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Abstract

Nowadays, the increase in network traffic, applications, and users imposes challenges in

the scalability and adaptability of network functions and services. Traditional scaling so-

lutions oversize statically the capacity of network appliances, designing them to support

workload peaks. However, static scaling is inefficient at periods of low utilization. The Net-

work Functions Virtualization (NFV) offers an alternative solution to static scaling, enabling

dynamically to modify the capacity of network functions. NFV-based scaling has been pro-

posed in several works. However, still there are open research questions on the NFV scaling

decision-making process to be investigated, such as the precision on which, how, and when

to scale network functions. This thesis hypothesizes that reinforcement learning can offer a

valuable approach to develop scaling in NFV, and pursues the main objective of introducing

scaling mechanisms for adaptive management of traffic and performance variations in NFV.
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Resumen

En la actualidad, el aumento del tráfico, las aplicaciones y los usuarios imponen desaf́ıos

en la escalabilidad y adaptabilidad de las funciones y servicios de la red. Las soluciones de

escalado tradicionales sobredimensionan estáticamente la capacidad de los dispositivos de

red y los diseñan para soportar picos de carga de trabajo. Sin embargo, el escalado estático

es ineficaz en peŕıodos de baja utilización. La Virtualización de Funciones de Red (NFV)

ofrece una solución alternativa al escalado estático, permitiendo modificar dinámicamente

la capacidad de las funciones de red. El escalado basado en NFV se ha propuesto en varios

trabajos. Sin embargo, todav́ıa hay preguntas de investigación abiertas sobre el proceso

de toma de decisiones de escalado de NFV que deben investigarse, como la precisión sobre

cuáles, cómo y cuándo escalar las funciones de red. Esta tesis plantea la hipótesis de que

el aprendizaje por refuerzo puede ofrecer un enfoque valioso para desarrollar el escalado en

NFV, y persigue el objetivo principal de introducir mecanismos de escalado para la gestión

adaptativa del tráfico y las variaciones de rendimiento en NFV.
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1. Introduction

Nowadays, telecommunications network operators face different challenges related to the

management of their networks and services. These challenges are motivated by the increase

in network traffic, applications and users. According to Cisco projections (Cisco, 2020), by

2023 nearly two-thirds of the global population will have Internet access. The number of

devices connected to Internet protocol (IP) networks will be more than three times the global

population, and Internet of Things (IoT) connections will be half of the global connections.

Over 70% of the global population will have mobile connectivity, being devices and connec-

tions of the fifth generation (5G) mobile networks over 10 percent of global mobile devices

and connections. Modern applications will be in every business sector, experimenting an

increased demand for new and enhanced ones that improves the customer experiences. IoT,

artificial intelligence, machine learning, and business analytics are enabling smart applica-

tions to simplify customer transactions, help in health and medicine, assist daily task in the

industry and automotive, and offer new entertainment contents.

Modern applications will have stringent requirements in terms of data transfer velocity, la-

tency, capacity, and reliability. For instance, 5G networks envision to support different use

cases, such as enhanced Mobile BroadBand (eMBB), massive IoT (mIoT), and Ultra-Reliable

Low-Latency Communication (URLLC). eMBB addresses human-centric applications for ac-

cess to multi-media content, services and data. mIoT is characterized by a very large number

of connected devices typically transmitting a relative low volume of non-delay-sensitive data.

URLLC includes, as examples, wireless control of industrial manufacturing or production

process, remote medical surgery, and distribution automation in a smart grid. 5G networks

must outperform previous generation systems. Performance requirements of 5G networks

are: data rates per user of 0.1-1 Gbps, connection density of 1 million of devices per km2,

maximum end-to-end latency of 1 ms, traffic volume density of tens of Gbps per km2, mo-

bility higher than 500 km per hour, and peak data rate of tens of Gbps (Xiang et al., 2017).

Traditional development in networking involves that network appliances integrate network

control functions with forwarding hardware vertically, with little or nothing programmability

and proprietary interfaces. This traditional development paradigm have caused network op-

erators to adopt error-prone manual configuration methods to provide and manage network

resources, leading to more operational complexity and longer market time for new services.

These problems are the major obstacle in scalability and adaptability of the network infras-
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tructure with user and application needs in evolution (Chowdhury, 2021). Traditional scaling

solutions oversize the capacity of network appliances designing them to support workload

peaks. However, this static scaling is inefficient at periods of low utilization.

To deal with traditional development problems in networking, a new networking development

paradigm, known as Network Softwarization, is being adopted. The primary technologies

in Network Softwarization are Software-Defined Networking (SDN) and Network Functions

Virtualization (NFV) (Chowdhury, 2021). Particularly, NFV decouples Network Functions

(NFs) from hardware middleboxes, and deploy the NFs as Virtualized Network Functions

(VNFs) on commodity servers. Through the separation of NFs from proprietary hardware

middleboxes, NFV promises to reduce capital investment by consolidating multiple NFs on

the same commodity hardware, and reduce operational cost by leveraging advances in appli-

cation orchestration for on-demand service provisioning. NFV offers an alternative solution

to the static scaling, enabling dynamically modify the capacity of NFs. Scaling in NFV

can be performed by increasing and reducing the NFs resources (i.e., scaling up/down) or

creating and removing their instances (i.e., scaling out/in). It is noteworthy that scaling

can be initiated by administrators, as an outcome of the network performance assessment,

or by the network itself by using adaptive mechanisms (ETSI-GS-AFI, 2013).

In the NFV literature, several works have proposed scaling mechanisms by using different

techniques. For instance, (Carella et al., 2016, Dutta et al., 2016) are based on threshold

rules, a reactive technique, in which the scaling depends on the current traffic and perfor-

mance levels. Performance variations, crossing predefined thresholds, can lead to violations

of a performance target and transitory scaling oscillations. (Bilal et al., 2016a) uses time

series forecasting that, based on historical data, enables to predict future resource usage;

however, if there are changes in traffic patterns, an evolutionary strategy would be desir-

able, which would allow adapting the models to new traffic conditions. (Tang et al., 2015)

is based on the Q-Learning method in which, as other methods in Reinforcement Learning

(RL), an agent interacts with an environment and learns by trial and error; this method is

adaptive but mistaken decisions may be taken until the agent learns an optimal scaling policy.

In addition to the drawbacks indicated, these works (Carella et al., 2016, Dutta et al., 2016,

Bilal et al., 2016a, Tang et al., 2015) focus mainly on the scaling of individual NFs and, so,

they do not consider the issues related to scale Network Services (NSs) formed by diverse

NFs. In fact, in real network deployments, it is usual to have NSs composed by several

NFs. For example, considering the control plane of the Evolved Packet Core (EPC) as an

NS, three entities interact to perform signaling procedures which are the Mobility Manage-

ment Entity (MME), the Serving Gateway (SGW) and the Packet Data Network Gateway

(PGW). Related to composed NSs, (Wang et al., 2016) assumes all NFs of an NS must be

scaled and introduces a factor that models the change in the traffic rate for each NF. (Zhang
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et al., 2016) focuses only on the flow migration and assumes all NFs must be scaled. In

(Rankothge et al., 2017), only one NF is scaled out/in, which is chosen randomly. Works

for compound NSs show that the scaling problem is not addressed enough yet. NFs can be

dependent each other and the NS performance is not stationary, i.e. scaling one NF changes

the state space, which leads to the whole performance cannot be maintained in a target range.

The above drawbacks reveal that the NFV scaling decision-making process needs precision

on which NFs must be scaled, how to scale and when to trigger the scaling, allowing NSs

to ensure an expected Quality of Service (QoS) and the efficient use of resources. Consider

these issues. i) Which NFs. If a single NF is forming an NS (e.g., a video server), there is

an obvious answer to the question: which NFs should be scaled?. However, as in EPC of

the previous example, the signaling NS has several NFs (e.g., MME, SGW, and PGW), and

therefore, the answer to the above question is not immediately. Choosing which NF depends

on current workload, amount of allocated resources, and tasks complexity. Also, EPC NFs

perform in synchronous mode; it means, NFs are interrelated, and so, their scaling. ii) How

to scale refers to which scaling type is required; it means choosing between scaling out/in,

scaling up/down, or both. iii) The third issue is regarding the instant in which scaling

must start, taking into account that a predictability feature could be desirable. Enabling

predictability would give to scaling performs more accurately. Thus, the research question

raised in this thesis is: which, how, and when scale NFs in NFV?.

Considering the recent works on the use of machine learning in network management (Ayoubi

et al., 2017, Mestres et al., 2017, Fadlullah et al., 2017, Wang et al., 2017, Moysen and Giup-

poni, 2018, Cui et al., 2018, Kim et al., 2019, Sultana et al., 2019, Sesto-Castilla et al., 2019,

Liu et al., 2020, Shafik et al., 2020, Hussain et al., 2020, Fourati et al., 2021, Mollel et al.,

2021), this thesis hypothesizes that RL and Multi-Agent Reinforcement Learning (MARL)

can offer a valuable approach to develop scaling mechanisms in NFV. Comprehensive per-

formance characterizations of NFV-based networks should also be performed by heuristics

approaches or using performance models (e.g., stochastic process algebra for performance

evaluation) to realize practical and novel scaling mechanisms. Furthermore, scaling mecha-

nisms should be accurate enough determining the appropriate method (out/in, up/down, or

the both) and which NFs to scale, as well as the time for triggering the scaling.

The general objective of this thesis is to introduce scaling mechanisms for adaptive manage-

ment of traffic and performance variations in NFV. The three specific objectives given below

allow achieving the overall objective.

1. Characterize the performance of NSs (e.g., services of control and data in the EPC) in

NFV.

2. Model scaling mechanisms for adaptive management of traffic and performance varia-
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tions in NFV by using the RL approach.

3. Evaluate the improvement in managing on traffic and performance variations when the

scaling mechanisms are used.

1.1. Contributions and Scientific Production

The contributions of this thesis are:

• The performance characterization and the scalability analysis of an NFV-based EPC.

It has been extensively evaluated the performance and scalability of an NFV-based

EPC prototype. The evaluation results reveal the importance of using horizontal and

vertical scaling to improve EPC performance to handle workload variations and save

resources.

• An adaptive scaling mechanism for an NFV-based EPC aiming at manage performance

variations. This mechanism is based on the RL approach and Gaussian processes (GPs)

and allows handling the mean response time of EPC due to service request variations.

• An adaptive scaling mechanism for the NFV-based 5G Core Network (5GCN) control

plane that follows a cooperative approach using MARL.

• The scalability and performance analysis of the NFV-based 5GCN control plane, which

is modeled using the Performance Evaluation Process Algebra (PEPA). The scalability

analysis considers concurrent users and the multiplicity of VNFs. For performance

analysis, this thesis introduces new composite structures based on PEPA and intends

to model and evaluate 5GCN procedures.

These contributions are available as three papers published and another one on review, which

are listed below.

• C. H. T. Arteaga, F. Risso and O. M. C. Rendon, “An adaptive scaling mecha-

nism for managing performance variations in network functions virtualiza-

tion: A case study in an NFV-based EPC,” 2017 13th International Confer-

ence on Network and Service Management (CNSM), Tokyo, Japan, 2017, pp.

1-7, doi: 10.23919/CNSM.2017.8255982. Classification: CORE B.

• C. H. T. Arteaga, F. B. Anacona, K. T. T. Ortega and O. M. C. Rendon, “A Scaling

Mechanism for an Evolved Packet Core Based on Network Functions Virtu-

alization,” in IEEE Transactions on Network and Service Management, vol.

17, no. 2, pp. 779-792, June 2020, doi: 10.1109/TNSM.2019.2961988. Classification:

JCR Q1.
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• C. H. T. Arteaga, A. Ordoñez and O. M. C. Rendon, “Scalability and Per-

formance Analysis in 5G Core Network Slicing,” in IEEE Access, vol. 8,

pp. 142086-142100, August 2020, doi: 10.1109/ACCESS.2020.3013597. Classification:

JCR Q1.

• C. H. T. Arteaga, O. M. C. Rendon, “Cooperative Scaling for the 5G Core

Network Control Plane,” To be submitted to Journal of Network and Computer

Applications - Elsevier. Classification: JCR Q1.

1.2. Methodology and Organization

This thesis followed the scientific method, which is depicted in Fig. 1-1. This method has

five phases: problem definition, hypothesis construction, experimentation, conclusion, and

publishing of findings. Problem definition identified the research question. Hypothesis con-

struction formulated the hypothesis, also this phase involved the development of conceptual

and technological proposals. Experimentation tested and analyzed the hypothesis and the

results achieved. The conclusion allowed generating the conclusions and outlining the future

works. Note that the conclusion phase allows to feedback the phase of hypothesis construc-

tion. In the last phase, publishing of findings, research papers were submitted to conferences

and journals.

Figure 1-1.: The scientific method followed in this thesis.

The organization of this document reflects the phases outlined above.

• This introductory chapter presents the problem definition, raises the hypothesis, defines

the objectives of this thesis, summarizes the contributions and the scientific production,

and outlines the methodology and the overall structure of this document.

• Chapter 2 develops the background and related work of this thesis.
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• Chapter 3 presents a scaling mechanism for an NFV-based EPC.

• Chapter 4 presents an adaptive scaling mechanism for managing performance variations

in NFV, as a case study in an NFV-based EPC.

• Chapter 5 presents a cooperative scaling mechanism for the 5GCN control plane.

• Chapter 6 presents a method for scalability and performance analysis in 5GCN slicing.

• Chapter 7 presents conclusions about the hypothesis and proposes some future works.

• Appendix A includes the scientific papers published and on review.



2. State-of-the-Art

This chapter presents, in its first part, the background of the concepts and technologies

involved in this thesis. The second part of this chapter discusses the related work of this

research.

2.1. Background

This background presents, first, concepts of network performance, scalability, and NFV.

Second, Telco networks technologies: virtualized EPC (vEPC) and 5GCN. Third, concepts

and models of RL for single-agent and multi-agents, GPs for system identification, and

PEPA.

2.1.1. Network Performance and Scalability

Network performance refers to the behavior and QoS measures of a network as viewed by

its users. Common performance metrics are throughput, latency, jitter, bit error rate, and

packet loss (ETSI, 2014b). Network performance does not remain constant over time, and

its variability depends on four factors (Callegati et al., 2014, Shea et al., 2014):

• The dynamic behavior of network resources (e.g., a link between two nodes is down

for a short while).

• The burstiness of network traffic (e.g., a video streaming is started before it is play-

backed).

• The incremental traffic during rush hours (e.g., two busy hours are observed, around

12:00 pm and 6:00 pm).

• The sharing of resources of storage, processing and networking that may lead to per-

formance fluctuations (e.g., throughput instabilities may be present even at low load).

Performance variations impact applications negatively, particularly those that are data-

intensive, and therefore performance management is a primary task (Chen and Zhang, 2014)

that aims to provide functionalities to monitor and control the behaviour and effectiveness

of networks (ITU, 2000). Performance management has three scopes: monitoring, charac-

terization, and dynamic actuation.
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• Monitoring is to collect data of measurable parameters (e.g., throughput and delay)

(ETSI, 2014b) that can be used to verify the physical and logical configuration of

networks. Also, monitoring allows locating potential problems as early as possible (Li

and Shen, 2011).

• Characterization allows assessing the performance of NSs to determine configurations

that offer maximum performance (Cao et al., 2015), which is useful to plan and deploy

new NSs (Moens and Turck, 2014).

• Dynamic actuation is to modify the configuration of NSs in response to workload and

performance variations, which enables an adaptive behavior (Bilal et al., 2016b).

A traditional approach to address performance variations is to create NSs dimensioned for

the highest workload, but this approach results in over costs (Heidari and Kanso, 2016, Gu-

nasekaran et al., 2020, Zhang et al., 2021, Kumar et al., 2021). Therefore, novel mechanisms

are needed for dynamic scaling (i.e., scaling out/in and scaling up/down) of NSs, aiming

to meet an expected performance, decrease costs of operation and administration as well

as improve the use of computing, networking, and processing resources (Bilal et al., 2016b,

Sharma et al., 2020, Luo and Wu, 2020, Singh et al., 2021). Scalability is the capacity of a

network to adapt and respond to workload and performance variations (Becker et al., 2017,

Henning and Hasselbring, 2021). There are two scaling methods (Coutinho et al., 2015,

Becker et al., 2017, Balla et al., 2020): horizontal and vertical. Horizontal scaling (also

called scaling out/in) is about creating or removing one or more instances of NFs (e.g., more

Virtual Machines (VMs) running an NF). Vertical scaling (or scaling up/down) is about

increasing or reducing the capacity of the instances (e.g., more memory, processing, and

storage for a VM running an NF). Scaling out/up is useful when performance is degraded

because the load of NSs is increased and scaling in/down is helpful when a determined level

of performance may be supported with fewer resources or instances of NFs. Enabling hori-

zontal and vertical scaling simultaneously allows full elasticity of NSs (Nguyen et al., 2020).

2.1.2. Network Functions Virtualization

Traditional networks are composed of diverse NFs deployed in specialized proprietary hard-

ware, commonly called network appliances or middleboxes. This traditional development

approach conveys several problems related to reduced flexibility, high operational and capi-

tal expenditure, and slow innovation for new NSs.

NFV is an emerging network solution that seeks to overcome the disadvantages of the tra-

ditional approach of development, deployment, and operation based on network appliances.

NFV is a network architecture specified by ETSI (ETSI, 2013) that aims the deployment
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of NSs flexibly and dynamically (Chiosi et al., 2012, Han et al., 2015), enabling scalability

and adaptability of the network infrastructure with user and application needs in evolution

(Chowdhury, 2021). NFV has been conceived by Telco providers for enabling a major trans-

formation of current and future telecommunication networks, such as EPC and 5G and 6G

networks (Tola, 2021).

NFV envisions the implementation of NFs as software running in virtualized environments,

which is decoupled from the underlying hardware and can be instantiated in different lo-

cations without the need for installation of new vendor equipment. This implementation

approach aims to transform how network operators architect, operate, and manage net-

works by leveraging server virtualization technology for consolidating network appliances

onto standard high volume servers, switches, and storage equipment, which can be deployed

in datacenters, network nodes, and end user promises. NFV brings benefits to network

operators, such as lower capital expenditures, by eliminating the need to purchase costly

specialized network appliances, reduced operating cost as through a centralization of the

network management, and greater flexibility and scalability since it will require much less

time and work to add new capabilities in the network (Yi et al., 2018).

NFV envisages the implementation of NFs as software-based entities that runs over a vir-

tualized infrastructure constituted by compute, storage, and networking resources. VNFs

interact each other to provide end-to-end NSs. NSs are complete end-to-end functionali-

ties offered by network operators, which are delivered by composing NFs through a process

called Network Service Chaining (NSC). An NS can be described by a Forwarding Graph of

interconnected NFs and end points (John et al., 2013, Bhamare et al., 2016).

Fig. 2-1 represents the primary subsystems in NFV, which are VNFs, the NFV Infrastruc-

ture (NFVI), and the NFV Management and Orchestration (MANO) (ETSI, 2013). A VNF

is the software implementation of an NF (e.g., firewall and deep packet inspection), which

can be deployed in virtual resources such as VMs or containers. A VNF can be decomposed

into smaller functional modules for scalability, reusability, and faster response, or multiple

VNFs can be composed together to reduce management and VNF traffic steering complexity

(ETSI, 2013).

NFVI is the set of hardware and software resources that constitute the environment where

VNFs are executed. The physical resources include high volume industry standard equip-

ment providing computing, storage, and network hardware resources. Virtual resources are

abstracted counterpart of computing, storage, and network resources. This abstraction is

achieved using a virtualization layer, which decouples the virtual resources from the under-

lying physical resources. Typical virtualization technologies, where VNF can be executed,

can be based on a hypervisor or containerized infrastructure (ETSI, 2013).
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MANO framework is responsible for managing NFV including components such as NSs, NFs

and NSC as well as physical and virtual infrastructures. The VNF Manager is in charge

of the instantiation, scaling, termination and triggering of events during the lifecycle of a

VNF, and supports automatic configuration (Cao et al., 2015, ETSI, 2014a). As is common

in traditional networks, performance management is also critical in NFV-based networks

(Mijumbi et al., 2016a).

Figure 2-1.: High-level NFV architecture.

2.1.3. Virtualized Evolved Packet Core

The current standard of fourth generation (4G) mobile networks is the Long Term Evo-

lution (LTE), and its core is the EPC (3GPP, 2018a). EPC is responsible for supporting

traffic from multiple access networks by using four primary entities: MME, Home Subscriber

Server (HSS), SGW, and PGW (Kempf et al., 2012). MME is the control entity in charge of

managing the authentication and configuration of the User Equipment (UE) session, as well

as handling mobility (e.g., handover and paging). HSS is the repository that contains the

information related to the end users (e.g., authentication keys and UE capabilities). SGW

and PGW compose the EPC data plane that is responsible for routing the packets. SGW

supports IP data traffic between the Radio Access Network (RAN) and PGW. Furthermore,

SGW configures the uplink and downlink tunnels for data transfer. PGW sends the EPC

data traffic to external IP networks.

The vEPC concept refers to incorporate NFV into EPC. By vEPC, the mobile operators

can dynamically address the rising number of LTE subscriptions, scale their networks to
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meet the traffic demands during peak hours, instantiate new services based on the network

conditions in a near real-time way, and guarantee the availability of the NSs (Buyakar et al.,

2017, Choi et al., 2018, Hawilo et al., 2014).

The control plane of an EPC or vEPC includes the (v)SGW, (v)PGW, and (v)MME, and

operates as follows (3GPP, 2018a). When a UE requires to connect to an LTE network, it

makes an attach request. A radio connection must first be established between the UE and

an eNodeB in order to perform the UE attachment process. After the connection, the UE

sends an attachment request to MME via the eNodeB. This request includes the Interna-

tional Mobile Subscriber Identity that identifies the UE. The attachment process involves

several sub-processes, such as user authentication, security, and session setup. In brief,

MME performs the UE authentication by using HSS. HSS updates the UE data and sends

a response to MME. Then, the security setup includes encryption to ensure communication

between the UE and MME. If the security setup is successful, a default “bearer” is created

for the UE by the packet core. During the attachment process, an IP address is given to the

UE by PGW, and Tunnel Endpoint Identifier values for the “bearer” are exchanged among

the eNodeB, MME, SGW, and PGW. Also, a tunnel is created for the data traffic between

the UE and PGW via SGW. Note that if the UE needs to disconnect, it makes a detachment

request. When the UE sends this request, its entire state is cleared from all the EPC entities

and MME sends the detachment response to the UE via the eNodeB.

2.1.4. 5G Core Network

5GCN is a service-based architecture (3GPP, 2018c, Campos et al., 2021), in which NFs

cooperate to perform signaling procedures, such as connection, registration, mobility man-

agement, and session management (3GPP, 2018d). The connection management establishes

and releases the signaling connection in the control plane. The registration management

registers a user with the 5G network, and creates its user context, allowing the use of data

services. The mobility management keeps track of the current location of UE, enabling

the handover aware to radio conditions, load balancing, or QoS requirements. The session

management controls the user plane functionality, such as packet routing and forwarding,

packet inspection, and traffic steering. Session establishments enable that subscribers can

use applications, such as browsing the web and advanced assisted driving.

Consider the session establishment procedure. Fig. 2-2 presents the service chain of this

procedure, including NFs, service interfaces, and roles (e.g., service consumer or service

producer) taken by UE, the Access and Mobility Function (AMF), the Session Management

Function (SMF), and the Network Repository Function (NRF). UE allows the user to connect

to the 5G network and use its applications. AMF provides the communication service using

the interface Namf Communication. This service enables an NF to communicate with UE
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through Non-Access-Stratum (NAS) messages or the access network. Namf Communication

defines several operations, including UEContextTransfer, which offers the general registra-

tion procedure (3GPP, 2019). SMF supports, through its interface Nsmf PDUSession, the

establishment, modification, and release of data sessions between the User Plane Function

(UPF) and the access network. Also, SMF configures traffic steering policies at UPF, allo-

cates IP address to UE, and applies charging rules. NRF registers and discovers NFs. The

discovery functionality maintains uniform resource locators (URLs), profiles, and services of

NF instances available for composing service chains. Discovery and registration are offered

by interfaces Nnrf NFDiscovery and Nnrf NFManagement, respectively (3GPP, 2018d).

AMF SMFNRF

Nnrf_NFDiscovery Nnrf_NFManagement

Service Chain

NFV Infrastructure

VM VM VM

Nsmf_PDUSession

Namf_Communication

UE

Figure 2-2.: Service chain and NFVI of the session establishment procedure.

Fig. 2-2 also shows NFVI of the session establishment procedure. In this example, NFVI

indicates that each NF (AMF, SMF, and NRF) occupies a VM. However, other deployment

alternatives are feasible; for instance, each VM can host several NF instances. The number

of active NF instances can increase (scaling out) or decrease (scaling in) to face a growing

or declining workload, respectively, to improve resource utilization. Moreover, the number

of Central Processing Unit (CPU) cores can be dynamically allocated to the VMs to handle

workload variations, leading to the scaling up (increasing CPU cores) or the scaling down

(decreasing CPU cores). Scaling out/in (horizontal scaling) and scaling up/down (vertical

scaling) allow adjusting the slice capacity to the workload dynamics.

Fig. 2-3 describes the behavior of the session establishment procedure by a sequence dia-

gram. The session establishment includes an AMF, which serves as the single-entry point

for a UE for all its communication. Once the user decides to use one application, for exam-

ple, to browse the web, AMF needs to assign an SMF to manage the user session context.

As NFs can be instantiated and deleted at any time, AMF needs to discover an available

and suitable SMF via the NF Discovery operation performed between AMF and NRF. To

accomplish successful discovery, SMF must register beforehand with NRF. It is notewor-

thy that the pair of messages (request-reply) in the communication between NFs indicates

synchronous communication.
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Figure 2-3.: Session establishment procedure.

2.1.5. Reinforcement Learning

RL (Sutton and Barto, 2012) is a sub-field of machine learning, where an autonomous agent

(i.e., the learner and decision-maker) is able to learn by trial and error. The agent senses

the state of its environment (i.e., everything outside the agent and that interacts with it),

it can take actions that affect the state depending on of goals relating to the state of the

environment, and for each action taken, it receives a reward indicating how good was the

action taken. Fig. 2-4 depicts the RL process.

Environment

Agent

st

st+1

at

rt+1

Figure 2-4.: Reinforcement learning process.

RL is formally defined by the Markov Decision Processes (MDP) framework (Mausam and

Kolobov, 2012). An MDP has a state set S, an action set A, one-step state transition

dynamics Pa
ss′ = P (st+1 = s′|st = s, at = a), which describes the probability of transitioning

to state s′ ∈ S after taking a ∈ A in state s, and the expected value of the next reward

Ra
ss′ = E(rt+1|st = s, at = a, st+1 = s′) given the previously executed action and resulting

state transition. Both state transitions and rewards can be stochastic. The learning goal in

an MDP is to find a policy f that maps states to action selection probabilities, maximizing

expected reward. When following a fixed policy f , the value (V ) of a state s under that

policy is defined as the total amount of reward R that the agent expects to accumulate when

starting in state s and following f ; thereafter:

V f (s) = Ef (Rt|st = s) = Ef (
∑>

k=0 γ
krt+k+1|st = s)
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The rewards are discounted by factor γ ∈ [0, 1) to ensure a bounded sum in infinite horizon

MDPs. An important property in MDPs is the Markov property that establishes the future

states only depend upon the present state. This property simplifies the analysis and imple-

mentation of RL systems.

Consider an example that illustrates the behavior of such an agent when it operates for

routing packets. States can be defined by pairs formed by route and time for delivering a

packet; and actions can refer to select a particular route to send packets. Also, let’s suppose

a routing policy that establishes that a packet must be sent by using the route with the

minimum deliver time. In this example, the network is the environment and the agent inter-

acts with it by sending packets and receiving as rewards the reciprocal of deliver times. The

agent tries all available routes and receive a reward for each route. Through the experience,

the agent learns which is the best route, for instance maximizing the expected value of the

sum of rewards. An important feature of RL is that learning is continual and on-line, and

so, the agent can adapt its policy to changing conditions of the network.

Q-Learning: Q-Learning is a method of RL (Watkins, 1989). On it, to each pair state-action

is assigned an action value, which is the expected utility of taking an action At when the

agent is in the state St and follows the optimal policy. A policy is a rule for selecting actions.

The value function is represented by Q(St,At); and Q, implicitly defines a current policy f ,

which is

ft(St) = a, such that Qt (St,At) = max
A
Qt(St,At) (2-1)

ft and Qt corresponds to the policy and values of Q at time t, respectively. That is, the

current policy is always to choose actions with maximal estimated action value.

The agent through its experience adjusts the values of Q according to

Qt+1(St,At) = (1− α)Qt(St,At) + α(Rt + γmax
A
Qt(St+1,At+1)) (2-2)

where Rt denotes the reward received at step t, α is a small positive number called learning

factor, and 0 ≤ γ ≤ 1 is a discount factor. If γ = 0, the agent tries only to maximize

immediate rewards. But in general, γ 6= 0, the agent takes future rewards into account, and

it takes better actions.

Q-Learning is popular because of its simplicity and has been used in different application

domains, such as smart cities for intelligent traffic signal control (Kuang et al., 2021) and

passengers assistance systems for crowded public transportation (Neelakantam et al., 2020).

In e-Health, Q-Learning has been used for doctor’s decision-making on the health of patients

(Sreedhar and Swathi, 2021) and robotic dialogue strategies for people with dementia (Yuan
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et al., 2021). In 5G networks, Q-Learning has been used for radio resource adaptation of

5G base stations (Gowtam Peesapati et al., 2021) and QoS-aware load balancing in wireless

networks (Rivera and Erol-Kantarci, 2021). Furthermore, Q-Learning can be used for scaling

NFs as is proved in (Tang et al., 2015).

2.1.6. Multi-Agent Reinforcement Learning

A multi-agent system (Burguillo, 2018) is a group of autonomous, interacting entities sharing

a common environment, which they perceive and upon which they act. The agents can be

endowed with previous behaviors, but their most important property is they are enabled to

learn new behaviors online, such that the performance of the agent and the whole multi-

agent system gradually improves. This is usually useful in an environment that changes over

the time. Precisely, NFV has this feature of dynamism. For instance, a composed NS can be

modeled as a multi-agent system, which can run an adaptive task to manage traffic changes.

The generalization of MDP to the multi-agent case is the stochastic game. In a stochastic

game, each agent has its own set of actions, i.e., for n agents the joint-action space is

A = A1 ×A2 × ...×An. The state transition and reward functions now depend on the joint

action of all agents:

R : S × A1 × ...× An × S → Rn

P : S × A1 × ...× An × S → [0, 1]

The rewards can be the same or not for all agents. A special case of stochastic games is

the stateless setting described by normal-form games. Normal-form games are one-shot in-

teractions, where all agents simultaneously select an action and receive a reward based on

their joint action, after which the game ends. There is no state transition function, and

the reward function can be represented by an n-dimensional payoff matrix, for n agents. A

policy of an agent is simply a probability distribution over its actions.

Learning in a multi-agent setting is inherently more complex than in the single-agent case

(Busoniu et al., 2008), as agents interact both with the environment and potentially with

each other. Learning is simultaneous, meaning that changes in the policy of one agent may

affect the rewards and hence the optimal policy of others. Moreover, agents may have con-

flicting interests, yet cooperation with competitors may yield short or long term benefits.

This makes it difficult to judge the learning process, since myopic maximization of individ-

ual rewards might not lead to the best overall solution. The fact that the reward function

depends on the actions of other agents leads to an important characteristic of MARL: the

environment is non-stationary and as a result each agent is essentially pursuing a moving

target. Moreover, the fact that multiple agents influence the environment means that, from
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the perspective of the individual agents, the Markov property no longer holds. All these

challenges must be addressed in the NFV scaling context.

MARL has been used in different application domains, such as robotics for redundant robot

control (Perrusqúıa et al., 2020) and the dynamic ocean monitoring by a swarm of buoys

(Kouzehgar et al., 2020). In medicine, MARL has been used for iteratively-refined interac-

tive 3D medical image segmentation (Liao et al., 2020) and personalized hypertension risk

prediction (Abrar et al., 2021). In networking, MARL has been used for task offloading and

resource allocation in cybertwin based networks (Hou et al., 2021) and resource allocation

for delay-sensitive vehicle-to-multi-edges (V2Es) communications in vehicular networks (Wu

et al., 2021).

2.1.7. Gaussian Processes for System Identification

A GP is a collection of random variables which have a joint multivariate Gaussian distribution

(Rasmussen, 2004). A GP is a generalization of the Gaussian distribution but over functions

and it is fully described by its mean and variance. For an input x and output y, with a

relationship y = f(x), y1, ..., yn ∼ N (0,Σ), where Σpq = Cov(yp, yq) = C(xp,xq) gives the

covariance between output points corresponding to input points xp and xq. The mean µ(x)

usually is assumed to be zero, and a common choice for covariance function is

C(xp,xq) = v exp

[
−1

2

D∑

d=1

wd(x
d
p − xdq)2

]
(2-3)

where D is the input dimension and Θ = [w1, ..., wD, v]T are the hyperparameters, they de-

fine the probability distribution of the functions and do not parameterize the function itself.

The system identification is done giving a set of N D-dimensional input vectors X =

[x1, ...,xN ] and a vector of output data y = [y1, ..., yN ]T , and tunning the hiperparameters

of the covariance function, that is done by maximizing the log-likelihood of the hiperparam-

eters. Based on the data (X,y), and given a new input vector x∗, the GP find the predictive

distribution of the corresponding output y∗.

GPs have been used in different application domains, such as robotics for survivable robotic

control (Raza et al., 2021) and soft robots with shape memory actuators (Sabelhaus and

Majidi, 2021). In medicine, GPs have been used for outlier detection in image segmentation

(Popescu et al., 2021) and qualification of drug dosing regimens in pediatrics (Siivola et al.,

2021). In telecommunication systems, GPs have been used for efficient orchestration of

virtualization resource in radio access network (Zou et al., 2021) and optimizing the design

of a multiband microstrip antenna for mobile terminals (Zhang et al., 2020).
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2.1.8. Performance Evaluation Process Algebra

PEPA is a language for the analysis of concurrent systems (Hillston, 1994), such as the

control plane of 5GCN. PEPA offers formality, abstraction, and compositionality. Formality

gives a precise meaning to all terms in the language. Abstraction allows building up com-

plex models from components but disregarding their internal behavior; in this thesis, NFs

are modeled as PEPA components. Compositionality allows modeling the interaction be-

tween components by cooperation processes. A PEPA model is a composition of entities or

components intended to perform actions sequentially. Actions can involve one (independent)

or several components (composite) (Tribastone, 2013). PEPA defines the following operators.

Prefix (α, r).P is the basic form to construct the behavior of components, such as AMF

and SMF. (α, r).P carries out activity (α, r) that has a type α and a duration exponen-

tially distributed with mean 1/r time units. (α, r).P subsequently behaves as P . A prefix

allows capturing the behavior that involves precedence between two distinct activities. For

example, SMF creates a session context to manage the use of applications by subscribers.

Subsequently, SMF sends back a reply. The complete model of this sequential component is

(createSession, rcs).Replysmf .

Choice P +Q represents a system which may behave either as P or Q. Consider 5G multi-

media services that support emergency sessions. To provide such services, AMF may contain

information of an SMF configured statically, being unnecessary to request the discovery op-

eration to NRF. In this way, AMF can be modeled as (callnrf , p · rcall).Disc+ (callsmf , (1−
p) · rcall).SC. The choice operator enables actions callnrf and callsmf , which are executed

with probabilities p and (1 − p), respectively. Once UE sends a session creation request,

AMF may perform the discovery of an available SMF by using NRF or the session creation

directly using an SMF for an emergency.

Constant A
def
= P models the cyclic behavior of an NF. Once an NF completes the operations

requested by a client, the NF returns to the initial state to serve a new client. For example,

the behavior of the processing of the VM hosting SMF (SMFP) can be modeled by using

a constant. SMFP gets access to the processor by the action getsmfp, performs the action

createSession, and returns to the initial state. As these actions are sequential and cyclic,

SMFP can be modeled by SMFP
def
= (getsmfp, rp).(createSession, rcs).SMFP .

Cooperation P BC
L
Q models the interactions between components by the synchronization of

P and Q over the action types in the set L. All the other actions are performed indepen-

dently. Consider that AMF cooperates with SMF for creating a user session context. This

cooperation can be modeled by (cs, rcs1).(update, ru).AMF BC
{cs}

(cs, rcs2).(rep, rr).SMF . In

this cooperation, the two components perform the shared action cs (create session), sub-
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sequently behaving as (update, ru).AMF BC
{cs}

(rep, rr).SMF . Then, actions update (update

state) and rep (generate reply) are carried out independently. The cooperation operator

defines the overall system model and, so, it is also known as the system equation.

The cooperation operator is fundamental to analyze scalability, since it allows to specify a

pool of threads working in parallel in a processor, as well as multiple NF instances for each

NF type. In this thesis, the number of threads per processor and the number of NF instances

are noted as Nt and Nnf , respectively. For scalability analysis, consider P and Q as the com-

ponents that model two multi-thread, multi-instance NFs: NF1 and NF2, respectively. The

cooperation between P and Q is modeled as P [Nnf1 ·Nnfp ·Nt] BC
L
Q[Nnf2 ·Nnfp ·Nt]. The

product Nnf · Nnfp · Nt is the total number of processors allocated to an NF instance. On

the other hand, the product Nnf · Nnfp is the total number of processors allocated to an

NF. Consider the outlined example again, the cooperation between components AMF and

SMF may be defined as AMF [Namf ·Nnfp ·Nt] BC
L
SMF [Nsmf ·Nnfp ·Nt], where Namf and

Nsmf are the number of instances of AMF and SMF, respectively; Nnfp is the number of

processor allocated to each NF instance of AMF and SMF, and Nt is the number of threads

that each processor can handle.

PEPA has been used in different domains to model, evaluate, and verify the performance

of systems, such as intelligent transportation for automatic generation of test cases for au-

tonomous vehicle (Chen, 2020) and a decentralized trust management system (Chen et al.,

2020). In cloud computing, PEPA has been used for modeling hybrid cloud-fog systems

(Chen et al., 2021) and predictive runtime modelling of kubernetes microservices (Burroughs,

2021).

2.2. Related Work

This section presents the related work to this thesis, which was developed applying a sys-

tematic review approach (Kitchenham, 2004). The research included four stages: i) define

a review protocol; ii) identification of inclusion and exclusion criteria; iii) search relevant

publications; and iv) data extraction and synthesis. The research questions were:

• What studies have been reported regarding network performance assessment in NFV?

• What approaches have been reported regarding scaling mechanisms in NFV?

• What scaling solutions are regarding NFs in isolation?

• What scaling solutions are regarding composed NSs?
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2.2.1. Telco Cloud Scaling

In the NFV literature, some works have investigated issues related to performance assess-

ment. For instance, the work (Cao et al., 2015) demonstrated the importance of network

performance characterization in NFV and they proposed a general framework for NSC char-

acterization. The work (Rajan et al., 2015) uncovered performance bottlenecks in a software-

based LTE core network architecture. The work (Prados-Garzon et al., 2017b) proposed a

theoretical framework to evaluate the performance of an LTE virtualized MME (vMME)

hosted in a data center. The aforementioned works focus on the characterization of network

performance but they do not propose any automatic solution for managing its changes.

Other works have proposed scaling mechanisms for performing scaling by using techniques

such as threshold rules, time series, and the Q-Learning method. The work (Carella et al.,

2016) used the technique of static threshold-based rules. Thresholds separate three perfor-

mance regions: poor, good and oversized. If performance is in the good region no action is

taken; if performance crosses from good to poor, scaling up/out starts. On the other hand,

if performance crosses from good to oversized scaling down/in starts. In particular, the work

(Carella et al., 2016) proposes a scaling procedure starts when a performance measurement,

such as the requests numbers and CPU idle time, crosses predefined levels. These thresholds

indicate that either a service quality is no longer acceptable or the capacity can be reduced

without affecting the service quality. In threshold-based scaling, performance could exceed

a target level at times that thresholds are crossed, which may incur in violations of expected

quality. Also, if performance crosses consecutively thresholds, transitory scaling oscillations

may happen. These transitory changes occur because scaling modifies the performance lev-

els. Oscillations can lead to a significant problem because each scaling decision triggers

procedures for provisioning or releasing resources.

To overcome the possible problems of oscillations in static threshold-based approaches, the

work (Liu et al., 2018) proposed a reactive auto-scaling mechanism that aims at building

dynamic thresholds. This mechanism is based on fuzzy logic that allows adjusting thresholds

based on dynamic workloads and cluster size for a web application. Performance evaluation

was conducted with real-life Wikipedia traces in the Amazon Web Services cloud platform.

Experimental results demonstrated that the fuzzy auto-scaler reduces cloud resources usage

(i.e., number of VMs) and minimizes Service Level Agreement (SLA) violations in terms of

keeping the average response time under 200ms. As mentioned by the authors, the creation

of an optimal auto-scaler is far from trivial and other techniques to determine the best can-

didate VMs for the scaling-in need to be explored. Scaling-in is riskier than scaling-out, as

over-provisioning only costs money, but under-provisioning means losing customers.

The work (Bilal et al., 2016a) proposed two scaling mechanisms that use time series models
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for predicting CPU usage. The first one predicts the day-ahead usage, and so, schedules

required resources, which is useful for known cases, such as new year holidays or live events.

The second mechanism operates online and is used to predict the usage during short ranges

of time when unexpected events occur. The drawback of this work is that it does not include

an evolutionary strategy that would allow adapting the models to changes in traffic patterns.

The work (Tang et al., 2015) presented an algorithm based on the Q-Learning method that

defines states, scaling actions and rewards. States refer to workloads of resources and ser-

vices, such as usage of CPU and number of bearers requested by users; and rewards weigh

performance and resource use. The drawback of this work is that the proposed algorithm

performs exploration steps on the network directly, so a non-optimal scaling decision can be

made until the algorithm has converged.

The previous scaling solutions may present inaccuracies in the decision-making, particularly

in dynamic environments, which is a significant problem because each scaling decision trig-

gers procedures for provisioning or releasing resources. Reactive solutions that use static

threshold-based rules, such as (Carella et al., 2016), can lead to alternating changes between

states because the scaling decision is taken considering only the current values of workload

or performance, which can cross several times the thresholds. In reactive solutions that use

dynamic thresholds, such as (Liu et al., 2018), determining the best candidate VMs for the

scaling-in may be riskier than scaling-out because possible under-provisioning would mean

losing customers.

In solutions using predictive models, such as (Bilal et al., 2016a), an evolutionary strategy

would be desirable, which would allow adapting the models to changes in traffic patterns.

Solutions based on RL, such as (Tang et al., 2015), learn by interacting with the environ-

ment, and they are adaptive. However, up to complete the learning, mistake decisions can be

taken. In addition to the above limitations, the previously cited works focus mainly on the

scaling of individual NFs, but they do not consider the issues related to compound services

that are associated with how to scale different NF types in an NS as a whole.

Related to compound NSs, the work (Wang et al., 2016) presents online algorithms to de-

termine the optimal numbers of NF instances and their optimal placement on servers. The

optimization objective is to minimize the operational cost, attributed to the power consump-

tion of the hosting server, and the deployment cost, related to the process of transferring

a VM image containing the NF, booting it and attaching it to devices on the server. The

drawback of this work is that it assumes all NFs in an NS must be scaled. However, a deeper

performance characterization should be conducted to analyze the scalability.

The work (Zhang et al., 2016) focus on the migration of flows, which is the process that
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follows the decision-making; particularly for stateful NFs. In this work, a heuristic algo-

rithm selects a subset of existing flows to migrate them to the new instances. Numerical

experiments and validation results revealed that the proposed algorithm could significantly

decrease the number of packets affected by buffering and minimize the latency introduced

by flow migration. The drawback of this work is that it assumes all NFs must be scaled

without their scalability analysis.

The work (Rankothge et al., 2017) presents a scaling algorithm based on genetic program-

ming. A comparison with Integer Linear Programming (ILP), traditionally used to optimize

the allocation of virtual machines, revealed that this genetic-based scaling spends only a few

milliseconds for competitive solutions while ILP solution takes hours. The drawback of this

work is that only one NF is chosen for scaling randomly, missing the performance analysis

of each NF.

The works for compound NSs show that the scaling problem is not addressed enough yet.

(Wang et al., 2016) assumes all NFs of an NS must be scaled and introduces a factor that

models the change in the traffic rate for each NF. (Zhang et al., 2016) focuses only on the

flow migration and assumes all NFs must be scaled; and in (Rankothge et al., 2017), one NF

is chosen randomly, which is increased/decreased in one instance. However, the NFs can be

dependent each other and the performance of the NS is not stationary, i.e. scaling one NF

changes the state space, which leads to the whole performance cannot be maintained in a

target range.

Table 2-1 summarizes the most relevant related work to Telco cloud scaling regarding perfor-

mance assessment, support for the two scaling methods (e.g., scaling out/in and up/down),

and the technique used for implementing the scaling mechanism. From this summary, it can

be noted that only one work considers the two issues, composed services, and support for

the two scaling methods. However, this work has the restriction described above, in which

one NF is chosen randomly, which is increased/decreased in one instance. Scaling compound

services requires considering multiple configurations, which allows selecting the most appro-

priate and thus achieve greater elasticity. Chapter 5 proposes a mechanism that considers

the joint scalability of NFs in an NS allowing to choose the best configuration according to

variations in the number of users.

2.2.2. Evolved Packet Core Scaling

In the NFV research, several works have proposed the use of vertical and horizontal scaling

methods in EPC. Most of these works have used horizontal scaling since it provides high

availability and performance because of the distribution of the workload in multiple instances

of the EPC entities. In turn, vertical scaling represents an excellent cost-benefit ratio for
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Table 2-1.: Related work to Telco cloud scaling.

Work Performance Scaling Method Used

Assessment Horizontal Vertical Technique

Cao et al. (2015) X
Rajan et al. (2015) X
Prados-Garzon et al. (2017b) X
Carella et al. (2016) X X Threshold rules

Liu et al. (2018) X Fuzzy logic

Bilal et al. (2016a) X Time series

Tang et al. (2015) X Q-Learning

Wang et al. (2016) X Optimization

Zhang et al. (2016) X Heuristics

Rankothge et al. (2017) X Genetic programming

mobile operators since the increase of resources per EPC entity facilitates the network man-

agement. However, scaling based on the two methods (horizontal and vertical) has not been

deeply analyzed in a vEPC.

Some investigations have proposed an MME architecture to support horizontal scaling based

on three components: a frontend, a set of workers, and a database. The front-end is a proxy

that provides interfaces to other EPC entities. One or more workers (i.e., instances of MME)

process the control traffic in a stateless way. The database stores each worker state. Thus,

the front-end and the database are transparent to other entities (e.g., SGW and PGW),

while the workers scale horizontally to face the workload variations (Prados-Garzon et al.,

2017a, Premsankar et al., 2015).

By using a similar workers-based architecture, the EPC entities (MME, SGW, and PGW)

can be deployed as clusters of replicas that share the incoming workload. Each EPC entity

is composed of replicas (i.e., workers), a load balancer (i.e., front-end) that distributes the

incoming workload among the replicas by using a round-robin policy, and a shared database

that stores the replicas state with several synchronization options (i.e., no sync, session sync,

and always sync). The corresponding performance evaluation reveals that the sync options

outperform the no sync option in relation to latency (approx. 71%) and throughput (approx.

75%) (Satapathy et al., 2017).

SCALE is a framework for performing horizontal scaling of MME by re-designing the MME

functionality into two parts: a load balancer and an MME processing cluster. Furthermore,

the authors use consistent hashing on the access patterns of the available devices registered

in MME to reduce memory usage intelligently. Thus, the reuse of sessions created by SCALE

allows allocating fewer resources to process more link creation requests for data and control
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traffic (Banerjee et al., 2015).

Cloud Native Solution for MME (CNS-MME) is a proposal that uses a microservices ar-

chitecture for scaling MME horizontally. This architecture deploys the CNS-MME as a

virtualized cluster of microservices. In this cluster, a load balancer separates the control

processes (i.e., attach and detach) and delivers them separately to groups of VNFs intended

for each process. The other entities (i.e., HSS, SGW, and PGW) are also deployed as VNFs

by using containers technology. CNS-MME is highly available and supports automatic scal-

ing of the microservice required for load balancing. The authors determine that CNS-MME

outperforms (approx. 7%) an MME based on a monolithic architecture. They also conclude

that CNS-MME reduces the consumption of processing resources (approx. 26%) (Amogh

et al., 2018).

The work (Ren et al., 2016) proposed an algorithm for scaling vEPC horizontally in order

to address the trade-off between the performance and the operational costs. In particular,

they use analytic and simulation models to study the response time and the operational

costs of an NFV-based EPC. In the models, the legacy network equipment is considered as

a reserved block of servers, and the instances of VNFs are powered on and off according to

the number of tasks requests at a particular time.

The work (Taleb et al., 2015) elaborated architectural models and discussed the feasibility of

offering EPC as a service in a cloud infrastructure by using 1:1 and 1:N mapping. In the first

mapping option, each EPC entity is deployed as an NF running in a VM that enables ver-

tical scaling. In the second option, each EPC entity is decomposed into multiple elements:

a front-end, a set of workers, and a database. This decomposition is utilized to perform

horizontal scaling. It is important to highlight that these architectural models are merely

conceptual; they were neither implemented nor tested by their authors. Chapter 3 leverages

some of these models and goes beyond by proposing a threshold-based and straightforward

algorithm that turns them operable.

Table 2-2 summarizes the most relevant related work to EPC scaling. This table reveals

several facts. First, the solutions (Premsankar et al., 2015, Prados-Garzon et al., 2017a,

Banerjee et al., 2015, Amogh et al., 2018) focus on scaling MME only. Second, all works

apply horizontal scaling rather than vertical scaling. Third, horizontal and vertical scaling

is not provided for EPC in the related works. An EPC is making up of interrelated entities,

and its scaling must be analyzed in detail. None of the research works have analyzed and

incorporated scaling in vEPC by moving between the horizontal or vertical scaling. Chapter

3 proposes a scaling mechanism that depending on workload variations goes from horizontal

scaling to vertical one or vice-versa. Also, Chapter 3 carries out the performance analysis of

individual vEPC entities to determine which one requires to be scaled (finer scalability) for
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improving the vEPC performance as a whole.

Table 2-2.: Related work to EPC scaling.

Work Involved Scaling Method

Functions Horizontal Vertical

Premsankar et al. (2015) MME X
Prados-Garzon et al. (2017a) MME X
Banerjee et al. (2015) MME X
Amogh et al. (2018) MME X
Hahn and Gajic (2015) SGW, PGW X
Satapathy et al. (2017) MME, SGW, PGW X
Ren et al. (2016) MME, SGW, PGW X
Prados-Garzon et al. (2018) MME, SGW, PGW X
Taleb et al. (2015) MME, SGW, PGW X X

2.2.3. 5G Core Network Scaling

In NFV literature, some works propose scaling mechanisms to manage traffic variations in

5GCN. The work (Alawe et al., 2018b) compared two machine learning techniques for scaling

the AMF of 5G horizontally; AMF has similar behavior to MME. In particular, a Recurrent

Neural Network (Zaremba et al., 2014) and a Deep Neural Network (Canziani et al., 2016)

are utilized to anticipate the scaling process of AMF by forecasting the arrival of session

requests in 5G. Simulation results show that the forecast-based scalability outperforms the

threshold-based solutions concerning the adaptability to traffic changes. In contrast to this

work, which scales AMF only. This thesis considers the joint scaling by the cooperation of

other NFs, such as SMF and NRF.

The work (Dutta et al., 2016) proposed a mechanism based on threshold values to scale a

cloud-based 5G mobile system elastically. In this mechanism, a decision-making module de-

fines when to trigger the vertical/horizontal scaling as a function of the Mean Opinion Score

(Streijl et al., 2016) and the usage of RAM and CPU. As output, this mechanism indicates

the resources to be allocated per instance and prevents the disruption of the NSs. This work

discusses the applicability of the proposed approach within the NFV MANO framework for

a cloud-based 5G core, but details of NFs in the 5G core, such as AMF, SMF, and NRF, are

not involved. In contrast, this thesis analyzes the scalability of the 5G core, considering the

characteristics of those NFs.

The work (Trivisonno et al., 2018) proposed an approach that aims at serving mIoT (Atzori

et al., 2010) connections efficiently. This approach allows modeling and evaluating an end-
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to-end IoT 5G Network slice (5GNSL) for the device registration and core network bearer

setup, which requires to connect diverse NFs, such as AMF, SMF, and the Authentication

Server Function (AUSF). The authors by simulations measured the control plane signaling

and the user plane traffic generated by devices accessing randomly, but they did not analyze

the scalability of the IoT 5GNSL modeled. In contrast to this work, this thesis analyses

the scalability of two NSs in the 5G core: session establishment and user registration in a

Vehicle-to-Everything (V2X) 5GNSL.

The work (Campolo et al., 2018) presented a network slicing architecture to support V2X

applications (Chen et al., 2017). This architecture introduces a service layer in which 5GCN

comprises several NFs, such as AMF, AUSF, and Unified Data Modeling (UDM). The core

network includes multiple AMF instances to manage the high signaling load generated by

devices-mobility and avoid the increase in latency during slice registration procedures. The

authors evaluated the user plane of a V2X 5GNSL by using the Mininet emulator (Fontes

et al., 2015) in which they measured latency, throughput, and packet drops. In contrast to

this slicing architecture, this thesis does not focus on the scaling and performance evaluation

of the user plane, but in the control plane. In particular, this thesis considers metrics such

as throughput, processor utilization, and average response time in the registration procedure.

The work (Rotter and Van Do, 2021) proposed a queuing model for a threshold-based algo-

rithm that controls the number of 5GCN UPF instances in response to traffic load changes,

saving resource consumption, and keeping high utilization of requested resources. Perfor-

mance measures calculated by the model are blocking probability of sessions, the average

number of UPF instances, the average number of busy UPF instances, and utilization. 5G

base stations and UPF perform tasks of the 5G data plane, providing necessary procedures

to convey data flows between end-devices and data networks. In contrast to this work, this

thesis models the 5GCN control plane using PEPA, focusing on signaling tasks, such as user

registration and session establishment.

The work (Harutyunyan et al., 2021) studied the joint user association, NSC placement, and

VNF scaling in 5GCN and Multi-access Edge Computing (MEC). The study classifies NFs

into stateful, control plane, and user plane NFs. Also, it uses ILP to analyze the trade-offs

between vertical, horizontal, and hybrid scaling. Analysis results demonstrated that vertical

scaling is more efficient in utilizing VNF resources. Horizontal scaling provides high avail-

ability but inefficiency because of under-utilization. In turn, hybrid scaling exhibits a better

compromise between high availability and resource utilization. In contrast to this work, this

thesis models the 5GCN control plane as a concurrent system using PEPA and analyzes its

scalability.

The work (Qu et al., 2021) studied a dynamic VNF scaling problem in 5GNSLs to guarantee
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a required delay in presence of real-world time-varying traffic with non-stationary character-

istics. A 5GNSL is represented as an NSC, where a source node generates service requests

that traverse through several VNFs in sequence towards a destination node. Traffic arrivals

are modeled as non-stationary traffic time series with different timescales, which are used to

learn how the traffic changes and predict the resource demand. At traffic inflection points,

decisions of VNF scaling and migration are made using a Q-Learning algorithm. In contrast

to this work, this thesis models the 5GCN control plane as a concurrent system using PEPA

and analyzes its scalability.

Table 2-3 summarizes the most relevant related work to 5GCN scaling. This table reveals

several facts. First, works (Alawe et al., 2018b, Dutta et al., 2016) conducted scalability

analysis for the 5GCN control plane, (Rotter and Van Do, 2021) proposed a scaling mecha-

nism for the 5GCN user plane, and (Harutyunyan et al., 2021) analyzed the optimal scaling

in 5GCN and MEC. However, they do not focus on 5G network slicing. Second, works

(Trivisonno et al., 2018, Campolo et al., 2018) focused their studies on 5GNSLs (e.g., IoT

and V2X 5GNSL), but they have not conducted scalability analysis. Furthermore, the work

(Campolo et al., 2018) does not evaluate the 5GCN control plane. Third, the work (Qu

et al., 2021) studied the scalability in the 5GNSL user plane. In contrast to the related work

given in Table 2-3, Chapter 6 carries out a detailed scalability analysis in 5G network slicing

for the control plane using the PEPA formalism. Also, Chapter 5 proposes a cooperative

scaling mechanism for the 5GCN control plane based on MARL.

Table 2-3.: Related work to 5GCN.

Work 5G network slicing Scalability Analysis Functional plane

Alawe et al. (2018b) - Multiplicity of AMF Control plane

Dutta et al. (2016) - General NFs in 5GCN Control plane

Trivisonno et al. (2018) IoT 5GNSL - Control plane

Campolo et al. (2018) V2X 5GNSL - User plane

Rotter and Van Do (2021) - UPF User plane

Harutyunyan et al. (2021) - General NFs in 5GCN and MEC User and control planes

Qu et al. (2021) General 5GNSLs General NFs in 5GCN User plane

2.2.4. Modeling Formalisms for Scalability and Performance Analysis

In NFV literature, some works analyze performance and scalability using mathematical for-

malisms. The work (Schneider et al., 2019) introduced an approach that uses Queuing Petri

Nets (QPNs) for specifying and analyzing virtualized NSs. In particular, the authors an-

alyze the end-to-end delay, throughput, and queue lengths of a video streaming service.

NSs following the proposed specification technique can be interpreted as scalable templates,
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where the behavior of each NF instance is formally specified using QPNs. The authors state

that scaling-out new instances, their approach can specify how traffic is balanced between

multiple instances of the same NF or whether incoming traffic from multiple instances is

synchronized. However, this approach does not show a scalability analysis of NSs.

The work (Prados-Garzon et al., 2017b) proposed a solution that uses Queuing Networks

to modeling and evaluating the performance of an LTE vMME hosted in a data center.

In particular, this solution allows computing the number of vMME processing instances to

provide a target system delay given the number of users in the system. Although the pro-

posed solution allows evaluating the scalability of vMME, the current 5GCN architecture

defines other NFs, such as AUSF and NRF, which should be involved in the analysis (3GPP,

2018c). Moreover, this solution omits essential performance indices, such as throughput and

processor utilization.

The work (Di Mauro et al., 2021) used Queuing Networks for assessing a softwarized IP

Multimedia Subsystem (IMS), evaluating its performance and availability. For performance

analysis, an optimization problem of resource allocation is formalized by modeling each IMS

NF as an M/G/c system. The availability assessment is based on Stochastic Reward Nets

(Ciardo et al., 1993), allowing to characterize the behavior of IMS with events of failure and

repair. Availability models are used to derive a set of optimal configurations satisfying a

given availability requirement while minimizing deployment costs. Although this assessment

is for IMS, its methodology can be adapted to other networks. This thesis uses Layered

Queuing Networks (LQN), a Queuing Network model, for comparing the accuracy of PEPA-

based 5GNSL models.

PEPA has been used to model and evaluate distributed systems. The work (Almutairi and

Thomas, 2020) modeled a web-based sales system in the presence of denial of service attacks.

Evaluation results regarding throughput and population level show how the attacks nega-

tively impact the orders of customers. The work (Sanders et al., 2020) proposed the Imperial

PEPA Compiler, an alternative to the PEPA Eclipse plugin (Tribastone et al., 2009), for

robustness analysis of resource allocation. The proposed tool overcomes some limitations,

such as the size and complexity of models imposed by the plugin. The work (Hillston et al.,

2011) introduced an approach that uses continuous PEPA models to represent large systems

with multiple replications in components, such as clients, servers, and devices. From this

approach, Chapter 6 leverages replication to represent NF instances and processors that host

them, the continuous approximation for efficient analysis of large systems, and the modeling

patterns for processor computation and synchronous communication.

The work Tribastone (2010) presented an approach that maps an LQN model to PEPA;

LQN is a traditional model for describing (software and hardware) systems with layers and
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resource contention. This approach uses PEPA to model the semantics of layered multi-class

servers, resource contention, the multiplicity of threads, and processors. The authors vali-

dated the mapping approach through simulations regarding the accuracy in the translation

of LQN to PEPA. The validation allowed concluding that PEPA-based methods are useful

in the LQN context to build up efficient models with large component replications. From

this approach, Chapter 6 adopts two PEPA structures, namely fork/join synchronization,

and the accuracy-based validation.

Table 2-4 summarizes the most relevant related work to modeling formalisms for scalability

analysis, revealing several facts. First, 5G Network Slicing lacks a method to analyze the

scalability of slices in the core network regarding different configurations of NFs. Second,

in 5GCN, scalability and performance assessment must use modeling formalisms to achieve

efficient analysis and compositionality. In this sense, PEPA allows stochastic simulation and

approximation techniques to analyze models efficiently with a large number of instances,

threads, and processors related to NFs. Also, PEPA provides the composition principle that

facilitates the modeling of systems with many orchestration alternatives as the 5GCN offers.

Third, a scalability analysis needs to consider the multiplicity, threads, and processors of

NF instances. Chapter 6 introduces a method based on PEPA for modeling, evaluating, and

analyzing the scalability and performance of 5GNSLs in the core network systematically.

That chapter illustrates how to use the proposed method by two case studies: the session

establishment 5GNSL and the user registration in the Vehicle-to-Everything 5GNSL.

Table 2-4.: Related work to modeling formalisms.

Work Modeling Formalism Application Scenario Scalability Analysis

Schneider et al. (2019) Queuing Petri Nets Video streaming -

Prados-Garzon et al. (2017b) Queuing Networks LTE EPC Multiplicity of vMME

Di Mauro et al. (2021) Queuing Networks 5G IMS Multiplicity of IMS NFs

Hillston et al. (2011) PEPA Web application Multiplicity of threads

Almutairi and Thomas (2020) PEPA Web-based sales system -

(Sanders et al., 2020) PEPA Distributed computing systems -

Tribastone (2010) PEPA Distributed application -

2.3. Final Remarks

This chapter presented, initially, the main concepts addressed in this thesis, such as network

performance and scalability, NFV, EPC, 5GCN, RL, MARL, GPs, and PEPA. The second

part of this chapter offered the main related work, which has been classified into Telco cloud

scaling, EPC scaling, 5GCN scaling, and modeling formalisms for scalability and perfor-
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mance analysis.

Unlike the related work presented in this chapter, first, this thesis proposes a scaling mecha-

nism for an NFV-based EPC that incorporates horizontal and vertical scaling (see Chapter

3), which is implemented in a data center. Second, this thesis argues that scaling decision-

making should be adaptive and highly accurate to avoid performance violations, transitory

oscillations, and wrong decisions. Chapter 4 addresses this problem by combining the Q-

Learning method with GPs-based system models. Using the system models, an RL agent

can iteratively improve its scaling policy, and therefore, take more accurate scaling deci-

sions. Third, Chapter 5 proposes a cooperative scaling for the 5GCN control plane based in

MARL, which overcomes the scaling of independent agents. Fourth, this thesis argues that in

5GCN, scalability and performance assessment must use modeling formalisms to achieve effi-

cient analysis and compositionality. From this approach, Chapter 6 adopts PEPA structures

to analyze the performance and scalability in 5G network slicing.



3. A Scaling Mechanism for an Evolved

Packet Core based on NFV

Nowadays, mobile operators face challenges like the growing number of users and the increas-

ing demand for current and new applications (Soliman and Song, 2017). In this sense, it is

noteworthy that, first, according to Cisco projections, by 2021, there will be around 5,500

millions of mobile phones in the world and mobile traffic will increase eleven times between

2016 and 2021 (Cisco, 2017). Second, the applications that will generate such traffic will be

diverse (e.g., high-definition video, eMBB, and mIoT) and, further, they will have different

requirements of QoS (Bilal et al., 2016a).

To deal with the challenges aforementioned, telco operators need to evolve their network in-

frastructure (access and core) seeking to increase capacity, support different types of traffic,

ensure different levels of QoS, and accelerate Time-To-Market (Soliman and Song, 2017).

The access and core of 4G refer to the Evolved Packet System (EPS). In particular, the

core corresponds to the EPC that is responsible for handling the control and data traffic of

mobile networks. EPC (3GPP, 2018a) contains different entities such as MME, HSS, SGW,

and PGW. The traditional strategy to scale EPC has been replacing these entities with ones

with higher capacity, which leads to their oversizing. Since this strategy increases both the

Capital Expenditures (CAPEX) and the Operational Expenditures (OPEX), the operators

are always looking for technological alternatives to scale EPC by using more flexible and

efficient architectures and algorithms (Sanjana, 2016).

An alternative to evolve EPC is NFV. In NFV, NFs are implemented in software and then

deployed as virtualized instances in hardware commodity (ETSI, 2014a, Hawilo et al., 2014).

A fundamental benefit of NFV is to provide scalability, that is, the ability of a network to

be either expanded or contracted without requiring significant architectural changes (Becker

et al., 2017). Incorporating the NFV-based scaling to EPC can improve its performance

regarding, for instance, registrations per second and latency (Han et al., 2015, Sadiku and

Musa, 2013).

In the literature, research works have incorporated horizontal (i.e., add or remove instances)

or vertical scaling (i.e., increase or decrease the resources assigned to instances) in the NFs

of EPC to improve its performance. In particular, some works have scaled horizontally
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only the MME (Premsankar et al., 2015, Prados-Garzon et al., 2017a, Banerjee et al., 2015,

Amogh et al., 2018). The work (Hahn and Gajic, 2015) scaled both the SGW and PGW

horizontally. The work (Satapathy et al., 2017) scaled each EPC entity (i.e., MME, SGW,

and PGW) individual and horizontally. The work (Ren et al., 2016) proposed an algorithm

for scaling EPC horizontally but did not take in account the joint operation of MME, SGW,

and PGW. The work (Taleb et al., 2015) elaborated architectural models and discussed the

feasibility of offering scalability in EPC. The work (Alawe et al., 2018b) scaled horizontally

the 5G AMF that behaves as the MME of EPC. The work (Dutta et al., 2016) proposed a

scheme to scale horizontally and vertically cloud resources of 5G applications but not EPC.

The aforecited works present the following gaps. First, most of them focus on scaling EPC

horizontally. Second, they do not propose a scaling mechanism for EPC that exploits verti-

cal and horizontal scaling to cope with workload variations. Third, they do not analyze the

performance of individual EPC entities deeply to determine which entity must be scaled to

improve the EPC performance.

To fill the gaps above mentioned, this chapter proposes a scaling mechanism that exploits

horizontal and vertical scaling for handling workload variations and improving performance

in EPC. This mechanism includes three modules (data collection, scaling decision, and scaling

execution) and an algorithm that defines its operation. This algorithm is threshold-based,

straightforward, and implementable in real scenarios. Also, a prototype of the proposed

mechanism is developed and deployed in a real public cloud. In such deployment, an evalua-

tion is conducted, regarding registrations per second, latency, CPU, and RAM, and consid-

ering a varying workload. The scalability evaluation results reveal that with the mechanism,

the registrations per second increase and the latency decreases regarding an EPC without

scaling.

The key contributions presented in this chapter are:

• A scaling mechanism characterized by being threshold-based, straightforward, and im-

plementable in real LTE EPC scenarios. This mechanism moves between horizontal

and vertical (or vice-versa) scaling to handle workload variations (related to registra-

tions per second mainly) and improve EPC performance.

• A scaling mechanism prototype deployed and tested in the public cloud offered by

Amazon Web Services (AWS). This prototype, its detailed explanation, and the corre-

sponding instructions to its deploying and testing are available in Maca et al. (2019).

• An extensive scalability evaluation. The evaluation results reveal that the mechanism

increases the registrations per second about 308% and decreases the corresponding la-

tency approximately 70% regarding an EPC without scaling. The mechanism achieves

these results by keeping the CPU usage lower than 90% and the used capacity of regis-

trations per second between 65% and 90%, which corroborates the importance of used
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both horizontal and vertical scaling to improve EPC performance, handle workload

variations, and save resources.

The rest of this chapter is organized as follows. Section 3.1 introduces the scaling mechanism.

Section 3.2 presents the methodology and the results of the performance evaluation. Section

3.3 highlights conclusions.

3.1. Scaling Mechanism

This section, first, exposes a motivating scenario. Second, this section presents the scaling

mechanism formed by three modules (i.e., Data Collection, Scaling Decision, and Scaling

Execution) and an algorithm that defines its operation.

3.1.1. Motivating Scenario

Before introducing the scaling mechanism, consider a vEPC scenario. Fig. 3-1 presents a

vEPC with specific resources in memory, number of cores, and storage for managing the

control traffic. When the number of concurrent users of the vEPC increases, the set of static

resources allocated to the vEPC cannot support the workload. As a consequence, the QoS

provided to end-users degrades. When the number of concurrent users decreases, the vEPC

is over-provisioned and, thus, it wastes resources.

Fig. 3-1a illustrates a scenario in which the number of concurrent users of vEPC increases

and, therefore, the amount of control traffic also does. To face the increasing traffic, network

operators can perform different actions. First, using vEPC without scaling when the num-

ber of concurrent users is below the first limit (point A). Second, applying vertical scaling

to vEPC when the number of concurrent users exceeds the first limit but it is below the

second one (point B). Third, incorporating horizontal scaling to vEPC when the number of

concurrent users passes the second limit (point C).

Fig. 3-1b presents a case where the workload of vEPC varies during the day. To face these

variations, it is necessary to scale vEPC, taking advantage of both vertical and horizontal

scaling. This paper argues that moving between vertical and horizontal scaling is necessary

to support workload variations in vEPC and avoid the wasting of resources. For instance,

when the initial deployment of vEPC reaches a predefined threshold due to a traffic peak,

it is possible to take advantage of the simplicity of the vertical scaling by increasing the

resources allocated to MME, SGW, and/or PGW. If the vertical scaling is not enough, it

is possible to leverage the horizontal scaling by creating new instances of MME, SGW, and

PGW. When the traffic peak disappears, it is possible to remove the unnecessary instances

and decrease the resources allocated to MME, SGW, and PGW.
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(a) Combining vertical and horizontal scaling.

(b) Scaling in a daily workload.

Figure 3-1.: Motivating scenario.

3.1.2. General Operation

Fig. 3-2 presents how the mechanism operates in a high-abstraction level. Initially, it is

necessary to define performance regions (i.e., regions I, II, and III are delimited by points

A, B, and C in Fig. 3-1a) of vEPC by evaluating its behavior with static resources and

with variations in both number of concurrent users (i.e., Cusers1 and Cusers2) and number of

registrations per second (i.e., Th1 and Th2). In this approach, the Network Administrator

participates only during the estimation of regions. After the regions are defined, the mech-

anism operates as follows.

If the vEPC performance is in the region I, the mechanism does not perform any action

because vEPC with static resources allocation supports the workload. If the vEPC per-

formance passes from Region I to Region II, the vertical scaling is activated and, thus, the

resources per VNF are increased to face the workload. If the performance passes from Region

II to Region III, the horizontal scaling starts and, so, more VNFs are created to support the
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Figure 3-2.: Scaling mechanism.

workload. If the performance passes from Region III to Region II, one or more VNFs are

removed to handle the workload. If the vEPC performance passes from Region II to Region

I, VNF resources are released to support the workload.

3.1.3. Algorithm

Algorithm 1 details the process to perform scaling in vEPC by moving between horizontal

and vertical (or vice-versa) scaling depending on workload variations. The algorithm has as

input data the number of concurrent users (n), vEPC performance metrics (i.e., number of

registrations per second, latency, and RAM and CPU usage), vEPC performance thresholds

(i.e., Th1, Th2, Cusers1, and Cusers2), and the configuration (i.e., horizontal -instances- or

vertical -resources-) of vEPC entities. The algorithm results are the vEPC performance and

the new configuration for achieving it.

The proposed algorithm operates as follows. If the number of registrations per second is
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lower than Th1 and the number of concurrent users is lower than Cusers1, the vEPC perfor-

mance is in Region I. Thus, the current vEPC configuration does not need changes since it

can handle the workload. Therefore, it is not necessary to apply neither vertical nor hori-

zontal scaling.

If the number of registrations per second is between Th1 and Th2, and the number of concur-

rent users is between Cusers1 and Cusers2, the vEPC performance is in region II. Therefore,

it is necessary to apply vertical scaling by adding resources (storage, processing, and/or

memory) to VNFs. When the workload varies and the performance returns to Region I, it

is necessary to apply vertical scaling by reducing resources to avoid their wasting.

If the number of registrations per second is higher than Th2 and the number of concurrent

users is greater than Cusers2, the vEPC performance is in region III. Therefore, it is necessary

to apply horizontal scaling by adding the number of instances of MME, SGW, and PGW.

When the workload varies and the performance returns to Region II, it is necessary to apply

horizontal scaling by diminishing the number of instances of MME, SGW, and PGW.

Data: Number of concurrent users (n), performance metrics, performance

thresholds, a vEPC scaling configuration

Result: Performance metrics and a new vEPC scaling configuration

for each t do

if number of registrations per second < Th1 and n < Cusers1 then

Region I;

Activate vEPC configuration with static resources allocation → MME(),

SGW(), PGW();
else if Th1 ≤ number of registrations per second < Th2 and Cusers1 ≤ n <

Cusers2 then

Region II;

Activate vEPC configuration with vertical scaling → MME(# resources),

SGW(# resources), PGW(# resources);

else if number of registrations per second ≥ Th2 and n ≥ Cusers2 then

Region III;

Activate vEPC configuration with horizontal scaling → MME(# instances),

SGW(# instances), PGW(# instances);

end
Algorithm 1: Scaling in vEPC.
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3.1.4. Mechanism Modules

Fig. 3-3 illustrates the modules of the mechanism: Data Collection, Scaling Decision, and

Scaling Execution. The Data Collection is in charge of monitoring and collecting data from

the vEPC. This module takes the vEPC performance measurements (i.e., registrations per

second, latency, CPU, and RAM) when the number of concurrent users varies. Once the

Data Collection gathers the performance data, it stores them and plots the performance

metrics versus the number of concurrent users to establish the performance behavior of the

vEPC. By using such behavior information, the network administrator can determine when

the vEPC is becoming saturated and define the thresholds values to obtain/maintain a vEPC

performance target. Finally, it is noteworthy that this module provides to the Scaling Deci-

sion the vEPC performance information needed to make decisions.

Figure 3-3.: Modules of the scaling mechanism.

The Scaling Decision uses Algorithm 1 to make decisions about what scaling method and

how many resources must be used to reach the target performance defined by the network

administrator. This module informs such decisions to the Scaling Execution that is in charge

of applying them. To sum up, the vertical scaling increases or decreases the resources

allocated to vEPC entities (MME, SGW, and PGW). The horizontal scaling adds or removes

the instances of these vEPC entities. It is important to highlight that if the Scaling Decision

module determines that there is no need for scaling, the Scaling Execution does not perform

any action, and vEPC without scaling supports the workload.
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3.2. Evaluation and Analysis

This section presents the evaluation results of the mechanism. First, the section exposes the

test environment. Second, the section presents the evaluation and performance analysis of

the vEPC.

3.2.1. Test Environment

To evaluate the mechanism, the open source vEPC from the Indian Institute of Technology

Bombay (IIT Bombay) (Vutukuru et al., 2016) is deployed in AWS. The IIT Bombay vEPC

(from now on called B-vEPC) emulates the behavior of a typical EPC based on NFV that

handles control and data traffic. B-vEPC has two versions. Evaluation uses version 1.0 to

define the vEPC baseline (evaluation without scaling) and to analyze vertical scaling (see

Fig. 3-4). In turn, version 2.0 is used to analyze the behavior of vEPC with horizontal

scaling (see Fig. 3-5).

B-vEPC core

VM VM

VM VM

VM

Control Plane 

B-vEPC

B-vEPC RAN

Figure 3-4.: B-vEPC for the baseline and vertical scaling.
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Figure 3-5.: B-vEPC for horizontal scaling.
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About the B-vEPC emulator (see Fig. 3-4), it is necessary to mention that RAN is a

module that combines UE and eNodeB functionalities and generates control traffic to the

core entities (MME, SGW, PGW, and HSS). RAN does not implement the radio processes

that take place between UE and eNodeB; this module only focuses on the control and data

traffic that B-vEPC handles. Furthermore, RAN generates multiple threads related to at-

tach and detach processes and also handles communication with MME. B-vEPC responds

to UE attach and detach processes from controlling traffic. Attach is the process to connect

UE (represented by RAN) to B-vEPC and includes the authentication, security and session

setup. Detach is the process to disconnect UE from B-vEPC.

Since the focus is on assessing the scaling of B-vEPC when it handles control traffic, the

performance evaluation is regarding registrations per second, latency, and usage of CPU

and RAM. The registrations per second refer to the number of processes of attaching and

detaching completed by B-vEPC (Baldo et al., 2011). Latency is the time that a UE takes

to perform the processes mentioned above (Nikaein and Krea, 2011). Evaluation considers

that the CPU and RAM usage are at the saturation level when they reach values higher

than 90% in any vEPC entity (Felter et al., 2015).

To carry out the performance evaluation, the number of concurrent users of B-vEPC is varied.

This number was 10, 25, 50, 100, and 200. It is relevant to mention that B-vEPC supports a

maximum of 200 concurrent users. This number of concurrent users is not a limiting factor

for the evaluation because, for example, B-vEPC can generate 16,440 registrations in 120

seconds, it means 137 registrations per second. All evaluation cases took the average values

for 30 measurements with a 95% confidence level and performed all tests in a 120 seconds

interval.

3.2.2. Implementation and Deployment

The prototype of the mechanism was implemented by using Python 3.6. In particular,

the Data Collection module was developed with the library Requests 1.1.0 (Chandra and

Varanasi, 2015) that is responsible for providing to the Scaling Decision the current vEPC

status (i.e., number of concurrent users, number of registrations per second, and CPU us-

age). The Scaling Decision module was implemented by using Flask 1.0.2 (Grinberg, 2014)

that is in charge of receiving the vEPC status from Data Collection and comparing it with

predefined thresholds. The Scaling Execution module was developed with the AWS-CLI 1.16

API that allows modifying instances to provide both vertical and horizontal scaling.

The mechanism and the B-vEPC were deployed in AWS. For the vertical scaling, the Scaling

Decision module used an Identity and Access Management (IAM) role that is useful to

allocate and de-allocate resources securely to any AWS entity (e.g., a VM instance). For
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the horizontal scaling, three different Virtual Private Clouds (VPCs) were used to isolate

the clusters of MME, PGW, and SGW. The access to these clusters was enabled through

the public IP addresses of Load Balancers. Detailed explanation of the prototype and the

corresponding instructions to its deploying and testing are in (Maca et al., 2019).

3.2.3. Performance with Static Resources Allocation - Baseline

Table 3-1 presents the allocated resources for the baseline evaluation (see Fig. 3-4). Note

that each entity is a VNF running on a VM that communicates by the client/server paradigm

with the next entity responsible for processing the requests and sending the corresponding

responses of the B-vEPC control plane.

Table 3-1.: Resources allocated to the baseline.

Entity
Resources

RAM1 CPU2 Storage1

RAN 4 4 10

MME 1 1 10

HSS 2 1 10

SGW 1 1 10

PGW 1 1 10

1 Gigabytes
2 Cores

Fig. 3-6 depicts the baseline evaluation results of B-vEPC regarding registrations per second.

Stress tests use 200 concurrent users, generating 137 registrations per second during 120

seconds, achieving a total of 16,440 registrations. The evaluation results reveal that the

slope of the number of registrations per second is positive and steeper up to 50 concurrent

users. From this point, when the number of concurrent users increases, the slope of number

of registrations per second decreases profoundly and after 100 is near zero. Thus, to keep

the registrations per second, it is necessary to apply a scaling method.

Fig. 3-7 presents the baseline evaluation results of B-vEPC regarding latency. These results

reveal that latency is lower than 100 ms up to 50 concurrent users; however, after this

point, the latency increases up to 230 ms. These results agree with the obtained values of

registrations per second. Thus, after 50 concurrent users, the time to perform the attach

and detach processes increases considerably, which may avoid that B-vEPC completes these

processes successfully.

Fig. 3-8 depicts the B-vEPC baseline evaluation results regarding CPU usage. These results

reveal that the use of CPU in MME and SGW is near to 90% for 50 concurrent users and

near to 96% for 200 concurrent users. This CPU behavior indicates that MME and SGW are

at (or almost) saturation levels, explaining the fall of the slope of registrations per second

and the increasing of delay (see Fig. 3-6 and Fig. 3-7). It is necessary to mention that

the use of CPU in PGW behaves differently from MME and SGW, increasing only up to
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Figure 3-6.: Registrations per second in the baseline evaluation.

Figure 3-7.: Latency in the baseline evaluation.

59%. This behavior indicates that PGW is less relevant than MME and SGW for the control

processes in B-VEPC.

Fig. 3-9 illustrates the B-vEPC baseline evaluation results regarding RAM usage. These

results reveal that the maximum use of RAM is 620 MB. This behavior indicates that

RAM does not saturate for any workload variation and, therefore, RAM presents a minimal

influence on the performance behavior of B-vEPC.

To sum up, the baseline evaluation of B-vEPC reveals that MME and SGW play an essential

role in control plane processes. In particular, bottlenecks are in MME and SGW that limit

the B-vEPC performance. Furthermore, RAM has a minimal influence on such performance.

3.2.4. Performance with Vertical Scaling

This performance evaluation varied the processing capacity of the B-vEPC entities involved

in the control plane processes. In particular, tests increased the number of processing cores
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Figure 3-8.: CPU usage in the baseline evaluation.

Figure 3-9.: RAM usage in the baseline evaluation.

per entity of B-vEPC to analyze its performance behavior regarding registrations per second,

latency, and CPU usage. Note that tests did not analyze RAM since the previous baseline

analysis revealed its negligible incidence in the B-vEPC performance.

Vertical scaling evaluation used between one and three cores per entity (MME, SGW, and

PGW), giving a total of 27 alternatives. All possible configurations were analyzed; however,

for the sake of brevity, the next paragraphs only discuss the most important results. These

results were chosen by taking into account that, for instance, increasing the number of PGW

cores did not improve the performance results; it was due to, in the control processes, PGW

did not consume much processing and, so, increasing cores just led to their wasting. Table

3-2 presents the most relevant configurations for each B-vEPC entity. Vx denotes Configu-

ration number 1, 2, 3 or 4 for vertical scaling.

Fig. 3-10 illustrates the evaluation results of the B-vEPC performance for vertical scaling
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Table 3-2.: B-vEPC configurations for vertical scaling.

Entity
V1 V2 V3 V4

RAM1 CPU2 RAM CPU RAM CPU RAM CPU

MME 1 2 1 1 1 2 1 3

SGW 1 1 1 2 1 2 1 3

PGW 1 1 1 1 1 1 1 1

1 Gigabytes
2 Cores

regarding registrations per second. Stress tests used 200 concurrent users, generating 137

registrations per second during 120 seconds, achieving a total of 16440 registrations. These

results reveal, first, scaling both MME and SGW is better (approx. 63%) than scaling

just MME or only SGW. Second, with two CPU cores in MME and SGW (Config V3),

registrations per second are higher (approx. 80%) than the baseline. Third, with three

CPU cores in MME and SGW (Config V4), the registrations per second are higher (approx.

89%) than the baseline. Fourth, increasing more than three CPU cores in MME and SGW

does not lead to a significant increase in the performance regarding registrations per second

because the resources are over-provisioned.

Figure 3-10.: Registrations per second with vertical scaling.

Fig. 3-11 depicts the evaluation results of the B-vEPC performance for vertical scaling

regarding latency. These results reveal that when scaling both MME and SGW, the latency

is lower (approx. 54%) than when scaling just MME or only SGW, and lower (approx. 70%)

than the baseline. Furthermore, with three CPU cores in MME and SGW (Config V4), the

latency is lower (approx. 5%) than with two CPU cores in MME and SGW (Config V3).

Fig. 3-12 presents the B-vEPC performance evaluation results regarding the use of CPU in

MME. These results reveal that when the number of concurrent users is equal to or higher

than 50, the MME from the baseline saturates quickly reaching levels higher than 90%. For
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Figure 3-11.: Latency with vertical scaling.

instance, for 200 concurrent users, the CPU usage is almost 97%. This saturation indicates

that MME is the first entity that needs to scale vertically to handle control processes. When

MME scaled vertically (Config V1), its maximum use of CPU is 65% for 200 concurrent

users. Also, SGW scaled vertically only (Config V2) to test its relevance in the control

plane processes. As expected, the evaluation results reveal that scaling only SGW leads to

an increase in the use of CPU in MME because SGW generates an increasing workload to

MME. When MME and SGW vertically scale simultaneous and uniformly, the use of CPU

in MME never reached the CPU saturation level. Here, uniform vertical scaling means that

SGW and MME used the same resources.

Figure 3-12.: CPU usage in MME with vertical scaling.

Fig. 3-13 illustrates the B-vEPC performance evaluation results regarding the use of CPU

in SGW. These results reveal that when the number of concurrent users is equal to or higher

than 50, the SGW from the baseline saturates quickly reaching levels higher than 90%. For

instance, for 200 concurrent users, the CPU usage is almost 97%. It is important to note that
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scaling only MME vertically (Config V1) leads to saturating the CPU of SGW because MME

sends too many control requests to SGW. In this sense, when MME and SGW scale vertical

and uniformly, the use of CPU in MME and SGW does not exceed the CPU saturation level.

These results corroborate the relevance of MME and SGW in control processes and, thus,

the importance of scaling them simultaneous and uniformly.

Figure 3-13.: CPU usage in SGW with vertical scaling.

Fig. 3-14 depicts the B-vEPC performance evaluation results regarding the use of CPU

in PGW. These results reveal that although PGW handles the control requests received

from SGW, its use of CPU never reaches the CPU saturation level for any of the vertical

scaling configurations. These results indicate that PGW does not require vertical scaling for

handling the workload of control processes.

Figure 3-14.: CPU usage in PGW with vertical scaling.

To sum up, the B-vEPC performance evaluation for vertical scaling highlights the following

facts. First, the number of processing cores is the most relevant resource to handle the
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control processes. Second, PGW does not require vertical scaling for 200 concurrent or less

because it does not exceed the CPU saturation level in any configuration. Third, B-vEPC

reaches its best performance when MME and SGW scale simultaneously and uniformly.

Fourth, scaling vertically with three CPU cores in MME and SGW (Config V4) does not

represent a significant improvement in performance regarding registrations per second and

latency in comparison with scaling with two CPU cores in MME and SGW (Config V3).

The above results figure out that it is necessary to use another scaling method to improve

the performance of B-vEPC.

3.2.5. Performance with Horizontal Scaling

Fig. 3-5 presents the B-vEPC used to perform horizontal scaling. This B-vEPC consists of

a set of clusters for MME, SGW, and PGW. Each cluster contains a load balancer, workers,

and a data store. The load balancer uses the round-robin algorithm Farooq et al. (2017)

to distribute the control traffic among the workers. The workers are exact replicas of the

B-vEPC entities used in the baseline evaluation; these workers connect to the load balancer

and the data store. The data store is in charge of storing the state of workers, and its

primary function is to guarantee fault tolerance of the entity. For instance, if a worker fails,

the data store assigns the workload to another worker that is in operation.

The clusters of MME, SGW, and PGW operate with stateless workers that save, delete,

update, and read signaling information in a shared data store. This sharing of information

enables any stateless worker in the cluster to serve any UE. For example, once a UEx per-

forms an attach process served by an MMEworkerx, another MMEworkery, can perform

the corresponding detach by retrieving from the data store the information of UEx.

Horizontal scaling evaluation deployed between one and three workers per cluster, giving a

total of 27 alternatives. All alternatives were evaluated and analyzed; however, for the sake

of brevity, the next paragraphs discuss only the most relevant results. These results were

selected by taking into account that, for instance, increasing the number of PGW workers

did not improve the performance results; it is because, in the control processes, PGW did

not consume much processing and, so, increasing workers just led to their wasting. Table 3-3

presents the most significant configurations carried out per cluster. Hx denotes Configuration

number 1, 2, 3, 4, 5 or 6 for horizontal scaling. Table 3-4 presents the resources assigned to

B-vEPC for horizontal scaling (Satapathy et al., 2017).

Fig. 3-15 illustrates the evaluation results of the B-vEPC performance for horizontal scaling

regarding registrations per second. Stress tests used 200 concurrent users, generating 137

registrations per second during 120 seconds, achieving a total of 16440 registrations. These

results reveal:

• With two workers in the MME cluster (Config H1), registrations per second are better



46 3 A Scaling Mechanism for an Evolved Packet Core based on NFV

Table 3-3.: B-vEPC configurations for horizontal scaling.

Cluster
H1 H2 H3 H4 H5 H6

Workers Workers Workers Workers Workers Workers

MME 2 2 3 3 3 3

SGW 1 2 1 2 3 3

PGW 1 1 1 1 1 2

Table 3-4.: Resources allocated for horizontal scaling.

Entity
Resources

RAM 1 CPU 2 Storage 1

RAN 4 4 10

MME 1 1 10

HSS 2 1 10

SGW 1 1 10

PGW 1 1 10

LOAD BALANCER 2 1 10

DATA STORE 2 2 15

1 Gigabytes
2 Cores

(approx. 16%) than the baseline.

• With three workers in MME and one worker in SGW clusters (Config H3), the regis-

trations per second are higher (approx. 36%) than baseline.

• If the number of workers is increased in equal proportion in all clusters, the number

of registrations per second increases. This increase is about 186% with two workers in

MME and SGW clusters (Config H2) and near to 308% with three workers in MME

and SGW (Config H5).

• Two workers in the PGW cluster (Config H6) do not generate a significant improvement

in performance regarding registrations per second.

• Increasing only the number of workers in the MME cluster becomes a bottleneck be-

tween MME and SGW because SGW cannot respond to the requests from MME.

• B-vEPC behaves better in performance regarding registrations per second when the

number of workers in MME and SGW is the same.

Fig. 3-16 depicts the evaluation results of the B-vEPC performance for horizontal scaling

regarding latency. Although the number of registrations per second increases because the

workers distribute the workload to respond to more requests, B-vEPC with horizontal scal-

ing adds nodes that, in turn, increase latency. Thus, scaling needs a trade-off between the
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Figure 3-15.: Registrations per second with horizontal scaling.

number of workers, the registrations per second, and the latency.

To sum up, the B-vEPC performance evaluation for horizontal scaling provides the following

results. First, MME and SGW are the clusters that most affect the performance. Second,

PGW does not require horizontal scaling for 200 concurrent users or less because increasing

the number of workers in PGW does not provide a significant improvement in performance.

Third, B-vEPC presents its best performance when the workers of MME and SGW are

uniform. Fourth, the increasing of workers in the MME and SGW must provide a trade-off

between latency and registrations per second.

Figure 3-16.: Latency with horizontal scaling.
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3.2.6. Thresholds Definition

The mechanism operates by using three regions that determine the changing from one scaling

method to another one. To define these regions (I, II, and III), tests evaluate the configura-

tions V3 (see Table III) and H5 (see Table IV) considering mainly two metrics: the use of

CPU and the capacity of registrations per second (i.e., the relation between the maximum

and the current number of concurrent supported users). These configurations were selected

because, according to the previous evaluations (Subsections 3.2.3, 3.2.4, and 3.2.5), they

offer a good trade-off between the consumption of resources and the performance metrics.

Regarding the first metric, evaluation considers that if the CPU usage of any EPC entity

is higher than 90% (Felter et al., 2015), B-vEPC is in saturation level (see Fig. 3-17a and

3-17c) and, thus, B-vEPC needs scaling. About the second metric, evaluation considers

that if it is higher than 90%, B-vEPC is in saturation level (see Fig. 3-17a, 3-17b, and

3-17c) and, so, B-vEPC needs scaling.

Fig. 3-17a illustrates the used capacity of registrations per second for B-vEPC without

scaling (baseline) and the corresponding CPU usage in MME and SGW. Note that for 50

concurrent users, both the used capacity of registrations per second and the CPU usage

in MME reach 90%. This fact frames Region I. Fig. 3-17b depicts the used capacity of

registrations per second for B-vEPC with vertical scaling (Config V3) and the correspond-

ing CPU usage in MME and SGW. Note that for 100 concurrent users, the used capacity

of registrations per second reaches 90%. This fact frames Region II since if only one met-

ric is in saturation level, it is needed to scale. Fig. 3-17c illustrates the used capacity

of registrations per second for B-vEPC with horizontal scaling (Config H5) and the corre-

sponding CPU usage in MME and SGW. For 175 concurrent users, both the used capacity of

registrations per second and the CPU usage in MME reach 90%. This fact frames Region III.

In summary, Region I is framed up to 50 concurrent users. Region II is from 51 to 100

concurrent users. Region III is from 101 to 175 concurrent users. Recall that Fig. 3-2

depicts these regions.

3.2.7. Performance with both Vertical and Horizontal Scaling

To evaluate the scaling mechanism, tests vary the number of concurrent users from 40 to 70,

70 to 20, 20 to 60, 60 to 150, 150 to 175, and 175 to 100, and measure the used capacity of

registrations per second as well as the CPU usage (in MME and SGW). It is noteworthy that

in the evaluations, the execution period of Algorithm 1 was setting up at 10 minutes. In this

period, Algorithm 1 compares the measured average throughput with the previously defined

thresholds. The rate of change in scaling configurations depends on the rate of variation of

the number of users.
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(a) B-vEPC performance baseline.

(b) B-vEPC performance with vertical scaling.

(c) B-vEPC performance with horizontal scaling.

Figure 3-17.: Evaluation of B-vEPC configurations.

Fig. 3-18 presents the evaluation results, revealing:

• As expected that B-vEPC with baseline configuration can handle 40 concurrent users

because these amount of users is in Region I.
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• At the next point, B-vEPC with vertical scaling handles the 70 concurrent users (Re-

gion II). When the number of concurrent users falls to 20, B-vEPC without scaling

supports the workload again.

• B-vEPC with vertical scaling is again necessary for 60 concurrent users.

• B-vEPC with horizontal scaling is necessary for handling 150 concurrent users.

• In the last two points, from 175 to 100 concurrent users, the mechanism passes from

horizontal scaling to vertical scaling.

• Finally, it is important to highlight two facts about the mechanism. First, it always

uses less than 90% of the CPU available in the EPC entities. Second, it keeps the used

capacity of registrations per second between 65% and 90%. These facts indicate that

the mechanism handles workload variations and saves resources.

Figure 3-18.: Scaling mechanism evaluation.

Considering the above results, the proposed mechanism has the following features:

• It is automatic and reactive.

• It uses thresholds to determine when moving from a scaling method to another one.

• The Network Administrator participates actively in the setting up of thresholds afore-

mentioned. The definition of thresholds without human intervention (autonomically)

is out of the scope of the scaling mechanism described in this chapter.
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3.2.8. Initial Cost Analysis

This section presents an initial analysis of the proposed mechanism regarding OPEX. vEPC

has an OPEX related to the power consumption of servers hosting the VMs used to deploy

the vEPC VNFs, namely MME, SGW, PGW, and HSS. Considering this relationship and

according to (Bouras et al., 2016), the OPEX of vEPC is defined as follows.

OPEXvEPC = nservers · Pper server · CkWh (3-1)

Where nservers is the total number of servers used in the vEPC deployment, Pper server is the

power consumption of each server, and CkWh is the per hour cost of a kilowatt. Evaluations

(see Section 3.2) used one sever to the baseline, one server to B-vEPC with vertical scaling

and two servers to B-vEPC with horizontal scaling.

Consider, first, the vEPC has been deployed by using HP Blade Servers. Second, the average

power per Blade at 90% of the processing load is 280 Watts (Beckett and Bradfield, 2011).

Third, in 2019, the cost of a kilowatt per hour in Popayán (Colombia) is 0.17 USD. Using

these values in Equation 3-1, the costs per hour of the baseline, B-vEPC with vertical scaling,

and B-vEPC with horizontal scaling are 0.048 USD, 0.048 USD, and 0.10 USD, respectively.

In the evaluation scenario presented in Fig. 3-18, the scaling mechanism uses horizontal

scaling twice and five times vertical scaling. If this scaling pattern repeats daily, the monthly

cost of the proposed mechanism is 44.54 USD. In turn, the monthly cost of B-vEPC with

statically allocated resources is 69.29 USD. Therefore, in the scenario above mentioned, the

mechanism saves approximately 35.7%. This brief analysis highlights the advantages of using

the proposed mechanism to save costs related to energy consumption.

3.2.9. Qualitative Analysis

Individual or combined scalability. The works (Premsankar et al., 2015, Prados-Garzon

et al., 2017a, Banerjee et al., 2015, Amogh et al., 2018) reduce the problem of scaling EPC by

scaling MME individually. Meanwhile, the works (Satapathy et al., 2017, Ren et al., 2016),

and the work presented in this chapter worry about scaling the three major entities of EPC.

Scaling just MME requires the oversizing of SGW and PGW to avoid bottlenecks that can

affect the performance of EPC as a whole. Recall that oversizing leads to waste resources

outside peak demand hours. Furthermore, according to evaluation results, oversizing PGW

is unnecessary for supporting traffic related to signaling processes.

Evaluation method. Performance evaluations can be carried out by using theoretical and sim-

ulation models, data traces, testbeds, and real environments. The theoretical and simulation

models provide flexibility to work with a large number of EU and workers of EPC entities.
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However, such models consider certain assumptions that abstract the main characteristics

of behavior and performance of EPC. Data traces offer greater flexibility for data analysis

but, for scalability analysis, they require the collection of metrics for all possible EPC scal-

ing configurations, which may be unfeasible in production EPC environments. The use of

testbeds and real environments allows analyzing the behavior and performance of each EPC

entity more realistically than in simulation and data traces. Nonetheless, testbeds and real

environments usually are resources-constrained. The works (Prados-Garzon et al., 2017a,

Ren et al., 2016) use simulations to perform their LTE EPC scaling evaluations. the work

(Alawe et al., 2018b) uses several data traces to evaluate their scaling approach for 5GCN.

The works (Banerjee et al., 2015, Amogh et al., 2018, Satapathy et al., 2017) evaluate their

scaling solutions by emulations on testbeds. It is noteworthy that unlike the works above

mentioned, the solution proposed in this chapter has been deployed and tested in a real

public cloud by considering a workload of up to 200 concurrent users and three instances

per EPC entity.

Scaling metrics. Performance metrics allow making decisions about when scaling EPC en-

tities. The work (Prados-Garzon et al., 2017a) uses the mean system delay metric. The

works (Banerjee et al., 2015, Amogh et al., 2018) consider the CPU utilization metric. The

work (Alawe et al., 2018b) uses the control traffic requests metric. The scaling mechanism

uses thresholds based on the metrics: CPU utilization and used capacity of registrations per

second. Once an EPC entity is near to outcome a threshold, the solution triggers another

scaling mechanism to avoid EPC goes to saturation zones. Keeping the EPC entities in the

non-saturation zone implies that latency has low values and the attending of registration

requests.

3.3. Final Remarks

This chapter presented a scalability and performance characterization of an NVF-based EPC

followed by a scaling mechanism that moves from vertical to horizontal scaling (and vice-

versa) to adapt EPC to workload variations and avoid resource wasting.

In detail, the scaling mechanism provides the capability to adapt to variations in the number

of concurrent users for handling control traffic. The mechanism determines if an initial

static configuration of EPC can handle a particular workload or if it is necessary to increase

resources or generate replicas of EPC entities to support such a workload. The evaluation

confirmed that MME and SGW are the most critical EPC control entities in both vertical and

horizontal scaling; they must be scaled simultaneously using the same amount of resources.

When EPC scales vertically, the latency is 70% lower than the baseline, and the registrations

per second are almost 180% higher than the baseline. When EPC scales horizontally, the

registrations per second are 308% higher than the baseline, and the latency increases; thus,
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it is necessary to consider a trade-off between these metrics. Also, this chapter presented

an initial costs analysis highlighting that the proposed mechanism is cost-effective regarding

energy consumption.



4. An Adaptive Scaling Mechanism for

Managing Performance Variations in

Network Functions Virtualization

NFV enables to dynamically modify the capacity of NSs to face changes such as the number

of users and performance variations (ETSI, 2013, Han et al., 2015). NSs are end-to-end func-

tionalities created by composing NFs, virtualized or not (Bhamare et al., 2016). The network

performance allows assessing the quality of NSs; it is quantified by measurable parameters

(e.g., throughput and delay) (ITU, 2008), and its variation is associated with changes of

underlying resources and the usage patterns of services and applications (Shea et al., 2014,

Callegati et al., 2014). For instance, in the EPC, a control entity sends and receives sig-

naling messages for a proper operation (3GPP, 2018a). The performance of such an entity

can be measured in terms of the Mean Response Time (MRT) that can vary depending on

the number of requests to establish sessions, update users location and perform handover

(Rajan et al., 2015).

The traditional solution to address performance variations is to oversize the capacity of NFs

(Heidari and Kanso, 2016), which means that these are usually designed to support work-

load peaks. However, oversizing is inefficient at time slots of low utilization. NFV offers an

alternative solution, the dynamic scaling of NFs that allows managing performance varia-

tions and improving the efficiency of using resources (Mijumbi et al., 2016b). Scaling (ETSI,

2014a), the process of modifying the capacity of NFs, can be performed by increasing and

reducing their resources (i.e., scaling up/down) or creating and removing their instances

(i.e., scaling out/in). It is noteworthy that scaling can be initiated by administrators, as an

outcome of the network performance assessment, or by the network itself by using adaptive

mechanisms (ETSI-GS-AFI, 2013).

In the NFV literature, several works have proposed scaling mechanisms by using different

techniques. For instance, the solutions (Carella et al., 2016, Dutta et al., 2016) are based on

threshold rules, a reactive technique, in which the scaling depends on the current traffic or

performance, whose variations can lead to violations of a performance target and transitory

scaling oscillations. This problem may be present also in solutions based on optimization,

such as (Wang et al., 2016), which takes scaling decisions based only on instant traffic and
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it does not consider a prediction horizon to evaluate them. The solution (Bilal et al., 2016a)

uses time series forecasting that, based on historical data, enables to predict future resource

usage; however, if there are changes in traffic patterns, an evolutionary strategy would be

desirable, which would allow adapting the models to new conditions. The work (Tang et al.,

2015) is based on the Q-Learning method in which, as other methods in RL, an agent in-

teracts with an environment and learns by trial and error; this approach is adaptive but

mistaken decisions may be taken until the agent learns an optimal scaling policy.

Considering the above limitations, this chapter argues that the scaling in NFV should be

adaptive and highly accurate to avoid violations of expected levels of QoS and transitory

scaling oscillations. So, this chapter considers that: (i) the use of RL for scaling is a good

option since learning evolves whereas agents interact with their environment; and (ii) the

scaling policy of Q-Learning can be iteratively improved before taking a final decision, and

therefore the scaling could be more accurate.

The key contributions presented in this chapter are:

• An adaptive scaling mechanism based on Q-Learning and GPs, which are utilized by

an agent to carry out an improvement strategy of a scaling policy, and therefore, to

make better decisions for handling performance variations.

• An evaluation of the mechanism for managing variations of MRT in an NFV-based

EPC, corroborating it is more accurate than approaches based on static threshold

rules and Q-Learning without the policy improvement strategy.

The rest of this chapter is organized as follows. Section 4.1 introduces the proposed mecha-

nism in an NFV-based EPC. Section 4.2 evaluates and analyzes the behavior of the mecha-

nism. And Section 4.3 provides some conclusions.

4.1. Scaling Mechanism

4.1.1. A Motivating Scenario: NFV-based EPC

The current standard of 4G mobile networks is LTE, and its core is EPC (3GPP, 2018a).

The main entities of EPC are MME, HSS, SGW, and PGW. MME is the control entity

responsible for signaling, mobility management of users, bearer management and QoS pro-

visioning. HSS stores the administrative and user information utilized by MME. SGW and

PGW compose the EPC data plane, which is in charge of routing and forwarding packets.

For the proper EPC operation, SGW and PGW also interact with MME.
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From NSC (John et al., 2013) point of view, EPC is composed of two NSs: an NS for signaling

(i.e., control plane) and other NS for packet forwarding (i.e., data plane). Fig. 4-1 depicts

these NSs by a Service Graph (SG) that follows the description proposed by (Garay et al.,

2016). The nodes: eNB and PDN are Service Access Points (SAPs) of SG. In particular,

eNB is part of the access network and represents the base stations from where the mobile

users are connected. In turn, PDN is any external data network like the Internet. Note that

continuous arrows are service links that represent logical connectivity for the data plane, and

dotted arrows are service links for the control plane. Each link is labeled with the protocol

used. An SG is a directed graph depicting only one direction of the flow. However, a reverse

chain is assumed since the communication is bidirectional.

eNB

vMME

SGW PGW PDN

S1-MME

S1-U

S11

S5/S8 SGi

FE

SL 1

SL N

SDBSL 2

MME SL instances

HSS

S6a

Figure 4-1.: Service graph of an NFV-based EPC.

In Fig. 4-1, service graph considers a vMME (Prados-Garzon et al., 2017b) that can scale

by increasing or decreasing the number of instances of its service logic, which enables to scale

the control plane of EPC. For example, EPC may have more demand at evening than early

morning depending on the number of service requests from users and, so, it is needed scaling

vMME adaptively to improve the use of resources in the control plane. The vMME is formed

by three components: Front-End (FE), MME Service Logic (SL) and State DataBase (SDB).

FE acts as the communication interface with other entities of the network and balances the

load among several MME SL instances that are in charge of processing control messages.

SDB stores the user session state, hence enabling stateless SL.

4.1.2. Adaptive Scaling Mechanism - Overview

The proposed mechanism aims at maintaining the MRT of the EPC control plane less than

a particular threshold (e.g., 1 ms (Prados-Garzon et al., 2017b)). To satisfy such aim, the



4.1 Scaling Mechanism 57

proposed mechanism can make scaling-out/in of vMME. In this sense, the infrastructure can

instantiate up to K instances (e.g., K = 4) of vMME, and measure the offered workload

and MRT.

The adaptive scaling mechanism is based on RL (Sutton and Barto, 2012), a sub-field of

machine learning, where an agent learns a decision-making process by interacting with an

environment. From Markov Decision Processes (Mausam and Kolobov, 2012), the agent and

environment interact at discrete time steps. At each time step t, the agent receives some

representation of the state of the environment, St ∈ S, where S is the set of possible states.

Based on St, the agent selects an action, At ∈ A, where A is the set of available actions in

the state St. One step later, the agent receives a numerical reward, Rt+1 ∈ R, and finds

itself a new state, St+1.

Fig. 4-2 depicts the RL process instantiated to the scaling of the EPC control plane, par-

ticularly the vMME; the environment is the NS of signaling in EPC, the states are pairs

formed by the current number of instances and performance, and actions refer to the number

of available instances. The steps, labeled as 1) observe the state, 2) take an action, and 3)

receive a reward, refer to a direct RL process called Policy Evaluation Process, which means

that the agent interacts directly with the environment.

Scaling Policy: From the current number

of instances and performance, it decides 

a new number of instances to maintain a

target performance 

to improve the policy

Policy Improvement Process: it iterates

the RL process (to observe the state, take

an action and receive a reward) but 

by using the system models

Receive a reward

Take an action:

Change the number

of instances

Observe the state:

(Number of instances, 

performance)

vMME

SGW PGW

HSS

PDN

Performance Measurements

Network Service of Signaling

K Instances

eNB

RL Agent

Policy Evaluation Process

1

2
3

Figure 4-2.: Overview of the adaptive scaling mechanism.
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Reward calculations consider the performance target (e.g., MRT less than 1 ms) and the

utilization factor ρ = λ/(k · µ) < 1 (Zukerman, 2016) of vMME, where λ is the workload,

k is the number of instances and µ is the service rate of an instance. ρ must be less than 1

to guarantee stability and allows defining expected ranges of utilization to be supported by

vMME, which are k−1
k
≤ ρ < 1. Given these ranges, the reward function is

R(k, λ) =





+1, tr < 1 ms ∧ k−1
k
≤ ρ < 1

−1, in other case
(4-1)

The scaling mechanism uses Q-Learning (Watkins, 1989) as a method to perform RL. In

this method, to each pair state-action is assigned an action value, which is the expected

utility of carrying out an action At when the agent is in the state St and follows the most

optimal policy. A policy is a rule for selecting actions. The value function is represented by

Q(St, At); and Q, implicitly defines the current policy f :

ft(St) = a, such that Qt (St, At) = max
A
Qt(St, At) (4-2)

ft and Qt correspond to the policy and values of Q at time t, respectively. That is, the

current policy consists of choosing the action with maximal estimated value. The agent,

through its experience, adjusts the values of Q according to:

Qt+1(St, At)← (1− α)Qt(St, At) + α(Rt+1 + γmax
A
Qt(St+1, A)) (4-3)

where Rt+1 denotes the reward received at step t+ 1, α is the learning factor (a small pos-

itive number) that allows the agent to retain what has been learned, and 0 ≤ γ ≤ 1 is the

discount factor that determines the importance of future rewards.

For learning, the agent needs to explore the environment and carry out the trial and error

process; but, wrong actions lead to unnecessary procedures of provisioning and releasing of

resources that must be avoided. It is here, where the system models are used. In this sense,

for instance, in the EPC context, signaling workload is considered as the input and MRT as

the output of a dynamic system that is modeled by a regression function h. By observing

these metrics, h is trained for predicting values of workload and use such predictions to run

hypothetical iterations of the RL process, which allows getting the optimal policy before

applying it to a particular NS. This is the Policy Improvement Process (see Fig. 4-2).

In summary, the agent runs two processes: the policy improvement and the policy evalua-

tion; the first one allows the agent to foresee the results of its action, and the second one is

the current execution of the policy. If there is no variation in the conditions of the NS (e.g.,

number the users), which is reflected in the corresponding MRT, the agent probably just

needs one iteration (to observe, take action and receive a reward) for improving its policy.
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But, if variations happen, the agent will need more iterations in the policy improvement to

adapt to new conditions.

4.1.3. System Modeling

An NS is considered as a dynamic system. For this system, a function h is estimated given

data D: xi ∈ RD (input) and yi = h(xi) + εi ∈ R (output); the term εi ∼ N (0, σ2
ε) is

independent Gaussian measurement noise, which considers variations of yi in relation to the

values of h. The estimation of h refers to a regression problem that can be approached by

parametric and non-parametric models. Parametric models impose a fixed structure on h

which limits its representational power. Non-parametric models allow determining the shape

of the underlying function h from the data and assumptions about its smoothness. Note that

the term non-parametric does not imply models without parameters, but that the number

of parameters is flexible and grows with the sample size.

Modeling uses regression based on GPs (Deisenroth, 2010) that combines non-parametric

models with Bayesian modeling and inference. A GP is fully specified by a mean function

mh(·) that describes how the average function is expected to look, and a covariance function

which is also called a kernel.

kh(x,x′) = Eh[(h(x)−mh(x))(h(x′)−mh(x′))]

= covh[h(x), h(x′)]
(4-4)

This function (kernel) specifies the covariance between any two function values. Here, Eh is

the expected value with respect to the function h.

Modeling considers a Radial Basis Function (RBF) kernel (Álvarez et al., 2012) and a mean

function mh = 0. The RBF kernel, also known as the squared exponential kernel, has the

form

kh(x,x′) = e−
‖x,x′‖2

2`2 (4-5)

where || · || represents the Euclidean norm and ` is the characteristic length-scale, which is

a hyper-parameter that describes how smooth the function h is; a small length-scale value

means that values of h can change quickly, while a large value characterizes h that changes

slowly.

Considering h as a random function, Bayesian inference allows inferring a posterior distribu-

tion p(h|D) over h from the GP prior p(h), the data D and assumptions on the smoothness

of h. The posterior is used to predict h(x∗) values at arbitrary inputs x∗ ∈ RD. Briefly,
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Bayesian inference has three steps: (i) a prior on the unknown quantity has to be specified

(in this case, h), (ii) data are observed; and (iii) a posterior distribution over h is computed

that refines the prior by incorporating evidence from the observations.

For instance, consider data D of workload and MRT, which are represented in vectors

x, y ∈ R, respectively:

x = [1000, 1200, 4600, 6400, 8200, 10000]T ,

y = [0.0001, 0.0002, 0.00015, 0.0002, 0.00035, 0.002]T ;

x is measured in service requests per seconds and y in seconds. Fig. 4-3 (left) plots samples

from the GP prior; the prior uncertainty about h is constant (gray area) because there no

observations. After having observed six function values (the data D) represented by small

circles in Fig. 4-3 (right), samples from GP posterior depict that the uncertainty varies and

depends on the location of the training inputs. This example has chosen a length-scale ` of

3000, which allows to have the smoothness of h in Fig. 4-3.
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Figure 4-3.: Prior and posterior of h(x).

4.1.4. Scaling Processes

By using pseudo-codes, this subsection details the processes of policy improvement and policy

evaluation.
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Data: GP-based system models, Q-Learning parameters (e.g., γ and α), a reward

function (e.g., see Equation 4-1) and a learning threshold (e.g., εl)

Result: An improved value function (i.e., Q) which is used by Algorithm 3

for each t do
Initialize a variable error to a value greater than εl; this variable allows

finishing this iterative process;

while error > εl do

Store Q before the RL process in previousQ;

Get the scaling action a using Equation (4-2);

Estimate St+1 using GPs-based system models;

Calculate the reward using Equation (4-1);

Update Q using Equation (5-8);

Replace St with St+1;

Store Q after the RL process in finalQ;

Calculate the error using the Mean Squared Error (Equation 4-6);

end

end
Algorithm 2: Policy improvement.

The Mean Squared Error (MSE) mentioned in the previous algorithm is given by

MSE =
1

N

N∑

i=1

e2
i (4-6)

where ei = previousQ− finalQ is the error between the value function before and after an

iteration, and N is the number of elements of Q.

4.2. Evaluation and Analysis

By simulations, this chapter evaluates the GPs-based system modeling and the behavior of

the proposed adaptive scaling mechanism. Also, this chapter compares it with other ones:

(i) based on static threshold rules, and (ii) based on Q-Learning without system models for

improving the policy.

4.2.1. System Modeling

Evaluation generates a synthetic workload and gather data of MRT from a simulated vMME.

The synthetic workload is generated using the expressions given in (Wang et al., 2015), which
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Data: An improved Q as result of Algorithm 2, Q-Learning parameters (e.g., γ

and α) and a reward function (e.g., see Equation 4-1)

Result: A scaling-out/in action transferred to vMME

Since the agent receives its reward after that it takes action; this algorithm runs in

two steps;

for each t do

Measure and store the current state in St;

Get the scaling action a using Equation (4-2);

Modify the number of instances of vMME according to the action a;

end

for each t+ 1 do

Measure and store the current state in St+1;

Calculated the reward using Equation (4-1);

Update Q using equation (5-8);

end
Algorithm 3: Policy evaluation.

considers that traffic in a mobile network exhibits a spatial-temporal pattern (Xu et al.,

2017). To measure MRT, evaluation simulates the vMME of Fig. 4-1 as a queuing model.

Simulations followed a discrete event process implemented in Python (Team-SimPy). As

service rates, evaluation uses the defined in (Prados-Garzon et al., 2017b): 120.000 packets

per second for FE, 10.167 control procedures per second for MME SL and 100.000 transac-

tions per second for SDB. Also, evaluation considers a vMME composed by up to four SL

instances; hence, four GPs-based models are needed for building the regression models of

the vMME, one for each scaling configuration. Evaluation uses scikit-learn (Pedregosa et al.,

2011) for creating GPs, tuning their hyper-parameters and performing predictions.

Fig. 4-4 plots the signaling workload and some samples of MRT gathered from the simulated

vMME (one and four instances for clarity), which are label as measured MRT. Also, Fig. 4-4

plots MRT estimated from the models. Note that there is a good accuracy between measured

and estimated MRT, which is confirmed by quantifying the MSE of the predictions (Equation

4-7): 8.6 · 10−7 for one SL instance and 5.0 · 10−7 for four SL instances.

MSE =
1

N

N∑

i=1

e2
i (4-7)

where ei = measured MRT − estimated MRT is the prediction error, and N is the number

of samples.
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Figure 4-4.: Data samples of workload, and measured and estimated mean response time.

4.2.2. Adaptive Scaling Behavior

The operation of the scaling mechanism was simulated over an overall time of 24 hours, using

as signaling workload the total arrival rate of control messages given by Fig. 4-4. Also, the

vMME of Fig. 4-1 was simulated as a queuing model, and the system models based on

GPs, built previously, were used. The simulation followed a discrete-events process in which

by each time step the Policy Improvement (Algorithm 2) and Policy Evaluation (Algorithm

3) were executed. The time step was 10 minutes, which allows achieving a right level of

granularity.

In the simulations, γ is 0.8 because its value close to 1 allows both the agent to consider

future rewards and the expected reward can converge. In turn, α is 0.1 because this small

value enable the agent to retain the learning. A learning threshold εl = 10−3 is a small

enough difference between Q before and after an iteration of the policy improvement algo-

rithm, which allows the loop to terminate.

Fig. 4-5 presents the simulation results by plotting, in different scales, MRT and the number

of SL instances vs time. These results reveal that MRT is smaller than its maximum allowed

value (1 ms) all time, which corroborates the expected accuracy of the mechanism to deter-

mine the correct number of instances at the right time. The changes of the number of SL

instances are performed at 0:40 AM (from four to three instances), 1:50 AM (from three to

two instances), 3:10 AM (from two to one instance), 7:00 AM (from one to two instances),

9:00 AM (from two to three instances) and 6:07 PM (from three to four instances).

Consider some internal details. Fig. 4-6 illustrates the operation of the scaling mechanism

by plotting the number of iterations per execution of the Policy Improvement (Algorithm

1). It can be noted that at the beginning, the policy improvement algorithm performs 160

iterations, which enables to the agent getting the initial policy. At times of change (0:40

AM, 1:50 AM, and so on), about 200 iterations are needed to improve policy because it
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Figure 4-5.: Adaptive scaling mechanism based on Q-Learning and system models.

is the border between two states, but in the other times only one iteration is required. In

summary, the proposed mechanism adapts to changes in the environment and learns by using

the GPs-based models. This strategy allows applying scaling actions to vMME only when

the agent reaches an improved policy.
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Figure 4-6.: Number of iterations in the policy improvement.

4.2.3. Comparison

Fig. 4-7 presents the behavior of a mechanism that uses static threshold rules. For the

shake of comparison, it is used as rules those defined in the reward function (Equation 4-1).

Note that this approach is accurate in the time to scale because of its reactive characteristic,

however, when variations cross the thresholds several times, transitory oscillations happen,

such as the occurred close to 2:00 AM. Also, non-performance target compliances happen

when a threshold is crossed. In short, the proposed mechanism is better than mechanisms

based on static threshold rules because it avoids transitory oscillations and violations of the
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performance target.
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Figure 4-7.: Mechanism based on static threshold rules.

Fig. 4-8 depicts the behavior of a mechanism that uses Q-Learning without system models

for policy improvement. It is maintained the same conditions that in the proposed mech-

anism, this means, the parameters γ = 0.8 and α = 0.1. Note that a decision to scale,

from two to one SL instance, is taken around 4:00 AM, fifty minutes after the proposed

mechanism; this delay is caused by the small α value, which retains the previous learning of

Q-Learning. A similar situation is observed between 7:00 AM and 9:00 AM. These delays

cause that MRT exceeds its maximum value (1 ms). Other point to highlight is the transi-

tory scaling oscillations that the agent makes when the vMME needs to be scaled, such as at

3:00 AM and 4:00 AM. These oscillations are because the agent tries wrong actions until it

can achieve a good policy. In brief, the proposed scaling mechanism is better than the based

on Q-Learning without models for policy improvement. It is corroborated by the time when

the scaling happens, the correct number of instances selected and the performance target

compliance.

To sum up, simulations confirm the expected accuracy of the scaling mechanism. At each

time step, the Q-Learning agent uses the system models for improving its scaling policy, and

next, taking the best action based on that improved policy.

4.3. Final Remarks

This chapter presented an adaptive mechanism that learns a scaling policy for managing

network performance variations aiming at being accurate in the time for scaling and the

correct number of instances to increase or decrease. The mechanism combines Q-Learning

with GPs-based system models that allow it to adapt to dynamic environments and improve
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Figure 4-8.: Mechanism based on direct Q-Learning.

its scaling policy before taking any action. Also, this chapter corroborated by simulations

that the mechanism is more accurate than mechanisms based on static threshold rules, which

are widely used, and Q-Learning without system models for improving its policy.



5. Cooperative Scaling for the 5G Core

Network Control Plane

The 5GCN is based on NFV that aims the deployment of NSs flexibly and dynamically

(Chiosi et al., 2012, Han et al., 2015), enabling scalability and adaptability of the 5G net-

work infrastructure according to user and application needs (Chowdhury, 2021). The 5GCN

control plane follows a service-based architecture (3GPP, 2018c), in which NFs, such as

AMF, SMF, and NRF interact to perform signaling procedures (e.g., registration of UE and

handover) (3GPP, 2018d). Scaling the control plane is an essential feature in 5GCN since

it enables NSs to dynamically adapt to workload variations raised by the increasing number

of users and demand of applications. Moreover, NFV-based scaling brings cost reduction

compared to traditional solutions of scaling, which statically oversize the capacity of NFs

for the highest predictable workload peak (Adamuz-Hinojosa et al., 2018). Due to NSs

in 5GCN control plane are end-to-end functionalities formed by composing NFs (Bhamare

et al., 2016), scaling NSs implies to scale its constitutive NFs, and can mainly be done by in-

creasing/decreasing the number of instances (horizontal scaling) or the number of resources

allocated to them (vertical scaling) (ETSI, 2014a, Balla et al., 2020).

Solutions for scaling the 5GCN control plane, such as (Alawe et al., 2018a,b), use the inde-

pendent scaling approach, assuming that NFs (e.g., the AMF) operate in isolation, which is

unaware of the interdependent nature of NFs that compose NSs. The same assumption of

NFs operating in isolation underlies solutions in the Telco cloud, such as (Tang et al., 2015,

Carella et al., 2016, Dutta et al., 2016). A joint scaling of the control plane in the 4G core

is addressed in (Prados-Garzon et al., 2018) by using an open network of G/G/m queues.

However, this solution may not be suitable for 5GCN control plane due to its particular

modeling for the 4G core network. The work (Harutyunyan et al., 2021) used ILP to analyze

the trade-offs between vertical, horizontal, and hybrid scaling in 5GCN and MEC. This work

classifies NFs into stateful, control plane, and user plane NFs, and does not model 5GCN

control plane NFs as interacting entities.

Considering the above drawbacks, it is remarked that scaling of the control plane in 5GCN

should be done from a cooperative approach. NFs of 5GCN control plane perform in syn-

chronous mode, meaning that they are interdependent, and so, scaling one NF leads to

change performance conditions of the other ones. In addition, scaling an NF in isolation
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assumes that the other NFs have been statically over-sized, which does that the traditional

static dimensioning problem remains. Furthermore, independent scaling takes into account

only a partial view of the behavior of NSs and may result in that quality requirements cannot

be maintained most of the time.

This chapter proposes Coop-Scaling, a novel scaling mechanism for the control plane of

5GCN in a cooperative way. Coop-Scaling uses MARL to carry out cooperative scaling that

allows learning a scaling policy maintaining the average response time below a target. Coop-

Scaling is formed by software modules that enable agents to learn over an environment (e.g.,

NSs of the 5GCN control plane) by using the RL approach. By simulations, Coop-Scaling is

evaluated regarding successful episodes, average response time, and capacity utilization. The

evaluation results corroborate that Coop-Scaling outperforms scaling based on a single-agent

or independent agents. To sum up, the contributions of this chapter are:

• A cooperative scaling mechanism (called Coop-Scaling) based on MARL for the control

plane of 5GCN.

• A prototype of Coop-Scaling.

• An evaluation of Coop-Scaling, corroborating that cooperative scaling outperforms

scaling based on single-agent or independent agents regarding the average response

time.

The rest of the chapter is structured as follows: Section 5.1 specifies Coop-Scaling describing

its modules. Section 5.2 gives the simulation process followed in the evaluation and compares

the performance of Coop-Scaling and non-cooperative scaling approaches. Section 5.3 gives

some conclusions.

5.1. Cooperative Scaling based on Multi-Agent

Reinforcement Learning

This section introduces Coop-Scaling presenting, first, an overview, and second, its architec-

ture.

5.1.1. Overview

Coop-Scaling aims at managing workload variations in 5GCN by selecting the most appro-

priate scaling configuration of its NFs. To achieve this goal, Coop-Scaling carries out three

tasks involving a making-decision process. Tasks of Coop-Scaling are iterative and form a

scaling control loop, which is depicted in Fig. 5-1, involving states and transitions between

them. First, Coop-Scaling collects data over traffic and performance metrics, such as the
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number of users and latency. Second, Coop-Scaling estimates scaling actions that maintain

workload in a desirable range. Third, Coop-Scaling applies the scaling actions to 5GCN

updating its states. The control loop of Fig. 5-1 will be implemented by scalability multi-

agents that learn from experience using the Q-Learning method.

Start

Estimating scaling

actions

Waiting for 

performance metrics

Applying scaling 

actions

Observation

measured

Scaling configuration

found

Scaling configuration

updated

Figure 5-1.: Control loop for scalability.

5.1.2. Coop-Scaling Architecture

Fig. 5-2 depicts the architecture of Coop-Scaling that operates over the 5GCN control plane.

In this plane, NFs such as AMF, SMF, and NRF can scale horizontally to support varying

signaling traffic due to the increase in the number of users. Coop-Scaling manages such as

traffic variations as part of a cognitive management plane, implementing the control loop of

Fig. 5-1. The following paragraphs describe the 5GCN control plane and the subsystems of

the cognitive management.

5GCN Control Plane. This plane represents complete NSs that implement signaling pro-

cedures in 5GCN. The overall capacity of this plane depends on the current number of users

demanding communication services and the capacity of NFs. Hence, scaling NFs can modify

the 5GCN control plane elastically to support varying traffic conditions. The entities of the

5GCN control plane are presented below.

Users and their User Equipment. 5G mobile networks expect to provide communication ser-

vices to a huge number of users (human and machine type). 5G usage scenarios (ITU, 2015)

are a broad classification of application types, such as eMBB, massive Machine Type Com-

munications (mMTC), and URLLC, which require the control plane of 5GCN to support

signaling traffic.

Human users use their UE to request communication services and use applications through

the evolved Node B (not shown in Fig. 5-2), which is also valid for non-human applications
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such as IoT and Vehicular Communications. Therefore, for the control plane of 5GCN, users

and signaling traffic generated by UE represent the workload.

Scaled Network Service. The control plane of 5GCN supports signaling procedures served by

NSs (3GPP, 2018d). These procedures are, for example, registration, session establishment,

and mobility management. Registration management allows registering or deregistering a

UE (User) with 5GCN and establishing its user context. Mobility management allows keep-

ing track of the current location of a UE. A UE needs to register with the network to get

authorized to receive services, to enable mobility tracking and reachability. In this Chapter,

the NS for session establishment is used to illustrate the operation of Coop-Scaling. Each

NS is implemented by composing NFs, which scale to handle variations in the number of UE

that require services to the 5G network.

In addition to NFs, the 5GCN control plane needs distributed monitoring agents, which for-

ward scaling states, workload data, and performance metrics to Coop-Scaling. Monitoring

agents can be deployed into NF managers in an NFV-based 5GCN control plane.

AMF

SMF

NRF

LB LB

LB

5GCN Control Plane

UE

Users

Repository

Workload patterns

Performance models

Data Collector

Environment

AMF agent

NRF agent

SMF agent

1. Observe 2. Take

Joint 

actions

3. Receive

a reward
Scaling Actuator

Network Service

Decision MakerCognitive Management Plane

Figure 5-2.: Coop-Scaling architecture.

Cognitive Management Plane. This plane implements the control loop for scalability
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given in Fig. 5-1, in which management agents cooperate to make scaling decisions. The

following paragraphs describe the modules that compose the cognitive management plane.

Data Collector. This module collects workload and performance metrics and stores them into

a repository to create workload patterns and performance models. Workload patterns and

performance models define the environment that agents interact with. Performance metrics

are average response time and capacity utilization, which characterize the behavior of the

mentioned NS and that usually vary depending on the workload. The average response time

is the expected time that the AMF takes to respond requests of session establishment by UE.

While the capacity utilization indicates the proportion that an NF (e.g., AMF) instance is

busy processing messages. For example, 70% of utilization of an AMF instance means that

70% of the time it is working, while 30% of the time it is idle expecting for requests by UE.

Repository. This module stores workload patterns and performance models. This chap-

ter considers as workload a daily pattern representing users (e.g., UE) needing to establish

sessions. Performance models can be constructed from data sets collected from measures,

building black-box systems with inputs, controls, and outputs. For instance, system inputs

can be the number of users, system controls can be scaling actions of NFs, and system out-

puts can be performance metrics estimated that depend on current inputs and the applied

controls. Instead of selecting this black-box approach to systems performance modeling, this

thesis uses theoretical models, particularly PEPA-based models, for evaluating performance

of concurrent systems (Hillston, 1994). However, theoretical models require real data to

specify parameters, such as service rates that define the average times spent by an NF to

complete its tasks.

In this chapter, Equation 5-1 is used to define a daily pattern of workload, which represents

the spatial-temporal variation of the traffic in a mobile network (Xu et al., 2017). Fig. 5-3

plots this workload, showing the number of UE versus the time of the day. It is to highlight

that ue(t) has an stochastic behavior defined by the term U [0, b), which adds a random

number with uniform distribution between 0 and b.

ue(t) =
a0√
2πσ2

exp (−(t− µ)2

2σ2
) + U [0, b) (5-1)

As depicted in Fig. 5-2, the NS for session establishment is composed by AMF, SMF and

NRF. AMF is the entry point for session establishment requests from UE. SMF creates a

session management context that allows UE to use 5G applications. NRF performs the

discovery of available SMF instances. Additionally, each NF has a load balancer (LB) that

distributes the incoming requests to the available NF instances. It is assumed that LBs

operate at high rates, and their effect on performance is negligible. Therefore, they will not
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Figure 5-3.: A daily pattern of workload.

include in the modeling. The following sequential components form the PEPA models of the

NS for session establishment.

Component UE is modeled as a sequential component which interacts with AMF and re-

quests for session establishment at a rate rue. Between successive requests, UE interposes

some idle time defined by ridle.

UEIdle
def
= (idle, ridle).SessEstablishment

SessEstablishment
def
= (session establishment, rue).UEIdle

Component AMF accepts and processes session establishment requests from UE at a rate rp.

Then, AMF discovers an available SMF instance and requests it for the session management

context creation. Finally, the AMF replies to UE once the session establishment procedures

finish. An instance of AMF is modeled as follows.

AMF
def
= (session establishment, rp).NFDiscovery

NFDiscovery
def
= (discovery, rreq).SMCreation

SMCreation
def
= (smc creation, rreq).SEReply

SEReply
def
= (session establishment reply, rreply).AMF

Component NRF exposes the operation discovery. Using this operation, an AMF finds

the URL of an available SMF instance. An NRF instance has a sequential component

corresponding to the discovery operation carried out at a rate rreq, which is followed by a

local activity performed at a rate rd.

NRF
def
= (discovery, rd).NRFLocal

NRFLocal
def
= (localnrf , rd).NRF
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Component SMF offers an operation for creating a session management context that allows

UE to use applications. Thus, a SMF instance is modeled as a sequential component corre-

sponding to the creation of a session management context carried out at a rate rreq, which

is followed by a local activity performed at a rate rsmc.

SMF
def
= (smc creation, rsmc).SMFLocal

SMFLocal
def
= (localsmf , rsmc).SMF

The system equation for the session establishment procedure can be written as follows.

UEIdle[NUE ] BC
{session establishment}

((AMF [NAMF ]

BC
{discovery}

NRF [NNRF ]) BC
{smccreation}

SMF [NSMF ])
(5-2)

Where NUE is the number of UE, and NAMF , NNRF , and NSMF are the number of available

instances of AMF, NRF, and SMF, respectively.

Environment. In Coop-Scaling, the environment is a representation of the NS (see Fig. 5-2).

By using the workload patterns and performance models, the environment and representation

of states (S) of such environment are observations as follows.

S = {ti, uei, ρ[amf ]i, ρ[smf ]i, ρ[nrf ]i, arti, nfconfi} (5-3)

Where ti is the time of sample i; uei is the workload at that sample; ρ[amf ]i, ρ[smf ]i, and ρ[nrf ]i

are the capacity utilization experimented by AMF, SMF, and NRF at sample i, respectively;

arti is the average response time at sample i, and nfconfi is the scaling configuration in the

NS at sample i.

In RL, the reward (R) stipulates what an agent must to accomplish. In Coop-Scaling, the

average response time and capacity utilization of NFs are used to define three types of

rewards, which in turn define three types of environments because different rewards change

the state space defined by Equation 5-3. In addition, these environments imply a certain

degree of cooperation even among independent agents.

1. The environment gives rewards according to QoS metrics of average response time.

The reward is +1 if the average response time is below a target, whereas reward is

0 in other cases. R1 (Equation 5-4) defines this environment and requires that, for

example, a fourth agent communicates the average response time metric.

R1 =





1, art < artmaximum

0, in other case
(5-4)
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2. The environment gives rewards according to shared QoS metrics of capacity utilization.

The reward is -1 if any NF reaches 100% of its utilization capacity, whereas reward is

the value of the average capacity utilization in other cases. R2 (Equation 5-5) defines

this environment. Unlike the previous one, this environment requires that the three

agents communicate their capacity utilization to calculate the average utilization. In

Equation 5-5, (1/3)
∑
ρ[nfs]i is the average capacity utilization for the NS given in Fig.

5-2. In this environment, the own QoS metric and QoS metrics of the other agents

encourage learning.

R2 =




−1, ρ[nfs]i = 1

(1/3)
∑
ρ[nfs]i, 0 ≤ ρ[nfs]i < 1

(5-5)

3. The environment gives rewards according to QoS metrics of average response time and

capacity utilization. The reward defined by R3 (Equation 5-6) is the combination of the

above cases. In this environment, agents have more QoS data, such as their capacity

utilization, shared capacity utilization, and average response time. In Equation 5-6,

(1/3)
∑
ρ[nfs]i is the average capacity utilization for the NS given in Fig. 5-2. More

information allows them to make better decisions.

R3 =





1 + (1/3)
∑
ρ[nfs]i, art < artmaximum, and

0 ≤ ρ[nfs]i < 1

−1, ρ[nfs]i = 1

(5-6)

Decision Maker. This module is modeled as a multi-agent system (see Fig. 5-2) in which

each NF has an agent that can carry out actions of horizontal scaling (e.g., stay equal,

increase, and decrease service instances). Three types of agents are analyzed.

1. A single AMF agent that can scale, while SMF and NRF are provisioned statically

with a determined number of service instances.

2. Independent agents corresponding to AMF, SMF, and NRF that can share QoS metrics

about capacity utilization and average response time but carry out actions indepen-

dently.

3. Cooperative agents that carry out actions jointly.

In the three previous types of agents, the Q-Learning algorithm is used. The learned decision

policy of each agent is determined by the value function, Q(s, a), which estimates long-term

discounted rewards for each pair (state, action).

An essential part of Q-Learning in finding an optimal policy is the selection of action at in

state st. In Q-Learning, there exists a trade-off between selecting the currently expected
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optimal action, or selecting a different action in the hope it will yield a higher cumulative

reward in the future (Tijsma et al., 2016). Coop-Scaling uses the softmax exploration (Barto

et al., 1991) that converts state-actions values into actions probabilities using a Boltzmann

distribution (Equation 5-7). Given a current state s and available actions ai, a Q-Learning

agent selects each action a with a probability given by that distribution.

p(ai|s) =
eQ(s,ai)/T

∑
k∈actions

eQ(s,ak)/T
(5-7)

Where T is the temperature parameter that adjusts the randomness of decisions. Low tem-

peratures lead to greedy action selection with regards to Q, whereas high temperatures cause

all actions to have more similar chances of being chosen. The probability of transition p gives

a balance between exploration and exploitation of the Q-Learning agent.

Once an agent chooses an action, it then executes the action, receives an immediate re-

ward r, and moves to the next state s′. In Coop-Scaling, executing an action means to

change the scaling configuration. For example, if in the current step t, the configuration

is (AMF,SMF,NRF ) = (1, 1, 1) (i.e., each NF agent has one service instance), and the

action chosen by the AMF agent is increase, the next configuration in the step t+ 1 will be

(AMF,SMF,NRF ) = (2, 1, 1).

In each time step, the agent updates Q(s, a) by recursively discounting future utilities and

weighting them by a positive learning rate α. The agent, through its experience, adjusts the

values of the Q-table according to Equation 5-8:

Qt+1(st, at)← (1− α)Qt(st, at) + α(rt+1 + γmax
A
Qt(st+1, A)) (5-8)

Where rt+1 denotes the reward received at step t + 1, α is a small positive number called

learning factor that allows the agent to retain what has been learned, and 0 ≤ γ ≤ 1 is the

discount factor that determines the importance of future rewards. Q-Learning is popular

because of its simplicity, and it can be used for scaling NFs as is proved in (Tang et al., 2015,

Tobar et al., 2017).

The dimension of Q-table depends on the number of states defined in the environment.

Thus, for a single AMF agent, and independent agents that consider n workload samples,

the Q-table is of dimension n rows by 3 columns. The number of columns is given by the

three actions that each agent can take. On the other hand, for agents taking actions jointly,

the dimension of the Q-table is n rows by 3M columns, where M is the number of different

NFs. For the example outlined with three NFs, the dimension is n rows by 27 columns. For

a single AMF agent and independent agents, each one has a Q-table that allows it to select

the optimal action independently. However, for agents taking action jointly, there is only
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one Q-table; hence, it has a larger dimension.

Scaling Actuator. This module executes the scaling policies into 5GCN control plane allow-

ing to update the states of the network service handled.

5.2. Evaluation and Results Analysis

This section describes the evaluation of Coop-Scaling by simulation processes. Performance

metrics considered are capacity utilization and average response time.

5.2.1. Simulation Settings

Performance models parameters. To estimate performance metrics such as average

response time, throughput, and capacity utilization, the PEPA eclipse plugin is used. In

this plugin, components AMF, SMF, and NRF are coded, as well as the system equation

(Equation 5-2) allowing to carry out steady-state analysis using the fluid approximation

(Tribastone and Gilmore, 2011). Values of service rates in the performance models are

rd = 30, rsmc = 160, rp = 80, rreply = 100, ridle = 0.0056, rreq = 200, and rue = 80.

MARL-based scaling parameters. RL agents follow the Q-Learning method. Parame-

ters of this method were set as follows. Temperature (T ) as 0.4, the discount rate (γ) as 0.8,

and learning rate (α) as 0.2.

Workload pattern. The workload pattern is defined by Equation 5-1. Its parameters were

set as µ = 12 and σ = 5, which allow having a variation with a maximum at noon (see Fig.

5-3). The coefficient a0 allows setting the variation range of the workload. It was set as

a0 = 12.000. Also, for the random samples, b = 200 was used.

5.2.2. Performance Assessment of the Network Service

This subsection aims at assessing the behavior of the NS for session establishment (see Fig.

5-2) without the operation of Coop-Scaling. For this purpose, first, a particular scaling

configuration is selected (e.g., (AMF,SMF,NRF ) = (1, 3, 2)) and evaluated regarding

average response time and capacity utilization versus the number of UE. Second, a perfor-

mance characterization is plotted, taking into account all scaling configurations of the NS

regarding the maximum number of UE and average capacity utilization per configuration.

Fig. 5-4 shows the performance that AMF, SMF, and NRF exhibit according to the number

of users for the scaling configuration (AMF,SMF,NRF ) = (1, 3, 2). The average response
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Figure 5-4.: Performance of AMF, SMF, and NRF for configuration (AMF,SMF,NRF ) =

(1, 3, 2).

time has two performance regions defined by an inflection point of 445 UE. Below this value,

the NS presents a good performance, being the response time equal to 10 ms. While this

point is exceeded, the performance degrades, reaching a performance of 103 ms. In practice,

in the latter region, the NS presents a bad performance because the overall NS is in satu-

ration (i.e., NS reached its maximum capacity) and drops service requests for a number of

users greater than 445. From Fig. 5-4, the module Environment of Coop-Scaling can set

the performance target, for example, artmaximum = 100ms.

With respect to the capacity utilization of AMF, SMF, and NRF, it grows from zero to one.

The maximum AMF capacity is achieved at the same inflection point where the average re-

sponse time is degraded. From the capacity utilization curves, it is highlighted two primary

facts. First, for a workload of less than 445 UE, SMF, and NRF are oversized, since they

have low utilization. Second, for a workload exceeding 445 UE, AMF needs to scale and thus

keep the response time below the target (e.g., 100ms). Of course, this analysis is valid for

static scaling of the NS for session establishment. In contrast, in Coop-Scaling the agents

learn a scaling policy through the RL approach using the Q-Learning method as described

in the module Decision Maker, whether independent or cooperative.

Taking into account all scaling configurations of the NS for session establishment (see Fig.



78 5 Cooperative Scaling for the 5G Core Network Control Plane

5-2), Fig. 5-5 presents a performance characterization for up to three instances in each NF,

showing the maximum number of UE versus the average capacity utilization per configura-

tion. A specific configuration represents a combination of the number of service instances of

AMF, SMF, and NRF. For example, configuration 221 represents two, one, and one service

instances for AMF, SMF, and NRF, respectively.

Fig. 5-5 reveals that various configurations allow handling variations in the workload but at

the expense of greater or lesser capacity utilization. For example, up to approximately 900

users can be supported using configurations 233, 311, and 211. However, in configuration

233, AMF, SMF, and NRF are oversized, presenting an average capacity utilization less than

60%. In contrast, configuration 211 presents an average capacity utilization close to 100%.

Configuration 233 has eight NF service instances, whereas configuration 211 uses only four

NF service instances, being the latter configuration less costly in terms of the number of NF

instances. In this example, maybe configuration 311 is the best option for handling up to

900 users. This chapter analyzes these facts when MARL-based scaling is used as described

in module Decision Maker.

Figure 5-5.: Overall performance characterization.

5.2.3. Simulation Process

It was carried out experiments that allow evaluating the performance of three types of agents

(an AMF agent, independent agents, and cooperative agents), who learn a policy of hori-

zontal scaling in each of the environments defined in module Environment of Coop-Scaling.

In environment 1, which gives rewards according to QoS metrics of average response time,

the evaluation ran 300 episodes. It was run the same number of episodes for environment 2,
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which gives rewards according to shared QoS metrics of capacity utilization. In environment

3, which combines rewards from the previous two environments, it was run 200 episodes.

An episode is the execution of the RL process on all samples of the workload. An episode

is considered successful if the average response time was below the target (e.g., 100ms)

for all workload samples. Each experiment measured successful episodes, average capacity

utilization, and average response time. Tables 5-1 and 5-2 record the values of these metrics.

Table 5-1 refers to the learning time, which is the time until the agents converge to the

maximum accumulated reward. The learning time allows analyzing how quickly the agents

learn, as well as the capacity utilization and the average response time in learning. The

learning time for environments 1 and 2 corresponds to the first 200 episodes, whereas it

corresponds to the first 100 episodes for environment 3. In turn, Table 5-2 presents the

performance once the agents have learned. It corresponds to the last 100 episodes in the

experiments carried out. After learning, it is analyzed how well the agents behave regarding

successful episodes, capacity utilization, and average response time.

Tables 5-1 and 5-2 record the relationship (in percentage) of successful episodes to the total

episodes, whether in learning time or after learning. Thus, a higher percentage of successful

episodes indicates better scaling decisions made by agents. The average capacity utilization

is the average among all episodes of the average capacity utilization of the three functions

(AMF, SMF, and NRF). This metric is measured between zero and one, being better the

closer to one, given that the capacity of the functions would be better utilized. The average

response time is a QoS metric, which indicates the time at which the control plane of 5GCN

responds to session establishment requests made by UE. The average response time is limited

by a target value ( e.g., 100 ms). Although the three types of agents achieve average response

times below this target, it will be preferable to the one that is lower, since it represents in

turn greater number of successful episodes.

Table 5-1.: Results of the evaluations in learning time.

Type of agents

Evaluation 1 Evaluation 2 Evaluation 3

Successful Average Average Successful Average Average Successful Average Average

episodes capacity response episodes capacity response episodes capacity response

(%) utilization time (ms) (%) utilization time (ms) (%) utilization time (ms)

Single AMF agent 48.6 0.3962 15.6 57.2 0.3973 14.4 77.0 0.3955 12.1

Independent agents 19.2 0.4090 24.1 13.1 0.4215 25.5 49.4 0.4062 16.6

Coop-Scaling 30.9 0.3963 23.6 17.6 0.4235 25.7 44.4 0.4025 19.9

In addition to Tables 5-1 and 5-2, Figs. 5-6 to 5-8 plot the accumulated reward and

the average response time versus the number of episodes of learning. The accumulated

reward allows determining when the agent has learned, by convergence of this value to

the maximum. Furthermore, the curves of average response time (Fig.s 5-6 to 5-8) allow
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Table 5-2.: Results of the evaluations after learning.

Type of agents

Evaluation 1 Evaluation 2 Evaluation 3

Successful Average Average Successful Average Average Successful Average Average

episodes capacity response episodes capacity response episodes capacity response

(%) utilization time (ms) (%) utilization time (ms) (%) utilization time (ms)

Single AMF agent 55.8 0.3971 14.7 64.7 0.3965 13.1 80.5 0.3979 11.3

Independent agents 26.0 0.4030 21.0 25.9 0.4096 20.6 60.1 0.4111 14.4

Coop-Scaling 90.5 0.3621 10.5 66.5 0.4017 12.2 90.5 0.3785 10.5

observing the tendency of the different types of agents in making scaling decisions after

learning (convergence), with the best decisions being those that are in the lower part. The

analysis of the evaluation results for the three environments is presented below.

5.2.4. Environment 1, which gives Rewards according to QoS Metrics

of Average Response Time

The behavior of the agents at learning time and after learning is described as follows.

Agents at learning time. Table 5-1 shows that a single AMF agent reaches 53.8% of

successful episodes, an average capacity utilization of 0.3970 and the average response time

is 15.1ms. Independent agents reach 18.0% of successful episodes, an average capacity uti-

lization of 0.4097 and the average response time is 23.7ms. Cooperative agents reach 52.0%

of successful episodes, an average capacity utilization of 0.3890 and the average response

time is 18.8ms.

At learning time, a single AMF agent achieves a higher number of successful episodes com-

pared to independent and cooperative agents, because SMF and NRF have been oversized.

Oversized SMF and NRF (i.e., SMF and NRF have three service instances) mean that only

the AMF agent is worried about the making-decision process for scaling, choosing between

one and three services instances depending on the workload pattern. The Decision Maker

(the AMF agent) is simpler and has more probability of taking correct actions at learning

time. The evaluations results show that a single AMF agent achieves 35.8% and 1.8% more

of successful episodes than independent agents and cooperative agents, respectively. Regard-

ing the average response time, the three types of agents handle this metric below the target

(i.e., 100ms). However, a single AMF agent achieves the less average response time, which

is related with the greater successful episodes. Regarding the average capacity utilization,

the three types of agents behave similarly, using a capacity close to 0.4 that is relatively low

(probably greater use of AMF, SMF, and NRF instances), which shows the cost of searching

for more successful episodes.

Fig. 5-6a shows that a single AMF agent converges from episode 24, independent agents
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converge from episode 54, while cooperative agents converge from episode 126. Therefore,

a single AMF agent and independent agents converge faster than cooperative agents. The

slower convergence of cooperative agents is due to the greater state space that implies more

steps to learn. For the average response time, the worst behavior is for independent agents,

who present a more considerable value of this metric. Independent agents take actions sep-

arately, entailing a low rate of successful episodes.
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Figure 5-6.: Accumulated reward and average response time in Environment 1.

Agents after learning. Table 5-2 shows that a single AMF agent reaches 60.4% of suc-

cessful episodes, an average capacity utilization of 0.3965 and the average response time is

14.4ms. Independent agents reach 21.1% of successful episodes, an average capacity utiliza-

tion of 0.4065 and the average response time is 22.6ms. Cooperative agents reach 89.2% of
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successful episodes, an average capacity utilization of 0.3671 and the average response time

is 10.5ms.

After learning, cooperative agents taking actions jointly outperform a single AMF agent

and independent agents. They achieve 28.8% and 68.1% more successful episodes than a

single AMF agent and independent agents, respectively. Regarding the average response

time, the three types of agents handle this metric below the target (i.e., 100ms). However,

cooperative agents achieve the lower average response time that is related to the greater

successful episodes. Regarding the average capacity utilization, cooperative agents have the

lowest average capacity utilization, showing probably greater use of AMF, SMF, and NRF

instances.

Fig. 5-6b also shows that cooperative agents overcome a single AMF agent and independent

agents because the curve of cooperative agents is below the other two. For the average

response time, the worst behavior is for independent agents, who present a more considerable

value of this metric. Independent agents take actions separately, entailing a low rate of

successful episodes.

5.2.5. Environment 2, which gives Rewards according to shared QoS

Metrics of Capacity Utilization

The behavior of the agents at learning time and after learning is described as follows.

Agents at learning time. Table 5-1 shows that a single AMF agent reaches 57.2% of

successful episodes, an average capacity utilization of 0.3973 and the average response time

is 14.4ms. Independent agents reach 13.1% of successful episodes, an average capacity uti-

lization of 0.4215 and the average response time is 25.5ms. Cooperative agents reach 17.6%

of successful episodes, an average capacity utilization of 0.4235 and the average response

time is 25.7ms.

At learning time, a single AMF agent achieves a higher number of successful episodes com-

pared to independent and cooperative agents, because AMF and SMF have been oversized.

A single AMF agent achieves 44.1% and 39.6% more of successful episodes than independent

agents and cooperative agents, respectively. Regarding the average response time, the three

types of agents handle this metric below the target (i.e., 100ms). However, a single AMF

agent achieves the less average response time, which is related with the greater successful

episodes. Regarding the average capacity utilization, the three types of agents behave simi-

larly, using a capacity close to 0.4 that is relatively low (probably greater use of AMF, SMF,

and NRF instances), which shows the cost of searching for more successful episodes.
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The convergence (see Fig. 5-7a) for a single AMF agent is from episode 84, indepen-

dent agents converge from episode 144, while cooperative agents converge from episode 180.

Therefore, a single AMF agent and independent agents converge faster than cooperative

agents. For the average response time, the worst behavior is for cooperative agents due to

its slower convergence. This behavior implies more incorrect episodes at learning time.
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Figure 5-7.: Accumulated reward and average response time in Environment 2.

Agents after learning. Table 5-2 shows that a single AMF agent reaches 64.7% of suc-

cessful episodes, an average capacity utilization of 0.3965 and the average response time is

13.1ms. Independent agents reach 25.9% of successful episodes, an average capacity utiliza-

tion of 0.4096 and the average response time is 20.6ms. Cooperative agents reach 66.5% of

successful episodes, an average capacity utilization of 0.4017 and the average response time
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is 12.2ms.

After learning, cooperative agents behave better than a single AMF agent and independent

agents. They achieve 1.8% and 36.6% more successful episodes than a single AMF agent

and independent agents, respectively. However, the improvement compared to a single AMF

agent is low. This small difference is due to the fact that only capacity utilization informa-

tion is taken into account. Regarding the average response time, the three types of agents

handle this metric below the target (i.e., 100ms). However, cooperative agents achieve the

lower average response time that is related to the greater successful episodes. Concerning the

average capacity utilization, cooperative agents have more utilization than a single AMF,

which probably shows a lower cost regarding the number of instances used.

Fig. 5-7b also shows that cooperative agents overcome a single AMF agent and independent

agents because the curve of cooperative agents is below the other two. For the average

response time, the worst behavior is for independent agents, who present a more considerable

value of this metric. Independent agents take actions separately, entailing a low rate of

successful episodes.

5.2.6. Environment 3, which gives Rewards according to QoS Metrics

of Average Response Time and Capacity Utilization

The behavior of the agents at learning time and after learning is described as follows.

Agents at learning time. Table 5-1 shows that a single AMF agent reaches 77.0% of

successful episodes, an average capacity utilization of 0.3955 and the average response time

is 12.1ms. Independent agents reach 49.4% of successful episodes, an average capacity uti-

lization of 0.4062 and the average response time is 16.6ms. Cooperative agents reach 44.4%

of successful episodes, an average capacity utilization of 0.4025 and the average response

time is 19.9ms.

At learning time, a single AMF agent achieves a higher number of successful episodes com-

pared to independent and cooperative agents, because AMF and SMF have been oversized.

A single AMF agent achieves 27.6% and 32.6% more of successful episodes than independent

agents and cooperative agents, respectively. Regarding the average response time, the three

types of agents handle this metric below the target (i.e., 100ms). However, a single AMF

agent achieves the less average response time, which is related with the greater successful

episodes. Regarding the average capacity utilization, the three types of agents behave simi-

larly, using a capacity close to 0.4 that is relatively low (probably greater use of AMF, SMF,

and NRF instances), which shows the cost of searching for more successful episodes.
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The convergence (see Fig. 5-8a) for a single AMF agent is from episode 24, independent

agents converge from episode 48, while cooperative agents converge from episode 60. There-

fore, a single AMF agent and independent agents converge faster than cooperative agents.

For the average response time, the worst behavior is for cooperative agents due to its slower

convergence. This behavior implies more incorrect episodes at learning time.
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Figure 5-8.: Accumulated reward and average response time in Environment 3.

Agents after learning. Table 5-2 shows that a single AMF agent reaches 80.5% of suc-

cessful episodes, an average capacity utilization of 0.3979 and the average response time is

11.3ms. Independent agents reach 60.1% of successful episodes, an average capacity utiliza-

tion of 0.4111 and the average response time is 14.4ms. Cooperative agents reach 90.5% of

successful episodes, an average capacity utilization of 0.3785 and the average response time
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is 10.5ms.

After learning, cooperative agents behave better than a single AMF agent an independent

agents. They achieve 10% and 30.4% more successful episodes than a single AMF agent

and independent agents, respectively. Regarding the average response time, the three types

of agents handle this metric below the target (i.e., 100ms). However, cooperative agents

achieve the lower average response time that is related to the greater successful episodes.

Regarding the average capacity utilization, cooperative agents have the lowest average ca-

pacity utilization, showing probably greater use of AMF, SMF, and NRF instances.

Fig. 5-8b also shows that cooperative agents overcome a single AMF agent and independent

agents because the curve of cooperative agents is below the other two. For the average

response time, the worst behavior is for independent agents, who present a more considerable

value of this metric. Independent agents take actions separately, entailing a low rate of

successful episodes.

5.2.7. Observations

Previous evaluations raise the following observations.

• The approach of scaling AMF only while SMF and NRF are oversized, although it

achieves a high value in the number of successful episodes, it does not represent the

most appropriate alternative because SMF and NRF could be underused in some time.

• Independent agents have the worst behavior compared to a single AMF and cooperative

agents, evidenced in fewer successful episodes and higher response time value. This

poor performance is because the state space changes when an agent takes its action.

• Cooperative agents consider the actions of each other. This joint operation allows them

to behave better than a single AMF agent and independent agents.

• The achievement of a more significant number of successful episodes is inversely related

to the lower capacity utilization. This relationship implies that RL agents try to use

more NF instances to achieve better behavior.

5.3. Final Remarks

This chapter presented and evaluated Coop-Scaling, a cooperative scaling mechanism based

on MARL in the control plane of 5GCN. Coop-Scaling enforces agents to cooperate by shar-

ing information and taking actions jointly. Results show that the scaling using agents taking

action jointly are more effective than the scaling of a single agent or independent agents.
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Experiments considered an NS for session establishment making up of three NFs (AMF,

SMF, and NRF) and up to three instances for each NF. The RL agents used the Q-Learning

method.



6. Scalability and Performance Analysis

in 5G Core Network Slicing

Network slicing is a central concept in the 5G mobile networks, which aims at running multi-

ple end-to-end logical networks (i.e., encompassing core and access) as independent business

operations on shared infrastructure (NGMN Alliance, 2016, Subedi et al., 2021). 5G net-

work slicing envisions to support different use cases, such as eMBB, mIoT, and URLLC

(Rost et al., 2017, Tullberg et al., 2016, Zhang et al., 2017, Barakabitze et al., 2020). Slicing

5GCN involves specifying NSs according to the functional and quality requirements of use

cases above mentioned (Campolo et al., 2017). To specify 5G core NSs before deployment

tasks, the Network Service Providers (NSPs) need to analyze mandatorily under varying

workloads the performance and scalability of 5GNSLs. This analysis is pivotal for NSPs

dimension their capacity (e.g., size of physical/virtual infrastructure) (Chiha et al., 2020).

The work (Prados-Garzon et al., 2017b) presented an approach to evaluate the performance

and scalability of a vMME by using Queuing Networks and measuring the average response

time. As this approach is 4G-oriented, it does not model the 5GCN that defines new NFs,

such as AMF, SMF, and AUSF (3GPP, 2018c). Also, this approach does not measure some

essential performance indices, such as processor utilization and throughput. The works

Trivisonno et al. (2018), Campolo et al. (2018), and Schneider et al. (2019) used different

techniques, such as simulations, emulations, and QPNs, to evaluate performance in 5GNSLs.

However, these works do not analyze the scalability of 5GNSLs. The work (Qu et al., 2021)

modeled 5GNSLs as NSCs, where a source node generates service requests that traverse

through several VNFs in sequence towards a destination node. This work is for the data

plane, and control plane NFs are not involved.

The above works highlight the necessity of investigating the scalability of 5GNSLs located

at the core network deeply. Furthermore, NSPs should adopt modeling and evaluation for-

malisms to perform such an in-depth scalability and performance investigation.

This chapter proposes a method based on PEPA (Hillston, 1993) for modeling, evaluating,

and analyzing the scalability and performance of 5GNSLs in the core network systematically.

PEPA has been used to model and evaluate distributed systems. The work (Almutairi and

Thomas, 2020) modeled a web-based sales system in the presence of denial of service attacks.
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Evaluation results regarding throughput and population level show how the attacks nega-

tively impact the orders of customers. The work (Sanders et al., 2020) proposed the Imperial

PEPA Compiler, an alternative to the PEPA Eclipse plugin (Tribastone et al., 2009), for

robustness analysis of resource allocation. The proposed tool overcomes some limitations,

such as the size and complexity of models imposed by the plugin. The work (Hillston et al.,

2011) introduced an approach that uses continuous PEPA models to represent large systems

with multiple replications in components, such as clients, servers, and devices.

In this chapter, PEPA is used to introduce new composite structures intended to model and

evaluate 5GCN procedures. This chapter illustrates how to use the proposed method by two

case studies: the session establishment 5GNSL and the user registration in a V2X 5GNSL.

The case studies focus on dimensioning the capacity of slices regarding users to attend and

QoS requirements. The accuracy of the method is validated with the LQN modeling for-

malism. Results show that the method is useful to model 5GNSLs core procedures and

dimension the capacity of slices. The validation results corroborate that the PEPA-based

method measures performance, in terms of throughput, average response time, and processor

utilization, with negligible difference regarding a traditional approach like LQN.

Fig. 6-1 outlines the PEPA-based method for scalability and performance analysis of 5GCN.

Analysis results allow defining and evaluating optimization strategies considering variations

in the number of concurrent users.
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Figure 6-1.: PEPA-based method for scalability and performance analysis in 5GNSLs.

The contributions presented in this chapter are:

• A method that introduces new composite structures based on PEPA and intends to
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model and evaluate 5GCN procedures.

• The scalability analysis in 5GNSLs considering concurrent users and the multiplicity

of NFs.

• Two use cases that illustrate how to use the method for modeling, evaluating, and

analyzing the performance and scalability in 5GNSLs.

• The dimensioning of 5GNSLs regarding concurrent users and QoS.

The remainder of this chapter is organized as follows. Section 6.1 details the PEPA-based

approach. Section 6.2 and Section 6.3 evaluate the scalability and performance of the ses-

sion establishment 5GNSL and the user registration V2X 5GNSL, respectively. Section 6.4

provides some conclusions.

6.1. Scalability and Performance Analysis Method

This section describes the PEPA-based method that allows modeling, evaluating, and ana-

lyzing the performance and scalability of 5GNSLs regarding response time, throughput, and

processor utilization. Thus, this method facilitates the dimensioning of 5GNSLs in the core

network, which leads to avoiding the wasting of resources.

6.1.1. Modeling Fundamentals

Some assumptions are made for modeling 5GNSLs close to reality. These assumptions are

related to 5GCN features, such as the communication pattern and the high number of con-

current users.

• For reducing complexity, 5GCN control plane procedures are modeled in a high-

abstraction level without losing representativeness in their overall behavior.

• UE and NFs are represented by sequential PEPA-components because 5GCN control

plane procedures operate sequentially and distributively.

• It is modeled the communication between NFs by the client-server pattern (Oluwatosin,

2014) with synchronous and asynchronous (Hillston et al., 2011) mode due to NFs can

act as server and client. For example, UE sends requests to AMF (server). In turn,

AMF (client) sends requests to SMF.

• It is assumed that each NF instance has a pool of threads to handle in parallel the

myriad of concurrent incoming requests in the 5GCN control plane.
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6.1.2. Modeling Patterns

Communication. This method supports the modeling of synchronous and asynchronous

communication. The synchronous mode is represented by two sequential actions:

(reqservice, v).(repservice, v)

The first one defines the service request. The second action represents the response. Here,

1/v is the expected duration of request and response actions in time units. Considering the

running example (see Fig. 2-3), AMF requests the discovery service of SMF from NRF.

The communication between AMF and NRF is modeled as (reqdiscovery, v).(repdiscovery, v).

Since the communication between NFs is almost instantaneous, v is set to an enough high

value like 100, 000. The asynchronous mode is modeled by a request action (reqservice, v). In

contrast to the synchronous mode, the NF acting as the client is not blocked to receive or

send other operations.

Processing on a VM . A VM hosting an NF uses processing to process a request. For mod-

eling such processing, it is used the pattern defined in (Hillston et al., 2011, Williams and

Clark), in which a two-state sequential component models a single processing unit. The first

state enables an action to obtain exclusive access to the resource, whereas the second state

performs all the actions deployed on the processor. For example, the processing in NRF can

be modeled as in Listing 6.1. Nrfp1 (first state) gets access to the processor using the action

(getnrfp, rp). Nrfp2 (second state) performs the action (discover, rd). This action performs

the discovery service by NRF.

Nrfp1
def
= (getnrfp, rp).Nrfp2

Nrfp2
def
= (discover, rd).Nrfp1

Listing 6.1: NRFP

6.1.3. Functioning

Fig. 6-2 depicts the functioning, actors, and tasks of the method. The Slicing Architect de-

fines the service function chains and their signaling procedures (e.g., session establishment).

Furthermore, the Architect uses the performance analysis results to select the appropriate

scaling configuration (i.e., type and the number of NF instances) to handle the expected

workload.

The Performance Analyst creates PEPA models to represent NFs, specifying in the PEPA

editor the equations that define the cooperation between NFs. It is noteworthy that the An-

alyst can reuse existing PEPA models and slicing equations available in the PEPA Models

Repository. Furthermore, since NF models include service rates, the Analyst retrieves them

from the NF Performance Repository. The Analyst also performs steady-state analysis of
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slices for measuring performance indices, such as average response time, throughput, and

processor utilization. The PEPA Analysis Tool enables steady-state analysis. The 5G Net-

work Administrator uses the service chain specifications to deploy them.

The NF Developer implements NFs and runs performance tests to determine the average

service rates of operations, such as registering or discovering an NF in and from a repository.

These rates are useful to model the expected duration of the operations. For example, a

Developer can measure the service rates by generating N calls to the service by calculating

the average time taken to generate responses. This Developer also records pairs of values

that relate operations of NFs with service rates in the NF Performance Repository.

Figure 6-2.: Method functioning - actors and tasks.

The state-space underlying PEPA models can exponentially grow when the number of com-

ponents increases (state-space explosion problem), which brings a high computational cost.

Note that this problem is present in other analysis techniques, such as Petri nets, where the

quantitative results depend on the numerical solution of the underlying Continuous-Time

Markov Chain (CTMC) (Donatelli et al., 1995). Conversely, traditional queuing networks do

not suffer from this problem due to their low computational cost that adapts well to the size

of the system under study (Tribastone, 2010). However, queuing networks consider the ex-

clusive possession of a resource (e.g., network node) and do not model nested service requests

that characterize client-server architectures. To address the state explosion problem, in this

chapter, it is used the fluid approximation proposed in (Tribastone and Gilmore, 2011) that

results in a set of Ordinary Differential Equations (ODEs), reducing the computational cost
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for solving PEPA models.

6.2. Case Study: Session Establishment 5GNSL

This case study aims three-folds. First, presenting the use of the method by modeling the

session establishment 5GNSL. Second, dimensioning this 5GNSL to satisfy QoS require-

ments and avoid bottlenecks by its evaluation and analysis in terms of average response

time, throughput, processor utilization, and scalability when NF instances and concurrent

users vary. Third, validating the method with LQN.

The PEPA Eclipse plugin is used to develop the method and performing a steady-state anal-

ysis of the session establishment 5GNSL. This plugin was deployed in an Intel Core i5 PC

(1.7 GHz) with 4 GB of RAM.

6.2.1. Modeling

The session establishment is a primary task of 5GCN that allows end-users to use session-

based 5G applications. A session is the user activity carried out between the instant the

user launches and closes a network application. Within a session, the application sends or

receives all necessary data from performing tasks, such as download a web page, streaming

a video, or make a call. The Inter-Arrival Time (IAT) is the time interval between the start

of two consecutive sessions (Prados-Garzon et al., 2017b).

Recall the service chain (Fig. 2-2) and the message sequence (Fig. 2-3) of the session es-

tablishment 5GNSL. Modeling this slice comprises 1) Defining service rates for UE, AMF,

SMF, and NRF; these rates model the duration of actions in PEPA components. 2) Com-

posing new PEPA structures to model UE, AMF, SMF, and NRF; these structures use the

PEPA operators and the modeling patterns to create sequential components. 3) Modeling

the interaction between PEPA components by the cooperation operator; this operator is

also useful to define the overall system model (i.e., the model of the session establishment

5GNSL).

Service rates . Table 6-1 presents the service rates (r) in UE, AMF, SMF, and NRF, as

well as in processors of VMs that host these NFs. 1/r defines, in time units, the average

execution demands for actions in NFs or processing on VMs.

PEPA components . It is modeled UE, AMF, SMF, NRF, and the processing of VMs that

host them as PEPA components. The states are noted with the name of corresponding NF

(first letter in uppercase) and a sequential number (e.g., Amf1). The action types are noted
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Table 6-1.: Service rates for modeling the session establishment 5GNSL.

Service rate Description

riat 1/riat (inter-arrival time) is the time that UE

interposes between successive requests of session

establishment

rpr 1/rpr is the average time demand for preparing

the service workflow

rr 1/rr is the average time demand for preparing

a response message by AMF

rd 1/rd is the average time that takes the discovery

service performed by NRF

rsc 1/rsc is the average time that takes the session

creation service performed by SMF

rp 1/rp is the average execution demand

on VM’s processors

v v is a high service rate that models almost

instantaneous service calls and replies between NFs

in lowercase (e.g., discovery). Action types are noted by subscripts to add details. For ex-

ample, the notation to access to the processor of AMF, call to an operation served by NRF,

and service request and response for discovery is getamfp, callnrf , reqd, and repd, respectively.

Component UE models users requesting the session establishment to the network slice

(see Listing 6.2). The behavior of UE is cyclic and interposes an IAT between successive

requests. UE has two states. The first one (Ue1) gets access to the processor using the

action (getuep, rp), and then, performs the thinking action (think, riat). The second state

(Ue2) models the synchronous actions request and response that UE and AMF interchange

to establish a session. These actions are (reqse, v) and (repse, v).

Ue1
def
= (getuep, rp).(think, riat).Ue2

Ue2
def
= (reqse, v).(repse, v).Ue1

Listing 6.2: UE

Component AMF is the entry point for session establishment requests from UE. The ac-

tion sequence is defined for a set of states Amfi, i = {1, ..., 12} as follows. Amf1 models

the service request. Amf2 is a local action that prepare the service workflow. Amf3 uses

the choice operator and allows for the fork of the action sequence depending on regular or

emergency requests. An occurrence probability of 0.95 modifies the rate for regular requests,

whereas a probability of 0.05 does for emergency requests. Amf4 to Amf8 are for regular

requests, Amf4 starts a call to NRF for the discovery service. Amf5 models the synchronous

communication between AMF and NRF. Amf6 starts a call to SMF for the creation of a ses-
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sion management context. Amf7 represents the synchronous communication between AMF

and SMF. Amf8 prepares a message response to UE. Amf9 to Amf11 are specific for emer-

gency requests. In this case, AMF uses a statically configured SMF and does not require the

discovery service by NRF. Amf9 starts a call to SMF. Amf10 models the synchronous com-

munication between AMF and SMF. Amf11 prepares a message response to UE. Finally, the

fork joins in Amf12, which models the session establishment response. Listing 6.3 presents

the PEPA-based model for AMF.

Amf1
def
= (reqse, v).Amf2

Amf2
def
= (getamfp, rp).(prepare, rpr).Amf3

Amf3
def
= (choose, 0.95× v).Amf4

+(choose, 0.05× v).Amf9

Amf4
def
= (getamfp, rp).(callnrf , v).Amf5

Amf5
def
= (reqd, v).(repd, v).Amf6

Amf6
def
= (getamfp, rp).(call1smf , v).Amf7

Amf7
def
= (req1sc, v).(rep1sc, v).Amf8

Amf8
def
= (getamfp, rp).(respond1, rr).Amf12

Amf9
def
= (getamfp, rp).(call2smf , v).Amf10

Amf10
def
= (req2sc, v).(rep2sc, v).Amf11

Amf11
def
= (getamfp, rp).(respond2, rr).Amf12

Amf12
def
= (repse, v).Amf1

Listing 6.3: AMF

Component NRF is modeled using actions that represent discovery requests and replies,

which are performed in cooperation with AMF. These actions are (reqd, v) and (repd, v), for

request and reply, respectively. In addition, a state (Nrf2) defines the access to the pro-

cessor and the local operation that performs the discovery service. Nrf2 is modeled using

the sequential actions (getnrfp, rp) and (discovery, rd), for access to the processor and the

discovery service, respectively. Listing 6.4 presents the PEPA-based model for NRF.

Nrf1
def
= (reqd, v).Nrf2

Nrf2
def
= (getnrfp, rp).(discover, rd).Nrf3

Nrf3
def
= (repd, v).Nrf1

Listing 6.4: NRF

Component SMF models the service for creating a session management context that al-

lows UE to use 5G applications. SMF is modeled similarly to NRF. Four additional actions

are needed, two actions are now necessary to model the request and two ones for the re-

sponse. This addition is due to the fork in AMF that handles regular and emergency service.
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The state (Smf2) defines the access to the processor and the local operation that performs

the session creation service. Smf2 is modeled using the sequential actions (getsmfp, rp) and

(createSession, rcs), for access to the processor and the session creation service, respectively.

Listing 6.5 presents the PEPA-based model for SMF.

Smf1
def
= (req1sc, v).Smf2 + (req2sc, v).Smf2

Smf2
def
= (getsmfp, rp).(createSession, rcs).Smf3

Smf3
def
= (rep1sc, v).Smf1 + (rep2sc, v).Smf1

Listing 6.5: SMF

Components UEP, AMFP, NRFP, and SMFP model the processing entities on which

UE, AMF, NRF, and SMF execute, respectively. These processing entities are modeled

following the pattern of processing given in the Subsection 6.1.2, in which each component

hast two states. The first one gets access to the processor. The second state performs the

actions deployed on the processor. As the model for NRFP was already presented in Listing

6.1, Lists 6.6, 6.7, and 6.8 present the PEPA-based models for UEP, AMFP, and SMFP,

respectively.

Uep1
def
= (getuep, rp).Uep2

Uep2
def
= (think, riat).Uep1

Listing 6.6: UEP

Amfp1
def
= (getamfp, rp).Amfp2

Amfp2
def
= (prepare, rpr).Amfp1 + (callnrf , v).Amfp1

+(call1smf , v).Amfp1 + (respond1, rr).Amf1

+(call2smf , v).Amf1 + (respond2, rr).Amf1

Listing 6.7: AMFP

Smfp1
def
= (getsmfp, rp).Smfp2

Smfp2
def
= (createSession, rcs).Smfp1

Listing 6.8: SMFP

Overall system model . The operator of cooperation (Subsection 2.1.8) is used to model the

session establishment 5GNSL. List 6.9 presents the system model by using the new 5G-

oriented PEPA constructions.

((((Ue1[Nue] BC
L1
Amf1[Namf ·Namfp ·Nt])

BC
L2
Nrf1[Nnrf ·Nnrfp ·Nt])
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BC
L3
Smf1[Nsmf ·Nsmfp ·Nt])

BC
L4

(((Uep1[Nuep] BC∅ Amfp1[Namf ·Namfp])

BC
∅
Nrfp1[Nnrf ·Nnrfp]) BC∅ Smfp1[Nsmf ·Nsmfp]))

L1 = {reqse, repse}
L2 = {reqd, repd}
L3 = {req1sc, rep1sc, req2sc, rep2sc}
L4 = {getuep, think, getamfp, prepare, callnrf ,

call1smf , call2smf , respond1, respond2,

getnrfp, discover, getsmfp, createSession}
∅ = {}

Listing 6.9: Overall system model

Where Nue is the number of UE. Namf , Nnrf , and Nsmf are the number of available instances

of AMF, SMF, and NRF, respectively. Namfp, Nsmfp, and Nnrfp are the number of processors

that are allocated to each instance of AMF, SMF, and NRF, respectively. It is noteworthy

that each processor can handle a set of concurrent threads, which is noted by Nt. Thus,

the product Nnf ·Nnfp ·Nt represents the total number of threads of an NF. Moreover, the

product Nnf ·Nnfp is the total number of processors allocated to an NF. Also note that if a

UE has a single processor, Nue and Nuep are equal.

6.2.2. Performance Metrics

To measure the performance and scalability of 5GNSLs, it is used the metrics processor

utilization, throughput, average response time, and scalability.

Utilization. This metric measures the total utilization of the processor when it is performing

actions at the steady-state (Williams and Clark). For example, the utilization of NRFP

(Listing 6.1) is its population level when NRFP performs the action (discover, rd).

Throughput . This metric measures the frequency at which an action is performed at the

steady-state (Williams and Clark). For instance, the throughput for the session establish-

ment 5GNSL is measured in the action (repse, v) of AMF (Listing 6.3) which represents the

session establishment responses per time unit.

Average response time. This metric measures the average time that a component spends

passing throughout a particular set of states (Williams and Clark). For example, in the

session establishment 5GNSL, the average response time corresponds to the time that AMF

spends to discover SMF, create the session context, and prepare the response to UE.



98 6 Scalability and Performance Analysis in 5G Core Network Slicing

Scalability Metric. This metric measures the scalability (Equation 6-1) as the ratio between

the productivity of a system at two different scale factors k2 and k1 (Jogalekar and Woodside,

2000). If ψ(k1, k2) < 1, the productivity of the system at scale k2 is less than at scale k1.

When ψ(k1, k2) = 1, the productivity of system at scales k1 and k2 is equal. If ψ(k1, k2) > 1,

the productivity of system at scale k2 is higher than at scale k1.

ψ(k1, k2) =
F (k2)

F (k1)
(6-1)

Where, F (k) is the productivity of a system at the scale k, given by Equation 6-2.

F (k) =
λ(k) · f(k)

C(k)
(6-2)

Where λ(k) is the average throughput achieved at scale k, C(k) is the running cost per

second of the system at scale k, and f(k) (Equation 6-3) is a value function determined by

evaluating the performance of the scaled system. The value function given in (Jogalekar and

Woodside, 2000) is considered to compare the average response time at scale k, T (k), with

a target value T̂ :

f(k) =
1

1 + T (k)/T̂
(6-3)

It is noteworthy that f(k) rewards the productivity. This reward tends to one if T (k) is

relatively much smaller than T̂ . It is near to 0.5 if T (k) is close to T̂ . It tends to zero if

T (k) is relatively much higher than T̂ .

6.2.3. Results and Analysis

Table 6-2 presents the service rates used in the experimental evaluation. In particular, for

1/riat, it is used 600 seconds as IAT per subscriber, which is a typical value found in (Oliveira

et al., 2014) from an analysis of the usage pattern of mobile data traffic. The other service

rates are set by performing measurements in a 5GCN prototype available in (Arteaga, 2020).

In the experiments, it is set Nt = 36 as the number of threads per processor, which is in

the range supported by modern multi-task processors, and varied the number of concurrent

users from 1 to 100, 000 to analyze configurations extensively.

Fig. 6-3 presents the throughput results for the basic configuration of the session estab-

lishment 5GNSL, (Nnrf , Nsmf , Namf ) = (1, 1, 1). These results show how the throughput
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Table 6-2.: Service rates used for numerical experimentation.

Service Rate Value Description

riat 1/600 Rate between subsequent requests

rpr 1/0.001 Rate of initial preparing by AMF

rr 1/0.02 Rate of reply by AMF

rd 1/0.03 Rate of discovery by NRF

rsc 1/0.025 Rate of session creation by SMF

rp 1/0.00001 Rate of processing on VMs

v 1/0.00001 Rate of almost real-time communication

saturation point depends on the number of processors that the NF instance uses. In particu-

lar, configuration (1,1,1) can handle up to 35, 70, and 140 session establishment requests per

second with one, two, and four processors per NF instance, respectively. Once the basic con-

figuration achieves these saturation points, the session establishment 5GNSL starts to drop

incoming requests. Summarizing, the results mentioned above confirm the correlation be-

tween throughput and number of processors; few processors lead to support low throughput

and, in turn, many processors support high throughput.

0 20 40 60 80 100
Number of UE ×103

0

20

40

60

80

100

120

140

Th
ro
ug

hp
ut
 (S

es
sio

n 
es

ta
bl
ish

m
en

ts
 p
er
 se

co
nd

)

One processor per NF instance
Two processors per NF instance
Four processors per NF instance

Figure 6-3.: Throughput of session establishment 5GNSL for the basic configuration.

Fig. 6-4 presents the throughput for configurations (1,1,1), (2,1,1), (2,2,1), and (2,2,2). In

this evaluation, it is used two processors in each VM that hosts a VNF. As expected, in

every configuration, the throughput increases with the number of users until it reaches its

maximum. In this set of configurations, the increase in the number of NF instances produces

an improvement in the throughput. Configurations (2,1,1), (2,2,1), and (2,2,2) achieved an

improvement in the maximum throughput around 14%, 39%, and 101%, respectively, regard-

ing the maximum throughput offered by configuration (1,1,1). To sum up, the throughput

supported increases with the number of NF instances.

Fig. 6-5 presents the average response time results for the basic configuration of the session
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Figure 6-4.: Throughput of session establishment 5GNSL for different configurations.

establishment 5GNSL (Nnrf , Nsmf , Namf ) = (1, 1, 1), which is measured when AMF goes

through states Amf2 to Amf12 (see AMF component). These results show that this time

increases with the number of concurrent users up to a saturation point. This saturation point

depends on the number of processors; in particular, configuration (1,1,1) can handle up to

23,000, 42,000, and 85,000 concurrent users with one, two, and four processors before the

session establishment 5GNSL starts to drop incoming requests. If a Slice Architect sets, for

instance, the target average response time to 200 ms, the session establishment 5GNSL can

handle nearly 80,000 concurrent users using four processors per NF instance. Summarizing,

the results mentioned above confirm the correlation between the average response time and

the number of processors; many processors lead to support a high number of concurrent

users in a short time.
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Figure 6-5.: Average response time of session establishment for the basic configuration.

Fig. 6-6 presents the average response time results for configurations (1,1,1), (2,1,1), (2,2,1),

and (2,2,2) when VMs that host the VNF instances use two processors. According to these
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results, the average response time improves as NFs scale-out. Specifically, this time is lower

in configurations (2,1,1) and (2,2,1) than in basic configuration around 13% and 28%, respec-

tively. However, the maximum average response time in configuration (2,2,2) is as high as

in configuration (1,1,1) due to the entry point of the slice is AMF. When AMF is scaled-out,

it sends a high number of requests to the other NFs. Thus, SMF and NRF must also be

scaled-out to avoid bottlenecks.
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Figure 6-6.: Average response time of session establishment for different configurations.

Fig. 6-7 shows the processor utilization of session establishment 5GNSL for configuration

(Nnrf , Nsmf , Namf ) = (1, 1, 1) and two processors allocated per NF instance. Utilization is

measured as the population of the second state of processing (e.g., Amfp2). NRFP reaches

its maximum utilization (1.97) for 45,000 concurrent users, explaining the overload of the ses-

sion establishment 5GNSL from this point (see Figs. 6-3 and 6-4). This slice is overloaded

from 45,000 users, although AMFP and SMFP are underused, 1.45, and 1.75, respectively.

In summary, these results show that if in a sequential chain, an NF becomes a bottleneck,

the request processing chain fails thoroughly.

Fig. 6-8 presents the scalability results when configurations k1 = (1, 1, 1), k2 = (2, 1, 1),

k3 = (2, 2, 1), k4 = (2, 2, 2) use two processors in each VM that hosts a VNF. The scalability

results reveal some facts. First, the basic configuration is useful to attend less than 40,000

users because ψ(k1, k2), ψ(k1, k3), and ψ(k1, k4) are less than 1; similar productivity with

less cost which is related to the number of NF instances that constitute a configuration.

Second, the configuration (2,1,1) is appropriate to attend between 40, 000 and 45, 000 con-

current users because ψ(k1, k2) > 1; this configuration costs less than upper configurations.

Third, the configuration (2,2,1) meets between 45, 000 and 54, 000 concurrent users because

ψ(k1, k3) > 1; this configuration costs less than (2,2,2) configuration. Fourth, the configura-

tion (2,2,2) is useful to attend more than 54,000 concurrent users.
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Figure 6-7.: Processor utilization of AMFP, SMFP, and NRFP for the basic configuration.
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Figure 6-8.: Scalability metric of session establishment 5GNSL for different configurations.

Summarizing, the main insights from the results above described are; first, the method al-

lows NSPs to dimension 5GNSLs. Second, a single NF in saturation state generates a failure

in a sequential service chain; thus, for NSLs containing this kind of chain, it is necessary to

scale the number of NF instances coordinately. Second, horizontal scaling allows improving

the performance of the slice regarding the maximum number of concurrent users, through-

put, and average response time. However, a more significant number of instances implies

an increasing cost. Therefore, there must be a balance between performance (QoS to be

supported) and the number of NF instances.

6.2.4. Validation with Layered Queuing Network

The accuracy of the PEPA-based model is validated by LQN (Franks et al., 2009) since LQN

is a well established and accepted model for performance evaluation of distributed systems,

such as the core network in 5GNSLs. Accuracy is the difference between the measured ob-
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tained by the model and the got by LQN (see Equation 6-4 that follows the definition of

percentage relative error proposed in (Tribastone, 2010)). LQN is a model for Extended

Queuing Networks, which allows analyzing client-server architectures with nested multiple

resource possession in which successive depths of nesting define the layers. Information for

constructing LQN models is available in (Woodside, 2013). PEPA can be mapped to LQN

by the process-algebraic proposed in (Tribastone, 2010). This process was followed to model

in LQN the session establishment 5GNSL.

Error(%) =

∣∣∣∣
PEPAmetric − LQNmetric

LQNmetric

∣∣∣∣× 100 (6-4)

Fig. 6-9 presents the LQN model for the session establishment 5GNSL, including tasks,

processors, entries, calls, and demands. Tasks (large parallelograms) are interacting entities

(e.g., software services) that carry out operations defined by their entries (services). PEPA

components in NFs are mapped as Tasks. A task has a host processor (ovals) that models the

computational resource used to carry out service operations; PEPA processing entities are

mapped as LQN processors. Each processor has a queue, a discipline for executing its tasks

(e.g., First-In-First-Out), and a multiplicity (noted as < Nnf >); this multiplicity represents

the number of NF instances in the horizontal scaling. UE is mapped as a Reference task

that does not receive any request. In this validation, UE is a load generator that cyclically

creates requests for the AMF task.

A task has one or more entries (smaller parallelograms), representing different operations it

may perform. Operations served by NFs (i.e., session establishment, session management

context creation, and discovery) are mapped as entries. The session establishment entry

performs six activities (rectangles) that model the fork between regular and emergency ser-

vice requests and operate in sequence, as indicated by the arrows. The activities discover

SMF and create smc call the entries in NRF and SMF, respectively. A call may be syn-

chronous, asynchronous, or forwarding. Synchronous communication in PEPA is mapped

as synchronous calls between tasks UE, AMF, SMF, and NRF. LQN demands by the total

average amounts of host processing and the average number of calls for service operations

required to complete an entry. Service rates are mapped as time demands.

For solving the LQN model of the session establishment 5GNSL, it is used the analytical

solver LQNS proposed by Franks et al. (2013). In LQN, the response time of an entry is the

time spent answering a single request; it includes the running time and the blocking time

(waiting for a processor or waiting for nested lower services to complete). The utilization of

a single-threaded task is the fraction of time that such task is busy (executing or blocked),

meaning not idle. A multi-threaded task may have several services underway at once, and
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Figure 6-9.: LQN model of the session establishment 5GNSL.

its utilization is the mean number of busy threads. The throughput is the number of service

requests of an entry served by a task in a time unit. Summarizing, average response time,

throughput, and processor utilization match with the performance metrics defined for the

PEPA modeling (see Subsection 6.2.2).

Table 6-3 presents the validation results averaged over five independent runs for configura-

tions (Nnrf , Nsmf , Namf ) = (1,1,1), (2,1,1), (2,2,1), and (2,2,2) for 20,000 UEs and 80,000

UEs. The evaluation results corroborate the accuracy of the method. It measures per-

formance metrics with negligible difference in comparison to LQN. The most significant

differences occur in the average response time measures, mainly when the number of users

is close to the overload point, as in 80,000 UE in configuration (2,2,2). These differences are

because the fluid approximation used in the PEPA-based model presents a more pronounced

transition to overload than the LQN Solver. Readers can found an exhaustive comparison

between PEPA and LQN in (Tribastone, 2010, 2013).

6.3. Case study: User Registration V2X 5GNSL

This case study aims two-folds. First, presenting the use of the method by modeling the

user registration V2X 5GNSL. Second, analyzing an auto-scaler functionality to dimension
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Table 6-3.: Model validation (* 20,000 UE, ** 80,000 UE, relative error in %).

Config.
Throughput Average response time AMFP Utilization SMFP Utilization NRFP Utilization

PEPA LQN Error PEPA LQN Error PEPA LQN Error PEPA LQN Error PEPA LQN Error

(1, 1, 1)* 33.3 33.2 0.30 0.0746 0.0827 9.79 0.7004 0.6998 0.09 0.8331 0.8323 0.10 0.9498 0.9489 0.09

(1, 1, 1)** 70.2 70.1 0.14 1.0263 1.0265 0,02 1.4745 1.4742 0.02 1.7538 1.7534 0.02 1.9993 1.9989 0.02

(2, 1, 1)* 33.3 33.2 0.30 0.0746 0.0782 4.60 0.7004 0.6998 0.10 0.8332 0.8324 0.10 0.9498 0.9489 0.10

(2, 1, 1)** 79.9 80.0 0.13 0.9003 0.9002 0.01 1.6808 1.6810 0.01 1.9992 1.9994 0.01 2.2790 2.2793 0.01

(2, 2, 1)* 33.3 33.2 0.30 0.0746 0.0757 1.45 0.7004 0.6998 0.09 0.8331 0.8324 0.08 0.9498 0.9489 0.09

(2, 2, 1)** 94.9 95.1 0.21 0.7581 0.7570 0.15 1.9962 1.9991 0.15 2.3742 2.3777 0.15 2.7066 2.7106 0.15

(2, 2, 2)* 33.3 33.2 0.30 0.0746 0.0745 0.13 0.7004 0.6998 0.10 0.8332 0.8324 0.10 0.9498 0.9489 0.10

(2, 2, 2)** 133.3 133.2 0.08 0.0746 0.1523 51.0 2.8021 2.8014 0.02 3.3328 3.3318 0.03 3.7995 3.7983 0.03

the capacity of this 5GNSL. It is also used the PEPA Eclipse plugin running on an Intel

Core i5 PC (1.7 GHz) with 4 GB of RAM.

6.3.1. Modeling

Consider the V2X 5GNSL designed by Campolo et al. (2018). V2X aims at supporting

advanced driving assistance services, such as cooperative driving based on sensors data and

driving intentions (3GPP, 2018b). Also, consider the analysis of the registration procedure

that is supported by the service layer depicted in Fig. 6-10. For registration to the network

slice, the Vehicular User Equipment (VUE) provides the network slice selection informa-

tion to AMF. Then, AMF cooperates with the Network Slice Selection Function (NSSF)

to perform the slice selection. Once NSSF has validated the subscriber information, VUE

is authenticated cooperatively by AUSF and the Unified Data Management (UDM). After

successful authentication, VUE can use network slice services. It is noteworthy that a V2X

network slice needs multiple NF instances to avoid overloading, which can increase service

latency. In this case study, it is reused the specification of the PEPA-based model of NRF

(Listing 6.4) for the discovery of AUSF. NRF allows associating the most appropriate au-

thentication method at run time, such as EAP-AKA or EAP-AKA’, which is useful for 3GPP

and non-3GPP accesses.

(R)AN

AUSF

(R)AN

AMF
NSSF

UDM

V2X AS

V2X ASPCF SMF UPF

VUE

Figure 6-10.: Service layer of the V2X 5GNSL.

As in the previous case study, the modeling includes: 1) the service rates of the operations

performed by NFs (i.e., VUE, AMF, NSSF, NRF, AUSF, and UDM) and the processors of
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VMs, 2) the PEPA components of NFs and processors; and 3) the system model of the user

registration V2X 5GNSL. In particular, the registration procedure is modeled without the

Policy Charging Function (PCF). It is considered that PCF affects the registration perfor-

mance negligibly due to charging rules are relatively straightforward compared to other core

functions. Thus, it is assumed that the operation of PCF does not significantly impact the

performance of the slice registration process.

Service rates . Table 6-4 presents the service rates (r) in VUE, AMF, NSSF, NRF, AUSF,

and UDM. It also introduces the service rates in processors of VMs that host such NFs.

Table 6-4.: Service rates for modeling PEPA actions in the V2X 5GNSL.

Service rate Description

riat 1/riat (inter-arrival time) is the time that VUE

interposes between successive requests of

registration.

rr 1/rr is the average time demand for preparing

a response message by AMF.

rs 1/rs is the average time that takes the selection

of a slice.

rd 1/rd is the average time that takes the discovery

service performed by NRF.

ra 1/ra is the average time that takes authentication

in AUSF.

rrd 1/rr is the average time that takes the

recovery of vue data.

rp 1/rp is the average execution demand

on VM’s processors.

v v is a high service rate that models almost

instantaneous service calls and replies between NFs;

e.g., AMF calling the AUSF’s authentication

service.

PEPA components . Next paragraphs describe the model of VUE, AMF, NSSF, AUSF, and

UDM as PEPA components and the model of the processors of VMs. In this case study,

NRF (Listing 6.4) and NFRP (Listing 6.1) models are not presented because they are similar

to those described in the previous case study.

Component VUE models VUE requesting the registration to the V2X 5GNSL (see Listing

6.10). Between successive requests, VUE interposes an IAT defined by riat representing the

duration that VUE remains registered to a previous network slice. VUE has two states.

The first one (V ue1) gets access to the processor using the action (getvuep, rp), and then,
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performs the action (stayRegistered, riat). The second state (V ue2) models the synchronous

communication between VUE and AMF using the actions of request (reqreg, v) and response

(repreg, v).

V ue1
def
= (getvuep, rp).(stayRegistered, riat).V ue2

V ue2
def
= (reqreg, v).(repreg, v).V ue1

Listing 6.10: VUE

Component AMF processes registration requests from VUE. The action sequence is de-

fined for a set of states Amfi, i = {1, ..., 9} as follows. Amf1 models the service request.

Amf2 starts a call to NSSF for slice selection. Amf3 models the synchronous communi-

cation between AMF and , captionpos=bNSSF. Amf4 starts a call to NRF for discovering

the appropriate AUSF. Amf5 represents the synchronous communication between AMF and

NRF. Amf6 starts a call to AUSF for authentication of VUE. Amf7 models the synchronous

communication between AMF and AUSF. Amf8 prepares a message response to send back

to VUE once the registration procedure finishes. Amf9 models the registration reply to

VUE. Listing 6.11 presents the PEPA-based model for AMF.

Amf1
def
= (reqreg, v).Amf2

Amf2
def
= (getamfp, rp).(callnssf , v).Amf3

Amf3
def
= (reqss, v).(repss, v).Amf4

Amf4
def
= (getamfp, rp).(callnrf , v).Amf5

Amf5
def
= (reqd, v).(repd, v).Amf6

Amf6
def
= (getamfp, rp).(callausf , v).Amf7

Amf7
def
= (reqauth, v).(repauth, v).Amf8

Amf8
def
= (getamfp, rp).(respond, rr).Amf9

Amf9
def
= (repreg, v).Amf1

Listing 6.11: AMF

Component NSSF models the network slice selection service offered by NSSF using three

states. The state Nssf1 defines the request from AMF. The state Nssf2 represents the

access to the processor and the local operation that performs the network slice selection.

The state Nssf3 models the response to AMF. Listing 6.12 presents the PEPA-based model

for NSSF.

Nssf1
def
= (reqss, v).Nssf2

Nssf2
def
= (getnssfp, rp).(selectSlice, rs).Nssf3

Nssf3
def
= (repss, v).Nssf1

Listing 6.12: NSSF
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Component AUSF handles authentication requests. The action sequence is defined for a

set of states Ausfi, i = {1, ..., 5}. Ausf1 models the service request. Ausf2 starts a call to

UDM for retrieving administrative data of VUE. Ausf3 models the synchronous communi-

cation between AUSF and UDM for data retrieving. Ausf4 represents the local operation

that authenticates VUE. Ausf5 is the service reply. Listing 6.13 presents the PEPA-based

model for AUSF.

Ausf1
def
= (reqauth, v).Ausf2

Ausf2
def
= (getausfp, rp).(calludm, v).Ausf3

Ausf3
def
= (reqrd, v).(reprd, v).Ausf4

Ausf4
def
= (getausfp, rp).(authenticateV ue, ra).Ausf5

Ausf5
def
= (repauth, v).Ausf1

Listing 6.13: AUSF

Component UDM models the data recovery service. UDM is modeled using actions

that represents data recovery requests and replies, which are performed in cooperation with

AUSF. These actions are (reqrd, v) and (reprd, v), for request and reply, respectively. In addi-

tion, a state (Udm2) defines the access to the processor and the local operation that performs

the data recovery service. Udm2 is modeled using the sequential actions (getudmp, rp) and

(recoverData, rrd). Listing 6.14 presents the PEPA-based model for UDM.

Udm1
def
= (reqrd, v).Udm2

Udm2
def
= (getudmp, rp).(recoverData, rrd).Udm3

Udm3
def
= (reprd, v).Udm1

Listing 6.14: UDM

Components VUEP, AMFP, NSSFP, NRFP, AUSFP, and UDMP model the pro-

cessing entities on which VUE, AMF, NSSF, NRF, AUSF, and UDM execute. The pattern

of processing (see Subsection 6.1.2) is used to model these entities, in which each compo-

nent hast two states. The first state gets access to the processor, whereas the second state

performs the actions deployed on the processor. Listings 6.15, 6.16, 6.17, 6.18, and 6.19

present the PEPA-based models for VUEP, AMFP, NSSFP, NRFP, AUSFP, and UDMP,

respectively.

V uep1
def
= (getvuep, rp).V uep2

V uep2
def
= (stayRegistered, riat).V uep1

Listing 6.15: VUEP
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Amfp1
def
= (getamfp, rp).Amfp2

Amfp2
def
= (callnssf , v).Amfp1 + (callnrf , v).Amfp1

+(callausf , v).Amfp1 + (respond, rr).Amfp1

Listing 6.16: AMFP

Nssfp1
def
= (getnssfp, rp).Nssfp2

Nssfp2
def
= (selectSlice, rs).Nssfp1

Listing 6.17: NSSFP

Ausfp1
def
= (getausfp, rp).Ausfp2

Ausfp2
def
= (calludm, v).Ausfp1

+(authenticateV ue, ra).Ausfp1

Listing 6.18: AUSFP

Udmp1
def
= (getudmp, rp).Udmp2

Udmp2
def
= (recoverData, rrd).Udmp1

Listing 6.19: UDMP

Overall system model . The entire system of the user registration V2X 5GNSL (see List 6.20)

is modeled by using the operator of cooperation (Subsection 2.1.8).

((((((V ue1[Nvue] BC
L1
Amf1[Namf ·Namfp ·Nt]) BC

L2

Nssf1[Nnssf ·Nnssfp ·Nt]) BC
L3
Nrf1[Nnrf ·Nnrfp ·Nt])

BC
L4
Ausf1[Nausf ·Nausfp ·Nt]) BC

L5

Udm1[Nudm ·Nudmp ·Nt]) BC
L6

(((((V uep1[Nvuep] BC∅ Amfp1[Namf ·Namfp]) BC∅
Nssfp1[Nnssf ·Nnssfp]) BC∅ Nrfp1[Nnrf ·Nnrfp]) BC∅
Ausfp1[Nausf ·Nausfp]) BC∅ Udmp1[Nudm ·Nudmp]))

L1 = {reqreg, repreg}
L2 = {reqss, repss}
L3 = {reqd, repd}
L4 = {reqauth, repauth}
L5 = {reqrd, reprd}
L6 = {getvuep, stayRegistered, getamfp, callnssf , callnrf ,

callausf , respond, getnssfp, selectSlice, getnrfp,

discover, getausfp, calludm, authenticateV ue,

getudmp, recoverData}
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∅ = {}
Listing 6.20: Overall system model

In List 6.20, Nvue is the number of VUE, and Namf , Nnssf , Nnrf , Nausf , and Nudm are the

number of available instances of AMF, NSSF, NRF, AUSF, and UDM, respectively. Also,

Namfp, Nnssfp, Nnrfp, Nausfp, and Nudmp are the number of processors that are allocated

to each instance of AMF, NSSF, NRF, AUSF, and UDM, respectively. It is noteworthy

that each processor can handle a set of concurrent threads, which is noted by Nt. Thus,

the product Nnf · Nnfp · Nt represents the total number of threads of an NF. The product

Nnf ·Nnfp is the total number of processors allocated to an NF. Also, if a VUE has a single

processor, Nvue and Nvuep are equal.

6.3.2. Results and Analysis

In this experiment, it is considered the automatic scaling of the V2X 5GNSL to face work-

load variations of Fig. 6-11, assuming the performance policy: “Each NF (i.e., AMF, NSSF,

NRF, AUSF, and UDM) must operate without overloading between 40 and 70 percent of

its processor utilization”. The following scaling policy may be defined to meet the per-

formance policy afore-mentioned: “The scaling system increases by one instance when the

utilization is above the upper threshold (70%). On the other hand, it decreases in one in-

stance when the utilization is less than the lower threshold (40%)”. It is assumed that each

NF instance uses two processors. Table 6-5 presents the service rates used in this evaluation.

0 2 4 6 8 10 12 14 16 18 20 22
Time (hours)

20

40

60

80

100

Nu
m
be

r o
f V

UE

×103

Number of VUE

Figure 6-11.: Variable workload (number of VUE) in a period of 24 hours.

Fig. 6-12 shows that applying the scaling policy allows keeping the processor utilization in

the user registration V2X 5GNSL into the target range most of the time. At the start and

end of the workload pattern, when the number of users is relatively low, the utilization is
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Table 6-5.: Service rates used for numerical experimentation.

Service rate Value Description

riat 1/600 Rate between subsequent requests.

rr 1/0.02 Rate of reply by AMF.

rs 1/0.025 Rate of slice selection by NSSF.

rd 1/0.015 Rate of discovery by NRF.

ra 1/0.03 Rate of authentication by AUSF.

rrd 1/0.001 Rate of data recovery by UDM.

rp 1/0.00001 Rate of processing on VMs.

v 1/0.00001 Rate of almost instantaneous communication.

less than 40%, which indicates that all NFs need just one instance (see Fig. 6-13). At some

hours (e.g., 4, 5, and 9), the utilization is higher than 70% because the scaling system is

reactive. However, since 70% is a conservative value, the NFs of the user registration V2X

5GNSL are not overloaded. It is noteworthy that UDM uses only one instance for the entire

experimentation time due to its high rate to process data recovery requests (rrd = 1/0.001).
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Figure 6-12.: Processor utilization as the scaling policy is applied.

Fig. 6-13 plots the number of NF instances required to comply with the performance policy

in the user registration V2X 5GNSL. It is noteworthy that NFs with lower service rates,

such as NSSF and AUSF, are scaled to a greater extent. In particular, NSSF and AUSF

need up to four instances, NRF up to three instances, NSSF up to two instances, and UDM

only one (it has a very high service rate).
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Fig. 6-14 presents the average response time of NFs used in the user registration V2X

5GNSL, revealing that this time is low when AMF, NSSF, NRF, AUSF, and UDM are not

overloaded. The performance and scalability policies considered in this case study are simple,

but they still allow for low response times; the maximum average response time is around

185ms. A performance policy that sets a more demanding objective in response time will

need a more complex scaling mechanism than the here presented.

Fig. 6-15 shows the throughput of the user registration V2X 5GNSL. As expected, the

maximum throughput (number of VUE registrations per second) is supported when the slice

operates with their highest number of instances. In particular, the slice achieved a maximum

of 180 registration per second at 12 hours with the following configuration: 3 AMF, 4 NSSF,

4 AUSF, 2 NRF, and 1 UDM.
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Figure 6-13.: Number of NF instances in horizontal scaling to accomplish the performance

policy.
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Figure 6-14.: Average response time as the scaling policy is applied.
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Figure 6-15.: Throughput (registrations per second) as the scaling policy is applied.

Summarizing, the main insights from the results above described are; first, the proposed

method allows NSPs to implement automatic scaling in 5GNSLs. Second, the service rates

are significant to NFs since, to implement policies, they can determine their number of in-

stances as in the UDM case.

6.4. Final Remarks

This chapter presented a PEPA-based method to analyze the scalability and performance

of core NSs in 5GNSL. This method allows specifying 5G core NFs as sequential process

components and their interaction forming a cooperation process. New composite structures

based on PEPA has been introduced which are useful to model and evaluate 5GCN proce-

dures. This chapter illustrated the use of the proposed method by presenting the modeling

and assessment regarding scalability and performance metrics of the session establishment

5GNSL and the user registration process in a V2X 5GNSL. The evaluation results in the

two case studies corroborated the usefulness of the method to model 5G core NSs and di-

mension the capacity of 5GNSLs. Furthermore, the accuracy validation results corroborated

that the PEPA-based method measures performance metrics (throughput, average response

time, and processor utilization) with negligible difference regarding LQN.



7. Conclusions and Future Work

7.1. Answer for the Fundamental Questions

This thesis addressed the research question: which, how, and when scale NFs in NFV?. To

answer this question, this thesis conducted investigations on performance and scalability in

two NFV-based networks: EPC and 5GCN. First, this thesis investigated the scalability and

performance characterization in a practical NFV-based EPC. Second, a scaling mechanism

based on RL for an NFV-based EPC was proposed and evaluated by simulations. Third, a

scaling mechanism based on MARL for an NFV-based 5GCN was proposed and evaluated

by simulations. Fourth, this thesis analyzed the scalability and performance in the 5GCN

theoretically. These investigations are developed in the following chapters.

Chapter 3 presented a scalability and performance characterization of an NFV-based EPC.

The corresponding characterization results revealed that horizontal and vertical scaling can

improve latency and throughput, enabling to handle variations in the number of concurrent

users. Also, this characterization allowed determining which NFs (e.g., MME, SGW, and

PGW) must scale and how to scale them (e.g., horizontal, vertical, and elastic). Using the

scalability results above-mentioned, Chapter 3 also presented an automatic mechanism to

scale an NFV-based EPC, which uses static threshold rules to decide when to trigger scaling

actions. The EPC and its scaling mechanism were implemented and tested in a data center,

verifying its qualities to manage workload and performance variations.

Chapter 4 presented an adaptive scaling mechanism for managing performance variations

in an NFV-based EPC. The mechanism autonomously selects the instance number of the

MME, which is the function that carries out the user registration and handover procedures

in EPC. The mechanism operates by a RL agent that uses the Q-Learning method and GPs

for improving a horizontal scaling policy. Tests based on simulations reveal that this mech-

anism outperforms scaling based on static threshold rules.

Chapter 5 presented a cooperative scaling mechanism for managing workload variations in

the 5GCN control plane. This mechanism makes decisions of scaling using MARL seeking

to maintain the average response time below a target. Chapter 5 evaluates three types of

agents: i) Single AMF agent learning how to scale while other functions such as SMF and

NRF remain static and oversized. ii) Independent agents (AMF, SMF, and NRF) that learn
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how to scale independently. iii) Cooperative agents that make scaling decisions jointly. The

evaluation of the scaling mechanism using these agents was carried out by simulations. Eval-

uation results reveal that cooperative agents outperform the other two cases.

Chapter 6 presented the scalability and performance analysis in 5GCN by using PEPA. In

particular, two 5G signaling procedures are modeled and evaluated regarding throughput,

average response time, and scalability metrics. The first procedure is the Session Establish-

ment in a 5G network slice, and the second one is the User Registration in a V2X network

slice. PEPA-based models of these procedures were validated against LQN models, showing

good accuracy of the performance analysis carried out. Investigation of Chapter 6 revealed

the usefulness of scalability analysis to model 5G core NSs and dimension the capacity of

5G network slices.

7.2. Future Work

Chapter 5 showed advantages of using MARL to implement cooperative scaling in an NFV-

based 5GCN. In general, RL multi-agents can be equipped with the intelligence necessary

to autonomously learn how to scale complex NSs. However, further investigations should

be conducted to improve the scaling mechanism presented. The following lines of work are

identified.

• It is necessary to study other cooperative models such as game theory. This future work

is justified because agents experience tension between achieving their goal (keeping the

average response time below a threshold) and capacity utilization, and therefore, the

achievement of the performance goal may be at the expense of less usage in NFs.

• Competitive scaling should be investigated considering two types of agents. Some

agents could have as objective the achievement of the performance goal, such as the

average response time. On the other hand, other agents could seek the maximization

of the capacity.

• It will be relevant to implement and validate the cooperative scaling mechanism pro-

posed in this thesis (e.g., Coop-Scaling) in 5G and beyond networks. These networks

will be formed by logical network segments generated by new use cases (e.g., tactile

Internet and holographic communications), which will require flexible capacity manage-

ment and reliability. Hence, scaling capabilities based on MARL can bring advantages

to 5G and 6G mobile networks.



A. Appendix: Scientific Production

The research work presented in this thesis was reported to the scientific community through

paper submissions to renowned conferences and journals. The process of doing research,

submitting paper, gathering feedback, and improving the work helped to achieve the maturity

thereby presented. The list of the accepted papers is as follows.

• C. H. T. Arteaga, F. Risso and O. M. C. Rendon, “An adaptive scaling mechanism for

managing performance variations in network functions virtualization: A case study in

an NFV-based EPC,” 2017 13th International Conference on Network and Service Man-

agement (CNSM), Tokyo, Japan, 2017, pp. 1-7, doi: 10.23919/CNSM.2017.8255982.

• C. H. T. Arteaga, F. B. Anacona, K. T. T. Ortega and O. M. C. Rendon, “A Scaling

Mechanism for an Evolved Packet Core Based on Network Functions Virtualization,” in

IEEE Transactions on Network and Service Management, vol. 17, no. 2, pp. 779-792,

June 2020, doi: 10.1109/TNSM.2019.2961988.

• C. H. T. Arteaga, A. Ordoñez and O. M. C. Rendon, “Scalability and Performance

Analysis in 5G Core Network Slicing,” in IEEE Access, vol. 8, pp. 142086-142100,

2020, doi: 10.1109/ACCESS.2020.3013597.

• C. H. T. Arteaga, O. M. C. Rendon, “Cooperative Scaling for the 5G Core Network

Control Plane,” To be submitted to Journal of Network and Computer Applications -

Elsevier.

There is other peer-reviewed publication that, although not directly related to this thesis, is

linked to the design of scalability solutions.

• J. S. Orduz, G. D. Orozco, C. H. Tobar-Arteaga and O. M. C. Rendon, ”µvIMS: A

Finer-Scalable Architecture Based on Microservices,” 2019 IEEE 44th LCN Sympo-

sium on Emerging Topics in Networking (LCN Symposium), 2019, pp. 141-148, doi:

10.1109/LCNSymposium47956.2019.9000664.

The papers above-mentioned are available in the next pages.
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