
Intelligent Probing for SDN Monitoring

Edwin Ferney Castillo Quintero

Dissertation of Master in Telematics Engineering

Advisor:
Ph.D. Oscar Mauricio Caicedo Rendon

Universidad del Cauca
Faculty of Electronic and Telecommunications Engineering

Department of Telematics
Line of Research in Advanced Services of Telecommunications

Popayán, May 2020

Edwin Ferney Castillo Quintero

Intelligent Probing for SDN Monitoring

A dissertation submitted to the Faculty of Electronic and Telecommunications Engineering
of the Universidad del Cauca for the Degree of:

Master in Telematics Engineering

Advisor:
Oscar Mauricio Caicedo Rendon

Ph.D. in Computer Science

Popayán, May 2020

I’ve been a fortunate man in life, nothing has
come easy.

Sigmund Freud

Acknowledgment

Acknowledgments are written in Spanish because of my family. Ha sido un largo camino
hasta llegar a este punto. Quiero aprovechar estas líneas para agradecer a todas las personas
que me han acompañado, en los buenos y en los malos momentos, a lo largo de mi etapa
universitaria y cuyo desenlace tiene lugar con este trabajo de Maestría

A mis padres, Graciela Quintero y Álvaro Castillo por su apoyo incondicional, por sus con-
sejos, por su cariño, por sus valores y por ser todos ellos grandes ejemplos de perseverancia
y animarme a seguir hacia delante en cada etapa de mi vida; su dedicación y sacrificio han
sido la base para mi progreso.

A mis hermanos, no solo por estar presentes aportando buenas cosas a mi vida, sino por los
grandes momentos de felicidad y de diversas emociones que siempre me han causado. A mi
hermano Albert por ser mi inspiración y motivante para mejorar día a día.

A mí querida esposa Esledin por su apoyo incondicional, por sus consejos, por su amor, por
siempre estar ahí; sin ti lograrlo hubiese sido más difícil. A mis dos grandes tesoros José
y Tefy, el mejor regalo que haya podido recibir de parte de Dios; gracias a ellos por ser la
felicidad de mi vida.

A mis amigos, a los de toda la vida y a todos aquellos que he tenido el placer de conocer
durante la carrera y la Maestría. Porque sin ustedes estos años no tendrían el significado
que han tenido para mí. Gracias por todo el apoyo y por los buenos momentos que hemos
compartido y que seguiremos compartiendo.

Y, por supuesto, a mi tutor PhD Oscar Mauricio Caicedo Rendón. Porque sin él no habría
sido posible la realización de este trabajo. Me gustaría destacar su apoyo, porque siempre
han estado ahí cuando lo he necesitado. Además siempre me ha proporcionado invaluables
consejos y se ha preocupado por que se hicieran las cosas de la mejor forma posible. Indud-
ablemente por su influencia hoy soy mejor persona, mejor padre y mejor investigador.

Abstract
Traffic Monitoring assists in achieving the stability of networks by observing and quanti-
fying their behavior. A proper traffic monitoring solution requires the accurate and timely
collection of flow statistics. Many approaches have been proposed to monitor Software-
Defined Networks. However, these approaches have diverse shortcomings. First, they are
unconcerned about the trade-off between the probing interval and the Monitoring Accuracy
(MA). Second, they lack intelligent mechanisms intended to optimize this trade-off by learn-
ing from network behavior. This master dissertation introduces an approach, called IPro, to
address these shortcomings. IPro is formed by an architecture that follows the Knowledge-
Defined Networking paradigm, an algorithm based on Reinforcement Learning, and an IPro
prototype. In particular, IPro uses Reinforcement Learning to determine the probing inter-
val that keeps within thresholds (target values) the Control Channel Overhead (CCO) and
the Extra CPU Usage of the Controller (CUC). An extensive quantitative evaluation corrob-
orates that IPro is an efficient approach for SDN Monitoring regarding CCO, CCU, and MA.

Keywords: Knowledge-Defined Networking, Machine Learning, Probing Interval, Software-
Defined Networking, Traffic Monitoring

Resumen
La monitorización de tráfico ayuda a lograr la estabilidad de las redes al observar y cuantificar
su comportamiento. Una solución de monitorización de tráfico adecuada requiere la recopi-
lación precisa y oportuna de estadísticas de flujo. Diversos investigadores han propuesto
multiples enfoques para monitorear Redes Definidas por Software (Software-Defined Net-
works - SDN). Sin embargo, estos enfoques tienen algunas deficiencias. En primer lugar, no
les preocupa el balance entre el intervalo de sondeo y la precisión de monitoreo (Monitoring
Accuracy - MA). En segundo lugar, carecen de mecanismos inteligentes destinados a opti-
mizar este balance al aprender del comportamiento de la red. Esta disertación de maestría
introduce un enfoque, llamado IPro, para abordar estas deficiencias. IPro está formado
por una arquitectura que sigue el paradigma de las Redes Definidas por el Conocimiento
(Knowledge-Defined Networking - KDN), un algoritmo basado en el Aprendizaje por Re-
fuerzo (Reinforcement Learning - RL) y un prototipo de IPro. En particular, IPro utiliza
RL para determinar el intervalo de sondeo que mantiene dentro de umbrales (valores obje-
tivo) la sobrecarga del canal de control (Control Channel Overhead - CCO) y el uso adicional
de la CPU del controlador (CPU Usage of the Controller - CUC). Una extensa evaluación
cuantitativa corrobora que IPro es un enfoque eficiente para el monitoreo de SDN con re-
specto a CCO, CCU y MA.

Content

List of abbreviations and Acronyms xv

List of Figures xvii

List of Tables xviii

1. Introduction 1
1.1. Objectives . 2

1.1.1. General Objective . 2
1.1.2. Specific Objectives . 2

1.2. Research Contributions . 2
1.3. Methodology and Organization . 3

2. Background 5
2.1. Software-Defined Networking . 5
2.2. Traffic Engineering . 7
2.3. Network Monitoring . 8

2.3.1. Monitoring Operations . 8
2.3.2. Network Monitoring Techniques . 9

2.4. Machine Learning . 11
2.5. Final Remarks . 13

3. State-of-Art 15
3.1. SDN Monitoring . 15
3.2. Research Gaps . 18
3.3. Final Remarks . 19

4. IPro 21
4.1. Motivating Scenario . 21
4.2. Fundamentals . 22

4.2.1. Knowledge-Defined Networking . 22
4.2.2. Reinforcement Learning . 23

4.3. Overview . 26

xii Content

4.4. Architectural Layers and Elements . 27
4.4.1. Knowledge Plane . 27
4.4.2. Control Plane . 29
4.4.3. Management Plane . 30
4.4.4. Data Plane . 30

4.5. Probing Algorithm . 31
4.5.1. Assumptions . 31

4.5.1.1. Reward . 31
4.5.1.2. Space of Actions . 32
4.5.1.3. Space of States . 32
4.5.1.4. Statistics Collection . 32
4.5.1.5. Control Channel Overhead 33
4.5.1.6. CPU Usage of the Controller 34
4.5.1.7. Monitoring Accuracy . 34

4.5.2. Functioning . 34
4.5.3. Computational Complexity . 36
4.5.4. IPro Interactions . 36

4.5.4.1. Statistics Collection Process 36
4.5.4.2. Probing Interval Optimization Process 38

4.6. Final Remarks . 39

5. Evaluation 41
5.1. Setup . 41

5.1.1. Test Environment . 41
5.1.2. Prototype . 42
5.1.3. Space of States . 44

5.1.3.1. Control Channel Overhead 44
5.1.3.2. CPU Usage of the Controller 45
5.1.3.3. Monitoring Accuracy . 45
5.1.3.4. Spaces Discretization . 46

5.2. Intelligent Probing Behavior . 47
5.3. Comparison . 50

5.3.1. After Converging . 50
5.3.2. Before Converging . 51
5.3.3. Qualitative Analysis . 51

5.4. Final Remarks . 53

6. Conclusions 55
6.1. Answering the Research Question . 56
6.2. Contributions . 56

Content xiii

6.3. Future work . 57

Bibliography 58

Appendices 69

A. Appendix A - Scientific Production 69
A.1. Papers: accepted and on reviewing . 69

A.1.1. Accepted . 69
A.1.2. On Revision . 69

B. Appendix B - Scripts Developed 70
B.1. Intelligent Probing Repository . 70

List of Abbreviations and Acronyms

Abbreviations

Abbreviation Term

AP Application Plane
AHC Adaptive Heuristic Critic
COC Control Channel Overhead
CP Control Plane
CUC CPU Usage of the Controller
DP Data Plane
EWBI East/Westbound Interface
FM Flow Management
FT Fault Tolerance
IETF Internet Engineering Task Force
InP Infrastructure Provider
IPro Intelligent Probing
ISP Internet Services Provider
KP Knowledge Plane
KPI Key Performance Indicator
MA Monitoring Accuracy
KDN Knowledge-Defined Networking
MDP Markov Decision Process
MI Management Interface
ML Machine Learning
MP Management Plane
NBI NorthBound Interface
NFV Network Functions Virtualization
NM Network Management
PFC Per-Flow Collection
PSC Per-Switch Collection
PPA Periodic Probing Approach
RL Reinforcement Learning

xvi Content

QoS Quality of Service
SBI SouthBound Interface
SDN Software-Defined Networking
SNMP Simple Network Management Protocol
SL Supervised Learning
SLA Service Level Agreement
TAC Traffic Analysis/Characterization
TE Traffic Engineering
TU Topology Update
UL Unsupervised Learning

Symbols

Symbol Term

ω Policy 1
χ Policy 2

List of Figures

1-1. Thesis phases . 3

2-1. High-level SDN architecture . 5
2-2. Classification of network monitoring operations (adapted from [1]) 8
2-3. Push-based monitoring . 9
2-4. Pull-based monitoring . 10
2-5. RL Process . 13

4-1. High-level KDN architecture (adapted from [2]) 23
4-2. IPro - High-Level Operation . 26
4-3. IPro Architecture . 27
4-4. The RL-agent General Model . 28
4-5. Sequence diagram of statistics collection process 37
4-6. Sequence diagram of probing interval optimization process 38

5-1. Test Environment . 42
5-2. IPro - Prototype . 43
5-3. CCO Variation . 44
5-4. CUC Variation . 45
5-5. MA of throughput . 46
5-6. TCP errors generated by Monitoring Interference 47
5-7. Behavior of the CCO, CUC, MA, and Probing Interval 48
5-8. Behavior of the CPU usage and memory of RL-agent 49

List of Tables

3-1. Traffic Monitoring in SDN – H → High and L → Low 18

5-1. Comparison after converging . 50
5-2. Comparison before converging . 51
5-3. Comparison between IPro and other adaptive methods – H → High and L →

Low . 52

1. Introduction

Software-Defined Networking (SDN) is a paradigm that promotes a flexible architecture for
fast and easy configuration of network devices [3]. SDN is characterized by the network
programmability, and the centralization of the control functions in the controller. Thanks
to these features, the controller can perform fine-grained Network Management (NM) [4].
Nonetheless, such features are not enough to guarantee an appropriate network behavior
when traffic reach unexpected levels [5, 6]. In this sense, Traffic Engineering (TE) is an
important tool to assist the SDN operation [7]. TE encompasses measuring and managing
the network traffic, aiming at improving the utilization of network resources and enhancing
the Quality of Service (QoS). TE requires an efficient Traffic Monitoring that allows the
accurate and timely collection of flow statistics [8].

SDN-enabled switches can measure different per-flow traffic statistics, such as byte and
packet counters, duration per second, hard timeout, and lifetime. There are two ways in
which the SDN controller can retrieve traffic statistics from the underlying switches: push-
based and pull-based. In the push-based approach [9, 10], the controller passively receives
reports from switches. This approach has some drawbacks. First, this method requires ad-
ditional hardware and software components in the switches. Second, when the traffic varies
dynamically, the switches frequently detect no-matching packets in the flow table and, as a
result, massive statistical reports are sent to the controller. These massive reports can cause
significant Control Channel Overhead (CCO) [11] and an Extra CPU Usage of the Controller
(CUC) [12]. Third, the additional hardware and software elements can raise security issues
[13]. In the pull-based approach, the controller retrieves flow statistics from the switches
using Read-State messages. This approach provides more flexibility that the push-based
approach, since it can asynchronously communicate with the switches and request specific
information, thus controlling the size of the statistical reports. Besides, this approach does
not require changes in the software and hardware of switches. For these reasons, this master
dissertation focus on the pull-based approach.

CCO can also appear in the pull-based approach due to the probing interval. This overhead
can lead to overload the controller (i.e., CUC) and significantly interfere with essential SDN
functions, such as packet forwarding and route updating. Several research approaches have
been conducted to deal with CCO and CUC [14, 15, 16, 17, 18, 19, 20, 21, 12, 22, 23, 24, 25,

2 1 Introduction

26]. In particular, [14, 15, 16, 17, 18] reduce CCO by using adaptive techniques, wildcards,
threshold-based methods, and routing information at expenses of decreasing the Monitoring
Accuracy (MA). Other approaches diminish CCO by adding modules or modifying flow tables
in the switches [19, 12, 20, 21] and by adding distributed controllers [22, 23, 24, 25, 26].
Thus, these works reduce CCO but they increase the operational costs. Furthermore, it
is noteworthy that, in pull-based solutions the trade-off between probing interval and MA
has not been studied enough. Besides, few intelligent mechanisms have been proposed for
optimizing such a trade-off by learning from network behavior. Therefore, the goal of this
master dissertation is to investigate a practical approach (i.e., in terms of CCO, CUC, and
MA) for intelligent probing in SDN. To achieve this goal, this dissertation raises the following
research question.

How to intelligently probing SDN with a high accuracy and with a negligible
network overhead?

Hypothesis: The Machine Learning allows intelligent probing on SDN, improving the ac-
curacy traffic monitoring and reducing the corresponding overhead.

1.1. Objectives

1.1.1. General Objective

To introduce a mechanism for intelligent probing in SDN by Machine Learning techniques.

1.1.2. Specific Objectives

• To design a mechanism based on Machine Learning for intelligent probing in SDN.

• To implement a prototype of the proposed mechanism.

• To evaluate the mechanism through of a prototype in an SDN emulated scenario ac-
cording to its network monitoring accuracy and network overhead.

1.2. Research Contributions

The investigation about a practical approach for intelligent probing in SDN led to the fol-
lowing major contributions.

• A KDN-based architecture that provides an efficient solution for tuning the probing
interval in SDN. This tuning keeps CCO and CUC within predefined thresholds and
provides an acceptable MA.

1.3 Methodology and Organization 3

• A RL-based algorithm that determines the probing interval considering network traffic
variations, CCO, and CUC.

• An IPro prototype that implements the proposed architecture.

The above-mentioned contributions were reported to the scientific community through paper
submissions to renowned journals (see Appendix A).

• A paper published in the journal Computer Networks. Colciencias index: A1.

• A paper submitted to the journal IEEE Latin America Transactions. Colciencias index:
A2.

1.3. Methodology and Organization

Figure 1-1 depicts the phases of the scientific research process followed in this master dis-
sertation: Problem Statement, Hypothesis Construction, Experimentation, Conclusion, and
Publication. In Problem Statement, the research question has been identified and defined.
In Hypothesis Construction, the hypothesis and associated fundamental question have been
formulated. Furthermore, in such a phase, the conceptual and technological proposals have
been defined and carried out. In Experimentation, the hypothesis and evaluation results
have been tested and analyzed, respectively. In Conclusion, conclusions and future works
have been outlined. Note that Hypothesis Construction has been refed after Experimen-
tation and Conclusion. In Publish Findings, papers for renowned conferences and journals
have been submitted and published. This document was also written during such last phase.

Figure 1-1.: Thesis phases

The organization of this document reflects the phases outlined above.

• This introductory chapter presents the problem definition, raises the hypothesis,
summarizes the contributions, and describes the overall structure of this master dis-
sertation.

• Chapter 2 reviews research about SDN, TE, Network Monitoring, ML, and KDN.

4 1 Introduction

• Chapter 3 presents the related works about SDN monitoring.

• Chapter 4 presents a motivating scenario for the proposed approach. Also, this
chapter introduces IPro, its architectural elements, and algorithmic representation.

• Chapter 5 describes the experiments conducted to test the hypothesis, discusses the
corresponding results, and presents implementation highlights.

• Chapter 6 presents conclusions about the hypothesis and the fundamental questions,
as well as opportunities for future works.

• Appendix includes the list of papers in which the major results obtained during the
development of this master dissertation have been published or submitted.

2. Background

The goal of this chapter is to present the background of the leading research topics touched
in this master dissertation. In this way, this chapter starts showing the SDN concept and
its architecture. After, this chapter reviews the TE concept and its use in SDN domains,
including the basics of network monitoring. This chapter finishes discussing the ML concept.

2.1. Software-Defined Networking

Figure 2-1.: High-level SDN architecture

SDN represents one of the most well-known and attractive trends in academic and industry

6 2 Background

for defining the architecture of future networks [6, 27]. SDN has some distinguishing fea-
tures that define how it is different from traditional networking architecture. These features
include [28, 29]: (i) clear separation of the control and forward function, (ii) centralization
of the control function, (iii) implementation of the control function in software, (iv) open
standards, and (v) Flow-based. These features make the SDN architecture more flexible,
scalable, efficient and adaptable to the changing needs of the business [5]. Furthermore,
they make SDN a propitious scenario for efficiently and intelligently implementing monitor-
ing techniques, particularly for TE.

Overall, SDN introduces an architecture with four planes [30]: management, application,
control, and data (cf. Figure 2-1). All these planes communicate with each other through
interfaces. In particular, the Management Plane (MP) uses a set of Management Interfaces
(MI) to exchange information and to control the other planes. The Application Plane (AP)
communicates its network requirements to the Control Plane (CP) by NorthBound Inter-
faces (NBI). The CP defines East/Westbound Interfaces (EWBI) that enable to deploy a
distributed controller for coping with large-scale and wide-area networks. The Data Plane
(DP) communicates with CP by SouthBound Interfaces (SBI). Ideally, all these interfaces
should be standardized to allow easy replacement of devices and technologies. In practice,
the OpenFlow protocol is the current de-facto standard for the SBI because of its widespread
use by vendors and research. All other interfaces are undergoing discussion and development.

• Management Plane contains one or more solutions responsible for managing and
coordinating each plane individually (e.g., network monitoring, performance manage-
ment, configuring/planning resources, and enforcing both policies and contracts).

• Application Plane contains one or more applications that can serve different purposes
(e.g., firewall, load balancer, access control, routing policies, and monitoring). Each
application has access to a set of resources of one or more controllers through NBIs.

• Control Plane translates the requirements from AP at a specific network policy
and enforces it over network elements through SBI. This plane contains one or more
controllers (e.g., Floodlight, NOX, POX, and Ryu) that handle and coordinate the
network devices.

• Data Plane contains a set of programmable network devices responsible for storing,
forwarding and processing data packets. This plane depends on CP and MP to populate
the forwarding tables and update their configuration.

2.2 Traffic Engineering 7

2.2. Traffic Engineering

TE is emerging as an essential tool for selecting the optimal paths that different flows should
follow to optimize resource utilization and satisfy the QoS requirements of each flow [7, 31].
According to the Internet Engineering Task Force (IETF), TE aims to evaluate and optimize
network performance, QoS, and user experience of operational IP networks [27, 32, 33]. TE,
in SDN, focuses on [7]:

• Flow Management (FM) controls network resources appropriately when traffic con-
gestion occurs in network nodes. FM maps and controls the traffic flow to steer traffic
most efficiently. For example, when a switch receives flows that do not match any rule
in the flows table; it forwards these flows to the controller. The controller analyzes this
flow and decides to install it a new forwarding rule in the switches or to remove it. If
the traffic consists of a high number of new flows or not match flows, it can generate a
significant network overhead and latency at both CP and DP. FM looks for avoiding
network overhead and providing a trade-off between load-balancing and latency.

• Fault Tolerance (FT) seeks to ensure the immediate, transparent and graceful recov-
ery of the network when a failure occurs in any of its nodes. FT provides mechanisms
that enhance network integrity and adopts policies emphasising network survivable.
For example, to increase the networking resiliency of SDN, FT could introduce a mech-
anism for link or node failures. This mechanism could specify alternative ports and
paths that enable the switch to change the forwarding path in the policy-based routing
without requiring a round trip to the controller.

• Topology Update (TU) manages the capacity of the network to carry out planned
changes (i.e., it aims to update the policies of the network in real time and ensure
their application in each flow). For example, since the centralized controllers manage
all switches, these can dynamically configure the global network policy rules. TU
should guarantee consistency of the network policies across the switches so that each
packet or flow should be handled by either the old policy or the new policy, but not
by the two.

• Traffic Analysis/Characterization (TAC) deals with the monitoring and verifi-
cation of compliance with network performance goals to evaluate and debug the ef-
fectiveness of the applied TE methods. TAC focuses on mechanisms for monitoring
the network, debugging errors, fault detection, data collection, and so on. In partic-
ular, TAC is the essential prerequisite for traffic analysis, and it is closely related to
discovery the network failures and the prediction of link congestion.

An essential requirement for achieving TE is to provide accurate and reliable network mon-
itoring (e.g., to perform TE [34], it is necessary to correctly detect large flow aggregates in

8 2 Background

minutes and pick better routes for these flows). Many network management tasks such as
traffic accounting, load balancing, and performance diagnosis all rely on accurate and timely
monitoring of a large variety of traffic at different time-scales [3, 23, 34, 35].

2.3. Network Monitoring

2.3.1. Monitoring Operations

Network Monitoring collects measurements of Key Performance Indicators (KPI) and events
(e.g., bandwidth utilization and link status) to process them into more meaningful met-
rics, called Aggregate Metrics (e.g., average delay and network availability) [36]. Generally,
network monitoring can be roughly classified into five phases: Collection, Preprocessing,
Transmission, Analysis, and Presentation of the data [1]. Figure 2-2, depicts the classifica-
tion of operation phases in network monitoring.

Figure 2-2.: Classification of network monitoring operations (adapted from [1])

• Collection: This phase raises three primary considerations namely, means, target, and
probing interval. The means refers to how the data are to be collected. The target
relates to the devices to be observed, and the probing interval indicates how often the
data should be collected from switches.

• Preprocessing: This phase is responsible for aggregating and turning the collected
data into some statistical format. Furthermore, it helps to itemize and track the
measurement results.

• Transmission: This phase is responsible for carrying itemized data to the analytic
station. The Simple Network Management Protocol (SNMP) and the Network Con-
figuration Protocol (NETCONF) are typical protocols used to exchange messages in
the transmission phase. These protocols provide a data delivery interaction between
agents and the station.

• Analysis: This phase generates statistics and identifies particular events. Some meth-
ods perform traffic analysis based on payload or host behavior, whereas other methods

2.3 Network Monitoring 9

examine communication patterns [37, 38]. The analysis results provide network status
information to TE and fault management applications.

• Presentation: This phase exports the analysis results in tables, graphs, and reports.
For example, Isolani et al. [39] proposed an SDN Interactive Manager that provides
data visualization via traffic graphs.

A critical task in network monitoring is to achieve a better performance in terms of low
overhead (e.g., CCO and CUC) and high MA when measuring the network status. To
achieve better performance, it is essential an accurate and timely collection of flow statistics
[8].

2.3.2. Network Monitoring Techniques

In SDN, network monitoring techniques can be classified into two categories [36, 40]: push-
based (called passive monitoring) and pull-based (called active monitoring). Although the
focus of this dissertation is on the pull-based technique, both push-based and pull-based will
be discussed briefly.

Figure 2-3.: Push-based monitoring

• In the Push-based approach [41, 42], the controller observes the statistics information
supplied by a collector module without influencing in the performance of the network
(cf. Figure 2-3). In this approach, the statistical information is collected by agents
placed inside switches (e.g., NetFlow [43], jFlow [44], sFlow [45]), which observe and
send the network traffic to the collector module using a monitoring protocol (e.g.,
SNMP and NETCONF). The collector module is responsible for analyzing and storing
this network traffic to make it available to the controller.

10 2 Background

Although Push-based approach does not intervene in the performance of the network,
several factors hinder its applicability. First, additional elements are necessary in
the hardware and software of switches. Second, when the traffic varies dynamically,
switches frequently detect no-matching packets in the flow table and, as a result,
massive statistical reports are sent to the controller. These massive reports can cause
significant CCO [11] and CUC [12]. Third, the push-based approach requires full access
to network devices, which could raise privacy and security issues.

• In the Pull-based approach, the controller probes one, a set, or all switches using
Read-State messages to retrieve statistics from switches (cf. Figure 2-4). There are
two variations of Read-State messages: Request and Reply. The Request messages
are sent from the controller to switches to request the specific statistical information.
The Reply messages, on the other hand, are sent from the switches to the controller,
delivering the required statistical information.

Figure 2-4.: Pull-based monitoring

This approach provides flexibility, since it can asynchronously communicate with swit-
ches to request the specific state information and control the size of statistical reports.
Nonetheless, CCO can also be introduced in the pull-based approach because of the
probing interval. This overhead can lead to overload the controller (i.e., increase CUC)
and significantly interfere with essential SDN functions, such as packet forwarding and
route updating [46].

This master dissertation focuses on the pull-based approach because:

• It allows requesting specific statistical information from one, a set, or all switches
asynchronously, allowing the controller to collect statistical information flexibly and
control the size of statistical reports.

2.4 Machine Learning 11

• It does not require changes in the software and hardware of switches because the con-
troller only needs Read-State messages, intrinsic in SDN switches, to retrieve statistical
information.

2.4. Machine Learning

The quantity of data that flows through communication networks is increasing exponentially.
The extraction of knowledge from this data is becoming increasingly important to perform
efficient monitoring and management of the network. ML is a tool used to extract useful
knowledge from the data and make appropriate decisions [47, 48, 49].

ML includes a set of techniques that can automatically detect patterns in the data (patterns
that do not conform to the normal network behavior) to identify previously unseen events
and thus to detect network anomalies and to predict future data [50, 51]. The possibilities
that emerge from the use of ML in networking context are various [52], some examples are:

• Network traffic prediction: Li et al. [53] proposed an ML technique that focus is on
predicting incoming and outgoing traffic volume on an inter-data center link dominated
by elephant flows. Poupart et al. [54] explored the use of ML for flow size prediction
and elephant flow detection. Chen et al. [55] investigated the possibility of reducing
the cost of monitoring and collecting traffic volume, by inferring future traffic volume
based on flow count only.

• Resource management: Bojovic et al. [56] designed an ML-based radio admission
control mechanism to guarantee QoS for various services, such as voice, data, video
and FTP while maximizing radio resource utilization in long term evolution (LTE)
networks. Vassis et al. [57] proposed an adaptive and distributed admission control
mechanism for variable bitrate video sessions, over ad hoc networks with heterogeneous
video and HTTP traffic. Quer et al. [58] developed an admission control mechanism
for VoIP calls in a WLAN. They employed ML to predict the voice call quality as a
function of link-layer conditions in the network.

• Fault management: Snow et al. [59] used ML to estimate the dependability of a 2G
wireless network, which is used to characterize availability, reliability, maintainability,
and survivability of the network. Lu et al. [60] use a manifold learning technique
to automatically extract failure features and generate failure prediction. Pellegrini et
al. [61] proposed an ML-based framework to predict the remaining time to failure of
applications.

• Congestion control: Liu et al. [62] proposed an approach using ML for inferring the
cause of packet loss in hybrid wired-wireless networks. Fonseca and Crovella [63] fo-

12 2 Background

cused on detecting the presence of packet loss by differentiating Duplicated ACKs
caused by congestion losses and reordering events. Jayaraj et al. [64] tackled the clas-
sification of congestion losses and contention losses in optical burst switching networks.

Furthermore, ML has been used successfully in other domains, including agriculture [65, 66,
67], economics [68, 69], and cybersecurity [70, 71].

ML can be divided into three categories, based on how the learning is achieved [72, 51]:

• Supervised Learning (SL) requires a set of instances, commonly known as training
data, which are used to define the behavior of algorithm. The training data consists of
a set of attributes and an objective variable (also called class), which is intended to be
classified or predicted. When the domain of the attribute is categorical1, the problem
is known as classification or pattern recognition, and when the domain of the attribute
is numeric2 value, the problem is known as regression. The most representative algo-
rithms of SL are: Bayesian Networks, Support Vector Machines, k-Nearest Neighbors,
Decision Trees, and Neural Networks [48, 52].

• Unsupervised Learning (UL) explores the structure of a non-tagged dataset (with-
out target variable). This method reveals unexpected characteristics (patterns) and
generates new groups (each with different identifiable properties). The unsupervised
learning algorithms are divided into three relevant categories:

– Hierarchical Algorithm aims to obtain a hierarchy of clusters, called dendrogram,
that shows how the clusters are related to each other [73].

– Density Algorithm finds the areas with the highest data density, leaving aside the
sparsely populated regions, which are considered border points or noise [74].

– Clustering Partitional Algorithms aims to directly obtain a single partition of the
collection of items into clusters [73].

• Reinforcement Learning (RL) is an iterative process in which an agent learns a
decision-making process by interacting with the environment (cf. Figure 2-5). The
agent is aware of the state of the environment and takes actions that produce changes
of state. For each action, the agent receives a reward depending on how good was the
action taken. The goal of the agent is to maximize the total reward it receives over
time.

RL is best suited for making cognitive choices, such as decision making, planning, and
scheduling. For instance, RL has been successfully applied to complex problems such

1A domain is defined as categorical if it is finite (discrete numerical values) and unordered
2A numeric domain consists of real numbers

2.5 Final Remarks 13

Figure 2-5.: RL Process

as board games [75], job-shop scheduling [76], elevator dispatching [77], and motor
control tasks [78], either simulated or real [79].

2.5. Final Remarks

Initially, in this chapter, the concept of the SDN and the architectural features that make the
SDN more flexible, scalable, efficient, and adaptable to the changing needs of the business
were detailed. Subsequently, the fundamental concepts about TE and network monitoring
in the SDN context were described, along with the monitoring techniques related to traffic
collection. Finally, the ML concept was introduced, along with its categories and its use in
the networking context. This master dissertation considers these concepts for proposing an
approach (cf. Chapter 4) that focuses on optimizing the probing interval regarding CCO
and CUC.

14 2 Background

3. State-of-Art

This chapter provides an overview of the paramount efforts around SDN traffic monitoring.
In this way, this chapter starts presenting the traffic monitoring proposals for SDN with a
higher impact on the research community. This chapter finishes discussing these research
works.

3.1. SDN Monitoring

In general, network monitoring is a fundamental topic and an essential requirement for
achieving TE [27, 52, 80]. IP networks are usually monitored with mechanisms such as
NetFlow [43], jFlow [44], and sFlow [45]. These mechanisms use probes connected to spe-
cial modules placed inside switches. These probes collect either complete or sampled traffic
statistics and send them to a central collector. NetFlow and JFlow are both proprietary
solutions and incur a considerable up-front licensing and setup cost to be deployed in a net-
work. sFlow is less expensive to deploy, but it is not widely adopted by the vendors [14]. It
is important to highlight that the network monitoring in traditional IP networks can lead to
high overhead and significant switch resource consumption [81]. Recent research efforts have
harnessed the power of SDN to propose solutions for such monitoring. This section presents
some approaches to network monitoring found in the literature.

Raumer et al. introduced an application for the Quality of Service (QoS) monitoring, called
MonSamp [15]. MonSamp completely moves monitoring capabilities out of the controller
and provides fully processed information to the applications by a Northbound API. To traf-
fic collect, MonSamp provides sampling algorithms that can adapt to both current network
load and the QoS requirements. In particular, MonSamp suggests decreasing the sampling
rate under high traffic load. MonSamp uses thresholds to adjust the amount of monitoring
overhead that is forwarded by the switches to allow a certain MA.

Van Adrichem et al. proposed OpenNetMon [16] to monitor network throughput, packet
loss rates, and network delays continuously. OpenNetMon uses an adaptive probing mecha-
nism to extract statistical information from the switches. The adaptive probing mechanism
increases the rate of the queries when the flow rates differ between samples (increases the

16 3 State-of-Art

MA, CCO, and CUC) and decreases when flows stabilize (reduces the MA, CCO, and CUC).

Tahaei et al. proposed a multi-objective network measurement mechanism [17] to overcome
the CCO, CUC, and MA in a real-time environment. To strike the trade-off between the
MA and CCO, this mechanism uses an elastic probing for the collection of statistics from
the switches. The elastic probing adaptively adjusts probing frequency based on the be-
havior of link utilization. In particular, it increases the probing frequency according to the
bandwidth fluctuation of the flows (i.e., to higher bandwidth fluctuation higher probing fre-
quency). Tahaei et al. also made an extension to his previous work. This extension proposed
a generic architecture for flow measurement in a data-center network, which applies in both
single and multiple-controller [26]. The three main features of this architecture are: first,
it utilizes local controllers to pull flow statistic and forwards statistics to an upper layer
application. Second, it has a coordinator level on top of all the local controllers connecting
to the switches. Third, it is implemented as a standard northbound interface, which can
utilize both fixed and adaptive polling systems.

Tootoonchian et al. proposed OpenTM [18] to estimate the traffic matrix using OpenFlow
statistics (e.g., bytes and packet counters). OpenTM proposes several heuristics (e.g., last
switch, round robin, uniform random selection, and non-uniform random selection) to (i)
choose an optimal set of switches to be monitored for each flow and (ii) keep the trade-off
between MA and CCO. After a switch has been selected, OpenTM probes the switch selected
continuously for collecting flow level statistics. The choice of a heuristic defines the level of
MA and CCO. For instance, the use of the last switch heuristic results in the most accurate
traffic matrix but imposes a substantial overhead on edge switches. The price to use the
uniform random selection heuristic is to lose some accuracy.

Chowdhury et al. proposed a flow measurement framework called PayLess [14]. It is designed
as a component of the OpenFlow controller, and it provides a RESTful API for flow statis-
tics collection at different aggregation levels (e.g., flow, packet, and port). In particular, this
framework is responsible for parsing request commands from the application level of tasks
and transforming these commands into path planning on some switches. PayLess adjusts
the probing frequency to balance the CCO and MA. To achieve this balance, Payless relies
on OpenTM [18] to select only important switches to be monitored. Nonetheless, instead of
continuously probing a switch, PayLess offers an adaptive scheduling algorithm for probing
that achieves the same level of accuracy as continuous probing with much less overhead.

Peng et al. proposed a traffic management solution (HONE) based on joint statistical infor-
mation from the OpenFlow network and end hosts [19]. HONE uses software agents placed
inside end hosts and a module that interacts with OpenFlow switches. HONE integrates

3.1 SDN Monitoring 17

information from the OpenFlow network and end hosts to present a diverse collection of
fine-grained monitoring statistics. Furthermore, HONE offers two techniques to process flow
statistics: The first technique, known as the lazy materialization of the measurement data,
it uses database-like tables to represent the statistical information collected from hosts and
network devices. Lazy materialization allows that both the controller and host agents use
the statistical information collected in multiple management tasks. The second technique
offers data parallel streaming operators for programming the data-analysis logic. The op-
erators can also be used in a hierarchical fashion for aggregate analysis among multiple hosts.

Phan et al. proposed a scalable framework called SDN-Mon [20]. SDN-Mon decouples mon-
itoring from existing forwarding tables to allow more fine-grained and flexible monitoring.
This framework uses a controller-side module and a switch-side module. The controller-side
module defines a set of monitoring match fields based on the requirements of applications to
allow higher flexibility. The switch-side module process the monitoring functionality of the
framework to reduce the CCO. Phan et al. [25] also proposed a mechanism that supports
distributed monitoring capability of SDN-Mon. This extension introduces three additional
modules: the switch module, the controller module, and the external module, which allow
SDN-Mon can automatically assign the monitoring load to multiple monitoring switches in
a balanced way and eliminate duplicated monitoring entries.

Liao et al. proposed a solution for latency monitoring called LLDP-looping [21]. LLDP-
looping monitors the latency of all network links by using agents placed inside switches and
a controller module that interacts with them. The controller module uses a greedy algorithm
to inject probe packets (i.e., time-stamped Link Layer Discovery Protocol (LLDP) packets)
to a selected set of switches to minimize the CCO. The agents, first, forces to each probe
packet to loop around a link for three times, then, calculates the RTT of the LLDP packet.

Jose et al. [22] presented a monitoring framework that use secondary controllers to identify
and monitor aggregates flows using a small set of rules that changes dynamically with traf-
fic load. In this framework, on the one hand, the switches match packets against a small
collection of wildcard rules available in Ternary Content Addressable Memory (TCAM),
then the counter of the matched highest priority rule is updated. On the other hand, the
controllers only read and analyze the relevant counters from the TCAM with fixed time
intervals. Furthermore, the authors proposed a heavy hitters algorithm that identifies large
traffic aggregates, striking a trade-off between MA and switch overhead.

Tangari et al. proposed a decentralized approach for resources monitoring [23]. This ap-
proach achieves high reconfiguration reactivity with acceptable accuracy and negligible CCO.
It uses local managers, distributed over the network, to adaptively reconfigure the network

18 3 State-of-Art

resources (under their scope of responsibility). Furthermore, it uses entities installed on
local managers to support a wide range of measurement tasks and requirements regarding
monitoring rates and information granularity levels. Tangari et al. also extended the previ-
ous work by proposing a self-adaptive and decentralized framework for resource monitoring
[24]. This framework uses a self-tuning, adaptive monitoring mechanism that automatically
adjusts its settings based on the traffic dynamics, which improves the MA.

3.2. Research Gaps

Table 3-1.: Traffic Monitoring in SDN – H → High and L → Low

Work

A
cc

u
ra

cy

O
ve

rh
ea

d

R
es

ou
rc

es
-C

os
t

F
le

xi
b
il
it
y-

S
ca

la
b
il
it
y

Description

[12] H L H L A heuristic algorithm (Greedy) is used to minimize the CCO, obtain the polling scheme
efficiently, and handle flow changes

[14] H H H H Adaptive sampling algorithms are used to tune the load level generated by monitoring
process

[15] H H H H Thresholds are used to adjust the load level generated by monitoring process
[16] H H H L An adaptive fetching mechanism monitors per-flow metrics, such as throughput, delay, and

packet loss
[17] H H L H An adaptive flows statistical collection method is used to adjust the polling intervals
[18] H H L H Routing information from the controller and flow forwarding path information are used to

monitor the link utilization
[19] H L H L Software agents residing on hosts interact with network devices to perform monitoring tasks
[22] H L H L A small set of matching rules and secondary controllers are used to identify and monitor

aggregate flows
[20] H L H L Monitoring is decoupled from existing forwarding tables and uses customized software

agents in the switches to process their monitoring functionality
[21] H L H L It injects time-stamped LLDP packets into switches to monitor the network latency
[23] H L H L Local managers and entities are used to reconfigure the network resources and support

monitoring tasks at different granularity level
[24] H L H L A self-tuning monitoring mechanism is used to automatically adapt its settings based on

the traffic dynamism
[25] H L H L Extra modules are included in the switches to distribute the monitoring tasks in a balanced

way
[26] H L H L A two layers hierarchy of controllers is described. The lowest layer polls the flow statistic

and forwards statistics to the top layer. The highest layer coordinates the controllers located
at the lowest level

Table 3-1 summarizes relevant works in the field of SDN monitoring, and reveals several
facts:

3.3 Final Remarks 19

• Several works, such as [12, 19, 20, 21, 22, 23, 24, 25, 26] minimize CCO and improve MA
by adding modules, modifying flow tables in the data plane or distributing controllers.
As a result, in these works, MA is increased at the expense of an increase in network
resources and costs. Furthermore, these works do not support fine-grained monitoring
and lack of flexibility and scalability needed to cope with a large amount of flows.

• Other works, such as [14, 15, 16, 17, 18] use adaptive techniques, wildcards, threshold-
based methods, and routing information to increase MA. Nevertheless, in these ap-
proaches, a network overhead (i.e., imbalance in the Accuracy/Overhead) is generated.
Also, the controller is overloaded while collecting the flow information from switches.

Despite the progress in SDN monitoring, existing approaches still have some shortcomings:

• They introduce overhead that degrades the network performance or require substantial
economic investments.

• They do not optimize the probing interval by intelligent mechanisms intended to keep
CCO and CUC within defined thresholds without compromising MA.

This master dissertation addresses these shortcomings by following the KDN paradigm. In
particular, RL is used in the KP of KDN.

So far, in the literature, it has not been proposed approaches-based on RL for SDN moni-
toring. However, the literature some works that use RL for other network tasks are exposed.
Zhang et al. proposed Q-placement [82], an RL-based algorithm to optimally decide where
to place the network services iteratively. Sampaio et al. proposed a model of RL integrated
into the Network Functions Virtualization (NFV) architecture using an agent that resides
in the orchestrator, which guarantees the flexibility necessary to react to network conditions
on demand [83]. Yu et al. proposed an RL-based mechanism to achieve universal and cus-
tomizable routing optimization [84]. Jiang et al. used RL to provide an end-to-end adaptive
HTTP streaming media intelligent transmission architecture [85]. Wang et al. presented a
software-defined cognitive network for IoV (Internet of Vehicles) called SDCoR. SDCoR uses
RL and SDN to provide an optimal routing policy adaptively through sensing and learning
from the IoV environment [86]. Arteaga et al. proposed an NFV scaling mechanism based
on Q-Learning and Gaussian Processes, which uses an agent to carry out an improvement
strategy of a scaling policy to make better decisions based on performance variations [87].

3.3. Final Remarks

In this chapter, several research works that aim to minimize CCO and improve MA were
presented. The research works analysis revealed several facts. First, they introduce overhead

20 3 State-of-Art

that degrades the network performance or require substantial economic investments. Second,
they do not optimize the probing interval by intelligent mechanisms intended to keep CCO
and CUC within defined thresholds without compromising MA. Third, they do not consider
the use of RL for SDN monitoring.

Unlike the works presented in this chapter, this master dissertation considers concepts from
the KDN discipline for proposing an approach (cf. Chapter 4) that focuses on optimizing
the probing interval regarding CCO and CUC.

4. IPro

This section presents a motivating scenario for the approach proposed. Also, this section
introduces IPro, its architectural elements, and algorithmic representation.

4.1. Motivating Scenario

Let us assume that an Infrastructure Provider (InP) uses an SDN to offer services to one
or more Internet Services Providers (ISPs). In particular, this provider provides its services
by creating particularized slices for each ISP. Each slice must meet specific Service Level
Agreements (SLAs) between InP and ISP. If a performance degradation occurs in one slice,
the services provided by any ISP may also be affected, which can lead to non-compliance
with the corresponding SLA. This non-compliance can lead to monetary and legal sanctions
for InP.

Considering the above-described scenario, it is necessary an efficient and reliable traffic mon-
itoring approach that accurately and timely collects the statistics of flows; these statistics are
indispensable to make decisions timely. There are three options to achieve this monitoring:

• To use specialized software modules (i.e., agents that collect specific traffic) installed
into the network devices or distributed controllers. Notwithstanding, this option does
not support fine-grained monitoring and lacks flexibility and scalability; especially, in
networks with a large number of flows [22].

• To use control messages between switches and the centralized controller when a new
flow comes in or upon the expiration of a flow entry in the table flow. This option is
inaccurate under dynamic traffic conditions [88].

• To use adaptive probing methods, but up to now, they do not offer a trade-off between
MA, CCO, and CUC when the network workload is high. IPro provides an adaptive
probing that offers such a trade-off by applying RL.

22 4 IPro

4.2. Fundamentals

4.2.1. Knowledge-Defined Networking

In 2003, D. Clark et al. proposed a new construct, the Knowledge Plane (KP) [89], a dis-
tributed cognitive system additional to the traditional planes (data and control) of computer
networks that permeates the network. This plane was proposed as a pervasive system that
builds and maintains high-level models of what the network is supposed to do. KP was
envisioned to rely on ML, aiming to bring many advantages to networking, such as automa-
tion (recognize-act) and recommendation (recognize-explain-suggest). Although, KP has
the potential to represent a paradigm shift in the way the computer networks are operated,
optimized, and troubleshot, up to now, such a plane has not been widely deployed. This
constrained deployment is because of diverse shortcomings:

• In traditional networks the learning is partial since the switches and routers only have
a partial view and control, avoiding achieve a handle beyond local domain.

• Fifteen years ago, network devices located at DP had limited capabilities of storage
and computing.

Nowadays, the shortcomings aforementioned may be overcome because, first, SDN provides
a full control and rich view of the network from a logically centralized point. Second, the
capabilities of network devices have significantly improved, facilitating the gather of infor-
mation in real-time about packets and flow-granularity. Therefore, KDN has been proposed
as a cooperative paradigm that applies ML to SDN [2], aiming at learning the behavior of
the network and, in some cases, automatically operate the network accordingly the learned.
Furthermore, they corroborate the feasibility of using KDN for Routing in an Overlay Net-
work and Resource Management in a Network Function Virtualization (NFV) scenario. To
sum up, the final goal of KDN is to achieve self-driving networks. Figure 4-1 depicts an
overview of the KDN paradigm and its functional planes.

• The DP is composed of network devices of programmable forwarding and is responsible
for storing, forwarding and processing data packets. This plane depends on the CP
and MP planes to populate the forwarding tables and update their configuration.

• The CP translates the requirements from the KP and AP in a specific network pol-
icy. Subsequently, CP is based on this policy to update and program matching and
processing rules from the DP forwarding elements by SBI.

• The MP, as well as CP, ensures the correct operation and performance of the network
in the long term. It defines the network topology and handles the provision and

4.2 Fundamentals 23

Figure 4-1.: High-level KDN architecture (adapted from [2])

configuration of network devices. MP generates Metadata with information about the
network state, events, statistical metrics per flow and per switch (e.g., packet loss,
link failure, memory usage, and CPU utilization). The Metadata is sent to CP and
KP. CP handles events that require immediate action (e.g., link failure, black-hole or
loop detection). KP handles events that require knowledge (e.g., resource planning,
optimization, performance management, and verification).

• The KP leverages MP and CP to obtain a rich view and control over the network. It is
responsible for learning the behavior of the network and, in some cases, automatically
operate the network accordingly. Fundamentally, the KP processes the Metadata gen-
erated by the MP, transforms them into knowledge via ML, and uses that knowledge
to make decisions (either automatically or through human intervention). It is impor-
tant to mention that, KP is separated from CP because ML algorithm is generally
compute-intensive and it may affect the performance of the control plane.

This master dissertation supposes that RL is a technique useful to maintain MA and de-
crease the overhead of monitoring in SDN because it allows optimizing the probing interval
by interacting with the network itself (i.e., environment in RL terms).

4.2.2. Reinforcement Learning

In RL, an agent learns a decision-making process by interacting with an environment [90].
Formally, in RL, the environment is typically modeled as a finite Markov Decision Processes
(MDP) [91] where the agent sends actions and receives outputs (observations and rewards).

24 4 IPro

In a finite MDP, the agent and environment interact at discrete time steps t = 0, 1, 2, ..., N .
At each time-step t, the agent receives some representation of the state of the environment,
St ∈ S, where S is the set of possible states. Based on St, the agent selects an action,
At ∈ A(St), where A(St) is the set of available actions in the state St. The execution of
action At puts the agent into the new state St+1. Furthermore, the agent receives a numerical
reward from the environment, Rt+1 ∈ R at step t ∈ N . Then, the total reward that the
agent receives over its lifetime for this particular behavior is:

U (s) =
∞∑

t=0

γtRt (4-1)

where γ ∈ (0, 1] is called the discount factor. If γ < 1, the discounting is used. Otherwise,
it is not used.

RL algorithms find an optimal policy Π∗ : S → A that maximizes the expected cumulative
reward for every state, using the exploration methods (e.g., ε-greedy, Boltzmann [90] [92]).
The main RL features are its capacity to run without any prior knowledge of the environ-
ment (here, the monitored network) and make its own decisions in execution time (on-line).
Nonetheless, RL requires a training period to capture the environment model before con-
verging to the optimal policy.

Q-learning is one of the most important RL techniques [93] because:

• It was the pioneering RL method used for control purposes.

• It has a learning curve that tends to converge quickly.

• It is the simplest technique that directly calculates the optimal action policy without
an intermediate cost evaluation step and without the use of a model (i.e., model-free).

• It has an off-policy learning capability; this means, the agent can learn an optimal
policy (called Q-function), even if it does not always choose optimal actions. The only
condition is that the agent regularly visits and updates all the (St, At) pairs.

It is important to highlight that there are other RL strategies, such as Adaptive Heuristic
Critic (AHC), Model-free Learning With Average Reward, and some Q-learning variations
[94] [95]. These strategies are out of the scope of this master dissertation.

Q-learning [96] [97] relies on an optimal action-value function Qt(St, At), called Q-function.
In this function, the value is the estimated reward of executing an action At in the state

4.2 Fundamentals 25

St, assuming that the agent will follow the policy that provides the maximum reward. Q-
learning starts with an arbitrary Q-function Q0. At any state St, an agent selects an action
At that determines the transition to the next state St+1 and with the value associated to the
pair (St, At) adjusts the values of Q-function according to:

Qt+1(St, At)←(1− α) ·Qt(St, At) + α ·
[
Rt+1 + γ ·max

A
Qt(St+1, A)

]
(4-2)

where Rt+1 denotes the reward received at time t+1, α ∈ [0, 1] is the learning factor (a small
positive number) that determines the importance of the acquired reward. A factor α = 0

makes the agent does not learn from the latest (St, At) pair. In turn, a factor α = 1 makes
the agent considers the immediate rewards without taking into account the future rewards.
γ ∈ [0, 1] is the discount factor that determines the importance of future rewards. A factor
γ = 0 prohibits the agent from acquiring future rewards. A factor γ = 1 forces the agent
only to consider future rewards. The part between square brackets is the updated value that
represents the difference between the current estimate of the optimal Q-value Qt(St, At) for
a state-action pair (St, At), and the new estimate

[
Rt+1 + γmax

A
Qt(St+1, A)

]
.

The Q-function approximates the optimal state-action value function Q∗ regardless of the
followed policy. It is noteworthy that the updated Q-function Qt only depends on the pre-
vious function Qt−1 combined with the experience (St, At, Rt, St+1). Thus, Q-learning is
both computationally and memory efficient. Nonetheless, if the number of states is high,
Q-learning may take much time and require more data to converge (i.e., find the best action
for each state). Therefore, in Q-learning is critical to have a concise representation of the
environment (i.e., the network model).

To find the Q-function, Q-learning requires an exploration method. The exploration method
selects an action to perform at each step, which represents the Q-function. ε-greedy explo-
ration is one of the most used exploration methods [92] [98]. It uses ε ∈ [0, 1] as the parameter
of exploration to decide which action to perform using Qt(St, A). With this parameter the
action is as follows:

A =

{
max
A
Qt(St, A) with probability 1− ε

randomaction with probability ε

}
(4-3)

ε-greedy exploration method adds some randomness when deciding between actions. Instead
of always selecting the best available action, this method randomly explores other actions
with a probability = ε or chooses the best action (highest Q-value) with a probability =

26 4 IPro

1− ε. A high value for ε adds randomness to the exploration method, which will make the
agent explores other actions more frequently. Randomness is necessary for an agent to learn
the optimal policy.

4.3. Overview

Figure 4-2.: IPro - High-Level Operation

IPro applies RL to optimize the probing interval regarding to CCO and CUC. Figure 4-2
depicts how IPro operates in a high-abstraction level:

1 The Control Plane (CP) collects statistical information from the Data Plane (DP) at
some probing interval. Since this collection of information affects the network behavior,
the network falls in a new state.

2 The Management Plane (MP) extracts these statistics to determine such a new state
by analyzing CCO and CUC.

3 MP sends this new state to the Knowledge Plane (KP).

4 The RL-agent takes such a state to calculate the reward. It is important to highlight
that a low reward indicates high CCO and high CUC. Based on the reward, the RL-
agent decides a new probing interval intended to minimize CCO and CUC.

5 The RL-agent communicates this new probing interval to CP.

4.4 Architectural Layers and Elements 27

6 The CP applies this interval that affects the network behavior again. This operation
continues until the network administrator decides to stop IPro.

4.4. Architectural Layers and Elements

Figure 4-3 introduces and details the IPro architecture. IPro has four main planes that
follow the KDN fundamentals. Next, these plans are detailed.

Figure 4-3.: IPro Architecture

4.4.1. Knowledge Plane

This plane obtains a rich view and global control over the network from MP and CP. Overall,
KP operates in three steps:

• It organizes the metadata generated by MP.

• It converts that metadata into knowledge by using ML techniques.

• It uses that knowledge to make decisions (either automatically or through human
intervention) related to routing, traffic classification, anomalies detection, and so on.

28 4 IPro

It is essential to highlight that KP is separated from CP because ML algorithm is generally
compute-intensive, and it may affect the performance of CP [2]. In this master disserta-
tion, KP is responsible for learning the network behavior and automatically deciding a new
probing interval. KP obtains the current network status and controls the probing interval
by interacting with MP and CP, respectively. The KP heart is the RL-agent. This agent
is in charge of determining the most-rewarding probing strategy intended to maintain CCO
and CUC within target values. IPro considers two thresholds ω and χ that are configurable
according to network requirements. ω represents the policy 1 and aims at preventing a high
CCO. In turn, χ represents the policy 2 and aims at preventing a high CUC. To sum up,
the RL-agent handles the monitoring policies by controlling ω and χ.

Control policies are defined to prevent monitoring messages from affecting the performance
of the controller and the bandwidth of the control channel. For instance, when CUC exceeds
80% of the CPU capacity, the controller increases its response time, which generates delays
and loss [99]. In the same sense, when the use of the control channel bandwidth exceeds
80%, the monitoring messages can interfere with the SDN functions [100].

Figure 4-4.: The RL-agent General Model

Figure 4-4 depicts the general model of the RL-agent. This model includes three elements,
namely, Sensing, Experience Accumulation, and Action Selection. Sensing enables the RL-
agent to get the network state and the reward of the IPro monitoring process. The Experience
Accumulation element guides the policy (i.e., what action to take) of the agent in two steps.
In the first one, this element combines the observations made by Sensing and defines the
information matrix that represents the internal states of the RL-agent. In the second step,
Experience Accumulation maps these states and assigns rewards to indicate how good or bad
these states are according to the accumulated experience. Action Selection guides the action
policy considering the most-rewarding probing strategy based on the current network state.
Section 4.5 depicts the detailed procedure carried out by the RL-agent.

4.4 Architectural Layers and Elements 29

4.4.2. Control Plane

This plane translates the requirements from KP and the Application Plane (AP) in specific
network policies. CP uses such policies to update and program matching and processing
rules in DP forwarding elements via a SBI, such as OpenFlow [101], Forwarding and Control
Element Separation (ForCES) [102], and Protocol-Oblivious Forwarding (POF) [103].

In this master dissertation, CP handles network monitoring by performing the steps described
in Algorithm 1.

• CP receives decisions about the new probing interval (I) from KP.

• CP applies these decisions to handle the data collection in the monitored network.

• CP sends Read-State request messages to each switch connected (line 3) to this plane
every I seconds (line 5).

• CP receives the Read-State reply messages asynchronously (line 6), which contain the
statistical information from the switches.

• CP stores the statistical information (line 7) to maintain a trace of network changes.
These steps are repeated indefinitely up to reach a stop criterion (e.g., errors and
administrator).

Algorithm 1: Data Collection
Require:

Probing interval I

1 while not reached stopping criterion do
2 foreach switch ∈ switches do
3 Send a Read-State Request message to switch
4 end
5 Wait for I seconds
6 Receive the Read-State Reply Messages from the switches // These messages contain the

statistical information;
7 Store the statistical information
8 end

CP includes four elements namely, Probing Manager, Query Manager, Statistics Module,
and Data Repository.

• Probing Manager sets up the probing interval according to the decision made by the
RL-agent.

30 4 IPro

• Query Manager handles the data collection based on the computed probing interval
and the desired aggregation levels (e.g., byte, packet, flow). After this data collection,
Query Manager merges and stores the statistical information into the data repository.
Thus, this information can be used ulteriorly by upper-layer applications.

• Statistics Module is a service running on the top of the SDN controller, which is useful
to develop customized network measurement applications.

• Data Repository stores statistical information of each monitoring operation and main-
tains a trace of network changes.

It is important to highlight that CP interacts with KP by a Data Repository.

4.4.3. Management Plane

This plane ensures that the network as a whole is running optimally carrying out the Opera-
tion, Administration, and Maintenance (OAM) functions [104, 105]. MP defines the network
topology and handles the provision and configuration of network devices. Furthermore, it
generates metadata with information about the network state, events, statistical metrics
per-flow, and per-switch (e.g., packet loss, link failure, memory usage, and CPU utilization).

In this master dissertation, this plane is responsible for extracting the statistical information
from CP to provide an analysis of the network state to KP regarding CCO and CUC. MP
includes two elements called, Flow Statistics Collection and Data Processing. The first one
extracts the statistical information from Statistics Module located at CP. The second ele-
ment is responsible for processing and organizing the information retrieved by Flow Statistics
Collection to compute CCO and CUC. Data Processing also sends the processed information
to the RL-agent located at KP while keeps a historical record of the network state into Data
Repository.

It is noteworthy that MP interacts with CP by a REST-based interface. In turn, MP
communicates with KP by specific APIs since, up to now, there are no standardized interfaces
for KP.

4.4.4. Data Plane

This plane is responsible for forwarding flows in the monitored SDN by network devices
decoupled from CP [106]. Each network device consists of a physical part and a functional
part. The physical part comprises hardware elements, such as ports, storage, processor, and
memory. The functional part comprises a limited set of operations, such as packet header
parsing and extraction of a header field tuple, support for a fixed set of packet operations

4.5 Probing Algorithm 31

(such as header field manipulation and forwarding through a specific set of ports), and the
ability to match packet header tuples against a lookup memory primitive (e.g., a hash table
or a content addressable memory).

It is important to mention that, in SDN, it is key to perform intelligent monitoring decisions,
by MP, CP, and KP, aiming at improving the network performance [28, 39, 2].

4.5. Probing Algorithm

4.5.1. Assumptions

4.5.1.1. Reward

It defines the objective of any RL-agent. In IPro, the reward targets to ensure the accom-
plishing of network policies regarding CCO and CUC. Let us consider that the RL-agent
chooses an action and increases the probing interval. If IPro does not meet with one or more
policies (e.g., policy 1 or policy 2), the RL-agent will learn that it is a wrong action; resulting
in a negative reward. Conversely, if IPro meets the policies, the RL-agent will learn that
such an increase is a good action; resulting in a positive reward.

One of the main RL challenges is to define the reward function. In some cases, the choice of
this function is easy because it is implicit in the task. For instance, in an Atari game, there is
a score function that is part of the game itself. In other cases, like in IPro, the choice of such
function is complex. The RL-agent has a task objective with multiple criteria, such as keeping
CCO and CUC within target values to minimize network performance degradation. In the
proposed approach, these criteria are combined in a single scalar-valued reward function using
the normal distribution defined by Matignon et al. [107], whose heuristic allows defining a
multi-objective model useful to consider CCO and CUC (control policies) simultaneously.
Therefore, the reward function is defined as follows.

R (St, At) = βce
− d(C(Θ),C(Θ)∗)2

2σ2
c + βue

− d(Us,Us∗)2

2σ2
u (4-4)

where, β adjusts the amplitude of the function and σ, the standard deviation, specifies the
reward gradient influence area. d is the Manhattan distance between the new state s and
goal state s∗. Θ is the set of active flows in the network. C (Θ) and C (Θ) ∗ are the CCO (cf.
equation 4-6) used for statistics collection of the set of flows Θ from the switches in states s
and s∗, respectively. Us and Us∗ are CUC in states s and s∗, respectively.

32 4 IPro

4.5.1.2. Space of Actions

The space of actions affects the future state of the network (e.g., the next CCO and CUC),
changing the options and opportunities available to the RL-agent at later times. The effects
of actions cannot be fully predicted; thus, the RL-agent must monitor the network frequently
and react appropriately (i.e., search process). For example, it must watch the probing interval
to avoid the breach of policies.

Algorithm 2: Space of Actions

1 if action = increase then
2 Increases the current probing interval
3 else if action = reduce then
4 Decreases the current probing interval
5 else
6 Keeps the current probing interval
7 end

The RL-agent performs the search process using the action functions (increase, reduce, and
keep) in Algorithm 2 to change the probing interval in each iteration and uses the reward
function as the guide to the goal state.

4.5.1.3. Space of States

The space of states represents a signal transferring to the agent some sense of “how the
network is” at a particular time. This space is represented as follows:

S ≡ f (i, l, cpu) (4-5)

Each St = (it, lt, cput) ∈ S is characterized by the probing interval it, CCO lt, and CUC cput
in the time t. CCO corresponds to the bandwidth consumed by IPro when transmitting and
receiving Read-State messages between CP and DP. CUC defines the number of instructions
carried out in CP because of IPro tasks (e.g., RL-agent execution, processing of data collec-
tion messages). The probing interval indicates how often CP must send Read-State Request
messages to retrieve flow statistics from switches in DP.

4.5.1.4. Statistics Collection

In SDN, the pull-based monitoring is handled by the controller that interacts with the
switches via a control channel over TCP. There are two interaction methods [100] [108]:
Per-Flow Collection (PFC) and Per-Switch Collection (PSC).

4.5 Probing Algorithm 33

• In PFC, the controller sends a request to a switch to collect the traffic statistics of one
particular flow. This method generates a high CCO when the controller requires to
collect statistics of many flows. This overhead is due to the large quantity of Read-State
Request messages sent per switch.

• In PSC, the controller sends a request to collect the traffic statistics of all flow en-
tries from a switch. This method reduces the number of Read-State Reply messages
(Controller< − >Switch) and, so, reduces CCO and CUC. Nonetheless, if PSC is
used excessively with, for instance, a low probing interval, it can cause flow statistics
overlapping, high CCO, and high CUC.

This master dissertation focuses on the PSC method because first, PSC generates a smaller
amount of Read-State messages that imply lower CCO and CUC. Second, PSC reduces the
repeated headers of the flows that involve less redundancy in the collected information [108].

In IPro, the SDN Model consists of a logically-centralized controller (may be a cluster of
distributed controllers [22] [109]) and a set of switches. The SDN is modeled by an out-of-
band control plane and an undirected graph G = (V,E), where V = {v1, ..., vn} is the set
of nodes (switches and controllers) and E = {e1, ..., eu} is the set of links connecting nodes.
This master dissertation assumes that the controller knows the existing active flows in the
network, denoted by Θ = {θ1, θ2, ..., θm}, with m = |Θ|. Thus, it is also reasonable to assume
that the controller knows each flow that passes through each switch vi, denoted by θi, with
i = 1, 2, ...,m. Therefore, the active flows number in switch vi is |θi|. It is noteworthy that
the evaluation of CCO and CUC is critical for any out-of-band CP because, first, the control
bandwidth is a limited resource and must be analyzed and optimized. Second, CUC is also
a constrained resource that must be used appropriately to avoid the wrong behavior of CP
and, so, of the underlying DP.

4.5.1.5. Control Channel Overhead

CCO is the bandwidth cost used for statistics collection of a set of flows from the switches. In
IPro, the controller generates this cost when requests and receives to and from the switches
the statistics of a set of flows θi. According to [101][108], the bandwidth cost caused by θi
involves two parts: (i) the size of the Read-State Request messages lrq sent to switches; and
(ii) the size of the Read-State Reply messages lrp that depends on the number of existing
flows |θi| in the flow tables. Thus, the bandwidth cost is defined as follows.

C (Θ) = lrq · |V |+ lrp ·
|V |∑

i=1

|θi| ,∀i |V | (4-6)

34 4 IPro

4.5.1.6. CPU Usage of the Controller

CUC is the number of instructions generated by execution, calculation, and comparison of
raw data in IPro. According to [109], CUC can be estimated through a constant (x) that
indicates the number of instructions carried out by CPU to fragment the Read-State Reply
messages. Therefore, CUC for analyzing n specific flows from Θ is modeled as a linear
function of n.

CPU ∼= |V | ∗ n (ReadStateReply) ∗ x, ∀n ∈ Θ (4-7)

4.5.1.7. Monitoring Accuracy

MA reflects the difference between the real value of a metric and the measured value by
IPro. A smaller difference (error) indicates a higher MA. The error is calculated with the
following expression:

%error =
|vC − vR|

vR
∗ 100 (4-8)

where, vC is the measured value of the metric being monitored and vR is the real value (or
reference). Therefore, MA is as follows:

MA = 100%−%error (4-9)

4.5.2. Functioning

Algorithm 3 presents the probing interval optimization procedure carried out by IPro. The
algorithm inputs are the learning factor α, the discount factor γ (cf. Equation 4-2), and the
exploration method ε (cf. Equation 4-3). The output is the most-rewarding probing interval
according to the current network status.

The probing algorithm has two considerations: i) it assumes a null initial condition of
the Q(S,A) before the first update occurs (line 1); and ii) it starts its execution from a
random state that represents the initial values of probing interval, CCO, and CUC (line 3).
After these considerations, the probing interval optimization process begins (line 4). In this
process, the RL-agent discovers the reward structure and determines the most-rewarding
probing interval by interacting with the network. The proposed algorithm performs the
following steps in each iteration (lines 5 to 13):

4.5 Probing Algorithm 35

Algorithm 3: Probing Interval Optimization
Require:

Exploration parameter ε
Discount factor γ
Learning factor α

Result: A probing interval

1 Initialize Q : Q(S,A) = 0,∀s ∈ S,∀a ∈ A
2 while not reached stopping criterion do
3 Start in state St ∈ S;
4 while St is not terminal do
5 Select At from St using policy derived from Q using ε-greedy exploration method;
6 At ← π(St) // Execute probing action;
7 Modify the probing interval according to the action At;
8 St+1 ← T (St, At) // Receive the new state;
9 Rt+1 ← R(St, At) // Calculate reward;

10 Qt+1(St, At)← (1− α) ·Qt(St, At) + α ·
[
Rt+1 + γ ·max

A
Qt(St+1, A)

]
// Update

Q-function;
11 Send the probing interval modified to Data Repository;
12 St ← St+1 // Move to the new state;
13 t← t+ 1 // Increment and set the number of steps taken;
14 end
15 end

• The RL-agent selects a probing action At = {up, down, equal} from the Q-function
using the ε-greedy exploration method that modifies the probing interval (line 7).
The possible actions are to increase (up), reduce (down), or keep (equal) the probing
interval.

• The RL-agent executes the probing action selected in the previous step (line 6). Since
this execution affects the network behavior, the network falls in a new state. MP
determines the new state by Equation 4-5, where CCO and CUC are determined using
Equation 4-6 and Equation 4-7, respectively. The value of the probing interval is
obtained in the step 1. Subsequently, MP sends this new state to the RL-agent.

• The RL-agent receives the new network state from MP (line 8).

• The RL-agent takes such a state to calculate the reward (line 9). In particular, the
reward is computed by Equation 4-4.

• Based on the learning factor, discount factor, initial considerations, reward, and new
network state, the RL-agent tunes the values of the Q-function according to Equation 4-
2 (line 10).

36 4 IPro

• The RL-agent sends the probing interval to Data Repository (line 11).

• The RL-agent moves to the new state (line 12) and moves on to the next iteration t+1

(line 13).

The probing interval optimization process is repeated until the agent perceives that the
policy does not change. At this moment, the agent gets the most-rewarding probing interval
that keeps CCO and CUC within target values aiming at minimizing network performance
degradation caused by the monitoring tasks.

4.5.3. Computational Complexity

IPro determines its optimal policy by finding an Optimal Value Function. The Optimal
Value Function of a policy is the expected infinite discounted reward that will be gained,
at each state, by executing that policy. This value can be computed by the Equation 4-1,
where Qt(St, A) = E (

∑∞
t=0 γ

tRt). Once the IPro RL-agent knows the value of each state
under the current policy, it considers whether the value could be improved by changing the
first action taken. If the value can be improved, the RL-agent changes the policy to take
the new action whenever it is in that situation. This step guarantees an improvement in the
performance of the policy strictly. When no enhancements are possible, then the policy is
optimal.

Since IPro operates by successive approximations of an Optimal Value Function, its compu-
tational complexity, per iteration, is quadratic in the number of states (S) and linear in the
number of actions (A): (O

(
|A| |S|2

)
). Furthermore, the number of iterations required to

reach the Optimal Value Function is polynomial in the number of states and the magnitude
of the highest reward if the discount factor is held constant. In the worst case, the number
of iterations grows polynomially in 1

1−γ . Thus, the IPro RL-agent convergence rate slows
considerably as the discount factor nearby 1.

4.5.4. IPro Interactions

IPro uses RL to optimize the probing interval regarding CCO and CUC. For higher compres-
sion of how the IPro architecture elements interact at run time, the analysis is divided into
two general parts: statistics collection process and probing interval optimization process.

4.5.4.1. Statistics Collection Process

Figure 4-5 depicts how the elements of CP and DP interact in the statistics collection
process.

4.5 Probing Algorithm 37

Figure 4-5.: Sequence diagram of statistics collection process

1 Query Manager requests Probing Manager to set up the probing interval to handle the
data collection.

2 Probing Manager consults the data repository to know the probing interval and sets
up it how the current interval.

3 Query Manager handles the data collection based on the current probing interval and
the desired aggregation levels (e.g., byte, packet, flow).

4 Statistics Module collects statistical information from the switch at the current probing
interval using Read-State messages (request and reply). After this data collection,
Query Manager merges 5 and stores 6 the statistical information into the Data
Repository. Thus, this information can be used ulteriorly by upper-layer applications.

It is important to highlight that the collection process affects network behavior; the network
falls in a new state.

38 4 IPro

4.5.4.2. Probing Interval Optimization Process

Figure 4-6.: Sequence diagram of probing interval optimization process

Figure 4-6 depicts how the elements of MP and KP interact in the probing interval opti-
mization process.

1 Flow Statistics Collection extracts the statistical information from the Statistics Mod-
ule located at CP and provides this information to Data Processing.

2 Data Processing processes and organizes the information retrieved by Flow Statistics
Collection to determine and such a new state by analyzing CCO and CUC.

3 Data Processing stores the new state.

4 Data Processing sends the new state to RL-agent located at KP.

5 The RL-agent takes such a state to calculate the reward. Based on the reward, the
RL-agent decides the most-rewarding probing interval intended to minimize CCO and
CUC.

4.6 Final Remarks 39

6 The RL-agent stores this new probing interval to Data Repository. Probing Manager
applies this interval that affects the network behavior again (i.e., initiates Statistics
Collection Process). This process continues until the network administrator decides to
stop IPro.

4.6. Final Remarks

Initially, in this chapter, the fundamental concepts about KDN and RL (in particular Q-
learning) were described. This master dissertation considered these concepts for proposing
a KDN-based architecture (IPro) that keeps CCO and CUC within predefined thresholds
and maintains an acceptable MA. Subsequently, the IPro architecture and its architectural
elements were introduced and detailed. Finally, the RL-based algorithm (its functioning,
computational complexity, and interactions) that determines the probing interval considering
network traffic variations, CCO, and CUC was presented.

40 4 IPro

5. Evaluation

This chapter provides an extensive evaluation of the feasibility of using IPro as a practical
approach (i.e., in terms of CCO, CUC, and MA) for intelligent probing in SDN. This chapter
starts showing the test environment, including the SDN to monitor. After, this chapter
presents the IPro prototype developed and its impact (i.e., the change over the time of
Probing Interval) in CCO, CUC, and MA (of the throughput) in the test environment. This
chapter finishes showing the comparison of IPro with PPA and other adaptive approaches
by quantitative and qualitative analysis, respectively.

5.1. Setup

5.1.1. Test Environment

Figure 5-1 presents the test environment used to evaluate IPro. This environment includes
the campus network topology of the Federal University of Rio Grande do Sul [39], the Ryu
Controller, and the IPro prototype (cf. Section 5.1.2). The monitored topology includes
11 OpenFlow switches (version 1.3) that connect 230 hosts from 7 laboratories (with 20,
30, and 40 hosts) and 4 administration offices (each one with 10 hosts) through links with
a bandwidth of 10 Mbps each one. Furthermore, such topology includes a Web Server and
a File Server connected in one of the administration offices. Each switch of the network
is connected via a dedicated TCP channel to a remote Ryu controller used to coordinate
network-wide forwarding decisions. The Mininet emulator [110] was used to deploy the
monitored topology, which runs on a Ubuntu server with an Intel i7-4770 2.26 GHz and 8GB
RAM. The Ryu Controller runs on a Ubuntu server with a Core i7-4770 processor and 2GB
RAM.

42 5 Evaluation

IPro RYU
Controller

10

40

40

20301020

10

10

20

20

Video
 Server

Web
Server

SW-9 SW-7 SW-1 SW-2

SW-8 SW-10SW-11SW-3

SW-6 SW-4 SW-5

Figure 5-1.: Test Environment

To reliably test IPro, a realistic evaluation framework reflecting current and forecasted traffic
patterns (e.g., web, P2P, and video) was used. In this master dissertation, to two measure-
ment studies that investigate the composition of realistic traffic patterns [111, 112] was
resorted. The results indicate the dominance of Web traffic, amounting to 52% overall mea-
sured traffic, followed by video traffic with 25-40% of all traffic, while P2P traffic constituting
only 18.3% of total traffic. Thus, in all experiments, only Video and Web traffic was gener-
ated, in a proportion of 75% to 25%, respectively.

The Video traffic was generated by using the VLC media player [113] that can be used as a
server and as a client to stream and receive video streams. The Web traffic was generated
by using the Apache Server [114] and http-clients based on Linux wget. These servers and
clients were included in the campus topology. In this evaluation was assumed that all 230
hosts are active during the whole experiment time and place a request on average every 30
seconds. Furthermore, all experiment results have a confidence level equal to or higher than
95%.

5.1.2. Prototype

Figure 5-2 depicts the IPro prototype including: RL-agent, Data Processing, Flow Statistics
Collection, Data Repository, Probing Manager, Query Manager, and Statistics Module. RL-
agent and Data Processing were developed and deployed using version 1.15 of Numpy that

5.1 Setup 43

is the fundamental Python package for scientific computing. Probing Manager, Query Man-
ager, and Statistics Module were developed using the REST-based API provided by Ryu.
This API helps to retrieve the switch statistics. Flow Statistics Collection was developed
using the Ryu API based on Python. Data Repository was developed in MySQL. The IPRo
prototype (including all test scripts) is available in [115].

Figure 5-2.: IPro - Prototype

It is important to highlight that the Statistics Module interacts with DP by the OpenFlow
Protocol [101]. This protocol was used because it has progressively turned on the SBI de-
facto standard in SDN [29]. OpenFlow describes an open protocol that allows software
applications to program (i.e., add, update, and delete flow entries) the flow table of the
OpenFlow-compliant switches. In particular, the Statistics Module uses the OpenFlow ver-
sion 1.3. Specifically, this module uses two Read-State (Request-Reply) messages to collect
information from the switch, such as current configuration, statistics, and capabilities. The
controller sends a Read-State Request message to the switches to request the traffic statis-
tics of flows. The switches communicate to the controller the requested traffic statistics via

44 5 Evaluation

Read-State Reply messages. To get OpenFlow details, the reader to Openflow specification
is refered [101].

5.1.3. Space of States

To determine the finite space of states (cf. Equation 4-5) that the IPro RL-agent needs to
operate, first, the CCO (cf. Equation 4-6), CUC (cf. Equation 4-7), and MA (cf. Equation 4-
9) were estimated and experimentally measured when the probing interval varies. The
probing intervals between 1 and 15 seconds were manually tested (in steps of 1 second).
For each interval, the test duration was 600 seconds. Second, the CCO and CUC were
discretized by using the obtained results.

5.1.3.1. Control Channel Overhead

Aiming at determining the space of states that the IPro RL-agent needs to operate, Figure 5-
3 presents the impact of the probing intervals on CCO. If the network is monitored with
a probing interval upper or equal than 5 seconds, the overhead is lower than 12%. When
this interval is smaller than 5 seconds the overhead increases (top than 20%) due to the big
size and quantity of Read-State (Request-Reply) messages (cf. Equation 4-6). These results
corroborate that the probing interval affects CCO significantly.

Figure 5-3.: CCO Variation

5.1 Setup 45

5.1.3.2. CPU Usage of the Controller

Aiming at determining the space of states that the IPro RL-agent needs to operate, Fig-
ure 5-4 presents the impact of the probing intervals on CUC. If the network is monitored
with a probing interval upper or equal than 5 seconds, CUC increases on average 8.5%
approximately. Nevertheless, when this interval is smaller than 5 seconds, CUC increases
(top than 20.5%) because the controller collects statistics information more frequently. As
a consequence, the controller CPU must process a higher amount of instructions per second
for (de)fragmenting and reading the Read-State messages. Overall, these results corroborate
that the probing interval can affect CUC significantly.

Figure 5-4.: CUC Variation

5.1.3.3. Monitoring Accuracy

To evaluate MA, the throughput metric was measured in each probing interval and deter-
mine its respective accuracy using Equation 4-9. Figure 5-5 depicts the evaluation results,
disclosing that MA in the throughput measured is higher than 80% when the probing in-
terval varies between 4 and 6 seconds. In particular, the interval of 5 seconds reports the
highest MA (88.83%). In turn, the intervals of 6 seconds and 4 seconds achieve an MA equal
to 86.06% and 83.83%, respectively. Nonetheless, MA reduces considerably for the other
probing intervals. For instance, the interval of 7 seconds accomplishes an MA lower than
69.93% due to the reduction in the quantity of collected information. In turn, the prob-
ing intervals 1, 2, and 3 seconds lead to high CCO that interferes with SDN management

46 5 Evaluation

Figure 5-5.: MA of throughput

messages. Furthermore, these intervals also lead to high CUC that compromises the correct
operation of the controller and, so, of the underlying data plane. These two facts deteriorate
the correct operation of the network generating high TCP errors and low processing of SDN
management messages (cf. Figure 5-6). Therefore, the MA of data collected is also affected.
In summary, the above results corroborate that the probing interval affects MA significantly.

5.1.3.4. Spaces Discretization

Since IPro is RL-based, it models its environment as a finite MDP. In order to get a finite
space of states, the CCO and CUC were discretized by using the results above presented (cf.
Figures 5-3 and 5-4) as follows:

1. The values of CCO and CUC are represented in the interval [0, 1], where 0 represents
0% and 1 represents 100%.

2. The policy 1 (related to the threshold ω) is set to 80% aiming at preventing response
times of controller upper than 1 millisecond [99]. Thus,
CCO: l = {[0, 0.4) , [0.4, 0.5) , [0.5, 0.6) , [0.6, 0.7) , [0.7, 0.8)}.

3. The policy 2 (related to the threshold χ) is set to 80% targeting to avoid interference
with essential SDN functions (e.g., packet forwarding and route updating) and the

5.2 Intelligent Probing Behavior 47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Probing interval (s)

0

2

4

6

8

10

12

Er
ro

r (
%

) Error higher than 5%

TCP-Errors

Figure 5-6.: TCP errors generated by Monitoring Interference

reduction of network performance [100]. Thus,
CUC: cpu = {[0, 0.4) , [0.4, 0.5) , [0.5, 0.6) , [0.6, 0.7) , [0.7, 0.8)}.

4. The Probing Interval: i = {[4, 10]}.

It is important to highlight that CCO and CUC can be divided into smaller sub-intervals to
facilitate the RL-agent decision making process. However, smaller intervals increase the size
of the space of states and, so, slow down the learning process convergence rate. Thus, the
discretized space of states is:

S ≡ f (i, l, cpu) :i ∈ [4, 10] , l = {0, 0.4, 0.5, 0.6, 0.7, 0.8} ,
cpu = {0, 0.4, 0.5, 0.6, 0.7, 0.8}

(5-1)

5.2. Intelligent Probing Behavior

To evaluate the IPro prototype (cf. Algorithm 3), its impact (i.e., the change over the time
of Probing Interval) in CCO, CUC, and MA (of the throughput) was tested in the test
environment described in Section 5.1. Figure 5-7 depicts the evaluation results, disclosing
diverse facts.

48 5 Evaluation

0 100 200 300 400 500 600
(a)

0.0

0.5

1.0

1.5

CC
O

(%
) CCO 1.23%

Exploration

0 100 200 300 400 500 600
(b)

0

20

40

60

CU
C

(%
)

CUC increase 7.4%

47.3%

CUC without IPro
CUC with IPro

0 100 200 300 400 500 600
(c)

50

60

70

80

90

100

M
A

(%
)

96%

 MA of throughput

0 100 200 300 400 500 600
(d)

 Time (s)

4

6

8

10

In
te

rv
al

 (s
)

238

Probing Interval

Figure 5-7.: Behavior of the CCO, CUC, MA, and Probing Interval

• During the first 238 seconds (convergence time), CCO, CUC, and MA present a highly
fluctuating behaviour Figure 5-7(a,b,c). This behaviour is because the RL-agent does
not have a previous knowledge (i.e., the Q-function starts empty and is filled during
this time). Therefore, it is necessary that such an agent starts the exploration process
to determine the effect of each action on the network status (i.e., learning process).
Figure 5-7(d) illustrates how the Probing Interval changes during the learning pro-

5.2 Intelligent Probing Behavior 49

cess. As the learning process advances, the RL-agent visits each state of the space of
states (cf. Equation 5-1) multiple times aiming at finding the most-rewarding probing
strategy (i.e., the convergence of the learning process).

• After the convergence time, IPro has a CCO near to 1.23%, a CUC around 7.4%, and
a MA about 96%. This result demonstrates that, in terms of CCO, CUC, and MA,
IPro has good behavior. When the learning process tends to converge, the fluctuations
of CCO, CUC, and MA decrease to a smaller radius. This convergence is because a
normal distribution function (cf. Equation 4-4) was chosen whereby IPro gradually
moves to adjacent states to the target state (i.e., calibrates the action-value function).
In particular, IPro provides the best behaviour regarding CCO, CUC, and MA when
it probes the network with intervals between 4 and 6 seconds.

• It is important to highlight that IPro does not stop its learning because, in real net-
works, the environment will always be changing and evolving.

To determine the performance of IPro itself, the consumption of CPU and memory of its
RL-agent was evaluated. Figure 5-8 depicts the evaluation results, disclosing that this RL-
agent does not consume intensively the KP resources, approximately 1% -2% of CPU and
30MBytes. These results demonstrate that, in terms of CPU and memory, IPro RL-agent is
efficient.

0 100 200 300 400 500 600
time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CP
U

(%
)

CPU Usage
Memory

0

5

10

15

20

25

30

35

M
em

or
y

(M
B)

Figure 5-8.: Behavior of the CPU usage and memory of RL-agent

50 5 Evaluation

5.3. Comparison

IPro was compared to PPA (i.e., a pull-based approach targeted to monitor the network
switches with a pre-defined probing interval) regarding CCO, CUC, and MA after and before
the convergence time. The probing intervals tested were ranging between 1 and 15 seconds
(in steps of 1 second). For each interval, the test was performed 32 times during 600 seconds
(the initial 238 seconds correspond to convergence time), aiming at obtaining the average
of CCO, CUC, and MA. Next, only the 4, 5, and 6 seconds probing intervals was analyzed
because, in them, the MA of measurements of both throughput and delay metrics is higher
than 80%. Finally, the comparison of IPro with other adaptive approaches was extended by
a qualitative analysis.

5.3.1. After Converging

Probing MA of MA of CUC [%] CCO [%]
Interval [s] Throughput [%] Delay [%]

IPro 96.17 94.78 7.40 1.23

PPA with 4 83.59 82.50 20.60 17.40

PPA with 5 91.38 89.50 11.70 11.45

PPA with 6 86.35 81.03 10.10 11.33

Table 5-1.: Comparison after converging

After converging (i.e., the RL-agent has learned), the experimental results (cf. Table 5-1)
reveal diverse facts related to the use of RL for tuning the probing interval:

• IPro has a CCO significantly smaller than PPA. The reduction in the intervals of 4, 5,
and 6 seconds is around 16.17%, 10.22%, and 10.1%, respectively.

• IPro uses better the CPU of the controller than PPA about 13.2%, 4.3%, and 2.7%,
respectively.

• IPro achieves a higher MA when used to measure the throughput metric than PPA
about 12.58%, 4.79%, and 9.82%, respectively.

• IPro achieves a higher MA when used to measure the delay metric than PPA about
12.28%, 5.28%, and 13.75%, respectively.

These facts are because, at each time step, IPro uses the network state for improving its
control policies and, then, takes the best action based on the improved policies. These

5.3 Comparison 51

policies lead to better monitoring regarding CCO and CUC. To sum up, the RL-agent of
IPro provides a good behavior in CCO and CUC without compromising MA.

5.3.2. Before Converging

Probing MA of MA of CUC [%] CCO [%]
Interval [s] Throughput [%] Delay [%]

IPro 85.58 84.60 7.56 1.23

PPA with 4 87.05 85.30 22.32 17.40

PPA with 5 90.63 91.50 10.12 11.45

PPA with 6 89.44 86.02 11.08 11.33

Table 5-2.: Comparison before converging

Before converging (i.e., the RL-agent is learning), the experimental results (cf. Table 5-2)
reveal diverse facts related to the use of RL for tuning the probing interval.

• IPro achieves a smaller MA in the throughput measurement than PPA, about 1.44%,
5.05%, and 3.86% in the intervals of 4, 5, and 6 seconds, respectively.

• IPro achieves a smaller MA in the delay measurement than PPA, about 0.7%, 6.9%,
and 1.42%, respectively.

These facts are because, in this period, IPro explores the effect of each action on the network
status (i.e., learning process). To sum up, IPro requires a time to capture the environment
model before converging to the optimal policy. Conversely, as presented in Section 5.3.1,
when the RL-agent converges to the optimal policy; it gets the most-rewarding probing in-
terval that minimizes the performance degradation (regarding CCO and CUC) caused by
monitoring tasks and improving MA (regarding throughput and delay).

5.3.3. Qualitative Analysis

Table 5-3 presents a qualitative comparison between IPro and other adaptive methods,
disclosing diverse facts.

• Methods such as [14, 15, 16] obtain accurate measurements using adaptive techniques
and threshold-based methods at expenses of increasing CCO and CPU usage (i.e., im-
balance between MA and CCO/CPU). IPro offers an RL-based algorithm that obtains

52 5 Evaluation

Table 5-3.: Comparison between IPro and other adaptive methods – H → High and L →
Low

Work

A
d
ap

ti
ve

A
cc

u
ra

cy

O
ve

rh
ea

d

C
P

U

M
L Description

IPro D H L L D An RL-based algorithm is used to get an optimal probing interval to achieve a trade-off
between MA, CCO, and CUC

[14] D H H H Adaptive sampling algorithms are used to tune the load level generated by monitoring
process

[15] D H H H Thresholds are used to adjust the load level generated by monitoring process
[16] D H H H An adaptive fetching mechanism monitors per-flow metrics, such as throughput, delay,

and packet loss
[17] D H L L An adaptive flows statistical collection method is used to adjust the polling intervals
[22] D H L L A small set of matching rules and secondary controllers are used to identify and monitor

aggregate flows
[24] D H L L A self-tuning monitoring mechanism is used to automatically adapt its settings based

on the traffic dynamism
[25] D H L H Extra modules are included in the switches to distribute the monitoring tasks in a

balanced way
[26] D H L L A two layers hierarchy of controllers is described. The lowest layer polls the flow statistic

and forwards statistics to the top layer. The highest layer coordinates the controllers
located at the lowest level

accurate measurements with CCO and CPU usage negligible (i.e., achieves a trade-off
between MA, CCO, and CUC).

• Methods such as [22, 24, 25, 26] obtain accurate measurements with low overhead using
distributed controllers. These methods differ significantly from IPro. Whereas goal
IPro is to optimize the probing interval, these methods focus on merges the collected
statistics by every controller in an only statistic metric.

• None of these adaptive approaches consider ML-bases mechanisms that optimize such
a trade-off by learning from the network behavior, causing potential bottlenecks in the
control channel, packet/flow loss, and performance drops.

Finally, in this qualitative analysis, it is essential to highlight two facts. The first one, the
convergence time is an intrinsic parameter of RL-based approaches. The RL-agent exploits
known actions to obtain a reward and explores new ones to make better decisions. This
agent tries a variety of actions to progressively favor those that appear to be the best. The
exploration and exploitation principles introduce a challenge related to the balance between
them, which is known as the exploration-exploitation dilemma. This master dissertation
does not address this challenge. Indeed, in the IPro prototype, the e-greedy exploration
method was used and did not test another one. Second, the learning time of any RL-agent

5.4 Final Remarks 53

depends mainly on the size of the space of states; due to it, this master dissertation used a
finite one.

5.4. Final Remarks

This chapter presented the test environment used to evaluate IPro, its prototype, and the
evaluation. To reliably evaluate IPro, a realistic evaluation framework was used reflecting
current and forecasted traffic patterns (e.g., web, P2P, and video). In all experiments, only
video and Web traffic were generated, in a proportion of 75% to 25%, respectively (given
that the size of the video requests generates more traffic than web requests. Furthermore,
all experiment results have a confidence level equal to or higher than 95%. Such evaluation
was carried out in terms of the following metrics: CCO, CUC, and MA.

The evaluation results revealed several facts:

• IPro has a CCO significantly smaller than PPA. The reduction in the intervals of 4, 5,
and 6 seconds is around 16.17%, 10.22%, and 10.1%, respectively.

• In the same intervals, IPro uses better the CPU of the controller than PPA about
13.2%, 4.3%, and 2.7%, respectively.

• In the mentioned intervals, IPro achieves a higher MA when used to measure the
throughput metric than PPA about 6.28%, 1.28%, and 4.05%, respectively.

• In the analyzed intervals, IPro achieves a higher MA when used to measure the delay
metric than PPA about 9.9%, 6.1%, and 9.58%, respectively. These facts are because,
at each time step, IPro uses the network state for improving its control policies and,
then, takes the best action based on the improved policies. These policies lead to
better monitoring regarding CCO and CUC.

• RL-agent does not consume intensively the KP resources, approximately 1% -2% of
CPU and 30MBytes. Therefore, it can be stated that the IPro RL-agent is efficient
regarding CPU and memory.

To sum up, the evaluation results demonstrate that, in terms of CCO, CUC, and MA, it
is feasible to use the proposed approach for monitoring SDN. In this sense, such results
confirming the relevance of the concepts of KDN (SDN and RL).

From a qualitative point of view, the main characteristics provided by the proposal intro-
duced in this master dissertation are: first, IPro offers an RL-based algorithm that obtains
accurate measurements with CCO and CPU usage negligible (i.e., achieves a trade-off be-
tween MA, CCO, and CUC). Second, none of these adaptive approaches consider ML-bases

54 5 Evaluation

mechanisms that optimize such a trade-off by learning from the network behavior, causing
potential bottlenecks in the control channel, packet/flow loss, and performance drops. Third,
current adaptive methods differ significantly from IPro. Whereas goal IPro is to optimize the
probing interval, these methods focus on merges the collected statistics by every controller
in an only statistic metric.

According to the evaluation results and the qualitative characteristics of the proposed ap-
proach, it can be considered as a step forward in the network monitoring. KDN is led to a
novel application domain located at the intersection of ML, SDN, and network monitoring.

6. Conclusions

This chapter starts summarizing the research work carried out in this dissertation. Then, the
answer is provided for the research question raised to guide the verification of the hypothe-
sis defended in this master dissertation. Afterward, the main contributions achieved when
conducting such verification are presented. Finally, directions for future work are outlined.

This master dissertation presented the investigation carried out to verify the hypothesis:
“The Machine Learning allows intelligent probing on SDN, improving the accu-
racy traffic monitoring and reducing the corresponding overhead” . Based on the
hypothesis, an approach (called IPro) that follows the concept of the KDN paradigm was
proposed. Such an approach determines the probing interval that keeps within thresholds
(target values) the Control Channel Overhead (CCO) and the Extra CPU Usage of the Con-
troller (CUC) using RL concept.

This dissertation also presented the reference implementation of the IPro by a prototype,
as well as its evaluation and analysis. The IPro prototype in an emulated environment
by using a campus network topology was evaluated. The evaluation results demonstrated
that the proposed approach is effective for network monitoring because it achieved to keep
the CCO less than 1.23% and CUC less than 8%. Furthermore, IPro has a better MA (≥
90%) than the Periodic Probing Approach (PPA), a pull-based approach that monitors the
switches with a pre-defined probing interval. The experimental results also indicated that
IPro requires considerable time (approximately 238 seconds) to converge to the target state.
The contributions achieved in this dissertation are:

• The IPro architecture that provides a simple and efficient solution to monitor SDN-
based networks by following KDN.

• The RL-based algorithm that determines the probing interval considering network
traffic variations and keeps CCO and CUC within target values.

• The IPro prototype that implements the proposed architecture.

56 6 Conclusions

6.1. Answering the Research Question

At the beginning of this dissertation, one research question was defined to guide the investi-
gation about the feasibility of using KDN as a practical approach for intelligent probing in
SDN. Such a question is revised and answered in the following paragraph.

Research Question: How to intelligently probing SDN with a high accuracy and with a
negligible network overhead?

Answer: TE is an essential tool to assist the SDN operation [7], aiming at improving the
utilization of network resources and enhancing the QoS. To carry out TE an efficient and
reliable traffic monitoring approach that accurately and timely collects the statistics of flows
is necessary. This accurate statistics collection implies an increase of CUC and CCO that can
lead to an overload of the controller and significantly interfere with essential SDN functions,
respectively. The proposed approach (IPro) permitted to overcome such CUC and CCO,
confirming the importance of the concepts of KDN and RL. Using an extensive quantitative
evaluation, it is demonstrated that in terms of CCO, CUC, and MA, IPro is an efficient
approach for SDN monitoring. In fact, the evaluation results showed that the proposed
approach is useful for network monitoring because it achieved to keep the CCO less than
1.23% and CUC less than 8%. Furthermore, IPro has a better MA (≥ 90%) than PPA, a
pull-based approach that monitors the switches with a pre-defined probing interval.

6.2. Contributions

This dissertation investigated the feasibility of using KDN as a practical approach for intel-
ligent probing in SDN. The carrying out of such investigation led to the following significant
contributions.

• The KDN-based architecture. This architecture provides an efficient solution for
tuning the probing interval in SDN, which keeps CCO and CUC within predefined
thresholds while it maintains an acceptable MA.

• The RL-based algorithm. This algorithm determines the probing interval consid-
ering network traffic variations, CCO, and CUC.

• The IPro prototype. This prototype implements the proposed architecture.

The above-mentioned contributions were reported to the scientific community through paper
submissions to renowned journals (see Appendix A).

6.3 Future work 57

• A paper published in the journal Computer Networks. Colciencias index: A1.

• A paper submitted to the journal IEEE Latin America Transactions. Colciencias index:
A2.

6.3. Future work

During the carrying out of this master dissertation, interesting opportunities for further
research were observed. These opportunities are outlined below.

• Convergence time. IPro was implemented and analyzed using only Q-learning ap-
proach. Therefore, there is an opportunity to extend it by using other methods such
as model-free approach (e.g., Q-learning with Experience Replay) and model-based
approach (e.g., Deep Reinforcement Learning) to reduce the convergence time.

• Reward function. The reward function of IPro was analyzed only in terms of CCO
and CUC. Thus, there is a chance to propose its reward function using other parameters
such as MA and computational resources of switches, aiming at improving the probing
interval estimation.

Bibliography

[1] P. Tsai, C. Tsai, C. Hsu, and C. Yang, “Network monitoring in software-defined net-
working: A review,” IEEE Systems Journal, vol. 12, pp. 3958–3969, Dec 2018. xvii,
8

[2] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón, M. Solé,
V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett, et al., “Knowledge-defined net-
working,” ACM SIGCOMM Computer Communication Review, vol. 47, no. 3, pp. 2–10,
2017. xvii, 22, 23, 28, 31

[3] C. C. Machado, L. Z. Granville, A. Schaeffer-Filho, and J. A. Wickboldt, “Towards
sla policy refinement for qos management in software-defined networking,” in IEEE
28th International Conference on Advanced Information Networking and Applications,
pp. 397–404, May 2014. 1, 8

[4] Á. López-Raventós, F. Wilhelmi, S. Barrachina-Muñoz, and B. Bellalta, “Machine
learning and software defined networks for high-density wlans,” arXiv preprint
arXiv:1804.05534, 2018. 1

[5] J. d. J. Gil Herrera and J. F. B. Vega, “Network functions virtualization: A survey,”
IEEE Latin America Transactions, vol. 14, pp. 983–997, Feb 2016. 1, 6

[6] F. Estrada-Solano, A. Ordonez, L. Z. Granville, and O. M. C. Rendon, “A framework
for sdn integrated management based on a cim model and a vertical management
plane,” Computer Communications, vol. 102, pp. 150 – 164, 2017. 1, 6

[7] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic engi-
neering in sdn-openflow networks,” Elsevier, Computer Networks, vol. 71, pp. 1 – 30,
2014. 1, 7, 56

[8] O. M. C. Rendon, C. R. P. dos Santos, A. S. Jacobs, and L. Z. Granville, “Monitoring
virtual nodes using mashups,” Computer Networks, vol. 64, pp. 55–70, 2014. 1, 9

[9] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V. Madhyastha, FlowSense:
Monitoring Network Utilization with Zero Measurement Cost, pp. 31–41. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2013. 1

Bibliography 59

[10] J. Suh, T. T. Kwon, C. Dixon, W. Felter, and J. Carter, “Opensample: A low-latency,
sampling-based measurement platform for commodity sdn,” in IEEE 34th International
Conference on Distributed Computing Systems, pp. 228–237, June 2014. 1

[11] M. Aslan and A. Matrawy, “On the impact of network state collection on the perfor-
mance of sdn applications,” IEEE Communications Letters, vol. 20, no. 1, pp. 5–8,
2016. 1, 10

[12] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Flowcover: Low-cost flow monitoring scheme
in software defined networks,” in Global Communications Conference (GLOBECOM),
2014 IEEE, pp. 1956–1961, IEEE, 2014. 1, 2, 10, 18, 19

[13] K. Dharsee, E. Johnson, and J. Criswell, “A software solution for hardware vulnera-
bilities,” in 2017 IEEE Cybersecurity Development (SecDev), pp. 27–33, IEEE, 2017.
1

[14] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A low cost network
monitoring framework for software defined networks,” in IEEE Network Operations and
Management Symposium, pp. 1–9, May 2014. 2, 15, 16, 18, 19, 51, 52

[15] D. Raumer, L. Schwaighofer, and G. Carle, “Monsamp: A distributed sdn application
for qos monitoring,” in Federated Conference on Computer Science and Information
Systems, pp. 961–968, Sept 2014. 2, 15, 18, 19, 51, 52

[16] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network moni-
toring in openflow software-defined networks,” in IEEE Network Operations and Man-
agement Symposium, pp. 1–8, May 2014. 2, 15, 18, 19, 51, 52

[17] H. Tahaei, R. Salleh, S. Khan, R. Izard, K.-K. R. Choo, and N. B. Anuar, “A
multi-objective software defined network traffic measurement,” Measurement, vol. 95,
pp. 317–327, 2017. 2, 16, 18, 19, 52

[18] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, OpenTM: Traffic Matrix Estimator
for OpenFlow Networks, pp. 201–210. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010. 2, 16, 18, 19

[19] P. Sun, M. Yu, M. J. Freedman, J. Rexford, and D. Walker, “Hone: Joint host-network
traffic management in software-defined networks,” Journal of Network and Systems
Management, vol. 23, pp. 374–399, Apr 2015. 2, 16, 18, 19

[20] X. T. Phan and K. Fukuda, “Sdn-mon: Fine-grained traffic monitoring framework in
software-defined networks,” Journal of Information Processing, vol. 25, pp. 182–190,
2017. 2, 17, 18, 19

60 Bibliography

[21] L. Liao, V. C. M. Leung, and M. Chen, “An efficient and accurate link latency moni-
toring method for low-latency software-defined networks,” IEEE Transactions on In-
strumentation and Measurement, vol. 68, pp. 377–391, Feb 2019. 2, 17, 18, 19

[22] L. Jose and M. Yu, “Online measurement of large traffic aggregates on commodity
switches,” in USENIX Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services, Boston, MA, USA,March 29, 2011, 2011. 2,
17, 18, 19, 21, 33, 52

[23] G. Tangari, D. Tuncer, M. Charalambides, and G. Pavlou, “Decentralized monitoring
for large-scale software-defined networks,” in IFIP/IEEE Symposium on Integrated
Network and Service Management, pp. 289–297, May 2017. 2, 8, 17, 18, 19

[24] G. Tangari, D. Tuncer, M. Charalambides, Y. Qi, and G. Pavlou, “Self-adaptive de-
centralized monitoring in software-defined networks,” IEEE Transactions on Network
and Service Management, vol. 15, pp. 1277–1291, Dec 2018. 2, 18, 19, 52

[25] X. T. Phan, I. D. Martinez-Casanueva, and K. Fukuda, “Adaptive and distributed
monitoring mechanism in software-defined networks,” in 2017 13th International Con-
ference on Network and Service Management (CNSM), pp. 1–5, Nov 2017. 2, 17, 18,
19, 52

[26] H. Tahaei, R. B. Salleh, M. F. Ab Razak, K. Ko, and N. B. Anuar, “Cost effective
network flow measurement for software defined networks: A distributed controller
scenario,” IEEE Access, vol. 6, pp. 5182–5198, 2018. 2, 16, 18, 19, 52

[27] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellectual history
of programmable networks,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 87–98,
Apr. 2014. 6, 7, 15

[28] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the
IEEE, vol. 103, pp. 14–76, Jan 2015. 6, 31

[29] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey
of software-defined networking: Past, present, and future of programmable networks,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634. 6, 43

[30] O. N. Foundation, “Sdn architecture 1.0 overview,” Open Network Foundation, 2014.
6

[31] Z. Shu, J. Wan, J. Lin, S. Wang, D. Li, S. Rho, and C. Yang, “Traffic engineering
in software-defined networking: Measurement and management,” IEEE Access, vol. 4,
pp. 3246–3256, 2016. 7

Bibliography 61

[32] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and principles
of internet traffic engineering,” tech. rep., 2002. 7

[33] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of routing optimization
for internet traffic engineering,” IEEE Communications Surveys Tutorials, vol. 10,
pp. 36–56, First 2008. 7

[34] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat, “Hedera:
Dynamic flow scheduling for data center networks,” in Proceedings of the 7th USENIX
Conference on Networked Systems Design and Implementation, (Berkeley, CA, USA),
pp. 19–19, USENIX Association, 2010. 7, 8

[35] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained traffic engineer-
ing for data centers,” in Proceedings of the Seventh Conference on emerging Networking
Experiments and Technologies, p. 8, ACM, 2011. 8

[36] V. Mohan, Y. J. Reddy, and K. Kalpana, “Active and passive network measurements:
a survey,” International Journal of Computer Science and Information Technologies,
vol. 2, no. 4, pp. 1372–1385, 2011. 8, 9

[37] T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification of network traf-
fic based on c5.0 machine learning algorithm,” in 2012 International Conference on
Computing, Networking and Communications (ICNC), pp. 237–241, Jan 2012. 9

[38] S. Dong, D. Zhou, and W. Ding, “The study of network traffic identification based on
machine learning algorithm,” in 2012 Fourth International Conference on Computa-
tional Intelligence and Communication Networks, pp. 205–208, Nov 2012. 9

[39] P. H. Isolani, J. A. Wickboldt, C. B. Both, J. Rochol, and L. Z. Granville, “Interactive
monitoring, visualization, and configuration of openflow-based sdn,” in Integrated Net-
work Management (IM), 2015 IFIP/IEEE International Symposium on, pp. 207–215,
IEEE, 2015. 9, 31, 41

[40] N. Hu and P. Steenkiste, “Evaluation and characterization of available bandwidth
probing techniques,” IEEE Journal on Selected Areas in Communications, vol. 21,
pp. 879–894, Aug 2003. 9

[41] B. Claise, “Cisco systems netflow services export version 9,” tech. rep., 2004. 9

[42] P. Phaal, S. Panchen, and N. McKee, “Inmon corporation’s sflow: A method for mon-
itoring traffic in switched and routed networks,” tech. rep., 2001. 9

[43] B. Claise, “Cisco systems netflow services export version 9,” tech. rep., 2004. 9, 15

62 Bibliography

[44] A. C. Myers and A. C. Myers, “Jflow: Practical mostly-static information flow con-
trol,” in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pp. 228–241, ACM, 1999. 9, 15

[45] M. Wang, B. Li, and Z. Li, “sflow: Towards resource-efficient and agile service federa-
tion in service overlay networks,” in Distributed Computing Systems. Proceedings. 24th
International Conference on, pp. 628–635, IEEE, 2004. 9, 15

[46] M. Malboubi, Y. Gong, W. Xiong, C. N. Chuah, and P. Sharma, “Software defined
network inference with passive x002f;active evolutionary-optimal probing (sniper),” in
24th International Conference on Computer Communication and Networks, pp. 1–8,
Aug 2015. 10

[47] S. Ayoubi, N. Limam, M. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada, and
O. Caicedo, “Machine learning for cognitive network management,” IEEE Commu-
nications Magazine, 2018. 11

[48] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine Learning for Networking:
Workflow, Advances and Opportunities,” ArXiv e-prints, Sept. 2017. 11, 12

[49] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntes-Mulero, and A. Cabellos, “A
deep-reinforcement learning approach for software-defined networking routing opti-
mization,” arXiv preprint arXiv:1709.07080, 2017. 11

[50] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012. 11

[51] C. M. Bishop, Pattern recognition and machine learning. springer, 2006. 11, 12

[52] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-Solano,
and O. M. Caicedo, “A comprehensive survey on machine learning for networking:
evolution, applications and research opportunities,” Journal of Internet Services and
Applications, vol. 9, p. 16, Jun 2018. 11, 12, 15

[53] Y. Li, H. Liu, W. Yang, D. Hu, X. Wang, and W. Xu, “Predicting inter-data-center
network traffic using elephant flow and sublink information,” IEEE Transactions on
Network and Service Management, vol. 13, no. 4, pp. 782–792, 2016. 11

[54] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Yanhui Geng, Li Chen, K. Chen,
and Hao Jin, “Online flow size prediction for improved network routing,” in 2016 IEEE
24th International Conference on Network Protocols (ICNP), pp. 1–6, Nov 2016. 11

[55] Z. Chen, J. Wen, and Y. Geng, “Predicting future traffic using hidden markov models,”
in 2016 IEEE 24th International Conference on Network Protocols (ICNP), pp. 1–6,
IEEE, 2016. 11

Bibliography 63

[56] B. Bojovic, N. Baldo, and P. Dini, “A cognitive scheme for radio admission control in
lte systems,” in 2012 3rd International Workshop on Cognitive Information Processing
(CIP), pp. 1–3, IEEE, 2012. 11

[57] D. Vassis, A. Kampouraki, P. Belsis, and C. Skourlas, “Admission control of video
sessions over ad hoc networks using neural classifiers,” in 2014 IEEE Military Com-
munications Conference, pp. 1015–1020, IEEE, 2014. 11

[58] G. Quer, N. Baldo, and M. Zorzi, “Cognitive call admission control for voip over
ieee 802.11 using bayesian networks,” in 2011 IEEE Global Telecommunications
Conference-GLOBECOM 2011, pp. 1–6, IEEE, 2011. 11

[59] A. Snow, P. Rastogi, and G. Weckman, “Assessing dependability of wireless networks
using neural networks,” in MILCOM 2005-2005 IEEE Military Communications Con-
ference, pp. 2809–2815, IEEE, 2005. 11

[60] X. Lu, H. Wang, R. Zhou, and B. Ge, “Using hessian locally linear embedding for au-
tonomic failure prediction,” in 2009 World Congress on Nature & Biologically Inspired
Computing (NaBIC), pp. 772–776, IEEE, 2009. 11

[61] A. Pellegrini, P. Di Sanzo, and D. R. Avresky, “A machine learning-based framework
for building application failure prediction models,” in 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop, pp. 1072–1081, IEEE, 2015. 11

[62] J. Liu, I. Matta, and M. Crovella, “End-to-end inference of loss nature in a hybrid
wired/wireless environment,” 2003. 11

[63] N. Fonseca and M. Crovella, “Bayesian packet loss detection for tcp,” in Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and Communications So-
cieties., vol. 3, pp. 1826–1837, IEEE, 2005. 11

[64] A. Jayaraj, T. Venkatesh, and C. S. R. Murthy, “Loss classification in optical burst
switching networks using machine learning techniques: improving the performance of
tcp,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 6, pp. 45–54,
2008. 12

[65] E. Castillo, D. C. Corrales, E. Lasso, A. Ledezma, and J. C. Corrales, “Data processing
for a water quality detection system on colombian rio piedras basin,” in International
Conference on Computational Science and Its Applications, pp. 665–683, Springer,
2016. 12

[66] E. F. Castillo, W. F. Gonzales, I. D. López, A. Figueroa, D. C. Corrales, M. G. Hoyos,
and J. C. Corrales, “Water quality warnings based on cluster analysis in colombian
river basins,” Sistemas & Telemática, vol. 13, no. 33, pp. 9–26, 2015. 12

64 Bibliography

[67] B. Zhang, I. Valentine, and P. D. Kemp, “A decision tree approach modelling func-
tional group abundance in a pasture ecosystem,” Agriculture, Ecosystems Environ-
ment, vol. 110, no. 3, pp. 279 – 288, 2005. 12

[68] T. Y. Kim, K. J. Oh, I. Sohn, and C. Hwang, “Usefulness of artificial neural networks for
early warning system of economic crisis,” Elsevier, Expert Systems with Applications,
vol. 26, no. 4, pp. 583–590, 2004. 12

[69] M. Ø. Nielsen, “Local empirical spectral measure of multivariate processes with long
range dependence,” Stochastic Processes and Their Applications, vol. 109, no. 1,
pp. 145–166, 2004. 12

[70] S. Dua and X. Du, Data Mining and Machine Learning in Cybersecurity. Boston, MA,
USA: Auerbach Publications, 1st ed., 2011. 12

[71] B. Thuraisingham, “Data mining and cyber security,” in Third International Confer-
ence on Quality Software, 2003. Proceedings., pp. 2–, Nov 2003. 12

[72] T. O. Ayodele, “Introduction to machine learning,” in New Advances in Machine Learn-
ing, InTech, 2010. 12

[73] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised and Semi-supervised Clus-
tering: a Brief Survey,” A Review of Machine Learning Techniques for Processing
Multimedia Content, Report of the MUSCLE European Network of Excellence (FP6),
2004. 12

[74] M. Rehman and S. A. Mehdi, “Comparison of density-based clustering algorithms,”
Lahore College for Women University, Lahore, Pakistan, University of Management
and Technology, Lahore, Pakistan, 2006. 12

[75] G. Tesauro, “Temporal difference learning and td-gammon,” 1995. 13

[76] J. Yoshimoto, S. Ishii, and M.-a. Sato, “Application of reinforcement learning to bal-
ancing of acrobot,” in IEEE SMC’99 Conference Proceedings. 1999 IEEE International
Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), vol. 5, pp. 516–
521, IEEE, 1999. 13

[77] R. H. Crites and A. G. Barto, “Elevator group control using multiple reinforcement
learning agents,” Machine learning, vol. 33, no. 2-3, pp. 235–262, 1998. 13

[78] K. Doya, “Reinforcement learning in continuous time and space,” Neural computation,
vol. 12, no. 1, pp. 219–245, 2000. 13

Bibliography 65

[79] S. Schaal and C. G. Atkeson, “Robot juggling: implementation of memory-based learn-
ing,” IEEE Control Systems Magazine, vol. 14, no. 1, pp. 57–71, 1994. 13

[80] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada-Solano,
and O. M. Caicedo, “Machine learning for cognitive network management,” IEEE Com-
munications Magazine, vol. 56, pp. 158–165, Jan 2018. 15

[81] A. R. Curtis, W. Kim, and P. Yalagandula, “Mahout: Low-overhead datacenter traffic
management using end-host-based elephant detection,” in Proceedings IEEE INFO-
COM, pp. 1629–1637, April 2011. 15

[82] Z. Zhang, L. Ma, K. K. Leung, L. Tassiulas, and J. Tucker, “Q-placement:
Reinforcement-learning-based service placement in software-defined networks,” in 2018
IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
pp. 1527–1532, IEEE, 2018. 19

[83] L. S. Sampaio, P. H. Faustini, A. S. Silva, L. Z. Granville, and A. Schaeffer-Filho,
“Using nfv and reinforcement learning for anomalies detection and mitigation in sdn,”
in 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 00432–
00437, IEEE, 2018. 19

[84] C. Yu, J. Lan, Z. Guo, and Y. Hu, “Drom: Optimizing the routing in software-defined
networks with deep reinforcement learning,” IEEE Access, vol. 6, pp. 64533–64539,
2018. 19

[85] J. Jiang, L. Hu, P. Hao, R. Sun, J. Hu, and H. Li, “Q-fdba: improving qoe fairness for
video streaming,” Multimedia Tools and Applications, vol. 77, no. 9, pp. 10787–10806,
2018. 19

[86] C. Wang, L. Zhang, Z. Li, and C. Jiang, “Sdcor: Software defined cognitive routing
for internet of vehicles,” IEEE Internet of Things Journal, vol. 5, pp. 3513–3520, Oct
2018. 19

[87] C. H. T. Arteaga, F. Rissoi, and O. M. C. Rendon, “An adaptive scaling mechanism
for managing performance variations in network functions virtualization: A case study
in an nfv-based epc,” in 2017 13th International Conference on Network and Service
Management (CNSM), pp. 1–7, IEEE, 2017. 19

[88] P. Megyesi, A. Botta, G. Aceto, A. Pescapé, and S. Molnár, “Challenges and solution
for measuring available bandwidth in software defined networks,” Elsevier, Computer
Communications, vol. 99, pp. 48–61, 2017. 21

66 Bibliography

[89] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski, “A knowledge plane
for the internet,” in Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 3–10, ACM, 2003. 22

[90] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction- second edition,
vol. 1. Cambridge, Massachusetts, 2018. 23, 24

[91] A. Kolobov, “Planning with markov decision processes: An ai perspective,” Synthesis
Lectures on Artificial Intelligence and Machine Learning, vol. 6, no. 1, pp. 1–210, 2012.
23

[92] T.-H. Teng, A.-H. Tan, and Y.-S. Tan, “Self-regulating action exploration in reinforce-
ment learning,” Procedia Computer Science, vol. 13, pp. 18–30, 2012. 24, 25

[93] E. Duryea, M. Ganger, and W. Hu, “Exploring deep reinforcement learning with multi
q-learning,” Intelligent Control and Automation, vol. 7, no. 04, p. 129, 2016. 24

[94] S. Manju and M. Punithavalli, “An analysis of q-learning algorithms with strategies of
reward function,” 24

[95] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996. 24

[96] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989. 24

[97] F. Farahnakian, M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Q-learning
based congestion-aware routing algorithm for on-chip network,” in Networked Em-
bedded Systems for Enterprise Applications (NESEA), 2011 IEEE 2nd International
Conference on, pp. 1–7, IEEE, 2011. 24

[98] A. D. Tijsma, M. M. Drugan, and M. A. Wiering, “Comparing exploration strate-
gies for q-learning in random stochastic mazes,” in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), pp. 1–8, Dec 2016. 25

[99] S. Répás, V. Horváth, and G. Lencse, “Stability analysis and performance comparison
of three 6to4 relay implementations,” 07 2015. 28, 46

[100] H. Xu, Z. Yu, C. Qian, X. Y. Li, and Z. Liu, “Minimizing flow statistics collection
cost of sdn using wildcard requests,” in IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, pp. 1–9, May 2017. 28, 32, 47

[101] O. N. Foundation, “Openflow switch specification v1.3.0,” ONF, 2013. 29, 33, 43, 44

Bibliography 67

[102] A. Doria, J. H. Salim, R. Haas, H. M. Khosravi, W.Wang, L. Dong, R. Gopal, and J. M.
Halpern, “Forwarding and control element separation (forces) protocol specification.,”
2010. 29

[103] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn through a future-
proof forwarding plane,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, pp. 127–132, ACM, 2013. 29

[104] J. A. Wickboldt, W. P. De Jesus, P. H. Isolani, C. B. Both, J. Rochol, and L. Z.
Granville, “Software-defined networking: management requirements and challenges,”
IEEE Communications Magazine, vol. 53, no. 1, pp. 278–285, 2015. 30

[105] S. Denazis, E. Haleplidis, J. H. Salim, O. Koufopavlou, D. Meyer, and K. Pentikousis,
“Software-defined networking (sdn): Layers and architecture terminology,” 2015. 30

[106] G. Varghese, Network Algorithmics: an interdisciplinary approach to designing fast
networked devices. Morgan Kaufmann, 2005. 30

[107] L. Matignon, G. Laurent, and N. Le Fort-Piat, “Improving reinforcement learning
speed for robot control.,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS’06., no. sur DVD ROM, pp. 3172–3177, 2006. 31

[108] Z. Su, T. Wang, Y. Xia, and M. Hamdi, “Cemon: A cost-effective flow monitoring
system in software defined networks,” Computer Networks, vol. 92, pp. 101–115, 2015.
32, 33

[109] H. Tahaei, R. B. Salleh, M. F. Ab Razak, K. Ko, and N. B. Anuar, “Cost effective
network flow measurement for software defined networks: A distributed controller
scenario,” IEEE Access, vol. 6, pp. 5182–5198, 2018. 33, 34

[110] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, p. 19, ACM, 2010. 41

[111] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian, “Internet
inter-domain traffic,” ACM SIGCOMM Computer Communication Review, vol. 41,
no. 4, pp. 75–86, 2011. 42

[112] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On dominant characteristics
of residential broadband internet traffic,” in Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement, pp. 90–102, ACM, 2009. 42

68 Bibliography

[113] C. Müller and C. Timmerer, “A vlc media player plugin enabling dynamic adaptive
streaming over http,” in Proceedings of the 19th ACM International Conference on
Multimedia, MM ’11, (New York, NY, USA), pp. 723–726, ACM, 2011. 42

[114] A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open source software
development: The apache server,” in Proceedings of the 22Nd International Conference
on Software Engineering, ICSE ’00, (New York, NY, USA), pp. 263–272, ACM, 2000.
42

[115] E. F. Castillo, “intelligentProbing prototype and results.” accessed November 09, 2019.
43

A. Appendix A - Scientific Production

The research work presented in this master dissertation was reported to the scientific com-
munity through paper submissions to renowned journals. The process of doing research,
submitting the papers, gathering feedback, and improving the work helped to achieve the
maturity hereby presented.

A.1. Papers: accepted and on reviewing

A.1.1. Accepted

Edwin Ferney Castillo, Oscar Mauricio Caicedo Rendon, Armando Ordonez, and Lisan-
dro Zambenedetti Granville. IPro: An approach for intelligent SDN monitoring.
Computer Networks (COMNET), v. 170, pp. 107108, January 2020, ISSN 1389-1286.

• Type: Journal - Computer Networks

• Status: Published

• Colciencias index: A1

• JSR: Q1

A.1.2. On Revision

Edwin Ferney Castillo, Oscar Mauricio Caicedo Rendon, and Armando Ordonez. En-
abling Adaptive Probing for SDN Monitoring. IEEE Latin America Transactions
(IEEE LATAM).

• Type: Journal - IEEE Latin America Transactions

• Status: Submitted

• Colciencias index: A2

• JSR: Q2

B. Appendix B - Scripts Developed

The scripts developed and presented in this dissertation was reported to the scientific com-
munity through GitHub.

B.1. Intelligent Probing Repository

https://github.com/efcastillo7/intelligentProbing

	List of abbreviations and Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Objectives
	1.1.1 General Objective
	1.1.2 Specific Objectives

	1.2 Research Contributions
	1.3 Methodology and Organization

	2 Background
	2.1 Software-Defined Networking
	2.2 Traffic Engineering
	2.3 Network Monitoring
	2.3.1 Monitoring Operations
	2.3.2 Network Monitoring Techniques

	2.4 Machine Learning
	2.5 Final Remarks

	3 State-of-Art
	3.1 SDN Monitoring
	3.2 Research Gaps
	3.3 Final Remarks

	4 IPro
	4.1 Motivating Scenario
	4.2 Fundamentals
	4.2.1 Knowledge-Defined Networking
	4.2.2 Reinforcement Learning

	4.3 Overview
	4.4 Architectural Layers and Elements
	4.4.1 Knowledge Plane
	4.4.2 Control Plane
	4.4.3 Management Plane
	4.4.4 Data Plane

	4.5 Probing Algorithm
	4.5.1 Assumptions
	4.5.1.1 Reward
	4.5.1.2 Space of Actions
	4.5.1.3 Space of States
	4.5.1.4 Statistics Collection
	4.5.1.5 Control Channel Overhead
	4.5.1.6 CPU Usage of the Controller
	4.5.1.7 Monitoring Accuracy

	4.5.2 Functioning
	4.5.3 Computational Complexity
	4.5.4 IPro Interactions
	4.5.4.1 Statistics Collection Process
	4.5.4.2 Probing Interval Optimization Process

	4.6 Final Remarks

	5 Evaluation
	5.1 Setup
	5.1.1 Test Environment
	5.1.2 Prototype
	5.1.3 Space of States
	5.1.3.1 Control Channel Overhead
	5.1.3.2 CPU Usage of the Controller
	5.1.3.3 Monitoring Accuracy
	5.1.3.4 Spaces Discretization

	5.2 Intelligent Probing Behavior
	5.3 Comparison
	5.3.1 After Converging
	5.3.2 Before Converging
	5.3.3 Qualitative Analysis

	5.4 Final Remarks

	6 Conclusions
	6.1 Answering the Research Question
	6.2 Contributions
	6.3 Future work

	Bibliography
	Appendices
	A Appendix A - Scientific Production
	A.1 Papers: accepted and on reviewing
	A.1.1 Accepted
	A.1.2 On Revision

	B Appendix B - Scripts Developed
	B.1 Intelligent Probing Repository

