
3.648figure.caption.27

SELF-RECONFIGURABLE SOFTWARE-DEFINED

NETWORKS BASED ON AUTOMATED PLANNING

ANGELA MARÍA RODRÍGUEZ VIVAS

Doctoral Thesis in Telematics Engineering

Advisor:
Oscar Mauricio Caicedo Rendón

Ph.D. in Computer Science

Co-Advisor:
Jéferson Campos Nobre

Ph.D. in Computer Science
Federal University of Rio Grande do Sul, Brazil

University of Cauca
Faculty of Electronic and Telecommunications Engineering

Department of Telematics
Line of Research in Advanced Services of Telecommunications

Popayan, December 2022

ANGELA MARÍA RODRÍGUEZ VIVAS

SELF-RECONFIGURABLE SOFTWARE-DEFINED

NETWORKS BASED ON AUTOMATED PLANNING

Thesis presented to the Faculty of Electronic
and Telecommunications Engineering of the
University of Cauca to obtain the degree of

Doctor of Philosophy in:
Telematics Engineering

Advisor:
Prof. Dr. Oscar Mauricio Caicedo Rendón

Co-Advisor:
Prof. Dr. Jéferson Campos Nobre

Popayan
2022

The final version replaces this page with a copy of the act of public defense signed by
the advisors and the evaluation panel members.

To my two little ones, Jacobo and Jerónimo, whose births during my phd studies were
my precious motivation to keep going during all those stressful moments.

Acknowledgements

I thank God, the faith I have in him is my strength in academics, and all aspects of my
daily live.

I thank my beloved parents, Teresa and Nelson (RIP), they were a perfect comple-
ment in my training for life. Thanks to their dedication and affection, now I achieve this
crucial step in my professional life.

I thank my husband, my unconditional partner, Jaime Alfredo, my in-laws, Alba Alicia
and Alfredo Jose. I did the thesis but we all made the effort.

I thank my sisters Diana Marcela and Maria Cecilia, my niece Amaranta, my aunt
and godmother Ana Cecilia. My valued women, each one with its character has given
me important life lessons.

I am very grateful to my excellent advisor, Professor Oscar Mauricio Caicedo Ren-
don, his knowledge and dedication were invaluable factors for the successful develop-
ment of my thesis.

Thanks to my professors at the Federal University of Rio Grande do Sul (UFRGS),
Jéferson Campos Nobre and Lisandro Zambendetti Granvile, for welcoming me at the
inf lab and guiding me during the first steps of this research.

I thank my great friend and colleague Jose Armando, who led me on the research
way, and more than a colleague has been my mentor, always attentive to my concerns.

My thanks to professors and employees of the Department of Telematics of the
University of Cauca, who helped me and gave me the opportunity of developing my
doctoral studies.

Thanks to my folks in the 116 IPET room at the University of Cauca, for all those
off-topic discussions, jokes, and laughs during the stressful working days.

Finally, I thank to the Colombian Ministry of Science Technology and Innovation that
funded this thesis under Grant 727-2015.

Structured abstract

Background. 5G networks come with the promise to serve a wide range of use cases,
each of which features a set of diverse and stringent requirements. By leveraging the
potential of Software Defined Networks and Networks Functions Virtualization, a com-
mon infrastructure is sliced into multiple logical networks according to the diversified
service demands, enabling the implementation of 5G network slicing. As any emerg-
ing networking technology, 5G network slicing imposes new challenges to the already
complex network management. For instance, reconfiguration operations must be split
between the Infrastructure Provider (InP) and the tenants leasing network slices. How-
ever, since tenants are not networking professionals, a bespoke reconfiguration system
is required allowing them to timely reconfigure network slices meeting end-user de-
mands, with minimal dependance on InP.
Aims. This thesis introduces an approach based on Automated Planning for achieving
self-configuration in SDN. The main objective of the thesis is divided into three parts:
(i) Design an approach based on automated planning for providing self-configuration
in SDN, (ii) Present a reference implementation of the proposed approach, and (iii)
Evaluate the proposed approach regarding time-response, time-planning, and network
overhead.
Methods. This thesis proposes an approach based on Automated Planning for achiev-
ing self-configuration in SDN. Two main components are integrated for using embedded
intelligence to make reconfiguration decisions and enforce decision-making governed
by tenant intents . First, an approach named NORA, automatically transforms high-level
network management policies expressed by the tenants in natural language (NL), to the
AP-goal . For the operation of NORA, a dataset of NL network management policies
has been constructed, and we resort to natural language processing to process them.
Also, NORA merges the obtained AP-goal with initial network state (coming from Mon-
itoring Analysis elements) and a AP-domain representing the network model trough
AP-problem templates and generates an AP-problem in an AP language like PDDL or
Strips. Second, an approach named ATRAP, with AP as the decision-making technique
in a MAPE-K-based ACL to resolve the tenant-side network slice reconfiguration prob-
lem. Thanks to the design of a detailed model based on State Transition System for
the tenant-side network slice reconfiguration problem, an AI-planner is able to compute
reconfiguration plans on-the-fly to turn the network slicing from an -undesired- configu-
ration state into a configuration state complying tenant intents .
Results. The evaluation of the thesis is twofold: NORA and ATRAP. The metrics for

evaluating NORA were precision, which allows measuring whether it produces pre-
cise translations, and processing time, which allows measuring its speed for generating
planning problems. The NORA precision and processing time results position it as a
promising solution to generate AP-problems needed to close the autonomic manage-
ment loops that allow realizing self-driving networks. On the other hand, the metrics for
evaluating ATRAP were planning time, which allows measuring the time taken by the
AI-planner to compute a reconfiguration plan, and plan-length, which allows measur-
ing the actions (i.e., VNF migrations) composing a plan, i.e., the reconfiguration cost
given a plan. The ATRAP evaluation results revealed that the planning time is strongly
committed to the dimensions of the networks involved in the reconfiguration, i.e., the vir-
tualized network and the SN. Conversely, the plan length is independent of the network
size and is promising for the tenant since scarce reconfiguration actions are involved in
each computed plan.
Conclusions. Traditional human-driven network management methods are inapplica-
ble to emerging 5G network slicing due to the ever increasing diversity and dynamism of
networking demands (regarding end-users, types of devices and services, etc.), which
makes network reconfiguration increasingly complex. The introduction of autonomic
reconfiguration approaches (i.e., closed loop-based and governed by network manage-
ment intents) is thus essential. Therefore, the proposed thesis exploiting AP as the
reconfiguration decision making technique in a MAPE-K-based architecture governed
by intents representing management policies defined by tenants is an attractive solution
for achieving self-configurable SDNs.
Keywords: 5G networks, Autonomic Network Management, Network Management In-
tents, Automated Planning, Software Defined Networks.

Contents

List of Figures vii

List of Tables ix

List of Algorithms xi

Acronyms xiii

1 Introduction 15
1.1 Problem statement . 15
1.2 Hypothesis . 17
1.3 Objectives . 17

1.3.1 General Objective . 17
1.3.2 Specific Objectives . 17

1.4 Contributions . 17
1.5 Scientific production . 18

1.5.1 Publications . 18
1.5.2 Awards . 19

1.6 Methodology and organization . 20

2 Background and State-of-the-Art 23
2.1 Software Defined Networks . 23
2.2 Autonomic Network Management . 25
2.3 Zero-touch Network Management . 27
2.4 Network Management Intents . 28
2.5 5G Network Slices . 29
2.6 Configuring and Reconfiguring Network Slices 30
2.7 Automated Planning . 31
2.8 State-space Planning for the Network Slice Reconfiguration Problem . . . 33
2.9 Related Work . 33

2.9.1 Translation of High-Level Network Management Policies 34
2.9.2 Tenant-side 5G Network Slicing Management 35
2.9.3 Reconfiguring Network Slices . 37

2.10 Final remarks . 39

3 Transforming Network Management Policies into Automated Planning Prob-
lems 41
3.1 NORA . 42

3.1.1 High-level Operation . 42
3.1.2 Lexer . 43
3.1.3 Criteria Analyzer . 45
3.1.4 Converter . 47
3.1.5 Generator . 48

3.2 Evaluation . 49
3.2.1 Prototype . 49
3.2.2 Goal Policies Dataset and Lexer Tuning up 51
3.2.3 Performance Metrics . 51
3.2.4 Results and Analysis . 53

3.3 Final Remarks . 55

4 Tenant-oriented Reconfiguration of Network Slices based on Automated
Planning 57
4.1 Architecture . 58
4.2 Automated Planning for the Tenant-side Network Slice Reconfiguration

Problem . 61
4.2.1 System Model . 61
4.2.2 Automated Planning Problem Formulation 63
4.2.3 Automated Planning Domain . 65

4.3 Evaluation . 68
4.3.1 Setup . 68
4.3.2 Results . 75

4.4 Final remarks . 76

5 Conclusions 81
5.1 Answers to the fundamental questions . 82
5.2 Future work . 83

Bibliography 85

A Scientific Production and Awards 94

List of Figures

1.1 Thesis phases . 20

2.1 SDN architecture . 25
2.2 MAPE-K ACL . 26
2.3 Intents in ANM and ZSM . 29
2.4 5G network slicing . 30
2.5 Reconfiguring Network Slices . 31
2.6 AP conceptual model . 32
2.7 Migration Graph for NSRP . 33

3.1 NORA Architecture . 43
3.3 Identification of entities in a Goal Policy 45
3.4 Matrix T for policy P . 45
3.7 NORA Prototype . 50
3.8 Lexer Output . 50
3.9 Test metrics . 53
3.10 Precision vs Training Policies . 53
3.11 End-to-end Processing Time by Granular Goals 54
3.12 End-to-end Processing Time by Policy Length 54

4.1 ATRAP Architecture . 59
4.2 ATRAP and NORA in SDN . 60
4.3 Example of an AP-problem instance and its solution 70
4.4 Test Environment . 74
4.5 Plan-length for a 3-node SN . 75
4.6 Plan-length for a 4-node SN . 76
4.7 Plan-length for a 5-node SN . 77
4.8 Plan-length for different sizes of SN and virtualized network (Goal=cpu) . 78
4.9 Planning time for a 3-node SN . 78
4.10 Planning time for a 4-node SN . 79
4.11 Planning time for a 5-node SN . 79
4.12 Planning time for different sizes of SN and virtualized network (Goal=cpu) 80

List of Tables

2.1 NSRP Related Work . 37

3.1 Network Management Grammar . 45
3.2 Lexer Tokens Identification vs Ground-Truth 52

4.1 Notations . 62
4.2 Experiments Setup . 69

List of Algorithms

3.1 Tokens Positions Comparison . 47

Acronyms

5GNS 5G Network Slice

ACL Autonomic Control Loop

AI Artificial Intelligence

AP Automated Planning

CNL Controlled Natural Language

DSL Domain Service Language

HLR High-Level Requirement

InP Infrastructure Provider

MAPE Monitoring-Analysis-Planning-Execution

ML Machine Learning

NA Network Analytics

NBI NorthBound Interface

NFV Network Functions Virtualization

NL Natural Language

NLP Natural Language Processing

NMS Network Management System

PBNM Policy-based Network Management

PDDL Planning Domain Definition Language

SDN Software Defined Networks

SLA Service Level Agreement

SN Substrate Network

Chapter 1

Introduction

1.1 Problem statement

Software-Defined Networking (SDN) emerged to face the need of flexible and dynamic
paradigms to control and manage the (increasingly complex) communication networks.
SDN refers to the ability of software programs to dynamically control individual network
devices and the behavior of the network as a whole [1]. Regarding its programmable
aptness, SDN has been pointed out as a tool to simplify classical management tasks
(i.e., FCAPS) [2, 3]. Nevertheless, a way to manage the specific functionalities of
SDN planes (i.e., Data, Control, and Application) was not considered in early defini-
tions [4] [5]. In particular, network reconfiguration is one of the most usual management
tasks carried out by network operators [6] due to changes after network deployment,
like expansion or retraction of topology, and addition of devices and services. Such
changes are triggered by dynamism in user and service requirements, business rules
(e.g., new provider for network devices and placement of middleboxes and load bal-
ancers), context conditions (e.g., users mobility and addition of end users), and SDN
programmability.

In SDN, network properties (e.g., monitoring services) can be manipulated by soft-
ware programs to modify network behavior in a much more flexible way than in conven-
tional non-programmable scenarios [7]. However, such modifications (e.g., addition/-
modifications of controller modules) may turn the network into unstable states, because,
despite its benefits, the SDN programmability does not guarantee compliance of man-
agement policies. It is an administrator task to reconfigure SDN on-the-fly to return it to
a stable state. Such reconfiguration entails computation of proper configuration alter-
natives. For instance, if an SDN controller is added to the network leading to a two-size
controllers cluster, the administrator has 2n − 2 possibilities to interconnect switches to
controllers, where n is the number of switches. It is noteworthy that, if responses from
centralized management systems or human operation are fairly slow, resulting network

16 Chapter 1. Introduction

instability may expand quickly [6], impacting negatively on performance.
The use of the self-configuration property of the Autonomic Network Management

(ANM) paradigm has been explored to overcome limits of manual intervention (e.g.,
time-consuming, error-prone, and hard-to-scale) in network configuration [8] [9]. In
ANM, the network status is continuously monitored and analyzed to detect abnormal
behavior and turn high-level policies into executable management services with minute
human intervention. This is usually achieved thanks to the operation of Autonomic
Control Loops (ACLs). Self-configuration is the property of ANM with which network
components configure and reconfigure themselves in a dynamic environment, steered
by high-level policies [8]. Likewise, network components are able to install, set up, and
integrate seamlessly into the network without (or minimally) disturbing its performance,
with minimal human intervention [10] [11].

A well-known realization of ACLs is MAPE-K, the approach proposed by IBM [11].
MAPE-K loop chains components for Monitoring, Analyzing, Planning, and Executing,
all of which rely on a Knowledge Repository (KR) orthogonal to the rest. The autonomic
functions can use KR to retrieve and log knowledge data [12]. While the Monitoring and
Analyzing components have vast ongoing works and proposals [13] [14] [15] [16], and
the Executing component has implementation options like an off-the-shelf deployment
system [17], the Planning component is yet to be developed for reconfigurations in SDN.

A solution to automatically calculate a set of configuration alternatives for SDN,
complying management policies under different network conditions, could bring impor-
tant benefits to SDN management such as reliability, efficiency, and reduction of capital
expenditures/operating expenditures [18]. Furthermore, novel ANM trends like Cogni-
tive Network Management (CNM) [12] and Knowledge-Defined Networking (KDN) [19]
could be explored to complement the Planning component of the ACL.

To sum up, we propose automatic computation of (re)configuration tasks for SDN
that could support administrator decisions during reconfiguration and provide recom-
mendations while offering: (i) an increase in the reliability and efficiency of SDN op-
eration, (ii) simplify configuration management of SDN planes; and (iii) reduce capital
expenditures/operating expenditures (CAPEX/OPEX) for providers.

Some solutions have addressed self-configuration in SDN to enforce QoS settings
on data plane devices [3] [20], but no solution is available to automatically compute a
set of configuration alternatives for SDN, to be applied when the network experiences
an unstable state. We argue that the automatic computation of configuration tasks,
according to management policies could return the network into a stable state avoiding
propagation of network instability and degradation of services.

Considering the need for an automated configuration planner for SDN to minimize
the burden of manual operation, and increase reliability (SDN is vulnerable to miscon-
figurations) and efficiency (human actions are usually slower than machine), this thesis
project focuses on solving the following research question:

1.2. Hypothesis 17

Given an undesired network state, how to compute reconfiguration
management actions on-the-fly to turn SDN into a desired state?

1.2 Hypothesis

To address the research question stated in Section 1.1, this thesis raises the following
hypothesis: An approach based on automated planning could compute SDN re-
configuration plans (ordered actions) on-the-fly to turn the network into a desired
state. During the development of this thesis and the study around this hypothesis, the
main research question evolved into secondary research questions as follows.

• How to include the AP technique as a decision-maker for network reconfiguration,
under the ANM paradigm?

• Can the AP based decision making for network reconfiguration be guided by high-
level network management policies?

1.3 Objectives

1.3.1 General Objective

Introduce an approach based on automated planning for achieving self-configuration in
SDN.

1.3.2 Specific Objectives

• Design an approach based on automated planning for providing self-configuration
in SDN.

• Present a reference implementation of the proposed approach.

• Evaluate the proposed approach regarding time-response, time-planning, and
network overhead.

1.4 Contributions

The present thesis contributes to the state-of-the-art on networks management propos-
ing an approach for self-reconfigurable networks, comprising:

18 Chapter 1. Introduction

• A MAPE-K-based architecture that closes the Autonomic Control Loop (ACL) al-
lowing autonomic reconfiguration of network slices from the tenant-side. The main
characteristics of our architecture are:

– AP is the AI technique for making reconfiguration decisions.

– The business policies governing the ACL behavior are the intents represent-
ing high-level network management policies defined by tenants.

• A mechanism for obtaining AP-goals from network management policies.

• An approach for automatically generating AP-problems where the AP-goal comes
directly from network management policies.

• A detailed model for the tenant-side network slice reconfiguration problem based
on State-Transition System, which enables AP as a decision maker in the MAPE-K
based architecture. Our model includes:

– A representation for the Substrate Network (SN)

– A representation for the tenant’s virtualized network.

– A representation of the instantaneous configuration of both (managed) net-
works.

– A representation of the residual capacity of SN nodes and physical links
given a configuration.

• A series of AP-problems that instantiates the system model for the tenant-side
network slice reconfiguration problem in the Planning Domain Definition Lan-
guage (PDDL). PDDL is a de-facto representation language for AP-problems in
AP. Our AP-problems can be reused by researchers interested in exploring the
benefits of AP as decision-maker for managing 5G network slices. Each AP-
problem includes a PDDL description for:

– The AP-domain , which generalizes the problem from its model.

– The problem instance, which is a particular situation of the AP-domain .

1.5 Scientific production

1.5.1 Publications

The major contributions to the scientific community achieved with the realization of this
thesis are listed below.

1.5. Scientific production 19

• "NORA: An Approach for Transforming Network Management Policies into Auto-
mated Planning Problems" [21]
Sensor MDPI
JCR Q1, SJR Q1, Publindex A1.
March 4th, 2021

• "Model-Based Reinforcement Learning with Automated Planning for Network Man-
agement" [22]
Sensor MDPI
JCR Q1, SJR Q1, Publindex A1.
August 22th, 2022
Collaboration

• "Framework for Autonomic Management in Software Defined Networks" [23].
32nd Network Management Research Group (NMRG), IETF 99
July 20th, 2017
Prague - Czech Republic

• "Bridging the Gap Between Network Management and Artificial Intelligence: a
Natural Language Policies Translator", Extended Abstract and Poster.
Latin America Students Workshop (LANCOMM19)1, Brazilian Symposium on Com-
puter Networks and Distributed Systems (SBRC2019)
May 7th, 2019
Gramado - Brazil

• "Autonomic Tenant-side Reconfiguration in 5G Network Slicing by exploiting Au-
tomated Planning"
Submitted to: Computer Networks Journal.

1.5.2 Awards

During its execution, this thesis was awarded with the distinctions listed below.

• Internet Society Fellow to IETF 992.
Travel grant awarded by: Internet Society (ISOC)
July 15th - 22th, 2017
Prague - Czech Republic

1http://sbrc2019.sbc.org.br/en/lancomm-student-workshop-2019/
2https://www.internetsociety.org/past-ngl-programs/past-fellowship-to-ietf/fellows/IETF-99

20 Chapter 1. Introduction

• One of the six best posters among all the submissions to LANCOMM 2019.
Jury: Walter Willinger, Theophilus Benson and Justine Sherry
May 7th, 2019
Gramado - Brazil

Appendix A adds those scientific productions and awards in chronological order.

1.6 Methodology and organization

The research process that guided the development of this thesis is based on a typi-
cal scheme of the scientific method [24]. Figure 1.1 depicts the phases of the scien-
tific research process: Problem Statement, Hypothesis Construction, Experimentation,
Conclusion, and Publication. Problem Statement, for identifying and establishing the
research question. Hypothesis Construction, for formulating the hypothesis and the as-
sociated fundamental questions. In addition, this phase aims to define and carry out
the conceptual and technological approaches. Experimentation, for testing the hypoth-
esis and analyzing the evaluation results. Conclusion, for outlining conclusions and
future works. Note that Hypothesis Construction has feedback from Experimentation
and Conclusion. Publication, for submitting and publishing papers for renowned confer-
ences and journals. The writing of the dissertation document also belongs to this last
phase.

NORA: An Approach for
Transforming Network
Management Policies into
Automated Planning
Problems
Model-Based
Reinforcement Learning
with Automated Planning
for Network Management

Major contributions

Future works

Test of the hypothesis

Analysis of the evaluation
results

An approach based on
automated planning could

compute SDN configuration
plans (ordered tasks) on-the-fly

to turn the network into a desired
state.

Fundamental questions

Conceptual and
technological approaches

Given an undesired network
state, how to compute

(re)configuration management
actions on-the-fly to turn SDN

into a desired state?

Hypothesis
Construction

Problem
 Statement Experimentation Conclusion Publication

Figure 1.1: Thesis phases

The organization of this document reflects the phases of the methodology.

• This introductory Chapter presents the problem statement, raises the hypothe-
sis, exposes the objectives of this thesis, summarizes the contributions, lists the
scientific production, and describes the overall structure of this dissertation.

1.6. Methodology and organization 21

• Chapter 2 reviews the main concepts and research related to 5G networks, Au-
tonomic Network Management, Network Management Intents, Automated Plan-
ning, Software Defined Networks.

• Chapter 3 introduces an approach for generating AP-problems where the AP-goal
comes from the transformation of network management policies.

• Chapter 4 presents an approach for tenant-oriented network slices reconfigura-
tion based on a MAPE-K-based architecture and AP as a decision maker in the
ACL.

• Chapter 5 presents conclusions about the hypothesis and proposes future works.

22 Chapter 1. Introduction

Chapter 2

Background and State-of-the-Art

This chapter presents the central concepts of this thesis. The first section introduces a
bottom-up description of the typical Software-Defined Networking (SDN) architecture.
The second section provides a primer of the ANM concept, from its conception to its
evolution dragged by emerging networking technologies and AI techniques. The third
section introduces the evolved ANM concept, Zero-Touch Network Management. The
fourth section presents an overview on Intents from the network management perspec-
tive. Sections fifth and sixth contextualize on 5G network slicing and its configuration
and reconfiguration processes. The seventh section reviews the conceptual basis of
Automated Planning and provides a landscape on its application to network manage-
ment issues and section eighth bridges AP and reconfiguration of network slices into
a single mathematical concept. Finally, sections nineth and tenth present the related
work of this thesis and sum up the chapter.

2.1 Software Defined Networks

SDN offers a programmable architecture which initially included three horizontal planes:
data, control, and application. The data plane incorporates network elements (NEs) that
directly transport the customer traffic, handling incoming data flows along the forwarding
paths computed and established in the control plane. NEs vary from simple resources
(e.g., ports and memories) to composite devices (e.g., switches and routers). Data
plane is also denominated Forwarding Plane [1,18]. In addition to traffic forwarding, the
data plane performs data compression and dropping or changing of packets (e.g., alter
packets header) which can be slightly seen as a subset of control and management
functions [25]. Studies on SDN management expect NEs to include internal logic to
autonomously respond to local events like usual network failures [18,25].

The control plane, usually implemented on a controller entity, centralizes the logic
of the forwarding tasks [26]. The controller compiles decision policies from the user

24 Chapter 2. Background and State-of-the-Art

applications to instruct NEs on how to process and forward packets. The IRTF (Inter-
net Research Task Force) SDN research group (SDNRG) [1] sums up the logic of the
controller with the following functionalities: (i) topology discovery and maintenance, (ii)
packet route selection and instantiation; and (iii) path failover mechanism. Latest re-
search studies have identified issues related to the demarcation line between control
and management operations in SDN [6]. For SDNRG, the control mostly refers to the
device packet-handling capability, while the management typically refers to aspects of
the overall device operation [1].

The application plane is, in short, where reside applications and services that define
network behavior. SDN principles permit applications to specify to the control plane (via
application-control interfaces), in a programmatic manner, the resources and behavior
they require from the network, within the context of a business and policy agreement
[25, 27]. Applications that directly support the operation of the data plane (such as
routing processes within the control plane) are not considered part of the application
plane [1].

Communication interfaces of SDN, i.e., the SouthBound Interface (SBI) and the
NorthBound Interface (NBI), were defined along with the planes. Through SBI (im-
plemented with a vendor independent protocol), instructions from the control plane are
enforced to the data plane [28]. Note that the data plane can send both solicited and un-
solicited information. OpenFlow (OF) is a widespread open standard protocol for SBI,
used by vendors and researchers [29]. NBI, in turn, is used for interactions between
the application and control planes [30]. Over NBI, applications feed the control plane
with information that contribute to the decision-making process, and the control plane
provides an abstracted view of the network resources to the application plane, thanks
to information and data models [27].

The architecture of SDN calls for tasks to ensure the correct operation and per-
formance of the network in the long term, that is not to be performed by the planes
themselves [6, 19]. For example, in the data plane, allocating resources to a particular
client or enrolling each switch to its corresponding SDN controller. Defining the scope
of a controller and configuring policies for its decisions, are issues of the control plane.
Also, abnormal behavior of the controller is to be early solved given its critical role
which performs most of its operations in a real-time regime. At the application plane,
handling contracts and Service Levels Agreements (SLAs) of applications and creating
and provisioning services are noticeable needs [6,25].

Up to now, classical management (Faults, Configuration, Accounting, Performance,
and Security - FCAPS [31]) seems to be under intensive research in SDN, but SDN-
specific management is almost neglected. Recently, the SDN architecture was com-
plemented with a vertical management plane to organize functions for the operation,
administration, and maintenance (Figure 2.1) [18,25,27] of SDN planes. However, this
plane counts considerable challenges as it is in the definition process yet. For instance,

2.2. Autonomic Network Management 25

Figure 2.1: SDN architecture

the implementation of interfaces to the control and application planes rarely appeared
in previous proposals [32]. These interfaces allow setting to be enforced in NEs and in-
formation to be retrieved back into the management plane, for example, to be reported
to the Administrator [18]. Distribution of management decisions strengthens quick and
local management operations while reducing the volume of management traffic. In
SDN, local management should be executed by NEs like OpenFlow-enabled switches
and controllers, expected to react in autonomic fashion. In this regard, centralization
or distribution of SDN management is a current discussion, though a consensus points
towards a hybrid approach [6]. Also, how to interoperate with third-party management
services is to be solved in SDN. Such services could cover inventory services or poli-
cies and/or devices storage [18].

2.2 Autonomic Network Management

Autonomic Networking is a particular case of the Autonomic Computing described in
2001 by IBM [11]. ANM provides the network with capabilities to react to changes
in user requirements or context conditions, returning to desired behavior with minute
human intervention. In this sense, ANM calls for automated decisions for management
actions [12] allowing the Administrator to focus more on business logic and less on
low-level device configuration processes [8].

26 Chapter 2. Background and State-of-the-Art

The goal in ANM is to provide self-management via self-CHOP properties. In gen-
eral terms, self-CHOP includes: (i) self-configuration, where functions configure them-
selves based on self-knowledge and/or discovery [33], (ii) self-healing, that is, func-
tions adapt on their own to changes in the environment and heal problems automat-
ically [10], (iii) self-optimization, which means that autonomic functions automatically
determine ways to optimize their behavior against a set of well-defined goals [8]; and
(iv) self-protection, where functions automatically secure themselves against potential
attacks [9].

In ANM, the network status is continuously monitored and compared with the de-
sired bounds defined by high-level policies. If any event is detected in the network, the
situation is analyzed to convert the policies into executable network management tasks
(e.g., topology reconfiguration). Finally, the network status is monitored again to check
the effect of the executed action(s). Figure 2.2 depicts the alternative of IBM to solve
this ACL behavior chaining components for: (i) Monitoring, to gather, filter and collate
data as required, (ii) Analysis, to understand the data and determine if the managed
element is acting as desired, (iii) Planning, which determines which actions should be
taken to reconfigure the managed element; and (iv) Execution, to translate the planned
actions into a set of configuration commands. These components rely on a Knowledge
Repository (KR) [8] [9] orthogonal to the rest. The autonomic functions can use KR to
retrieve and log knowledge data [12]. The loop is referred to as MAPE-K.

Managed Element

Sensors Effectors

Monitoring

Knowledge

Analysis Planning

Execution

Figure 2.2: MAPE-K ACL

Beyond MAPE-K, different ACLs proposals have emerged from research projects.
For example, FOCALE [34] is a blueprint architecture for orchestrating the behavior
of heterogeneous and distributed computing resources. FOCALE stands for Founda-
tion, Observation, Comparison, Action, and Learning Environment defining mainly two

2.3. Zero-touch Network Management 27

interworking loops, one for Maintenance when the gathered sensor data matches the
desired network state, and another for Adjustment in the opposite case. CogMan [35],
in turn, makes a fundamental change to FOCALE creating control loops based on the
human cognitive model (CogMan will be extended on the Related Work Section).

A novel paradigm referred to as the KDN [19] operates by a control loop that ex-
ploits SDN and Network Analytics to provide automation, recommendation, optimiza-
tion, validation and estimation. In the KDN operational loop, ML is the heart for the data
analysis. Important challenges need still to be addressed in KDN as interdisciplinary
efforts are combined therein. A similar proposal is the C-MAPE loop [12], where the
original IBM MAPE is incorporated with cognition (through ML) at every component.
For instance, the Monitor component should be able to determine the what, when and
where to monitor.

Standardization bodies have also put efforts on ANM. ETSI has released several
versions of the GANA architecture (Generic Autonomic Networking Architecture) fus-
ing efforts from leading models (e.g., FOCALE and IBM MAPE) [36]. GANA counts
some core concepts: (i) Managed Entities (MEs) at the bottom of the management
and control hierarchy, means a managed resource that can be either a physical NE or
some functional entity within a node/device, (ii) Decision Elements (DEs) in four levels
of hierarchy (protocol, function, node, and network-level) are responsible for autonomic
management, their behavior is called the self-properties; and (iii) the Knowledge Plane
(KP) that enables advanced management and control intelligence thanks to a series of
inner elements. The interaction of DEs from different levels is performed through the
execution of an ACL.

Finally, the Autonomic Networking Integrated Model and Approach (ANIMA) IETF
group is currently working on a Reference Model for Autonomic Networking [37] fo-
cused on autonomic nodes, that is, nodes interact with each other to form feedback
loops and perform autonomic functions at node level [33]. ANIMA introduces two main
architectural elements: (i) Autonomic Service Agents (ASAs) that is like the atomic part
(e.g., a piece of code) of an autonomic function; and (ii) a crosslayer called Autonomic
Networking Infrastructure (ANI), the foundation for autonomic functions.

2.3 Zero-touch Network Management

With the pivotal deployment of 5G, not only does network usage and traffic increase
significantly, but so does its technical, network, and operation complexity. For this rea-
son, operators networks seek automation to reduce the cost of operations, time to
service, and revenue of new and innovative services. Zero-Touch Network Manage-
ment positions itself as an alternative to face these demands. These networks will use
automation and AI/ML with the purpose of healing and adjusting themselves, based

28 Chapter 2. Background and State-of-the-Art

on the signals in the data they collect and analyze across all network activity [38].
The greatest achievement of automation in these new deployments is to enable au-
tonomous networks which will be driven by high-level policies and rules; where the
networks will be capable of self-configuration, self-monitoring, self-healing, and self-
optimization without further human intervention. These objectives demand requirement
of capacity, extremely low latency, high reliability, high expectations in customer ex-
perience and support for massive machine-to-machine communication. Zero-Touch
Network Management requires a new horizontal and vertical architecture framework
designed for closed-loop automation and optimized for artificial intelligence algorithms
that ETSI ZSM has been working on since 2017 with the aim of accelerating the defini-
tion of the architecture and the required end-to-end solutions [39].

2.4 Network Management Intents

According to [40] policies can be classified into Action Policy, Goal Policy, and Utility
Function Policy. An Action Policy dictates the action that the Network Management
System (NMS) should take whenever the system is in a given state. Typically, a NMS
based on Action Policies follows the structure IF(Condition) THEN(Action), where Con-
dition specifies either a specific state or a set of possible states that all satisfy the given
Condition. Note that the state that the NMS will reach taking the given action is not
specified explicitly. Rather than specifying what to do in the current state S, a Goal
Policy specifies how the NMS should behave when a single desired state S, or one or
more criteria that characterize an entire set of desired states happen. Goal Policies
provide only a binary state classification: ’desirable’ and ’undesirable’ [41]. A Utility
Function Policy is an objective function that expresses each possible state’s value. Util-
ity Function Policies generalize Goal Policies.

Network Management Intents are guidelines and constraints to network manage-
ment [42] and represent the evolution of high-level network management policies, as
a special case of policy. They represent service requirements, such as availability, re-
sponse time, throughput, and security. A higher level intervention from the users is
regarded as an intent [43]. The objective is to provide guidance in the form of network
understandable input from the users. The required information from user to interact
with the network through intent does not encompass low-level or configuration level in-
formation. An autonomous network is able to understand this intent from nodes, finally
providing a configuration for the involved network functions. In this thesis we use the
Intent concept defined by the IETF [44]: an intent is a set of operational goals (that a
network is supposed to meet) and outcomes (that a network is supposed to deliver), ex-
pressed in a declarative manner without specifying how to achieve or implement them.
Recent studies on network management intents [45, 46] have resulted in architectural

2.5. 5G Network Slices 29

proposals, as those shown in Figure 2.3, for defining the -close- relationship between
intents , ANM and ZSM.

Knowledge

Aplication Logic

Aplication Functionality

A P

M E

(a) Intents and MAPE-K

Policy
Mangement Tool

Policy
Repository

Policy
Decision Point

Policy
Enforcement Point

IETF/DMTF policy framework

Application K
M A P E

(b) Policy and MAPE-K

ZSM Framework

Analysis Policy

Knowledge

Monitoring act

User Provider External

(c) Intents and ZSM

Figure 2.3: Intents in ANM and ZSM

2.5 5G Network Slices

5G networks will offer network services to a wide range of end-users including hand-
held devices, self-driving cars, and e-health devices. The services offered under the
use cases eMBB, URLLC, mMTC are characterized by different requirements regard-
ing for example bandwidth and latency [47]. Simultaneously satisfying all service re-
quirements is a key challenge for network operators. The 3rd Generation Partnership
Project (3GPP) has therefore proposed network slicing, i.e., , multiplexing logically in-
dependent networks on a substrate where each network is tailored for a particular use
case [39].

The service provided by a network slice is thus defined by its Service Function
Chain (SFC) [48]. For example, a service offered under the mMTC use case, including
essential control and user plane VNFs, i.e., Access and Mobility Management Function
(AMF), Session Management Function (SMF) and User Plane Function (UPF), can be
defined as AMF0 → AMF1 → AMF2 → SMF0 → UPF0. Several AMFs shape this

30 Chapter 2. Background and State-of-the-Art

AMF AMF AMF SMF UPF

AMF AMF AMF SMF UPF

AMF
Backup

SMF
Backup

UPF
Backup

AMF SMF UPF

UPF
Backup

Netw
or

slic
e

URLL
C

Netw
or

slic
e

eM
BB

Netw
or

slic
e

mMTC

End Point 1

End Point 1

End Point 1 End Point 2

End Point 2

End Point 2

Substrate Network

Figure 2.4: 5G network slicing

SFC because mMTC provides access to several types of devices [49]. A VNF can be
instantiated in any general-purpose computing node, thus allowing the slices to scale
and adapt with the demands. A VNF is instantiated as Container (VM or Docker) and
the number of containers can be adjusted according to instantaneous network load.
For example, an increase in the traffic load can trigger a firewall VNF to scale-out and
instantiate additional containers, while a decrease in the traffic load can trigger it to
scale-in and decommission idle containers.

Figure 2.4 depicts the concept of network slicing for the three types of use cases
most common in 5G. The URLLC network slice considers backups for AMF, SMF, and
UPF that should be instantiated at nodes close to the end-user since URLLC must offer
high reliability and low latency. The eMBB and mMTC graphs do not include backups for
SMF or UPF as these service types do not have ultra-high reliability requirements. The
mMTC network slice has more AMFs than the other types, as it must provide access
to several types of device. The eMBB network slice has fewer AMFs than the mMTC
network slice since the former attends fewer devices than the latter [49]. All VNFs
composing the network slicing are instantiated over the shared resources of the SN.

2.6 Configuring and Reconfiguring Network Slices

A configuration for network slicing describes the instantaneous mapping of the virtual
resources across all 5GNSs onto the shared SN [50]. Specifically, a network slicing

2.7. Automated Planning 31

configuration details the mapping of the VNFs and virtual links across all 5GNSs onto
the computing nodes and physical links between the nodes [50]. Figure 2.5a exempli-
fies a configuration for two network slices, i.e., NS1 depicted as blue VNFs and NS2

depicted as yellow VNFs. NS1 has VNFs f1 and f3 mapped onto host node n2, VNFs
f2 and f4 mapped onto host node n4, and VNF f5 mapped onto host node n3.

n2

n1

n4

n3

f1

f3

f2

f4

f5

f1

f2

f3 f4

f5

(a) A configuration for two network slices

n2

n1

n4

f1

f3

f2

f4

f5

f1

f2

f3 f4

f5

n3

(b) Migration of a VNF and its adjacent vir-
tual links

Figure 2.5: Reconfiguring Network Slices

The scale-in and scale-out of VNFs cause the configuration of 5GNSs to change so
that there may be a violation of tenant intents. For example, the network load imbalance
set by the configuration shown in Figure 2.5a, may be violating tenant intents asking
for evenly usage of SN resources. To remedy such undesired network configuration,
5GNSs must be reconfigured to configurations complying tenant intents. The process
of reconfiguring network slices involves identifying a sequence of VNF and virtual links
migrations that will turn the network slicing from the current -undesired- configuration,
called source, to the desired configuration, called target [50]. Figure 2.5b exemplifies
a step in the migration sequence during a 5GNS reconfiguration process. Performing
5GNS reconfiguration that adjusts the resource allocation for a 5GNS according to the
variations of traffic demand is referred as the Network Slice Reconfiguration Problem
(NSRP) [51].

2.7 Automated Planning

AP is a branch of AI which explores the process of using autonomous techniques to
solve planning and scheduling problems [52]. An AP-problem is one in which we have

32 Chapter 2. Background and State-of-the-Art

some initial starting state (real-world situation), which we wish to turn into a desired
goal state through the application of a plan. A plan in AP is an ordered set of possible
actions automatically computed by an AI-planner [22].

AI-planner

Environment ∑

Plan (Actions)

Planning domain
(Description of ∑)

Initial state so

Planning goal Sg

Status (Observations)

Figure 2.6: AP conceptual model

The conceptual model in classical AP is defined as a State Transition System (Figure
2.6). A planning domain models the environment as

∑ = (S, A, γ), where S, A, γ denote
the finite set of states S = {s1, s2, s3, ...}, the finite set of actions A = {a1, a2, ...}, and
the state transition function γ : S × A → 2S. The classical AP-problem is formally
defined as (∑

, s0, Sg), where s0 ∈ S is the initial state and Sg ⊂ S is the goal state or
set of goal states (also referred to as planning goal). An AI-planner finds a sequence of
transitions labeled with actions [a0, a1, ..., ap] that can be applied starting at s0 resulting in
a sequence of states [s0, s1, ..., sp] such that sp ∈ Sg. The actions sequence [a0, a1, ..., ap]
is the plan [52] [53] [54]. The practical representation language for AP-domains and
AP-problems is PDDL [55] [56].

State-space planning is the de-facto search method of the AP community. AI-
planners transform AP-problem descriptions (from PDDL) into a graph-search problem,
and, by a heuristic function guiding the search, explore those vertices whose associated
state si is reachable from so and get closer to Sg [57]. Over the years, AP research has
been continuously attempting to solve complex AP-problems by evolving PDDL [58] and
by trying heuristics that can reason effectively over diverse AP-domains (numeric [59],
temporal [60], hybrid [58], etc.). Recently, it has been corroborated the feasibility of us-
ing AP to automate SDN management tasks and reduce the time required by network
administrators to face network situations [61] [62]. However, in such approaches, the
network administrator still has to manually describe the network problem in AP nota-
tion, which is difficult to interpret without prior knowledge. To realize ACLs based on
AP, the network itself should create the AP-problem without human intervention, which
is achieved in this thesis, and explained in Chapter 3.

2.8. State-space Planning for the Network Slice Reconfiguration
Problem 33

2.8 State-space Planning for the Network Slice Recon-
figuration Problem

s1

s2

s5 s4

s7

s12 s3s6 s9

s10s11

s8s13 f1 n3

f1 n2

f5 n1
f5 n3

f 1

n 2

f 1

n 1

f 4

n 4

f 4

 n
3

f2 n1 f3 n3

f4 n4
f4 n1

f5 n4
f5 n3

f 1

 n 1

f 1

 n 2

f 2

 n 3

f 2

 n
2

f4 n3 f4 n4 f3 n2 f2 n2f3 n1 f3 n1

. . .

. .
 .

. .
 .

.

. . .

. . .

. . .

Figure 2.7: Migration Graph for NSRP

The state-space planning in the NSRP is the migration graph [50]. Given an AP-
problem instance, a migration graph consists in a directed graph in which each vertex
represents one of the possible configurations, i.e., a unique mapping of the virtualized
network onto the SN, and each edge represents a VNF migration. For a SN with m

host nodes and a total of q VNFs across all network slices, a migration graph has mq

vertices, and each vertex has q(m − 1) incoming edges and q(m − 1) outgoing edges.
Figure 2.7 shows an example of (a part of) the migration graph for the network slicing
of Figure 2.5. Vertices labeled as s1 and s2 represent, respectively, the configurations
given by Figures 2.5a and 2.5b. The edge from s1 to s2 indicates the state transition
caused by applying action ax ∈ A. ax migrates f4 of NS2 from n4 to n3 carrying the
migration of its adjacent virtual links on the SFC.

2.9 Related Work

This Section presents the related work of this thesis divided into three major areas: ap-
proaches performing translation of high-level network management policies, proposals

34 Chapter 2. Background and State-of-the-Art

for delegating network slices management to tenants, and approaches for reconfiguring
network slices.

2.9.1 Translation of High-Level Network Management Policies

Liu [63] proposed a mechanism to translate high-level objectives from the IT manage-
ment domain into the goals of an AP-problem describing requirements for fault recovery.
This mechanism uses rules to map fault expressions stated in the Domain Service Lan-
guage (DSL) into the Planning Domain Definition Language (PDDL). However, the rules
are attached to the IT management domain and, so their replication on the network
management domain is hard. Other approaches [64] [65] transformed user requests
expressed in NL into PDDL for facing telecommunications services issues. Despite the
use of NL and its integration with AP, these approaches present several drawbacks.
First, NLP’s corpus is limited to requests related to the environmental early-warnings
domain and, consequently, disregards models of Goal Policies. Second, the low-level
configuration actions are specific for composing telecommunication services and leaves
aside the network management tasks.

The works [66] [67] [68] introduced a framework to translate high-level policies ex-
pressed in CNL, into low-level flow rules for SDNs. The employed CNL follows a gram-
mar of predefined regular expressions (regexes) representing terms of the network con-
text such as "HTTP" and "FTP". These works use Inductive reasoning for analyzing
policy objectives and abductive reasoning for determining if the network infrastructure
can accommodate the reasoned objectives during translations. Although this approach
provides helpful grammar contributions regarding classification of the network context
terminology, the inductive and abductive reasoning processes led directly from high-
level to low-level commands disregarding the possibility of an AI algorithm to interpret
network management regexes.

Tuncer et al. [69] proposed an approach for the automatic decomposition of High-
Level Requirements (HLRs) to network management operations. This approach relies
on developing a NorthBound Interface (NBI), including mapping functionality, that as-
sociates technical HLRs to the network operator’s services and functions that manage
the network resources. This HLR-based approach performs the association through
matching procedures to support operator-defined descriptors that encode distinct fea-
tures and uniquely identify services and functions. In this approach, network adminis-
trators do not use NL and, consequently, they must fulfill the HLR format’s attributes.

Jacobs et al. [70] introduced an approach to translate network administrators poli-
cies expressed in NILE (i.e., an intermediate representation for network intents) into
network configurations. This approach uses a recurrent neural sequence-to-sequence
learning model to extract intents from NL and includes feedback from the network ad-
ministrator for improving the learning process. Although this approach offers high ac-

2.9. Related Work 35

curacy in the translation process, it does not consider a closed-loop (requires feed-
back from network experts), pivotal for self-driving networks, and network administra-
tors must learn NILE.

Riftadi and Kuipers introduced P4I/O [71], a framework that translates Intents into
P4-programs using code-templates. Although the generated P4-programs offer excel-
lent results for handling the network throughput, this framework requires that network
administrators learn an extended version of NILE that adds custom actions for network
tasks and does not support AI-based notations.

Widmer [72] proposed a state-machine-based refinement technique that uses a
grammar for an Intent specification language and a parsing process to translate the
intents to low-level blockchain selection policies abstracting underlying implementation
details. This approach does not operate with policies expressed in NL nor explore AI-
based notations.

This thesis differentiates from the above cited works as follows. Our transformation
approach is from network management policies in pure natural language to the AP-goal
, avoiding the user to learn special syntax, network commands, or structured languages.
We transform the policies directly to the AI language, specifically an AP language.

2.9.2 Tenant-side 5G Network Slicing Management

The MANO-as-a-service (MANOaaS) paradigm [73] abstracts the ETSI MANO frame-
work into customized and distributed per-tenant MANO instances. MANOaaS manages
the tenants autonomy through the enforcement of management level agreements (MLA)
that are negotiated between the tenant and the InP. MLA determines the scope of the
delegated operations, while a central MANO entity maintains full administrative rights
over the deployed MANO instances. During simulations, different number of tenants
requested resources from the central MANO entity. The success resource request rate
was quantified when the granted degree of autonomy per MANO instance was varied
(i.e., zero, partial, or full MLA autonomy). The instances getting full granted auton-
omy had the higher success rate. However, the operations delegated to tenants lack
dedicated interfaces, which is a crucial feature to tenant-side management.

DASMO (Distributed Autonomous Slice Management and Orchestration) [74] com-
bines the ETSI MANO framework, the OSS/BSS system, and an In-Slice Management
(ISM) approach to deal with the scalability of network slicing management in a dis-
tributed manner. The ISM is part of each slice and uses autonomic/cognitive manage-
ment mechanisms through Embedded Element Managers (EEM) and the Slice Man-
ager (SM), allowing for local (i.e., at the slice level) management decisions. The SM
functional entities (i.e., Tenant Oriented Functions, Autonomic Management Functions)
implement the MAPE paradigm and an intent-based tenant oriented interface. The
architectural concepts introduced in DASMO are essential to deal with issues of the

36 Chapter 2. Background and State-of-the-Art

tenant-side network slice management, however, prototyping and verification was not
carried out.

Galis et al. adapted the IETF reference model for Autonomic Networking [33], into
Autonomic Slice Networking [75] introducing the concept of Slice Element Managers
(SEMs) to be located inside each NS. SEMs allow 3rd parties to dynamically customize
the network characteristics within the constraints of resources allocated to the slice.
Autonomic network functions (i.e., naming, addressing, negotiation, synchronization,
discovery and messaging) and signaling between SEMs are described, however, there
is a long road ahead to deploy and asses SEMs performance because all descriptions
are provided in a very high-level. Besides, the ACLs considered for SEMs are just to be
defined but the work has not had continuity.

The 5G PPP SliceNet project [76] [77] aims to design, prototype and demonstrate
an innovative, tenants-oriented, QoE-driven 5G network slicing framework focusing on
cognitive network management. In the context of SliceNet, Spadaro et al. [78] pro-
pose a Cognition Plane embracing the MAPE-K approach for planning required (re-
)configurations on the network infrastructure as well as deployment of new elements
and functions on the configured services to remedy undesired situations. A tenant’s
feedback mechanism in included, allowing them to express their experience with the
provisioned infrastructure. However, with this role, the tenant rather than having inter-
ference on the network (re-)configurations to fit his/her intents, he/she is a data source
of the data acquisition system for the MAPE-K loop. Also, the interface for the tenants
expressions is not specified.

The platform SFCLola [79] is proposed to handle SFC requests within a tenant’s
virtual network spanning multiple data centers (DCs) while minimizing support required
from the InP. A Virtual Flow Forwarder (VFF) mechanism enforces chaining instructions
within the tenant network of VMs without requiring access to the switches at the net-
work infrastructure data plane. SFCLola was experimentally evaluated by sequentially
sending a set of chain requests on a multi-DC infrastructure provided by the 5GINFIRE
project [80]. Results demonstrated benefits in terms of computation time, resource con-
sumption at VFF nodes, and an average error of 3.8% between the estimated latency
and the measured end-to-end latency along the established chain. In SFCLola, the
VFF exposes intent-based REST API to receive chaining rules, however, it is sole for
the SFC network service and can not be easily extended to other tenant-side manage-
ment operations like network (re-)configurations.

In the 5G NORMA project architecture [81] each tenant is provided its own t-MANO
(tenant-MANO) by the c-MANO (central-MANO). Each t-MANO instance consists of its
own NFVO, VNFM and VIM instances used by the tenant to manage and orchestrate
his/her respective NSs with minimum dependence on the c-MANO. However, the de-
gree of autonomy of the respective t-MANO stack instances will depend on the agreed
SLA with the c-MANO. Likewise, the t-MANO stacks does not count autonomic/cogni-

2.9. Related Work 37

Table 2.1: NSRP Related Work

Paper Description Approach for modeling
the problem

Technique for making
reconfiguration decisions Tenant-oriented Performance

metrics

[82]

Hybrid model-data driven
framework to proactively

reconfigure network slices
under demand uncertainty

Robust Optimization, Mixed
Integer Linear Program and

Mixed Integer Second
Order Cone Program

State-of-the-art
solver

Training loss,
time to generate

prediction intervals

[48]

Algorithm
for avoiding unnecessary

reconfigurations by predicting
future traffic demands

Markov Decision
Process

Deep Reinforcement
Learning and

Branching
Dueling Q-network

Convergence properties,
Long term resource

consumption

[83]

Predictor-optimizer
framework with the

aim of minimizing the
energy consumption

Robust Mixed Integer
Programming

Linearization
and Robust
Optimization

Prediction
intervals

[84]

Optimal and Fast Slice
Reconfiguration solution

aiming at obtaining
high long-term revenue
with low operation cost

Markov Renewal
Process

Dueling Neural Network
combined

with Q-learning

Prediction performance,
average long-term revenue,

reconfiguration cost

[85]

Hybrid slice reconfiguration
framework dealing

with the cost incurred
by frequent reconfigurations

Own and L1 norm to
approximate

the reconfiguration
cost function

Fast Slice Reconfiguration
and Dimensioning

Slices with Reconfiguration

Reconfiguration ratio,
fairness index,

resource utilization ratio,
reconfiguration cost and profit.

[86]

Load-balancing
oriented

deployment and
reconfiguration

for 5GNSs

Integer Linear
Program

Own reactive
strategy

Acepptance ratio,
workloads of physical nodes

and links.

[50]

Approach for
finding a sequence
of configurations

from a source to a target configuration

Own model for a
large scale
5G network

Matryoshka which uses:
i) A search [31] optimizations

ii) the divide-and-conquer approach
iii) parallelization

Completion time,
number of VM migrations

[87]
Inter-slice reconfiguration

with aim of reducing
network operational costs

Integer Linear
Program

Make-before-break
reactive scheme based on column

generation (CG)

Execution time,
Gains in network cost,

accuracy of the CG models

ATRAP
Autonomic tenant-side

reconfiguration of
network slices

State-Transition
System Automated Planning ✓ Processing time,

reconfiguration cost

tive characteristics neither high-level interfaces for tenant interactions.
The cited projects represent significant advances on providing to tenants an active

role in the management of their network slices, nevertheless, those investigations did
not focus on providing reconfiguration capabilities.

2.9.3 Reconfiguring Network Slices

Wei et al. [48] propose an Intelligent Network Slicing Reconfiguration Algorithm with aim of
minimizing long-term resource consumption. They use Markov Decision Process (MDP) to
model the long-term decision-making problem NSRP, and resort to DRL to solve it. To address
the curse of dimensionality of the problem, they incorporate the Branching Dueling Q-network
(BDQ) into DRL. Numerical results reveal that the proposed algorithm can avoid unnecessary
reconfigurations by implicitly predicting future traffic demands. Later, these authors propose a
predictor-optimizer framework that intelligently performs inter-slice reconfiguration with the aim
of minimizing the energy consumption of serving 5GNSs [83]. This time, the NSRP is formulated
as a Robust Mixed Integer Programming and solved with linearization and robust optimization.
Numerical results demonstrate that the framework can flexibly achieve a trade-off between the
robustness and the energy consumption.

With the goal of maximising long term revenue, Guan, Zhang and Leung [84] use a Markov
Renewal Process to predict changes in the resource occupancy of 5GNSs and reserve re-
sources for slices that obtain higher revenues at lower cost. They use deep dueling neural
network combined with Q-Learning to choose for each slice whether to reconfigure it or not. Ac-
cording to simulation results, the work developed by Guan and collegues is effective in achieving
long-term revenue for tenants.

38 Chapter 2. Background and State-of-the-Art

The hybrid slice reconfiguration framework proposed by Wang et al. [85] deals with the cost
incurred by frequent reconfigurations. Their framework consists of two schemes: a Fast Slice
Reconfiguration that reconfigures flows for individual 5GNSs at the time scale of flow arrival/de-
parture and a Dimensioning Slices with Reconfiguration that occasionally adjusts allocated re-
sources according to the time-varying traffic demands. L1 norm function is used to approximate
the reconfiguration cost function. The framework is extended with a resource reservation mech-
anism to reduce potential reconfigurations in near future. Numerical results validate that the
framework is effective in reducing reconfiguration overhead and achieving high profit for 5GNSs
tenants.

The focus of the work performed by Lu et al. [86] is twofold: the deployment and the re-
configuration of 5GNSs. They formulate a load-balancing oriented 5GNSs deployment problem
through Integer Linear Program (ILP) and a reactive strategy to accommodate a rejected 5GNS
request by re-organizing the already-deployed 5GNSs. The 5GNS deployment algorithm is
reutilized with slacked physical resources to find out the congested part of the network, due
to which the 5GNS is rejected. These congested physical nodes and links are reconfigured
by migrating VNFs and virtual links to re-balance the network. Simulations results show that
resources utilization is improved by acommodating more 5GNSs in a dynamic environment.

Matryoshka is a divide-and-conquer approach created by Pozza et al. [50] for finding a se-
quence of configurations from a given source configuration to a desired target configuration. A
dataset of pairs of source and target configurations in a large scale 5G network representing
potential substrates and multiple network configurations was created and used for evaluating
Matryoshka. Results show that Matryoshka is effective in finding good quality migration se-
quences compared to state-of-the-art A∗ search [88].

Gausseran et al. [89] [87] propose to adaptively reconfigure 5GNSs based on column gen-
eration. The authors implement a make-before-break reactive scheme to perform inter-slice
reconfiguration with aim of reducing network operational costs. Evaluation results show that
this solution decreases the network cost without degrading the QoS as the network slices are
not interrupted thanks to the make-before-break approach.

Table 2.1 summarizes related work on reconfiguration for 5G network slices. The projects
cited in Table 2.1 represent significant advances in solving the NSRP, however, none of them
focus on the tenant-side reconfiguration, which is a crucial feature on the 5G network slicing
management landscape. Our automated-planning-based approach differentiates from previous
related work as follows. First, a reconfiguration plan is automatically raised defining what VNFs
have to be migrated and the particular order of such migrations for turning the network slicing
from a source into a target configuration. Second, the target configuration is specified through
a set of planning goal conditions coming from the tenant intents. Third, the output reconfigu-
ration plan is known and readable to the tenant so that he/she could provide feedback prior to
execution on the network.

2.10. Final remarks 39

2.10 Final remarks

This Chapter detailed the traditional three-plane architecture for deploying an SDN-based net-
work as well as the later inclusion of the management plane in the architecture. Subsequently,
the chapter provided the landscape on ANM and some of its variants as Self-driving networks
and Cognitive Network Management. Also, the chapter introduced the concept of Network
Management Intents and its relation with the autonomic control loops that allow to realize ANM.
Subsequently, the chapter provides a conceptual overview of Automated Planning and its state-
of-the-art model. The chapter introduced 5G network slicing along with its configuration and
reconfiguration processes. Finally, this chapter exposed the literature review which is three-
fold. From the Intents Translation approaches, we conclude that the cited approaches share the
following shortcomings. First, they require policies described in a particular syntax (e.g., CNL
and Intents) that can be as hard to learn and interpret for network administrators as the AP
notations are. Second, they assume a linear correspondence between high-level policies and
network configuration tasks. In contrast, self-driving networks usually rely on AI algorithms to
automatically and on the fly compute sequences of actions that carry out corrective and even
preventive network configuration tasks to comply with high-level network management policies.
In this sense, this thesis is a pioneer in transforming from high-level policies expressed in NL
to AP notations in the network management domain. Regarding those approaches delegating
network slice management to tenants, they lack automation and dedicated interfaces to tenants.
Last, none of the projects solving the network slice reconfiguration problem is tenant-oriented.
This thesis differentiates from previous related work as follows. First, Automated-Planning al-
lows to define what VNF migration actions out of a potentially big one, need to take place,
second, these actions can only happen in particular orders, of which there are many, third,
the target configuration is specified through a set of goal conditions (coming from the tenant
intents), and fourth, the output reconfiguration plan is known and readable to the tenant, so
she/he could approve it through the implementation of a Tenant Portal.

40 Chapter 2. Background and State-of-the-Art

Chapter 3

Transforming Network Management
Policies into Automated Planning
Problems

Networks’ complexity and size are growing exponentially, making unfeasible their manual admin-
istration. The self-driving networks paradigm comes with the promise of accomplishing minimal
or null human intervention [90] [91]. Realizing autonomic control loops (ACLs) for network man-
agement based on Artificial Intelligence (AI) techniques, like Automated Planning (AP) [61], Ma-
chine Learning (ML) [92], or their combination, is pivotal for achieving the self-driving networks’
promise. Specifically, AP has been used in the networking domain to create autonomic solu-
tions (or plans) formed by a set of primitive tasks that takes the network from an (troublesome)
initial state to a desired state that satisfies network management policies. However, carrying
out AP-based ACLs is complicated since network administrators, who are non-AI-experts, need
to define network management policies as AP-goals in an AP notation, and combine them with
the network status and network management tasks to obtain AP-problems. An AP-problem is a
primary input for an AI planner to build up a solution plan.

In several domains like information technologies and telecommunications, diverse propos-
als [63–65] automatically translate policies expressed in natural language (NL) into AP-goals.
Nevertheless, as these approaches use translation rules fitted to their domains, their adapt-
ability to other ones is constrained. In the network management domain, some efforts based
on policies refinement have been introduced to translate network management policies de-
fined in Controlled Natural Language (CNL) [66] [67], Intents [93], or Requirement Formats [69]
into Software-Defined Networks (SDN) flow rules [70] or P4 programs [71]. These policies’
refinement-based approaches share some shortcomings. They require policies described in a
particular syntax, such as CNL and Intents; overall, these syntaxes can be as hard to learn and
interpret for network administrators as the AP notations. Also, they do not offer an interpretation
bridge between management policies and AI notations, hindering AP-problems’ realization and,
consequently, the challenge of building up AP-based ACLs for network management remains
unexplored.

42
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

This Chapter introduces a novel approach, called NORA, envisioned to generate AP-problems
automatically; such a generation is fundamental to close autonomic management loops and, so
also, to realize self-driving networks. The NORA’s novelty lies in allowing the network admin-
istrator to express Goal Policies in NL and automatically transform them into AP-goals. NORA
combines the AP-goals with the network status and network management tasks to generate
AP-problems . NORA uses NLP as the translation technique and templates as the combination
technique. To the best of our knowledge, we are pioneers in overcoming the interpretation gap
between network management policies and AP-problems . Bridging this gap is fundamental for
paving the self-driving network’s realization since network administrators do not need to spend
time learning new policy formats or AP-notations when building up ACLs. In this way, they can
focus on their core tasks. We implemented a NORA’s prototype and evaluated it using a Goal
Policies dataset. Results show that NORA achieves high precision and spends a short-time
on generating AP-problems. Consequently, we conclude that NORA is a promising solution to
overcome barriers to using AP in self-driving networks.

The remainder of this chapter is organized as follows. Section 3.1 introduces the approach
for transforming network management policies to automated planning problems. Section 3.2
presents a prototype that instantiates NORA and its evaluation. Finally, Section 3.3 contains
some concluding remarks.

3.1 NORA

In this Section, we introduce how NORA operates at a high abstraction level. Also, we explain
in detail the architecture and modules composing NORA.

3.1.1 High-level Operation

Figure 3.1 depicts NORA’s architecture conceived to generate AP-problems automatically. This
thesis argues that generating such problems is pivotal for achieving the self-driving network con-
cept since they are essential to close autonomic management loops. Henceforth, we focus on
presenting how NORA translates Goal Policies expressed in NL into planning goals and com-
bines them with network status and network management tasks to generate AI-AP-problems . In
turn, in this thesis, we assume an external Monitoring&Analysis module, like the one proposed
in [94] [91], which provides the network status and a network model. The network model as
described in [95] contains the management tasks necessary to realize the AP-based solutions.

A Goal Policy specifies either a single desired state σ, or one or more criteria that character-
ize a set of target states [40]. NORA operates with these policies because they are useful to ex-
press business goals without technical details as in the case of SLAs [66] [68]. We model a Goal
Policy as either a 4-tuple or multiple 4-tuples P =< Target, Metric, Condition, Threshold >. In
this model, Target is a binary < S|E >, where S denotes a network service and E denotes an
endpoint (i.e., a network equipment or resource) or an end-user(s) (e.g., researchers working on
a specific laboratory of a University). Metric denotes a network performance parameter mea-
surable at services or endpoints. Condition denotes a boolean comparison adjective statement.

3.1. NORA 43

Threshold denotes boundaries for the metric values. Thus, for using NORA, the network admin-
istrator must express policies as follows: "Streaming traffic should receive bandwidth lower than
16 kbps", where Target : "Streaming traffic", Metric : "bandwidth", Condition : "lower than",
and Threshold : "16 kbps". Goal Policies examples involving several network criteria, i.e., more
than one atomic policy are: "HTTP services should receive bandwidth higher than 100 kbps and
delay lower than 300 ms" and "A network slice must all the time meet latency lower than 5 ms
and packet loss rate under 10−4". Note that, as in the last examples, Goal Policies can be de-
composed in several tuples < Target, Metric, Condition, Threshold >, leading to AP-problems
with several planning goals (see Figure 3.2b).

From a high-level perspective and according to Figure 3.1, NORA operates as follows. First,
the network administrator expresses a management policy by following the NL-based Goal Pol-
icy model. Second, the Lexer decomposes the policy in representative terms for the network
management domain. These terms can be a word or a phrase, from now on called tokens.
For example, "Voice over IP" and "Video streaming" are tokens representing a network service.
Third, the Criteria Analyser forms a set of structured criteria where each element reflects an
atomic policy involved in the incoming Goal Policy. Fourth, the Converter maps each element
of the criteria set to a particular goal notation required by an AP-planner. Fifth, NORA builds
up the AP-problem by combining the obtained planning goals with the network status and man-
agement tasks. Figure 3.2 exemplifies the output of NORA at steps 4 and 5 in PDDL notation
for a Goal Policy with a single (Figure 3.2a) and several goals (Figure 3.2b). In the next Sub-
sections, we detail the NORA modules and how they interrelate to generate AP-problems from
Goal Policies, network status, and network management tasks.

3.1.2 Lexer

This module receives management policies expressed by the network administrator in NL by
following the Goal Policy model and extracts from them tokens. The Lexer builds up a matrix
of tokens per each input policy as follows. First, it removes irrelevant terms to achieve faster

Goal Policies in
natural language

AP-problem

Lexer

Criteria
Analyser

tokens

 criteria set

Grammar

Network
Administrator

1 5

4

3

2

network
management

tasks
network status

AP-goals

Converter m

Generator m
notation 1
notation 2
notation m

AI planner

Monitoring/
Analysis

Network
model

Domain

Figure 3.1: NORA Architecture

44
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

(a) Single atomic policy

"Streaming	traffic	should	receive	bandwidth
lower	than	16	kbps"

Lexer

Criteria
Analyser

"at streaming bandwidth
lower 16 kbps"

Converter

Generator PDDL (define (network policy violation)
 (:domain self-driving network)

 (:init (QoE degraded))
 (:goal
 (at streaming bandwidth lower 16 kbps)
))

(b) More than one atomic policy

"A network slice must all the time meet
latency lower than 5 ms and packet loss

rate under 10-4"

Lexer

Criteria
Analyser

Converter

Generator PDDL (define (network policy violation)
 (:domain remote surgery self-driving network)

 (:init (video streaming quality degraded))
 (:goal
 (and (at slice latency lower 5 ms)
 (at slice packet loss under 10-4)
)))

"at slice latency lower 5 ms"
"at slice packet loss under 10-4"

Figure 3.2: NORA - High-level operation

tokens identification. Let us suppose a network policy defined for a remote surgery scenario as
P = "A network slice must all the time meet latency lower than 5 ms and packet loss rate under
10−4". In P , the terms removed would be "a", "must", "all the time", and "meet".

Second, the Lexer performs stemming to reduce words composing terms; e.g., in the raised
policy "network slice" becomes "slice", "lower than" becomes "lower" and "packet loss rate"
becomes "packet loss". Third, it carries out spell-checking to correct misspelled words or words
damaged during stemming and compares remaining terms to expressions stored in a predefined
domain grammar. Table 3.1 exemplifies our network management grammar based on [66]. Note
that in Table 3.1 the Entity column corresponds to the 4-tuples defined for our policies model,
i.e., Target, Metric, Condition, Threshold, and the Expression column corresponds to terms
of network management argot classified under each entity type. The Connector entity in the
last row refer to expressions that allow us to determine whether an input policy includes several
atomic policies, i.e., it involves more than one tuple (see detail in subsection 3.1.3). Entities in
the proposed grammar let categorize parts of an input policy instead of comparing with a set of
specific policies; this offers flexibility to the extraction process.

Fourth, the Lexer marks as tokens the terms of the input policy matching grammar ex-
pressions and extracts their values and their positions in the original sentence. Figure 3.3
depicts the terms matched between the previous example policy P and the grammar (i.e.,
"slice", "latency", "lower", "5 ms", "and", "packet loss", "under", "10−4"), their corresponding
entity type (i.e., endpoint, metric, condition, threshold, connection, metric, condition, thresh-
old), and their start and end positions (e.g., the term "slice" begins and ends at positions 11
and 15, respectively). A further 4-tuples format allows to structure data extracted per token as
t =< entityType, value, initialPosition, finalPosition >. Note that from each input policy n

3.1. NORA 45

tokens can be marked, giving place to n tuples t1, t2...tn. We defined a 4 x n matrix, called T ,
to store the n tuples representing tokens derived from query policies, i.e., the rows of T are
t1, t2, ..., tn. As an example, rows t1, t2...t8 in the T (P) matrix in Figure 3.4 correspond to the
eight tuples for the tokens marked in the policy P presented in Figure 3.3. Note that the data
for the first token marked in P , i.e., t1 =< endpoint, slice, 11, 15 >, is the first row in T (P) and
so on. Fifth, the Lexer sends T to the Criteria Analyser.

Entity Expression
Service VoIP, Streaming, HTTP, FTP, SMTP, P2P...
Endpoint gateway, database, slice, VM, CPU, client, user...
Metric bandwidth, delay, throughput, jitter, load, latency, packet

loss ...

Condition
more, high, higher, up, over, exceed, not under,...
equal, like, even, same, similar,...
less, lower, not exceed, down, below, under,...

Threshold-unit ms, s, kbps, GB, GHz, %...
Connection and, also, as well as, or...

Table 3.1: Network Management Grammar

A network slice must all the time meet latency lower than 5 ms and packet loss rate under 10-4

Endpoint Metric

Condition Connection

Threshold Metric

Condition

Threshold

11 15

Figure 3.3: Identification of entities in a Goal Policy

T(P) =

t7

t6
t5

t4
t3
t2
t1

t8

 =

endpoint slice 11 15

metric latency 40 46

condition lower 48 52

threshold 5 ms 59 62

connection and 64 66

metric packet loss 68 78

condition under 85 89

threshold 10-4 91 92

Figure 3.4: Matrix T for policy P

3.1.3 Criteria Analyzer

This module receives each T matrix computed by the Lexer and delivers a corresponding set
of criteria involved in the Goal Policy ; Figure 3.5a shows how each network criteria follows our
policies tuples model. Thus, the Criteria Analyzer transforms every T matrix in a collection of
network criteria: i.e., C = [c1, c2...ck], where ci is an atomic network management policy and k

(i.e., the size of C) represents the quantity of atomic policies contained in an input policy. The

46
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

tokens of type Connection (Table 3.1) in a policy allows obtaining the k value (see Equation
3.1). For instance, in T (P) (Figure 3.4) there is one token of type Connection, i.e., t5, which
means that the raised policy P involves two atomic policies.

k = Connection in T + 1; (3.1)

(a) Collection of network criteria

c1 c2 ck. . .

C

Target Metric Condition Threshold

Service Endpoint

(b) Result of Algorithm 3.1 for T(P)
C(T)

slice latency lower 5 ms slice packet
loss under 10-4

c1 c2

Figure 3.5: Criteria vs Goal Policy Model

Algorithm 3.1 transforms the matrix T into the set C. Initially, this algorithm counts the
number of Connection tokens in T (line 1). Then, it calculates k (line 2) and creates a k-size
string vector (line 3) (e.g., in P, the values con=1 and k=2 - from Figure 3.4 and Equation 3.1-
lead to C = [c1, c2]). Finally, it fulfills each c by performing a cycle with k iterations, each time
completing a network criteria ci conforming the set C (lines 4 to 14). In this cycle, Algorithm 3.1:

• Adds to c1 the value of the endpoint or service with the minor initialPosition in the matrix
T (lines 5 and 6). In the example, t1 is the endpoint with the minor initialPosition (from
Figure 3.4 initialPosition(t1)=11); thus, at this step, c1 = "slice".

• Calculates proximity between tokens type metric and the previous selected token and
adds the closest metric value to c1 (lines 7 and 8). In the exemplified T (P), this choice is
t2, hence, current c becomes c1 = "slice latency". The algorithm runs a similar process
for tokens of type condition and threshold (lines 9 to 12). In this way, in our example, c1 =
"slice latency lower 5 ms".

• Marks as "used" appended tokens (line 13). Note that they can be appended to more
than one ci when the quantity of a type of token in T is less than k. For instance, observe
that in T (P) (Figure 3.4) t1 is the only token of type target (i.e., service or endpoint), thus,
its value, i.e., "slice", is appended to c2 although it was earlier appended to c1. On the
other hand, tokens of the matrix T can be discarded of the resulting set C if there is a
(already "used") token of the same type closest to the previous element of the tuple.

3.1. NORA 47

Once Algorithm 3.1 ends up, the Criteria Analyzer sends the criteria set (C) to the Converter.
In the example, the transformation of T (P) after executing Algorithm 3.1 is C = [c1, c2], where
c1 ="slice latency lower 5 ms" and c2 ="slice packet loss under 10-4" (see Figure 3.5b).

Algorithm 3.1: Tokens Positions Comparison
1 T : Matrix of tokens. C = [c1, c2...ck]: Granular Goals Collection. con = tokens type

Connection in T ;
2 k = con + 1;
3 C = [c1, c2...ck];
4 for each c in C do
5 Search in T the token of type endpoint or service with the minor initialPosition number;
6 c.append(endpoint|service.value);
7 Search in T the closest token of type metric;
8 c.append(metric.value);
9 Search in T the closest token of type condition;

10 c.append(constraint.value);
11 Search in T the closest token of type threshold ;
12 c.append(threshold.value);
13 Mark in T all already appended tokens
14 end

3.1.4 Converter

This module maps the elements of C (set of criteria: c1, c2...ck) to a particular AP-goal notation
(e.g., PDDL) that is compatible with a specific planner (e.g., Simple Hierarchical Ordered Plan-
ner [96] or Hierarchical Task Planner [97]). This planner can be used for closing the autonomic
management loop. As there are multiple planning goal notations, the Converter defines a repos-
itory of m mapping functions (or converters) and a selection function that calls the appropriate
mapping for the target AP-problem notation.

Listing 3.1: AI-planning goals in PDDL

at s l i c e la tency lower 5 ms
at s l i c e packet loss under (10^{ −4})

Listing 3.2: AI-planning goals in STRIPS

lower (s l i c e , la tency , 5 ms)
under (s l i c e , packet loss , (10^{ −4}))

To exemplify the Converter, we overview its operation when using PDDL and STRIPS. In
PDDL, the problem file reserves a piece of code for specifying goals. Listing 3.1 shows the
syntax that the PDDL must generate. STRIPS defines problems using a boolean value func-
tion that allows describing the problem by logical conditions and specifies the problem goal as

48
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

"things that we want to be true". Listing 3.2 shows that the STRIPS converter must generate the
goal by placing the policy’s Condition followed by its remaining parameters (in brackets). This
condition can be true or false.

3.1.5 Generator

From a general perspective, a planning-problem definition involves deciding what actions to ex-
ecute given a goal and an initial state [90]. Thus, the primary entries for describing a problem
in AI-planning based solutions are predicates defining an initial state, a problem goal, and (a
reference to) a set of tasks (atomic or composed). NORA gets the problem goals automat-
ically from Goal Policies expressed in NL. In turn, in NORA, the initial state corresponds to
the network status obtained from an external Monitoring&Analysis module available in solutions
running MAPE [94] or C-MAPE [91] ACLs. NORA assumes this loop delivers network status
like "streaming quality degraded" and "QoE degraded". NORA retrieves the network manage-
ment tasks from an external network model like the YANG-based and SDN-centered proposed
in [95]). An example of a network management task is "scale up a VNF" or "scale down a VNF".
We do not detail about initial state and management tasks because it is out of the scope of this
thesis. We address them to get a closed ACL based on AI-planning techniques in future work.
Summarizing, the Generator builds up an AI-AP-problem by combining a Goal Policy received
from the Converter, the network status, and management tasks (along with their preconditions
and effects). The implementation of this module follows a templates-based approach. Since
NORA needs to build up problems into different AI-planning notations, similar to the Converter,
m Generators are needed. Each one uses the corresponding template for the particular target
notation.

(a) AP-problem in PDDL
 (define (network policy violation)
 (:domain self-driving network)

 (:init (streaming quality degraded))

 (:goal
 (and (at slice latency lower 5 ms)
 (at slice packet loss under 10-4))
))

planning goals

network status

network management tasks

(b) AP-problem in STRIPS
Init
 violated(network policy)
 degraded(streaming quality)

Goal
 lower(slice, latency, 5 ms)
 under(slice, packetLoss, 10-4)

Actions
 ...

network status

planning goals

network management tasks

Figure 3.6: Example, AP-problems

3.2. Evaluation 49

Figure 3.6a shows an AP-problem described with the PDDL templates proposed in [98] [99].
In such templates, the problem attributes follow a schema-like representation including mainly:
i) name, i.e., a string used to identify the AP-problem - in the example "Network Policy Violation",
ii) domain where actions (i.e., network management tasks) are specified, iii) initial state is the
network status; and iv) goal state containing one or several atomic goals that correspond to
the Goal Policy in AP notation. Figure 3.6b shows an STRIPS-based AP-problem that includes
the Sections: Init, Goal, and Actions. The Init Section corresponds to the network status. The
Goal is the translated Goal Policy. The Actions are the network management tasks that the AP
planner will use to achieve the Goal.

NORA sends the resulting AP-problem to the planner responsible for computing a manage-
ment plan intended to obtain a closed network management ACL. An AP-based management
plan is a sequence of management tasks that, once enforced in the underlying network, cause
the network to go from the current status to another that meets the translated Goal Policy ; re-
call, it is initially expressed in NL by the network administrator and translated to AP notation by
NORA.

3.2 Evaluation

This evaluation aims to assess and discuss NORA’s performance when generating AP-problems
from Goal Policies, network status, and network management tasks. This Section initially intro-
duces the prototype of NORA and the Goal Policies dataset used in the tests. This Section then
describes the performance metrics assessed, namely Precision and Processing Time. Finally,
this Section presents and discusses the NORA’s evaluation results.

3.2.1 Prototype

Figure 3.7 depicts the prototype of NORA. The Lexer module was instantiated by using Rasa
1.10.0 [100], an ML-based NLP tool that allows understanding and manipulating NL for ex-
tracting tokens [101]. We used Rasa because a recent comparative study on NLP services’
performance demonstrated that it overcomes similar tools, such as LUIS [102] and Lex [103],
in terms of adaptability and customization thanks to its open-source nature [104]. The Linux
Command Line is the user interface of NORA.

Figure 3.8 presents as example the tokens extracted by the Rasa-based Lexer when pro-
cessing the Goal Policy P = "A network slice must all the time meet latency lower than 5 ms and
packet loss rate under 10−4". The data retrieved per policy are: (i) end, the position of the last
character of the token in the policy, (ii) entity, the type of token according to the Grammar, (iii)
extractor, an identifier for the ML-based engine used in the learning and extraction processes,
(iv) start, the position of the first character of the token in the policy; and (v) value, the token
itself as it appears in the policy.

We implemented the modules Criteria Analyser, Converter, and Generator as Python pro-
grams. These programs were integrated into the Rasa-based Lexer by inheriting from its Action

50
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

Ubuntu 20.04.1
Lexer

RASA

labeledPolicies.md

Python 3.7

Criteria
Analyser Converter Generator

T

goals.txt

<C>

PDDLTemplate.txt

problem.pddl

Figure 3.7: NORA Prototype

"project": "NORA"
ENTITIES

{
"end": 15,
"entity": "endpoint",
"extractor": "Mitie",
"start": 11,
"value": "slice"

},
{

"end": 46,
"entity": "metric",
"extractor": "Mitie",
"start": 40,
"value": "latency"

},
{

"end": 52,
"entity": "condition",
"extractor": "Mitie",
"start": 48,
"value": "lower"

},
{

"end": 62,
"entity": "threshold",
"extractor": "Mitie",
"start": 59,
"value": "5 ms"

},
...

]

Figure 3.8: Lexer Output

3.2. Evaluation 51

class [105]. Specifically, we developed a Custom Action that implements Algorithm 3.1 respon-
sible for mapping Goal Policies into AP-goals in PDDL notation as in Listing 3.1 and generating
PDDL-problems by filling out PDDL-problem templates [106]. These PDDL-problems stored in
system files, jointly with a well-defined planning domain file, are enough input for executing an
AI Planner, such as the STRIPS engine (Standford Research Institute Problem Solver) [107],
responsible for automatically generating the corresponding management plan. For the sake of
experimentation, we have used the PDDL notation for specifying the goals and problems of AP.
However, it is noteworthy that the Converter and Generator modules can be implemented for
NORA operates with other AP-notations (e.g., STRIPS and Action Description Language).

3.2.2 Goal Policies Dataset and Lexer Tuning up

We created a Goal Policies dataset, available at our github repository1, to tune up the NLP-
based Lexer that allows NORA to learn how a network management policy is usually written
and, so, to identify and extract tokens automatically; the NORA’s precision heavily depends on
the Lexer success. This dataset was built as follows. First, we collected 250 Goal Policies
from 20 network management researchers. Second, we labeled each network management
term of each policy with the corresponding entity type (i.e., service, endpoint, metric, condition,
and threshold) according to our grammar (Table 3.1) and stored them in a plain text file ("la-
beledPolicies.md" in Figure 3.7) that Rasa is able to interpret as training data. For instance,
the term "streaming" was labeled as service. Note that a term written in different ways -or with
synonyms- like "P2P", "Peer to Peer" or "Peer-to-Peer" leads to the same label; in this example
service. Third, we took the labeled policies as a base corpus for NORA and automatically gen-
erated further policies to obtain a dataset with 1000 Goal Policies. For this, we performed ran-
dom combinations of terms for services or endpoints, metrics, conditions and thresholds, and
added complementary expressions to complete phrases, e.g., "On demand, network infrastruc-
ture must be configured for...", "... compared with other services...", "NORA, the network must
...".

We tuned up the Lexer module by using the cross-validation technique that allows using
all available data for training and testing by splitting it into k number of groups [108] [109];
we used k = 10. Once tuned up, the NLP-based Lexer identified with high precision the to-
kens: Service(92.6%), Metric(99.3%), Endpoint(93.2%), and Constraint(90%). Conversely,
this module identified with moderate precision (70%) the tokens of type Threshold; to increase
this precision is necessary to add into the Goal Policies dataset more policies containing the
label Threshold. Table 3.2 highlights in blue color as example some failures on the Lexer’s
operation, i.e., tokens not identified or wrongly classified.

3.2.3 Performance Metrics

We evaluated NORA using the Precision and Processing Time performance metrics. Preci-
sion allows measuring whether NORA produces precise translations, meaning an AP-problem

1https://github.com/arodriguezvivas10/GoalPolicies

52
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

Tokens ground-truth labeled by experts (expected)
ID Service Metric Endpoint Constraint Threshold

1 - - load CPU / VM’s not exceed
/ not be under 80% / 20%

2 streaming bandwidth - - higher than 20 Mbps
3 streaming bandwidth - - higher than 20 Mbps
4 - - latency client B less than 10 ms

5 download - - professors no more than 1000000 MB
per week

Lexer tokens identification

ID Service Metric Endpoint Constraint Threshold
-unit

1 - - load CPU / - - not exceed
/ not be under 80% / 20%

2 streaming bandwidth - - higher than 20 Mbps
3 streaming bandwidth - - higher than 20 Mbps
4 - - latency client less than 10 ms
5 download - - professors more than –

Table 3.2: Lexer Tokens Identification vs Ground-Truth

generated by NORA includes the Goal Policy, network status, and network management tasks
appropriate. High Precision is a mandatory requirement to push the NORA’s adoption in self-
driving networks. We measured Precision as follows (see Figure 3.9). First, we created 1000
testing tuples < gPol, gt > where gPol represents an incoming Goal Policy and gt its corre-
sponding ground truth. Each gti is the expected PDDL-problem file given the gPoli and assum-
ing as known the network status and network management tasks. Second, we computed NORA
precision by using Equation 3.2 where agr (agreement) is a boolean variable. agr is equal to 1
when the AP-problem generated by NORA (pfi) matches the ground truth (gti) in terms of their
textual content and syntax. Otherwise, agr is equal to 0. In turn, n refers to the total number of
test query policies, and the summation A represents the overall NORA precision.

A =
n∑

i=1

agri

n
agr =

{
1 if ppi == gti

0 in other case
(3.2)

Processing Time allows measuring the speed of NORA for generating AP-problems . NORA’s
quickness is crucial when considering its adoption in self-driving networks because ACLs should
address undesired network states (detected and triggered by Monitoring/Analysis modules) on-
the-fly before the network instability expands and affects the Quality of Experience. We mea-
sured ProcessingT ime as the time elapsed since NORA receives a test query Goal Policy until
it generates the corresponding AP-problems file, i.e., from t0 until tf in Figure 3.9.

3.2. Evaluation 53

human-annotated

gPoli

ppi gti

NORA = =
?

t0 tf

gPol: test Goal Policy
pp: AP-problem generated by NORA
gt: 'ground truth' (expected output)
t0 : initial time
tf: final time

Figure 3.9: Test metrics

3.2.4 Results and Analysis

 80

 85

 90

 95

 100

250 500 750 1000

%
 p

re
c
is

io
n

training policies

1 goal
3 goals
5 goals

Figure 3.10: Precision vs Training Policies

Figure 3.10 depicts Precision values achieved by NORA as a function of the number of
training policies and the granular goals involved in each test query Goal Policy. The NORA’s
Precision increases when the number of training policies rises; meaning that, as expected, a
large Goal Policy dataset leads to improve the Lexer behavior regarding tokens identification.
The Precision of NORA decreases when the number of granular goals expressed in the test
query Goal Policies increases; meaning that complex policies hinder the NORA’s behavior. In
particular, NORA obtained the highest Precision, around 92.8%, with the dataset including 1000
Goal Policies and with a single granular goal per test query Goal Policy. NORA got the worst
Precision, about 84.2%, with the dataset including 250 Goal Policies and with 5 granular goals
per test query Goal Policy. The high-Precision obtained by NORA shows it is a promising
solution to generate the AP-problems needed to close the autonomic management loops that
allow realizing self-driving networks.

54
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

 0

 50

 100

 150

 200

 250

 300

 350

250 500 750 1000

ti
m

e
 (

s
)

query policies

1 goal
3 goals
5 goals

Figure 3.11: End-to-end Processing Time by Granular Goals

 0

 50

 100

 150

 200

 250

 300

250 500 750 1000

ti
m

e
 (

s
)

one-goal query policies

7 words
14 words
28 words
56 words

Figure 3.12: End-to-end Processing Time by Policy Length

Figures 3.11 and 3.12 depict the Processing Time as a function of the quantity of test query
Goal Policies incoming one after another and the number of granular goals and words per tets
query Goal Policy. The NORA’s Processing Time increases when the number of incoming
policies, goals, and words per policy grow up, although the last criteria, i.e., words per policy,
slightly alters the Processing Time. In particular, NORA obtained the worst Processing Time,
around 290 seconds, when simultaneously translating 1000 policies with 5 goals each. NORA
got the best Processing Time, about 20 seconds when simultaneously translating 250 policies

3.3. Final Remarks 55

with 1 goal per policy. The low-Processing Time obtained by NORA shows it allows closing
the autonomic management loops quickly which is fundamental in the context of self-driving
networks.

Since NORA is an AP-problem generation approach with no precedents in the networking
domain, there is no conventional method to perform a direct comparison. Therefore, in the next
lines, we compare NORA to HAUTO [65], a framework that includes an NLP-based module
for transforming NL and environmental early warning information into PDDL problems. NORA
achieved in average a Precision (92.8%) slightly lower than the obtained by HAUTO (94.4%). We
can improve the NORA’s Precision by increasing the dataset size and the grammar expressions;
this is part of our next research steps. NORA when processing a Goal Policy including 5 goals
got a Processing Time (290 milliseconds) equal to the achieved by HAUTO for analyzing a
user requirement phrase and generating the PDDL problem file. This preliminary benchmark
corroborates the NORA results are promising to put self-driving networks into reality.

3.3 Final Remarks

This Chapter introduced NORA, an approach that automatically generates AP-problems by
transforming Goal Policies expressed in NL into AP-goals and combining them with both the
network status and the network management tasks. The evaluation results showed that NORA
achieves a precision near 92.8% and spends around 0.084 seconds on generating AP-problems
, which evinces our approach is useful to overcome barriers to using AP to realize autonomic
management scenarios that are pivotal for accomplishing self-driving networks.

We conceive NORA to operate with grammar and corpus defined in the English language
since it is the most common language used in the network management area; for instance, net-
work operators and equipment vendors usually specify Service Level Agreements (SLAs) and
Command Line Interfaces (CLIs) in English. Therefore, we describe and evaluate the NORA’s
components using English sentences. However, it is remarkable that the NORA’s architecture
does not need changes to support Goal Policies specified in diverse languages.

NORA can be adapted to deal with Goal Policies expressed in diverse languages by follow-
ing the next steps. First, redefining the network management grammar (Table 3.1) in the new
language. Second, collecting Goal Policies in such a language; these policies are the basis for
the corpus generation. Third, labelling the new-language Goal Policies corpus according to the
grammar expressions. Fourth, tuning up the Lexer with the labelled policies (see Figure 3.7,
labeledPolicies.md file).

56
Chapter 3. Transforming Network Management Policies into

Automated Planning Problems

Chapter 4

Tenant-oriented Reconfiguration of
Network Slices based on Automated
Planning

For tenants operating in 5G networks is fundamental to get the capability of reconfiguring the
leased network slices since they need to react quickly to changing network conditions and
end-users demands to meet Service Level Agreements (SLAs) [74]. Offering reconfiguration
operations to tenants is an open research challenge [86] because, considering they can be
non-expert networking professionals, such operations must be autonomous and governed by
high-level network management policies.

Several conceptual investigations [73–75,78,79,81] proposed delegate network slicing man-
agement operations (e.g., creation and deletion of slices [79]) to tenants. Nevertheless, those
investigations did not focus on providing reconfiguration capabilities. Unlike the cited inves-
tigations, the works [48, 50, 83–87, 89] centered on addressing the Network Slicing Recon-
figuration Problem (NSRP) [48] by using diverse techniques like Deep Reinforcement Learn-
ing (DRL), Integer Linear Programming (ILP), and heuristics. Those works faced NSRP from
the InP perspective, so they disregarded the importance of providing reconfiguration capabil-
ities to tenants. Furthermore, they did not consider Autonomous Control Loop (ACLs) nei-
ther high-level management policies governing their behavior, for instance, Monitoring-Analysis-
Planning-Execution-Knowledge (MAPE-K), which are fundamental for realizing autonomic net-
work (re)configuration.

In this chapter, we present ATRAP, an approach based on AP for facing NSRP from the
tenant side; from now on called TsNSRP. ATRAP is pioneering using AP, an AI technique, for
computing reconfiguration plans autonomously in a MAPE-K-based architecture. An ATRAP’s
plan aims to turn the network from a source configuration where one or more intents represent-
ing high-level network management policies are unmet into a target configuration in which the
intents are met. As we represent a network slice as a SFC involving VNFs and virtual links
connecting them, a reconfiguration plan involves migrating VNFs and virtual links into the SN in
a particular order. Results revealed as ATRAP computes plans with few actions i.e., migration of

58
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

a VNF and its adjacent links), leading to low reconfiguration costs related to service disruption.
Also, results showed as ATRAP’s planning time depends on the size of SN and the tenant’s vir-
tualized network. Therefore, ATRAP is a promising solution for the tenant-side reconfiguration
of network slices.

The contributions presented in this Chapter are:

• An architecture based on MAPE-K and AP for autonomic reconfiguration of network slices
from the tenant-side and governed by intents representing tenant’s high-level manage-
ment policies.

• A system model for the tenant-side network slice reconfiguration problem based on State-
Transition System, which enables AP as decision maker in the ATRAP’s architecture.

• AP-problems that instantiate the system model in PDDL, which can be reused by re-
searchers to explore the benefits of AP as decision maker for managing 5G network
slices.

The reminder of this chapter is organized as follows. Section 4.1 introduces the MAPE-K
based architecture of ATRAP. Section 4.2 presents the system model. Section 4.3 shows the
evaluation process of ATRAP. Finally, we conclude the chapter in Section 4.4.

4.1 Architecture

Figure 4.1 depicts the proposed MAPE-K based ATRAP architecture for solving TsNSRP au-
tonomously. The Monitoring & Analysis module checks the status (i.e., current configuration
and usage of SN resources) of the managed networks (i.e., the SN and the tenant’s virtualized
network) to inform the Planning module about violation of intents defined by tenants. When one
or more intents violations happen, the Planning module computes a reconfiguration plan to turn
the network into a state where it meets the intents again. The calculated plan is enforced in
the managed networks by the Execution module. In our architecture, the Knowledge Base is
comprised by the Intents Repository and General Purpose Repository.

The architecture of ATRAP allows the reconfiguration of network slices to be carried out
following autonomic network management principles [110] because the closed ACL limits the
human intervention to the definition of high-level network management policies (i.e., intents de-
fined by the tenant) governing the ACL behaviour. In addition, the materialization of the Planning
module with AP and the incorporation of NORA [21] in the ACL makes the reconfiguration pro-
cess transparent to the ATRAP user, i.e., the tenant owning network slices. Subsequently, we
explain the individual modules operation.

The Monitoring & Analysis module creates the network status by periodically observing
the current configuration of the managed networks and the level of usage of SN resources
under such a configuration. For instance, at each configuration shown in Figure 2.5, the SN
nodes and links have different levels of CPU and bandwidth usage. Monitoring & Analysis
collects and compares such data to requirements involved in the intents previously recorded

4.1. Architecture 59

Monitoring &
Analysis

Reconfiguration Plan

Configuration
Usage of SN resources

1. migrate VNFa
2. migrate VNFx

...

...

Substrate Network

Network Slices

so

Automated
PlanningNORA

Execution

Violated intent(s)
(NL)

General Purpose
Repository

Grammar
Σ1 ... Σx ...

AP-problem instance
(so, Sg)

AP-problem
domain (Σx)

Intents
Repository

Tenant

NL network
management policies

Figure 4.1: ATRAP Architecture

by the tenant in the Intents Repository. If the comparison reveals that one or more intents are
being violated, a list of such violated intents (in NL) and a notification of undesired status so

(i.e., current configuration and level of usage of SN resources) are sent to NORA. The probing
interval for data collection can be calculated with an intelligent monitoring approach like the
proposed in [111]. The Intents Repository, introduced in Chapter 3, is a collection of high-level
network management policies, expressed in NL, like "No node in the substrate can be occupied
in more than 60% of its total capacity".

The NORA module receives from Monitoring & Analysis, the undesired network status so

and a list of intents defined by the tenant, violated at so. A General Purpose Repository is
queried by NORA to get the Network Management Grammar (deep explanation on Section 3.1)
and the available AP-problem domains

∑
1 ...

∑
x. The main task of NORA is to automatically

transform the received intents (from NL) into a set of conditions defining the target state, which
in AP is the AP-goal Sg. To fulfill this task, NORA uses natural language processing [64] to
match input intents to Network Management Grammar expressions (Table 3.1). so, Sg, and
the respective AP-problem domain

∑
x are combined through AP-problem templates [106] to

generate an AP-problem instance that will be processed by the Planning module. Readers
interested on the intents transformation process, the AP-problem instances generation, and
the construction of the dataset for the Intents Repository are referred to Chapter 3.

The Planning module is the core of the tenant-oriented reconfiguration of network slices.
In ATRAP, this module is based on AP, which means that the AP-problem instance received
from NORA, and the respective AP-problem domain

∑
x queried from the General Purpose

Repository are necessary and enough entries for its operation. In ATRAP, the AP-problem

60
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

domain
∑

x defines the reconfiguration operations, i.e., possible VNF migrations, disclosed to
tenants. This information could be derived from Management Level Agreements negotiated
between InPs and tenants, like those proposed in [73]. In turn, the AP-problem instance defines
the specific network situation at the time of monitoring, given by so and Sg. Planning is in charge
of deciding which of the possible VNF migrations from

∑
x will take place to achieve Sg starting

from so, and the order of such migrations, through the calculation of a reconfiguration plan. AP-
problem domains, AP-problem instances and the computed reconfiguration plans for TsNSRP
are materialized in this thesis with PDDL, detailed in Sections 4.2 and 4.3.

The Execution module receives the reconfiguration plan from the Planning module and en-
forces it on the tenant’s virtualized network. Once executed, the reconfiguration plan turns the
managed networks from the source -undesired- state, given by so, where one or more intents
are unmet, into a target state, given by Sg, where intents are met.

Network slice

mMTC
AMF AMF AMF UPFSMF

Network slice

eMBB
AMF AMF UPFSMF

Network slice

URLLC AMF UPFSMF

AMF SMF UPFUPF

Substrate Network

5G / 6G network

SLA

This thesis
NORA + ATRAP

SDN CONTROLLER

configurations

Tenant

Figure 4.2: ATRAP and NORA in SDN

Figure 4.2 shows how could ATRAP and NORA be instantiated as an SDN controller module.
Tenants interact with our self-reconfiguration system for SDN through a Tenant Portal that is a
dedicated interface. The Tenant Portal allows the tenant to express their network mangement
policies in NL, i.e., the intents to be stored in the Intents Repository and further transformed
by NORA. In the last step of the closed loop based ATRAP behaviour, Execution will enforce
VNFs and virtual link migration (dictated by the reconfiguration plan compluted by Planning) on
network slices, changing the network configuration and the availability on individual resources
on the SN.

4.2. Automated Planning for the Tenant-side Network Slice
Reconfiguration Problem 61

4.2 Automated Planning for the Tenant-side Network
Slice Reconfiguration Problem

In this Section we present the system model and the formulation of the TsNSRP. Also, we
explain the generation of the PDDL AP-domain for the TsNSRP following prior formulations.

4.2.1 System Model

In ATRAP, the system model comprises four components as follows.

• A representation of the SN, i.e., the computing nodes and the physical links connecting
them.

• A representation of the virtualized network, i.e., the VNFs and the virtual links in between
for each SFC representing a network slice, which are dimensioned for the use cases the
network is serving.

• A representation of the instantaneous configuration of both networks, i.e., the mapping of
the virtualized network onto the SN.

• A representation of the residual capacity of SN nodes and physical links given a configu-
ration.

Let us consider SN as a labeled and weighted directed graph: SN = {N, P} where N

stands for the set of computing nodes, N = {n1, n2...nm}, and P for the set of physical links,
P = {(n1, n2), (n1, n3)...(nl, nm)}. The labels on the vertices give the processing node capacity,
represented as CPUni ∀ni ∈ N . The weight on each edge gives the physical link bandwidth
capacity, represented as BW(ni,nj) ∀(ni, nj) ∈ P . Every link (ni, nj) ∈ P is bidirectional, and
can be single or composed. (ni, nj) is single if the communication path between ni and nj is
direct. (ni, nj) is composed if there are intermediate nodes, e.g., nx and nz, for communicating
ni and nj , i.e., (ni, nj) = (ni, nx) + (nx, nz) + (nz, nj). Either by single or composed physical
links, communication must be guaranteed among the m nodes of the SN. Table 4.1 summarizes
the notations used throughout the paper.

Let us assume the SFC of a network slice consists of h ordered VNFs linked to each other
through h−1 bidirectional virtual links, denoted as C : f1 → · · · → fh. The virtualized network is
thus a collection of disjoint graphs G = C1 ⊕C2 ⊕· · ·⊕Ck where C1, C2, ..., Ck are the k network
slices being served simultaneously with its dedicated VNFs and virtual links. G = {F, V } is a
labeled and weighted directed graph where F stands for the set of VNFs accross the k network
slices, F = {f1

C1 , ..., fh
C1 , ..., f1

Ck , ..., fh
Ck}, and V for the set of virtual links accross the k

network slices, V = {(f1, f2)C1 , ..., (fh−1, fh)C1 , ..., (f1, f2)Ck , ..., (fh−1, fh)Ck}. Each (fi−1, fi)Cj

links in bidirectional mode, fi−1
Cj with its successor in the SFC, fi

Cj . The sizes of F and V

are respectively q =
∑k

j=1 hCj and r =
∑k

j=1(h − 1)Cj . In G, the labels on the vertices and
the weight on each edge, correspond to demands of processing and bandwidth, represented
as ∆CPUfi

, ∀fi ∈ F and ∆BW(fi−1,fi), ∀(fi−1, fi) ∈ V . To scale according to the 5G use case,

62
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

Symbol Description
SUBSTRATE NETWORK

SN = {N, P} Set of computing nodes and physical links on the SN.
ni i-th node on SN , ni ∈ N .

(ni, nj) Physical link whose path communicates ni and nj, (ni, nj) ∈ P
m Size of N , i.e., number of computing nodes in SN .
z Size of P , i.e., number of physical links in SN .

CPUni
Processing capacity of ni.

BW(ni,nj) Bandwidth capacity of (ni, nj).
VIRTUALIZED NETWORK

G = {F, V } Set of VNFs and virtual links accross the virtualized network G .
Cj j-th network slice composing G.
k Number of network slices in G.

fi
Cj i-th VNF of the network slice Cj, fi

Cj ∈ F

(fi−1, fi)Cj Virtual link chaining fi−1
Cj and fi

Cj , (fi−1, fi)Cj ∈ V
hCj

Number of VNFs contained in Cj.
(h − 1)Cj

Number of virtual links contained in Cj.
q Size of F , i.e., number of VNFs in G
r Size of V , i.e., number of virtual links in G

∆CPUfi
Cj Processing demand of VNF fi

Cj .
∆BW(fi−1,fi)Cj Banwidth demand of virtual link (fi−1, fi)Cj

ϵ(fi
Cj) Scaling factor of fi

Cj .
CONFIGURATION AT TIME STEP t

M(t) Configuration of the 5G network slicing (at time step t).
fi

Cj → ni Mapping of fi
Cj onto ni

(fi−1, fi)Cj → (ni, nj) Mapping of (fi−1, fi)Cj onto (ni, nj)
EPni

(t) Residual processing capacity of ni.
EP(ni,nj)(t) Residual bandwidth capacity of (ni, nj).

Table 4.1: Notations

each fi
Cj is instantiated over one or more Virtual Machines or Dockers in the same computing

node ni. Thus, a scaling factor ϵ(fi
Cj) is associated ∀fi

Cj ∈ F meaning how many containers
are needed to instantiate fi

Cj .
A configuration for network slicing details the instantaneous mapping of the virtual resources

across the k network slices onto the SN resources [50]. Namely, at time step t, there is a
mapping (embedding) of the q VNFs in F and the r virtual links in V onto a share of the elements
of SN , M(t) : G = {F, V } → SN ′ = {N ′, P ′}, where N ′ ⊂ N and P ′ ⊂ P . In turn, M(t) =
{MC1(t), MC2(t), ..., MCk

(t)} and each MCj (t) is split into VNFs mapping M
fi

Cj (t) and virtual
links mapping M(fi−1,fi)Cj (t), as indicated in Equation 4.1. We call embedding potential (EP)
[49] to the residual processing and bandwidth capacity of both, nodes and physical links of the
SN given a configuration M(t). They are respectively expressed in Equations 4.2 and 4.3. Note

4.2. Automated Planning for the Tenant-side Network Slice
Reconfiguration Problem 63

that if (ni, nj) is composed, i.e., (ni, nj) = (ni, nx) + (nx, nz) + (nz, nj), the use of resources in
any of the single composing paths (ni, nx), (nx, nz), or (nz, nj) affects the value of EP(ni,nj).

MCj (t) :

M
fi

Cj (t) : f1
Cj → nx, ..., fh

Cj → nz

M(fi−1,fi)Cj (t) : (f1, f2)Cj → (nx, ny), ..., (fh−1, fh)Cj → (nw, nz)
(4.1)

EPni(t) = CPUni −
hCa∑
b=1

k∑
a=1

∆CPUfb
Ca × ϵ(fb

Ca), ⇔ Mfb
Ca (t) : fb

Ca → niEPni(t) ≥ 0 (4.2)

EP(ni,nj)(t) = BW(ni,nj) − ∑hCa
b=1

∑k
a=1 ∆BW(fb−1,fb)Ca ,

⇔ M(fb−1,fb)Ca (t) : (fb−1, fb)Ca → (ni, nj)EP(ni,nj)(t) ≥ 0 (4.3)

4.2.2 Automated Planning Problem Formulation

In Section 2.7, we described the State Transition System based AP model as
∑

= (S, A, γ),
where S, A, γ denote the finite set of states S = {s1, s2, s3, ...}, the finite set of actions A =
{a1, a2, ...}, and the state transition function γ : S×A → 2S . In the present Section, we formulate
the TsNSRP under such model.

State Space. The state space for TsNSRP is the set of all possible configurations for the
managed networks, i.e., the vertex of the migration graph exemplified in Figure 2.7. The search
algorithm of the AI-planner traverses the migration graph to meet Sg conditions. Each node in
the migration graph for TsNSRP determines: i) the current network mapping detailed by M(t),
and ii) the availability of resources in the SN given M(t). Thus, in ATRAP we represent an state
as s(t) = {M(t), EPN (t), EPP (t)}.

• M(t) indicates the mapping of the k network slices being served at time t onto the SN as
M(t) = {MC1(t), MC2(t), ..., MCk

(t)}. Each MCj (t) is split into VNFs mapping, and virtual
links mapping as indicated in Equation 4.1.

• EPN (t) indicates the processing availability of the m nodes in SN at time step t as
EPN (t) = {EPn1(t), ..., EPnm(t)}. Values for EPni are computed by Equation 4.2.

• EPP (t) indicates the bandwidth availability of the z physical links in SN at time step t

as EPP (t) = {EP(n1,n2)(t), ..., EP(nl,nm)(t)}. The value of z depends on m and on the
specific SN topology. Values for EP(ni,nj) are computed by Equation 4.3.

Action Space. In Section 2.8 we introduced the migration graph representing all the pos-
sible states for the TsNSRP, i.e., network configurations and availability of SN resources, and
all the possible state transitions, i.e., VNF migrations. In ATRAP, at state s(t) the q VNFs in

64
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

F are candidates for being migrated among m − 1 nodes in the SN. Thus, the action is an
T -dimensional vector A = {a1, a2, ..., aT } where T = q(m − 1) × 2 (from Section 2.8).

ax ∈ A denotes the action of migrating fi
Cj from a source to a destination node. Namely,

fi
Cj → nsource at s(t), is migrated to fi

Cj → ndestination at s(t + 1) once ax is applied. ax carries
the migration of (fi−1, fi)Cj and (fi, fi+1)Cj , adjacent virtual links of fi

Cj , from source to desti-
nation physical links. Namely, (fi−1, fi)Cj → (nx, nsource) and (fi, fi+1)Cj → (nsource, ny) at s(t)
are respectively migrated to (fi−1, fi)Cj → (nx, ndestination) and (fi, fi+1)Cj → (ndestination, ny)
at s(t + 1) once applied ax. The reason for migrating adjacent virtual links of fi

Cj is to maintain
communication between current locations of its neighbors VNFs in Cj , f

Cj

i−1 → nx and f
Cj

i+1 → ny

(that are not been migrated) and the new location fi
Cj → nd, since fi

Cj is being migrated from
nsource to ndestination.

State Transition Function. ax can be applied to transit the network from s(t) to s(t + 1)
only if conditions given by Equations 4.4, 4.5, and 4.6 are met. Condition given by Equation
4.4 indicates that fi

Cj can be migrated to nd only if at time step t, nd has an available amount
of CPU at least equal to the amount of CPU demanded by fi

Cj multiplied by ϵ(fi
Cj). ϵ(fi

Cj)
refers to how may containers are needed to instantiate fi

Cj . In ATRAP, the ϵ(fi
Cj) containers

instantiating fi
Cj are mapped to the same physical node ni. Likewise, conditions given by

Equations 4.5 and 4.6 indicate that, to be considered as destination physical links, (nx, nd) and
(nd, ny) must have, at time step t, an available amount of bandwidth at least equal to the amount
of bandwidth demanded by the virtual links being migrated, i.e., (fi−1, fi)Cj and (fi, fi+1)Cj .

EPnd
(t)

∆CPU
fi

Cj × ϵ(fi
Cj)

≥ 1 (4.4)

EP(nx,nd)(t)
∆BW(fi−1,fi)Cj

≥ 1 (4.5)

EP(nd,ny)(t)
∆BW(fi,fi+1)Cj

≥ 1 (4.6)

where:
fi

Cj - VNF to be migrated.
nd - mapping node of fi

Cj at s(t + 1), i.e., M
fi

Cj (t + 1) : fi
Cj → nd

f
Cj

i−1, f
Cj

i+1 - previous and next VNFs of fi
Cj in the SFC, i.e., Cj : · · · → fi−1 → fi → fi+1 → · · ·

nx - mapping node of f
Cj

i−1 at states s(t) and s(t + 1), i.e., M
fi−1

Cj (t) : fi−1
Cj → nx and

M
fi−1

Cj (t + 1) : fi−1
Cj → nx

ny - mapping node of f
Cj

i+1 at states s(t) and s(t + 1), i.e., M
fi+1

Cj (t) : fi+1
Cj → ny and

M
fi+1

Cj (t + 1) : fi+1
Cj → ny

4.2. Automated Planning for the Tenant-side Network Slice
Reconfiguration Problem 65

4.2.3 Automated Planning Domain

As stated in Section 2.7, in AP, the AP-domain models the environment, i.e., it defines the
aspects of a problem that do not change regardless of what specific situation we are trying to
solve [112]. In PDDL, such a model is defined trough types, facts, and actions. Types are for
declaring entities of interest, facts are the properties of such entities in which we are interested;
can be true/false or maintain a numeric value throughout the duration of the plan, actions allow
state transitions. In this Section, we present the design of the AP-domain for this thesis, which
allows the generalization in PDDL of the TsNSRP formulated in Sections 4.2.1 and 4.2.2.

Types. In PDDL, any entity involved in the problem situation is referred to as types. Accord-
ing to our system model (Section 4.2.1), the entities involved in the TsNSRP are the elements of
SN = {N, P} and G = {F, V }. We define four types for referring to elements of N , P , F , and V ,
respectively: host-node, physical-link, vnf, and virtual-link. Listing 4.1 shows the PDDL typing
to this end. The code snippet in Listing 4.1 starts with the header that every PDDL planning
domain must include, i.e., our identification name "TsNSRP", and a requirements list, similar
to import/include statements in programming languages. The :fluents requirement allows the
inclusion of a :function block which represent numeric variables in the planning domain. The
:negative-preconditions allows the use of not in preconditions. These requirements are applied
in Listings 4.3,4.4 and 4.5, explained right away. A thorough explanation about requirements in
PDDL can be found in [112].

Listing 4.1: Types for the TsNSRP AP-domain
(de f ine (domain TsNSRP)

(: requirements : f l u e n t s : negat ive − p recond i t i ons)
(: types

; SUBSTRATE NETWORK
host −node − ob jec t
phys ica l − l i n k − ob jec t
; VIRTUALIZED NETWORK
vnf − ob jec t
v i r t u a l − l i n k − ob jec t

)
. . .

)

Facts. facts are properties associated to types, that are relevant in the environment model.
In PDDL, boolean facts are referred to as predicates and numeric facts are referred to as func-
tions (a.k.a., numeric-fluents). Listings 4.2 and 4.3 show our facts declaration for the types of
Listing 4.1, following our system model.

In Listing 4.2, the lines commented as "PHYSICAL LINKS" indicate that every physical-
link type forms a bidirectional communication path between ni and nj , i.e., (ni, nj). The next
code line indicates that each vnf has a successor on the SFC, i.e., f1 → · · · → fh . For
fh this predicate next − vnf will not be instantiated because fh does not have a succes-
sor (fh+1 does not exist). In the last two lines of Listing 4.2 we declare the mapping for

66
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

each vnf and virtual-link types onto host-node and physical-link types alluding to our sys-
tem model, M(t) : G = {F, V } → SN ′ = {N ′, P ′}, N ′ ⊂ N and P ′ ⊂ P , and MCj (t)
splitted into M

fi
Cj (t) and M(fi−1,fi)Cj (t). Listing 4.3 shows the code snippet declaring nu-

meric properties of the types in Listing 4.1. Line by line, this functions section declares:
CPUni , BW(ni,nj), ∆CPUfi

, ∆BW(fi−1,fi), ϵfi
, EPni , EP(ni,nj).

Listing 4.2: Predicates for the TsNSRP AP-domain
(: p red ica tes

; PHYSICAL LINKS
(adjacent −nodes− i − j ?p− l i n k −phys ica l − l i n k ?node− i ?node− j −host −node)
(adjacent −nodes− j − i ?p− l i n k −phys ica l − l i n k ?node− j ?node− i −host −node)
; SERVICE FUNCTION CHAIN
(next −vnf ?vnf −to −migrate ?next −vnf − vnf)
; MAPPING: VIRTUAL −> PHYSICAL
(vnf −mapped− to ?vnf − vnf ?h−node − host −node)
(v− l i n k −mapped− to ?v− l i n k − v i r t u a l − l i n k ?p− l i n k − phys ica l − l i n k)

)

Listing 4.3: Functions for the TsNSRP AP-domain
(: f u n c t i o n s

; SUBSTRATE NETWORK RESOURCES CAPACITY
(cpu−capac i t y ?node − host −node)
(bandwidth −capac i t y ?p− l i n k − phys ica l − l i n k)
; VIRTUALIZED NETWORK RESOURCES DEMAND
(requi red −cpu ?vnf − vnf)
(requ i red −bandwidth ?v− l i n k − v i r t u a l − l i n k)
(sca l ing − f a c t o r ?vnf − vnf)
; AVAILABILITY OF RESOURCES ON SUBSTRATE NETWORK (EP)
(embedding−cpu ?h−node − host −node)
(embedding−bandwidth ?p− l i n k − phys ica l − l i n k)

)

Actions. A PDDL action includes three Sections as follows. Parameters define which types

we are performing an action on. Precondition, a series of facts conjunctions and disjunctions
which must be satisfied for the action to be applied. Effect define which facts should be set to
true or false or change its numeric value if an action is applied. Listings 4.4 and 4.5 show our
PDDL coding for ax ∈ A (from Section 4.2.2). The declared parameters call for: fi

Cj , nsource (or
ns), ndestination (or nd), fi−1

Cj , nx, (fi−1, fi)Cj , (nx, ns), (nx, nd), fi+1
Cj , ny, (fi, fi+1)Cj , (ns, ny),

(nd, ny). In precondition we verify mappings at s(t) (i.e., prior to migration) and availability of
resources in nd, (nx, nd) and (nd, ny). That is, the conditions given by Equations 4.4, 4.5 and
4.6 are coded into PDDL in the precondition Section. In turn, in effect we update mappings at
s(t+1) (i.e., after migration) and availability of resources in ns, nd, (nx, ns), (nx, nd), (ns, ny) and
(nd, ny). That is, the values given by Equations 4.2 and 4.3 are updated by the PDDL coding in
the effect Section.

4.2. Automated Planning for the Tenant-side Network Slice
Reconfiguration Problem 67

Due to space issues we limit the precondition and effect codes shown in Listings 4.4 and
4.5 avoiding the code for the "next link to migrate", i.e., for (fi, fi+1)Cj . Complete and functional
planning domain following our TsNSRP model can be found in our github repository 1.

Listing 4.4: Action migrate-vnf for the TsNSRP AP-domain
(: ac t i on migrate −vnf

: parameters (
?vnf −to −migrate − vnf
?from −node ?to −node − host −node
; PREVIOUS VNF ON SFC
?prev −vnf − vnf
?prev −vnf −node − host −node
?v− l i nk1 −to −migrate − v i r t u a l − l i n k
?from −p− l i n k 1 ?to −p− l i n k 1 − phys ica l − l i n k
; NEXT VNF ON SFC
?next −vnf − vnf
?next −vnf −node − host −node
?v− l i nk2 −to −migrate − v i r t u a l − l i n k
?from −p− l i n k 2 ?to −p− l i n k 2 − phys ica l − l i n k

)
: p recond i t i on (and

; VNF TO MIGRATE
(vnf −mapped− to ?vnf −to −migrate ?from −node)
(not (= ?from −node ?to −node))
(>= (/ (embedding−cpu ?to −node)
(* (sca l ing − f a c t o r) (requ i red −cpu ?vnf −to −migrate))) 1)
; PREVIOUS LINK TO MIGRATE
(v− l i n k −mapped− to ?v− l i nk1 −to −migrate ?from −p− l i n k 1)
(not (= ?from −p− l i n k 1 ?to −p− l i n k 1))
(next −vnf ?prev −vnf ?vnf −to −migrate)
(vnf −mapped− to ?prev −vnf ?prev −vnf −node)
(adjacent −nodes− i − j ? to −p− l i n k 1 ?prev −vnf −node ?to −node)
(adjacent −nodes− j − i ? to −p− l i n k 1 ?to −node ?prev −vnf −node)
(>= (/ (embedding−bandwidth ?to −p− l i n k 1)
(requ i red −bandwidth ?v− l i nk1 −to −migrate)) 1)
; NEXT LINK TO MIGRATE
. . .

)
: e f f e c t (and

; VNF TO MIGRATE
(vnf −mapped− to ?vnf −to −migrate ?to −node)
(not (vnf −mapped− to ?vnf −to −migrate ?from −node))
(decrease (embedding−cpu ?to −node)
(* (sca l ing − f a c t o r) (requ i red −cpu ?vnf −to −migrate)))
(increase (embedding−cpu ?from −node)

1https://github.com/arodriguezvivas10/ATRAP-AP-problems

68
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

Listing 4.5: Action migrate-vnf for the TsNSRP AP-domain

(* (sca l ing − f a c t o r) (requ i red −cpu ?vnf −to −migrate)))
; PREVIOUS LINK TO MIGRATE
(v− l i n k −mapped− to ?V− l i nk1 −to −migrate ?to −p− l i n k 1)
(not (v− l i n k −mapped− to ?v− l i nk1 −to −migrate ?from −p− l i n k 1))
(decrease (embedding−bandwidth ?to −p− l i n k 1)
(requ i red −bandwidth ?v− l i nk1 −to −migrate))
(increase (embedding−bandwidth ?from −p− l i n k 1)
(requ i red −bandwidth ?v− l i nk1 −to −migrate))
; NEXT LINK TO MIGRATE
. . .

)
)

4.3 Evaluation

In this Section we evaluate ATRAP. Initially, we detail the setup for the experiments and in-
troduce the evaluation metrics. Finally, we present and discuss the results obtained during
experimentation.

4.3.1 Setup

The setup for our experiments involves: i) generation of AP-problem instances according to our
AP-domain presented in Section 4.2.3; ii) tunning up of the test environment; and iii) definition
of the metrics used for the evaluation.

Problem Instances

An AP-problem instance forms the other half of a AP-problem as (
∑

, s0, Sg). In PDDL, the
AP-problem instance solidifies AP-domain (

∑
) expressions for a particular situation into three

distinct Sections as follows.

• Objects to define exactly what entities exist

• Init to declare what is true about each object and the value of their numeric properties at
the initial state so.

• Goal to logically express facts as Sg that must be satisfied in order for a plan to be con-
sidered a solution

4.3. Evaluation 69

Parameter Value and Units
m 3, 4, 5-node topology
k 2, 4, 6

hCj
3, 5

CPUni
112 cores

BW(ni,nj) 200, 400 Gbps
∆CPUfi

Cj 4.0 cores
∆BW(fi−1,fi)Cj URLLC:20 mMTC:200 Gbps

ϵ(fi
Cj) scalar between 2 and 12

goal cpu, bw , cpu+bw

Table 4.2: Experiments Setup

Listings 4.6, 4.7 and 4.8 present the coding for our smaller AP-problem instance exemplified
in Figure 4.3a, where m=3, k=2 and hCj =3 (from Table 4.2). We generated a total of 28 TsNSRP
instances by combining values of Table 4.2. We take the values of Table 4.2 from the research
performed by Pozza et al. [50] at Nokia Bell Labs.

Listing 4.6 presents header and objects. We defined a structure for the identifier names
of our instances alluding for the values of m, k, and hCj . In the example, "instance-3n-2s-3v"
indicates 3 nodes, 2 network slices and 3 vnfs per network slice. In our instances, the k network
slices are composed by the same number of VNFs, i.e., hC1 = hC2 = · · · = hCj . Also, the SN in
all our instances follow a ring topology where z = [(m/2)(m − 1)] × 2. Next code line in Listing
4.6 points to the AP-domain

∑
x that we are instantiating, i.e., "TsNSRP" (from Listing 4.1). The

objects Section instantiates the types defined in Listing 4.1 for the network exemplified in Figure
4.3a (m=3, z=3, k=2 and hCj =3). inner-path is a -ghost- physical link from node ni to node ni.
At once, we instantiate two network slices with its dedicated VNFs and virtual links chaining
them, C1: amf01 → smf01 → upf01 and C2: amf02 → smf02 → upf02.

70
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

n1

n3

n2

smf01

amf01

upf01

amf02

smf02

upf02

EP = 84

EP = 380
EP = 84EP = 0

EP = 400 EP
 = 0

(a) Configuration at so

EP = 56

n1

n3

n2

amf01 upf01

amf02

smf02

upf02

EP = 56

EP = 380

EP = 400EP
 =

20
0

smf01

EP = 56

action 0.0

action 1.0

(b) Configuration where Sg is met

Figure 4.3: Example of an AP-problem instance and its solution

Listing 4.6: Objects for the TsNSRP instance
(de f ine (problem instance −3n−2s−3v)

(: domain TsNSRP)
(: ob jec ts

; SUBSTRATE NETWORK
; Phys ica l Nodes
n1 − host −node
n2 − host −node
n3 − host −node
; Phys ica l L inks (a l l b i d i r e c t i o n a l s)
n1−n2 − phys ica l − l i n k
n1−n3 − phys ica l − l i n k
n2−n3 − phys ica l − l i n k
inner −path −n1 − phys ica l − l i n k
inner −path −n2 − phys ica l − l i n k
inner −path −n3 − phys ica l − l i n k
; Network S l i ce 1 −> URLLC
amf0−ns1 − vnf
smf0−ns1 − vnf
upf0 −ns1 − vnf
amf0−smf0−ns1 − v i r t u a l − l i n k
smf0−upf0 −ns1 − v i r t u a l − l i n k
; Network S l i ce 2 −> mMTC
amf0−ns2 − vnf
smf0−ns2 − vnf
upf0 −ns2 − vnf
amf0−smf0−ns2 − v i r t u a l − l i n k
smf0−upf0 −ns2 − v i r t u a l − l i n k
)

. . .
)

4.3. Evaluation 71

Listing 4.7 instantiates so exemplified in Figure 4.3a. First two lines indicate bidirectionality
of physical links (ni, nj). Next, we form C1 (of type URLLC) by instantiating the next − vnf

predicate declared in Listing 4.2, and we continue with its configuration MC1(t) at so through the
instantiation of the vnf−mapped−to and v−link−mapped−to predicates declared in Listing 4.2.
This, and all mappings M(t) thorough our problem instances were randomly selected with the
criteria that the SN is 50% occupied at s0. For this, ϵ(fi) was adjusted for each problem instance
with values from Table 4.2. Instantiation code for C2 (of type mMTC) is cropped from Listing 4.7
due to space issues, but it is all similar to the C1 instantiation. Complete AP-problem instances
codes are available in our github repository 2. Next code lines in Listing 4.7 instantiate each of
the functions declared in Listing 4.3 with values from Table 4.2. In order to indicate negligent
consumption of bandwidth for inner-paths, we assign them an extremely high EP value against
no-inner-paths. Init code have also been cropped due to space issues.

2https://github.com/arodriguezvivas10/ATRAP-AP-problems

72
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

Listing 4.7: Initial state so for TsNSRP instance
(: i n i t

; SUBSTRATE NETWORK
(adjacent −nodes− i − j n1−n2 n1 n2)
(adjacent −nodes− j − i n1−n2 n2 n1)
. . .
; VIRTUALIZED NETWORK
; NETWORK SLICE 1 −> URLLC (SERVICE FUNCTION CHAIN)
(next −vnf amf0−ns1 smf0−ns1)
(next −vnf smf0−ns1 upf0 −ns1)
; vnfs mappings
(vnf −mapped− to amf0−ns1 n1)
(vnf −mapped− to smf0−ns1 n1)
(vnf −mapped− to upf0 −ns1 n2)
; v i r t u a l l i n k s mappings
(v− l i n k −mapped− to amf0−smf0−ns1 inner −path −n1)
(v− l i n k −mapped− to smf0−upf0 −ns1 n1−n2)
; NETWORK SLICE 2 −> mMTC (SERVICE FUNCTION CHAIN)
. . .
(= (cpu−capac i t y n1) 112) ; 4 CPUs x 28 cores
. . .
(= (bandwidth −capac i t y n1−n2) 400) ; Gbps
. . .
(= (requ i red −cpu amf0−ns1) 4 .0)
. . .
(= (requ i red −bandwidth amf0−smf0−ns1) 20) ; Gbps
. . .
(= (requ i red −bandwidth amf0−smf0−ns2) 200) ; Gbps
. . .
(= (sca l ing − f a c t o r amf0−ns1) 7)
. . .
; AVAILABILITY OF RESOURCES IN SUBSTRATE NETWORK
(= (embedding−cpu n1) 0)
(= (embedding−cpu n2) 84)
(= (embedding−cpu n3) 84)
(= (embedding−bandwidth n1−n2) 380)
(= (embedding−bandwidth n1−n3) 0)
(= (embedding−bandwidth n2−n3) 400)
(= (embedding−bandwidth inner −path −n1) 40000000)
(= (embedding−bandwidth inner −path −n2) 40000000)
(= (embedding−bandwidth inner −path −n3) 40000000)

)

Listing 4.8 shows the AP-goal for the exemplified AP-problem instance. The intent in our
example is: "No node in the substrate can be occupied in more than 60% of its total capacity".
As explained in Section 4.1, this kind of intents are automatically transformed in this thesis from

4.3. Evaluation 73

NL into the PDDL goal. The goal code in Listing 4.8 is the cited intent after being processed
by NORA [21], deeply explained in Chapter 3. For the sake of brevity we are exemplifying an
AP-goal involving only cpu conditions, however, throughout our AP-problem instances the con-
ditions involved in a AP-goal are threefold (from Table 4.2): cpu, bandwidth, cpu + bandwidth.
For instance, a tenant interested at the same time in evenly usage of SN resources and saving
bandwidth on physical links, expresses two different intents: "No node in the substrate can be
occupied in more than 60% of its total capacity" and "No path in the substrate can be occupied
in more than 50% of its total capacity". Both (or more) intents are automatically processed by
NORA and instantiated as goal in our AP-problem instances.

Listing 4.8: AP-goal Sg for TsNSRP instance
(: goal (and

; "No node i n the subs t ra te i s occupied i n more than 60% of
i t s t o t a l capac i t y "

(<(embedding−cpu n1) (* 0 . 6 (cpu−capac i t y n1)))
(<(embedding−cpu n2) (* 0 . 6 (cpu−capac i t y n2)))
(<(embedding−cpu n3) (* 0 . 6 (cpu−capac i t y n3)))
)

)

Test Environment

Figure 4.4 shows the test environment of ATRAP, which was executed on an Ubuntu 22.04.1 LTS
laptop with Intel Core i7-8565 CPU and 16 GB RAM. The coding of AP-domain and AP-problem
instances were developed with PDDL 2.1 because it is the PDDL version that introduced the
feature of numeric facts, i.e., functions [113] (prior PDDL 1.2 supports just boolean facts, i.e.,
predicates). To make coding friendly, we used the free version of the Sublime Text 3 edition
tool along with myPDDL [114], a modular toolkit for developing and manipulating PDDL files.
We implemented the Planning module of the ATRAP architecture (Figure 4.1) with the ENHSP
4 (Expressive Numeric Heuristic Search Planner) AI-planner [59] [115] [116], which runs under
the Java Runtime Environment 17.0.5. We chose ENHSP because it satisfies classical and
numeric planning (i.e., it supports PDDL 2.1). We worked with its latest available version to the
date, ENHSP-20 5.

Listing 4.9 shows the 2-actions reconfiguration plan computed by ENHSP-20 when its inputs
were the AP-domain coded through Listings 4.1, 4.2, 4.3 and ?? and the AP-problem instance
coded through Listings 4.6, 4.7 and 4.8. ENHSP-20 uses a variety of heuristics (e.g., hadd,
aibr, haddabs, landmarks) and search mechanisms (e.g., wastar, idastar, dfsbnb) to process
and transform those PDDL descriptions into a graph-search problem (like the migration graph
of Figure 2.7) and come up with the output plan (displayed through the Linux command-line and
as a plain text file). At each step of the reconfiguration plan shown in this Listing, a VNF fi

Cj

3https://www.sublimetext.com/
4https://sites.google.com/view/enhsp/
5https://gitlab.com/enricos83/ENHSP-Public/-/tree/enhsp-20

74
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

Ubuntu 22.04.1

Sublime
Text + myPDDL

plugin JRE 17.0.5

ENHSP-20
reconfiguration-plan

+ metrics

reconfiguration-plan-m-k-hCj.txt

domainTsNSRP.pddl

instance-m-k-hCj.pddl

PDDL 2.1

Figure 4.4: Test Environment

is migrated along with its adjacent virtual links (fi−1, fi)Cj and (fi, fi+1)Cj . Once the reconfig-
uration plan is enforced on the tenant’s virtualized network (by the Execution module of Figure
4.1), the managed networks turn from the source status given by the configuration depicted in
Figure 4.3a, into a target status given by the configuration depicted in Figure 4.3b where the
AP-goal of Listing 4.8 (coming from intents defined by the tenant) is met. A list of reconfigura-
tion plans computed by ENHSP-20 for our AP-problem instances can be accessed in our github
repository6.

Listing 4.9: Reconfiguration Plan
0 . 0 : (migrate −vnf amf0−ns2 n1 n3 smf0−ns2 n3 amf0−smf0−ns2 n1−n3

inner −path −n3)
1 . 0 : (migrate −vnf smf0−ns1 n1 n2 amf0−ns1 n1 amf0−smf0−ns1 inner −path −n1

n1−n2 upf0 −ns1 n2 smf0−upf0 −ns1 n1−n2 inner −path −n2)

Metrics

We evaluated ATRAP with two metrics: plan-length and planning time, both values provided by
ENHSP after each execution. The plan-length is the number of actions composing a plan. In
ATRAP, an action in the reconfiguration plan is the migration of a VNF and its adjacent virtual
links (Listing 4.9). Considering that tenants must assume a cost for the service interruption
caused by a VNF migration [85] [84], we take the plan-length as the reconfiguration cost. In
turn, the planning time is the time used by ENHSP for coming up with the output plan. In
ATRAP, this metric is of vital importance because remediation of undesired network status must
be performed on-the-fly.

6https://github.com/arodriguezvivas10/ATRAP-AP-problems

4.3. Evaluation 75

4.3.2 Results

Here, we present the evaluation results regarding first, plan-length (Figures 4.5 to 4.8), and
second, planning time (Figures 4.9 to 4.12). All the tests were performed for network slices
under the URLLC use case. We chose this use case because is the one with the stringent QoS
requirements in 5G networks [117].

In Section 4.2.2 we defined the Action Space for the TsNSRP as a T -dimensional vector
A = {a1, a2, ..., aT } where T = q(m−1)×2. The aim of Figures 4.5, 4.6 and 4.7 is to demonstrate
how far is the length of each reconfiguration plan computed by ATRAP, from its corresponding T

value, i.e., the size of A (recall, A represents all possible VNF migrations, m is the total of nodes
in the SN and q is the total of VNFs across all network slices). For instance, in Figure 4.5a the
data for generating the pink line representing the size of A are (from left to right) m=3, q1=6,
q2=10, q3=12, q4=20, q5=18 and q6=30 resulting in T1=24, T2=40, T3=48, T4=80, T5=72 and
T6=120. Note that in this case the maximum of VNF migrations composing a reconfiguration
plan is two. In Figure 4.5b, T values oscillate between 72 and 120 because here we have a
fixed number of network slices in service, i.e., k=6. In this case, the maximum of VNF migrations
composing a reconfiguration plan is four.

(a) Different networks slices in service
(Goal=cpu)

(b) Different types of goal (Network slices
in service=6)

Figure 4.5: Plan-length for a 3-node SN

Results shown in Figures 4.6 and 4.7 are similar to those of Figure 4.5, for a 4-node and
5-node SN, respectively. The largest plan-length value throughout our evaluations is ten, from
Figure 4.6b, which corresponds to 5.5% of the total AP-domain actions for its case, T=180.
As stated in Section 4.3.1, the plan-length is directly associated with the reconfiguration cost
assumed by the tenant, thus, the worst case is given for m=4, k=2 and hC=3, shown in Figure
4.5a where the reconfiguration plan composed by 4 VNF migrations corresponds to the 11.11%
of the total AP-domain actions for its case, T=36. Thereby, results regarding plan-length allow
us to affirm that the reconfiguration cost that tenants must assume when executing an ATRAP’s
reconfiguration plan, is low with respect to the total number of possible VNF migrations declared
as AP-domain actions, which cause service disruptions. Also, the results clarify that such a

76
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

reconfiguration cost is independent of the quantity of network slices in service k, of the goal
type (cpu, bandwidth, cpu+bandwidth), and of the SN size. The latter is corroborated with the
results depicted in Figure 4.8.

(a) Different networks slices in service
(Goal=cpu)

(b) Different types of goal (Network slices
in service=6)

Figure 4.6: Plan-length for a 4-node SN

Unlike the plan-length of ATRAP’s reconfiguration plans, the planning time in ATRAP is
heavily influenced by the sizes of the SN and the tenant’s virtualized network, specifically, by
the parameters m, k and hC . From Figures 4.9a, 4.10a and 4.11a we can clearly deduce that
the planning time has an exponential growth as the SN has more nodes. Also, we can observe
that the quantity of network slices in service k and the VNFs composing each slice hC are
parameters defining the planning time. Instead, the goal type has no influence on planning
time which is revealed by results shown in Figures 4.9b, 4.10b and 4.11b. Finally, Figure 4.12
corroborates that the planning time is strongly commited to the dimensions of the SN and the
virtualized network, with an inflection point at 4-node SN. Results throughout our tests vary
between 2 seconds and 8 hours.

We allude the exponential increase of the planning time to the pure nature of AI-planners
operation in which PDDL descriptions are first transformed into a graph-search problem where
nodes represent states visited by the AI-planner. ENHSP builds this graph in an incremental-
forward fashion, and is guided by a heuristic function to explore only those nodes whose as-
sociated state is reachable from the init and get the AI-planner closer to the AP-goal [118].
From our definition for migration graph in Section 2.8, the quantity of the vertex, representing
the State Space in TsNSRP is mq. The larger the graph, the larger the exploration time used by
the AI-planner.

4.4 Final remarks

This Chapter presented ATRAP, an approach based on AP, MAPE-K, and high-level network
management policies for addressing the problem of reconfiguring autonomously 5g network

4.4. Final remarks 77

ch4-atrap/figures/PL5_a.png

(a) Different networks slices in service
(Goal=cpu)

(b) Different types of goal (Network slices
in service=6)

Figure 4.7: Plan-length for a 5-node SN

slices from the tenant perspective as a particularization of the network slicing reconfiguration
problem faced in the literature in an in-provider way. AP allowed ATRAP to use high-level man-
agement policies to define when and what VNFs and their adjacent links into SFCs (represent-
ing slices) must migrate to bring the tenant’s sliced network from a source configuration where
intents are unmet to a target configuration (goal conditions) in which the tenant complies again
with the intents. ATRAP included AP in the Planning phase of MAPE-K to reconfigure slices
autonomously. Note that as ATRAP’s reconfiguration plans are non-complex for understanding
humans, tenants could, in the future, provide feedback to improve the reconfigurations. ATRAP
computed plans with few actions (migrations of VNFs and their adjacent links), generating short
service disruption and, consequently, low reconfiguration cost. The time spent by ATRAP to
calculate the plans depends on the size of the substrate network and the tenant’s slices. The
results on planning time and reconfiguration cost showed as ATRAP is a promising solution for
the in-tenant reconfiguration of network slices.

For future work, we intend to extend ATRAP to support 6G use cases. Also, we plan to
combine AP with DRL to decrease ATRAP’s planning time. Another interesting future work
would be the creation of a tenant portal for providing reconfiguration reports.

78
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

Figure 4.8: Plan-length for different sizes of SN and virtualized network (Goal=cpu)

(a) Different networks slices in service
(Goal=cpu)

(b) Different types of goal (Network slices
in service=6)

Figure 4.9: Planning time for a 3-node SN

4.4. Final remarks 79

(a) Different networks slices in service
(Goal=cpu)

(b) Different types of goal (Network slices
in service=6)

Figure 4.10: Planning time for a 4-node SN

(a) Different networks slices in service
(Goal=cpu)

(b) Different types of goal (Network slices
in service=6)

Figure 4.11: Planning time for a 5-node SN

80
Chapter 4. Tenant-oriented Reconfiguration of Network Slices

based on Automated Planning

Figure 4.12: Planning time for different sizes of SN and virtualized network (Goal=cpu)

Chapter 5

Conclusions

This Chapter starts summarizing the research work carried out in this thesis. Then, it provides
answers to the fundamental questions that guided the verification of the hypothesis defended in
this thesis. The last Section outlines directions for future work.

This thesis presented the investigation carried out to verify the hypothesis: an approach
based on automated planning could compute SDN configuration plans (ordered tasks)
on-the-fly to turn the network into a desired state. Based on the hypothesis, this work pro-
posed a reconfiguration approach that leverages natural language processing and AP to guide
decision-making in an MAPE-K based autonomic management loop. Two major components
form the proposed reconfiguration approach: NORA and ATRAP, which can be instantiated as
an SDN controller module, as shown in Figure 4.2, and enforce configuration changes in the
network slices with e.g., OpenFlow [3] commands.

NORA is an interpreter from high-level network management policies to AP-goal of an AP-
problem in an AP language like PDDL or Strips. A natural language dataset of network manage-
ment policies was constructed, and we resorted to the natural language processing technique
to transform them. Also, PDDL AP-problem templates were used during the transformation pro-
cess. In addition, NORA merges the obtained AP-goal with an undesired network status and an
specific reference to AP-domain to generate a complete AP-problem by using PDDL or Strips
AP-problem templates. NORA was evaluated in terms of precision and processing time whose
results let to conclude that NORA is a promising solution to overcome barriers to using AP in
self-driving networks.

ATRAP is an approach for reconfiguring network slices based on AP. ATRAP allows the
decision making of an autonomic management loop to be governed by the tenant intents. By
using ATRAP, tenants are able to timely reconfigure their network slices with minimal depen-
dance on InPs. A MAPE-K-based architecture was introduced for the operation of ATRAP. A
detailed model was proposed for the tenant-side network slice reconfiguration problem includ-
ing the SN, the tenant virtualized network, the configuration for the former networks and the
AP-domain (based on State Transition System). Finally, a series of PDDL AP-domains and AP-
problem instances were developed which can be reused by researchers interested in exploring
the goodnesses (exposed in Section 4.1) of AP in the network management field. The evalu-
ation and results of ATRAP allow to conclude that this thesis constitutes a reference point to

82 Chapter 5. Conclusions

researches interested in self-reconfigurable SDNs.

5.1 Answers to the fundamental questions

This Section reviews and answers the fundamental and secondary research questions guiding
this thesis.

Given an undesired network state, how to compute (re)configuration manage-
ment actions on-the-fly to turn SDN into a desired state?

Through the introduction of NORA and ATRAP, this thesis came up with a concrete answer to
the research question: AP is a feasible technique for providing self-configuration in SDN. On
the one hand, NORA was our primer in the research, initially conceived as a tool to bridge
the interpretation gap between network management high-level policies and AI languages. The
interesting results of NORA strengthened our research directions on extending its scope in order
to achieve an autonomic management solution under a closed control loop. On the other hand,
ATRAP effectively closes the autonomic management loop coping with the ANM goals: reduce
human intervention in the loop. Thanks to the development of NORA and ATRAP, the road
towards self-reconfigurable networks by exploiting the benefits of AP under the ANM paradigm
is open and promising.

How to include the AP technique as a decision maker for network reconfiguration,
under the ANM paradigm?

With the aim of answering this question we first did a flashback to the core principles of AP:
i) AP allows to define what actions out of a potentially big one, need to take place, ii) these
actions can only happen in particular orders, of which there are many, iii) the target configura-
tion is specified through a set of goal conditions, iv) the output plan is known to the user. Also,
considering the operation of AI-planners, which build a search graph from PDDL AP-problem
and AP-domain descriptions, we guided our research on how a network reconfiguration prob-
lem could be embodied as such a search graph. That’s how we got to reconfiguration of 5G
network slicing. The migration of the VNF and virtual links composing network slices are the
reconfiguration actions, of which there can be many depending on the offered services, quantity
of end-users, use cases being served, and so on. Since in the 5G network slicing paradigm this
is tenants who want to reconfigure network slices by themselves, they would provide the goal
conditions as they own network slices demands.

The decision making role of AP in the tenant-oriented reconfiguration of network slices,
demanded a closed ACL with regard of being autonomous. According to the state-of-the-art
consulted around ANM and ZSM, we found a MAPE-K approach guided by high-level network
management policies an adequate approach for setting up our main architecture, since the Plan-
ning module of MAPE-K is the one in charge of making decisions with embedded intelligence.
That is how we materialized the Planning module with AP giving life to ATRAP, which relies on

5.2. Future work 83

NORA for the processing of the high-level network management policies, i.e., the intens defined
by tenant, guiding the ACL behaviour.

In short, this thesis demonstrated that AP, an yet unexplored AI technique in the network
management field, can be leveraged to solve further network management problems because
the AP-domain allows describing universal aspects of a problem. Our AP-problem files can
serve as a starting point to model and solve more complex network reconfiguration problems.

Can the AP based decision making for network reconfiguration be guided by
high-level network management policies?

Our research around high-level network management polices evolved along with the concept,
i.e., , from policies to intents , which is an special case of policy. Currently, the intents -based
self-driving networking is a hot topic and involves ANM and ZSM paradigms (Figure 2.3). Our
aim setting up this question was to bridge the interpretation gap between high-level network
management polices or intents and AI languages, so that ACLs using embedded intelligence
for network reconfiguration could be closed fulfilling the fundamentals of ANM and ZSM.

We found a goldmine in AP, since its operation is guided by goals, in turn represented as
conditions. Thanks to NLP, we were able to automatically transform intents representing high-
level network management policies defined by tenants, to the AP-goals . In addition we were
able to merge obtained AP-goals with data coming from further modules of our architecture,
i.e., , the initial undesired network status detected by Monitoring & Analysis, and the AP-domain
queried from the commom Knowledge Base, specifically, from a General Purpose Repository,
producing PDDL AP-problem instances.

In short, through the joint operation of ATRAP and NORA, this thesis demonstrated that
network management intents expressed in pure natural language can guide AP-based deci-
sion making for reconfiguration of network slices, providing to tenants the capability of timely
reconfigure network slices with minimal dependence on InP, even with no prior knowledge on
networking.

5.2 Future work

During the development of this thesis, we observed interesting opportunities for further re-
search. These opportunities are outlined as follows.

• Extend ATRAP to support 6G use cases.

• Combine AP with DRL aiming to decrease ATRAP’s planning time.

• Create a Tenant Portal for providing reconfiguration reports.

84 Chapter 5. Conclusions

Bibliography

[1] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O. Koufopavlou,
“Software-Defined Networking (SDN): Layers and Architecture Terminology.” RFC 7426,
Jan. 2015.

[2] H. Kim and N. Feamster, “Improving network management with software defined network-
ing,” IEEE Communications Magazine, vol. 51, pp. 114–119, February 2013.

[3] Y. Wang and I. Matta, “Sdn management layer: Design requirements and future direction,”
in IEEE 22nd International Conference on Network Protocols, pp. 555–562, Oct 2014.

[4] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn,” ACM Queue, vol. 11,
pp. 20:20–20:40, Dec. 2013.

[5] K. Kirkpatrick, “Software-defined networking,” Commun. ACM, vol. 56, pp. 16–19, Sept.
2013.

[6] S. Kuklinski and P. Chemouil, “Network management challenges in Software-Defined Net-
works,” IEICE Transactions on Communications, vol. 97, no. 1, pp. 2–9, 2014.

[7] A. Schwabe, E. Rojas, and H. Karl, “Minimizing downtimes: Using dynamic reconfigura-
tion and state management in sdn,” in 2017 IEEE Conference on Network Softwarization
(NetSoft), pp. 1–5, July 2017.

[8] B. Jennings, S. Van Der Meer, S. Balasubramaniam, D. Botvich, M. Ó. Foghlú, W. Don-
nelly, and J. Strassner, “Towards autonomic management of communications networks,”
IEEE Communications Magazine, vol. 45, no. 10, pp. 112–121, 2007.

[9] Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle, “A survey of autonomic network ar-
chitectures and evaluation criteria,” IEEE Communications Surveys & Tutorials, vol. 14,
no. 2, pp. 464–490, 2012.

[10] N. Samaan and A. Karmouch, “Towards autonomic network management: an analysis
of current and future research directions,” IEEE Communications Surveys and Tutorials,
vol. 11, pp. 22–36, rd 2009.

[11] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36,
no. 1, pp. 41–50, 2003.

86 Bibliography

[12] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada-Solano, and
O. M. Caicedo, “Machine learning for cognitive network management,” IEEE Communi-
cations Magazine, vol. 56, no. 1, pp. 158–165, 2018.

[13] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “Payless: A low cost network
monitoring framework for software defined networks,” in IEEE Network Operations and
Management Symposium, pp. 1–9, May 2014.

[14] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “Opennetmon: Network monitoring
in openflow software-defined networks,” in IEEE Network Operations and Management
Symposium, pp. 1–8, May 2014.

[15] X. T. Phan and K. Fukuda, “Sdn-mon: Fine-grained traffic monitoring framework in
software-defined networks,” Journal of Information Processing, vol. 25, pp. 182–190,
2017.

[16] X. T. Phan, I. D. Martinez-Casanueva, and K. Fukuda, “Adaptive and distributed monitor-
ing mechanism in software-defined networks,” in 2017 13th International Conference on
Network and Service Management (CNSM), pp. 1–5, Nov 2017.

[17] W. L. da Costa Cordeiro, G. S. Machado, F. G. Andreis, A. D. dos Santos, C. B. Both, L. P.
Gaspary, L. Z. Granville, C. Bartolini, and D. Trastour, “Changeledge: Change design and
planning in networked systems based on reuse of knowledge and automation,” Computer
Networks, vol. 53, no. 16, pp. 2782–2799, 2009.

[18] J. A. Wickboldt, W. P. D. Jesus, P. H. Isolani, C. B. Both, J. Rochol, and L. Z. Granville,
“Software-defined networking: management requirements and challenges,” IEEE Com-
munications Magazine, vol. 53, pp. 278–285, January 2015.

[19] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón, M. Solé, V. Muntés-
Mulero, D. Meyer, S. Barkai, M. J. Hibbett, G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan,
H. Latapie, C. Cassar, J. Evans, F. Maino, J. Walrand, and A. Cabellos, “Knowledge-
defined networking,” SIGCOMM Comput. Commun. Rev., vol. 47, pp. 2–10, Sept. 2017.

[20] F. Volpato, M. P. D. Silva, A. L. Gonçalves, and M. A. R. Dantas, “An autonomic qos man-
agement architecture for software-defined networking environments,” in IEEE Symposium
on Computers and Communications (ISCC), pp. 418–423, July 2017.

[21] A. Rodriguez-Vivas, O. M. Caicedo, A. Ordoñez, J. C. Nobre, and L. Z. Granville, “Nora:
An approach for transforming network management policies into automated planning
problems,” Sensors, vol. 21, no. 5, p. 1790, 2021.

[22] A. Ordonez, O. M. Caicedo, W. Villota, A. Rodriguez-Vivas, and N. L. da Fonseca, “Model-
based reinforcement learning with automated planning for network management,” Sen-
sors, vol. 22, no. 16, p. 6301, 2022.

[23] A. Rodríguez-Vivas, L. A. Eraso, J. C. Nobre, and O. M. C. Rendón, “Framework for
autonomic management in software defined networks,”

Bibliography 87

[24] S. Crawford and L. Stucki, “Peer review and the changing research record,” J. Am. Soc.
Inf. Sci., vol. 41, pp. 223–228, Mar. 1990.

[25] O. N. Foundation, “Sdn architecture v1.0, technical reference tr-502,” tech. rep., 2014.

[26] D. B. Rawat and S. R. Reddy, “Software defined networking architecture, security and
energy efficiency: A survey,” IEEE Communications Surveys Tutorials, vol. 19, pp. 325–
346, Firstquarter 2017.

[27] I. T. Union, “Framework of software-defined networking, recommendation y.3300,” tech.
rep., 2014.

[28] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uh-
lig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE,
vol. 103, pp. 14–76, Jan 2015.

[29] F. Estrada-Solano, A. Ordonez, L. Z. Granville, and O. M. C. Rendon, “A framework for
sdn integrated management based on a cim model and a vertical management plane,”
Elsevier Computer Communications, vol. 102, pp. 150 – 164, 2017.

[30] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T. Turletti, “A survey of
software-defined networking: Past, present, and future of programmable networks,” IEEE
Communications Surveys Tutorials, vol. 16, pp. 1617–1634, Third 2014.

[31] “Management framework for open systems interconnection (osi) for ccitt applications,”
september 1992.

[32] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-level reactive net-
work control,” in Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, (New York, NY, USA), pp. 43–48, ACM, 2012.

[33] M. H. Behringer, M. Pritikin, S. Bjarnason, A. Clemm, B. E. Carpenter, S. Jiang, and
L. Ciavaglia, “Autonomic Networking: Definitions and Design Goals.” RFC 7575, June
2015.

[34] J. Strassner, N. Agoulmine, and E. Lehtihet, “Focale: A novel autonomic networking ar-
chitecture,” 2006.

[35] S. Kim, J.-M. Kang, S.-s. Seo, and J. W.-K. Hong, “A cognitive model-based approach
for autonomic fault management in openflow networks,” ACM International Journal of
Network Management, vol. 23, no. 6, pp. 383–401, 2013.

[36] T. B. Meriem, R. Chaparadza, B. Radier, S. Soulhi, and A. P. López, “Gana-generic auto-
nomic networking architecture,” 2016.

[37] M. H. Behringer, B. E. Carpenter, T. Eckert, L. Ciavaglia, P. Pierre, B. Liu, J. C. Nobre,
and J. Strassner, “A Reference Model for Autonomic Networking,” Internet-Draft draft-
ietf-anima-reference-model-05, Internet Engineering Task Force, Oct. 2017. Work in
Progress.

88 Bibliography

[38] E. Coronado, R. Behravesh, T. Subramanya, A. Fernàndez-Fernàndez, M. S. Siddiqui,
X. Costa-Pérez, and R. Riggio, “Zero touch management: A survey of network automation
solutions for 5g and 6g networks,” IEEE Communications Surveys Tutorials, vol. 24, no. 4,
pp. 2535–2578, 2022.

[39] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and soft-
warization: A survey on principles, enabling technologies, and solutions,” IEEE Commu-
nications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.

[40] J. O. Kephart and W. E. Walsh, “An artificial intelligence perspective on autonomic com-
puting policies,” in Proceedings. Fifth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, 2004. POLICY 2004., pp. 3–12, June 2004.

[41] H. Derbel, N. Agoulmine, and M. Salaün, “Anema: Autonomic network management ar-
chitecture to support self-configuration and self-optimization in ip networks,” Computer
Networks, vol. 53, no. 3, pp. 418 – 430, 2009.

[42] S. Lohmüller, Cognitive Self-Organizing Network Management for Automated Configura-
tion of Self-Optimization SON Functions. PhD thesis, Universität Augsburg, 2019.

[43] K. Mehmood, K. Kralevska, and D. Palma, “Intent-driven autonomous network and
service management in future networks: A structured literature review,” arXiv preprint
arXiv:2108.04560, 2021.

[44] A. Clemm, L. Ciavaglia, L. Z. Granville, and J. Tantsura, “Intent-Based Networking - Con-
cepts and Definitions.” RFC 9315, Oct. 2022.

[45] K. Dzeparoska, N. Beigi-Mohammadi, A. Tizghadam, and A. Leon-Garcia, “Towards a
self-driving management system for the automated realization of intents,” IEEE Access,
vol. 9, pp. 159882–159907, 2021.

[46] N. F. S. de Sousa and C. E. Rothenberg, “Clara: Closed loop-based zero-touch network
management framework,” in 2021 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), pp. 110–115, IEEE, 2021.

[47] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing in 5g: Survey
and challenges,” IEEE communications magazine, vol. 55, no. 5, pp. 94–100, 2017.

[48] F. Wei, G. Feng, Y. Sun, Y. Wang, and Y.-C. Liang, “Dynamic network slice reconfigu-
ration by exploiting deep reinforcement learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC), pp. 1–6, IEEE, 2020.

[49] W. F. Villota-Jacome, O. M. C. Rendon, and N. L. da Fonseca, “Admission control for
5g core network slicing based on deep reinforcement learning,” IEEE Systems Journal,
2022.

Bibliography 89

[50] M. Pozza, P. K. Nicholson, D. F. Lugones, A. Rao, H. Flinck, and S. Tarkoma, “On recon-
figuring 5g network slices,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 7, pp. 1542–1554, 2020.

[51] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y.-C. Liang, “Network slice reconfiguration
by exploiting deep reinforcement learning with large action space,” IEEE Transactions on
Network and Service Management, vol. 17, no. 4, pp. 2197–2211, 2020.

[52] M. Ghallab, D. Nau, and P. Traverso, Automated planning and acting. Cambridge Univer-
sity Press, 2016.

[53] D. S. Nau, “Current trends in automated planning,” AI magazine, vol. 28, no. 4, p. 43,
2007.

[54] S. Russel, “Artificial intelligence. a modern approach/russel s., norvig p,” 2007.

[55] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso, D. Weld,
D. W. SRI, A. Barrett, D. Christianson, et al., “Pddl| the planning domain definition lan-
guage,” Technical Report, Tech. Rep., 1998.

[56] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins, “Pddl: The planning domain definition language, version 1.2,” Yale Center for
Computational Vision and Control, Tech Report CVC TR98003/DCS TR1165.

[57] J. Espasa, J. Coll, I. Miguel, and M. Villaret, “Towards lifted encodings for numeric plan-
ning in essence prime,” in CP 2019 Workshop on Constraint Modelling and Reformulation,
2019.

[58] W. M. Piotrowski, M. Fox, D. Long, D. Magazzeni, and F. Mercorio, “Heuristic planning for
pddl+ domains,” in Workshops at the Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[59] E. Scala, P. Haslum, S. Thiébaux, et al., “Heuristics for numeric planning via subgoaling,”
2016.

[60] A. Coles, A. Coles, M. Fox, and D. Long, “Temporal planning in domains with linear pro-
cesses,” in Twenty-First International Joint Conference on Artificial Intelligence, 2009.

[61] M. A. Gironza-Ceron, W. F. Villota-Jacome, A. Ordonez, F. Estrada-Solano, and O. M. C.
Rendon, “Sdn management based on hierarchical task network and network functions
virtualization,” in 2017 IEEE Symposium on Computers and Communications (ISCC),
pp. 1360–1365, July 2017.

[62] W. Villota, M. Gironza, A. Ordoñez, and O. M. C. Rendon, “On the feasibility of using
hierarchical task networks and network functions virtualization for managing software-
defined networks,” IEEE Access, vol. 6, pp. 38026–38040, 2018.

90 Bibliography

[63] F. Liu, Supporting IT Service Fault Recovery with an Automated Planning Method. PhD
thesis, lmu, 2011.

[64] A. Ordoñez, J. C. Corrales, and P. Falcarin, “Natural language processing based services
composition for environmental management,” pp. 497–502, July 2012.

[65] A. Ordonez, V. Alcázar, J. C. Corrales, and P. Falcarin, “Automated context aware compo-
sition of advanced telecom services for environmental early warnings,” Expert Systems
with Applications, vol. 41, no. 13, pp. 5907 – 5916, 2014.

[66] C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. E. Schaeffer Filho, “Policy author-
ing for software-defined networking management.,” in IM, pp. 216–224, 2015.

[67] C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-Filho, “Arkham: An
advanced refinement toolkit for handling service level agreements in software-defined
networking,” Journal of Network and Computer Applications, vol. 90, pp. 1 – 16, 2017.

[68] C. C. Machado, L. Z. Granville, A. Schaeffer-Filho, and J. A. Wickboldt, “Towards sla
policy refinement for qos management in software-defined networking,” in 2014 IEEE 28th
International Conference on Advanced Information Networking and Applications, pp. 397–
404, May 2014.

[69] D. Tuncer, M. Charalambides, G. Tangari, and G. Pavlou, “A northbound interface for
software-based networks,” in 2018 14th International Conference on Network and Service
Management (CNSM), pp. 99–107, Nov 2018.

[70] A. S. Jacobs, R. J. Pfitscher, R. A. Ferreira, and L. Z. Granville, “Refining network intents
for self-driving networks,” in Proceedings of the Afternoon Workshop on Self-Driving Net-
works, SelfDN 2018, (New York, NY, USA), pp. 15–21, ACM, 2018.

[71] M. Riftadi and F. Kuipers, “P4i/o: Intent-based networking with p4,” in 2019 IEEE Confer-
ence on Network Softwarization (NetSoft), pp. 438–443, June 2019.

[72] P. Widmer and B. Stiller, Design and Implementation of an Intent-based Blockchain Se-
lection Framework. PhD thesis, Master’s thesis, University of Zurich, 2020.

[73] F. Z. Yousaf, V. Sciancalepore, M. Liebsch, and X. Costa-Perez, “Manoaas: A multi-tenant
nfv mano for 5g network slices,” IEEE Communications Magazine, vol. 57, no. 5, pp. 103–
109, 2019.

[74] S. Kukliński and L. Tomaszewski, “Dasmo: A scalable approach to network slices man-
agement and orchestration,” in NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium, pp. 1–6, 2018.

[75] A. Galis, K. Makhijani, D. Yu, and B. Liu, “Autonomic Slice Networking,” Internet-Draft
draft-galis-anima-autonomic-slice-networking-05, Internet Engineering Task Force, Sept.
2018. Work in Progress.

Bibliography 91

[76] Q. Wang, J. Alcaraz-Calero, M. B. Weiss, A. Gavras, P. M. Neves, R. Cale, G. Bernini,
G. Carrozzo, N. Ciulli, G. Celozzi, A. Ciriaco, A. Levin, D. Lorenz, K. Barabash, N. Nikaein,
S. Spadaro, D. Morris, J. Chochliouros, Y. Agapiou, C. Patachia, M. Iordache, E. Oproiu,
C. Lomba, A. C. Aleixo, A. Ro-Drigues, G. Hallissey, Z. Bozakov, K. Koutsopoulos, and
P. Walsh, “Slicenet: End-to-end cognitive network slicing and slice management frame-
work in virtualised multi-domain, multi-tenant 5g networks,” in 2018 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1–5,
2018.

[77] “Slicenet project.” urlhttps://slicenet.eu/. Accessed 05-18-2021.

[78] S. Spadaro and K. Nagin, “Cognitive network slice management: The slicenet approach,”
EURESCOM message, vol. 1, no. 1, pp. 12–13, 2020.

[79] G. Cuffaro, F. Paganelli, and P. Cappanera, “Tenant-side management of service function
chaining: Architecture, implementation and experiment on a future internet testbed,” in
2019 IEEE Conference on Network Softwarization (NetSoft), pp. 124–132, 2019.

[80] A. Gavras, S. Denazis, C. Tranoris, H. Hrasnica, and M. B. Weiss, “Requirements and
design of 5g experimental environments for vertical industry innovations,” in 2017 Global
Wireless Summit (GWS), pp. 165–169, 2017.

[81] “D3.3: 5g norma network architecture - final report,” Sept. 2017.

[82] F. Wei, S. Qin, G. Feng, Y. Sun, J. Wang, and Y.-C. Liang, “Hybrid model-data driven
network slice reconfiguration by exploiting prediction interval and robust optimization,”
IEEE Transactions on Network and Service Management, 2021.

[83] F. Wei, G. Feng, Y. Sun, Y. Wang, and S. Qin, “Proactive network slice reconfiguration by
exploiting prediction interval and robust optimization,” in GLOBECOM 2020-2020 IEEE
Global Communications Conference, pp. 1–6, IEEE, 2020.

[84] W. Guan, H. Zhang, and V. C. Leung, “Slice reconfiguration based on demand predic-
tion with dueling deep reinforcement learning,” in GLOBECOM 2020-2020 IEEE Global
Communications Conference, pp. 1–6, IEEE, 2020.

[85] G. Wang, G. Feng, T. Q. Quek, S. Qin, R. Wen, and W. Tan, “Reconfiguration in net-
work slicing—optimizing the profit and performance,” IEEE Transactions on Network and
Service Management, vol. 16, no. 2, pp. 591–605, 2019.

[86] X. Lu, X. Wang, L. Pang, J. Liu, Q. Yang, and X. Song, “Deployment and reconfiguration
for balanced 5g core network slices,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 104, no. 11, pp. 1629–1643, 2021.

[87] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac, “Be scalable and rescue my slices
during reconfiguration,” The Computer Journal, vol. 64, no. 10, pp. 1584–1599, 2021.

92 Bibliography

[88] E. M. Dow and J. N. Matthews, “Wayfinder: parallel virtual machine reallocation through
a* search,” Memetic Computing, vol. 8, no. 4, pp. 255–267, 2016.

[89] A. Gausseran, Algorithmes d’optimisation pour le network slicing pour la 5G. PhD thesis,
Université Côte d’Azur, 2021.

[90] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: theory and practice. Elsevier,
2004.

[91] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada-Solano, and
O. M. Caicedo, “Machine learning for cognitive network management,” IEEE Communi-
cations Magazine, vol. 56, pp. 158–165, Jan 2018.

[92] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón, M. Solé, V. Muntés-
Mulero, D. Meyer, S. Barkai, M. J. Hibbett, G. Estrada, K. Ma’ruf, F. Coras, V. Ermagan,
H. Latapie, C. Cassar, J. Evans, F. Maino, J. Walrand, and A. Cabellos, “Knowledge-
defined networking,” SIGCOMM Comput. Commun. Rev., vol. 47, p. 2–10, sep 2017.

[93] M. Behringer, S. Bjarnason, S. Jiang, B. Carpenter, M. Pritikin, L. Ciavaglia, and
A. Clemm, “Autonomic networking: Definitions and design goals,” 2015.

[94] D. M. Chess and J. O. Kephart, “The vision of autonomic computing,” Computer, vol. 36,
pp. 41–50, 01 2003.

[95] A. I. Montoya-Munoz, D. M. Casas-Velasco, F. Estrada-Solano, A. Ordonez, and O. M. C.
Rendon, “A yang model for a vertical sdn management plane,” in 2017 IEEE Colombian
Conference on Communications and Computing (COLCOM), pp. 1–6, Aug 2017.

[96] D. Nau, T. . Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman, H. Munoz-Avila, and J. W. Murdock,
“Applications of shop and shop2,” IEEE Intelligent Systems, vol. 20, no. 2, pp. 34–41,
2005.

[97] K. Erol, Hierarchical task network planning: formalization, analysis, and implementation.
PhD thesis, 1996.

[98] P. Gregory, “Pddl templating and custom reporting: Generating problems and processing
plans,”

[99] V. Strobel and A. Kirsch, “Mypddl: Tools for efficiently creating pddl domains and prob-
lems,” in Knowledge Engineering Tools and Techniques for AI Planning, pp. 67–90,
Springer, 2020.

[100] “Rasa.” https://www.rasa.com/. Accessed: 2020-05-08.

[101] G. G. Chowdhury, “Natural language processing,” Annual review of information science
and technology, vol. 37, no. 1, pp. 51–89, 2003.

[102] “Luis nlu.” https://www.luis.ai/. Accessed: 2020-12-17.

https://www.rasa.com/
https://www.luis.ai/

Bibliography 93

[103] “Amazon lex.” https://aws.amazon.com/es/lex/. Accessed: 2020-12-17.

[104] D. Braun, A. Hernandez-Mendez, F. Matthes, and M. Langen, “Evaluating natural lan-
guage understanding services for conversational question answering systems,” in Pro-
ceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, (Saarbrücken,
Germany), pp. 174–185, Association for Computational Linguistics, aug 2017.

[105] “Rasaactions.” https://rasa.com/docs/rasa/core/actions/#custom-actions. Accessed:
2020-05-08.

[106] “Pddltemplates.” https://github.com/Pold87/myPDDL/blob/master/templates/
problem-template.pddl. Accessed: 2020-05-21.

[107] “Stripsplanner.” https://stripsfiddle.herokuapp.com/. Accessed: 2020-05-21.

[108] “How to make automated testing part of your rasa dev workflow.” https://blog.rasa.com/
rasa-automated-tests/. Accessed: 2020-10-04.

[109] “Rasa evaluating and testing.” https://rasa.com/docs/rasa/testing-your-assistant. Ac-
cessed: 2020-10-04.

[110] I. Vaishnavi and L. Ciavaglia, “Challenges towards automation of live telco network man-
agement: Closed control loops,” in 2020 16th International Conference on Network and
Service Management (CNSM), pp. 1–5, IEEE, 2020.

[111] E. F. Castillo, O. M. C. Rendon, A. Ordonez, and L. Z. Granville, “Ipro: An approach for
intelligent sdn monitoring,” Computer Networks, vol. 170, p. 107108, 2020.

[112] A. G. et al., “Planning.wiki - the ai planning pddl wiki,” 2022.

[113] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing temporal planning
domains,” Journal of artificial intelligence research, vol. 20, pp. 61–124, 2003.

[114] V. Strobel and A. Kirsch, “Planning in the wild: modeling tools for pddl,” in Joint Ger-
man/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz), pp. 273–284,
Springer, 2014.

[115] E. Scala, P. Haslum, S. Thiébaux, and M. Ramirez, “Interval-based relaxation for general
numeric planning,” in ECAI 2016, pp. 655–663, IOS Press, 2016.

[116] E. Scala, P. Haslum, S. Thiébaux, and M. Ramirez, “Subgoaling techniques for satis-
ficing and optimal numeric planning,” Journal of Artificial Intelligence Research, vol. 68,
pp. 691–752, 2020.

[117] A. Kaloxylos, “A survey and an analysis of network slicing in 5g networks,” IEEE Commu-
nications Standards Magazine, vol. 2, no. 1, pp. 60–65, 2018.

[118] D. Li, E. Scala, P. Haslum, and S. Bogomolov, “Effect-abstraction based relaxation for
linear numeric planning.,” in IJCAI, pp. 4787–4793, 2018.

https://aws.amazon.com/es/lex/
https://rasa.com/docs/rasa/core/actions/#custom-actions
https://github.com/Pold87/myPDDL/blob/master/templates/problem-template.pddl
https://github.com/Pold87/myPDDL/blob/master/templates/problem-template.pddl
https://stripsfiddle.herokuapp.com/
https://blog.rasa.com/rasa-automated-tests/
https://blog.rasa.com/rasa-automated-tests/
https://rasa.com/docs/rasa/testing-your-assistant

Appendix A

Scientific Production and Awards

The research work presented in this thesis was reported to the scientific community through
paper submissions to renowned conferences and journals and it was awarded with two distinc-
tions. The process of doing research, submitting paper, gathering feedback, and improving the
work helped to achieve the maturity hereby presented. The list of published papers to date are
listed below in chronological order. The published papers and awards certificates are available
in the next pages.

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	1 Introduction
	1.1 Problem statement
	1.2 Hypothesis
	1.3 Objectives
	1.3.1 General Objective
	1.3.2 Specific Objectives

	1.4 Contributions
	1.5 Scientific production
	1.5.1 Publications
	1.5.2 Awards

	1.6 Methodology and organization

	2 Background and State-of-the-Art
	2.1 Software Defined Networks
	2.2 Autonomic Network Management
	2.3 Zero-touch Network Management
	2.4 Network Management Intents
	2.5 5G Network Slices
	2.6 Configuring and Reconfiguring Network Slices
	2.7 Automated Planning
	2.8 State-space Planning for the Network Slice Reconfiguration Problem
	2.9 Related Work
	2.9.1 Translation of High-Level Network Management Policies
	2.9.2 Tenant-side 5G Network Slicing Management
	2.9.3 Reconfiguring Network Slices

	2.10 Final remarks

	3 Transforming Network Management Policies into Automated Planning Problems
	3.1 NORA
	3.1.1 High-level Operation
	3.1.2 Lexer
	3.1.3 Criteria Analyzer
	3.1.4 Converter
	3.1.5 Generator

	3.2 Evaluation
	3.2.1 Prototype
	3.2.2 Goal Policies Dataset and Lexer Tuning up
	3.2.3 Performance Metrics
	3.2.4 Results and Analysis

	3.3 Final Remarks

	4 Tenant-oriented Reconfiguration of Network Slices based on Automated Planning
	4.1 Architecture
	4.2 Automated Planning for the Tenant-side Network Slice Reconfiguration Problem
	4.2.1 System Model
	4.2.2 Automated Planning Problem Formulation
	4.2.3 Automated Planning Domain

	4.3 Evaluation
	4.3.1 Setup
	4.3.2 Results

	4.4 Final remarks

	5 Conclusions
	5.1 Answers to the fundamental questions
	5.2 Future work

	Bibliography
	A Scientific Production and Awards

