
Cognitive routing of flows in software-defined

networks from the control plane

Undergraduate Work

Sofía Rubin Castillo
Brayam David Otero Pomeo

Advisor: PhD. Oscar Mauricio Caicedo Rendón
Co-advisor: PhD. Cristhian Nicolás Figueroa Martínez

Telematics Department
Faculty of Electronic and Telecommunications Engineering

Universidad del Cauca
Popayán, Cauca, 2023

Cognitive routing of flows in software-defined

networks from the control plane

Sofía Rubin Castillo
Brayam David Otero Pomeo

Undergraduate work presented to the Faculty of Electronic
and Telecommunications Engineering of the
University of Cauca to obtain the title of:

Electronic and Telecommunications engineer

Advisor: PhD. Oscar Mauricio Caicedo Rendón
Co-advisor: PhD. Cristhian Nicolás Figueroa Martinez

Telematics Department
Faculty of Electronic and Telecommunications Engineering

Universidad del Cauca
Popayán, Cauca, 2023

Acknowledgment

For us is important to start sharing how grateful we are for our friendship; without
it, we couldn’t have found the light in the thought days as students, for the moments
which will last forever in our memories, for the afternoons of laughter, for the many
the hugs of support when everything seemed gray. In that sense, we also want to
thank our closest friends for the companionship we had in an essential time like
this, when human beings forge their worth for the rest of their lives. We want to
thank our families for how fortunate we are for their support and understanding in
the process. We thank the whole University del Cauca’s Electronic Engineering and
Telecommunication faculty, as it is a place where our voices are heard, and since
the beginning, we have felt comfortable and encouraged. We especially thank our
advisors, Oscar M. Caicedo and Cristhian N. Figueroa, for directing our vision and
sharing essential lessons that will stick with us through our academic path. Also, we
want to thank Daniela M. Casas-Velasco for her disposition to talk about her work
and for inspiring our own.

And, finally remind the importance of mental health. A fundamental part of life,
since an eased soul can create the best of works, always heading toward real aware
advancement.

I

Agradecimientos

Para nosotros es importante manifestar lo agradecidos que estamos por nuestra
amistad; sin ella, no hubiésemos podido encontrar la luz en los días difíciles como
estudiantes, por los momentos que perdurarán para siempre en nuestra memoria,
por las tardes de risas, por los tantos abrazos de apoyo cuando todo parecía gris.
En ese sentido, también queremos agradecer por nuestros amigos cercanos a quienes
tuvimos la fortunar de conocer un momento esencial de nuestras vidas, en el que el
ser humano forja sus valores para el resto de su vida. Queremos agradecer a nuestras
familias, somos afortunados por su apoyo y comprensión en el proceso. Agradecemos
a la Facultad de Ingeniería Electrónica y Telecomunicaciones de la Universidad del
Cauca, al ser un lugar donde nuestras voces son escuchadas y desde el inicio nos
hizo sentir cómodos y alentados. Agradecemos especialmente a nuestros directores,
Oscar M. Caicedo y Cristhian N. Figueroa, por dirigir nuestra visión y compartir
lecciones esenciales que nos acompañarán a lo largo de nuestro camino académico.
Asimismo, queremos agradecer a Daniela M. Casas-Velasco por su disposición para
hablar de su trabajo y por inspirar el nuestro.

Y, finalmente recordar la importancia de la salud mental. Parte fundamental de
la vida, ya que un alma aliviada puede crear la mejor de las obras, encaminándose
siempre hacia un avance real consciente.

I

Summary

Flow routing algorithms are a fundamental part of telecommunication networks since
they allow all nodes to communicate with each other. Routing algorithms must
be efficient to avoid network’s degradation. Traditional routing protocols usually
use fixed link weight assignment and shortest path routing which that cause link
overuse resulting in the service degradation. The appearance of Software Defined
Networking (SDN) offered multiple advantages over traditional networks, such as a
global view of the network and a programmable control and data planes entitling
the introduction of new technologies.

In a first attempt, traditional routing protocols were implemented on the top of SDN,
improving routing convergence. Still, they inherited limitations such as link overuse
and did not consider the network’s historical information to nourish decision-making.
SDN’s programmability made it possible to integrate Machine Learning (ML) tech-
niques to take advantage of the network’s historical information opening the way for
novel routing strategies. However, ML-based solutions are still dependent on con-
ventional routing protocols, therefore, do not fully exploit the network status. We
propose a routing algorithm whose cognitive learning improves network performance
and takes advantage of the broad potential of SDN.

II

Resumen

Los algoritmos de enrutamiento de flujos son una parte fundamental de las redes de
telecomunicaciones ya que permiten la comunicación entre los nodos. Los algoritmos
de enrutamiento deben ser eficientes para evitar la degradación de los servicios de
red. Los protocolos de enrutamiento tradicionales generalmente usan asignación de
pesos fijos en los enlaces y estrategias de enrutamiento como la priorizar la ruta
más corta, esto, causa un uso excesivo de los enlace resultando en la degradación del
servicio. La aparición de SDN ofreció múltiples ventajas sobre las redes tradicionales,
como la visión global de la red y planos de control y datos programables que dieron
paso a la introducción de nuevas tecnologías.

Inicialmente, se implementaron protocolos de enrutamiento tradicionales sobre SDN,
mejorando la convergencia de enrutamiento. Aún así, estos heredaron limitaciones
como el uso excesivo de enlaces y no consideraron la información histórica de la
red para nutrir la toma de decisiones. La capacidad de programación de SDN hizo
posible integrar técnicas de ML para aprovechar la información histórica de la red
y abrió el camino a nuevas estrategias de enrutamiento. Sin embargo, las soluciones
basadas en ML todavía dependen de los protocolos de enrutamiento convencionales
y, cuando no utilizan los algoritmos de enrutamiento convencionales, no aprovechan
completamente el estado de la red. Por lo tanto, proponemos un algoritmo de
enrutamiento cuyo aprendizaje cognitivo mejora el rendimiento de la red y aprovecha
el amplio potencial de SDN.

III

Content

List of figures VI

List of tables IX

List of acronyms X

1 Introduction 1

1.1 Objetives . 3

1.1.1 General Objetive . 3

1.1.2 Specific Objectives . 3

1.2 Contributions and Scientific Production 3

1.3 Document Organization . 4

2 Background 5

2.1 Routing . 5

2.2 Software-Defined Networking . 7

2.3 Machine Learning . 11

2.4 Knowledge-Defined Networking . 15

IV

CONTENT

3 Related Work 18

3.1 Classical Routing . 18

3.2 Reinforcement Learning-based Routing 20

3.3 Deep Reinforcement Learning-based Routing 21

3.4 Gaps . 23

4 Cognitive Flow Routing Algorithm for Programmable Control Plane 26

4.1 Overview . 26

4.2 Architecture . 27

4.2.1 Data Plane . 28

4.2.2 Control Plane . 29

4.2.3 Management Plane . 30

4.2.4 Knowledge Plane . 30

4.3 Cognitive Routing Agent . 31

4.3.1 Deep Deterministic Policy Gradient 32

4.3.2 State Space . 35

4.3.3 Action Space . 36

4.3.4 Reward . 36

4.4 Cognitive Routing Algorithm . 40

5 Evaluation and Analysis 44

5.1 Test Environment . 44

5.2 Prototype . 45

CONTENT

5.3 Performance Metrics . 46

5.4 Traffic Generation . 47

5.5 Hyperparameters Setup . 47

5.6 Results And Analysis . 51

6 Conclusions and Future Work 56

6.1 Conclusions . 56

6.2 Future work . 57

References 57

Annexes 70

A Algorithm 1

B Publicaciones 2

List of figures

2.1 High-level SDN architecture [1] . 8

2.2 DRL operation. [2] . 13

2.3 KDN architecture based in [3] proposal 15

4.1 CoRA architecture . 28

4.2 Management Plane of CoRA . 31

4.3 DDPG-agent of CoRA based in [4] 32

4.4 Procedure to find packet loss . 38

4.5 Switch ingress queue occupation . 40

5.1 GÉANT topology [5] . 45

5.2 CoRA Prototype . 46

5.3 Varying number of hidden layers. 48

5.4 Varying number of neurons per layer. 49

5.5 Varying discount factor. 50

5.6 Varying learning rate. 50

5.7 Varying batch size. 51

VII

LIST OF FIGURES

5.8 Varying target network updater. 51

5.9 Queue occupation Analysis . 52

5.10 Delay Analysis . 53

5.11 Loss Analysis . 54

5.12 Instantaneous throughput Analysis 55

5.13 Stretch Analysis . 55

List of tables

3.1 Research gaps in DRL algorithms. 25

IX

List of acronyms

AI Artificial Intelligence

API Application Programming Interface

ANN Artificial Neural Networks

BGP Border Gateway Protocol

CoRA Cognitive Routing Algorithm

DL Deep Learning

DRL Deep Reinforcement Learning

DPG Deterministic Policy Gradient

DQN Deep Q-Networks

DNN Deep Neural Network

DDPG Deep Deterministic Policy Gradient

DRSIR Deep Reinforcement Learning and Software-defined networking
Intelligent Routing

DDQN Double Deep Q Network

DQL Deep Q-Learning

EWBI East/Westbound Interfaces

ECMP Equal-Cost MultiPath Routing

List of acronyms

IoV internet of Vehicles

IRTF Internet Research Task Force

ITU International Telecommunication Union

I2A Imagination-Augmented Agents

IP Internet Protocol

IoV The Internet of Vehicles

IRBRL Intelligent Routing and Bandwidth Allocation System with
Reinforcement Learning

JSON JavaScript Object Notation

KDN Knowledge-Defined Networking

LLDP Link Layer Discovery Protocol

LSA Link State Advertisement

ML Machine Learning

MI Management Interface

MBMF Model-Based Model-Free

MBVE Model-Based Value Estimation

NSAF Network Situation-Aware Framework

NAT Network Address Translation

NOS Network Operating System

NBI NorthBound Interfaces

ONF Open Networking Foundation

OAM Operations, Administration, and Management

OSPF Open Shortest Path First

OFBGP Open Flow Border Gateway Protocol

DROM DDPG Routing Optimization Mechanism

SA3CR SDN Asynchronous Advantage Actor-critic Routing

QoS Quality of Service

REST REpresentational State Transfer

RL Reinforcement Learning

RIP Routing Information Protocol

RSIR Reinforcement Learning and Software-defined networking Intelligent
Routing

SBI SouthBound Interfaces

SDN Software Defined Networking

SLA Service Level Agreements

SPF Shortest Path First

TIDE Time-relevant Deep reinforcement learning

TC Traffic Control

UDP User Datagram Protocol

Chapter 1

Introduction

SDN manages networks effectively, reduces the operation costs, and promotes the
development of networks through programmability [6, 7]. Therefore, SDN has been
the focus of growing attention due to its efficiency and scalability to handle high
traffic volumes in highly complex networks [8]. The potential of SDN compared to
its conventional counterparts highlights the importance of reassessing how networks
are implemented and the algorithms used in them for their operation since the search
for effective routing plays an essential role in increasing SDN performance.

The use of Shortest Path First (SPF) [9] or link state routing algorithms within con-
ventional routing protocols in SDN favors situations of congestion and degradation
of the network environment by using a rigid allocation of weights in the calculation of
routes [10]. Some solutions implement conventional routing protocols such as Open
Shortest Path First (OSPF) [11–15], Routing Information Protocol (RIP) [16] or
Border Gateway Protocol (BGP) [17–20]. Although these solutions achieve improve-
ments regarding delay and packet loss compared to implementations in traditional
network architectures, these solutions incur limitations when making routing deci-
sions in the network. Fixed metrics in rigid weight assignments for route calculation
are a drawback when facing intrinsic network variability in current environments.
Therefore, the service ends up degrading due to link congestion. Furthermore, these
protocols do not use prior experience in making routing decisions.

1

2

With time and the contants search for new ways to exploit SDN in particular, the
programmability of SDN was seen as a routing solution toghether with ML capa-
bilities in data processing, and decision-making [21]. Some studies [22–28] propose
routing solutions based on Reinforcement Learning (RL) within SDN to find an op-
timal routing policy in terms of delay, packet transmission rate, packet loss rate,
among others. Despite seeing an optimal policy in an RL algorithm requires many
iterations, which can hamper proper routing algorithm performance in continuously
time-varying environments with large node and link number [29].

Works like [30–42] are based on Deep Reinforcement Learning (DRL). These works
create routing algorithms that adapt themselves to the state of the network and
improve the distribution of resources, optimizing network performance in terms of
delay and packet transmission rate.

The contributions above show different approaches related to routing, and thus, we
can spot a couple of common factors to address. For example, we have seen a need for
real topology usage and appropriate traffic matrices to nourish the implementation
and evaluation of the routing algorithms. On the other hand, the routing decisions
are prone to dismiss device state metrics. Hence, the network loses its global view
by neglecting important device status metrics, using only link metrics.

This thesis aims to route packet flows according to the network’s resources. Our
purpose is to consider all sides of the network’s status, meaning link and device
metrics. Considering the limitations, this undergraduate work will guide its devel-
opment starting from the following research question:

How to obtain a cognitive and efficient routing of packets in SDN con-
sidering link and device metrics from Control Plane?

During the development of the degree project, the research question was addressed
considering the following hypothesis: Cognitive routing in SDN can be
achieved by analyzing link and device state metrics using DRL tech-
niques.

1.1. Objetives 3

1.1 Objetives

1.1.1 General Objetive

• Propose a mechanism for cognitive routing in SDN based on DRL and link,
and device state metrics.

1.1.2 Specific Objectives

• Design a DRL-based mechanism for cognitive routing in SDN considering link-
state and device-state metrics.

• Implement a prototype of the proposed mechanism.

• Evaluate the mechanism through a prototype in an emulated SDN scenario
regarding packets lost, delay, throughput and device status 1.

1.2 Contributions and Scientific Production

This degree work achieved the following contributions:

• A DRL-based mechanism for cognitive routing in SDN considering link-state
and device-state metrics.

• An implementation and evaluation of the proposed mechanism over an em-
ulated SDN scenario considering packets lost, delay, throughput and device
status.

• The execution of the proposed algorithm over an existing topology and feed
the knowledge with real traffic matrices.

1The queue occupation at the input of the switch was used to characterize the device status

1.3. Document Organization 4

1.3 Document Organization

This undergraduate work has been divided into the chapters described below.

• Chapter 1 presents the Introduction which includes the statement of the
problem, Objectives, Contributions and Scientific Production, and the Orga-
nization of this document.

• Chapter 2 presents the Background organized by the Theoretical Frame-
work on the relevant topics related to the research carried out including Rout-
ing, SDN, ML, and KDN.

• Chapter 3 introduces the Related Work divided in Classical Routing, RL-
bases Routing, DRL-based Routing, and finally the research gaps.

• Chapter 4 presents the Cognitive Flow Routing Algorithm for Pro-
grammable Control Plane, and Overview, Architecture, the DRL-agent,
and its algorithm.

• Chapter 5 addresses the Results and Analysis

• Chapter 6 presents the Conclusions obtained, the Future work and Final
remarks.

Chapter 2

Background

In this chapter, we provide a description of fundamental concepts. We categorized
routing dividing it in classical and modern routing concerning the nature of the
algorithms use for the routing task, besides, SDN architecture, ML categories, and
the Knowledge-Defined Networking (KDN) paradigm.

2.1 Routing

Routing is the process responsible for finding the route that information packets
must follow from a source node to a destination one [43]. Routing is developed
by assigning routes statically or dynamically. The route is statically configured
manually by the network administrator usually in small networks [44]. Instead,
dynamic routing uses heuristic algorithms to find the route either as the shortest
path or by considering the link-state in large scale networks [45].

Due to SDN and its programmability, ML has endured an essential role within the
network environment. As a consequence, we classify the routing algorithms into two
categories; classical routing and modern routing.

• Classical Routing. Use algorithms such as distance vector, path vector, or
link-state (e.g., Dijkstra) to find optimal path [46]. With the implementation

5

2.1. Routing 6

of the distance vector algorithm, the routing takes into account the shortest
path from the origin to the destination. Path vector algorithms are similar to
distance vector algorithms in that they consider the number of hops between
the source and destination; however, how the path is shared changes. On the
other hand, link-state algorithms consider the weight of the link to choose
the optimal route [47]. Traditional routing protocols as OSPF, RIP and BGP
implement these algorithms [48].

RIP uses the distance-vector routing algorithm. Accordingly, distance is mea-
sured in hops from one device to another. So, to define the optimal route, the
hop number to the destination node is considered [49, 50]. RIP evicts loops
paths limiting the number of hops to 15, so if a route has 16 jumps is considered
a non-optimal route. The devices configured with RIP send broadcast packets
every 30 seconds; the devices then respond with the complete routing tables.
The routing tables have the destination Internet Protocol (IP) addresses and
the hop number of arriving at that destination. This process iterates till every
route table is actualized.

OSPF uses link-state algorithm to find the optimal path [51]. The devices
configured with OSPF send Link State Advertisement (LSA) to neighbor de-
vices, and a database stores the information containing the link states from
all the topology. Considering the link states database collected, each link has
a weight allowing Dijkstra to calculate the optimal route. BGP uses path
vector algorithm ,where the configured devices with BGP exchange available
routes with their neighbor devices. Furthermore, the routes share the cost in
relation to the available bandwidth, latency, and hop number from origin to
destination node [52].

Classical routing is used in traditional networks due to its low computational
cost and speed when calculating the optimal route [53]. The simplicity of
the criteria of these algorithms leads to congestion scenarios and a waste of
network bandwidth [10]. In addition, routing protocols based on link state and
distance vector algorithms do not learn from previous experience, negatively
affecting network causing degradation scenarios [54].

• Modern Routing. How routing is perceived has changed in recent years

2.2. Software-Defined Networking 7

with software tools heading in many fields and their introduction to telecom-
munication networks. Thus, modern routing emerges fundamentally in SDN,
allowing a glimpse of solutions not considered in traditional networks. The
modern routing approach is linked to Artificial Intelligence (AI) applications
and ML techniques. With SDN flexibility playing the main role in integrat-
ing ML strategies, making routing adaptable, scalable, and providing a wide
variety of possible solutions as suggested by Amin, R. et.al [55].

The routing process achieved with ML in the communication networks, out-
performs classical routing a like demostrates Valadarsky, A. et.al [56], although
with a high computational cost. Therefore, modern routing implementations
must have high throughput devices [3].

2.2 Software-Defined Networking

SDN is a network architecture that physically decouples the Control Plane from the
Data Plane [6]. Decoupling the network infrastructure allows centralized control of
network functions, simplifying management and reducing the operating cost of the
network [57]. The usage of SDN allows a flexible and scalable network due to its
programmability [58]. The latter draws the attention of academia and industry by
facilitating diverse research proposals that introduce all kinds of computer science
techniques such as ML or AI within this kind of networks [7].

Organizations such as Open Networking Foundation (ONF) [59], Internet Research
Task Force (IRTF) [60], and International Telecommunication Union (ITU) [61]
are responsible for standardizing the SDN architecture. Estrada-Solano, F. et.al [1]
propose a high-level architecture, as shown in Figure 2.1.

The SDN architecture involves three horizontal planes [62]: Data Plane, Control
Plane, and Application Plane. Also, it comprises a vertical plane: Management
Plane [1].

• Data Plane located at the bottom of the architecture, where its primary
function is packet forwarding. Is the layer of SDN that contains the net-

2.2. Software-Defined Networking 8

Figure 2.1: High-level SDN architecture [1]

work devices that physically handle network traffic. Novel approaches suggest
adding programmable capabilities to the Data Plane. However, the essential
way to work is to take the Control Plane instructions and pass them down to
the Data Plane.

Some switches exclusively carry forwarding functions like the OpenFlow-Only
[63] switches, which use their flow tables to follow the routing rules and carry
out the forwarding process. While the control plane executes the flow table
update installing the tables on the switches. Custom switches are available
on programmable platforms (e.g., Open-Wrt and NetFPGA) allowing more
advanced network functions than packet forwarding, such as Network Address
Translation (NAT) and even implementing firewall [64].

• The Control Plane is the middle layer between the Data Plane and the
Application Plane. This plane is composed of at least one instance of the
Network Operating System (NOS) or controller. The controller is connected
to all the data layer devices, representing the logical part of the plane in a

2.2. Software-Defined Networking 9

centralized way. Therefore, a single entity has a global network view and can
reconfigure the flow rules, a set of rules that enables the algorithm to prioritize
specific routes from the routing tables.

The controller provides generic functions such as device discovery and network
configuration in a distributed way, and it can also obtain network topology and
network state information for decision-making. Furthermore, the controller
allows the Application Plane to implement specialized services. The controller
receives from the Application Plane the service policies through a high-level
language or an Application Programming Interface (API). Then the controller
translates this policy into rules that finally install or update in the Data Plane.

The SDN controller installs well-defined instructions for handling incoming
packets on Data Plane devices, making it possible for a simple device to become
a router, switch, firewall, or load balancer.

Multiple controllers can be implemented on the Control Plane of a SDN. One is
NOX, a component-based controller which works with Python and C++ [65].
Besides, there’s Beacon [66], Maestro [67], OpenDaylight [68], and Flood-
light [69] that use Java to configure and create new controller characteristics.
Finally, a relevant a well-reputed is the Ryu controller, a component-based
controller that is highly scalable and used in wide-size networks. Ryu is flexi-
ble due to its easy use and configuration, furthermore has an active community
that keeps supporting its use and documentation, helping its development [70].

• The Application Plane located at the top of the architecture. Possesses
the network applications or network services implemented in the underlying
planes. Such network applications are, for instance, firewall, access control,
quality of service, routing, proxy service, and monitoring balancer. Due to
the centralized logic of SDN, this plane can abstract the global state of the
network to generate coherent service policies (e.g., optimal routing, Distributed
Denial-of-service attack prevention), which is translated and applied to the
Data Plane devices by the controller. Applications or network services on the
Application plane can be developed within the NOS instance or outside of it,
so a standardized form of communication is necessary.

2.2. Software-Defined Networking 10

• The Management Plane is transversal to the other planes of the architec-
ture, allowing the implementation of Operations, Administration, and Man-
agement (OAM) functions in all planes. By adding this plane, it is possible to
configure a particular Data Plane device to connect to a specific NOS, manage
the different instances of NOS in the Control Plane, or modify Service Level
Agreements (SLA) in the application plane.

These planes communicate through the following interfaces [71,72]:

• The Management Interface (MI) connects the three planes, sending the
devices’ configurations to the data and Control Planes. In addition, it modifies
or adds the SLAs of the network services in the Application Plane.

• The East/Westbound Interfaces (EWBI) connects the different existing
controllers in the Control Plane to obtain a centralized logic since each con-
troller can manage a part of the Data Plane devices or a particular network
domain. Splitting the network achieves greater network scalability but creates
synchronization challenges between controllers.

• The NorthBound Interfaces (NBI) communicates the global state of the
network delivered by the Control Plane to the Application Plane for further
processing and decision-making. In turn, this interface transfers the policies
generated by the Application Plane to the Control Plane. The communication
is through a high-level language or a REpresentational State Transfer (REST)
API.

• The SouthBound Interfaces (SBI) disseminates new flow rules or updates
existing Control Plane rules to install them on Control Plane devices. Also, it
allows the Control Plane to collect the state of the different network resources
of the adjacent devices. OpenFlow is the most widely used protocol in industry
and academia [73].

2.3. Machine Learning 11

2.3 Machine Learning

ML techniques are categorized according to how learning is acquired; supervised,
unsupervised, and reinforcement [74]. In supervised learning, the algorithm is pro-
vided with example input-output pairs, so the algorithm has to discover a function
that calculates the input to the labeled outputs. At the end of the supervised learn-
ing process, the algorithm will infer a function that adjusts to the desired outcome
and can map new examples. In contrast, unsupervised learning captures patterns
from a density of untagged data; in other words, the machine is forced to build its
representation from the environment and generate resourceful content adjusting its
biases and weight on the learning. Finally, the algorithm responds to a reward sys-
tem in RL until it obtains the optimal action policy to achieve the desired efficiency
in a environment [75]. The characteristics of RL are ideal for solving problems in
complex environments such as networks since its cognition is an advantage in terms
of making routing decisions [76].

Reinforcement Learning. It is a highly cognitive technique since the agent be-
comes intelligent through the algorithm iteration. This agent acquires high-quality
management policies with little or no prior knowledge of the environment. This
means that the foundation of this technique is experience and not the construction
of a mathematical model [31], being ideal for environments that cannot be modeled
due to the influence of numerous components [77]. Through a state-action pair, the
RL agent acquires a characterization of its environment and, given the experience,
decides to move to the next state. Finally, it obtains a reward that, depending on
the success of the decision, feeds back to the RL agent’s policy [78].

The objective of a RL agent is to maximize the cumulative reward function, defined
as the possible reward values for all the scenarios of the state-action pair. The
cumulative reward function is the possible reward values for all the scenarios of
the state-action pair. And the objective of an RL agent is to maximize it through
exploration and feedback. The RL agent learns the best policy whose use would
allow the maximization of the cumulative reward function [79]. Fadlullah, Z. M. et
.al [80] highlights RL as the most suitable ML technique for decision-making. In

2.3. Machine Learning 12

combination with Artificial Neural Networks (ANN) techniques, RL improves the
performance related to its function of value action, acquiring more clever solutions.

Reinforcement Learning algorithms: The branching of RL has two broad cat-
egories; model-based and model-free. These categories tell whether the algorithm
would perform regarding a constructed model or act freely on the immediate output.

• Model-based RL algorithm. This algorithm access experience to set up a
model that will govern the learning and subsequent actions. Thus, the predic-
tion of the environmental response modifies the agent’s behavior. These algo-
rithms develop the ability to plan ahead the action between various choices gen-
erated thanks to the modeled policy. Thus, allowing the algorithm to converge
rapidly under the constructed model [81]. Some examples are World Mod-
els, Imagination-Augmented Agents (I2A), Model-Based Model-Free (MBMF),
Model-Based Value Estimation (MBVE), Alpha Zero, Alpha Go.

• Model-free RL algorithm. Use experience to build and adjust a policy
without considering environmental information beforehand. This means the
algorithm cannot be biased, and the outcome is constantly adjusted. These al-
gorithms have proven exceptional performance in complex environments with
numerous tasks, and wide state space [81]. Simultaneously Model-free al-
gorithms can be divided into two popular groups, Policy optimization and
Q-Learning. Currently, each group has numerous approaches and developing
proposes as Model-free algorithms have gained relevance over time.

Artificial Neural Networks. ANNs are an ML technique of great relevance due
to their virtues in processing massive datasets and extracting their features with
high processing speed, convergence, and precision [82]. This technique simulates the
neural networks of human beings, where its basic unit is called the neuron. Neurons
are connected and located in layers of various depths depending on the precision
required [83]. Connections between layers have weights, and learning occurs by
modifying those weights to generate a specific output [84]. The word "deep" in the
field of ML is related to the number of layers needed alluding to the deepness of layers
hidden. Deep Learning (DL) belongs to the ML methods based on the ANN with

2.3. Machine Learning 13

various architectures such as Deep Neural Network (DNN), deep belief networks,
DRL, or recurrent neural networks where in many fields that have been applied
have surpassed human expertise. Implementing DNNs in RL helps process a large
amount of data. In ML approaches, the DNNs successfully supply well-characterized
information to the agent, favoring strategies through speed and effectiveness in the
convergence of these algorithms [85].

Deep Reinforcement Learning. It is an approach that integrates DL and RL,
resulting in better agent performance in environments with a large volume of states
and actions [86]. The enhancement in performance is due to the faculty of RL for
decision-making without human surveillance, counted on the competence of ANN
when it comes to analyzing and processing large volumes of information optimally.
As shown in Figure 2.2, the ANN is inside the DRL agent, where it receives the
state of the environment and the result of the reward function to obtain the next
action to perform.

Figure 2.2: DRL operation. [2]

Deep Reinforcement Learning techniques: The classification of the different
DRL techniques organizes according to the way they select a set of actions that
maximize the reward, either based on value or policy [87]. In value-based techniques,

2.3. Machine Learning 14

state-action pairs are assigned a value according to their past states and rewards,
thus indicating how advantageous it is to apply an action in a given state. With the
integration of DL in RL, the DNN approximates the assignment of the state-action
value.

• Deep Q-Networks (DQN). It has a ANN that receives as input the agent’s
current state and returns the Q-values of all the actions that the agent can
take in that state [88].

• Double DQN. It proposes two ANNs with the same architecture but different
weights; one ANN calculates the best action between the action space, and
the other neural network evaluates the Q-value of the action, achieving thus
stability in the training stage [89].

• Dueling DQN. Like double DQN presents two ANNs, the first one approx-
imates the impact of the current agent’s state, and the second deals with the
utility of the action on the action space [90].

• Deep Deterministic Policy Gradient (DDPG). is a DRL algorithm close
to Q-learning, given that it learns the Q-function in addition to an optimal ac-
tion policy.DDPGis adapted for environments with continuous action spaces,
but it is not a shortcoming for a discrete number of action spaces because the
actions can be computed by getting the Q-value and comparing them. DDPG,
similarly to the actor-critic method, uses an Actor ANN that proposes an ac-
tion for a state and a Critic ANN that predicts the quality of the action for a
state, in addition to the benefit of stability from two Target ANN. The Target
ANNs grant the training with stability by holding a target and being updated
slowly, hence keeping the estimating targets for a time while training devel-
ops being supported on those targets. AnotherDDPGtechnique is Experience
Replay, which allows past experiences to disseminate feedback to the agent by
learning from samples of historical information.

DRL is a powerful tool to face various challenges in communication networks, such
as packet routing, resource allocation, and security, among others [29]. However,

2.4. Knowledge-Defined Networking 15

its application in traditional networks is very complex since each network node
has a partial view and control. Therefore, centralized control and more significant
cognitive ability are necessary to make agent learning a more effective process.

2.4 Knowledge-Defined Networking

Figure 2.3: KDN architecture based in [3] proposal

As mentioned, SDN is an architecture that opens many possibilities for new paradigms.
A promising one is KDN. That relies upon the ML cognitive techniques over SDN,
arguing that this cognitive approach is best suited for resolving the complexities of
the network environment. KDN was first proposed in [3] introducing a Knowledge
Plane within SDN [91]. KDN is inherently distributed and based on tools provided
by ML. It has become a powerful tool because of the growing developments and
advantages in operation and network control.

[3] merge ML and cognition in the network through a Knowledge Plane to achieve an
autonomous network control. In the real world, tasks are not divided but unified as
knowledge to carry them over. In that sense, knowledge maintains a global point of

2.4. Knowledge-Defined Networking 16

view through the Knowledge Plane, extending its point of view to the entire network
and providing direction and awareness about the network environment [91]. The
Knowledge Plane would have representation, learning, and reasoning capabilities
that enable the knowledge to be aware of the network’s states and actions in a
cognitive manner.

Due to the global view and programmability of SDN, together with the telemetry
and data analysis techniques that KDN incorporates into the network, it is possible
to increase the processing of a large amount of information in real-time and to have
better dimensioning of the network.

The KDN architecture distinguish into four planes (Figure 2.3). In the lower part is
the Data Plane contains the network infrastructure devices for routing, processing
data packets, and executing routing tables. In the center is the Control Plane,
maps the topology and install the routing tables on the Data Plane devices. The
Management Plane is transversal to the previous planes; it saves, processes, and
normalizes the network’s metadata that will be further added to the knowledge and
Control Plane. The Control and Management Planes are transversal to the network
layers, unluckily, when scaling network data they encounter difficulties despite its
transversal view.

The inputs of the Knowledge Plane are the status information gathered by the Man-
agement Plane. The Knowledge Plane breaks boundaries to provide a conscious, uni-
fied view, rather than the partitioned management, control, and Data Plane [3]. The
Knowledge Plane exploits Control and Management Planes through ML-based ap-
proaches capable of comprehending the network behavior accurately [38]. In other
words, KDN is worthy for the network’s intelligence since it contains the ML al-
gorithm responsible for routing cognition and decision-making. In works like [92],
research widely KDN as an indispensable evolutionary step toward autonomous self-
driving networks in fields like new-generation wireless networks. As shown in [38],
a DRL-based agent with convolutional neural networks in the context of KDN can
improve the execution in QoS-aware routing. Both [5] and [40] show KDN as an es-
sential part along the coherent implementation of ML in SDN, [5] is an RL algorithm
that outperforms conventional routing algorithms, and its following proposal [40] a

2.4. Knowledge-Defined Networking 17

DRL agent over a Knowledge Plane continue to surpass [5] performance among
other routing approaches confirming that KDN is relevant and suitable for any ML
technique.

Chapter 3

Related Work

This chapter describes the most representative works regarding routing based on
SDN, ML, and device metrics. Among these are mechanisms addressed through
different models and strategies that allow confronting the diverse solutions and ap-
proaches we have developed for this undergraduate work.

3.1 Classical Routing

[11] describes the advantage of SDN routing in large-scale networks over legacy
routing mechanisms regarding convergence time and packet forwarding delay. In the
same way, [13] compares legacy OSPF-based networks with SDN, SDN turning out
to be a more competent approach even when large-scale networks encounter higher
link delay. Similarly, [12] study how a dynamic routing protocol as OSPF performs
inside SDN, analyzing the stability of the network in parameters like Quality of
Service (QoS) on video streaming, showing favorable results regarding SDN holding
conventional routing protocols improving convergence time versus the usual network
architecture.

As fast network convergence became a vital feature on networks, [14] evaluates the
impact on a OSPF based distributed network and a centralized SDN having as a

18

3.1. Classical Routing 19

result that each outperforms the other under different conditions depending on net-
work size and link delay. [15] use OSPF in SDN to improve the QoS of large-scale
networks in terms of delay, packet transmission rate, and packet loss. Research [17]
aims to continue the use of classical routing protocols constructing a BGP imple-
mentation on SDN to transition the existing networks to SDN being a feasible ap-
proach compared with its conventional network implementation. Particularly, [18]
uses SDN’s programmability to adapt BGP so that the distance route travel is less,
resulting in reduced latency and stretch of the paths. [20] proposes a BGP archi-
tecture called Open Flow Border Gateway Protocol (OFBGP), implemented as an
SDN application, improving scalability and availability regarding to the conventional
BGP routing algorithm. [19] approaches BGP limitations like fully distributed net-
work, rigid scalability, and complexity by proposing an incrementally deployable
internet routing paradigm in which the Control Plane is logically centralized follow-
ing SDN architecture using its global view to benefit convergence times and churn
rates on this BGP proposal. Nevertheless, SPF-based protocols have difficulty facing
network variability, congestion, and growing sizes, because of their rigid, complex
system, falling into limitation when challenged to adapt to the fast-growing current
networks.

The Dijkstra link-state routing algorithm traditionally considers the shortest path
or performance metrics (e.g., delay rate, packet transmission rate, and packet loss)
to assign costs to network links. Dijkstra is used in solutions like [93], which presents
a SDN control framework for QoS provisioning in prioritized flow using Dijkstra to
calculate the route. Likewise, [94] Proposes Network Situation-Aware Framework
(NSAF) to handle routing in changing network status considering the QoS metrics
but instead of using the SPF protocols to calculate the routes, uses Dijkstra setting
weights according to the QoS costs. And [95] uses an extended Dijkstra within
SDN to compare its performance with the original Dijkstra algorithm regarding end-
to-end latency, showing that Dijkstra together with SDN outperforms the original
implementation.

These proposals create strategies that catch SDN flexibility advantages, such as
dynamic weight assignment to link or network nodes, benefiting performance by
reducing network latency and congestion. Nevertheless, even when speaking about

3.2. Reinforcement Learning-based Routing 20

dynamic monitoring in routing algorithms, the weight assigned to the links or nodes
does not update in real time, creating a flaw in representing the network’s current
state. The routing decisions of the works mentioned in this section are calculated
through conventional routing algorithms, which take into account only the network’s
current state, missing the opportunity to exploit the previous state and subsequently
missing knowledge about previous decisions to generate more intelligent choices in
the future. These shortcomings impact when aiming to reach prediction capabilities
or a more competent global view.

3.2 Reinforcement Learning-based Routing

The RL trend is prevalent in SDN routing because RL does not need prior informa-
tion on the network state. Proposals like [22] approach the hybrid surfacing tech-
niques between ML and ad-hoc networks and improve them by merging existing tech-
niques for wireless networks with multi-agent RL proactively updating routes and
outperforming the conventional ad-hoc routing algorithms under QoS constraints.
Besides, [23] propose a QoS-aware adaptative routing algorithm on SDN, proves that
using RL achieves time-efficient, and QoS-provisioning in terms of packet delay, loss,
and throughput. The proposal [24] is an SDN implementation in the The Internet of
Vehicles (IoV) framework, where the use of a large amount of sensor data is required
to be handled in real-time. The results show that this proposal use of RL to over-
come the limitations efficiently coming through several other IoV techniques. In the
Q-learning side, [25] a Q-learning algorithm for unicast routing in SDN designed to
minimize the delay that unicast traffic suffers while on the network circulation. Re-
sults compare Dijkstra’s performance in the same condition, the proposal being more
effective than Dijkstra. SDN has an important role when solving problems caused
by central management. Still, over SDN, the algorithms that are mainly used are
Dijkstra-like algorithms generating network congestion since bandwidth overhead is
not considered when a lot of traffic is circulating on the network; that’s why [26] ar-
gues and demonstrates how a Q-learning routing algorithm can improve congestion
and even prevent it. Also, [27] proposes an intelligent routing and allocation scheme
named Intelligent Routing and Bandwidth Allocation System with Reinforcement

3.3. Deep Reinforcement Learning-based Routing 21

Learning (IRBRL), the same as the mentioned algorithms, uses SDN architecture
and RL to create routing policies, dynamic routing, and link bandwidth allocation
awareness, in other words, the globally visible network architecture makes the best
routing and bandwidth allocation policies with reinforcement learning, as conclusion
the RL routing algorithm actively modified to adapt itself to a changing requirement.
Similarly, [28] is a RL on SDN proposal that aims to prevent network congestion and
link-overutilization, focusing on the perspective of routing management evaluating
from different scenarios like single controller and multi-controller SDN. [5] creates
an algorithm called Reinforcement Learning and Software-defined networking Intel-
ligent Routing (RSIR) which uses the intelligence of RL and the global view of the
network of SDN to compute and install optimal routes in the Data Plane, the results
show the improvement of RSIR regarding stretch, link throughput, packet loss, and
delay compared with the Dijkstra algorithm.

The above proposals surpass conventional algorithms in terms of delay, congestion,
adaptability, and intelligent management of networks with more excellent QoS pro-
visioning, managing to obtain routes on demand even in large-scale networks. How-
ever, the high number of iterations necessary to find the optimal routing strategy
and the extensive tables in Q-learning based solutions result in long convergence
times and make essential efficiency improvements, increased processing speed, and
storage optimization. [25] suggests that in the future, implementing other intelli-
gence techniques (e.g., DRL, ANN) will be essential to overcome the limitations
mentioned above. In [26], the need for adequate flexibility and scalability becomes
evident when evaluated exclusively in an environment with a fixed traffic rate and
bandwidth.

3.3 Deep Reinforcement Learning-based Routing

[40] proposes a novel approach called Deep Reinforcement Learning and Software-
defined networking Intelligent Routing (DRSIR) that uses a DQN agent together
with the KDN paradigm and SDN to adapt dynamically to traffic changes and
overcome the limitations showed in RL approaches, the results show that DRSIR

3.3. Deep Reinforcement Learning-based Routing 22

outperform RL solutions and SPF-like routing algorithms regarding stretch, packet
loss, and delay. [30] also uses DRL with prediction techniques to dynamically collect
optimal path information and predict traffic demand on a SDN. The proposal also
minimizes latency and packet loss, achieving its goal well above the performance
among other ML algorithms used for this purpose (e.g., ARMA - Auto- Regressive
Integrated Moving Average). In [31], the authors manage a variant of DQN called
Double Deep Q Network (DDQN), where the agent’s reward is associated with
the delay and the packet transmission rate, surpassing the performance of OSPF
implementation on those metrics. the [32] algorithm uses two ANNs to treat mouse
and elephant flows. Then, they set a reward for each flow according to the specific
metrics required. Mouse flows take into account packet loss and average delay.
Besides, elephant flows bear the loss rate and the transmission of packets as metrics.
[32] proposes a Deep Q-Learning (DQL) routing strategy for data center networks
on the SDN architecture. The deep Q network is trained to adapt to the different
metric demands of mice and elephant flows. The results show that the proposed
routing algorithm outperforms algorithms such as Equal-Cost MultiPath Routing
(ECMP). The routing agent in [34] is designed to optimize routing by adapting
automatically to the traffic conditions in terms of delay. The results show operational
advantages and low delay compared to a routing benchmark. [42] displays a DQN
multicast routing approach where the state space consists of channel matrices and
explores various methods to construct a multicast tree and take into account the
computational time and compares it with original RL.

Furthermore, [38] is a proposal in the context of KDN that aims to enhance routing,
the result display that the use of DRL and convolutional ANN can improve network
performance even in complex network environments regarding packet loss and la-
tency. In [39], the maximization of the reward is given by the packet transmission
rate between the source, destination, and the link delay. While [37] is a proposal
called Time-relevant Deep reinforcement learning (TIDE), an intelligent routing al-
gorithm for SDN that implements recurrent ANNs and then evaluated in a real
transmitting network topology. As a result, TIDE demonstrated the relevance of
DRL in routing optimization and compared with the traditional routing algorithms,
the RL strategies can process large amounts of data and respond with a proper

3.4. Gaps 23

output following network changes. In terms of delay, TIDE improves network delay
by about 9% compared with SPF. [35] uses a spatiotemporal deterministic policy
gradient agent where the temporal attention mechanism helps to learn better from
the transitions. The experimental results show that this method rapidly adapts
to the current network environment and achieves robust convergence time. this
technique is compared with state-of-the-art DRL algorithms showing a better end-
to-end delay. Also, DDPG Routing Optimization Mechanism (DROM) [36] uses
DDPG in SDN, improving network performance regarding delay and throughput by
optimizing in a black-box method in continuous time. The results show a better
convergence time and effectiveness than the existing solutions in RL and heuristics
solutions. Zhang, L. et .al [41] proposes an DRL based routing framework called
DSOQR a QoS-routing framework based on DRL and SDN and on-policy learner al-
gorithm called SDN Asynchronous Advantage Actor-critic Routing (SA3CR) based
in asynchronous actor-critic, and as a result, proves the validity of the framework
and the better performance of SA3CR in delay, throughput, and packet loss rate
compared to ECMP and a DDPG implementation. To contrast DQN and DDPG,
citeIntelligent-routing develops both DRL models to optimize the packet transmis-
sion rate. Both models perform better than OSPF concerning this metric. On the
other hand, when comparing the performance between these algorithms, it becomes
clear that the performance of DDPG exceeds DQN, with 47% and 40% optimiza-
tion in packet transmission rate, respectively. In the proposals mentioned earlier,
the agent’s reward exclusively involves metrics associated with the links state (e.g.,
packet transmission rate, delay, and packet loss) but not the network device state.
Unconsidering the device state supposes a limitation regarding the global character-
ization of the network environment.

3.4 Gaps

Classical routing proposals in SDN use the global view of the controller to optimize
the performance of conventional routing algorithms comparable to their implemen-
tations in traditional network architectures, yet, the previous network state is dis-
missed. On the other hand, in modern routing, there are proposals based on RL

3.4. Gaps 24

and DRL, where the initial network state generates adaptive and cognitive routing.
The literature shows the need for implementations that consider the state of the
devices for routing decisions. In this scenario, routing strategies capable of learning
from the network environment in a globalized way are necessary. Cognitive routing
algorithms are needed to provide routing efficiency [3].

Based on the encountered gaps, SDN’s centralized network management, adaptive
learning, and DRL’s high-volume data processing capabilities, together with global
sizing of network and device status, would yield decision-making to a decisive, effec-
tive, and cognitive routing. In addition, it is evident that implementing a network
topology, which uses real traffic matrices, is necessary when generating an envi-
ronment consistent with current networks. To be specific, the gaps that aid us in
assembling a fulfilled direction have been that by using a novel ML approach, we
can exploit the past information for the future to create a feedback process that
supports decision-making. And that the use of Q-learning-only strategies gets short
storage-wise because of the large Q-learning tables. That’s why an Algorithm with
that benefits merely of Q-learning can be limiting in certain action spaces. Finally,
dimensioning the network dismissing device status metrics can not be seen as a
global view. Our proposal aims to exploit the unlimited status, device, and link
status, conveying a full global view.

Table 3.1 shows the works’ gaps, separated by their respective categories. It is
important to note that the acronym CR corresponds to the aforementioned classic
routing.

3.4. Gaps 25

Ref Type of Routing Used algorithm GapCR RL DRL

[12] ✓
It implements OSPF over SDN evalu-
ating its performance in terms of con-
vergence time and QoS.

These algorithms
do not update the
state of the
network in real
time. They miss
the previous
information of the
network.

[16] ✓

It proposes a method for hybrid net-
works based on RIP using an SDN con-
troller in order to achieve policy-based
routing.

[18] ✓
It uses SDN to optimize and discover
routes within BGP.

[22] ✓
This algorithm fuses RL Multi-Agent
techniques with wireless routing tech-
niques.

Optimizing
storage is
required due to
the large
Q-Learning
tables. These
algorithms
implement fixed
traffic or
bandwidth,
resulting in
invariant
environments.

[23] ✓

A QAR algorithm is designed in SDN,
whose Control Plane is distributed and
hierarchical to minimize delay in large-
scale networks.

[24] ✓
SDN and RL are used in order to pro-
vide optimal routes from the internet
environment of vehicles.

[25] ✓
It proposes an image processing
method using Q-Learning and a CNN
for their classification.

[28] ✓

RL is used to enable adaptive rout-
ing and intelligent network manage-
ment to supply application-driven qual-
ity of service.

[40] ✓

Propose a novel space of states and ac-
tions model that characterizes the state
of the paths obtaining results outper-
forming Dijkstra and RL approaches.

The metrics
used reflect only
the state of the
link, it is
required to
globalize the
network state

[30] ✓

Select the best path from a DRL agent
that, together with a simple heuristic
algorithm, allows traffic demand to be
predicted, to optimize latency, packet
loss and packet transmission rate.

[33] ✓

A routing scheme called DRL-R is pro-
posed, which uses DQN and DDPG to
obtain network routes and intelligent
resource allocation depending on the
types of existing flows.

[37] ✓

A routing scheme is proposed that uses
DDPG to improve the QoS of the net-
work by modifying the reward param-
eters, depending on the flow require-
ments.

Table 3.1: Research gaps in DRL algorithms.

Chapter 4

Cognitive Flow Routing Algorithm
for Programmable Control Plane

Chapter 4 presents Cognitive Routing Algorithm (CoRA), a DDPG-based solution
with novel approaches involving SDN, KDN, and global characterization for network
metrics. To disclose our solution, first, we present section 4.1 an Overview, then, sec-
tion 4.2 the summarized network architecture planes; Data, Control, Management,
and Knowledge. Furthermore, section 4.3 depicts the operation of our DDPG-based
cognitive agent with its components and features. And, finally, section 4.4 presents
CoRA’s process to reach the expected outcome.

4.1 Overview

In this chapter, we present our solution facing the shortcomings found in the lit-
erature regarding routing involving ML over SDN. In the Journey of researching
novel approaches to enhanced routing algorithms, we have decided to use the KDN
paradigm to ease management and monitoring, jointly with DRL performing over
an SDN network. We engaged with the importance of global network characteriza-
tion through link state and device state metrics to train the algorithm adequately,
achieving efficiency and enhanced performance. As the current routing solutions us-

26

4.2. Architecture 27

ing DRL agents do not directly consider the device metrics, we recover device metrics
such as the switch queue´s occupancy as well as the link state, available bandwidth,
delay, and packet loss to find the optimal path policy. To create a final result, first;
the Control Plane collects the performance metrics, which are later processed by
the Management Plane. The processed data is delivered to the Knowledge Plane,
creating an environment in which a DDPG agent learns and ultimately provides the
optimal route for each pair of nodes. CoRA is a proposal with a novel objective
to reach a cognitive DRL agent that outperforms approaches related to traditional
routing and modern routing. DRSIR, a modern routing proposal that implements
KDN over DQN, was the base for our own. Furthermore, each node delivers directly
the path to follow for the packets, avoiding using classic routing algorithms. DRSIR
overperforms all traditional approaches [40].

4.2 Architecture

CoRA’s architecture is built in SDN, which supports the network’s automated man-
agement and control. At the same time, following the KDN paradigm to com-
pute network information (i.e., link state and device state metrics) in the intelligent
DDPG agent to execute cognitive decision-making in the flow routing. Below, we
explain the solution’s sequential operation, and Fig 4.1 depicts it in detail.

❶ The Control Plane periodically queries the Data Plane to collect network in-
formation.

❷ The Management Plane receives Topology discovery and Statistics information
from the Control Plane to Process and stores the network state.

❸ The Knowledge Plane receives information from the Management Plane.

❹ The DDPG agent explores and exploits the possible routes for each source-
destination node pair. Eventually gets the best routing path for all pairs of
nodes in the network.

4.2. Architecture 28

❺ The Knowledge Plane stores in the Routes data repository the data about the
routes computed by the DDPG agent.

❻ The Control Plane installs the best routes in the flow tables of the switches.

Figure 4.1: CoRA architecture

4.2.1 Data Plane

The Data Plane holds the forwarding devices and the links that connect them.
Performs basic tasks like responding to queries with messages containing information
about network topology and state. Essentially CoRA’s Data Plane is not running
complicated errands to manage the limited network resources like link bandwidth or
buffer size in the devices. Instead, those resources are closely monitored to secure
adequate performance and benefit the network operation. The ideal performance

4.2. Architecture 29

of the Data Plane lies in developing a sophisticated routing policy through the
Knowledge Plane that is further installed in the routing tables.

4.2.2 Control Plane

The Control Plane requests queries to gather information from the Data Plane to
construct the global view of the network; it is also in charge of installing the routing
tables.The Control Plane comprises four modules, device statistics, link statistics,
topology discovery, and flow installation.

The topology discovery module sends the feature-request message from OpenFlow
to the Data Plane Switches. The Devices respond with a feature-reply message
containing the individual switch identifier and port information such as port number
and state. This module sends an OpenFlow packet-out with a payload containing a
Link Layer Discovery Protocol (LLDP) packet to all switch ports. The first switch
will send LLDP packets through the port to a neighbor switch. When the neighbor
device receives the LLDP packet, it will be sent to the controller a of an OpenFlow
packet-in. The message has the origin switch’s id and the port number, besides the
destination switch’s id and port number, so the module can identify which devices
are neighbors and from which port communicate.

The link statistics module sends OpenFlow’s Multipart Messages to the Data Plane
devices each monitoring period every t seconds. The Multipart Messages have mes-
sages types to hand over specific switch information like port statistics, flow, and
flow tables. Due to the need for link statistics, the port statistics employ port-stats
messages to consult the transmitted and received packet and byte amount in the
port.

During each monitoring period, the statistics collection modules collected informa-
tion on the network state and the Management Plane and carried it to feed the
agent in the Knowledge Plane. The device statistics module uses Data Plane peti-
tions each monitoring period; the petition’s reply contains the packets’ load at the
switch queue. The queue at the t moment is stored with the link statistics metrics
and the network topology to be subsequently processed in the Management Plane.

4.2. Architecture 30

The Knowledge Plane delivers to the flow installation module the optimal path for
each node pair generated according to the current network conditions. The path
installation is proactive; the paths are installed periodically and change depending
on the network state. This module uses the information obtained by the topology
discovery module to configure which switch port should send the incoming flow
properly.

4.2.3 Management Plane

The Management Plane comprises two components as seen in the Figure 4.2, the data
processing module and the network information data repository.The data processing
module receives raw data gathered by the Control Plane through the link, device
statistics and topology discovery modules. This module processes the raw data to
calculate every path metric (e.g., delay, packet loss, available bandwidth, and queue
occupation) that gets delivered to the Knowledge Plane to enter the algorithm.

The network information data repository stores the metrics calculated by the pre-
vious module containing the tuple source destination node and its respective met-
rics. An example of an entry is: (source = node1, destination = node2, av_bw =
100Kbps, delay = 1.3ms, loss =0.5%, queue_occu= 10pkts). So the Management
Plane ensures the optimal performance of the network over time.

4.2.4 Knowledge Plane

CoRA implements a decoupled architecture, situating the Knowledge Plane above
the Control Plane and communicating directly with it and the Management Plane,
avoiding overloading the Control Plane. The Knowledge Plane contains the DDPG-
based routing algorithm where the DDPG-agent and the route data repository lie.
Thanks to the Agent, the Knowledge Plane transforms information into knowledge,
gathering the global view of the network and computing it to achieve the algorithm’s
objective. The route data repository holds path information; each entry is a tuple of

4.3. Cognitive Routing Agent 31

Figure 4.2: Management Plane of CoRA

source, destination, and best path, with source and destination being node numbers,
and the best path is a series of nodes that shape the path under consideration.

4.3 Cognitive Routing Agent

This subsection explains how the agent can find the best route from all possible
network paths. CoRA’s agent uses DDPG a DRL technique that merges DQN
and Deterministic Policy Gradient (DPG), an optimal combination that, along with
experience replay and slow learning target ANNs make well-developt decisions, stable
and efficient learning when developing cognitive policies 4.3. It is demonstrated that
DDPG robustly solves problems related to complex action spaces [96], like the one
that gathers our commitment in this undergraduate work. Aspiring to take a step
forward in ML routing algorithms and improving the previous similar proposes in
this field, we choose DDPG as CoRA’s agent technique. Interacting with the network
environment, the agent converges to an optimal policy for the best route for each
node pair. The Knowledge Plane builds the environment using the network state
information gathered by the Management Plane. Each iteration makes the agent
act on the current state and choose the action that minimizes the reward; then, the

4.3. Cognitive Routing Agent 32

agent delivers the next state. The reward corresponding to the action taken conveys
the path cost, taking into account the available bandwidth, packet loss, delay, and
queue occupation. That’s to say, the agent’s decision will be influenced by the path
with greater available bandwidth, least packet loss, delay, and queue occupation.
The following subsections explain the fundamental features of a DDPG agent, state
space, action space, and reward process.

Figure 4.3: DDPG-agent of CoRA based in [4]

4.3.1 Deep Deterministic Policy Gradient

DDPG contains four DNN, the first two are the Q-Network represented with Q and
the deterministic policy network represented with µ. The next two are the target
Q, represented with Q′ and the target policy network represented with µ′. The last

4.3. Cognitive Routing Agent 33

two networks are a mechanism original for DDPG to stabilize the learning of the
DDPG’s agent.

Experience Replay

A fundamental factor in DRL algorithms is experience replay. The experience replay
in DDPG updates the neural networks during training to prevent the correlation in
the data used to update the neural networks. And seek independent distribution
among the dataset, so the algorithm achieves a well-developed learning process.
The experience replay overcomes those limitations by creating a finite cache to save
data regarding each learning episode’s state, action, reward, and next-state tuples.
Next, a random sample of these stored tuples nourishes the training; usually, the
experience replay evicts the oldest episodes of information, giving way to save the
most recent ones. Is proven that the use of experience replay improves efficiency
and stability by storing a finite number of the most recent tuples of training [97].

Actor And Critic Network Updates

Starting from reliable data the algorithm can introduce a method to grow the learn-
ing process. In this case, the method is the Actor-Critic method. The actor network
is in charge of nailing which action should be taken. At the same time, the critic
network reports how good the action was by computing the value function and then
delivering the information to adjust future decision-making.

Thus the Q networks represent the critic networks and the deterministic policy (µ)
represent the actor’s networks.

We use the Bellman equation, similar to Q-learning to update the critic ANN to
obtain the optimal action value.

yi = ri + γQ′(Si+1, µ
′(Si+1|θµ

′
)|θQ′

) (4.1)

In the equations 4.1, θQ′ is the weight of neurons in the target critic network, θµ′ is
the weight of neurons in target actor network.

The target actor and the target critic networks calculate the next-state Q values.

4.3. Cognitive Routing Agent 34

Then the target updated values are used to minimize the mean squared loss between
the updated Q value and the original Q value:

L =
1

N

∑
(yi −Q(si, ai|θQ))2 (4.2)

The actor network’s policy function aims to minimize the expected return.

J(θ) = E[−Q(s, a)|s=st ,at=µ(st)] (4.3)

Then we derivate the function to the parameters of the policy. Since DDPG is an off-
policy driven algorithm, the summation mean of the gradients from the experience
batch is added as follows.

∇θµJ ≈
1

N

∑
∇a(−Q(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si) (4.4)

Optimizer

Another vital part of the mechanism is the optimizer. The optimizer is an algorithm
used by different ML techniques to reduce loss or cost functions by updating the
weights of the DNN [98]. The optimizers have a parameter called the learning
rate that determines how much the weights of the DNN are updated, improving
or worsening the agent’s performance. There are different types of optimizers, but
Adam is the most used in DL [99].

Target Network Updates

The value returned by the target network act as an objective value for the Q-function
to minimize the mean squared loss. For the sake of learning stability, the parameters
of the target network cannot be the same as those used to train the main networks.
That is why we update target networks with a time delay once per major network
update. The DDPG algorithms update the target network using the Polyak average.

4.3. Cognitive Routing Agent 35

θQ
′ ← τθQ + (1− τ)θQ

′
(4.5)

θµ
′ ← τθµ + (1− τ)θµ

′
(4.6)

Where the parameter τ called target network updater is usually near 1 τ << 1.

Exploration

For discrete action spaces, the exploration is achieved with techniques such as ϵ-
greedy that allows the agent to explore potentially promising actions while exploiting
their current knowledge [100]. In continuous action spaces like the DDPG’s case,
introducing noise to the action guarantees exploration by bringing in randomness.
To add noise to the action, the original DDPG paper [96] use and recommends the
Ornstein-Uhlenbeck Process. This process generates random values for a mean and
standard deviation specified, that furthermore depends on the previously generated
random value.

4.3.2 State Space

In the DRL agent, the state space corresponds to all the pairs of nodes that can
establish communication in the network. For example, a state si can be node x as
the source and node y as the destination. Another state sj could be the inverse
of state si, with node y as the source and node x as the destination. Therefore,
the number of possible states is the permutation of the network’s total number of
existing nodes.

|S| = |P (N, k)| = N !

(N − k)!
(4.7)

Where N is the total number of nodes in the network, and k is equal to 2, given
that one source node and one destination node.

4.3. Cognitive Routing Agent 36

4.3.3 Action Space

The action space is a set of valid choices to continue the interaction and advancement
inside the environment, that is, the state space. The agent has a set of actions At

for any given state. Thus, the Action States is a list of the possible k paths per state
St. The Network Information Repository saves the possible k paths for state St.
DDPG is a DRL technique for continuous actions; therefore, we discretize the action
generated by the agent to obtain one path out of k paths. This approximation is
valid since [33] uses the same action space for a DDPG and DQN agent. In addition,
in [101], they discretize the action delivered by the DDPG agent to make a decision
based on their problem, obtaining good results.

4.3.4 Reward

The reward function incentivizes the algorithm to converge to the optimal policy in
the long term. Consequently, the value of the reward function represents the cost
of a potential path in the Action Space for every state. The equation 4.8 defines
the Reward Function inversely proportional to the mean available bandwidth in the
path bwapath and directly proportional to the path delay dpath, path packet loss ratio
lpath, and queue device’s occupation qopath.

R = β1 ∗
1

bwapath
+ β2 ∗ dpath + β3 ∗ lpath + β4 ∗ qopath (4.8)

The values β1, β2, β3, and β4 ∈ [0,1] can be modified to furnish weight to a specific
metric into the Reward Function.

In the Reward Function, the metrics must be all normalized using equation 4.9
known as the Min-Max, advised in [102] to improve accuracy. Since the metrics in
the algorithm are in different units, so one metric is not prevalent over the others,
delivering an exact outcome.

4.3. Cognitive Routing Agent 37

x̂i = a+
(xi −min(X)) ∗ (b− a)

max(X)−min(X)
(4.9)

The Min-Max method involves scaling the values of the metrics to an arbitrary
interval; [a,b]. Where x̂i is the value to normalized, and X is a set of values, the
equation 4.10 is the normalized version of 4.8

R̂ = β1 ∗
1

ˆbwapath
+ β2 ∗ ˆdpath + β3 ∗ ˆlpath + β4 ∗ ˆqopath (4.10)

Link Metrics The Management Plane is in charge of calculating both link and
device state metrics. This plane computes link throughput and loss using the number
of packets that pass through the links connected to the switch port since it samples
the number of bytes transmitted or received.

Comparing the retrieved values at two different instants is possible to discover the
instantaneous throughput. When the controller sends to the Data Plane a port-stats
message at time t1, the number of bytes received bt1 is replied. A second request
message is sent, and the reply bt2 contains the number of bytes received at t2, the
duration of the interval that separates times t1 and t2 is the period p.

bwulink = [
(bt2 − bt1)

p
] (4.11)

Then to acquire the available link bandwidth, we make the difference between the
link capacity caplink and the instantaneous throughput.

bwalink = caplink − bwulink (4.12)

The controller sends port-stats of the respective ports of the switches belonging to a
link. The number of bits sent btxi by the port is observed in the response, and the
number of bits received by the other port of the neighboring switch brxj is observed.
With these data, equation 4.13 is applied to calculate the instantaneous loss ratio.

4.3. Cognitive Routing Agent 38

Figure 4.4: Procedure to find packet loss

llink =
btxi − brxj

btxi

(4.13)

Following the process described in [103], we compute the instantaneous delay using
LLDP and OpenFlow messages. A LLDP message sent by the controller c0 does
the path c0-si-sj-c0 with (si, sj) being the link that connect the switches si and sj.
The time between the transmission and reception of the LLDP message is captured
in the message’s time stamp, that is, dlldpcij . Then, time taken from c0 to the si’s
port is estimated as half the time that passed between the transmission time and
the reception of the OpenFlow echo-request and echo-reply messages sent by c0 to
si, that is dc0−si . Similarly, the time elapsed between sj to c0, is dc0−sj , finally the
equation 4.14 depicts the instantaneous delay in the link (si, sj).

dsi−sj = dlldpcij − dc0−si − dc0−sj (4.14)

4.3. Cognitive Routing Agent 39

The Management Plane processes the link metrics to find the path metrics needed
for the overall network status. The link metrics (e.i., bwalink, llink, dsi−sj) are pro-
cessed to find the path metrics as follows. The Management Plane obtains the lower
bandwidth available from all belonging links to the path P to fetch P ’s available
bandwidth then.

bwapath = min
i∈P

(bwalinki) (4.15)

The sum of the delay from all the links that reside in the path P is equal to the
total delay of the path.

dpath =
∑
i∈P

dlinki (4.16)

Estimating the path loss can be seen as the failure probability in a system of series-
coupled components since every link is independent. At the same time, the links
are arranged contiguously to construct a path. Thus, the path loss responds to the
equation below.

lpath = 1−
∏
i∈P

(1− llinki) (4.17)

Device Metrics. As show in figure 4.5, the switch ingress queue occupation is
the device metric selected to achieve the global network state to acquire an optimal
routing policy. The Data Plane has an HTTP server that employs Linux Traffic
Control (TC) tool to extract the queue occupation from the devices. TC is a utility
that enables configuring the kernel packet scheduler likewise model packet delay, loss,
bandwidth, and switch queue with a set packet space [104]. TC requires the Device
Statistics Module in the Control Plane to send an HTTP type GET request to the
Data Plane server. The GET request first identifies each switch network interface,
and then, the queue occupation is ready to be consulted. TC finds the number of
packets queued on each network interface and returns the GET request response in a
JavaScript Object Notation (JSON) format to the Device Statistics Module joining

4.4. Cognitive Routing Algorithm 40

Figure 4.5: Switch ingress queue occupation

the interface’s name with the number of packets queued. The interface’s name
contains the switch and the port number to identify which link the information
came through in the process.

To find the complete path queue occupation, the Management Plane makes the sum
between the queue of the links integrating the path, as shown beneath;

qopath =
∑
i∈P

qolinki (4.18)

4.4 Cognitive Routing Algorithm

The algorithm 1 describes the process of finding the optimal path between a source-
destination node pair sequentially while considering the link metrics; available band-
width, packet loss, delay, and as a device metric, the switch queue occupation. The
algorithm inputs are; learning episode number n which is a sequence of states, ac-
tions and rewards, that ends with terminal state in our case the convergence to a
optimal policy. Other inputs are the k possible paths list per state , the network
path state, the discontinuity factor, the learning rate from the optimizer, the tar-
get network update value, number of step by episode and the batch size, that’s to
say, the number of samples processed before the network update. The algorithm

4.4. Cognitive Routing Algorithm 41

delivers to the flow installation module the best route from every node pair for its
installation.

To start the algorithm, the Management Plane processes the path metrics to build
the environment. The environment is created with the states, and actions with their
respective reward. In the second line, the Target ANNs begin with the same weight
as the Actor and Critic ANNs, aiming to stabilize the learning process. Then the
Replay Memory will record the agent’s experiences.

The agent trains by interacting with the environment previously created in a set of
n episodes (lines 6 and 18). In line 6, the agent initializes the state with a node
pair chosen randomly. The agent iterates m-times each episode (lines 8 to 17).
Subsequently, the agents start to take an action regarding the actual state and take
a path from the k paths using the actor NN. The environment acquires this action,
and the equation 4.10 conveys the reward and next state st+1. Afterward, the replay
memory stores a tuple assembled with the current state st, the action at taken by
the actor NN, the reward rt, and st+1. A strategy to train the agent in an off-policy
manner is to extract a size N mini-batch of information from past experiences (line
12).

We calculate the expected value with equation 4.1 (line 13) using the mini-batch
of information and the critic target ANN. This computation reduces the standard
deviation in the learning process and achieves faster, more efficient, and more stable
convergence. Then, we calculate the mean squared loss 4.2 to update the critic ANN
(line 14).

Conveying the policy gradient (line 15) using the chain rule with the critic ANN,
we update the actor ANN. The actor ANN computes the actions regarding the
mini-batch states, then, using the critic ANN we find the expected values generated
with the tuple from the mini-batch. To minimize the reward, the loss function to
find the policy gradient from the actor would be the mean of the expected values.
Using the soft update, the agent state, the actor, and the critic target ANNs are
actualized (line 16).

At the end of the learning process, we use the actor weights to find a path that

4.4. Cognitive Routing Algorithm 42

generates the smaller reward from each node pair’s k path lists (line 20). Those paths
are stored and sent to the Control Plane so the flow installation module configures
the routes in the Data Plane. Then, we verify if the learning time was longer than the
monitorization time of the network; if that’s the case, we wait for the control plane
to obtain the new path states. Finally, we use the new path states to reconstruct
the environment.

4.4. Cognitive Routing Algorithm 43

Algorithm 1: CoRA algorithm
Input : Number of learning episodes: n

Number of steps by episode: m
List of "k" paths per state: kpaths
Network path-state
Discount factor: γ
Learning rate
Target network updater: τ
Batch size: N

Output : Set with the best routing path for all pairs of nodes in the network

1 Build Environment Network with Network path-state
2 Initialize critic and actor targets NNs with weights θQ

′ ← θQ, θµ
′ ← θµ

3 Initialize Replay Memory
4 while true do
5 for episode to n do
6 Initial state St

7 for step to m do
8 Select action at
9 Execute action on environment

10 Get reward rt and next state st+1

11 Store tuple (st, at, rt, st+1) into Replay Memory
12 Sample a random mini-batch from Replay Memory
13 Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)

14 Update critic L = 1
N

∑
(yi −Q(si, ai|θQ))2

15 Update actor policy to minimize reward
∇θµJ ≈ 1

N

∑
∇a(−Q(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si)

16 Update the target networks

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

17 Update state st = st+1

18 end
19 end

20 Use final θµ to retrieve the path from kpaths that corresponds to the action with the
lowest reward for each state

21 Store the set of paths for all pair of nodes in the controller to install on data plane;

22 if timelearning < timemonitoring then
23 wait timemonitoring − timelearning
24 end
25 Retrieve new network path-state
26 Rebuild Environment network with new network path-state
27 end

Chapter 5

Evaluation and Analysis

5.1 Test Environment

The agent works on the 2004s GÉANT network topology [105]. This topology com-
prises 23 nodes with 37 links. The capacity of the links is: 19 links of 10Gbps, 14
links of 2.5Gbps, and 4 links with 155 Mbps. Emulating the actual link capacity
is not possible due to computational resource limitations, mainly CPU restrictions.
Therefore the capacity of the links was scaled in a 100 ratio. The links with 10 Gbps,
2.5 Gbps, and 155 Mbps of capacity tuned into 100 Mbps, 25 Mbps, and 1.55 Mbps,
respectively. Since the links have diminished capacity, the traffic must shrink in
the same proportion. The network topology was be emulated with Mininet version
2.2.2 [106], and the Switches with Open Virtual switch 2.13.8.

To model the links, we used TC tool from Linux, which allowed us to specify the
available bandwidth and the input queue size in packet number. In commercial
switches the queue size in depends on the model, the manufacturer, and the traffic.
For our case we defined an input queue size of 100 packets since it produced a
reasonable balance between delay and loss [107].

44

5.2. Prototype 45

Figure 5.1: GÉANT topology [5]

5.2 Prototype

Figure 5.2 portrays CoRA’s prototype where the Data Plane that comprises the
GÉANT network topology was emulated with Mininet. Furthermore in the Control
Planewe rendered the controller, Link State Statistics, Device State Statistics, Topol-
ogy Discovery, and Flow installation modules additionally with RYU API, and to
gather device and link status data Ryu’s tools allow the process. The Management,
Knowledge Planes, and the DDPG agent were deployed with Python 3.7, Keras
2.9.0, and TensorFlow 2.9.1 to carry out the ML workforce. For the data process-
ing, we used libraries specialized in data manipulation, NumPy 1.23.1 and Pandas.
Every plane was executed on Ubuntu Desktop 20.04.5 LTS with a Intel(R) Xeon(R)
CPU E5-2670 v3 @ 2.30GHz using 8 cores and 16 GB of RAM.

5.3. Performance Metrics 46

Figure 5.2: CoRA Prototype

5.3 Performance Metrics

As shown in the literature in section 3.1, the most common metrics for evaluating a
routing algorithm’s performance are delay, packet loss, or throughput. We consider
essential to include each of those metrics for performance evaluation, including the
queue occupation as a fundamental part of the network state. The modules in charge
of the network metrics are link state statistics and device state statistics that sample
the network state every 10s. Likewise, the data processing module processes the
metrics to the path level for the agent to receive them. We confront the significance
of the link and device metrics with DRSIR, which uses the link state metrics only
to generate the best policy.

5.4. Traffic Generation 47

5.4 Traffic Generation

To generate the traffic in the mininet emulation, we used an informatic network tool,
iperf2. The iperf2 scripts produced User Datagram Protocol (UDP) traffic according
to a traffic matrix. The traffic matrix corresponds to a set of sixteen public intra-
domain traffic matrices [108] of the GÉANT Paneuropean topology. We delimited
the traffic matrix of the GÉANT topology to accommodate the level of congestion
to verify the device metrics’ essential role in the network’s global view. Thus, we
selected the heavier traffic day of the year sample and processed it, diminishing
atypical values.

5.5 Hyperparameters Setup

There are different hyperparameters in the DDPG technique, which can modify the
behavior of the reward, improving or depreciating the agent’s performance. The
hyperparameters that we are going to evaluate are:

• Number of hidden layers.

• Number of neurons per hidden layer.

• Discount factor (γ).

• Learning rate.

• Target network updater (τ).

• Batch size.

For the step number to finish an episode, DRSIR initially implemented 30 steps.
Still, 30 made our algorithm converge more slowly, and with a couple of trials, we
arrived at 45, which we proved to be the most accurate value. In the context of

5.5. Hyperparameters Setup 48

Figure 5.3: Varying number of hidden layers.

our state spaces, we need to monitor the tendency of the reward at the end of the
episode, which makes sense when using 45 allows us to know the trend.

In figure 5.3 we vary the number of hidden layers in the neural network of the actor
and the critic. We observe that modifying the number of hidden layers does not
noticeably affect the behavior of the reward. However, it significantly affects the
agent’s convergence time, which is the 50th episode. Therefore, we will use only one
hidden layer in the neural networks in actor and critic.

In the same way that was varying the number of hidden layers, varying the number of
neurons in the hidden layers of the networks does not significantly affect the reward
behavior of the agent, as can be seen in figure 5.4. Varying the number of neurons
exclusively influences the agent’s convergence time. The more neurons, the longer
the convergence time will be. Consequently, we took the lower number of neurons
per layer, the reason why if we increased the neuron number, the convergence time
increases, and the reward makes no better.

In Figure 5.5, we vary the discontinuity factor (γ) with 0.1, 0.5 y 0.9. The behavior
of the reward changes slightly by varying this hyperparameter. However, the γ

value with a lower average reward is 0.1. The above may be due to the DRL agent
design; the agent delivers the path to each pair of nodes, so the agent considers the

5.5. Hyperparameters Setup 49

Figure 5.4: Varying number of neurons per layer.

immediate reward.

In figure 5.6, we vary the learning rate in the optimizer. We start to vary from the
value 0.001 to 0.05 to observe the impact on the reward. A high value of 0.05 in the
learning rate causes the agent not to be able to converge; this is because updating
the weights in the neural networks can be abrupt, causing the agent not to find
the optimal weight for convergence. On the contrary, a low value of 0.001 in the
learning rate means that the agent needs more training episodes to converge because
the update weights of the neural networks are small. Whereby the update weights
of the neural networks are small, it would need more steps to converge. The optimal
value of the learning rate for the agent is 0.01.

Modifying the batch size does not imply a significant change in the behavior of
the reward, except for a size of 10, as can be seen in the figure 5.7. The size of
30 generates a slightly lower reward than the other batch sizes. Also, if this value
is increased, the convergence time increases because the batch size is the number
of times the agent has to relearn from that previous experience to avoid learning
instability.

In Figure 5.8, we analyze the effect of the target network updater (τ) on the behavior
of the reward. τ value has to be considerably smaller than 1. Hence, we vary the

5.5. Hyperparameters Setup 50

Figure 5.5: Varying discount factor.

Figure 5.6: Varying learning rate.

τ value to 0.001, 0.005, 0.01, and 0.05. The behavior of the reward related to the
variation of τ value is not notorious. Either way, with a value below 0.001, we obtain
a minor reward average.

5.6. Results And Analysis 51

Figure 5.7: Varying batch size.

Figure 5.8: Varying target network updater.

5.6 Results And Analysis

In this section, we compare CoRA against DRSIR, the routing algorithm that was
our approach’s starting point. DRSIR was born to address RL and conventional algo-
rithms shortcomings. DRSIR outperforms the conventional routing algorithms like
Dijisktra, and RL algorithms as example RSIR, DRSIR previous proposal. DRSIR
is a DQN algorithm that considers path-state metrics to produce proactive, effi-

5.6. Results And Analysis 52

cient routing that adapts dynamically to network changes. DRSIR is evaluated on
the GEANT topology with real and synthetic traffic matrices. We confront the
two algorithms performance-wise, considering link metrics instantaneous through-
put, average delay, loss rate, and the device metric average queue occupancy of the
switches.

Figure 5.9 show the average queue packet occupancy on the Data Plane switches
throughout the busiest hours of the day. On the heaviest traffic hours, we observe
an increase number of packets dammed in the input queue of the switches due to the
increase in packet forwarding on the links. CoRA reduced queue occupancy by 12.7%
in regard to DRSIR. The decrease in queue occupancy is due to CoRA explicitly
considering the queue occupancy of the switches in the reward function. Therefore,
DNNs train to optimize the policy selecting less queue occupy path, that’s to say
the agent takes into account the queue occupancy. In addition, DDPG as learning
technique is sophisticated when learning a policy that finds the best paths for each
pair of nodes.

Figure 5.9: Queue occupation Analysis

Figure 5.10 shows the average delay of all links during the most congested hours
of the day. As well as the queue occupancy, in the hours with the highest traffic

5.6. Results And Analysis 53

generated by the nodes, the delay of the links begins to increase due to congestion.

The CoRA algorithm obtains a delay improvement of 17% compared to DRSIR.
When choosing the path, CoRA considers the number of packets waiting to be pro-
cessed by the switches. This consideration avoids the links that present congestion
in the input queue, reducing the packet queue time and consequently making a more
efficient routing to decrease delay.

Figure 5.10: Delay Analysis

Figure 5.11 shows the average loss of all the links throughout the hours of the day
with the most congestion. When the traffic increases, the congestion in the links
becomes present, which induces an occupation in the input queue of the switch;
when the number of packets exceeds the size of the queue, the next packet arriving
will be discarded.

CoRA obtains 29.44% of loss improvement compared to DRSIR. We attribute this
to CoRA’s awareness of the queue state of the switches, preventing traffic from being
sent over links where the queues have fewer packets waiting, preventing them from
filling up to their maximum capacity and start discarding.

Figure 5.12 shows the average instantaneous throughput of all the links during the
hours of the day of greatest congestion. The instantaneous throughput indicates how

5.6. Results And Analysis 54

Figure 5.11: Loss Analysis

the routing strategy adequately distributes the traffic generated by all the links. The
more traffic, the more needed strategy to avoid overloading the same links.

The CoRA algorithm obtains a 12.5% reduction in instantaneous throughput com-
pared to DRSIR; this means that CoRA distributes the traffic along less conges-
tioned paths, avoiding the overuse of links, therefore improving the performance of
the above metrics.

Figure 5.13shows the average stretch produced by the agents throughout the day.
The stretch is calculated by the relationship between the size of the path chosen by
the agents against the path with the fewest possible hops. CoRA gets slightly longer
paths (<2%) than DRSIR. This result means that CoRA distributes the traffic in the
paths regarding the metrics considered, not the shorter path. That way, it achieves
an improvement in the previous metrics.

5.6. Results And Analysis 55

Figure 5.12: Instantaneous throughput Analysis

Figure 5.13: Stretch Analysis

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This undergraduate work presents the answer to the question: How to obtain a
cognitive and efficient routing of packets in SDN considering link and
device metrics from Control Plane?

To solve this question, this undergraduate work presented the investigation car-
ried out to verify the hypothesis: Cognitive routing in SDN can be achieved
by analyzing link and device state metrics using DRL techniques. Based
on the hypothesis, we designed the CoRA routing mechanism that implements the
DRL technique, DDPG, and the link and device state data. Futhermore, CoRA was
implemented on top of the GEANT topology by injecting it with real traffic matri-
ces. CoRa performance was evaluated regarding stretch, loss, delay, instantaneous
throughput, and queue occupancy.

CoRA improves the network performance compared to the DRSIR proposal. 12.7%
reduced in queue occupancy, the delay is reduced by 17%, 29.4% improved loss,
and a 12.5% reduced on the instantaneous throughput. In addition, CoRA gets 2%
more stretch than DRSIR. These performance improvements are since the CoRA
mechanism fully knows the network state. Making routing decisions, CoRa is aware

56

6.2. Future work 57

of the link and device state, namely delay, packet loss, available bandwidth, and
input queue switch occupation.

The CoRA mechanism reduces the number of packets waiting in the switch input,
and this means a reduction in the link delay. The decrease in packets in the switch
input queue reduces the packet loss in the link because the mechanism prevents
the number of packets from exceeding the maximum capacity of the switch queue,
altogether avoiding queue overflow meaning packet discard. CoRA distributes traf-
fic over less congested links, reducing the average instantaneous throughput. In
addition, CoRA obtains better results without sacrificing stretch too much.

To our knowledge, the proposed mechanism is the only one that uses a DRL agent
without relying upon classical routing protocols. While monitoring the device’s
status together with the link status to nourish cognitive routing decisions to reinforce
the reward getting optimal performance.

6.2 Future work

• Research other device metrics, such as CPU and RAM consumption, to witness
the impact of those device metrics on the network status.

• Implement different DRL techniques.

• Implement different ML techniques for the efficient configuration of the weights
of the metrics in the agent’s reward before traffic variations.

Bibliography

[1] F. Estrada-Solano, A. Ordonez, L. Z. Granville, and O. M. Caicedo Rendon,
“A framework for sdn integrated management based on a cim model and a
vertical management plane,” Computer Communications, 2017.

[2] G. Kim, Y. Kim, and H. Lim, “Deep reinforcement learning-based routing on
software-defined networks,” IEEE Access, 2022.

[3] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A knowledge
plane for the internet,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications, 2003,
pp. 3–10.

[4] G. Kim, Y. Kim, and H. Lim, “Deep reinforcement learning-based routing on
software-defined networks,” IEEE Access, vol. 10, pp. 18 121–18 133, 2022.

[5] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. da Fonseca, “Intelligent rout-
ing based on reinforcement learning for software-defined networking,” IEEE
Transactions on Network and Service Management, vol. 18, no. 1, pp. 870–
881, 2020.

[6] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky,
and S. Uhlig, “Software-defined networking: A comprehensive survey,” Pro-
ceedings of the IEEE, 2014.

[7] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic
engineering in software defined networks,” Computer Networks, vol. 71, pp.
1–30, 2014.

58

BIBLIOGRAPHY 59

[8] D. Gopi, S. Cheng, and R. Huck, “Comparative analysis of SDN and con-
ventional networks using routing protocols,” IEEE CITS 2017 - 2017 Interna-
tional Conference on Computer, Information and Telecommunication Systems,
pp. 108–112, 2017.

[9] D. Awduche, J. Malcolm, J. Agogbua, M. D. O’Dell, and J. McManus, “Re-
quirements for traffic engineering over mpls,” RFC, vol. 2702, pp. 1–29, 1999.

[10] Y. Li, X. Li, and O. Yoshie, “Traffic engineering framework with machine learn-
ing based meta-layer in software-defined networks,” Proceedings of 2014 4th
IEEE International Conference on Network Infrastructure and Digital Con-
tent, IEEE IC-NIDC 2014, pp. 121–125, 2014.

[11] H. Zhang and J. Yan, “Performance of SDN Routing in Comparison with
Legacy Routing Protocols,” Proceedings - 2015 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC
2015, pp. 491–494, 2015.

[12] A. Rego, S. Sendra, J. M. Jimenez, and J. Lloret, “Ospf routing protocol perfor-
mance in software defined networks,” in 2017 Fourth International Conference
on Software Defined Systems (SDS). IEEE, 2017, pp. 131–136.

[13] A. A. Khan, M. Hussain, M. Zafrullah, and M. S. Zia, “A convergence time
optimization paradigm for ospf based networks through sdn spf protocol com-
puter communications and networks (ccn)/delay tolerant networks,” in Pro-
ceedings of the International Conference on Future Networks and Distributed
Systems, 2017.

[14] S. Abdallah, A. Kayssi, I. H. Elhajj, and A. Chehab, “Network convergence in
sdn versus ospf networks,” in 2018 Fifth International Conference on Software
Defined Systems (SDS). IEEE, 2018.

[15] R. Adrian, A. Dahlan, and K. Anam, “OSPF cost impact analysis on SDN
network,” in 2017 2nd International conferences on Information Technology,
Information Systems and Electrical Engineering (ICITISEE). IEEE, Nov.
2017. [Online]. Available: https://doi.org/10.1109/icitisee.2017.8285494

https://doi.org/10.1109/icitisee.2017.8285494

BIBLIOGRAPHY 60

[16] E. Amiri, M. R. Hashemi, and K. R. Lejjy, “Policy-based routing in rip-hybrid
network with sdn controller,” in 4th National Conference on Applied Research
in Electrical, Mechanical, Computer and IT Engineering, 2018, pp. 1–8.

[17] P. Lin, J. Bi, and H. Hu, “Btsdn: Bgp-based transition for the existing networks
to sdn,” Wireless Personal Communications, vol. 86, pp. 1829–1843, 2016.

[18] L. M. Elguea and F. Martinez-Rios, “A new method to optimize
BGP routes using SDN and reducing latency,” Procedia Computer
Science, vol. 135, pp. 163–169, 2018. [Online]. Available: https:
//doi.org/10.1016/j.procs.2018.08.162

[19] V. Kotronis, A. Gämperli, and X. Dimitropoulos, “Routing centralization
across domains via SDN: A model and emulation framework for BGP evo-
lution,” Computer Networks, vol. 92, 2015.

[20] W. Duan, L. Xiao, D. Li, Y. Zhou, R. Liu, L. Ruan, Y. Xia, and M. Zhu,
“Ofbgp: A scalable, highly available bgp architecture for sdn,” in 2014 IEEE
11th International Conference on Mobile Ad Hoc and Sensor Systems, 2014,
pp. 557–562.

[21] G. Xu, Y. Mu, and J. Liu, “Inclusion of Artificial Intelligence in Communi-
cation Networks and Services,” ITU Journal: ICT Discoveries, Special Issue,
no. 1, pp. 1–6, 2017.

[22] T. Hendriks, M. Camelo, and S. Latré, “Q 2-routing: A qos-aware q-routing
algorithm for wireless ad hoc networks,” in 2018 14th International Confer-
ence on Wireless and Mobile Computing, Networking and Communications
(WiMob). IEEE, 2018, pp. 108–115.

[23] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive routing in
multi-layer hierarchical software defined networks: A reinforcement learning
approach,” in 2016 IEEE International Conference on Services Computing
(SCC). IEEE, 2016, pp. 25–33.

https://doi.org/10.1016/j.procs.2018.08.162
https://doi.org/10.1016/j.procs.2018.08.162

BIBLIOGRAPHY 61

[24] C. Wang, L. Zhang, Z. Li, and C. Jiang, “SDCoR: Software Defined Cognitive
Routing for Internet of Vehicles,” IEEE Internet of Things Journal, vol. 5,
no. 5, pp. 3513–3520, 2018.

[25] T. Mahboob, Y. R. Jung, and M. Y. Chung, “Optimized Routing in Software
Defined Networks - A Reinforcement Learning Approach,” in Proceedings of
the 13th International Conference on Ubiquitous Information Management and
Communication (IMCOM) 2019. Springer International Publishing, 2019.

[26] S. Kim, J. Son, A. Talukder, and C. S. Hong, “Congestion prevention mech-
anism based on q-leaning for efficient routing in sdn,” in 2016 International
Conference on Information Networking (ICOIN), 2016, pp. 124–128.

[27] Y.-H. Lu and F.-Y. Leu, “Dynamic routing and bandwidth provision based on
reinforcement learning in SDN networks,” in Advanced Information Networking
and Applications. Springer International Publishing, 2020, pp. 1–11.

[28] M. B. Hossain and J. Wei, “Reinforcement learning-driven QoS-aware
intelligent routing for software-defined networks,” in 2019 IEEE Global
Conference on Signal and Information Processing (GlobalSIP). IEEE,
Nov. 2019. [Online]. Available: https://doi.org/10.1109/globalsip45357.2019.
8969320

[29] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. C. Liang, and
D. I. Kim, “Applications of Deep Reinforcement Learning in Communications
and Networking: A Survey,” IEEE Communications Surveys and Tutorials,
vol. 21, no. 4, pp. 3133–3174, 2019.

[30] E. H. Bouzidi, A. Outtagarts, and R. Langar, “Deep reinforcement learning
application for network latency management in software defined networks,”
in 2019 IEEE Global Communications Conference (GLOBECOM). IEEE,
Dec. 2019. [Online]. Available: https://doi.org/10.1109/globecom38437.2019.
9013221

[31] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, “RL-routing:
An SDN routing algorithm based on deep reinforcement learning,” IEEE

https://doi.org/10.1109/globalsip45357.2019.8969320
https://doi.org/10.1109/globalsip45357.2019.8969320
https://doi.org/10.1109/globecom38437.2019.9013221
https://doi.org/10.1109/globecom38437.2019.9013221

BIBLIOGRAPHY 62

Transactions on Network Science and Engineering, pp. 1–1, 2020. [Online].
Available: https://doi.org/10.1109/tnse.2020.3017751

[32] Q. Fu, E. Sun, K. Meng, M. Li, and Y. Zhang, “Deep q-learning for routing
schemes in SDN-based data center networks,” IEEE Access, vol. 8, pp.
103 491–103 499, 2020. [Online]. Available: https://doi.org/10.1109/access.
2020.2995511

[33] W. xi Liu, “Intelligent routing based on deep reinforcement learning
in software-defined data-center networks,” in 2019 IEEE Symposium on
Computers and Communications (ISCC). IEEE, Jun. 2019. [Online].
Available: https://doi.org/10.1109/iscc47284.2019.8969579

[34] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero, and A. Cabel-
los, “A deep-reinforcement learning approach for software-defined networking
routing optimization,” arXiv preprint arXiv:1709.07080, 2017.

[35] J. Chen, Z. Xiao, H. Xing, P. Dai, S. Luo, and M. A. Iqbal, “Stdpg: A spatio-
temporal deterministic policy gradient agent for dynamic routing in sdn,” 2020.

[36] C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the
routing in software-defined networks with deep reinforcement learning,”
IEEE Access, vol. 6, pp. 64 533–64 539, 2018. [Online]. Available:
https://doi.org/10.1109/access.2018.2877686

[37] P. Sun, Y. Hu, J. Lan, L. Tian, and M. Chen, “TIDE: Time-relevant
deep reinforcement learning for routing optimization,” Future Generation
Computer Systems, vol. 99, pp. 401–409, Oct. 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2019.04.014

[38] Q. T. A. Pham, Y. Hadjadj-Aoul, and A. Outtagarts, “Deep Reinforcement
Learning based QoS-aware Routing in Knowledge-defined networking,” in
Qshine 2018 - 14th EAI International Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness, Ho Chi Minh City, Vietnam,
Dec. 2018, pp. 1–13. [Online]. Available: https://hal.inria.fr/hal-01933970

https://doi.org/10.1109/tnse.2020.3017751
https://doi.org/10.1109/access.2020.2995511
https://doi.org/10.1109/access.2020.2995511
https://doi.org/10.1109/iscc47284.2019.8969579
https://doi.org/10.1109/access.2018.2877686
https://doi.org/10.1016/j.future.2019.04.014
https://hal.inria.fr/hal-01933970

BIBLIOGRAPHY 63

[39] Y. Hu, Z. Li, J. Lan, J. Wu, and L. Yao, “EARS: Intelligence-driven
experiential network architecture for automatic routing in software-defined
networking,” China Communications, vol. 17, no. 2, pp. 149–162, Feb. 2020.
[Online]. Available: https://doi.org/10.23919/jcc.2020.02.013

[40] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. S. da Fonseca, “Drsir: A deep
reinforcement learning approach for routing in software-defined networking,”
IEEE Transactions on Network and Service Management, vol. 19, no. 4, pp.
4807–4820, 2022.

[41] L. Zhang, Y. Lu, D. Zhang, H. Cheng, P. Dong et al., “Dsoqr: Deep rein-
forcement learning for online qos routing in sdn-based networks,” Security and
Communication Networks, vol. 2022, 2022.

[42] C. Zhao, M. Ye, X. Xue, J. Lv, Q. Jiang, and Y. Wang, “Drl-m4mr: An intel-
ligent multicast routing approach based on dqn deep reinforcement learning
in sdn,” Physical Communication, vol. 55, p. 101919, 2022.

[43] J. F. K. K. Ross, Computer Networking: A Top-Down Approach, 7th ed.
Pearson, 2016.

[44] J. Macfarlane, Network routing basics: Understanding IP routing in Cisco
systems. John Wiley & Sons, 2007.

[45] D. Medhi, “Network routing: An overview,” in Network Routing Algorithms,
Protocols, and Architectures. ELSEVIER Inc, 2007, ch. 1.2, pp. 5–7.

[46] M. Jayakumar, N. R. S. Rekha, and B. Bharathi, “A comparative study on
RIP and OSPF protocols,” in 2015 International Conference on Innovations
in Information, Embedded and Communication Systems (ICIIECS). IEEE,
Mar. 2015. [Online]. Available: https://doi.org/10.1109/iciiecs.2015.7193275

[47] L. Lan, L. Li, and C. Jianya, “A multipath routing algorithm based on ospf
routing protocol,” in 2012 Eighth International Conference on Semantics,
Knowledge and Grids, 2012, pp. 269–272.

https://doi.org/10.23919/jcc.2020.02.013
https://doi.org/10.1109/iciiecs.2015.7193275

BIBLIOGRAPHY 64

[48] A. A. Noman and A. Chowdhury, “Performance analysis of EIGRP and OSPF
for different applications using OPNET,” Australasian Journal of Computer
Science, vol. 1, no. 1, pp. 1–8, 2014.

[49] G. S. Kalyan and D. V. V. Prasad, “Optimal selection of dynamic routing
protocol with real time case studies,” in 2012 International Conference on
Recent Advances in Computing and Software Systems. IEEE, 2012, pp. 219–
223.

[50] C. L. Hedrick, “RFC1058: Routing information protocol,” 1988.

[51] T. M. Thomas, OSPF network design solutions. Cisco Press, 1998.

[52] Y. Rekhter, T. Li, and S. Hares, “RFC 4271: A border gateway protocol 4
(bgp-4),” 2006.

[53] P. Rakheja, P. kaur, A. gupta, and A. Sharma, “Performance analysis of rip,
ospf, igrp and eigrp routing protocols in a network,” International Journal of
Computer Applications, vol. 48, pp. 6–11, 06 2012.

[54] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani, “A tensor based deep learning technique for intelligent packet routing,”
in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017,
pp. 1–6.

[55] R. Amin, E. Rojas, A. Aqdus, S. Ramzan, D. Casillas-Perez, and J. M. Arco,
“A survey on machine learning techniques for routing optimization in sdn,”
IEEE Access, 2021.

[56] A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar, “A machine learning
approach to routing,” arXiv preprint arXiv:1708.03074, 2017.

[57] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and open-
flow: From concept to implementation,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[58] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan,
N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN? Implementation

BIBLIOGRAPHY 65

challenges for software-defined networks,” IEEE Communications Magazine,
vol. 51, no. 7, pp. 36–43, 2013.

[59] ONF, “Sdn architecture v1.1, technical reference tr-504,” Nov. 2014. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.
pdf

[60] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. S. D. Meyer, and
O. Koufopavlou, “Software-defined networking (sdn): Layers and architecture
terminology, informational rfc 7426, ietf,” Ene. 2015. [Online]. Available:
https://tools.ietf.org/html/rfc7426

[61] ITU, “Framework of software-defined networking, recommendation y.3300,
international telecommuncation union,” Jun. 2014. [Online]. Available:
https://www.itu.int/rec/T-REC-Y.3300

[62] K. Benzekki, A. El Fergougui, and A. El Belrhiti El Alaoui, “Software-defined
networking (sdn): A survey,” Security and Communication Networks, vol. 9,
02 2017.

[63] O. S. Specification, “Version 1.5. 0,” Open Networking Foundation, 2014.

[64] T. Liu, “Implementing open flow switch using fpga based platform,” Master’s
thesis, Institutt for telematikk, 2014.

[65] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “Nox: towards an operating system for networks,” ACM SIG-
COMM computer communication review, vol. 38, no. 3, pp. 105–110, 2008.

[66] D. Erickson, “The beacon openflow controller,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking, 2013,
pp. 13–18.

[67] Z. Cai, A. L. Cox, and T. Ng, “Maestro: A system for scalable openflow
control,” Tech. Rep., 2010.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://tools.ietf.org/html/rfc7426
https://www.itu.int/rec/T-REC-Y.3300

BIBLIOGRAPHY 66

[68] The Linux Foundation. Opendaylight. [Online]. Available: https://www.
opendaylight.org/

[69] R. Wallner and R. Cannistra, “An sdn approach: quality of service using big
switch’s floodlight open-source controller,” in Proceedings of the Asia-Pacific
Advanced Network, vol. 35, no. 14-19, 2013, pp. 10–7125.

[70] Getting started — ryu 4.34 documentation. [Online]. Available: https:
//ryu.readthedocs.io/en/latest/getting_started.html#what-s-ryu

[71] J. A. Wickboldt, W. P. De Jesus, P. H. Isolani, C. B. Both, J. Rochol, and
L. Z. Granville, “Software-defined networking: management requirements and
challenges,” IEEE Communications Magazine, vol. 53, no. 1, pp. 278–285,
2015.

[72] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer, “Interfaces,
attributes, and use cases: A compass for sdn,” IEEE Communications Maga-
zine, vol. 52, no. 6, pp. 210–217, 2014.

[73] M. B. Al-Somaidai and E. B. Yahya, “Survey of software components to emu-
late openflow protocol as an sdn implementation,” American Journal of Soft-
ware Engineering and Applications, vol. 3, no. 6, pp. 74–82, 2014.

[74] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani, “Routing or computing? the paradigm shift towards intelligent computer
network packet transmission based on deep learning,” IEEE Transactions on
Computers, 2017.

[75] R. S. Sutton and A. G. Barto, Reinforcement Learning. The MIT Press, 2014,
ch. 1.1, pp. 2–5.

[76] Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang, and Y. Sun, “A Survey of
Networking Applications Applying the Software Defined Networking Concept
Based on Machine Learning,” IEEE Access, vol. 7, pp. 95 397–95 417, 2019.

[77] G. Tesauro, “Reinforcement learning in autonomic computing: A manifesto
and case studies,” IEEE Internet Computing, vol. 11, no. 1, pp. 22–30, 2007.

https://www.opendaylight.org/
https://www.opendaylight.org/
https://ryu.readthedocs.io/en/latest/getting_started.html#what-s-ryu
https://ryu.readthedocs.io/en/latest/getting_started.html#what-s-ryu

BIBLIOGRAPHY 67

[78] Z. Mammeri, “Reinforcement learning based routing in networks: Review and
classification of approaches,” IEEE Access, vol. 7, pp. 55 916–55 950, 2019.

[79] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on machine
learning for networking: evolution, applications and research opportunities,”
Journal of Internet Services and Applications, vol. 9, no. 1, Jun. 2018.
[Online]. Available: https://doi.org/10.1186/s13174-018-0087-2

[80] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani, “State-of-the-art deep learning: Evolving machine intelligence toward to-
morrow’s intelligent network traffic control systems,” IEEE Communications
Surveys Tutorials, vol. 19, no. 4, pp. 2432–2455, 2017.

[81] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning,”
in 2018 IEEE international conference on robotics and automation (ICRA).
IEEE, 2018.

[82] O. Abiodun, A. Jantan, O. Omolara, K. Dada, N. Mohamed, and H. Arshad,
“State-of-the-art in artificial neural network applications: A survey,” Heliyon,
vol. 4, p. e00938, 11 2018.

[83] C. Aggarwal, “An introduction to neural networks,” in Neural Networks and
Deep Learning. Springer International Publishing AG, 2018, ch. 1.1, pp. 1–3.

[84] A. Gulli, “Introduction to neural networks,” in Deep Learning with TensorFlow
2 and Keras, 2nd ed. Packt Publishing, 2019, ch. 1.4, pp. 5–8.

[85] H. Dong, Z. Ding, and S. Zhang, Deep Q-Networks. Springer, 2020, ch. 4,
pp. 135–161.

[86] S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement learning: An
overview,” Lecture Notes in Networks and Systems, pp. 426–440, 06 2018.

[87] B. Brown, “Learning to pick the best policy: Policy gradient methods,” in Deep
Reinforcement Learning in Action. Manning Publications Co, 2020, ch. 4, pp.
90–111.

https://doi.org/10.1186/s13174-018-0087-2

BIBLIOGRAPHY 68

[88] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013.
[Online]. Available: http://arxiv.org/abs/1312.5602

[89] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 2094–2100.

[90] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas,
“Dueling network architectures for deep reinforcement learning,” in Proceedings
of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, p. 1995–2003.

[91] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón, M. Solé,
V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett, G. Estrada, K. Ma’ruf,
F. Coras, V. Ermagan, H. Latapie, C. Cassar, J. Evans, F. Maino, J. Walrand,
and A. Cabellos, “Knowledge-defined networking,” Computer Communication
Review, vol. 47, pp. 1–10, 2017.

[92] S. Ashtari, I. Zhou, M. Abolhasan, N. Shariati, J. Lipman, and W. Ni,
“Knowledge-defined networking: Applications, challenges and future work,”
Array, vol. 14, 2022.

[93] S. Tomovic, N. Prasad, and I. Radusinovic, “Sdn control framework for qos
provisioning,” in 2014 22nd Telecommunications Forum Telfor (TELFOR).
IEEE, 2014.

[94] J. Park, J. Hwang, and K. Yeom, “NSAF: An Approach for Ensuring
Application-Aware Routing Based on Network QoS of Applications in SDN,”
Mobile Information Systems, vol. 2019, 2019.

[95] J.-R. Jiang, H.-W. Huang, J.-H. Liao, and S.-Y. Chen, “Extending dijkstra's
shortest path algorithm for software defined networking,” in The 16th Asia-
Pacific Network Operations and Management Symposium. IEEE, 2014.

http://arxiv.org/abs/1312.5602

BIBLIOGRAPHY 69

[96] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv
preprint arXiv:1509.02971, 09 2015.

[97] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Row-
land, and W. Dabney, “Revisiting fundamentals of experience replay,” in In-
ternational Conference on Machine Learning. PMLR, 2020, pp. 3061–3071.

[98] H. M. El Misilmani, T. Naous, and S. K. Al Khatib, “A review on the design
and optimization of antennas using machine learning algorithms and tech-
niques,” International Journal of RF and Microwave Computer-Aided Engi-
neering, vol. 30, no. 10, p. e22356, 2020.

[99] E. Okewu, P. Adewole, and O. Sennaike, “Experimental comparison of
stochastic optimizers in deep learning,” in Computational Science and Its
Applications–ICCSA 2019: 19th International Conference, Saint Petersburg,
Russia, July 1–4, 2019, Proceedings, Part V 19. Springer, 2019, pp. 704–715.

[100] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing exploration
strategies for q-learning in random stochastic mazes,” in 2016 IEEE Sympo-
sium Series on Computational Intelligence (SSCI), 2016, pp. 1–8.

[101] R. Zhong, Y. Liu, X. Mu, Y. Chen, X. Wang, and L. Hanzo, “Hybrid reinforce-
ment learning for star-riss: A coupled phase-shift model based beamformer,”
IEEE Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2556–
2569, 2022.

[102] L. Al Shalabi and Z. Shaaban, “Normalization as a preprocessing engine for
data mining and the approach of preference matrix,” in 2006 International
conference on dependability of computer systems. IEEE, 2006, pp. 207–214.

[103] L. Liao and V. C. M. Leung, “Lldp based link latency monitoring in software
defined networks,” in 2016 12th International Conference on Network and Ser-
vice Management (CNSM), 2016.

BIBLIOGRAPHY 70

[104] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing & traffic
control,” in Ottawa Linux Symposium, vol. 213. sn, 2002.

[105] P. T. Kirstein, “European international academic networking: A 20 year per-
spective.” in TERENA Networking Conference, 2004.

[106] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined network-
ing testing platform,” in International conference on communication, comput-
ing & systems (ICCCS), 2014, pp. 139–42.

[107] Y. Lu and S. Zhu, “Sdn-based tcp congestion control in data center networks,”
in 2015 IEEE 34th international performance computing and communications
conference (IPCCC). IEEE, 2015, pp. 1–7.

[108] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public
intradomain traffic matrices to the research community,” SIGCOMM Comput.
Commun. Rev., vol. 36, no. 1, p. 83–86, jan 2006. [Online]. Available:
https://doi.org/10.1145/1111322.1111341

https://doi.org/10.1145/1111322.1111341

Cognitive routing of flows in software-defined
networks from the control plane

ANNEXES

Undergraduate degree

Sofia Rubin Castillo
Brayam David Otero Pomeo

Advisor: PhD. Oscar Mauricio Caicedo Rendón
Co-Advisor: PhD.Cristhian Nicolás Figueroa Martínez

Department of Telematics
Faculty of Electronic and Telecommunications Engineering

Universidad del Cauca
Popayán, March 2023

Annexes A

Algorithm

Annex A presents the redirect link to the repository on GitHub, where the respective
CoRA source codes are located.

https://github.com/BrayamOtero/CoRA.git

1

https://github.com/BrayamOtero/CoRA.git

Annexes B

Publicaciones

Annex B presents the scientific paper written during the undergraduate work devel-
opment.

• Brayam David Otero Pomeo, Sofia Rubin Castillo,Oscar Mauricio Caicedo
Rendón, Cristhian Nicolás Figueroa Martínez. Cognitive Routing Of Flows
In Software-Defined Networks From The Control Plane. Elsevier -
Computer Networks.

– Status: Writtend and ready to be sent.

– Quartile: Q1.

– Impact Factor: 5.493

– H-index: 169 Scimagp

2

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 1

CoRA: A Cognitive Routing Algorithm for Routing
in SDN on the Control Plane

Brayam David Otero Pomeo, Sofía Rubin-Castillo, Cristian Nicolás Figueroa, and
Oscar Mauricio Caicedo Rendon

Department of Telematics Engineering, University of Cauca
Popayán, Cauca

Email: davidotero, nataliaquino, cfigmart, omcaicedo@unicauca.edu.co

Abstract—Flow routing algorithms are a fundamental part of
telecommunication networks since they allow all nodes to com-
municate with each other. Routing algorithms must be efficient
to avoid network’s degradation. Traditional routing protocols
usually use fixed link weight assignment and shortest path routing
which that cause link overuse resulting in the service degradation.
The appearance of Software Defined Networking (SDN) offered
multiple advantages over traditional networks, such as a global
view of the network and a programmable control and data planes
entitling the introduction of new technologies.

In a first attempt, traditional routing protocols were imple-
mented on the top of SDN, improving routing convergence.
Still, they inherited limitations such as link overuse and did
not consider the network’s historical information to nourish
decision-making. SDN’s programmability made it possible to
integrate Machine Learning (ML) techniques to take advantage
of the network’s historical information opening the way for
novel routing strategies. However, ML-based solutions are still
dependent on conventional routing protocols, therefore, do not
fully exploit the network status. We propose a routing algorithm
whose cognitive learning improves network performance and
takes advantage of the broad potential of SDN.

Index Terms—Deep Reinforcement Learning, Routing, Soft-
ware Defined Networking

I. INTRODUCTION

SDN manages networks effectively, reduces the operation
costs, and promotes the development of networks through

programmability [1], [2]. Therefore, SDN has been the focus
of growing attention due to its efficiency and scalability to
handle high traffic volumes in highly complex networks [3].
The potential of SDN compared to its conventional counter-
parts highlights the importance of reassessing how networks
are implemented and the algorithms used in them for their
operation since the search for effective routing plays an
essential role in increasing SDN performance.

The use of Shortest Path First (SPF) [4] or link state
routing algorithms within conventional routing protocols in
SDN favors situations of congestion and degradation of the
network environment by using a rigid allocation of weights
in the calculation of routes [5]. Some solutions implement
conventional routing protocols such as Open Shortest Path
First (OSPF) [6]–[10], Routing Information Protocol (RIP)
[11] or Border Gateway Protocol (BGP) [12]–[15]. Although
these solutions achieve improvements regarding delay and
packet loss compared to implementations in traditional net-
work architectures, these solutions incur limitations when

making routing decisions in the network. Fixed metrics in rigid
weight assignments for route calculation are a drawback when
facing intrinsic network variability in current environments.
Therefore, the service ends up degrading due to link conges-
tion. Furthermore, these protocols do not use prior experience
in making routing decisions.

With time and the contants search for new ways to exploit
SDN in particular, the programmability of SDN was seen
as a routing solution toghether with ML capabilities in data
processing, and decision-making [16]. Some studies [17]–[23]
propose routing solutions based on Reinforcement Learning
(RL) within SDN to find an optimal routing policy in terms of
delay, packet transmission rate, packet loss rate, among others.
Despite seeing an optimal policy in an RL algorithm requires
many iterations, which can hamper proper routing algorithm
performance in continuously time-varying environments with
large node and link number [24].

Works like [25]–[37] are based on Deep Reinforcement
Learning (DRL). These works create routing algorithms that
adapt themselves to the state of the network and improve the
distribution of resources, optimizing network performance in
terms of delay and packet transmission rate.

The contributions above show different approaches related
to routing, and thus, we can spot a couple of common
factors to address. For example, we have seen a need for
real topology usage and appropriate traffic matrices to nourish
the implementation and evaluation of the routing algorithms.
On the other hand, the routing decisions are prone to dismiss
device state metrics. Hence, the network loses its global view
by neglecting important device status metrics, using only link
metrics.

We propose CoRA a Cognitive Routing Algorithm that
uses the DRL technique Deep Deterministic Policy Gradi-
ent (DDPG) and the Knowledge-Defined Networking (KDN)
paradigm to route flows on the SDN architecture, altogether
with the link and device state metrics usage to dimension
the network state globally. The enriched learning process of
CoRA’s agent creates routing policies based on efficient and
cognitive decision-making to install optimal routes on the
forwarding devices, thus permitting rapid adaptation to the cur-
rent network’s always-changing environment. In summary, this
paper contributes to a novel routing algorithm that employs
device and link metrics computed by a DDPG agent to convey
the optimal routes for a node pair. The results show that CoRA

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 2

performance is superior to Deep Reinforcement Learning and
Software-defined networking Intelligent Routing (DRSIR); a
Deep Q-Networks (DQN) proposal, therefore, is a promising
solution proving the significance of global dimensioning of the
network and the effectiveness of DRL for cognitive solutions
in the routing matter.

The rest of the paper is organized as follows. Sections II
describe the related work, section III details our approach
by introducing the DDPG routing architecture, CoRA’s agent,
and the routing algorithm. Section IV presents the CoRA
prototype and the results of its evaluation. Section V offers
the conclusions and suggestions for future work.

II. RELATED WORK

This chapter describes the most representative works regard-
ing routing based on SDN, ML, and device metrics. Among
these are mechanisms addressed through different models and
strategies that allow confronting the diverse solutions and
approaches we have developed for this undergraduate work.

A. Classical Routing

The proposes [6]–[10] use of OSPF in SDN to improve
the QoS of a large-scale networks in terms of delay, packet
transmission rate, and packet loss. Researches like [12]–[15]
implement BGP over SDN. Particularly, [13] uses SDN’s
programmability to adapt BGP so that the distance traveled
is less, resulting in reduced latency. [15] proposes a BGP
architecture called OFBGP, implemented as an SDN applica-
tion, improving scalability and availability regarding the BGP.
However, SPF-based protocols have difficulty when facing
network variability, incurring congestion, and the subsequent
service degradation.

The Dijkstra link-state routing algorithm traditionally con-
siders the shortest path or performance metrics (e.g., delay
rate, packet transmission rate, and packet loss) to assign
costs to network links. Dijkstra is used in solutions like
[38]–[40] within SDN. These proposals create strategies that
take advantage of the flexibility of SDN, such as dynamic
weight assignment to links, or nodes of the network, benefiting
performance by reducing network latency and congestion.
Nevertheless, even when speaking about dynamic monitoring
in routing algorithms, the weight assigned to the links or nodes
does not update in real-time, creating a flaw in representing
the network in its current state. The routing decisions of
the works mentioned in this section are calculated through
conventional routing algorithms, which take into account only
the network’s current state, missing the opportunity to exploit
the previous state—subsequently missing knowledge about
previous decisions to generate more intelligent choices in
the future. These shortcomings impact when aiming to reach
prediction capabilities or a more competent global view.

B. Reinforcement Learning-based Routing

The RL trend is prevalent within routing in SDN because
RL does not need prior information on the network state.
Proposals like [17]–[23], [41] improve routing capabilities by

using RL over SDN. These proposals surpass conventional
algorithms in terms of delay, congestion, adaptability, and
intelligent management of networks with more excellent QoS
provisioning, managing to obtain routes on demand even in
large-scale networks. However, the high number of iterations
necessary to find the optimal routing strategy and the extensive
tables in Q-learning based solutions result in long convergence
times and make essential efficiency improvements, increased
processing speed, and storage optimization. [20] suggests that
in the future, implementing other intelligence techniques (e.g.,
DRL, DNN) will be essential to overcome the limitations
mentioned above. In [21], the need for adequate flexibility and
scalability becomes evident when it is evaluated exclusively in
an environment with a fixed traffic rate and bandwidth.

C. Deep Reinforcement Learning-based Routing

[25]–[27], [35] use DQN for the routing process. [25] uses
DRL to minimize latency and packet loss, achieving its goal
well above the performance among other ML algorithms used
for this purpose (e.g., ARMA - Auto- Regressive Integrated
Moving Average). In [26], the authors manage a variant of
DQN called DDQN, where the agent’s reward is associated
with the delay and the packet transmission rate, surpassing
the performance of OSPF in these metrics.

In [27] algorithm uses two DNNs to treat mouse and
elephant flows. Then, they set a reward for each flow according
to the specific metrics required. Mouse flows take into account
packet loss and average delay. Besides, elephant flows bear
the loss rate and the transmission of packets as metrics. [27]
optimizes delay, packet transmission rate, and packet loss
metrics, outperforming algorithms such as ECMP (Equal-Cost
MultiPath Routing).

The works [29]–[34] propose DRL routing algorithms, em-
ploying the critical actor technique in conjunction with DDPG
to obtain the optimal policy in a single step. In [29] and [30],
the DRL agent only considers delay for reward maximization,
resulting in improvements compared to traditional algorithms
like SPF.

In [34], the maximization of the reward is given by the
packet transmission rate between the source, destination, and
the link delay. Furthermore, [33] uses packet loss and latency.
Besides, [31], [32], [35]–[37] better dimension the link state,
including all the above metrics, packet transmission, packet
loss, and delay. Especially [35] introduce DRSIR, DRSIR
proposes a novel space of states and actions model that char-
acterizes the state of the paths obtaining results outperforming
Dijkstra, and RL approaches.

[28] develops two DRL models, DQN and DDPG to
optimize the packet transmission rate. Both models show
better performance than OSPF concerning this metric. On the
other hand, when comparing the performance of these DRL
algorithms, it becomes clear that the performance of DDPG
exceeds DQN, with 47% and 40% optimization in packet
transmission rate, respectively.

In the proposals mentioned earlier, the agent’s reward
exclusively involves metrics associated with the links state
(e.g., packet transmission rate, delay, and packet loss) but

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 3

not the network device state. Unconsidering the device state
supposes a limitation regarding the global characterization of
the network environment.

III. CORA

This section shows the architecture and the components of
CoRA, as well as how the DRL agent is constituted.

A. Overview

We present our solution facing the shortcomings found in
the literature regarding routing involving ML over SDN. In the
Journey of researching novel approaches to enhanced routing
algorithms, we have decided to use the KDN paradigm to ease
management and monitoring, jointly with DRL performing
over an SDN network. We engaged with the importance of
global network characterization through link state and device
state metrics to train the algorithm adequately, achieving
efficiency and enhanced performance. As the current routing
solutions using DRL agents do not directly consider the device
metrics, we recover device metrics such as the switch queue´s
occupancy as well as the link state, available bandwidth, delay,
and packet loss to find the optimal path policy. To create a final
result, first; the Control Plane collects the performance metrics,
which are later processed by the Management Plane. The
processed data is delivered to the Knowledge Plane, creating
an environment in which a DDPG agent learns and ultimately
provides the optimal route for each pair of nodes. CoRA is
a proposal with a novel objective to reach a cognitive DRL
agent that outperforms approaches related to traditional routing
and modern routing. DRSIR, a modern routing proposal that
implements KDN over DQN, was the base for our own.
Furthermore, each node delivers directly the path to follow for
the packets, avoiding using classic routing algorithms. DRSIR
overperforms all traditional approaches [35].

B. Architecture

CoRA’s architecture is built in SDN, which supports the net-
work’s automated management and control. At the same time,
following the KDN paradigm to compute network information
(i.e., link state and device state metrics) in the intelligent
DDPG agent to execute cognitive decision-making in the flow
routing. Below, we explain the solution’s sequential operation,
and Fig 1 depicts it in detail.

❶ The Control Plane periodically queries the Data Plane to
collect network information.

❷ The Management Plane receives Topology discovery and
Statistics information from the Control Plane to Process
and stores the network state.

❸ The Knowledge Plane receives information from the
Management Plane.

❹ The DDPG agent explores and exploits the possible
routes for each source-destination node pair. Eventually
gets the best routing path for all pairs of nodes in the
network.

❺ The Knowledge Plane stores in the Routes data repository
the data about the routes computed by the DDPG agent.

Fig. 1: CoRA Architecture

❻ The Control Plane installs the best routes in the flow
tables of the switches.

CoRA have the next planes with their components:
The Data Plane holds the forwarding devices and the links

that connect them. Performs basic tasks like responding to
queries with messages containing information about network
topology and state. Essentially CoRA’s Data Plane is not
running complicated errands to manage the limited network
resources like link bandwidth or buffer size in the devices.
Instead, those resources are closely monitored to secure ad-
equate performance and benefit the network operation. The
ideal performance of the Data Plane lies in developing a
sophisticated routing policy through the Knowledge Plane that
is further installed in the routing tables.

The Control Plane requests queries to gather information
from the Data Plane to construct the global view of the
network; it is also in charge of installing the routing tables.The
Control Plane comprises four modules, device statistics, link
statistics, topology discovery, and flow installation.

The topology discovery module sends the feature-request
message from OpenFlow to the Data Plane Switches. The
Devices respond with a feature-replay message containing the
individual switch identifier and port information such as port
number and state. This module sends an OpenFlow packet-out
with a payload containing a Link Layer Discovery Protocol
(LLDP) packet to all switch ports. The first switch will send
LLDP packets through the port to a neighbor switch. When the
neighbor device receives the LLDP packet, it will be sent to the
controller a of an OpenFlow packet-in. The message has the
origin switch’s id and the port number, besides the destination
switch’s id and port number, so the module can identify which
devices are neighbors and from which port communicate.

The link statistics module sends OpenFlow’s Multipart
Messages to the Data Plane devices each monitoring period
every t seconds. The Multipart Messages have messages types
to hand over specific switch information like port statistics,
flow, and flow tables. Due to the need for link statistics,
the port statistics employ port-stats messages to consult the
transmitted and received packet and byte amount in the port.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 4

During each monitoring period, the statistics collection
modules collected information on the network state and the
Management Plane and carried it to feed the agent in the
Knowledge Plane. The device statistics module uses Data
Plane petitions each monitoring period; the petition’s reply
contains the packets’ load at the switch queue. The queue at
the t moment is stored with the link statistics metrics and
the network topology to be subsequently processed in the
Management Plane. The Knowledge Plane delivers to the flow
installation module the optimal path for each node pair gen-
erated according to the current network conditions. The path
installation is proactive; the paths are installed periodically
and change depending on the network state. This module uses
the information obtained by the topology discovery module to
configure which switch port should send the incoming flow
properly.

The Management Plane comprises two components, the
data processing module and the network information data
repository.The data processing module receives raw data gath-
ered by the Control Plane through the link, device statistics
and topology discovery modules. This module processes the
raw data to calculate every path metric (e.g., delay, packet loss,
available bandwidth, and queue occupation) that gets delivered
to the Knowledge Plane to enter the algorithm. The network
information data repository stores the metrics calculated by the
previous module containing the tuple source destination node
and its respective metrics. An example of an entry is: (source
= node1, destination = node2, av_bw = 500Kbps, delay =
5.1ms, loss =0.1%, queue_occu= 10pkts). So the Management
Plane ensures the optimal performance of the network over
time.

The Knowledge Plane contains the DDPG-based routing
algorithm where the DDPG-agent and the route data repository
lie. Thanks to the Agent, the Knowledge Plane transforms
information into knowledge, gathering the global view of the
network and computing it to achieve the algorithm’s objective.
The route data repository holds path information; each entry
is a tuple of source, destination, and best path, with source
and destination being node numbers, and the best path is a
series of nodes that shape the path under consideration.

C. Cognitive Routing Agent

This subsection explains how the agent can find the best
route from all possible network paths. CoRA’s agent uses
DDPG a DRL technique that merges DQN and Deterministic
Policy Gradient (DPG), an optimal combination that, along
with experience replay and slow learning target Deep Neural
Network (DNN)s make well-developt decisions, stable and
efficient learning when developing cognitive policies 2. It is
demonstrated that DDPG robustly solves problems related to
complex action spaces [42], like the one that gathers our com-
mitment in this undergraduate work. Aspiring to take a step
forward in ML routing algorithms and improving the previous
similar proposes in this field, we choose DDPG as CoRA’s
agent technique. Interacting with the network environment, the
agent converges to an optimal policy for the best route for each
node pair. The Knowledge Plane builds the environment using

the network state information gathered by the Management
Plane. Each iteration makes the agent act on the current state
and choose the action that minimizes the reward; then, the
agent delivers the next state. The reward corresponding to the
action taken conveys the path cost, taking into account the
available bandwidth, packet loss, delay, and queue occupation.
That’s to say, the agent’s decision will be influenced by the
path with greater available bandwidth, least packet loss, delay,
and queue occupation. The following subsections explain the
fundamental features of a DDPG agent, state space, action
space, and reward process.

Fig. 2: DDPG-agent of CoRA based in [43]

1) Deep Deterministic Policy Gradient: DDPG contains
four DNN, the first two are the Q-Network or critic network
represented with Q and the deterministic policy network or
actor network represented with µ. The next two are the
target Q, represented with Q′ and the target policy network
represented with µ′. The last two networks are a mechanism
original for DDPG to stabilize the learning of the DDPG’s
agent. DDPG can be divided into experience replay, actor and
critic network updates, optimizer, target network updates and
exploration.

The experience replay in DDPG updates the neural net-
works during training to prevent the correlation in the data
used to update the neural networks. And seek independent
distribution among the dataset, so the algorithm achieves a
well-developed learning process. The experience replay over-
comes those limitations by creating a finite cache to save data
regarding each learning episode’s state, action, reward, and
next-state tuples. Next, a random sample of these stored tuples
nourishes the training; usually, the experience replay evicts
the oldest episodes of information, giving way to save the
most recent ones. Is proven that the use of experience replay
improves efficiency and stability by storing a finite number of
the most recent tuples of training [44].

The following methods use the actor and critic network
updates. We use the Bellman equation, similar to Q-learning
to update the critic DNN to obtain the optimal action value.

yi = ri + γQ′(Si+1, µ
′(Si+1|θµ

′
)|θQ

′
) (1)

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 5

In the equations 1, θQ
′

is the weight of neurons in the
target critic network, θµ

′
is the weight of neurons in target

actor network. The target actor and the target critic networks
calculate the next-state Q values. Then the target updated
values are used to minimize the mean squared loss between
the updated Q value and the original Q value:

L =
1

N

∑
(yi −Q(si, ai|θQ))2 (2)

Where N is batch size. The actor network’s policy function
aims to minimize the expected return.

J(θ) = E[−Q(s, a)|s=st ,at=µ(st)] (3)

Then we derivate the function to the parameters of the
policy. Since DDPG is an off-policy driven algorithm, the
summation mean of the gradients from the experience batch
is added as follows.

∇θµJ ≈ 1

N

∑
∇a(−Q(s, a|θQ)|s=si,a=µ(si)∇θµµ(s|θµ)|si)

(4)
Another vital part of the mechanism is the optimizer. The

optimizer is an algorithm used by different ML techniques to
reduce loss or cost functions by updating the weights of the
DNN [45]. The optimizers have a parameter called the learning
rate that determines how much the weights of the DNN are
updated, improving or worsening the agent’s performance.
There are different types of optimizers, but Adam is the most
used in Deep Learning (DL) [46].

Updating the target networks is critical for learning
stability. The parameters of the target network cannot be
the same as those used to train the main networks. That is
why we update target networks with a time delay once per
major network update. The DDPG algorithms update the target
network using the Polyak average.

θQ
′
← τθQ + (1− τ)θQ

′
(5)

θµ
′
← τθµ + (1− τ)θµ

′
(6)

Where the parameter τ called target network updater is
usually near 1 τ << 1.

To explore potentially beneficial actions, noise is introduced
to incorporate randomness. To add noise to the action, the
original DDPG paper [42] use and recommends the Ornstein-
Uhlenbeck Process. This process generates random values for
a mean and standard deviation specified, that furthermore
depends on the previously generated random value.

2) State Space: In the DRL agent, the state space corre-
sponds to all the pairs of nodes that can establish communica-
tion in the network. For example, a state si can be node x as
the source and node y as the destination. Another state sj could
be the inverse of state si, with node y as the source and node
x as the destination. Therefore, the number of possible states
is the permutation of the network’s total number of existing
nodes.

|S| = |P (N, k)| = N !

(N − k)!
(7)

Where N is the total number of nodes in the network, and
k is equal to 2, given that one source node and one destination
node.

3) Action Space: The action space is a set of valid choices
to continue the interaction and advancement inside the envi-
ronment, that is, the state space. The agent has a set of actions
At for any given state. Thus, the Action States is a list of
the possible k paths per state St. The Network Information
Repository saves the possible k paths for state St. DDPG is a
DRL technique for continuous actions; therefore, we discretize
the action generated by the agent to obtain one path out of k
paths. This approximation is valid since [28] uses the same
action space for a DDPG and DQN agent. In addition, in
[47], they discretize the action delivered by the DDPG agent
to make a decision based on their problem, obtaining good
results.

4) Reward: The reward function incentivizes the algorithm
to converge to the optimal policy in the long term. Conse-
quently, the value of the reward function represents the cost
of a potential path in the Action Space for every state. The
equation 8 defines the Reward Function inversely proportional
to the mean available bandwidth in the path bwapath and
directly proportional to the path delay dpath, path packet loss
ratio lpath, and queue device’s occupation qopath.

R = β1 ∗
1

bwapath
+β2 ∗dpath+β3 ∗ lpath+β4 ∗ qopath (8)

The values β1, β2, β3, and β4 ∈ [0,1] can be modified to
furnish weight to a specific metric into the Reward Function.

In the Reward Function, the metrics must be all normalized
using equation 9 known as the Min-Max, advised in [48] to
improve accuracy. Since the metrics in the algorithm are in
different units, so one metric is not prevalent over the others,
delivering an exact outcome.

x̂i = a+
(xi −min(X)) ∗ (b− a)

max(X)−min(X)
(9)

The Min-Max method involves scaling the values of the
metrics to an arbitrary interval; [a,b]. Where x̂i is the value
to normalized, and X is a set of values, the equation 10 is the
normalized version of 8

R̂ = β1 ∗
1

ˆbwapath
+β2 ∗ ˆdpath+β3 ∗ ˆlpath+β3 ∗ ˆqopath (10)

Link Metrics The Management Plane is in charge of
calculating both link and device state metrics. This plane
computes link throughput and loss using the number of packets
that pass through the links connected to the switch port since
it samples the number of bytes transmitted or received.

Comparing the retrieved values at two different instants
is possible to discover the instantaneous throughput. When
the controller sends to the Data Plane a port-stats message
at time t1, the number of bytes received bt1 is replied. A
second request message is sent, and the reply bt2 contains the
number of bytes received at t2, the duration of the interval
that separates times t1 and t2 is the period p.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 6

bwulink = [
(bt1 − bt2)

p
] (11)

Then to acquire the available link bandwidth, we make
the difference between the link capacity caplink and the
instantaneous throughput.

bwalink = caplink − bwulink (12)

The controller sends port-stats of the respective ports of the
switches belonging to a link. The number of bits sent btxi by
the port is observed in the response, and the number of bits
received by the other port of the neighboring switch brxj is
observed. With these data, equation 13 is applied to calculate
the instantaneous loss ratio.

llink =
btxi − brxj

btxi
(13)

Following the process described in [49], we compute the
instantaneous delay using LLDP and OpenFlow messages. A
LLDP message sent by the controller c0 does the path c0-si-
sj-c0 with (si, sj) being the link that connect the switches si
and sj . The time between the transmission and reception of the
LLDP message is captured in the message’s time stamp, that is,
dlldpcij . Then, time taken from c0 to the si’s port is estimated
as half the time that passed between the transmission time
and the reception of the OpenFlow echo-request and echo-
reply messages sent by c0 to si, that is dc0−si . Similarly, the
time elapsed between sj to c0, isdc0−sj , finally the equation
14 depicts the instantaneous delay in the link (si, sj).

dsi−sj = dlldpcij
− dc0−si − dc0−sj (14)

The Management Plane processes the link metrics to find
the path metrics needed for the overall network status. The
link metrics (e.i., bwalink, llink, dsi−sj) are processed to find
the path metrics as follows. The Management Plane obtains
the lower bandwidth available from all belonging links to the
path P to fetch P ’s available bandwidth then.

bwapath = min
i∈P

(bwalinki) (15)

The sum of the delay from all the links that reside in the
path P is equal to the total delay of the path.

dpath =
∑
i∈P

dlinki
(16)

Estimating the path loss can be seen as the failure proba-
bility in a system of series-coupled components since every
link is independent. At the same time, the links are arranged
contiguously to construct a path. Thus, the path loss responds
to the equation below.

lpath = 1−
∏
i∈P

(1− llinki
) (17)

Device Metrics. As show in figure 3, the switch ingress
queue occupation is the device metric selected to achieve the
global network state to acquire an optimal routing policy. The

Fig. 3: Switch ingress queue occupation

Data Plane has an HTTP server that employs Linux Traffic
Control (TC) tool to extract the queue occupation from the
devices. TC is a utility that enables configuring the kernel
packet scheduler likewise model packet delay, loss, bandwidth,
and switch queue with a set packet space [50]. TC requires
the Device Statistics Module in the Control Plane to send
an HTTP type GET request to the Data Plane server. The
GET request first identifies each switch network interface,
and then, the queue occupation is ready to be consulted.
TC finds the number of packets queued on each network
interface and returns the GET request response in a JavaScript
Object Notation (JSON) format to the Device Statistics Module
joining the interface’s name with the number of packets
queued. The interface’s name contains the switch and the port
number to identify which link the information came through
in the process.

To find the complete path queue occupation, the Manage-
ment Plane makes the sum between the queue of the links
integrating the path, as shown beneath;

qopath =
∑
i∈P

qolinki
(18)

D. Cognitive Routing Agent

The algorithm 1 describes the process of finding the optimal
path between a source-destination node pair sequentially while
considering the link metrics; available bandwidth, packet loss,
delay, and as a device metric, the switch queue occupation.
The algorithm inputs are; learning episode number n which
is a sequence of states, actions and rewards, that ends with
terminal state in our case the convergence to a optimal policy.
Other inputs are the possible paths list per state k, the network
path state, the discontinuity factor, the learning rate from the
optimizer, the target network update value, number of step
by episode, and the batch size, that’s to say, the number of
samples processed before the network update. The algorithm
delivers to the flow installation module the best route from
every node pair for its installation.

To start the algorithm, the Management Plane processes
the path metrics to build the environment. The environment
is created with the states, and actions with their respective
reward. In the second line, the Target DNNs begin with the
same weight as the Actor and Critic DNNs, aiming to stabilize
the learning process. Then the Replay Memory will record the
agent’s experiences.

The agent trains by interacting with the environment pre-
viously created in a set of n episodes (lines 6 and 18). In

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 7

line 6, the agent initializes the state with a node pair chosen
randomly. The agent iterates m-times each episode (lines 8 to
17). Subsequently, the agents start to take an action regarding
the actual state and take a path from the k paths using the actor
DNN. The environment acquires this action, and the equation
10 conveys the reward and next state st+1. Afterward, the
replay memory stores a tuple assembled with the current state
st, the action at taken by the actor DNN, the reward rt, and
st+1. A strategy to train the agent in an off-policy manner
is to extract a size N mini-batch of information from past
experiences (line 12).

We calculate the expected value with equation 1 (line
13) using the mini-batch of information and the critic target
DNN. This computation reduces the standard deviation in the
learning process and achieves faster, more efficient, and more
stable convergence. Then, we calculate the mean squared loss
2 to update the critic DNN (line 14).

Conveying the policy gradient (line 15) using the chain rule
with the critic DNN, we update the actor DNN. The actor DNN
computes the actions regarding the mini-batch states, then,
using the critic DNN we find the expected values generated
with the tuple from the mini-batch. To minimize the reward,
the loss function to find the policy gradient from the actor
would be the mean of the expected values. Using the soft
update, the agent state, the actor, and the critic target DNNs
are actualized (line 16).

At the end of the learning process, we use the actor weights
to find a path that generates the smaller reward from each node
pair’s k path lists (line 20). Those paths are stored and sent to
the Control Plane so the flow installation module configures
the routes in the Data Plane. Then, we verify if the learning
time was longer than the monitorization time of the network; if
that’s the case, we wait for the control plane to obtain the new
path states. Finally, we use the new path states to reconstruct
the environment.

IV. EVALUATION

This section presents in subsection A the test environment
where CoRA was evaluated and the prototype. Subsection
B shows how the traffic for the evaluation was generated.
Subsection C presents how the hyperparameters of the agent
are configured. Finally, subsection D presents the results and
analysis of CoRA versus DRSIR.

A. Test Environment and Prototype

The agent works on the 2004s GÉANT network topology
[51]. This topology comprises 23 nodes with 37 links. The
capacity of the links is: 19 links of 10Gbps, 14 links of
2.5Gbps, and 4 links with 155 Mbps. Emulating the actual
link capacity is not possible due to computational resource
limitations, mainly CPU restrictions. Therefore the capacity
of the links was scaled in a 100 ratio. The links with 10
Gbps, 2.5 Gbps, and 155 Mbps of capacity tuned into 100
Mbps, 25 Mbps, and 1.55 Mbps, respectively. Since the
links have diminished capacity, the traffic must shrink in the
same proportion. The network topology was be emulated with

Algorithm 1: CoRA algorithm
Input : Number of learning episodes: n

Number of steps by episode: m
List of "k" paths per state: kpaths
Network path-state
Discount factor: γ
Learning rate
Target network updater: τ
Batch size: N

Output : Set with the best routing path for all pairs of nodes in
the network

1 Build Environment Network with Network path-state
2 Initialize critic and actor targets NNs with weights

θQ
′ ← θQ, θµ

′ ← θµ

3 Initialize Replay Memory
4 while true do
5 for episode to n do
6 Initial state St

7 for step to m do
8 Select action at
9 Execute action on environment

10 Get reward rt and next state st+1

11 Store tuple (st, at, rt, st+1) into Replay Memory
12 Sample a random mini-batch from Replay Memory
13 Set yi = ri + γQ′(si+1, µ

′(si+1|θµ
′
)|θQ′

)
14 Update critic L = 1

N

∑
(yi −Q(si, ai|θQ))2

15 Update actor policy to minimize reward ∇θµJ ≈
1
N

∑
∇a(−Q(s, a|θQ)|s=si,a=µ(si)

∇θµµ(s|θµ)|si)
16 Update the target networks

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

17 Update state st = st+1

18 end
19 end
20 Use final θµ to retrieve the path from kpaths that corresponds

to the action with the lowest reward for each state
21 Store the set of paths for all pair of nodes in the controller to

install on data plane;

22 if timelearning < timemonitoring then
23 wait timemonitoring − timelearning
24 end
25 Retrieve new network path-state
26 Rebuild Environment network with new network path-state
27 end

Fig. 4: GÉANT topology [41]

Mininet version 2.2.2 [52], and the Switches with Open Virtual
switch 2.13.8.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 8

To model the links, we used TC tool from Linux, which
allowed us to specify the available bandwidth and the input
queue size in packet number. In commercial switches the
queue size in depends on the model, the manufacturer, and
the traffic. For our case we defined an input queue size of 100
packets since it produced a reasonable balance between delay
and loss [53].

Fig. 5: CoRA Prototype

Figure 5 portrays CoRA’s prototype where the Data Plane
that comprises the GÉANT network topology was emulated
with Mininet. Furthermore in the Control Planewe rendered the
controller, Link State Statistics, Device State Statistics, Topol-
ogy Discovery, and Flow installation modules additionally
with RYU API, and to gather device and link status data Ryu’s
tools allow the process. The Management, Knowledge Planes,
and the DDPG agent were deployed with Python 3.7, Keras
2.9.0, and TensorFlow 2.9.1 to carry out the ML workforce.
For the data processing, we used libraries specialized in data
manipulation, NumPy 1.23.1 and Pandas. Every plane was
executed on Ubuntu Desktop 20.04.5 LTS with a Intel(R)
Xeon(R) CPU E5-2670 v3 @ 2.30GHz using 8 cores and 16
GB of RAM.

B. Traffic Generation

To generate the traffic in the mininet emulation, we used an
informatic network tool, iperf2. The iperf2 scripts produced
User Datagram Protocol (UDP) traffic according to a traffic
matrix. The traffic matrix corresponds to a set of sixteen public
intra-domain traffic matrices [54] of the GÉANT Paneuropean
topology. We delimited the traffic matrix of the GÉANT
topology to accommodate the level of congestion to verify the
device metrics’ essential role in the network’s global view.
Thus, we selected the heavier traffic day of the year sample
and processed it, diminishing atypical values.

C. Learning Parameters Setup

There are different hyperparameters in the DDPG technique,
which can modify the behavior of the reward, improving or
depreciating the agent’s performance. The hyperparameters
that we are going to evaluate are:

• Number of hidden layers.
• Number of neurons per hidden layer.
• Discount factor (γ).
• Learning rate.
• Target network updater (τ).
• Batch size.
For the step number to finish an episode, DRSIR initially

implemented 30 steps. Still, 30 made our algorithm converge
more slowly, and with a couple of trials, we arrived at 45,
which we proved to be the most accurate value. In the context
of our state spaces, we need to monitor the tendency of the
reward at the end of the episode, which makes sense when
using 45 allows us to know the trend.

In figure 6a we vary the number of hidden layers in the
neural network of the actor and the critic. We observe that
modifying the number of hidden layers does not noticeably
affect the behavior of the reward. However, it significantly
affects the agent’s convergence time, which is the 50th episode.
Therefore, we will use only one hidden layer in the neural
networks in actor and critic.

In the same way that was varying the number of hidden
layers, varying the number of neurons in the hidden layers of
the networks does not significantly affect the reward behavior
of the agent, as can be seen in figure 6b. Varying the number of
neurons exclusively influences the agent’s convergence time.
The more neurons, the longer the convergence time will be.
Consequently, we took the lower number of neurons per
layer, the reason why if we increased the neuron number, the
convergence time increases, and the reward makes no better.

In Figure 6c, we vary the discontinuity factor (γ) with 0.1,
0.5 y 0.9. The behavior of the reward changes slightly by
varying this hyperparameter. However, the γ value with a
lower average reward is 0.1. The above may be due to the
DRL agent design; the agent delivers the path to each pair of
nodes, so the agent considers the immediate reward.

In figure 6d, we vary the learning rate in the optimizer. We
start to vary from the value 0.001 to 0.05 to observe the impact
on the reward. A high value of 0.05 in the learning rate causes
the agent not to be able to converge; this is because updating
the weights in the neural networks can be abrupt, causing the
agent not to find the optimal weight for convergence. On the
contrary, a low value of 0.001 in the learning rate means that
the agent needs more training episodes to converge because
the update weights of the neural networks are small. Whereby
the update weights of the neural networks are small, it would
need more steps to converge. The optimal value of the learning
rate for the agent is 0.01.

Modifying the batch size does not imply a significant change
in the behavior of the reward, except for a size of 10, as can
be seen in the figure 6e. The size of 30 generates a slightly
lower reward than the other batch sizes. Also, if this value is
increased, the convergence time increases because the batch
size is the number of times the agent has to relearn from that
previous experience to avoid learning instability.

In Figure 6f, we analyze the effect of the target network
updater (τ) on the behavior of the reward. τ value has to
be considerably smaller than 1. Hence, we vary the τ value
to 0.001, 0.005, 0.01, and 0.05. The behavior of the reward

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 9

(a) Varying number of hidden layers. (b) Varying number of neurons per layer. (c) Varying discount factor.

(d) Varying learning rate. (e) Varying batch size. (f) Varying target network updater.

Fig. 6: Learning parameters figures

related to the variation of τ value is not notorious. Either way,
with a value below 0.001, we obtain a minor reward average.

D. Results and Analysis

In this section, we compare CoRA against DRSIR, the rout-
ing algorithm that was our approach’s starting point. DRSIR
was born to address RL and conventional algorithms shortcom-
ings. DRSIR outperforms the conventional routing algorithms
like Dijisktra, and RL algorithms as example Reinforcement
Learning and Software-defined networking Intelligent Routing
(RSIR), DRSIR previous proposal. DRSIR is a DQN algorithm
that considers path-state metrics to produce proactive, efficient
routing that adapts dynamically to network changes. DRSIR
is evaluated on the GEANT topology with real and synthetic
traffic matrices. We confront the two algorithms performance-
wise, considering link metrics instantaneous throughput, av-
erage delay, loss rate, and the device metric average queue
occupancy of the switches.

Figure 7a show the average queue packet occupancy on the
Data Plane switches throughout the busiest hours of the day.
On the heaviest traffic hours, we observe an increase number
of packets dammed in the input queue of the switches due to
the increase in packet forwarding on the links. CoRA reduced
queue occupancy by 12.7% in regard to DRSIR. The decrease
in queue occupancy is due to CoRA explicitly considering
the queue occupancy of the switches in the reward function.
Therefore, DNNs train to optimize the policy selecting less
queue occupy path, that’s to say the agent takes into account
the queue occupancy. In addition, DDPG as learning technique
is sophisticated when learning a policy that finds the best paths
for each pair of nodes.

Figure 7b shows the average delay of all links during
the most congested hours of the day. As well as the queue
occupancy, in the hours with the highest traffic generated by
the nodes, the delay of the links begins to increase due to
congestion.

The CoRA algorithm obtains a delay improvement of 17%
compared to DRSIR. When choosing the path, CoRA con-
siders the number of packets waiting to be processed by
the switches. This consideration avoids the links that present
congestion in the input queue, reducing the packet queue time
and consequently making a more efficient routing to decrease
delay.

Figure 7c shows the average loss of all the links throughout
the hours of the day with the most congestion. When the traffic
increases, the congestion in the links becomes present, which
induces an occupation in the input queue of the switch; when
the number of packets exceeds the size of the queue, the next
packet arriving will be discarded.

CoRA obtains 29.44% of loss improvement compared to
DRSIR. We attribute this to CoRA’s awareness of the queue
state of the switches, preventing traffic from being sent over
links where the queues have fewer packets waiting, preventing
them from filling up to their maximum capacity and start
discarding.

Figure 7d shows the average instantaneous throughput of
all the links during the hours of the day of greatest conges-
tion. The instantaneous throughput indicates how the routing
strategy adequately distributes the traffic generated by all the
links. The more traffic, the more needed strategy to avoid
overloading the same links.

The CoRA algorithm obtains a 12.5% reduction in instanta-
neous throughput compared to DRSIR; this means that CoRA

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 10

(a) Queue occupation Analysis (b) Delay Analysis

(c) Loss Analysis (d) Instantaneous throughput Analysis

(e) Stretch Analysis

Fig. 7: Performance metrics of CoRA and DRSIR

distributes the traffic along less congestioned paths, avoiding
the overuse of links, therefore improving the performance of
the above metrics.

Figure 7e shows the average stretch produced by the agents
throughout the day. The stretch is calculated by the relationship
between the size of the path chosen by the agents against
the path with the fewest possible hops. CoRA gets slightly
longer paths (<2%) than DRSIR. This result means that
CoRA distributes the traffic in the paths regarding the metrics
considered, not the shorter path. That way, it achieves an
improvement in the previous metrics. sectionComparative
Analysis

V. CONCLUSIONS

In this paper, we have introduced CoRA , an routing mecha-
nism that implements the DRL technique, DDPG, and the link

and device state data. Futhermore, CoRA was implemented on
top of the GEANT topology by injecting it with real traffic
matrices. CoRa performance was evaluated regarding stretch,
loss, delay, instantaneous throughput, and queue occupancy.

CoRA improves the network performance compared to the
DRSIR proposal. 12.7% reduced in queue occupancy, the
delay is reduced by 17%, 29.4% improved loss, and a 12.5%
reduced on the instantaneous throughput. These performance
improvements are since the CoRA mechanism fully knows the
network state. Making routing decisions, CoRa is aware of
the link and device state, namely delay, packet loss, available
bandwidth, and input queue switch occupation. The CoRA
mechanism reduces the number of packets waiting in the
switch input, and this means a reduction in the link delay.
The decrease in packets in the switch input queue reduces the
packet loss in the link because the mechanism prevents the

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 11

number of packets from exceeding the maximum capacity of
the switch queue, altogether avoiding queue overflow meaning
packet discard. CoRA distributes traffic over less congested
links, reducing the average instantaneous throughput.

To our knowledge, the proposed mechanism is the only one
that uses a DRL agent without relying upon classical rout-
ing protocols. While monitoring the device’s status together
with the link status to nourish cognitive routing decisions to
reinforce the reward getting optimal performance.

VI. FUTURE WORK

• Research other device metrics, such as CPU and RAM
consumption, to witness the impact of those device met-
rics on the network status.

• Implement different DRL techniques.
• Implement different ML techniques for the efficient con-

figuration of the weights of the metrics in the agent’s
reward before traffic variations.

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, 2014.

[2] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in software defined networks,” Computer Networks,
vol. 71, pp. 1–30, 2014.

[3] D. Gopi, S. Cheng, and R. Huck, “Comparative analysis of SDN and
conventional networks using routing protocols,” IEEE CITS 2017 - 2017
International Conference on Computer, Information and Telecommuni-
cation Systems, pp. 108–112, 2017.

[4] D. Awduche, J. Malcolm, J. Agogbua, M. D. O’Dell, and J. McManus,
“Requirements for traffic engineering over mpls,” RFC, vol. 2702, pp.
1–29, 1999.

[5] Y. Li, X. Li, and O. Yoshie, “Traffic engineering framework with
machine learning based meta-layer in software-defined networks,” Pro-
ceedings of 2014 4th IEEE International Conference on Network In-
frastructure and Digital Content, IEEE IC-NIDC 2014, pp. 121–125,
2014.

[6] H. Zhang and J. Yan, “Performance of SDN Routing in Comparison
with Legacy Routing Protocols,” Proceedings - 2015 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery, CyberC 2015, pp. 491–494, 2015.

[7] A. Rego, S. Sendra, J. M. Jimenez, and J. Lloret, “Ospf routing protocol
performance in software defined networks,” in 2017 Fourth International
Conference on Software Defined Systems (SDS). IEEE, 2017, pp. 131–
136.

[8] A. A. Khan, M. Hussain, M. Zafrullah, and M. S. Zia, “A convergence
time optimization paradigm for ospf based networks through sdn spf
protocol computer communications and networks (ccn)/delay tolerant
networks,” in Proceedings of the International Conference on Future
Networks and Distributed Systems, 2017.

[9] S. Abdallah, A. Kayssi, I. H. Elhajj, and A. Chehab, “Network con-
vergence in sdn versus ospf networks,” in 2018 Fifth International
Conference on Software Defined Systems (SDS). IEEE, 2018.

[10] R. Adrian, A. Dahlan, and K. Anam, “OSPF cost impact
analysis on SDN network,” in 2017 2nd International conferences
on Information Technology, Information Systems and Electrical
Engineering (ICITISEE). IEEE, Nov. 2017. [Online]. Available:
https://doi.org/10.1109/icitisee.2017.8285494

[11] E. Amiri, M. Reza Hashemi, and K. Raeisi Lejjy, “Policy-Based Routing
in RIP-Hybrid Network with SDN Controller,” no. September, pp. 1–8,
2018.

[12] “BTSDN: BGP-Based Transition for the Existing Networks to SDN,”
Wireless Personal Communications, vol. 86, no. 4, pp. 1829–1843, 2016.

[13] L. M. Elguea and F. Martinez-Rios, “A new method to
optimize BGP routes using SDN and reducing latency,” Procedia
Computer Science, vol. 135, pp. 163–169, 2018. [Online]. Available:
https://doi.org/10.1016/j.procs.2018.08.162

[14] V. Kotronis, A. Gämperli, and X. Dimitropoulos, “Routing centralization
across domains via SDN: A model and emulation framework for BGP
evolution,” Computer Networks, vol. 92, pp. 227–239, Dec. 2015.
[Online]. Available: https://doi.org/10.1016/j.comnet.2015.07.015

[15] W. Duan, L. Xiao, D. Li, Y. Zhou, R. Liu, L. Ruan, Y. Xia, and M. Zhu,
“Ofbgp: A scalable, highly available bgp architecture for sdn,” in 2014
IEEE 11th International Conference on Mobile Ad Hoc and Sensor
Systems, 2014, pp. 557–562.

[16] G. Xu, Y. Mu, and J. Liu, “Inclusion of Artificial Intelligence in
Communication Networks and Services,” ITU Journal: ICT Discoveries,
Special Issue, no. 1, pp. 1–6, 2017.

[17] T. Hendriks, M. Camelo, and S. Latré, “Q 2 -routing : A qos-aware q-
routing algorithm for wireless ad hoc networks,” 10 2018, pp. 108–115.

[18] S.-C. Lin, I. F. Akyildiz, P. Wang, and M. Luo, “Qos-aware adaptive
routing in multi-layer hierarchical software defined networks: A rein-
forcement learning approach,” 2016.

[19] C. Wang, L. Zhang, Z. Li, and C. Jiang, “SDCoR: Software Defined
Cognitive Routing for Internet of Vehicles,” IEEE Internet of Things
Journal, vol. 5, no. 5, pp. 3513–3520, 2018.

[20] T. Mahboob, Y. R. Jung, and M. Y. Chung, “Optimized Routing in
Software Defined Networks - A Reinforcement Learning Approach,”
in Proceedings of the 13th International Conference on Ubiquitous
Information Management and Communication (IMCOM) 2019, S. Lee,
R. Ismail, and H. Choo, Eds. Cham: Springer International Publishing,
2019, pp. 267–278.

[21] S. Kim, J. Son, A. Talukder, and C. S. Hong, “Congestion prevention
mechanism based on q-leaning for efficient routing in sdn,” in 2016
International Conference on Information Networking (ICOIN), 2016, pp.
124–128.

[22] Y.-H. Lu and F.-Y. Leu, “Dynamic routing and bandwidth provision
based on reinforcement learning in SDN networks,” in Advanced Infor-
mation Networking and Applications. Springer International Publishing,
2020, pp. 1–11.

[23] M. B. Hossain and J. Wei, “Reinforcement learning-driven
QoS-aware intelligent routing for software-defined networks,” in
2019 IEEE Global Conference on Signal and Information
Processing (GlobalSIP). IEEE, Nov. 2019. [Online]. Available:
https://doi.org/10.1109/globalsip45357.2019.8969320

[24] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. C.
Liang, and D. I. Kim, “Applications of Deep Reinforcement Learning
in Communications and Networking: A Survey,” IEEE Communications
Surveys and Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[25] E. H. Bouzidi, A. Outtagarts, and R. Langar, “Deep reinforcement
learning application for network latency management in software
defined networks,” in 2019 IEEE Global Communications
Conference (GLOBECOM). IEEE, Dec. 2019. [Online]. Available:
https://doi.org/10.1109/globecom38437.2019.9013221

[26] Y.-R. Chen, A. Rezapour, W.-G. Tzeng, and S.-C. Tsai, “RL-routing:
An SDN routing algorithm based on deep reinforcement learning,”
IEEE Transactions on Network Science and Engineering, pp. 1–1,
2020. [Online]. Available: https://doi.org/10.1109/tnse.2020.3017751

[27] Q. Fu, E. Sun, K. Meng, M. Li, and Y. Zhang, “Deep q-learning
for routing schemes in SDN-based data center networks,” IEEE
Access, vol. 8, pp. 103 491–103 499, 2020. [Online]. Available:
https://doi.org/10.1109/access.2020.2995511

[28] W. xi Liu, “Intelligent routing based on deep reinforcement learning in
software-defined data-center networks,” in 2019 IEEE Symposium on
Computers and Communications (ISCC). IEEE, Jun. 2019. [Online].
Available: https://doi.org/10.1109/iscc47284.2019.8969579

[29] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero,
and A. Cabellos, “A deep-reinforcement learning approach for
software-defined networking routing optimization,” arXiv preprint
arXiv:1709.07080, 2017.

[30] J. Chen, Z. Xiao, H. Xing, P. Dai, S. Luo, and M. A. Iqbal, “Stdpg: A
spatio-temporal deterministic policy gradient agent for dynamic routing
in sdn,” 2020.

[31] C. Yu, J. Lan, Z. Guo, and Y. Hu, “DROM: Optimizing the routing
in software-defined networks with deep reinforcement learning,”
IEEE Access, vol. 6, pp. 64 533–64 539, 2018. [Online]. Available:
https://doi.org/10.1109/access.2018.2877686

[32] P. Sun, Y. Hu, J. Lan, L. Tian, and M. Chen, “TIDE: Time-relevant deep
reinforcement learning for routing optimization,” Future Generation
Computer Systems, vol. 99, pp. 401–409, Oct. 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2019.04.014

[33] Q. T. A. Pham, Y. Hadjadj-Aoul, and A. Outtagarts, “Deep
Reinforcement Learning based QoS-aware Routing in Knowledge-
defined networking,” in Qshine 2018 - 14th EAI International

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 00, APRIL 2021 12

Conference on Heterogeneous Networking for Quality, Reliability,
Security and Robustness, Ho Chi Minh City, Vietnam, Dec. 2018, pp.
1–13. [Online]. Available: https://hal.inria.fr/hal-01933970

[34] Y. Hu, Z. Li, J. Lan, J. Wu, and L. Yao, “EARS:
Intelligence-driven experiential network architecture for automatic
routing in software-defined networking,” China Communications,
vol. 17, no. 2, pp. 149–162, Feb. 2020. [Online]. Available:
https://doi.org/10.23919/jcc.2020.02.013

[35] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. S. da Fonseca, “Drsir:
A deep reinforcement learning approach for routing in software-defined
networking,” IEEE Transactions on Network and Service Management,
vol. 19, no. 4, pp. 4807–4820, 2022.

[36] L. Zhang, Y. Lu, D. Zhang, H. Cheng, P. Dong et al., “Dsoqr: Deep
reinforcement learning for online qos routing in sdn-based networks,”
Security and Communication Networks, vol. 2022, 2022.

[37] C. Zhao, M. Ye, X. Xue, J. Lv, Q. Jiang, and Y. Wang, “Drl-m4mr: An
intelligent multicast routing approach based on dqn deep reinforcement
learning in sdn,” Physical Communication, vol. 55, p. 101919, 2022.

[38] S. Tomovic, N. Prasad, and I. Radusinovic, “Sdn control framework
for qos provisioning,” in 2014 22nd Telecommunications Forum Telfor
(TELFOR). IEEE, 2014.

[39] J. Park, J. Hwang, and K. Yeom, “NSAF: An Approach for Ensuring
Application-Aware Routing Based on Network QoS of Applications in
SDN,” Mobile Information Systems, vol. 2019, 2019.

[40] J.-R. Jiang, H.-W. Huang, J.-H. Liao, and S.-Y. Chen,
“Extending dijkstra's shortest path algorithm for software defined
networking,” in The 16th Asia-Pacific Network Operations and
Management Symposium. IEEE, Sep. 2014. [Online]. Available:
https://doi.org/10.1109/apnoms.2014.6996609

[41] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. da Fonseca,
“Intelligent routing based on reinforcement learning for software-defined
networking,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 870–881, 2020.

[42] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
CoRR, 09 2015.

[43] G. Kim, Y. Kim, and H. Lim, “Deep reinforcement learning-based rout-
ing on software-defined networks,” IEEE Access, vol. 10, pp. 18 121–
18 133, 2022.

[44] W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle,
M. Rowland, and W. Dabney, “Revisiting fundamentals of experience
replay,” in International Conference on Machine Learning. PMLR,
2020, pp. 3061–3071.

[45] H. M. El Misilmani, T. Naous, and S. K. Al Khatib, “A review on the
design and optimization of antennas using machine learning algorithms
and techniques,” International Journal of RF and Microwave Computer-
Aided Engineering, vol. 30, no. 10, p. e22356, 2020.

[46] E. Okewu, P. Adewole, and O. Sennaike, “Experimental comparison
of stochastic optimizers in deep learning,” in Computational Science
and Its Applications–ICCSA 2019: 19th International Conference, Saint
Petersburg, Russia, July 1–4, 2019, Proceedings, Part V 19. Springer,
2019, pp. 704–715.

[47] R. Zhong, Y. Liu, X. Mu, Y. Chen, X. Wang, and L. Hanzo, “Hybrid
reinforcement learning for star-riss: A coupled phase-shift model based
beamformer,” IEEE Journal on Selected Areas in Communications,
vol. 40, no. 9, pp. 2556–2569, 2022.

[48] L. Al Shalabi and Z. Shaaban, “Normalization as a preprocessing
engine for data mining and the approach of preference matrix,” in 2006
International conference on dependability of computer systems. IEEE,
2006, pp. 207–214.

[49] L. Liao and V. C. M. Leung, “Lldp based link latency monitoring in
software defined networks,” in 2016 12th International Conference on
Network and Service Management (CNSM), 2016.

[50] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing & traffic
control,” in Ottawa Linux Symposium, vol. 213. sn, 2002.

[51] P. T. Kirstein, “European international academic networking: A 20 year
perspective.” in TERENA Networking Conference, 2004.

[52] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International conference on communi-
cation, computing & systems (ICCCS), 2014, pp. 139–42.

[53] Y. Lu and S. Zhu, “Sdn-based tcp congestion control in data center
networks,” in 2015 IEEE 34th international performance computing and
communications conference (IPCCC). IEEE, 2015, pp. 1–7.

[54] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public
intradomain traffic matrices to the research community,” SIGCOMM

Comput. Commun. Rev., vol. 36, no. 1, p. 83–86, jan 2006. [Online].
Available: https://doi.org/10.1145/1111322.1111341

	List of figures
	List of tables
	List of acronyms
	Introduction
	Objetives
	General Objetive
	Specific Objectives

	Contributions and Scientific Production
	Document Organization

	Background
	Routing
	Software-Defined Networking
	Machine Learning
	Knowledge-Defined Networking

	Related Work
	Classical Routing
	Reinforcement Learning-based Routing
	Deep Reinforcement Learning-based Routing
	Gaps

	Cognitive Flow Routing Algorithm for Programmable Control Plane
	Overview
	Architecture
	Data Plane
	Control Plane
	Management Plane
	Knowledge Plane

	Cognitive Routing Agent
	Deep Deterministic Policy Gradient
	State Space
	Action Space
	Reward

	Cognitive Routing Algorithm

	Evaluation and Analysis
	Test Environment
	Prototype
	Performance Metrics
	Traffic Generation
	Hyperparameters Setup
	Results And Analysis

	Conclusions and Future Work
	Conclusions
	Future work

	References
	Annexes
	Algorithm
	Publicaciones

