximum value of the inter-arrival time of the flow (in both 

directions). 

• Flow.IAT.Min: The minimum value of the inter-arrival time of the flow (in both 

directions). 

• Fwd.IAT.Total: The total Inter-arrival time in the forward direction. 

• Fwd.IAT.Mean: The mean inter-arrival time in the forward direction. 

• Fwd.IAT.Std: The standard inter-arrival time in the forward direction 

• Fwd.IAT.Max: The maximum value of the inter-arrival time in the forward direction 

• Fwd.IAT.Min: The minimum value of the inter-arrival time in the forward direction 

• Bwd.IAT.Total: The total Inter-arrival time in the backward direction. 

• Bwd.IAT.Mean: The mean inter-arrival time in the backward direction. 

• Bwd.IAT.Std: The standard inter-arrival time in the backward direction. 

• Bwd.IAT.Max: The maximum value of the inter-arrival time in the backward 

direction. 

• Bwd.IAT.Min: The minimum value of the inter-arrival time in the backward 

direction 

• Fwd.PSH.Flags: The number of times the packets sent in the flow had the pushing 

flag bit set as 1 in the forward direction. The Pushing flag allows to send information 

immediately without filling all the buffer size from a packet, notifying the receptor to 

pass the packet to the application at once, it is very useful for real time applications. 

• Bwd.PSH.Flags: The number of times the packets sent in the flow had the PSH 

(pushing) flag bit set as 1 in the backward direction. 

• Fwd.URG.Flags: The number of times the packets sent in the flow had the URG 

(Urgent) flag bit set as 1 in the forward direction. The URG flag is used to inform a 

receiving station that certain data within a segment is urgent and should be prioritized. 
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If the URG flag is set, the receiving station evaluates the urgent pointer, a 16-bit field 

in the TCP header. This pointer indicates how much of the data in the segment, 

counting from the first byte, is urgent. 

• Bwd.URG.Flags: The number of times the packets sent in the flow had the URG 

(Urgent) flag bit set as 1 in the backward direction. 

• Fwd.Header.Length: The header length of the packets flow in the forward direction. 

• Bwd.Header.Length: The header length of the packets flow in the backward 

direction. 

• Fwd.Packets.s: The number of packets per second in the forward direction. 

• Bwd.Packets.s: The number of packets per second in the backward direction. 

• Min.Packet.Length: The minimum length of the packets registered in the flow (both 

forward and backward directions). 

• Max.Packet.Length: The maximum length of the packets registered in the flow 

(both forward and backward directions). 

• Packet.Length.Mean: The mean value of the length of the packets registered in the 

flow (both forward and backward directions). 

• Packet.Length.Std: The standard deviation of the length of the packets registered in 

the flow (both forward and backward directions). 

• Packet.Length.Variance: The variance of the length of the packets registered in the 

flow (both forward and backward directions). 

• FIN.Flag.Count: The number of times the packets sent in the flow had the FIN flag 

bit set as 1. In the normal case, each side terminates its end of the connection by 

sending a special message with the FIN (finish) bit set. This message, sometimes 

called a FIN, serves as a connection termination request to the other device, while 

also possibly carrying data like a regular segment. The device receiving the FIN 

responds with an acknowledgment to the FIN to indicate that it was received. The 

connection as a whole is not considered terminated until both sides have finished the 

shutdown procedure by sending a FIN and receiving an ACK. 

• SYN.Flag.Count: The number of times the packets sent in the flow (in both 

directions) had the SYN (Synchronize) flag bit set as 1. The SYN (Synchronize) flag 

is the TCP packet flag that is used to initiate a TCP connection. A packet containing 

solely a SYN flag is the first part of the "three-way handshake" of TCP connection 

initiation. It is responded to with a SYN-ACK packet. Packets setting the SYN flag 

can also be used to perform a SYN flood and a SYN scan. 

• RST.Flag.Count: The number of times the packets sent in the flow (in both 

directions) had the RST (Reset) flag bit set as 1 - (An RST says reset the connection. 

It must be sent whenever a segment arrives which apparently is not intended for the 

current connection - FIN says, "I finished talking to you, but I'll still listen to 

everything you have to say until you're done" (Wait for an ACK) RST says, "There 

is no conversation. I am resetting the connection!"). 
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• PSH.Flag.Count: The number of times the packets sent in the flow (in both 

directions) had the PSH (Pushing) flag bit set as 1. 

• ACK.Flag.Count: The number of times the packets sent in the flow (in both 

directions) had the ACK (Acknowledged) flag bit set as 1. To establish a connection, 

TCP uses a three-way handshake. Before a client attempts to connect with a server, 

the server must first bind to and listen at a port to open it up for connections: this is 

called a passive open. Once the passive open is established, a client may initiate an 

active open. 

• URG.Flag.Count: The number of times the packets sent in the flow (in both 

directions) had the URG (Urgent) flag bit set as 1. 

• CWE.Flag.Count: The number of times the packets sent in the flow (in both 

directions) had the CWR (Congestion Window Reduced) TCP flag set as 1. During 

the synchronization phase of a connection between client and server, the TCP CWR 

and ECE (Explicit Congestion Notification - Echo) flags work in conjunction to 

establish whether the connection is capable of leveraging congestion notification. In 

order to work, both client and server need to support ECN (Explicit Congestion 

Notification). To accomplish this, the sender sends a SYN packet with the ECE and 

CWR flags set, and the receiver sends back the SYN-ACK with only the ECE flag 

set. Any other configuration indicates a non-ECN setup. 

• ECE.Flag.Count: The number of times the packets sent in the flow (in both 

directions) had the ECE (Explicit Congestion Notification Echo) TCP flag set as 1. 

• Down.Up.Ratio: Download and upload ratio. 

• Average.Packet.Size: The average size of each packet. It is important to notice that 

Packet Length specify the size of the whole packet including the header, trailer and 

the data that send on that packet. But Packet Size specify only the size of the header 

on the packet. 

• Avg.Fwd.Segment.Size: The average segment size observed in the forward 

direction. A TCP segment is the Protocol Data Unit (PDU) which consists of a TCP 

header and an application data piece which comes from the upper Application Layer. 

Transport layer data is generally named as segment and network layer data unit is 

named as datagram but when UDP is used as transport layer protocol the data unit is 

called UDP datagram since the UDP data unit is not segmented (segmentation is made 

in transport layer when TCP is used). 

• Avg.Bwd.Segment.Size: Average Segment size observed in the backward direction. 

• Fwd.Header.Length.1: The header length of the packets flow in the forward 

direction. This attribute has the exact same values than the attribute Fwd Header 

Length, hence it can be a bug on the CICFlowMeter software. 

• Fwd.Avg.Bytes.Bulk: The average number of bytes bulk rate in the forward 

direction. Bulk data transfer is a software-based mechanism designed to move large 
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data file using compression, blocking and buffering methods to optimize transfer 

times. 

• Fwd.Avg.Packets.Bulk: Average number of packets bulk rate in the forward 

direction. 

• Fwd.Avg.Bulk.Rate: Average number of bulk rate in the forward direction. 

• Bwd.Avg.Bytes.Bulk: Average number of bytes bulk rate in the backward direction. 

• Bwd.Avg.Packets.Bulk: Average number of packets bulk rate in the backward 

direction. 

• Bwd.Avg.Bulk.Rate: Average number of bulk rate in the backward direction. 

• Subflow.Fwd.Packets: The average number of packets in a subflow in the forward 

direction. The core idea of multipath TCP is to define a way to build a connection 

between two hosts and not between two interfaces (as standard TCP does). In standard 

TCP, the connection should be established between two IP addresses. Each TCP 

connection is identified by a four-tuple (source and destination addresses and ports). 

Given this restriction, an application can only create one TCP connection through a 

single link. Multipath TCP allows the connection to use several paths simultaneously. 

For this, Multipath TCP creates one TCP connection, called subflow, over each path 

that needs to be used. The detailed protocol specification is provided in RFC 6824 

• Subflow.Fwd.Bytes: The average number of bytes in a subflow in the forward 

direction. 

• Subflow.Bwd.Packets: The average number of packets in a subflow in the backward 

direction. 

• Subflow.Bwd.Bytes: The average number of bytes in a subflow in the backward 

direction. 

• Init_Win_bytes_forward: The total number of bytes sent in the initial window in 

the forward direction. TCP uses a sliding window flow control protocol. In each TCP 

segment, the receiver specifies in the receive window field the amount of additionally 

received data (in bytes) that it is willing to buffer for the connection. The sending host 

can send only up to that amount of data, before it must wait for an acknowledgment 

and window update from the receiving host. 

• Init_Win_bytes_backward: The total number of bytes sent in the initial window in 

the backward direction. 

• act_data_pkt_fwd: Count of packets with at least one byte of TCP data payload in 

the forward direction. 

• min_seg_size_forward: Minimum segment size observed in the forward direction. 

• Active.Mean: The mean time a flow was active before becoming idle. 

• Active.Std: Standard deviation time a flow was active before becoming idle. 

• Active.Max: Maximum time a flow was active before becoming idle. 

• Active.Min: Minimum time a flow was active before becoming idle. 

• Idle.Mean: Mean time a flow was idle before idle before becoming active. 
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• Idle.Std: Standard deviation time a flow was idle before becoming active. 

• Idle.Max: The maximum time a flow was idle before becoming active. 

• Idle.Min: The minimum time a flow was idle before becoming active. 

• Label: The state of the flow (benign or malign). 

• L7Protocol: This attribute represents the code number of the layer 7 protocol as 

obtained from nDPI in Ntopng application. It is a number that varies from 0 to 226 

(e.g., 0 is labeled as Unknown application). 

• ProtocolName: This attribute is the objective class of the dataset. It holds the 

application name following the code number stored in the L7Protocol attribute (e.g., 

YouTube, Yahoo, Facebook, etc.). 

 

4.2 Synthetic generators 

 
In this section, it will be explained the processes that were made to achieve the development 

of the synthetic generators that allowed the creation of the dataset needed in this 

undergraduate thesis. 

 

As explained in the previous section, a dataset was obtained that serves as a model from 

which the data will be extracted and will allow to start generating synthetic flows for each 

OTT application. However, in the dataset there are many internet applications and flows that 

do not necessarily belong to OTT applications, and there are also many flows of diverse OTT 

applications. But, as mentioned in one of the objectives of this undergraduate thesis, it is 

necessary to create traffic of specific applications such as: video, messaging, browsing, audio 

and calls. Bearing this in mind, the dataset was analyzed and a specific application was 

chosen for each type of application exposed in the objective, these applications were: 

YouTube, WhatsApp, Google, Spotify and Skype. 

 

Having chosen the applications, the dataset that was used as a model is taken and passed to 

Rstudio which is an IDE82 developed for R; R is a programming language that provides a 

variety of statistical and graphical techniques [77]; When loading it in Rstudio, a brief script 

is made and the different flows of the selected applications, mentioned in the previous 

paragraph, are separated into different datasets. 

 

Next, each dataset was taken and the attributes they had were analyzed in detail, making the 

decision not to model some of the attributes. By doing this, another phase of the CRISP-DM 

methodology mentioned above takes place, this would be the phase of data preparation.  

 

 
82 Integrated Development Environment  
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This decision was made since many of the attributes did not provide valuable information 

some of them being zero at all times. However, this does not mean that these attributes are 

not important in the actual data flows. The attributes that were discarded were as follows:  

Fwd.PSH.Flags, Bwd.PSH.Flags, Fwd.URG.Flags, Bwd.URG.Flags, FIN.Flag.Count, 

SYN.Flag.Count, RST.Flag.Count, PSH.Flag.Count, ACK.Flag.Count, URG.Flag.Count, 

CWE.Flag.Count, ECE.Flag.Count, Fwd.Avg.Bytes.Bulk, Fwd.Avg.Packets.Bulk, 

Fwd.Avg.Bulk.Rate, Bwd.Avg.Bytes.Bulk, Bwd.Avg.Packets.Bulk, Bwd.Avg.Bulk.Rate, 

this decision will be explained in section 4.3.2 from this chapter; additionally the attribute 

Flow.ID is discarded, as this is an identifier set by the CICFlowMeter tool; Timestamp is also 

a deleted, because it refers to the date and time when the information was collected, i.e., the 

date and time of the days and months of 2017 when Wireshark collected the information, 

which is irrelevant for this thesis purposes; Protocol is an attribute that is not taken into 

account because all the flows of the different datasets are given with the TCP protocol; Label 

is an attribute that says if the flow that goes over the network is benign or malign, in this 

case, for the applications mentioned above are always catalogued as benign flows, so it is not 

an attribute that provides information for the characterization of traffic; 

Fwd.Header.Length.1 is removed, because this attribute has the same value as 

Fwd.Header.Length and may be a CICFlowMeter error. Finally the L7Protocol, as it was said 

in the attributes definition, gives an integer number between 0 and 226 that represents each 

identified application with a different number. This attribute is not taken into account since 

in the traffic classification that is done for the validation of the dataset, this attribute would 

provide the answer to the machine learning algorithm affecting the classification process. 

 

Taking into account the attributes mentioned above and why they are not going to be 

modeled, a total of 63 attributes were chosen for statistical modeling which are presented as 

follows: Source.IP, Source.Port, Destination.IP, Destination.Port, Flow.Duration, 

Total.Fwd.Packets, Total.Backward.Packets, Total.Length.of.Fwd.Packets, 

Total.Length.of.Bwd.Packets, Fwd.Packet.Length.Max, Fwd.Packet.Length.Min, 

Fwd.Packet.Length.Mean, Fwd.Packet.Length.Std, Bwd.Packet.Length.Max, 

Bwd.Packet.Length.Min, Bwd.Packet.Length.Mean, Bwd.Packet.Length.Std, Flow.Bytes.s, 

Flow.Packets.s, Flow.IAT.Mean, Flow.IAT.Std, Flow.IAT.Max, Flow.IAT.Min, 

Fwd.IAT.Total, Fwd.IAT.Mean, Fwd.IAT.Std, Fwd.IAT.Max, Fwd.IAT.Min, 

Bwd.IAT.Total, Bwd.IAT.Mean, Bwd.IAT.Std, Bwd.IAT.Max, Bwd.IAT.Min, 

Fwd.Header.Length, Bwd.Header.Length, Fwd.Packets.s, Bwd.Packets.s, 

Min.Packet.Length, Max.Packet.Length, Packet.Length.Mean, Packet.Length.Std, 

Packet.Length.Variance, Down.Up.Ratio, Average.Packet.Size, Avg.Fwd.Segment.Size, 

Avg.Bwd.Segment.Size, Subflow.Fwd.Packets, Subflow.Fwd.Bytes, Subflow.Bwd.Packets, 

Subflow.Bwd.Bytes, Init_Win_bytes_forward, Init_Win_bytes_backward, 

act_data_pkt_fwd, min_seg_size_forward, Active.Mean, Active.Std, Active.Max, 

Active.Min, Idle.Mean, Idle.Std, Idle.Max, Idle.Min, ProtocolName. 
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Bearing in mind the attributes that were chosen to start doing the statistical modeling of each 

one of them, the files containing the datasets of each one of the applications are taken 

separately. Rstudio is used again where a dataset of any application is provided in order to 

do the statistical modeling. First of all, the tool must recognize the dataset so that later it can 

be stored and managed in a more comfortable way and start with the modeling. 

 

As a first step to start the modeling, the Cullen and Frey graph is obtained, which shows the 

square of the skewness and the kurtosis of the data distribution, thus helping to calculate 

which theoretical statistical distribution the attribute is more similar to, and be able to do the 

modeling accurately. Skewness is usually described as a measure of a dataset's symmetry or 

lack of symmetry. The normal distribution has a skewness of 0 [78]. The kurtosis parameter 

is a measure of the combined weight of the tails relative to the rest of the distribution [78]. 

This graph is made for each of the attributes of all the datasets of the different applications, 

this is because despite being the same attributes, the applications are totally different and 

have different attribute values (packet flows, arrival times, packet sizes, among others). 

 

It should also be noted that not all attributes have the same modeling, since there are two 

types of data in the dataset, nominal and numerical. The nominal attributes are Source.IP, 

Source.Port, Destination.IP, Destination.Port and ProtocolName. It is important to mention 

that ProtocolName is an attribute that does not need statistical modeling since it is the unique 

label with the name of the application (either WhatsApp or Skype, among others). On the 

other hand, Source.IP, Source.Port, Destination.IP and Destination.Port are attributes that 

have to be modeled with the help of the Cullen and Frey graph. However, since these 

attributes are nominal, the distributions against which they are compared are different. The 

rest of the attributes of the dataset are numeric, are modeled in the same way and will be 

explained later. The main difference between numerical and nominal attributes is that the 

former are not discrete, that is, their statistical distribution have an infinite number of random 

possibilities; the latter are discrete, that is, their statistical distribution has values that are 

limited by finite numbers.  

 

Continuing with the statistical modeling for a numerical attribute, when the process of 

obtaining the Cullen and Frey graph is done, it results in a graph like the one shown in figure 

4: 
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Figure 4. Cullen and Frey graph from Flow.Duration attribute of the YouTube Dataset. 

 

Figure 4 shows the Cullen and Frey graph for the Flow.Duration attribute of the YouTube 

dataset. This attribute is compared against the normal, uniform, exponential, logistic, beta, 

lognormal, gamma and finally the Weibull distribution which is not plotted but is very similar 

to the lognormal and gamma distributions, using the square of skewness and the kurtosis 

values. As it can be noticed through the blue dot, this attribute has a behavior similar to a 

theoretical beta distribution. After the statistical distribution that fits the data is identified the 

parameters that describe the distribution of the attribute must be obtained.  

 

First the normalization of its values must be done, since the beta distribution only has values 

in the interval [0,1]. After the normalization of the values of the attribute, the MLE83 

estimation is made, which is a statistical process to find the value of the parameters of the 

theoretical distribution that most closely resembles the distribution of the data being 

observed, so that the random values created are values close to those of the original attribute. 

It is important to mention that this estimation is made assuming statistical independence, that 

is, the values of one attribute do not depend on another. This statistical independence in real 

life is not true, since an attribute can depend on one or more attributes. It is taken this way, 

since the process to make the correlation of the values of the attributes can only be achieved 

in a mathematical way and until now there is no software tool that allows to manipulate the 

values of the attributes in a correlated way. 

 

 
83 Maximum likelihood estimation 
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To be able to observe the maximum likelihood estimation in the best way, this estimation is 

graphed as shown in figure 5. 

 
Figure 5. MLE plot from Flow.Duration attribute. 

 

In the previous figure it can be seen that there are 4 different graphs. The first graph shows 

the empirical and theoretical density of the distribution in question, the red line being the 

theoretical and the histogram the empirical. Next to this graph is the Q-Q84 plot that allows 

to observe how far or near are the values of empirical distribution compared with an ideal 

theoretical distribution [79]. Next, below the first graph is the CDF85 graph of the empirical 

and theoretical distributions, which shows the probability that the values of the empirical 

distribution take the values of the theoretical distribution [80]. Finally there is the P-P86 plot 

that allows to evaluate how similar the values between the empirical distribution and the 

theoretical distribution are [81].  

 

Bearing this in mind, it can be said that the theoretical values and the values obtained are 

almost identical, which is why the modeling of the attribute is being done correctly. 

 

Consequently, to create the random values of the attribute, the parameters of the maximum 

likelihood estimation are taken out, for this case, as the distribution of the attribute in question 

 
84 quantile-quantile 
85 cumulative distribution function 
86 probability–probability 
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is similar to a beta distribution the parameters that are needed to create the new values are 

alpha and beta, giving in this case in the following way: 

 

: 0.2811929 

: 0.718752 
Equation 1. Beta parameters for Flow.Duration Attribute. 

After having obtained the parameters for the distribution, the new values for the attribute are 

randomly generated. Having these new values, the next step is to denormalize them. As 

mentioned before, the beta distribution only works with numbers in the interval of [0,1], for 

this reason the values had to be normalized. However, the real values of the attribute are not 

values that are in that interval, so in order to obtain the real values of the attribute the 

denormalization is done, thus obtaining the generation of synthetic values of the attribute. 

When this is concluded, the first synthetic generator for an attribute of a given application is 

made.  

With this, it can be said that there is going to be as many generators as there are attributes in 

each dataset, excluding the attributes that are not going to be modeled. 

 

It should be noted that not all of the attributes analyzed belonged to a single statistical 

distribution, many of them were in a kind of limbo in which it could be seen that the attributes 

could belong to two or three different theoretical distributions. For this case, the same process 

described above was done with each of the theoretical distributions to which the attribute 

resembles. Figure 6 shows Cullen and Frey's graph demonstrating this. 

 
Figure 6. Cullen and Frey graph from Fwd.Packet.Length.Max attribute of the Google Dataset. 
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As it can be seen in the figure above, the Fwd.Packet.Length.Max attribute of the Google 

dataset is in the middle of the Gamma and lognormal distributions, and as said before, it 

should be also compared against the Weibull distribution because this one is similar to the 

lognormal and gamma distributions, so this attribute has to be compared with the three 

distributions mentioned.  

 

To do this, the same steps of the process described above are followed, normalize the values 

of the attribute, and get the graphs for the distribution of the attribute compared with the 

graphs of the theoretical distribution using the method of maximum likelihood estimation. 

The result can be seen in figures 7, 8 and 9. 

 

 
Figure 7. MLE plot from Fwd.Packet.Length.Max attribute for Gamma distribution. 
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Figure 8. MLE plot from Fwd.Packet.Length.Max attribute for Lognormal distribution. 

 
 

Figure 9. MLE plot from Fwd.Packet.Length.Max attribute for Weibull distribution. 
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As can be seen in the previous figures, at first glance it cannot be chosen the distribution to 

which the values of the attribute are most similar. Therefore, in order to get the proper 

distribution a Kolmogorov-Smirnov (K-S) test must be done. But before proceeding with this 

test, the parameters describing each of the distributions must be obtained.  

 

For the gamma distribution alpha and beta parameters are needed, for the lognormal 

distribution Mi and sigma parameters, and finally for the Weibull distribution kappa and 

lambda parameters are needed. The results for this particular attribute can be seen below: 

 

: 1.290911 

: 15.485522 
Equation 2. Gamma parameters for Fwd.Packet.Length.Max Attribute. 

: -2.919426 

: 1.017915 
Equation 3. Lognormal parameters for Fwd.Packet.Length.Max Attribute. 

: 1.09487015 

: 0.08659681 
Equation 4. Weibull parameters for Fwd.Packet.Length.Max Attribute. 

 

After having made three different generators for this attribute, and obtaining the new 

synthetic values, the K-S test takes place. This test consists in comparing the values obtained 

with the values of the theoretical distribution, quantifying the distance between the values of 

the theoretical distribution to the values of the empirical distribution obtained from the data 

[80]. For this case, the result of the K-S test is as follows: 

 

D = 0.0034971 

p-value = 0.5737 
Equation 5. Distance and p-value of the K-S test for Gamma Distribution, Fwd.Packet.Length.Max Attribute. 

D = 0.0052334 

p-value = 0.1293 
Equation 6. Distance and p-value of the K-S test for Lognormal Distribution, Fwd.Packet.Length.Max Attribute. 

D = 0.003731 

p-value = 0.4895 
Equation 7. Distance and p-value of the K-S test for Weibull Distribution, Fwd.Packet.Length.Max Attribute. 

 

Where D is the quantified distance between the theoretical distribution and the empirical 

distribution and p-value is the value of the null hypothesis that the two distributions, 

empirical and theoretical, are equal, this null hypothesis is accepted as long as the value is 

greater than 0.05 [80]. In its order, the first distance corresponds to the gamma distribution, 
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then the lognormal distribution and finally the Weibull distribution. The theoretical 

distribution that fits best the empirical data is the one with the quantified distance closer to 

zero. In this case, the closest distance to zero is the one of the gamma distribution, so the 

values that are going to be in the attribute generated will be those obtained by this 

distribution, also taking into account that the p-value has a value greater than 0.05, so the 

Gamma distribution fits perfectly for the generation. This part highlights the fact that this 

attribute is created with 3 different synthetic generators, but in the end the data that will be 

placed in the final dataset of the application, are the attributes generated with the distribution 

that the K-S test showed as the best fit to the data of the attribute. 

 

Another example like the previous one can be seen in the Fwd.Packet.Length.Std attribute of 

the Spotify dataset. Figure 10 shows the Cullen and Frey graph, where it can be seen that this 

attribute only belongs to the lognormal and Weibull distributions. Figures 11 and 12 show 

the graph of the estimation of maximum likelihood, seeing that no easy recognition can be 

made to know which distribution best describes the attribute.  

 
Figure 10. Cullen and Frey graph from Fwd.Packet.Length.Std attribute of the Spotify Dataset. 
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Figure 11. MLE plot from Fwd.Packet.Length.Std attribute for Lognormal distribution. 

 

 
Figure 12. MLE plot from Fwd.Packet.Length.Std attribute for Weibull distribution. 
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For this attribute the same process is done, the values of the parameters are extracted for each 

distribution, lognormal and Weibull and then to be able to generate the synthetic data in a 

random way, then the K-S test is done and as a result the appropriate distribution is chosen 

for the values of the attribute. Below are the results of both, the parameters that describe the 

distributions and the K-S tests to see which distribution most closely resembles the attribute 

in question. The first two parameters correspond to the lognormal distribution, the following 

to the Weibull distribution and finally the distance of the lognormal distribution and the 

distance of the Weibull distribution. 

 

: -2.2476436 

: 0.8088235 
Equation 8. Lognormal parameters for Fwd.Packet.Length.Max Attribute. 

: 2.0639209 

:  0.1446731 
Equation 9. Weibull parameters for Fwd.Packet.Length.Max Attribute. 

D = 0.0024338 

p-value = 0.9285 
Equation 10. Distance and p-value of the K-S test for Lognormal Distribution for Fwd.Packet.Length.Max Attribute. 

D = 0.0047187 

p-value = 0.2155 
Equation 11. Distance and p-value of the K-S test for Weibull Distribution for Fwd.Packet.Length.Max Attribute. 

 

In the results given above, it is seen that the quantified distance from the distribution closest 

to zero is the one of the lognormal distribution, so that the values generated with that 

distribution will be the values set in the new attribute for the application dataset, also the p-

value is greater than 0.05. 

 

As mentioned above, not all values of all attributes were numerical, there are also attributes 

with nominal values, for this it is taken as an example the Source.IP attribute of the Skype 

application dataset. As this attribute is nominal, the distributions with which the comparison 

is made are different, in this case they are compared with the normal, negative binomial and 

Poisson distributions. With this attribute, a previous process had to be done in order to obtain 

the Cullen and Frey graph. As the values of this attribute have a different denotation, what 

should be done is to convert the IP addresses to decimal numbers and having these numbers 

the Cullen and Frey graph can be obtained as shown in Figure 13. 
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Figure 13. Cullen and Frey graph from Source.IP attribute of the Skype Dataset. 

 

In this graph it can be see that the attribute can actually belong to any of the distributions, so 

the parameters for each distribution must be obtained. For this part it was not necessary to 

use the maximum likelihood estimation since, as mentioned before, the nominal values are 

over a finite range of possibilities. After having the parameters the same procedure is done 

again with the K-S test and in this case the distribution to which this attribute is more similar 

is the normal distribution. After knowing which is the adequate distribution for the new 

values of the attribute, in this case those values must be taken and the inverse process has to 

be done, that is, go from decimal numbers to IP addresses again, i.e., given the decimal 

number 2069496119, its equal as an IP address is 123.90.1.55. After this process, the new 

values are ready to be used in the new dataset. 

 

The procedures described above were done for each of the attributes of each application, 

taking into account whether the attribute was numerical or nominal. As mentioned before, a 

generator was made for each one of the attributes of the different datasets of each one of the 

applications, leaving approximately 62 different generators for each application, not to 

mention the ones that had to be discarded after the K-S test was performed, leaving with a 

total of 464 different synthetic generators, 104 for YouTube, 94 for Google, 79 for Spotify, 

103 for Skype and 88 for WhatsApp. 
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4.3 Creation and cleaning of datasets 
 

In this section, it is explained the creation of the different datasets starting from the 

procedures described previously. It explains the creation process and how many datasets were 

created for this project. Additionally, the data cleaning that was done in the different datasets, 

the methodology that was used to do this cleaning and the result that is obtained after doing 

it is described. 

 

To better understand the process, Figure 14 will show a small illustration of the steps that 

were followed from the model dataset until obtaining the clean datasets. 

 

 
Figure 14. Dataset processes. 

 

As it can be appreciated in the previous figure, as first measure the model dataset is taken, 

and the filtering the OTT applications that were chosen to make the statistical modeling is 

done. Then each of the small datasets that belong to each of the applications is taken 

separately, and the statistical modeling of each of the attributes from each dataset is done. 

Then it can be seen the different synthetic generators that were created for each of the 

attributes of the datasets and how the union of these generators result in dataset with the new 

synthetic data by applications. Subsequently each of these datasets goes through a cleaning 

and grouping process to result in a dataset that contains the synthetic data based on the 

information of the OTT applications that were modeled at the beginning. As a final measure 
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the dataset that is obtained is the one that will be validated with the different classification 

algorithms, however this part will be explained in the next chapter. 

 

4.3.1 Creation of the datasets 
 

As mentioned in section 4.2, using Rstudio the generators of the different attributes for each 

application are created. To understand this better, there are 5 separate datasets from each 

application: WhatsApp, Spotify, Skype, Google and YouTube, remembering that these 

datasets were filtered from the dataset that was taken as a model which is explained in section 

4.1. Each dataset is loaded in a separate script where the statistical modeling of each of the 

attributes was started and then the creation of the new values was performed. After creating 

these generators for each attribute, with the help of Rstudio these new values from the 

attributes were grouped, each attribute being a different column. In this way, new datasets 

were created for each application. Having all the new datasets of the applications separately, 

in a new R script all the datasets were loaded and the process of grouping all of them into 

one big dataset was done, obtaining the one with which this project is going to work. 

 

For this part, several datasets with different numbers of instances for each attribute of the 

applications were created. This number of instances were created when the attribute was 

created, e.g, when it was known to which distribution the attribute resembled more and had 

the parameters of each distribution, then the random values with the number of instances 

were created and the number of instances can be as much as it is needed. 

 

First a dataset was created in which each application had 50,000 instances for each attribute, 

leaving a dataset of 250,000 instances in total. Then datasets of 30,000, 20,000, 10,000 and 

5,000 instances were created, leaving datasets of 150,000, 100,000, 50,0000 and 25,000 

instances respectively. 

 

It is also worth mentioning that for each application two different datasets were created with 

the same numbers of instances, that is, two datasets of 50,000 instances be attributes were 

created, two datasets with 30,000 instances by attributes, and so on. It was done in this way 

because at the end there would be a training dataset and a test dataset to then proceed to make 

the validation of the datasets that will be explained in chapter 5. 

 

4.3.2 Data cleaning process 

 

In this section the cleaning process of the datasets is done according to [76]. In this paper the 

authors talk about making an effective cleaning without damaging the quality of the data of 

the dataset. To be able to do this, first a diagnosis of the quality of the collected data has to 

be made. This diagnosis verifies the quality of the data and is based on the CRISP-DM 
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methodology, which was named in section 4.1 of this chapter. This data cleaning belongs to 

the data preparation phase of this methodology, which considers the following problems: 

outliers, atypical values that deviate from the normal values of the variable under 

observation; noise, defined as irrelevant data within a data set; inconsistency, contradictory 

instances, i.e., sometimes there are two instances that have the same name but differ in their 

values, or on the contrary, instances with different names whose values are the same; 

incompleteness, refers to lost data that may exist in datasets; finally timeliness, refers to the 

time in which the data were collected, e.g if the data that is collected really belongs to the 

timeline that is wanted, or if on the contrary this data is out of the required timeline. 

 

As stated at the beginning of section 4.2, many of the attributes were discarded because all 

their instances were zero, these attributes in the data quality diagnosis fit into the noise 

category as they are considered irrelevant to the dataset. However, this does not mean that 

these communication attributes are irrelevant because they are not. Remembering, many of 

these attributes are: Fwd.PSH.Flags, Bwd.PSH.Flags, Fwd.URG.Flags, Bwd.URG.Flags; 

The flags PSH and URG are part of the TCP stack and serve to indicate that this is the last 

byte sent from the connection to go once to the application and to report urgent data that must 

be prioritized respectively. But as mentioned before, these flags are normally in zeros and it 

would not be necessary to do a statistical modeling since their approximation will always be 

a vector of zeros. Other attributes that make part of this are: FIN.Flag.Count, 

SYN.Flag.Count, RST.Flag.Count, PSH.Flag.Count, ACK.Flag.Count, URG.Flag.Count, 

CWE.Flag.Count, ECE.Flag.Count; this is the count of the flags that there are when sending 

a packet, they are also important in the real connection since they indicate how many times 

the flag appears, however and as it was said before, these attributes are also zeros and this 

being a creation of simulated data it is not necessary to take into account these attributes.  

 

Fwd.Avg.Bytes.Bulk, Fwd.Avg.Packets.Bulk, Fwd.Avg.Bulk.Rate, Bwd.Avg.Bytes.Bulk, 

Bwd.Avg.Packets.Bulk and Bwd.Avg.Bulk.Rate are other of the attributes in which it was 

found that their majority are zeros, these attributes also contribute information in the real 

connection, however for this project they were not taken into account. Flow.ID is an identifier 

put by the CICFlowMeter application, which has nothing to do with the data flow. Protocol 

is an attribute that only says if the connection was made through TCP or UDP protocol, in 

this case all connections are made through TCP protocol. Label is an identifier that says if 

the IP flow communication is benign or malign, something that is important in the packets, 

but being these applications known, label will always be benign type. 

 

The attribute Fwd.Header.Length.1 has the same values and instances as the attribute 

Fwd.Header.Length, so this falls into the category of inconsistency with the data and the 

attribute is discarded. The last attribute discarded before starting the generation of synthetic 

data was L7Protocol, this decision was made because depending on the application to which 

the flow belonged, this attribute indicated a unique identifier number for the application. This 
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was going to generate problems when classifying the traffic, since the algorithms would not 

be tested properly, being this attribute the answer that the algorithm needs to make an 

excellent classification. 

 

After having removed the attributes that could interfere with the quality of the dataset data 

and having the new dataset with the generated synthetic data, a procedure to evaluate the 

generated data and analyze if it had any problem is made. In this case, it was found that there 

were attributes that had lost instances in the new dataset. These instances fall into the 

category of incompleteness. All instances of the attributes were reviewed and rows that had 

incomplete instances were discarded. It should be noted that this did not occur in all datasets 

and not all attributes had problems with incomplete instances. 

 

Next, it was continued with the revision of the values that had been generated previously and 

it was found that in some cases there were problems with the Source.Port and 

Destination.Port attributes of some of the datasets of the applications. These problems are 

catalogued as outliers since the values that were generated were atypical values with respect 

to those that were expected. To give a little context, the ports that exist on the Internet are 

finite ports that go from port 0 to port 65.535. In many cases when doing the statistical 

modeling along with the process explained in section 4.2, this attribute seemed to have a 

distribution similar to the normal distribution, so it was proceeded to create new instances 

with this distribution. The problem was that this distribution delivered numbers much larger 

than 65,535 in almost all its instances and for this reason more than half of the data had to be 

discarded. However, the binomial negative distribution delivered the values needed within 

the established parameters, so these two attributes had to be evaluated and changed by the 

distribution to which they belonged. 

 

The problem mentioned above occurs because the tests depend on the data being randomly 

generated. That is, in section 4.2 it was explained that the generated data are taken to make a 

K-S test, which indicates that it takes the generated data and compares them with the 

theoretical distribution. However, the values of the quantified distance delivered by the test 

will vary depending on the random values generated, so in some cases the K-S test may 

present a smaller distance in a certain distribution, but it is another distribution that actually 

makes a better modeling of the data. Although the binomial negative distribution showed 

better results for these two attributes, there were some instances that were out of the 

established range, therefore the rows in which the Source.Port or Destination.Port had a 

number greater than 65,535 were discarded. 

 

This concludes the cleaning of the dataset, it should be noted that this cleaning was done 

before forming the complete dataset with all applications, meaning, the cleaning was done 

by taking the datasets of the different applications separately. 
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Summary 
 

This chapter gave a brief description of the dataset model that was used to make the statistical 

modeling of the different attributes that are present in a communication over IP. There was 

also a brief introduction of the tools needed to obtain an adequate format of the dataset taken 

as a model for its later manipulation.  

 

Next, a detailed explanation of how the statistical modeling of each of the attributes was done 

is presented, explaining that before starting, the OTT applications of the original dataset were 

filtered in different datasets separated by application. Then the datasets are taken separately 

and the statistical modeling of each of the attributes is started, also separately. This statistical 

modeling results in a statistical distribution to which the values of the attribute instances are 

more similar to. Knowing which distribution each attribute belongs to, the synthetic data is 

generated randomly and once all the data has been modeled, all the data is grouped being 

each attribute and its instances a different column in each dataset. By doing this, it culminates 

in the creation of the different datasets for each of the OTT applications, YouTube, Spotify, 

Skype, Google and WhatsApp. 

 

It should be noted that in the construction of the new dataset it could be created different 

instances for each of the attributes, taking into account that in the dataset there must be the 

same number of instances in all of the attributes. Datasets were created with 50.000, 30.000, 

20.000, 10.000, and 5.000 instances per attribute, leaving datasets of 250.000, 150.000, 

100.000, 50.000 and 25.000 instances when grouped all datasets of the different OTT 

applications. Two different datasets were created by applications and number of instances, a 

training dataset and a test dataset. 

 

Finally, the data preparation phase of the CRISP-DM methodology was explained, where the 

quality of the data was analyzed, taking into account the categories that compose this phase, 

noise, incompleteness, outliers, inconsistency and timeliness. When attributes and values that 

fit in those categories were discarded, the datasets are now clean and ready for the next phase 

of the project. 
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CHAPTER 5 

 

DATASET VALIDATION AND 

MACHINE LEARNING TESTS 

 

This chapter talks about the validation of the different datasets that were obtained in the 

previous chapter. The validation of the datasets is done through machine learning 

classification algorithms, with the help of the Weka tool. This validation is made only for 

two of the datasets, these are the one with 50.000 and 25.000 instances, bearing in mind that 

for each number of instances there were two different datasets, one for training and one for 

tests. 

 

In the previous chapter it was talked about how the different datasets were created for 

different OTT applications, taking into account the number of instances of each attribute. The 

decision was to create two different datasets with the same number of instances by attributes, 

so there were two datasets, one for training and one for testing. Machine learning validation 

was done taking these two datasets. 

  

Finally, it was obtained the results of all of the algorithms that were used for the validation 

of the datasets, making also a T-test and arriving at the conclusion of which algorithm was 

the one that made the best classification. 

 

The following subsection will explain the algorithms used and the classification metrics of 

these algorithms. 

 

5.1 Metrics and algorithms 
 

This section is going to talk about performance metrics and machine learning algorithms. 

These metrics are composed by: the F-Measure, precision, recall, confusion matrix and kappa 

statistic. Additionally, the machine learning algorithms used for the validation and testing of 

the datasets will be discussed, taking into account that these algorithms fall into the category 

of supervised algorithms. The chosen ones were: J48, RandomForest, AdaboostM1, Bagging, 

IBK and NaiveBayes, The decision to take these algorithms was based on the articles [82] 

and [83] which shows the performances of each of them.  
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5.1.1 Performance metrics 
 

In this subsection, a brief description of the most important classification metrics in machine 

learning can be found. 

 

• Confusion Matrix: When putting a machine learning algorithm to work it can be 

noticed that the result is a set of tests that is often shown as a two-dimensional matrix 

with a row and a column for each class that has the dataset that is being validated. 

Each element of the matrix shows the number of test examples for which the real 

class is the row and the expected class is the column, showing 4 different types of 

results, true positive, false positive, true negative and false negative. The good results 

of this matrix correspond to large numbers in their main diagonal and to small 

numbers, ideally zero, outside the diagonal, thus it can be noticed if the classification 

algorithm serves or not [84]. 

 

The four types of results that can be found in the confusion matrix are shown below: 

 

True positive: Are those instances that the classifier assigns to a certain class and 

that really belong to that class. 

 

False positive: Are those instances that belong to a certain class but that the classifier 

assigns to another class. 

 

False negative: Are those instances that were assigned to a class but do not belong 

to that class. 

 

True negative: Are those instances that were not assigned to a class and did not really 

belong to that class. 

 

• Recall: It is defined as the number of instances assigned to a class of the total number 

of instances that belong to that class. To understand this better, Recall is defined as 

[15]: 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

Equation 12. Recall definition. 

 

Where TP is true positive and FP is false positive. 
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• Precision: It is defined as the number of instances assigned to a certain class of the 

total number of instances that exist in all classes of the dataset. Precision is defined 

as [15]:  

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

Equation 13. Precision definition. 

 

 Where TP is true positive and FN is false negative. 

 

• F-Measure: It is the harmonic measure obtained from precision and recall. This helps 

to measure the reliability of the test performed with a variation of results between 0 

and 1. The closer it is to 1 the more reliable the classifier is. F-Measure is defined as 

[84]:  

 

𝑭 − 𝑴𝒆𝒂𝒔𝒖𝒓𝒆 = 𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

Equation 14. F-Measure definition. 

 

• Kappa Statistics: It is a measure that takes into account the randomness in the 

performance of a classification algorithm, so that it can be determined if this 

performance is due to chance or not. It is also defined in a range of 0 to 1, where 0 

refers to a classifier totally affected by chance and 1 represents an ideal classifier [84]. 

 

5.1.2. Definition of Algorithms 

 
• J48: Is the implementation of a decision tree classifier called C4.5, which is a 

classification algorithm based on a binary decision tree [24]. J48 has a tree structure 

with nodes representing characteristics that show possible values that connect these 

characteristics. It uses the divide and conquer approach to build a tree with division 

criteria of the gain ratio based on entropy, making use of the key concepts of 

information theory to know which attribute to select, allowing the user to easily 

understand the decision tree created [83]. 

 

• Random Forest: It is based on decision tree classification algorithms to generate a 

large number of decision trees in which each tree is built taking as main source 

different samples of the original data using a random selection of characteristics in 

the tree induction process, so that in the end this algorithm results in a classifier in 

the form of many individual decision trees [83]. 
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• AdabosstM1: It is an important classifier based on sets. The idea of AdaBoost is to 

be able to combine it with other classifiers, such as decision trees, to improve its 

accuracy and performance. AdaBoost takes as its basis a classifier built from training 

data, assigns equal weights to all samples of training data, depending on the 

performance of the classifier, and then modifies the weight of each sample from the 

training data. Another classifier is then established to focus on examples of training 

data that were incorrectly obtained from the base classifier [83]. 

 

• Bagging: An assembly method that creates individuals for fit by training each 

classifier in a random redistribution of the training set. The training set for each 

classifier is generated by randomly extracting N examples, N being the size of the 

original training set. Many of these N original elements can be repeated in the 

resulting training set, while others may not appear in it. Each individual classifier in 

the set is generated with a different random sampling of the training set. This classifier 

is also combined with different classification algorithms [85]. 

 

• IBK: The IBK or K-Nearest Neighbor classification classifies instances according to 

their similarity being one of the most popular algorithms for pattern recognition and 

a lazy type of learning. Its operation is based on the fact that an object is classified by 

the majority of its neighbors, with K always being a positive integer. It will weight 

the contribution of each one of the neighbors close to the sample according to the 

distance, giving greater value to the neighbors closest to the sample. The closest 

neighbors of the attributes may be totally irrelevant which makes the algorithm not 

perform well under these conditions, so the less relevant attributes of the data sets 

must be removed [86]. 

 

• NaiveBayes: It is an algorithm based on the Bayesian theorem and an assumption 

that all attributes are equally important and independent of each other for a given 

class. It estimates the Gaussian distribution of attributes for each class based on a pre-

labeled training set. It uses the previous probability or result to then determine the 

subsequent probability of a new instance, approximating each attribute by means of 

a Gaussian distribution [24]. 

 

 

5.2. Algorithm configuration and different tests 
 

This section talks about the configuration that was taken into account for the classification 

algorithms that were used for this part of the undergraduate thesis and also gives a very brief 

introduction to the different tests that were performed with the different datasets and 

classification algorithms. 
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5.2.1 Algorithms configuration 
 

As mentioned above, the tool used for the different machine learning algorithms was Weka. 

This tool is a suite containing a collection of automatic learning algorithms for data mining 

tasks developed by the University of Waikato, New Zealand. It contains tools for data 

preprocessing, classification, regression, grouping, feature selection, association rules and 

visualization. In addition, it also allows the development of new automatic learning schemes.  

 

When the validation of the datasets with this tool was about to start, first, it was chosen one 

by one the algorithms that were going to be used. As a first algorithm, the decision trees were 

chosen, one of which was J48, leaving the configuration that gives Weka by default, followed 

by RandomForest in where was changed the number of iterations that the algorithms does, 

this was done because by doing so many iterations the consumption of hardware resources 

was really high and the classifier failed to finish the modeling, so the number of iterations 

done for the datasets of 50,000 instances were 5 and for the datasets of 25,000 instances were 

10. 

 

Then two algorithms that are ensemble methods were taken, which were AdaboostM1 and 

Bagging, both leaving them with the default values and using them with the decision tree 

J48. Then it was taken the KNN (K Nearest Neighbor) algorithm that is represented within 

Weka as IBK, giving as a nearest neighbor number 25 using a cross validation approach to 

determine such number and without changing any other default values in Weka. Finally it 

was taken the Naive Bayes algorithm, also leaving the values that Weka has by default. 

 

 

5.2.2 Different tests performed 
 

In this section it is presented the 3 different tests that were performed with the datasets of 

50.000 and 25.000 instances. 

 

• CrossValidation: It is a test in which a certain number of partitions or folds are 

chosen for the dataset, for example, the number 4 is chosen. This means that the 

dataset is split into approximately 4 equal parts, and what it does is take a quarter of 

the dataset to do the training and the remaining three quarters are taken to do the tests. 

This procedure is repeated four times, so each part of the dataset is used for training 

and tests. However, for this test a CrossValidation with 10 fold is used since 

numerous tests with different datasets and different classification algorithms have 

shown a better performance and there are some theoretical evidences that demonstrate 

this [84].  
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• Percentage Split: In this kind of test, a percentage of instances from the dataset that 

will be used for training the algorithm is chosen and the rest is used for testing. In this 

case the configuration that was taken was the one that comes by default in Weka with 

a percentage split of 66% [84]. 

 

• T-test: The T-test is used to make the comparison of each algorithm with respect to 

another. This means, an algorithm is taken for a certain dataset and with that same 

dataset another algorithm is tested. This leads to a comparison between the two 

algorithms, which in the T-test gives a result where the percentages of each of the 

tests performed with the different algorithms appear. These tests help to decide if one 

algorithm is much better than another, or if on the contrary these two algorithms are 

just as good to validate the dataset. In this case the T-test was done comparing the 

algorithms J48, RandomForest, AdaboostM1, Bagging, IBK and NaiveBayes, being 

done with cross validation of 10 fold [84]. 

 

5.3. Classification tests and results 
 

Two of the datasets named in the previous section were taken into account for this part. As 

mentioned before, 10 different datasets were obtained, each of them containing different 

number of instances per attribute, 250,000, 150,000, 100,000, 50,000 and 25,000 instances, 

having from each number of instances two datasets, one for training and the other one for 

testing.  

 

The first thing that was done was to take the training dataset of 250,000 instances and the 

first algorithm that was evaluated was the J48 using the first test with Cross validation of 10 

fold. Then, with the same Cross validation configuration explained in section 5.2, the test 

dataset with the same instances is taken and the algorithm is tested. For this dataset the only 

algorithms from which results were obtained for cross validation were J48, NaiveBayes and 

the IBK algorithms, this last one taking more than 7 hours trying to make the classification. 

The other algorithms such as AdaboostM1, Bagging and RandomForest could not be tested 

because the machine on which the classification algorithms were running did not have 

enough hardware resources to test these algorithms as these hardware resources were 

insufficient to launch the classification algorithms. 

 

Taking this into account, then it was decided to start creating datasets with fewer instances, 

it was tested with the datasets of 150,000 instances and 100,000 instances but the hardware 

resources were still insufficient to complete the training and testing of the 3 missing 

algorithms. 
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Finally the datasets of 50.000 and 25.000 instances were taken, obtaining from these the 

results for the different algorithms that were required to test, J48, RandomForest, 

AdaboosM1, Bagging, IBK and NaiveBayes. It should be noted that in all cases it was also 

wanted to test the algorithms LibSVM and SMO, without being able to get results with any 

of the different dataset due to the same problem of insufficient resources of the machine.  

 

The results of the different tests are shown below, showing first the tests obtained from the 

training phases and then the results obtained from the test datasets. In first place, the 

CrossValidation tests are presented, then the Percentage Split tests and finally the T-test with 

cross validation to make a comparison of the implemented algorithms. For space reasons 

only the tests performed with the dataset that has 50.000 instances will be shown, however, 

in appendix 1 can be appreciated the tests that were done with the dataset of 25,000 instances. 

Also, it is important to mention that the tests were done with the datasets that went through 

the data cleaning process described in section 4.3.2 of the previous chapter, as well as with 

the datasets without doing any kind of cleaning.  

 

The results will be shown as follows: first the confusion matrix of each of the algorithms will 

be shown, followed by the performance metrics discussed in subsection 5.1.1 which are 

precision, recall, F-Measure and kappa statistic; and finally there is a brief explanation and 

interpretation of the results obtained with the different classification algorithms and the 

different tests done. 

 

Before continuing with the results, it should be clarified that when talking about a dataset of 

50,000 instances that have gone through a cleaning process, this number is only an 

approximation of the actual instances that exist in the dataset. The actual number of instances 

for the training dataset is 49,791 and the actual number of instances per application is 9,966 

for Google, 9,964 for Skype, 10,000 for Spotify, 9,897 for WhatsApp and 9,964 for 

YouTube. The actual number of instances for the test dataset is 49,804 and the actual number 

of instances per application is 9,978 for Google, 9,971 for Skype, 10,000 for Spotify, 9,892 

for WhatsApp and 9,963 for YouTube. 

 

5.3.1 J48 with CrossValidation 
 

• Training dataset 

 

A B C D E CLASSIFIED AS 

8060 839 0 83 984 A = Google 

828 8818 2 13 303 B = Skype 

0 1 9953 46 0 C = Spotify 

61 8 72 9729 27 D = WhatsApp 
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971 304 1 43 8645 E = YouTube 

Table 4. Confusion matrix of J48 algorithm with CrossValidation, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.813 0.809 0.811 

Skype 0.884 0.885 0.885 

Spotify 0.993 0.995 0.994 

WhatsApp 0.981 0.983 0.982 

YouTube 0.868 0.868 0.868 

Weighted Avg   0.908 0.908 0.908 
Table 5. Precision, Recall and F-Measures of J48 algorithm with CrossValidation, training dataset. 

Kappa Statistic: 0.8849 

 

• Test dataset 

 

A B C D E CLASSIFIED AS 

8027 817 0 62 1072 A = Google 

822 8829 2 11 307 B = Skype 

0 0 9918 82 0 C = Spotify 

57 15 80 9707 33 D = WhatsApp 

988 300 2 46 8627 E = YouTube 

Table 6.Confusion matrix of J48 algorithm with CrossValidation, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.811 0.804 0.808 

Skype 0.886 0.885 0.886 

Spotify 0.992 0.992 0.992 

WhatsApp 0.980 0.981 0.981 

YouTube 0.859 0.866 0.863 

Weighted Avg   0.906 0.906 0.906 

Table 7. Precision, Recall and F-Measures of J48 algorithm with CrossValidation, test dataset. 

Kappa Statistic: 0.8821 

 

In this test it can be noticed that the diagonal of the confusion matrix has the largest 

number of instances, and that its surroundings have smaller numbers to a large extent, 

this means that the classification algorithm is good enough for these datasets. It can 

also be noticed that the kappa statistic does not have a very big difference when 

comparing the performance it had with the training and test dataset showing that the 

learning done with the training dataset is good enough to do the validation of other 
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similar dataset; Additionally that the result of the Kappa statistic is close to 1 which 

means that the classifier is not due to chance. The F-Measure also shows 

measurements very close to 1 so it can be said that the classifier is reliable. 

 

5.3.2 RandomForest with CrossValidation  
 

• Training dataset 

 

A B C D E CLASSIFIED AS 

5951 1613 85 633 1684 A = Google 

1252 7396 108 649 559 B = Skype 

14 19 9824 139 4 C = Spotify 

120 149 816 8716 96 D = WhatsApp 

1269 498 39 252 7906 E = YouTube 

Table 8. Confusion matrix of RandomForest algorithm with CrossValidation, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.691 0.597 0.641 

Skype 0.764 0.742 0.753 

Spotify 0.904 0.982 0.941 

WhatsApp 0.839 0.881 0.859 

YouTube 0.771 0.793 0.782 

Weighted Avg   0.794 0.799 0.795 
Table 9. Precision, Recall and F-Measures of RandomForest algorithm with CrossValidation, training dataset. 

Kappa Statistic: 0.749 

 

• Test dataset 

 

A B C D E CLASSIFIED AS 

5569 2243 314 304 1548 A = Google 

2503 5659 451 399 959 B = Skype 

8 373 8901 702 16 C = Spotify 

1916 950 2391 4506 129 D = WhatsApp 

2858 990 67 108 5940 E = YouTube 

Table 10. Confusion matrix of RandomForest algorithm with CrossValidation, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.433 0.558 0.488 

Skype 0.554 0.568 0.561 
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Spotify 0.734 0.890 0.805 

WhatsApp 0.749 0.456 0.566 

YouTube 0.691 0.596 0.640 

Weighted Avg   0.632 0.614 0.612 
Table 11. Precision, Recall and F-Measures of RandomForest algorithm with CrossValidation, test dataset. 

Kappa Statistic: 0.5173 

 

In this test the results vary greatly. In the first confusion matrix it can be seen that 

although the biggest values are in the diagonal, the values that are in their 

surroundings are not much smaller than those of the diagonal, existing a reduction of 

the values of the diagonal in the confusion matrix of the test dataset. To this can be 

added the fact that the Kappa statistics obtained in the training dataset and in the test 

dataset has a very large difference, so it can be said that the algorithm did not make a 

good learning, showing that in both cases the results may be affected by chance. F-

Measures also lower their values, thus demonstrating that the classifier is unreliable. 

 

5.3.3 AdaboostM1 (J48) with CrossValidation 
 

• Training dataset 

 

A B C D E CLASSIFIED AS 

9108 562 0 57 239 A = Google 

2590 7333 0 12 29 B = Skype 

0 0 9995 5 0 C = Spotify 

20 0 71 9804 2 D = WhatsApp 

1504 274 1 17 8168 E = YouTube 

Table 12. Confusion matrix of AdaboostM1 algorithm with CrossValidation, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.689 0.91 0.786 

Skype 0.898 0.736 0.809 

Spotify 0.993 1.000 0.996 

WhatsApp 0.991 0.991 0.991 

YouTube 0.968 0.820 0.888 

Weighted Avg   0.908 0.892 0.894 
Table 13. Precision, Recall and F-Measures of AdabosstM1 algorithm with CrossValidation, training dataset. 

Kappa Statistic: 0.8649 

 

• Test dataset 
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A B C D E CLASSIFIED AS 

5801 2672 0 60 1445 A = Google 

74 9818 1 14 64 B = Skype 

0 0 9994 6 0 C = Spotify 

13 1 78 9788 12 D = WhatsApp 

131 555 0 21 9256 E = YouTube 

Table 14. Confusion matrix of AdaboostM1algorithm with CrossValidation, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.964 0.581 0.725 

Skype 0.753 0.985 0.853 

Spotify 0.992 0.999 0.996 

WhatsApp 0.990 0.989 0.990 

YouTube 0.859 0.929 0.893 

Weighted Avg   0.911 0.897 0.891 

Table 15. Precision, Recall and F-Measures of AdaboostM1 algorithm with CrossValidation, test dataset. 

Kappa Statistic: 0.8708 

 

In this test it can be seen that the kappa statistic is a little better in the test dataset than 

in the training dataset, however the difference is not exaggeratedly large. It can also 

be seen that the F-Measures are better in the test dataset. In the two confusion 

matrices, the largest numbers are in the middle of the matrix, which means that it is a 

good classifier. 

 

5.3.4 Bagging (J48) with CrossValidation 
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

7759 1482 0 78 647 A = Google 

237 9621 2 11 93 B = Skype 

0 0 9988 12 0 C = Spotify 

20 0 78 9787 12 D = WhatsApp 

412 478 1 36 9037 E = YouTube 

Table 16. Confusion matrix of Bagging algorithm with CrossValidation, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.921 0.779 0.844 
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Skype 0.831 0. 966 0.893 

Spotify 0.992 0. 999 0.995 

WhatsApp 0.986 0. 989 0.988 

YouTube 0.923 0. 907 0.915 

Weighted Avg   0.931 0.928 0.927 

Table 17. Precision, Recall and F-Measures of Bagging algorithm with CrossValidation, training dataset. 

Kappa Statistic: 0.9096 

 

• Test Dataset 

 

A B C D E CLASSIFIED AS 

7858 1374 0 67 679 A = Google 

249 9596 0 15 111 B = Skype 

0 0 9976 24 0 C = Spotify 

29 2 84 9753 24 D = WhatsApp 

425 484 1 43 9010 E = YouTube 

Table 18. Confusion matrix of Bagging algorithm with CrossValidation, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.918 0.788 0.848 

Skype 0.838 0.962 0.896 

Spotify 0.992 0.998 0.995 

WhatsApp 0.985 0.986 0.985 

YouTube 0.917 0.904 0.911 

Weighted Avg   0.930 0.927 0.927 

Table 19. Precision, Recall and F-Measures of Bagging algorithm with CrossValidation, test dataset. 

Kappa Statistic: 0.9094 

 

In this test it can be seen that this is one of the best classifiers that were tested. Kappa 

statistics are considerably close to 1, just like F-Measures. However, this may not be 

appreciated very well in confusion matrices as there are quite a few instances outside 

the diagonal that are not very close to zero, although the diagonal of the matrices have 

the largest number of instances. 
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5.3.5 IBK (25 neighbors) with CrossValidation  
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

6183 542 1504 1687 50 A = Google 

954 5864 1194 1917 35 B = Skype 

8 0 9915 77 0 C = Spotify 

138 158 4652 4949 0 D = WhatsApp 

2303 237 1295 1666 4463 E = YouTube 

Table 20. Confusion matrix of IBK algorithm with CrossValidation, training dataset. 

CLASS PRECISION RECALL F-MEASURE 

Google 0.645 0.620 0.632 

Skype 0.862 0.589 0.700 

Spotify 0.534 0.992 0.694 

WhatsApp 0.481 0.500 0.490 

YouTube 0.981 0.448 0.615 

Weighted Avg   0.701 0.630 0.627 
Table 21. Precision, Recall and F-Measures of IBK algorithm with CrossValidation, training dataset. 

Kappa Statistic: 0.5376 

 

• Test Dataset 

 

A B C D E CLASSIFIED AS 

6144 578 1477 1729 50 A = Google 

1001 5886 1124 1923 37 B = Skype 

3 0 9911 86 0 C = Spotify 

133 145 4522 5092 0 D = WhatsApp 

2274 246 1346 1738 4359 E = YouTube 

Table 22. Confusion matrix of IBK algorithm with CrossValidation, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.643 0.616 0.629 

Skype 0.859 0.590 0.700 

Spotify 0.539 0.991 0.698 

WhatsApp 0.482 0.515 0.498 

YouTube 0.980 0.438 0.605 

Weighted Avg   0.701 0.630 0.626 
Table 23. Precision, Recall and F-Measures of IBK algorithm with CrossValidation, test dataset. 
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Kappa Statistic: 0.5378 

 

With the Kappa statistics of both the training and test datasets it can be noted that the 

value is 0.5, more or less in the middle of the range in which this statistic is defined. 

This means that it is a classifier that is quite affected by chance, showing low F-

Measures that show that it is not a very reliable classifier. This can also be seen in the 

confusion matrices where their diagonals despite having larger numbers, their 

surroundings are full of numbers similar to these. 

 

5.3.6 NaiveBayes with CrossValidation  
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

8275 1263 2 15 411 A = Google 

316 9527 0 4 117 B = Skype 

31 40 9834 88 7 C = Spotify 

94 261 813 8671 58 D = WhatsApp 

256 218 0 1 9489 E = YouTube 

Table 24. Confusion matrix of NaiveBayes algorithm with CrossValidation, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.922 0.839 0.874 

Skype 0.842 0.956 0.896 

Spotify 0.923 0.983 0.952 

WhatsApp 0.988 0.876 0.929 

YouTube 0.941 0.952 0.947 

Weighted Avg   0.923 0.920 0.919 
Table 25. Precision, Recall and F-Measures of NaiveBayes algorithm with CrossValidation, training dataset. 

Kappa Statistic: 0.8997 

 

• Test Dataset 

 

A B C D E CLASSIFIED AS 

8312 1244 0 22 400 A = Google 

311 9513 0 6 141 B = Skype 

32 49 9827 84 8 C = Spotify 

107 249 839 8648 49 D = WhatsApp 

223 252 0 2 9486 E = YouTube 
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Table 26. Confusion matrix of NaiveBayes algorithm with CrossValidation, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.925 0.833 0.877 

Skype 0.841 0.954 0.894 

Spotify 0.921 0.983 0.951 

WhatsApp 0.987 0.874 0.927 

YouTube 0.941 0.952 0.946 

Weighted Avg 0.923 0.919 0.919 
Table 27. Precision, Recall and F-Measures of NaiveBayes algorithm with CrossValidation, test dataset. 

 

Kappa Statistic: 0.8991 

 

This being the last algorithm analyzed, taking into account the Kappa statistics can 

be inferred that this is also one of the best algorithms that were tested. The kappa 

statistic is close to 0.900, which makes it considerably close to 1, making this a 

classifier that is not very affected by chance. The F-Measures are also close to 1 

making this a reliable algorithm. Also on the diagonal of the confusion matrices it can 

be noticed that the larger numbers belong to it and that in its surroundings the numbers 

are considerably smaller. 

 

5.3.7 T-test with CrossValidation 
 

DATASET J48 RANDOMFOREST ADABOOSTM1 BAGGING IBK NAIVEBAYES 

Training 

dataset 
90.64 79.39* 86.26 92.85v 63.14* 92.00v 

 (v/ /*) (0/0/1) (0/1/0) (1/0/0) (0/0/1) (1/0/0) 
Table 28. T-test comparing the algorithms. 

 

In the T-test made with CrossValidation of 10 folds for all the algorithms that were evaluated, 

J48 was taken as the algorithm with which the others were going to be compared. The results 

obtained were that Bagging was the best, then NaiveBayes, followed by J48. However, the 

difference between the performances of these three algorithms is not very big so the v next 

to the percentages given in the table indicates that any of the three algorithms can be used to 

make a very good validation for the dataset. It can also be seen that the result of the Adaboost 

algorithm has the middle sign, which indicates that it is an algorithm that is neither good nor 

bad, on the contrary it can be used to make a good classification, however it is not the most 

recommendable to do it. Finally it can be noticed that there is an * next to the percentages of 

RandomForest and IBK, leaving in evidence that these two algorithms do not have a good 
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performance and that to make the validation of this set of data are not appropriate because 

the results obtained are very poor. 

 

5.3.8 J48 with percentage Split  
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

2598 314 0 27 392 A = Google 

319 2961 0 2 116 B = Skype 

0 0 3378 16 0 C = Spotify 

28 1 36 3312 14 D = WhatsApp 

370 95 0 15 2935 E = YouTube 

Table 29. Confusion matrix of J48 algorithm with Percentage Split, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.784 0.780 0.782 

Skype 0.878 0.871 0.875 

Spotify 0.989 0.995 0.992 

WhatsApp 0.982 0.977 0.979 

YouTube 0.849 0.859 0.854 

Weighted Avg 0.897 0.897 0.897 

Table 30. Precision, Recall and F-Measures of J48 algorithm with Percentage Split, training dataset. 

Kappa Statistic: 0.8711 

 

• Test Dataset 

 

A B C D E CLASSIFIED AS 

8027 817 0 62 1072 A = Google 

822 8829 2 11 307 B = Skype 

0 0 9918 82 0 C = Spotify 

57 15 80 9707 33 D = WhatsApp 

988 300 2 46 8627 E = YouTube 

Table 31. Confusion matrix of J48 algorithm with Percentage Split, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.811 0.804 0.808 

Skype 0.886 0.885 0.886 

Spotify 0.992 0.992 0.992 
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WhatsApp 0.980 0.981 0.981 

YouTube 0.859 0.866 0.863 

Weighted Avg 0.906 0.906 0.906 

Table 32. Precision, Recall and F-Measures of J48 algorithm with Percentage Split, test dataset. 

 

Kappa Statistic: 0.8821 

 

In this test it can be seen that the confusion matrix of the training dataset has far fewer 

instances than the confusion matrix of the test dataset. This is because with the 

percentage split test the learning is done with 66% of the attributes that exist in the 

dataset and the rest are used for testing. In the kappa statistics it can be appreciated 

that the algorithm has a good performance and is not affected by chance, having in 

the diagonal of its confusion matrices the biggest numbers and with quite good F-

Measures for which the algorithm is reliable. 

 

5.3.9 RandomForest with percentage Split 
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

1899 676 37 106 613 A = Google 

557 2371 5 99 366 B = Skype 

3 5 3274 76 36 C = Spotify 

31 78 525 2563 194 D = WhatsApp 

651 241 12 52 2459 E = YouTube 

Table 33. Confusion matrix of RandomForest algorithm with Percentage Split, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.605 0.570 0.587 

Skype 0.703 0.698 0.701 

Spotify 0.850 0.965 0.904 

WhatsApp 0.885 0.756 0.815 

YouTube 0.670 0.720 0.694 

Weighted Avg 0.743 0.742 0.741 

Table 34. Precision, Recall and F-Measures of RandomForest algorithm with Percentage Split, training dataset. 

Kappa Statistic: 0.6778 

 

• Test Dataset 
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A B C D E CLASSIFIED AS 

2603 2109 341 283 4642 A = Google 

459 5398 468 376 3270 B = Skype 

8 371 8924 679 18 C = Spotify 

47 984 2646 4065 2150 D = WhatsApp 

551 1086 84 83 8159 E = YouTube 

Table 35. Confusion matrix of RandomForest algorithm with Percentage Split, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.710 0.261 0.382 

Skype 0.543 0.541 0.542 

Spotify 0.716 0.892 0.795 

WhatsApp 0.741 0.411 0.529 

YouTube 0.447 0.819 0.579 

Weighted Avg 0.631 0.585 0.565 
Table 36. Precision, Recall and F-Measures of RandomForest algorithm with Percentage Split, test dataset. 

 

Kappa Statistic: 0.4815 

 

The performance of this test with the RandomForest algorithm is considerably lower, 

leaving evidence that it is a classifier very affected by chance, very unreliable and 

low performance because in the diagonals of the confusion matrices is not seen 

eloquently that their numbers are much larger than those around them. 

 

5.3.10 AdaboostM1 (J48) with percentage Split  
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

3154 135 0 14 28 A = Google 

416 2970 0 3 9 B = Skype 

0 0 3392 2 0 C = Spotify 

21 0 35 3334 1 D = WhatsApp 

749 96 0 8 2562 E = YouTube 

Table 37. Confusion matrix of AdabosstM1 algorithm with Percentage Split, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.727 0.947 0.822 

Skype 0.928 0.874 0.900 
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Spotify 0.990 0.999 0.995 

WhatsApp 0.992 0.983 0.988 

YouTube 0.985 0.750 0.852 

Weighted Avg 0.925 0.910 0.912 
Table 38. Precision, Recall and F-Measures of AdaboostM1 algorithm with Percentage Split, training dataset. 

 

Kappa Statistic: 0.888 

 

• Test Dataset 

 

A B C D E CLASSIFIED AS 

5801 2672 0 60 1445 A = Google 

74 9818 1 14 64 B = Skype 

0 0 9994 6 0 C = Spotify 

13 1 78 9788 12 D = WhatsApp 

131 555 0 21 9256 E = YouTube 

Table 39. Confusion matrix of AdaboostM1 algorithm with Percentage Split, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.964 0.581 0.725 

Skype 0.753 0.985 0.853 

Spotify 0.992 0.999 0.996 

WhatsApp 0.990 0.989 0.990 

YouTube 0.859 0.929 0.893 

Weighted Avg   0.911 0.897 0.891 

Table 40. Precision, Recall and F-Measures of AdaboostM1 algorithm with Percentage Split, test dataset. 

 

Kappa Statistic: 0.8708 

 

This test is much better than the previous one, it can be seen that the kappa statistics 

are around the values 0.87 and 0.89, which allows us to conclude that it is not a 

classifier that is very affected by chance. The F-Measure are close to zero, and the 

confusion matrices in their diagonals have the largest numbers showing that it is a 

very good performance and quite reliable algorithm. 
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5.3.11 Bagging (J48) with percentage Split  
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

2614 451 0 22 244 A = Google 

71 3278 1 1 47 B = Skype 

0 0 3390 4 0 C = Spotify 

13 0 39 3334 5 D = WhatsApp 

173 151 0 10 3081 E = YouTube 

Table 41. Confusion matrix of Bagging algorithm with Percentage Split, training dataset. 

CLASS PRECISION RECALL F-MEASURE 

Google 0.910 0.785 0.843 

Skype 0.845 0.965 0.901 

Spotify 0.988 0.999 0.994 

WhatsApp 0.989 0.983 0.986 

YouTube 0.912 0.902 0.907 

Weighted Avg   0.929 0.927 0.926 
Table 42. Precision, Recall and F-Measures of Bagging algorithm with Percentage Split, training dataset. 

Kappa Statistic: 0.909 

 

• Test Dataset 

 

A B C D E CLASSIFIED AS 

7858 1374 0 67 679 A = Google 

249 9596 0 15 111 B = Skype 

0 0 9976 24 0 C = Spotify 

29 2 84 9753 24 D = WhatsApp 

425 484 1 43 9010 E = YouTube 

Table 43. Confusion matrix of Bagging algorithm with Percentage Split, test dataset. 

CLASS PRECISION RECALL F-MEASURE 

Google 0.918 0.788 0.848 

Skype 0.838 0.962 0.896 

Spotify 0.992 0.998 0.995 

WhatsApp 0.985 0.986 0.985 

YouTube 0.917 0.904 0.911 

Weighted Avg   0.930 0.927 0.927 

Table 44. Precision, Recall and F-Measures of Bagging algorithm with Percentage Split, test dataset. 
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Kappa Statistic: 0.9094 

 

In this test, as in the previous one, it can be seen that Bagging is the algorithm that 

gives the best results when classifying datasets. The kappa are very close to 1, without 

evidencing a very big difference between the training dataset and the test dataset. 

Similarly, the F-Measures show that it is a very reliable classifier and in the confusion 

matrices it can be seen that the classifier has a great performance. 

 

5.3.12 IBK (25 neighbors) with percentage Split  
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

2046 182 543 549 11 A = Google 

348 1959 404 677 10 B = Skype 

4 0 3364 26 0 C = Spotify 

51 58 1585 1696 1 D = WhatsApp 

832 73 512 543 1455 E = YouTube 

Table 45. Confusion matrix of IBK algorithm with Percentage Split, training dataset. 

CLASS PRECISION RECALL F-MEASURE 

Google 0.624 0.614 0.619 

Skype 0.862 0.577 0.691 

Spotify 0.525 0.991 0.686 

WhatsApp 0.486 0.500 0.493 

YouTube 0.985 0.426 0.595 

Weighted Avg   0.697 0.621 0.617 
Table 46. Precision, Recall and F-Measures of IBK algorithm with Percentage Split, training dataset. 

 

Kappa Statistic: 0.5269 

 

• Test Dataset 

 

A B C D E CLASSIFIED AS 

6144 578 1477 1729 50 A = Google 

1001 5886 1124 1923 37 B = Skype 

3 0 9911 86 0 C = Spotify 

133 145 4522 5092 0 D = WhatsApp 

2274 246 1346 1738 4359 E = YouTube 

Table 47. Confusion matrix of IBK algorithm with Percentage Split, test dataset. 
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CLASS PRECISION RECALL F-MEASURE 

Google 0.643 0.616 0.629 

Skype 0.859 0.590 0.700 

Spotify 0.539 0.991 0.689 

WhatsApp 0.482 0.515 0.498 

YouTube 0.980 0.438 0.605 

Weighted Avg   0.701 0.630 0.626 
Table 48. Precision, Recall and F-Measures of IBK algorithm with Percentage Split, test dataset. 

 

Kappa Statistic: 0.5378 

 

This test shows that this algorithm is one of the worst ever tested, with a kappa statistic 

showing that it is a classifier highly affected by chance. The F- Measures also show 

how unreliable it is and the confusion matrices corroborate that the performance is 

very poor. 

 

5.3.13 NaiveBayes with percentage Split  
 

• Training Dataset 

 

A B C D E CLASSIFIED AS 

2773 424 0 3 131 A = Google 

102 3246 0 2 48 B = Skype 

9 9 3347 28 1 C = Spotify 

27 72 312 2960 20 D = WhatsApp 

82 80 0 0 3253 E = YouTube 

Table 49. Confusion matrix of NaiveBayes algorithm with Percentage Split, training dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.926 0.832 0.877 

Skype 0.847 0.955 0.898 

Spotify 0.915 0.986 0.949 

WhatsApp 0.989 0.873 0.927 

YouTube 0.942 0.953 0.947 

Weighted Avg   0.924 0.920 0.920 

Table 50. Precision, Recall and F-Measures of NaiveBayes algorithm with Percentage Split, training dataset. 

 

Kappa Statistic: 0,9003 
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• Test Dataset 

 

A B C D E CLASSIFIED AS 

8312 1244 0 22 400 A = Google 

311 9513 0 6 141 B = Skype 

32 49 9827 84 8 C = Spotify 

107 249 839 8648 49 D = WhatsApp 

223 252 0 2 9486 E = YouTube 

Table 51. Confusion matrix of NaiveBayes algorithm with Percentage Split, test dataset. 

 

CLASS PRECISION RECALL F-MEASURE 

Google 0.925 0.833 0.877 

Skype 0.841 0.954 0.894 

Spotify 0.921 0.983 0.951 

WhatsApp 0.987 0.874 0.927 

YouTube 0.941 0.952 0.946 

Weighted Avg   0.923 0.919 0.919 
Table 52. Precision, Recall and F-Measures of NaiveBayes algorithm with Percentage Split, test dataset. 

 

Kappa Statistic: 0.8991 

 
This classifier, together with Bagging and J48, are the best performers in both the 

CrossValidation and Split percentage tests. Kappa statistics are very close to 1 and F-

Measures show great reliability. The confusion matrices also show a very good 

performance of the algorithm being one of the best to do the validation of the different 

datasets.   
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Summary 
 

In this chapter a brief summary of the metrics used in the machine learning classification 

algorithms is made, followed by a brief description of the algorithms used to do the tests and 

finally a short description of the tests that were performed to do the validation of the datasets.  

 

It also exposes some of the problems that were presented when doing this validation with the 

different datasets and the solution that was chosen to carry out the validation of the datasets 

created.  

 

Finally, the results obtained with the classification algorithms are shown, taking into account 

that the results were shown in the following way: as a first measure, the results of the dataset 

that had 50,000 instances that passed through the cleaning process were shown, doing the 

validation with algorithms such as J48, RandomForest, AdaboostM1, Bagging, IBK and 

NaiveBayes, making use of cross validation with 10 folds, showing the tests done in the 

training dataset and in the test dataset each of them having 49.971 instances and 49.804 

instances respectively. Then it is shown the T-test performed with cross validation of 10 fold 

in order to make a comparison between the algorithms used. Finally the results obtained with 

these same algorithms are shown in the test and training dataset, but this time with the 

percentage split test. At the end of each test shown is given a brief explanation and analysis 

of the results that were obtained. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 

 

This section presents the conclusions that were obtained from this undergraduate thesis and 

also presents some of the future work that can be done for this area of research. 

 

6.1 Conclusions 

 
In this section the conclusions obtained for this undergraduate thesis were: 

 

• After an extensive research and revision of the works related to this undergraduate 

thesis, it was reached the conclusion that until now there are no researches or similar 

projects that resemble what it is wanted to achieve with this work, taking into account 

that until now nobody has taken the initiative to integrate LTE simulators, with traffic 

generators, traffic capturers and that as a final result a dataset is obtained from them 

with all the information exchanged in the network. 

 

• After making a study of the traffic generators exposed in this undergraduate thesis, it 

can be said that there is no generator capable of meeting the needs of this research 

work, which were being able to generate flows of different OTT applications having 

the absolute certainty of knowing to which exact application they belong, i.e., 

knowing if the flow belongs to Skype, Google, Spotify, and so on. 

 

• The generation of synthetic flow of OTT applications can be done with a previous 

statistical modeling of a model dataset that contains instances of real OTT 

applications. 

 

• With the OTT applications synthetic flow generator created in this undergraduate 

thesis, datasets can be obtained from different applications such as WhatsApp, 

YouTube, Skype, Spotify and Google. 

 

• The dataset that was created, taking into account the results of the machine learning 

tests, is a good dataset since the different algorithms used gave good results, with 
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which it can be concluded that the synthetic flow generators created meet the needs 

of this undergraduate thesis. 

 

6.2 Future work 
 

Considering the research that was done in this undergraduate thesis, the future works are: 

 

• Collect a much larger dataset that has a greater number of users and a greater number 

of OTT applications and make the statistical modeling of flows of many more OTT 

applications, such as Netflix, Deezer, Instagram, Twitter, etc. 

 

• Synthesize the flow of OTT application attributes without taking into account 

statistical independence. That is, analyzing the correlation that may or may not exist 

between one attribute and another. 

 

• Create an environment with a user interface so that the generators created in this thesis 

are easy to use for the general public, having only to launch the program and being 

able to obtain datasets with the exchange of information from specific OTT 

applications. 

 

• Make an integration of the exposed LTE simulator, with the OTT application flow 

generator that was created in this undergraduate thesis. 

 

• To create an integrated environment of an LTE network simulator, an OTT 

applications traffic generator and a sniffer, that allows to create different number of 

users and servers, capable of exchanging data between them, where the user will have 

as final product a dataset with all the information of the data implicitly exchanged.  
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