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Structured Abstract

Background. The Software-Defined Networking paradigm establishes

a three-plane architecture that facilitates the deployment of network func-

tions and simplifies traditional network management tasks. However, this

architecture lacks an integrated or standardized framework for managing

the virtual, dynamic, and heterogeneous Software-Defined Networking en-

vironment itself. Some investigations have addressed such shortage by

proposing different solutions that tackle specific management requirements

for particular technology instances. This isolated approach forces network

administrators to use multiple frameworks or to build their integrated tools

for managing the whole Software-Defined Networking environment. The di-

versity, the continuous updating, and the restricted reuse and sharing of

management solutions increase the complexity and time to manage net-

works based on the Software-Defined Networking paradigm. Therefore, this

thesis focuses on investigating an effective approach (i.e., in terms of time

and network traffic) for managing the virtual, dynamic, and heterogeneous

environment of Software-Defined Networks.

Goal. Propose a mechanism based on Web technologies (2.0/3.0) for

carrying out the management of virtual, dynamic, and heterogeneous net-

works based on the Software-Defined Networking paradigm.

Methods. This thesis proposes a Management Plane as an effective ap-

proach for managing virtual, dynamic, and heterogeneous networks based

on the Software-Defined Networking paradigm. The proposed Management

Plane defines a reference architecture based on the Open System Inter-

connection management model to achieve a proper integrated framework.

In addition, such Management Plane introduces an Information Model that

provides a technology-independent and consistent abstraction of the whole



Software-Defined Networking environment across distinct vendors and in-

stances. Finally, this Management Plane presents a framework based on

Web technologies (2.0/3.0) to support the simple, cooperative, and dynamic

creation of management tools for Software-Defined Networks.

Results. A Management Plane reference architecture for integrated

management of Software-Defined Networks. Such Management Plane de-

tails an Information Model that relies on the Common Information Model

to characterize the entire Software-Defined Networking environment from a

management perspective. Furthermore, this Management Plane proposes

a mashup-based and event-driven framework to encourage network admin-

istrators to dynamically customize, in a high-level abstraction, tools for man-

aging networks based on the Software-Defined Networking paradigm.

Conclusions. The different case studies raised to evaluate and analyze

this thesis corroborate the effectivity, in terms of time and network traffic,

of the proposed approach for carrying out management tasks in realistic

scenarios based on the virtual, dynamic, and heterogeneous environment

of Software-Defined Networks. Both the Information Model and the Web-

based framework reduce the time for dynamically managing a network de-

ployed with virtual and heterogeneous technologies. In addition, both afore-

mentioned solutions demonstrate good behavior on the response time as

well as on the network traffic. As future research, there is still the need

to extend the proposed Management Plane in order to afford a complete,

well-defined Software-Defined Networking management architecture. Fur-

thermore, there is an opportunity to investigate the feasibility of using Big

Data technologies to capture, process, and analyze the enormous sets of

information generated by Software-Defined Networks.

Keywords: Software-Defined Networking, Integrated network manage-

ment, Common Information Model, Web-based network management, Mash-

ups, Event-driven.
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Chapter 1

Introduction

1.1 Problem statement

The Internet has continually evolved to support a lot of new technologies and proto-

cols in the Application and Link layers of the TCP/IP Model1. However, at the Transport

and Network Layers (the core of the Internet) the evolution has come to a standstill that

is known as the Internet Ossification. The Internet Ossification states that the current

Internet architecture hinders network management, provides limited experimentation in

real conditions, presents brittle scalability and security, and lacks of stimulus for network

providers to invest and implement new technology [1, 2].

Over the past 20 years, the programmable networks and the network virtualiza-

tion have spread as key technologies to cope with the Internet Ossification [3]. Nowa-

days, the Software-Defined Networking (SDN) paradigm is an attractive and accepted

trend to program networks in both research and industry [4]. From a high-level point

of view, SDN separates Control (i.e., decision policies) and Data (i.e., packet forward-

ing) planes, allowing to operate networks in a simpler way from a logically centralized

software program [5]. The network virtualization aims to build open and flexible ar-

chitectures, enabling several logical networks to share a single physical infrastructure

[6, 7]. SDN and the network virtualization are not mutually inclusive, but their symbio-

sis promotes deploying, testing, and evaluating both technologies [8, 9]. For example,

the network virtualization facilitates to migrate the Control Plane from network devices
1Model that describes the Internet protocol suite, commonly known as TCP/IP in reference to the two

most important protocols: the Transmission Control Protocol (TCP) and the Internet Protocol (IP). It is
also called as the Internet Model—http://tools.ietf.org/html/rfc1122.

1



2 Chapter 1. Introduction

(e.g., switches and routers) to servers and allows to perform multiple experiments in an

isolated way on a same underlying network.

Standardization bodies [10, 11], networking vendors [12, 13], and research surveys

[14, 15] describe a typical SDN architecture, composed of three horizontal planes (i.e.,

Data, Control, and Application) and three interfaces (i.e., Southbound, Northbound, and

East/Westbound), that defines functional and communication requirements to deploy

SDN-based networks. However, this SDN architecture lacks an integrated or standard-

ized framework for managing the virtual2, dynamic3, and heterogeneous4 environment

of SDN itself. Recent proposals have considered a Management Plane in the SDN ar-

chitecture for carrying out Operation, Administration, and Maintenance (OAM) functions

[16, 17]. Still, these approaches just expose a very high-level view of their management

component.

At the top of the SDN architecture, a lot of research has proposed services and appli-

cations to simplify traditional network management tasks, such as load-balancing [18],

efficient energy usage [19], and access control [20, 21]. Furthermore, some studies

have addressed the need to manage SDN itself, for example, frameworks to configure

the Data Plane [22, 23], to deploy [24, 25] and monitor [26, 27] the Control Plane, to

virtualize SDNs [28, 29], and to develop the Application Plane [30, 31]. Nevertheless,

no integrated solution exists to manage SDN as a whole by employing well-defined

interfaces and supporting different deployed technologies. As a fundamental step, an

integrated solution needs a joint understanding that entirely characterizes the virtual,

dynamic, and heterogeneous environment of SDN from the management perspective.

Few approaches have addressed the formal representation of SDN [22, 32, 33]; still

they are focused exclusively on specific technologies or fall short in modeling the SDN

environment. This hinders and restricts reuse and sharing of SDN management solu-

tions for different technology instances and domains.

The lack of frameworks for integrated network management forces network admin-

istrators to handle several isolated solutions to manage resources from distinct planes

of the SDN architecture as well as various technology instances. Thus, SDN man-

agement remains complex and time-consuming because of the diversity of solutions.

Alternatively, although network administrators do not have deep programming skills,
2Capability for sharing network resources from a same physical infrastructure among several virtual

network instances.
3Flexibility for adding, modifying, migrating and removing network resources.
4Independence of the technology deployed by network resources.
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they build their SDN management tools (usually, fragile and static scripts5) by integrat-

ing and interoperating multiple isolated solutions. However, the continuous updating

(i.e., arising and perishing) and the restricted reuse and sharing of SDN management

solutions increase the complexity and time to build and maintain such management

tools. For example, a network administrator usually must modify a script for reusing it

in another network domain.

Summarizing, due to the integration and interoperation needs, the continuous aris-

ing and perishing, and the restricted sharing and reusing of SDN management solu-

tions, managing the SDN environment as a whole remains complex and time-consuming.

Thus, this thesis focuses on investigating an effective approach (i.e., in terms of time

and network traffic) for managing the virtual, dynamic, and heterogeneous environment

of SDN. The following research question defines the aforementioned problem:

How to carry out an effective approach for managing virtual, dynamic, and

heterogeneous networks based on the SDN paradigm?

1.2 Hypothesis

To address the above research question, this thesis raises the following hypothesis:

a Management Plane that establishes a common Information Model and employs

Web technologies (2.0/3.0) would provide an effective approach for managing vir-

tual, dynamic, and heterogeneous networks based on the SDN paradigm.

This hypothesis focuses on the need of a Management Plane that facilitates inte-

grated control and monitoring of SDN. The Open System Interconnection (OSI) man-

agement model [34] affords a proper integrated framework to define a reference archi-

tecture for this Management Plane. In such Management Plane, a common Informa-

tion Model would provide a technology-independent and consistent abstraction of SDN

across distinct vendors and instances, encouraging integrated management of the vir-

tual, dynamic, and heterogeneous environment of SDN. Furthermore, employing Web

technologies (2.0/3.0) to deploy this Management Plane would enable to build platforms

that support the simple, cooperative, and dynamic creation of management tools. Thus,

the Management Plane would introduce an effective approach for managing the virtual,

dynamic, and heterogeneous SDN environment as a whole.
5Set of instructions commonly stored in a text file, interpreted line by line in real-time for its execution.
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The below fundamental questions, associated with the afore raised hypothesis,

guide the investigation conducted in this thesis.

• What is the performance, in terms of time and network traffic, of solutions based

on a technology-agnostic and consistent Information Model for managing virtual,

dynamic, and heterogeneous networks based on the SDN paradigm?

• What is the performance, in terms of time and network traffic, of solutions that use

Web 2.0 and Web 3.0 technologies for managing virtual, dynamic, and heteroge-

neous networks based on the SDN paradigm?

1.3 Goals

1.3.1 Main goal

Propose a mechanism based on Web technologies (2.0/3.0) for carrying out the

management of virtual, dynamic, and heterogeneous networks based on the SDN

paradigm.

1.3.2 Specific goals

1. Define a formal data and interaction model for describing network management

in the SDN environment.

2. Design a reference architecture6 supported by Web technologies (2.0/3.0) for

managing virtual, dynamic, and heterogeneous networks based on the SDN paradigm.

3. Present and evaluate the architecture and the formal data model through an SDN

management case study in an emulated environment of a virtual, dynamic, and

heterogeneous network.

1.4 Contributions

The investigation about the feasibility of deploying a Management Plane that es-

tablishes a common Information Model and employs Web technologies (2.0/3.0) for
6The term reference architecture indicates an architecture in a high-level of abstraction.
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effectively managing virtual, dynamic, and heterogeneous networks based on the SDN

paradigm, led to the following major contributions.

• A Management Plane that employs the OSI network management submodels

(i.e., Information, Organizational, Communication, and Functional) to define a ref-

erence architecture for integrated management of the virtual, dynamic, and het-

erogeneous SDN environment.

• A technology-agnostic and consistent Information Model that characterizes the

SDN management environment as a Common Information Model (CIM) concep-

tual framework.

• A mashup-based concept (i.e., SDN Mashup) that encourages network adminis-

trators to build and customize, in a high-level abstraction, management tools in

the SDN environment.

• A mashup-based and event-driven framework that incorporates the carrying out

of static and dynamic SDN Mashups into the Manager component of the Manage-

ment Plane.

The above-mentioned contributions were reported to the scientific community through

paper submissions to renowned conferences and journals (see Appendix A).

• A paper submitted to the journal Computer Communications. Colciencias index:

A1. Contribution: the reference architecture for the Management Plane and the

CIM-based Information Model.

• A paper published in the journal Computer Networks. Colciencias index: A1.

Contribution: the mashup-based and event-driven framework.

• A paper published in the proceedings of The 28th IEEE International Conference

on Advanced Information Networking and Applications (AINA) 2014. Contribution:

a case study for the SDN Mashup.

• A paper published in the proceedings of The IEEE Global Communications Con-

ference (GLOBECOM) 2013. Contribution: a case study for the SDN Mashup.

• A paper published in the proceedings of The 37th IEEE Annual International Com-

puter Software & Applications Conference (COMPSAC) 2013. Contribution: the

SDN Mashup concept.
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Figure 1.1. Thesis phases

1.5 Methodology and organization

Figure 1.1 depicts the phases of the scientific research process followed in this the-

sis: Problem Statement, Hypothesis Construction, Experimentation, Conclusion, and

Publication. Problem Statement, for identifying and establishing the research question.

Hypothesis Construction, for formulating the hypothesis and the associated fundamen-

tal questions. In addition, this phase aimed to define and carry out the conceptual and

technological approaches. Experimentation, for testing the hypothesis and analyzing

the evaluation results. Conclusion, for outlining conclusions and future works. Note that

Hypothesis Construction had feedback from Experimentation and Conclusion. Publica-

tion, for submitting and publishing papers for renowned conferences and journals. The

writing of this document also belongs to this last phase.

The organization of this document reflects the phases outlined above.

• This introductory chapter presents the problem statement, raises the hypothe-

sis, exposes the goals, summarizes the contributions, and describes the overall

structure of this thesis.

• Chapter 2 reviews research about SDN architecture, SDN management solu-

tions, and Web technologies (2.0/3.0) for network management.

• Chapter 3 details the major contributions accomplished with this thesis. Section

3.1 describes the Management Plane. Section 3.2 introduces the CIM-based In-

formation Model. Section 3.3 depicts the mashup-based and event-driven frame-

work.

• Chapter 4 describes the experiments conducted to test the hypothesis, discusses

the corresponding results, and presents implementations highlights.
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• Chapter 5 presents conclusions about the hypothesis and the fundamental ques-

tions as well as opportunities for future works.





Chapter 2

State of the art

This chapter presents the background of the main research topics encompassed in

this thesis. In this way, the first section starts introducing a bottom-up description of the

typical SDN architecture. Next, it reviews the more relevant Web 2.0 and Web 3.0 tech-

nologies. Finally, this chapter discusses some research works focused on addressing

SDN management requirements and on using Web technologies (2.0/3.0) for network

management.

2.1 Background

2.1.1 SDN

The SDN paradigm has emerged as an important trend that defines how future net-

works are architected [4]. Multiple standardization bodies, such as Linux Foundation

[35] and Open Network Foundation (ONF) [11], focus on encouraging and normalizing

open SDN frameworks. Also, various private networking vendors, such as Cisco [12]

and Juniper [13], offer proprietary SDN deployments. In turn, several research surveys

[14, 15] work on improving architectural aspects of SDN. These open, proprietary and

research proposals establish a typical SDN architecture composed of three horizon-

tal planes (i.e., Data, Control, and Application) and three interfaces (i.e., Southbound,

Northbound, and East/Westbound), as depicted in Figure 2.1.

At the bottom of the SDN architecture, the Data Plane deploys the network infras-

tructure composed by interconnected Network Devices (NetDev) that perform forward-

ing operations. A NetDev consists of a physical part and a functional part. The for-

9
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Figure 2.1. High-level SDN architecture

mer comprises hardware elements, such as ports, storage, processor, and memory.

The latter defines a collection of software-based forwarding functions executed by Net-

Devs. Regarding the functional part, a NetDev ranges from dumb switches to cus-

tom switches. A dumb switch merely carries out simple forwarding functions, such as

Longest Prefix Match (LPM). For example, OpenFlow-Only switches [36] just forward

packets regarding their flow tables that are updated by the Control Plane. A custom

switch relies on programmable platforms (e.g., OpenWrt and NetFPGA) to integrate

more complex forwarding functions, such as Network Address Translation (NAT) and

firewall. For example, Forwarding Elements (FE) in ForCES [37] include multiple asso-

ciated Logical Functional Blocks (LFB) to carry out such forwarding functions. An LFB

defines either a punctual action for handling packets or a configuration entity operated

by the Control Plane.

In the middle, the Control Plane compiles the network logic and enforces decision
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policies on the Data Plane through Southbound Interfaces (SBI). Each SBI defines the

set of instructions and the communication protocols to allow the interaction between

components in the Control Plane and in the Data Plane. The OpenFlow protocol [38]

is the most well-known open standard SBI because its widespread use by vendors and

research [4]. Other SBI proposals are ForCES [37] and Protocol-Oblivious Forwarding

(POF) [39].

The Control Plane comprises Network Slicers (NetSlicer) and Network Operative

Systems (NOS). A NetSlicer divides the underlying network infrastructure into sev-

eral isolated logical network instances (a.k.a. slices), assigning their control to spe-

cific NOSs. NetSlicers may employ SBIs to communicate with NOSs. For example,

FlowVisor [40] acts as an OpenFlow proxy between switches and controllers, redirect-

ing messages according to flow parameters, such as TCP ports and IP addresses. An

NOS instructs the underlying Data Plane and provides generic services (e.g., topol-

ogy discovering and host tracking) and Northbound Interfaces (NBI) to the Application

Plane, facilitating to integrate custom Network Applications (NetApp). The possibility

to add these NetApps in an easier way is the key advantage of SDN to encourage

innovation on the Internet. OpenFlow Controllers [36] and ForCES Control Elements

(CE) [37] are NOS instances. It is important to highlight that a lot of frameworks exist

to develop and deploy OpenFlow Controllers, including open source projects like NOX

for C++ [41], POX for Python [42], Floodlight [43] and OpenDaylight [10] for Java, and

Trema [44] for Ruby. Also, the Control Plane defines East/Westbound Interfaces (EWBI)

to deploy distributed NOSs. For example, SDNi [45] and ForCES CE-CE interface [37].

At the top of the SDN architecture, the Application Plane contains NetApps that

deploy and orchestrate business logic and high-level network functions, such as rout-

ing policies and access control. As aforementioned, NetApps communicate with the

Control Plane through NBIs provided by NOSs. NBIs encompass common Application

Programming Interfaces (API) based on protocols (e.g., Floodlight REST API [46]), pro-

gramming languages (e.g., ad-hoc, Pyretic [30], and Procera [31]), file systems (e.g.,

YANC [47]), among others. NetApps run either locally or remotely regarding NOSs. Lo-

cal NetApps prefer NBIs based on programming languages. Remote NetApps usually

employ protocol-based APIs.
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2.1.2 Web 2.0

Web 2.0 does not define a specific technical update, but a different way how peo-

ple interact with the World Wide Web (WWW). Web 2.0 exposes a platform constituted

by a new kind of technologies that encourage conventional Web users to actively de-

velop services and dynamically create and modify contents. This maximizes collective

intelligence by means of a cooperative and a participative architecture [48, 49].

For the development of this thesis, the mashup technology excels as a fundamental

Web 2.0 solution. Mashups are composite Web applications centered on end-users

and created by combining resources available along the Web, such as data, application

logic, and user interfaces [50]. End-user centric means that conventional users with

poor programming skills may develop mashups [51]. This Web 2.0 technology deploys

a simple composition model that provides easy development and flexible execution of

mashup-based applications, encouraging cooperation among end-users and reuse of

existing Web resources [52, 53].

2.1.3 Web 3.0

Web 3.0 defines a data and link structure that enables a more effective discover-

ing, automation, integration, and reusing of information among multiple applications

[54, 55]. This facilitates searching, retrieving, processing, sharing, and integrating data

across the Web [56]. The main concept of Web 3.0 emerged from the Semantic Web

approach, which aims to deploy a Web that machines—and not only humans—can

understand [57]. To provide the aforementioned capabilities, Web 3.0 comprises sev-

eral technologies and tools. Following, the Web 3.0 technologies considered as more

relevant for developing this thesis.

Complex Event Processing (CEP) defines a general concept that describes the

capacity of inferring high-level knowledge by identifying significant patterns from mul-

tiple streams of simple events [58]. This technology uses techniques for detecting,

filtering, causal and time correlation, abstraction, aggregation, and real-time computing

that enable building applications aimed to situational intelligence [59].

Rule-based Systems technologies facilitate knowledge representation and reason-

ing. From a general perspective, Rule-based Systems consist of (i) ontologies, for

symbolically describing the knowledge, (ii) rules, for decision making according to the
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modeled knowledge; and (iii) data, for applying the inference principle in order to derive

new information [60, 61].

JavaScript Object Notation (JSON) provides a simple and lightweight data-interchange

format. Humans comfortably read and write data using JSON, and machines easily

parse and generate JSON data [62]. Web 3.0 approaches use JSON to define their

data and link structure [63].

2.2 Related work

This section reviews the most relevant approaches that cope with SDN manage-

ment requirements and that employ Web 2.0 and Web 3.0 technologies for managing

networks.

2.2.1 SDN management

Most SDN proposals have tackled traditional network management tasks by carry-

ing out managing functions in NetApps at the Application Plane. For example, wildcard-

based algorithms [18] to better redistribute traffic in SDN networks, ElasticTree [19] to

efficiently provide energy for SDN components, and Resonance [20] and OpenRoads

[21] to control access for SDN resources. However, functions in NetApps lack of mech-

anisms to deal with several management requirements from distinct SDN architectural

planes, such as: (i) in the Data Plane, configure certain NetDevs to communicate with

a preferred NOS, (ii) in the Control Plane, set up a NetSlicer to link NOSs to their corre-

sponding virtual network instances; and (iii) in the Application Plane, modify business

parameters to customize NetApps logic.

Some investigations have tackled the above gap by providing isolated tools that

address specific management require- ments for particular SDN technology instances.

For example: For example: (i) OF-Config [22] and Open vSwitch Database (OVSDB)

[23] that define protocols to configure NetDevs, (ii) Kandoo [24] and HyperFlow [25]

to scale and distribute NOSs, (iii) OpenFlow Management Infrastructure (OMNI) [26]

and ROVIZ [27] that provide graphic interfaces to monitor NOSs, (iv) VeRTIGO [28] and

ADVisor [29] to configure NetSlicers; and (v) Pyretic [30] and Procera [31] that supply

development tools to build NetApps. Considering that heterogeneous SDNs deploy a

variety of resources from multiple vendors and distinct technologies, it is to highlight
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Table 2.1. Research on approaches for SDN management

Requirements for SDN management

Research
work

Approach
Managing the

whole SDN
Integrated

management
Heterogeneous
environment

Information
Model

[18]–[21]
Functions in

NetApps
X

[22]–[31]
Isolated

tools
X

[22, 32, 33]
Information

Models
X X

that a classic solution based on using isolated tools to accomplish a complete SDN

management is complex and time-consuming.

As an essential step, an SDN management solution requires an Information Model

that establishes a shared characterization of the entire SDN to enable integrated man-

agement in heterogeneous environments. Few approaches have defined Information

Models to characterize the SDN managed environment: (i) OF-Config Data Model [22]

that uses UML and XML to structure the configuration of an OpenFlow Capable Switch,

(ii) ForCES Network Abstraction Model [32] that employs a building block approach to

represent ForCES FEs; and (iii) CIM-SDN [33] that attempts to model SDN resources

by proposing a CIM extension schema. It is worth noting that these Information Models

fall short in representing the whole SDN managed environment and are tied to specific

SDN technology instances. OF-Config Data Model and ForCES Abstraction Model de-

scribes only the Data Plane. The former was designed for OpenFlow and the latter for

ForCES. CIM-SDN merely includes the main elements from the Data and the Control

Planes. Although CIM-SDN is based on a technology-neutral model (i.e., CIM), the

extended schema is highly attached to the OpenFlow architecture.

Table summarizes the targets and gaps in SDN management of the above reviewed

proposals. Unlike these proposals, we consider an SDN management approach based

on a reference, technology-agnostic model of the whole SDN in order to achieve inte-

grated management in heterogeneous SDN environments.
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2.2.2 Network management using Web technologies

So far, in the literature, no investigation features an approach for SDN management

based on Web 2.0 and Web 3.0 technologies. However, there are few research works

that use either Web 2.0 or Web 3.0 mechanisms for carrying out management tasks in

other network architecture domains. The next paragraphs describe the most relevant

of such works.

In the domain of conventional networks, an approach based on mashups—a Web

2.0 technology—copes with the security problem of botnets1 in an more flexible, ex-

tensible, and usable way [64]. The approach deployed a mashup application that di-

namically integrated botnet information collected from existing mitigation tools (e.g.,

sandboxes and antiviruses) with geographic location retrieved from online mapping and

geolocation APIs.

In the same direction of the solution for mitigating botnets, a research work qualita-

tively evaluate the use of mashups as a feasible approach for managing conventional

networks [65]. Such work carried out a mashup application that monitors the traffic of

the Border Gateway Protocol (BGP) among two autonomous systems by integrating

traffic router information. The application collected data by using the Simple Network

Management Protocol (SNMP) and presented the integrated information by combining

images retrieved from a traffic graph generator and a mapping service.

Continuing the latter two works, the authors propose a generic architecture for com-

posing network management applications based on mashups [66]. The architecture

enables network administrators to build and customize their management applications

through high-level abstraction and user-oriented interfaces. The qualitative evaluation

of the architecture carried out a mashup system prototype that deployed the BGP peer-

ing2 mashup and the botnet mashup previously referred.

As an extension of the aforecited architecture, Maestro [67] provides a data confi-

dentiality framework for mashups that assist daily activities of network administrators.

For the proof-of-concept, an instance of Maestro deployed a prototype of a network

traffic monitoring mashup. This mashup enabled to measure the time overhead caused

by incorporating the modules of Maestro for achieving data confidentiality. It is to high-

light that such quantitative evaluation lacks measuring the overall response time of the
1Network of infected machines (i.e., bots) remotely controlled by human operators, usually for illegal

purposes.
2Interconnection between two independently managed network domains.
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mashup.

The Monitoring and Measurement in the Next Generation Technologies (MOMENT)

project [68] deploys a framework that uses ontologies—a Web 3.0 technology—for se-

mantically integrating the measurement information provided by distinct network moni-

toring tools and platforms. This framework enables some degree of inference and auto-

matic reasoning over the retrieved measurement data. MOMENT relies on an ontology-

based architecture [69] that supports semantic management of networks. This archi-

tecture focuses on semantically solving the interoperability problems among different

existing information models for network management.

In the domain of Grid3 networks, GEMINI2 [70] provides an architrecture that em-

ploys CEP mechanisms—a Web 3.0 technology—to expose monitoring data as event

streams. This monitoring approach provides access to such event streams by means of

advanced, high-performance, and real-time queries that facilitate management opera-

tions, such as dynamic resource allocation. GEMINI2 conducted a test to quantitatively

evaluate the network traffic added by its components, demonstrating that the proper use

of CEP-based mechanisms allows to considerably reduce the intrusiveness caused by

network monitoring.

Table 2.2 reveals several facts, first, none of the above-mentioned research works

focused on SDN management by jointly using Web 2.0 and Web 3.0 technologies. Ac-

tually, research on using either mashups, ontologies, or CEP-based mechanisms for

network management have not considered the virtual, dynamic, and heterogeneous

environment of SDN. Second, the aforecited works lack evaluating the consuming of

time for carrying out management tasks on the deployed scenarios. Third, there is the

need to deeply analyze the response time and the network traffic of network manage-

ment approaches that use Web 2.0 and Web 3.0 technologies; the formerly described

research just conducted a concise evaluation of overhead for these metrics. It is to

point out that the above facts externalize a research gap located at the intersection of

the SDN environment and the use of Web technologies (2.0/3.0) for network manage-

ment. The present thesis leverages such gap to introduce a groundbreaking framework

aimed to carry out SDN management by using mechanisms from the Web 2.0 and the

Web 3.0.
3A distributed computing system that allows to share not geographically-centric resources in order to

solve big scale problems.
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Table 2.2. Research on using Web technologies for network management

Web technology Evaluated characteristic

Research
work

SDN Mashup Ontology CEP
Time of

task
Time of

response
Network
Traffic

[64] X

[65] X

[66] X

[67] X X

[68] X

[69] X

[70] X X

* A rule-based representation model.

2.3 Final remarks

Initially, this chapter detailed the typical architecture for deploying an SDN-based

network. Subsequently, it described the technologies from Web 2.0 and Web 3.0 that

this thesis considers more appropiate for defining the SDN management approach. Af-

terwards, the chapter presented several research works that aim to address manage-

ment requirements of the SDN environment and that apply Web technologies (2.0/3.0)

on network management. The related work analysis shows that the literature lacks an

integrated approach aimed to manage the virtual, dynamic, and heterogeneous envi-

ronment of SDN as a whole. Unlike such research works, this thesis aims to propose an

Information Model and a Web-based (2.0/3.0) framework towards building an integrated

management architecture for the entire SDN environment regardless the deployment

technologies.





Chapter 3

A Management Plane for SDN based
on CIM and Web technologies

This chapter provides an extensive study about defining a Management Plane ap-

proach that facilitates network administrators to address management requirements in

virtual, dynamic, and heterogeneous networks based on the SDN paradigm. In this

sense, the chapter starts proposing a reference architecture of the Management Plane

aimed to carry out integrated management in SDN environments by referencing the

OSI network management submodels: Information, Organizational, Communication,

and Functional. Then, the chapter introduces a CIM-based Information Model for such

Management Plane in order to establish a technology-agnostic and consistent charac-

terization of the whole SDN environment. After, this chapter presents a mashup-based

concept that defines a high-level composition of applications for carrying out manage-

ment tasks in SDN-based networks. Finally, the chapter proposes a framework that

supports the static and dynamic deployment of the above SDN mashup concept in the

Management Plane.

3.1 Management Plane reference architecture

To define the management proposal for the SDN architecture, this thesis extends the

Management Plane concept considered in early SDN approaches [16, 17]. Unlike these

approaches, the proposed Management Plane aggregates components that facilitate

the integrated management in the virtual, dynamic, and heterogeneous environment of

19
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SDN.

Figure 3.1 depicts the proposed Management Plane. This plane is formed by the

Data Repository, the Manager, the Adapters, the Management Interfaces, and the

Agents. The Data Repository holds the Resource Representation Model (RRM) and

serves the Manager to store management instance data. RRM handles metadata to

provide an abstract, technology-neutral characterization of SDN resources. The Man-

ager orchestrates and deploys the Management Services to carry out different SDN

management functions. These Management Services expose user interfaces to allow

interaction of Network Administrators. The Adapters afford a protocol-agnostic com-

munication between the Manager and the Agents through well-defined Management

Interfaces. Each Management Interface connects every Adapter with the correspond-

ing Agent. The Agents situate on SDN resources to act on behalf of the Manager. The

whole operation of the Management Plane is based on RRM to achieve an integrated

and technology- independent SDN management.

This Management Plane defines a reference architecture based on the four OSI

network management submodels [34]: (i) an Information Model to establish a shared

abstraction of SDN resources, (ii) an Organizational Model to specify roles and collab-

oration forms, (iii) a Communication Model to delineate the exchange of management

data; and (iv) a Functional Model to structure management requirements.

3.1.1 Information Model

The Management Plane incorporates a CIM-based Information Model that describes

the SDN management environment at a conceptual level regardless of deploying tech-

nologies. Using the Unified Modeling Language (UML), the Information Model graph-

ically represents SDN resources and their relationships as CIM classes and associa-

tions, respectively [71]. This object-oriented, well-understood abstract framework stan-

dardizes SDN management information across disparate vendors and SDN instances.

Thus, enabling to carry out integrated management in the virtual, dynamic, and het-

erogeneous environment of SDN. Furthermore, network designers may extend the pro-

posed CIM model to include customized resource behavior. In the Management Plane,

the Information Model is realized by RRM in the Data Repository. This thesis focuses

on the details of the proposed Information Model in Section 3.2.
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Figure 3.1. High-level SDN architecture with Management Plane

3.1.2 Organizational Model

The Management Plane depicts a two-tier like network management model that in-

corporates three kinds of entities (a.k.a. roles). A Managing Tier that encloses manager

and adapter entities, and a Managed Tier that contains agent entities. A manager en-

tity is responsible for: (i) housing and coordinating logic of management functions, (ii)

providing user interaction with deployed management functions through tailored user

interfaces (e.g., command-line, graphical, and Web-based); and (iii) sending requests

to and receiving replies and notifications from agents by means of adapters. An adapter

entity allows a manager to interact with any specific agent by parsing data formats and

protocols handled by their communication interfaces (i.e., the Adapter Interface and the

Management Interfaces). An agent entity resides on managed resources to carry out

management requests delegated by a manager, such as performing an operation or re-

sponding to a query. In addition, an agent entity may dispatch unsolicited notifications
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to a manager.

Each organizational component in the Management Plane gets the same name as

its corresponding role. The Manager acts as a manager entity. The NetApp Adapter,

the NOS Adapter, the NetSlicer Adapter, and the NetDev Adapter play an adapter role.

The NetApp Agent, the NOS Agent, the NetSlicer Agent, and the NetDev Agent per-

form agent tasks. The Management Plane differentiates the Adapters and the Agents

regarding of SDN managed resources (i.e., NetApp, NOS, NetSlicer, and NetDev) to

demarcate the communication between such kind of entities located at different archi-

tectural planes.

3.1.3 Communication Model

The Management Plane defines the User Interface, the Repository Interface, the

Adapter Interface, and the Management Interfaces. The User Interface enables Net-

work Administrators to interact with the Management Services exposed by the Man-

ager. The Repository Interface connects the Manager with the Data Repository. The

Adapter Interface and the Management Interfaces transport request messages (i.e.,

operations and queries) from the Manager to a particular Agent, passing through the

related Adapter. These both kind of interfaces also transmit reply messages and un-

solicited notifications sent by any Agent towards the Manager. In order to match each

Agent with its respective Adapter, the Management Plane establishes a Management

Interface per SDN managed resource: NetApp MI, NOS MI, NetSlicer MI, and NetDev

MI.

Regarding communication support, the User Interface and the Adapter Interface

must employ a consistent data format (e.g., CIM, XML, and JSON) and a standardized

protocol (e.g., HTTP and SOAP) to exchange management data. The Repository Inter-

face relies on technologies deployed by the Data Repository (e.g., XML over JRMP or

HTTP). Finally, the Management Interfaces handle data formats and protocols imple-

mented by the Agents (e.g., OVSDB, NETCONF, and SNMP).

3.1.4 Functional Model

The Management Plane references the five OSI management functional areas to

classify the Management Services: Fault Services, Configuration Services, Account-
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ing Services, Performance Services, and Security Services. The Fault Services detect,

separate, and fix failures in physical and logical SDN resources. The Configuration Ser-

vices modify and update behavior of SDN resources. The Accounting Services tracks

and allocate usage of SDN resources. The Performance Services monitor, collect, and

report information about the operation of SDN resources. The Security Services control

and analyze access to SDN resources. In addition, this Management Plane includes

the Programming Services to coordinate programmable software of SDN resources,

such as checking and deploying versions of a particular NetApp running on a specific

NOS.

By using or combining the aforementioned Management Services, the proposed

approach allows network administrators to carry out different SDN management re-

quirements, as those described in [16].

3.2 CIM-based Information Model

As aforementioned, the proposed Management Plane requires an Information Model

that provides a technology-agnostic and consistent abstraction of the whole SDN en-

vironment to enable integrated management. Few approaches provide models that

attempt to characterize the SDN management environment [22, 32, 33], but they are

tied to specific SDN instances and expose incomplete SDN representations.

This thesis proposes a CIM-based Information Model that provides a technology-

independent and consistent abstraction of SDN managed and managing resources.

The Information Model represents every plane in the SDN architecture to encourage a

complete SDN management regardless of deploying technologies. This thesis adopted

CIM [71] because it offers higher expressiveness than other information definition lan-

guages (e.g., Structure of Management Information [SMI] and Guidelines for the Defi-

nition of Managed Objects [GDMO]), affording future robust semantic integration [72].

CIM supplies several classes, associations, properties and methods to describe net-

work resources at a conceptual level, such as Ethernet ports, LAN endpoints, and

VLANs [73]. However, CIM lacks elements that represent specific SDN features for

management [33]. Thus, the proposed Information Model extends the actual CIM

Schema to characterize the whole SDN management environment. The resulting CIM

extended schema employs a graphical visualization composed by UML classes and as-
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sociations to model the SDN managed and managing resources and their relationships.

Following paragraphs and figures describe a simple version of the proposed Infor-

mation Model. Specific properties and methods from each class are out of scope. The

depicted class schema excludes the CIM_ prefix from the current CIM elements and

the SDN_ prefix from the extended elements. For example, CIM_System appears as

System and SDN_AgentService as AgentService. To provide a better visualization,

such schema displays gray background for the extended classes, white background for

the CIM classes, bold characters for the extended associations, and thin characters for

the CIM associations. Also, for the sake of simplicity, it omits inheritance associations

between the extended classes and the CIM classes. Unless otherwise stated, gen-

eral inheritance associations satisfy the following: (i) the extended classes with suffix

Capabilities derive (i.e., are subclasses) from the EnabledLogicalElementCapabilities

CIM class, (ii) with suffix Service from the Service CIM class; and (iii) with suffix Set-

tings from the SettingData CIM class. In addition, the outlined class schema skips the

BindsTo CIM associations for the CIM classes ServiceAccessPoint and ProtocolEnd-

point. The BindsTo association connects the class itself to define a protocol layering

dependency between an upper and a lower protocol. For example, the OpenFlow pro-

tocol binds the TCP protocol to set the port and address enabled for OpenFlow com-

munication.

3.2.1 Class schema for the Management Plane

Figure 3.2 illustrates the class schema for the proposed Management Plane. It ex-

tends five new classes to characterize the novel components defined in this approach:

in the Managing Tier, the ManagementService, the ManagementServiceCapabilities,

and the AdapterService; and in the Managed Tier, the AgentService and the Notifica-

tion.

The ManagementService class represents Management Services that allow to carry

out different SDN management functions. Through the ElementCapabilities associa-

tion, the ManagementServiceCapabilities class describes both supported and excluded

abilities for Management Services. The ManagementServiceCapabilities relies on the

Functional Model to classify SDN Management Services as Fault, Configuration, Ac-

counting, Performance, Security, or Programming services (see Subsection 3.1.4). For

example, a Management Service that modifies the SBI communication of NetDevs de-
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Figure 3.2. Class schema to model the SDN Management Plane

clares capabilities of Configuration Services.

The RegisteredProfile class models a CIM profile specification defined by any stan-

dard organization for managing SDNs. Each profile specification includes a small sub-

set of the proposed class schema and delineates corresponding behavior as manage-

ment requirements. The ReferencedProfile association indicates that a profile speci-

fication may reference others. In addition, the ElementConformsToProfile association

describes which CIM profile specifications a Management Service apply. For example,

a Configuration Service fulfills with a profile specification of DMTF that standardizes

how to achieve seamless migration in NetDevs.

The Manager represents the system hosting the SDN Management Services. The

HostedService association realizes this relationship between the ManagementService

and the Manager. This model presents the Manager as an instance of the abstract

System class, thus the Manager implements an instance of a subclass deriving from

System, such as ComputerSystem, J2eeServer, or a new extended class. For example,

a Configuration Service may be carried out as a Web application running on either an

Apache Tomcat Server or a GlassFish Server.

The ProtocolEndpoint class tagged as User Interface models the communication

point that enables access of Network Administrators. The corresponding ProvidesEnd-

point association implies that the ManagementService supplies such user Protocol-

Endpoint. For example, a Configuration Service provides an HTTP interface to allow

Network Administrators to set SBI parameters of NetDevs through a Web browser.

The ServiceAccessPoint class tagged as Adapter Interface represents the commu-

nication point between the ManagementService and the AdapterService. The Provides-

Endpoint associations connected to the adapter ServiceAccessPoint indicate that both
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the ManagementService and the AdapterService establish their own communication

points to allow access from the other. The ServiceSAPDependency associations imply

that both the ManagementService and the AdapterService utilize the adapter Service-

AccessPoint to access the other. The ManagementService and the AdapterService

support properties and methods for sending and receiving requests, responses, and

notifications through the adapter ServiceAccessPoint. For example, a Configuration

Service and a NetDev Adapter establish a mutual communication using JSON over

HTTP. Using this channel, the NetDev Adapter forwards to the Configuration Service a

notification from a NetDev Agent that reports about misconfiguration failures. Similarly,

the Configuration Service uses the same channel to fix this failure by sending a con-

figuration request to the NetDev Adapter. The NetDev Adapter forwards this request to

the corresponding NetDev Agent.

The AdapterService class models an Adapter in charge of parsing and forward-

ing requests, responses, and notifications between the ManagementService and the

AgentService. The AdapterService is a superclass that holds properties and meth-

ods for handling the communication through the adapter and management interfaces.

Four subclasses inherit from the AdapterService: the NetDevAdapterService, the Net-

SlicerAdapterService, the NOSAdapterService, and the NetAppAdapterService. For

the sake of brevity and because the behavior of these subclasses is very similar, the

depicted schema excludes them in Figure 3.2. Each subclass from the AdapterSer-

vice adds properties and methods to support functionality provided by the subclass

from the AgentService that uses the same managed resource name (e.g., the NetDe-

vAdapterService matches the NetDevAgentService). In addition, regarding this corre-

lation, every subclass deriving from the AdapterService instruments specific aspects

from the proposed class schema. For example, a NetDev Adapter, which matches a

NetDev Agent, only concerns about functionality for managing NetDevs (see Figure

3.5).

The AdapterService may be hosted by either the Manager or the Adapter. Both

HostedService associations linked to the AdapterService indicate this relationship. As

well as the Manager, the Adapter is an instance of the abstract System class. For

example, a NetDev Adapter may be executed on either the same server running Man-

agement Services or a different server.

The ServiceAccessPoint class tagged as Management Interfaces represents the

communication point between the AdapterService and the AgentService. The Pro-
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videsEndpoint and the ServiceSAPDependency associations related to the manage-

ment ServiceAccessPoint indicate that both the AdapterService and the AgentService

provide and utilize management interfaces to perform their functionality. Subclasses

from the AdapterService and from the AgentService inherits these associations. Each

instance of the subclasses from the AdapterService handles the protocol used by the

corresponding instance of the subclasses from the AgentService, affording a protocol-

agnostic communication for the ManagementService. For example, a NetDev Adapter

uses the OF-Config protocol to access a NetDev Agent for OpenFlow switches. A sec-

ond NetDev Adapter utilizes the SNMP protocol to contact a second NetDev Agent for

ForCES FEs. A Configuration Service communicates with both NetDev Adapters using

a standardized data format and protocol (e.g., JSON over HTTP). The NetDev Adapters

forward to the NetDev Agents the management requests received from the Configu-

ration Service. Similarly, the NetDev Adapters forward to the Configuration Service

responses and notifications received from the NetDev Agents. Thus, the Configura-

tion Service carry out a protocol-agnostic management on different NetDev technology

instances.

The AgentService class represents an Agent running on SDN managed resources,

such as NetDev, NetSlicer, NOS, and NetApp. This is a superclass that defines proper-

ties and methods for supporting the management ServiceAccessPoint and for handling

the Notification. The Notification is a subclass from the ProcessIndication class. The

Notification maps an unsolicited message sent by the AgentService towards the Man-

agementService to inform about state changes and alerts of SDN managed resources.

For example, an SNMP Agent dispatches a trap message that notifies a detected mis-

configuration of its hosting NetDev. The corresponding NetDev Adapter receives and

parses this unsolicited notification and forwards it to a Configuration Service.

Four subclasses derive from the AgentService: the NetDevAgentService, the NetSlicer-

AgentService, the NOSAgentService, and the NetAppAgentService. Each subclass

supports methods to carry out management tasks in its hosting SDN managed re-

source, such as retrieving statistical information, modifying configuration parameters,

discovering capabilities, and changing communication attributes.

The proposed schema uses the System class to model the SDN as an entity com-

posed by the DataPlane, the ControlPlane, and the AppPlane. The Network class

represents the DataPlane as a logical, virtual, or physical network that groups intercon-

nected NetDevs capable of exchanging information. The AdminDomain class indicates
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Figure 3.3. Class schema to model the SDN Application Plane

that the ControlPlane and the AppPlane gather similarly managed components, such

as NetSlicers and NOSs for the Control Plane, and NetApps for the Application Plane.

The ServiceAffectsElement association between the SDN and the Management-

Service reflects that Management Services have an effect in the entire SDN, such as

changing resource behavior, monitoring failures, and analyzing performance. Besides,

the SAPAvailableForElement association between the SDN and the management Ser-

viceAccessPoint implies that management interfaces provide managing access for the

whole SDN.

3.2.2 Class schema for the Application Plane

Figure 3.3 shows the class schema for the Application Plane. It extends three new

classes and two novel associations to describe specific management features of Ne-

tApps. The extended classes are the NetAppCapabilities, the NetAppSettings, and the

NorthboundService. The extended associations are the NetAppHostedOnNOS and the

NetAppHostedOnServer.
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The AppPlane, modeled with the AdminDomain class, uses the SystemComponent

association to aggregate instances of the NetApp. Leveraging the ApplicationSystem

class, the NetApp represents NetApps holding business logic on top of the SDN ar-

chitecture. For example, NetApps that carries out load-balancing and access-control

tasks.

The outlined schema uses the HostedService association to indicate that the NetApp

hosts the NetAppAgentService and the NorthboundService. The NorthboundService

class models modules that communicate with services exposed by NOSs. The Pro-

videsEndpoint and the ServiceSAPDependency associations reflect that the North-

boundService uses and provides functions through the northbound ServiceAccess-

Point. For example, NetApps performing load-balancing and access-control functional-

ity retrieve and supply data from and to tracking and firewall services deployed by an

NOS.

The ServiceAccessPoint tagged as Northbound Interfaces models the communica-

tion between the Application Plane and the Control Plane. This northbound ServiceAc-

cessPoint encompasses different NBIs, such as APIs based on protocols (e.g., REST)

and on programming languages (e.g., Pyretic and Procera).

The NetAppHostedOnNOS association between the NetApp and the NOS repre-

sents local NetApps running on NOSs. Usually, these local NetApps utilize NBIs based

on programming languages to access and supply functionality from and to NOS ser-

vices. The NetAppHostedOnServer between the NetApp and the Server system mod-

els NetApps running on remote servers. These remote NetApps prefer NBIs based on

protocols for communicating with the Control Plane.

Using the ElementCapabilities association, the NetAppCapabilities class describes

the supported and excluded abilities of NetApps. The NetAppSettings class estab-

lishes configuration parameters for the NetApp. This relationship is depicted through

the ElementSettingData association between the NetAppSettings and the NetApp. The

SettingsDefineCapabilities association between the NetAppSettings and the NetApp-

Capabilities reflects that setting certain configuration data may affect some NetApps

capabilities. For example, configuring a different load-balancing algorithm modifies the

behavior of the corresponding NetApp.
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Figure 3.4. Class schema to model the SDN Control Plane

3.2.3 Class schema for the Control Plane

Figure 3.4 describes the class schema for the Control Plane. Considering that CIM

lacks elements that characterize the management information of NetSlicers and NOSs,

this schema extends seven new classes: the SlicingService, the SlicingStatistics, the

SlicingCapabilities, the SlicingSettings, the NOSService, the NOSServiceCapabilities,

and the NOSServiceSettings.

The AdminDomain class uses the SystemComponent association to describe the

ControlPlane as an entity composed by NOSs and NetSlicers. The NOS models an

NOS, such as OpenFlow controllers and ForCES CEs. The NetSlicer represents a

NetSlicer system, such as FlowVisor for OpenFlow-based networks. The NOS is the

hosting system for the NOSAgentService; the NetSlicer, for the NetSlicerAgentService.

The NOSService is a superclass that models network services hosted in NOSs.

The HostedService association between the NOSService and the NOS indicates this

relationship. Subclasses must inherit from the NOSService in order to define spe-

cific NOS services, such as tracking, route calculation, and firewall. The depicted

schema presents three subclasses for NOS services: the ApplicationService, the Dis-

tribuitingService, and the ControlService. The ApplicationService depicts services that

expose functionality to the Application Plane through the northbound ServiceAccess-

Point. The DistribuitingService defines services that enable to deploy distributed Con-

trol Plane through the east/westbound ServiceAccessPoint. The ControlService de-

scribes services that handle the communication with NetDevs and NetSlicers through

the southbound ServiceAccessPoint.

The ServiceServiceDependency association indicates that NOS services collabo-
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rate with or are necessary for other NOS services to perform their operation. For ex-

ample, a topology service requires a tracking service to recognize hosts connected to

specific switches.

The proposed schema uses the ProvidesEndpoint and the ServiceSAPDependency

associations to correlate the ApplicationService with the northbound ServiceAccess-

Point, the DistribuitingService with the east/westbound ServiceAccessPoint, and the

ControlService with the southbound ServiceAccessPoint.

The ServiceAccessPoint tagged as East/Westbound Interfaces represents the com-

munication point between distinct Control Plane domains. For example, the SDNi pro-

tocol from IETF and the CE-CE interface from ForCES. Although the exchange of infor-

mation is usually carried out by NOSs, NetSlicers may also need to deploy a distributed

architecture. This is reflected by the dashed HostedService association between the

DistribuitingService and the NetSlicer.

The ServiceAccessPoint tagged as Southbound Interfaces models the communica-

tion point between the Control Plane and the Data Plane. The ServiceSAPDependency

and the ProvidesEndpoint associations reflect that the ControlService uses and sup-

plies the southbound ServiceAccessPoint to send and receive messages to and from

the Data Plane. This southbound ServiceAccessPoint encompasses different SBI pro-

tocols, such as OpenFlow, ForCES, and POF.

The NOSServiceCapabilities class declares the supported abilities of NOSs ser-

vices. The ElementCapabilities association between the NOSServiceCapabilities and

the NOSService reflects this relationship. The NOSServiceSettings class defines the

configuration parameters for NOSs services. The ElementSettingData association be-

tween the NOSServiceCapabilities and the NOSService indicates this relationship. The

SettingsDefineCapabilities association between the NOSServiceSettings and the NOS-

ServiceCapabilities implies that configuring NOS services establishes some capabili-

ties. For example, the time interval of a tracking service to send discovery messages.

The SlicingService class represents the functionality of a NetSlicer: dividing the

Data Plane into several isolated logical network instances (a.k.a. slices) and assigning

them to different NOSs. The NetSlicer hosts the SlicingService using the HostedSer-

vice association. The ProvidesEndpoint and the ServiceSAPDependency associations

between the SlicingService and the southbound ServiceAccessPoint indicate that Net-

Slicers provide and use SBIs to communicate with NetDevs and NOSs. For example,

FlowVisor uses the OpenFlow protocol to communicate with both OpenFlow switches
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and OpenFlow controllers.

The SlicingStatistics class defines collections of metrics suitable to instances of the

SlicingService. The SlicingStatistics is a subclass that derives from the StatisticalData.

The ServiceStatistics association relates the SlicingStatistics with the SlicingService.

For example, the total number of slices handled by a NetSlicer.

Through the ElementCapabilities association, the SlicingCapabilities class describes

the supported and excluded capabilities of the SlicingService. Some of these capabil-

ities are specified in the SlicingSettings class by means of the SettingsDefineCapabil-

ities association. The SlicingSettings delineates the configuration parameters for the

SlicingService. The ElementSettingData association between the SlicingSettings and

the SlicingService reflects this relationship. For example, the maximum number of con-

current slices supported by a NetSlicer.

3.2.4 Class schema for the Data Plane

Figure 3.5 depicts the class schema for the Data Plane. In order to describe specific

management features of NetApps, this schema extends five new classes: the NetDev-

Capabilities, the NetDevResource, the NetDevResourceSettings, the NetDevService,

and the NetDevServiceSettings.

As aforementioned, the Network class indicates that the DataPlane models a net-

work composed by interconnected NetDevs. The NetDev represents a NetDev system

within a network, such as OpenFlow switches and custom forwarding hardware (e.g.,

OpenWrt and NetFPGA). The DataPlane aggregates the NetDev using the System-

Component association. The NetDev hosts the NetDevAgentService.

The supported and excluded abilities of a NetDev are described by instances of

the NetDevCapabilities. The ElementCapabilities association between the NetDev and

the NetDevCapabilities indicates this relationship. For example, an OpenFlow switch

declares simple capabilities such as forwarding functions based on match/action flow

tables; a NetFPGA programmable hardware exposes more complex capabilities such

as plugging modules to enable customizable functions. Both kinds of NetDevs also

reveal network capacity enabled by its components, such as speed of ports and size of

queues.

The NetDevResource class inherits from the EnabledLogicalElement to model net-

work elements composing a NetDev, such as ports, queues, and tables. The Sys-
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Figure 3.5. Class schema to model the SDN Data Plane

temComponent association between the NetDev and the NetDevResource implies this

aggregation. The NetDevResource is a superclass from which individual subclasses

derive to represent NetDev components. For example, a subclass called FlowTable to

characterize flow tables that compose OpenFlow switches. In addition, the Component

association connected to the NetDevResource models a network element composed

by others, such as ports including various queues.

The StatisticalData is a superclass to define arbitrary collections of statistical in-

formation applicable to instances of the NetDevResource. The Statistics association

attaches the StatisticalData with the NetDevResource. For example, ports in switches

delineate transmission metrics, such as received and transmitted bytes, packets, and

errors.

The NetDevResourceSettings class describes the configuration of network elements

that compose NetDevs. The ElementSettingData association between the NetDevRe-
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sourceSettings and the NetDevResource reflects this relationship. For example, the

speed operation of ports and the buffer size of queues. The SettingsDefineCapabili-

ties association between the NetDevResourceSettings and the NetDevCapabilities in-

dicates that the configuration parameters of NetDev components specify some capabil-

ities of NetDevs.

The NetDevService is a superclass that represents network services hosted in Net-

Devs. This hosting relationship is depicted with the HostedService association between

the NetDevService and the NetDev. Subclasses must derive from the NetDevService

in order to model particular NetDev services, such as forwarding, route calculation, and

firewall. This is the case of the SouthboundService, which defines services that query,

receive, and execute instructions to and from the Control Plane. The SouthboundSer-

vice inherits from the NetDevService and includes properties and methods to handle

the communication through the SBIs. For example, the Secure Channel component in

OpenFlow switches manipulates the OpenFlow protocol to communicate with external

controllers and update internal flow tables.

The ServiceServiceDependency association indicates that NetDev services coop-

erate with or are required for other NetDev services to perform their functions. For ex-

ample, an inspection service requires a forwarding service to redirect malicious packets

to a specific destination.

The ServiceSAPDependency and the ProvidesEndpoint associations reflect that

the SouthboundService uses and supplies the southbound ServiceAccessPoint to send

and receive messages to and from the Control Plane. The SAPAvailableForElement

association between this ServiceAccessPoint and the NetDev implies that the SBIs

allow access from the Control Plane for managing NetDevs components and hosted

services. For example, the OpenFlow protocol enables to manipulate flow tables within

OpenFlow switches and the ForCES protocol facilitates to configure logical functions

residing in ForCES FEs.

Through the ElementSettingData association, the NetDevServiceSettings class de-

scribes the configuration parameters of services hosted in NetDevs. For example, the

routing algorithm of a route calculation service and the list of OpenFlow controllers of a

southbound service. The SettingsDefineCapabilities association between the NetDev-

ServiceSettings and the NetDevCapabilities implies that the configuration of NetDev

services characterizes some capabilities of NetDevs.
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3.3 Manager based on Web 2.0/3.0 technologies

As stated in Section 3.1, the Manager component of the Management Plane coordi-

nates and deploys the Management Services to allow Network Administrators to carry

out management functions on the SDN architecture. This thesis proposes an approach

based on technologies from Web 2.0 and Web 3.0 for realizing such Manager in order

to facilitate Network Administrators to perform, in a high-level abstraction, management

tasks in the virtual, dynamic, and heterogeneous environment of SDN. The following

subsections detail the fundamental concepts and the structure of the approach.

3.3.1 SDN Mashup

SDN Mashups are high-level composite Web applications aimed to manage re-

sources deployed by an SDN-based network (i.e., NetDev, NetSlicer, NOS, and NetApp).

In this approach, Network Administrators are able to create SDN Mashups by using

end-user oriented techniques, such as wiring and drag-and-drop mechanisms. Thus,

Network Administrators do not require deep knowledge about the APIs and data formats

used to communicate with the SDN managed resources. It is important to highlight that

an end-user programming approach, as defined by SDN Mashups, provides flexibility

for Network Administrators to build customized SDN management tools by themselves

and promotes the innovation in SDN management solutions.

The SDN Mashup concept poses some features that existing mashups do not sup-

port. First, it combines information, on the fly, from multiple managed resources, such

as NetDev, NetSlicer, NOS, and NetApp. Second, it hides the heterogeneity and com-

plexity of these SDN resources in order to facilitate the carrying out of management

tasks. Third, it blends local and remote visualization APIs to generate integrated Graph-

ical User Interfaces (GUI). Fourth, it provides access to multiple end-users to enable

communication and collaboration among them by sharing and reusing SDN Mashups.

It is worth noting that, by the SDN Mashup concept and the aforementioned features,

this approach leads the SDN management towards an end-user centric environment,

where several Network Administrators are able to participate and collaborate in order

to cope their own needs, and even obtain profits.

In a general way, an SDN Mashup is formed by combining Management Services,

Operation Services, and Visualization Services. The Management Services perform



36 Chapter 3. A Management Plane for SDN based on CIM and Web technologies

Figure 3.6. Global vision of SDN Mashups

different management functions on SDN resources. Specifically, this approach defined

the following Management Services (see details in Subsection 3.1.4): Fault, Configura-

tion, Accounting, Performance, Security, and Programming (FCAPS+P). The Operation

Services provide control patterns and structures of mashup composition, such as se-

quential, conditional, and merge. An Operation Service can be used, for instance,

to sort, filter, and aggregate the information retrieved by a Performance Service from

one or more NOSs. The Visualization Services represent graphics and presentation

libraries that allow to generate the integrated GUIs of SDN Mashups.

Figure 3.6 presents the global vision of SDN Mashups focusing on how Networks

Administrators create SDN management solutions by conducting three processes: Com-

posing, Reusing, and Managing. The Composing process defines that Network Admin-

istrators select, combine, and configure the available Services (i.e., Management, Op-

eration, and Visualization) for building the target SDN Mashup. The Reusing process

represents that any built SDN Mashup serves to create another one. Different Network

Administrators may use the same or similar candidate Services to compose a new SDN

Mashup. The Managing Process indicates that Network Administrators execute SDN

Mashups in order to manage one or several resources deployed by an SDN-based net-

work. An SDN Mashup carries out the management functions through an underlying

process that is always hidden for Network Administrators.
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3.3.2 Mashup-based and Event-driven Framework

The Mashup-based and Event-driven (MaE) Framework leverages the main founda-

tions of the mashup technology, CEP mechanisms, rule-based systems, and the JSON

format to simplify the management tasks that Network Administrators carry out by inter-

acting with the Manager component of the Management Plane. In particular, the M&E

framework offers: (i) the static composition and execution of SDN Mashups, (ii) the au-

tomatic recognition of events occurring in the SDN environment; and (iii) the dynamic

composition and execution of SDN Mashups by using static compositions that point to

tackle specific events.

Figure 3.7 depicts the structure defined by the M&E Framework to deploy the Man-

ager component of the Management Plane. Four modules constitute this framework:

the Service Container, the M&E Builder, the Mashup Executor, and the Publisher. In

addition, the M&E Framework considers three users: the Network Administrator, the

M&E Developer, and the Service Developer. These users interact with the proposed

framework by using a Web Client, a Mobile Client, or an Integrated Development Envi-

ronment (IDE).

The Service Container stores the Services that form SDN Mashups, providing them

as mashable entities to the M&E Builder and the Mashup Executor. This approach

defines three types of Services: the Management Services, the Operation Services,

and the Visualization Services. The Management Services carry out managing func-

tions on resources deployed by the SDN environment (i.e., NetDev, NetSlicer, NOS,

and NetApp). Depending upon the functionality performed, these Management Ser-

vices divide into the FCAPS+P services. It is important to remind that the Management

Services rely on the components and interfaces defined by the Management Plane

(see Section 3.1) to achieve a two-way, technology-neutral communication with their

corresponding SDN managed resources.

The Operation Services provide elements that allow combining mashable entities

(i.e., Services) and, so, building up and generating SDN Mashups. There are three

types of Operation Services: (i) the control patterns that allow defining the workflow

of SDN Mashups (e.g., sequential, parallel, and conditional), (ii) the structures for con-

figuring and invoking the Services that form SDN Mahups (e.g., functionalities to set

security credentials); and (iii) the structures for receiving, sorting, and filtering the re-

trieved information from any type of Service (e.g., functionalities to perform information
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Figure 3.7. M&E Framework

selection on text-plain data).

The Visualization Services supply graphics and presentation APIs from local and re-

mote locations that enable constructing integrated GUIs for SDN Mashups. Examples

of Visualization Services are the Multi Router Traffic Grapher (MRTG) [74] for gener-

ating Web pages with images presenting the traffic of an SNMP-enabled NetDev, the

Round Robin Database tool (RRDtool) [75] for displaying over time the performance

data of NetDevs, the Yahoo Maps API [76] for showing the geographic location of sev-

eral NetDevs, and the Google Visualization API [77] for supporting a flexible rendering

of the information retrieved from any SDN managed resource.

Figure 3.8 depicts how internally the Service Container use the REpresentational

State Transfer (REST) [78] architectural model to deploy the Services (i.e., Manage-

ment, Operation, and Visualization). Since every Service is based on REST, the Ser-

vice Container establishes a Uniform Resource Identifier (URI) for pointing to each
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Figure 3.8. REST-based Service Container

Service. These Service URIs are invoked through HTTP(S) requests, such as GET

and POST. The replies of Services are HTTP(S) responses, such as 200 OK and 404

Not Found. Thus, the Service Container provides a mediator channel in which the com-

munication is conducted by following the request-response model of HTTP(S). This

channel enables the interaction of the Service Container with both the M&E Builder and

the Mashup Executor.

The Service Container responds to HTTP(S) requests as follows. First, the Service

Container targets each request to the Service URI that points to the corresponding

Service. Second, each Service carries out the requested functionality by performing

its logic. Third, every Service encode results on JSON data and put such data on

HTTP(S) responses. Fourth, the Service Container sends these HTTP(S) responses

to the requesting modules (i.e., the M&E Builder and the Mashup Executor).

Regarding the user interaction with the Service Container, first, the Network Admin-

istrator and the M&E Developer never access this module directly. Both users interact

with the Service Container through the Presentation, the M&E Builder, and the Mashup

Executor modules. Second, the Service Developer is responsible for implementing and

updating Services by using a suitable IDE in order to extend and improve the Service

Container. Details about IDEs for the Service Developer are out of scope of the M&E

framework, and hence of this thesis.

In general terms, the M&E Builder (i) allows the Network Administrator and the M&E

Developer to create and execute SDN Mashups (i.e., static SDN Mashups) and (ii) auto-

matically generates SDN Mashups according to recognized events (i.e., dynamic SDN

Mashups). The M&E Builder provides flexibility to the Manager component through

a high-level abstraction of Management Services, Operation Services, and Visualiza-
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Figure 3.9. M&E Builder submodules

tion Services used to compose SDN Mashups. In this sense, the M&E Builder copes

with the need of the Network Administrator and the M&E Developer to work with data

mapping during the creation of SDN Mashups. It is to point out that the data map-

ping is one of the least intuitive tasks in current mashup composition systems because

non-programmers—as the Network Administrator—are usually not able to specify it cor-

rectly. The M&E Builder (see Figure 3.9) defines the following submodules: the Service

Repository, the Event Repository, the Mashup Repository, the User Repository, the De-

vice Repository, the Visual Elements, the Handler, the Designer, the Event Recognizer,

and the Dynamic Composer.

The Service Repository stores metadata that describes and points out the mash-

able entities offered by the Service Container (i.e., the Management Services, the

Operation Services, and the Visualization Services). Similarly to the Service Con-

tainer, the Service Developer is also in charge of extending and keeping updated

the Service Repository. The metadata of Services represented in the JSON format

is {"uri": URI_SERVICE, "service": NAME_SERVICE, "operations": [OPERATION,

..., OPERATION]}, where URI_SERVICE and NAME_SERVICE are the unique iden-

tifier and the name of the Service, respectively. The OPERATION array defines the

collection of operations offered by the Service. Each OPERATION is {"operation":

OPERATION_NAME, "produce": OPERATION_RETURN, "parameters": [PARAMETER,

..., PARAMETER]}. Here OPERATION_NAME establishes the name of the operation,

OPERATION_RETURN determines the data type that the operation produces, and the

PARAMETER array specifies the name of the parameters required to invoke the corre-
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sponding operation.

The following example of metadada describes two operations provided by a partic-

ular Performance Service (i.e., Management Service). The first operation retrieves the

list of OpenFlow switches (i.e., NetDevs) handled by a concrete OpenFlow Controller

(i.e., NOS). The second operation obtains the port statistics of a specific OpenFlow

switch.
{

"uri" : "/ pathToService ",
" service " : " ofPerformanceService ",
" operations ": [

{
" operation " : " getSwitchList ",
" produce " : "json",
" parameters ": [" controllerIp ", " controllerPort "]

},
{

" operation " : " getSwicthPortStats ",
" produce " : "json",
" parameters ": [" controllerIp ", " controllerPort ", " switchId "]

}
]

}

The Event Repository houses patterns of the events designed by the M&E Devel-

oper. This framework relies on the model of network management situations proposed

in [79] to characterize such event patterns as a combination of entities, attributes, and

constraints. The metadata of events encoded in the JSON format is {"complexEvent":

COMPLEX_EVENT_NAME, "events": [EVENT, ..., EVENT]} in which COMPLEX_E-

VENT_NAME represents the global name of a complex event formed by multiple simple

events (i.e., EVENT array). Each EVENT is {"event": EVENT_NAME, "eac": [EAC,

..., EAC]}. Here, EVENT_NAME defines the specific name of a simple event and the

EAC array determines the collection of entities, attributes, and constraints involved in

such simple event. Each EAC is {"entity": ENTITY, "properties": [AC, ..., AC]}

, where each AC is {"attribute": ATTRIBUTE, "constraint": CONSTRAINT}. These

last metadata present that each entity has a collection of attributes and their corre-

sponding constraints. Note that such constraints establish conditions to detect when a

particular event happens.

For example, the following metadata depicts two simple events composing a com-

plex event. The first simple event represents an increase of transmitted dropped pack-

ages by any port of a NetDev (e.g., an OpenFlow Switch). The second event describes
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a significant decrease of the traffic sent through any port of a NetDev. Separately, these

simple events do not represent a critical situation in the managed SDN environment

since (i) the drop of transmitted packages may occur because certain link has reached

its bandwidth limit and (ii) the reduction of output throughput may be caused by the

low traffic requirements of the network. Nevertheless, when both events (i.e., complex

event) happen on the same port of a NetDev, it represents a fail on the corresponding

link because there is a drop of transmitted packages without using the maximum output

throughput.
{

" complexEvent ": " failOnLink ",
" events " : [

{
"event": " increaseTransmittedDroppedPackages ",
"eac" : [

{
" entity " : " netdev ",
" properties ": [

{
" attribute " : "port",
" constraint ": "all"

}, {
" attribute " : " transmitedDroppedPackages ",
" constraint ": "> 10%"}

]
}

]
}, {

"event": " decreaseOutputThroughput ",
"eac" : [

{
" entity " : " netdev ",
" properties ": [

{
" attribute " : "port",
" constraint ": "all"

}, {
" attribute " : " outputThroughput ",
" constraint ": "< 80%"

}
]

}
]

}
]

}

The Mashup Repository contains metadata of all SDN Mashups (i) statically de-
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signed by the Network Administrator and the M&E Developer and (ii) dynamically gen-

erated by the M&E System. Similarly to the event patterns, this framework employs

the model of rich dynamic mashups for situation management outlined in [79] to de-

fine the metadata of SDN Mashups in JSON format as {"id": ID_MASHUP, "name":

NAME_MASHUP, "workflow": WORKFLOW, "events": [EVENT_REF, ..., EVENT-

_REF]}. Here, ID_MASHUP represents the unique identifier of the SDN Mashup, NAME-

_MASHUP establishes the friendly name of the SDN Mashup, WORKFLOW describes the

execution flow of the SDN Mashup, and each EVENT_REF references either the com-

plex or simple events addressed by the SDN Mashup. Specifically, WORKFLOW is {"

elements": [ELEMENT, ..., ELEMENT], "links": [LINK, ..., LINK]} in which the

ELEMENT array determines the mashable elements that compose the SDN Mashup and

the LINK array indicates the set of logical connections among these elements. Each EL-

EMENT is {"id": ELEMENT_ID, "element": ELEMENT_NAME, "service": SERVICE-

_REF, "config": CONFIG}, where ELEMENT_ID defines the unique identifier of the

mashable element in the WORKFLOW, ELEMENT_NAME describes the global name of

the element, SERVICE_REF targets the Service performed by the element, and CONFIG

specifies CONFIG_NAME: CONFIG_VALUE pairs to provide the names and the values of

the configuration parameters of the element. Each LINK is {"source": ELEMENT_REF

, "destination": ELEMENT_REF}, where ELEMENT_REF establishes the identifiers of

the source and destination elements that form the logical connection. Note that WORK-

FLOW define how SDN Mashups handle events that happen in the SDN environment.

The User Repository stores the profiles of users performing as the Network Adminis-

trator and the M&E Developer. The Publisher employs such user profiles for controlling

and customizing the access to the M&E Builder. The Device Repository hosts informa-

tion related to device capabilities. This information serves to identify the type of Client

device (i.e., Web Client and Mobile Client) that is able to run the M&E Builder and SDN

Mashups.

The Visual Elements provide graphical mashable representations of the elements

stored in the Service Repository and the Mashup Repository. Therefore, the Visual

Elements defines two types: Visual Services and Visual Mashups. The Visual Services

represent the Management Services, the Operation Services, and the Visualization

Services offered by the Service Container. Alike the Service Container and the Service

Repository, the Service Developer uses an IDE for programming and deploying such

Visual Services. The Visual Mashups display graphic elements automatically generated
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by the Handler for each SDN Mashup saved in the Mashup Repository. The Visual

Mashups facilitate reusing SDN Mashups to compose complex ones.

The Handler parses and manages (i.e., search, create, update, and delete) (i) the

metadata of events between the Event Repository and the Event Designer and (ii) the

metadata of SDN Mashups between the Mashup Repository and the Mashup Designer.

In addition, the Handler employs the metadata from the Mashup Repository to auto-

matically generate Visual Mashups that allow to build more complex SDN Mashups by

composing others.

The Designer is an end-user oriented interface made up of the Mashup Designer

and the Event Designer. The Mashup Designer allows the Network Administrator and

the M&E Developer to build, handle, and execute, in an easy way, SDN Mashups.

To achieve this goal, the Mashup Designer supplies (i) the drag-and-drop mechanism

to select Visual Elements (i.e., SERVICE_REF), (ii) the wiring mechanism to combine

Visual Elements (i.e., LINK), (iii) the configuring mechanism to set the parameters of

Visual Elements (i.e., PARAMETER in OPERATION) and to determine the tackled events

by SDN Mashups (i.e., COMPLEX_EVENT_REF), (iv) the handling mechanism to call the

Mashup Repository operations provided by the Handler (e.g., search, load, save, and

delete); and (v) the launching mechanism to invoke the Mashup Executor. In turn, the

Event Designer enables the M&E Developer to characterize events that may occur in

the managed SDN environment. In this sense, the Event Designer (i) offers an event

pattern-based (i.e., EAC) interface that facilitates defining such events and (ii) inter-

acts with the Handler for managing the event patterns as metadata stored in the Event

Repository.

Both the Event Repository and the Mashup Repository support the automatic and

dynamic SDN Mashup generation process. This process depicts two phases based

on concepts from rule-based systems: (1) the left hand side (i.e., when) for the auto-

matic recognition of events by using matching pattern algorithms stored in the Event

Repository and (2) the right hand side (i.e., then) for the dynamic composition of SDN

Mashups by using the composition metadata stored in the Mashup Repository.

(1) when < event > — phase that automatically recognizes events.

(2) then < sdnMashup> — phase that dynamically composes SDN Mashups.

The Event Recognizer conducts the automatic recognition of events. Figure 3.10 presents

the Event Recognizer as a two-part structure: the Sensor and the Pattern Matcher. The
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Figure 3.10. Automatic recognition of events

Sensor retrieves SDN management data by interacting with the Management Services

and delivers such data as streaming to the Pattern Matcher. The retrieving of infor-

mation depends on the communication model (e.g., pull or push) provided by each

Service.

The Pattern Matcher recognizes events as follows. First, it reads and loads event

patterns from the Event Repository. Second, it obtains SDN management data from

the Sensor. Third, it conducts matching operations—comparison of samples against

patterns—between the SDN management data and the loaded event patterns. RETE

[80] and PHREAK [81] are algorithms for carrying out such matching operations. Fourth,

every time the Pattern Matcher detects a correlation, it raises the corresponding event

to the Dynamic Composer. The metadata of this raised event contains specific informa-

tion about the involved SDN managed resources (i.e., EAC).

The Dynamic Composer performs the dynamic composition of SDN Mashups by

automating the tasks that the Network Administrator and the M&E Developer carry out

on the Mashup Designer. Specifically, the Dynamic Composer automates the mecha-

nisms for selecting, combining, and configuring the Visual Elements that form the SDN

Mashup. Figure 3.11 depicts the components of the Dynamic Composer: the Selector

and the Generator. The Selector, first, receives the event from the Event Recognizer.

Second, it selects from the Mashup Repository the more suitable SDN Mashup for

addressing the received event. Since several SDN Mashups might point to tackle anal-
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Figure 3.11. Dynamic composition of SDN Mashups

ogous events, the Selector employs the linguistic similarity algorithm [82] to calculate

the highest similarity value between the received event and the set of events addressed

by SDN Mashups. The linguistic similarity algorithm is based on ElementMatch [83],

CheckSynonym [84], and NGram [85]. Third, the Selector invokes the Generator with

the received event and the selected SDN Mashup as parameters.

The Generator operates as follows. First, it receives the event and the SDN Mashup

from the Selector. Second, it generates a new instance of SDN Mashup by using the

metadata of the event and the SDN Mashup received. In particular, the Generator

reuses WORKFLOW and reconfigures it with the specific information provided by EAC.

Third, the Generator stores in the Mashup Repository the generated SDN Mashup by

writing the corresponding metadata, allowing the Network Administrator and the M&E

Developer to interact (e.g., reuse, improve, and launch) with such new SDN Mashup by

means of the Mashup Designer. Fourth, the Generator publishes in the Mashup De-

signer a notice about the generation of a new SDN Mashup for addressing a recognized

event.

It is important to highlight that the M&E Framework deploys a Event-Driven Architec-

ture (EDA) [86] as following: (i) the Management Services act as the Event Generators,

(ii) the interface provided by the Service Container to access the deployed Manage-

ment Services represents the Event Channel, (iii) both the Event Recognizer and the

Dynamic Composer perform the Event Processing operations; and (iv) the Mashup De-

signer carry out functionalities as the Downstream Event-Driven Activity.

The Mashup Executor executes SDN Mashups. The Mashup Executor comprises
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the Router and the Engine. The Router coordinates the execution flow of SDN Mash-

ups (i.e., WORKFLOW). On runtime, the Router (i) receives invocations from the Engine

for selecting SDN Mashups that serve initial requests, (ii) selects and combines mul-

tiple Services and SDN Mashups to attend invocations, by reading metadata from the

Service Repository and the Mashup Repository; and (iii) calls the Engine to request the

instantiation of SDN Mashups and their constitutive elements.

The Engine is a lifecycle manager responsible for creating, deleting, and caching

instances of SDN Mashups. For each initial request for executing an SDN Mashup from

either the Web Client or the Mobile Client, the Engine invokes the Router. Subsequently,

the Engine listens for indications from the Router to manage the instances of SDN

Mashups and their constituent elements.

The Publisher adapts the GUI of each SDN Mashup to different Client devices (i.e.,

the Web Client and the Mobile Client). Moreover, this module retrieves information from

the User Repository to control and customize the access of end-users (i.e., the Network

Administrator and the M&E Developer) to functions and elements provided by the M&E

Framework.

The Web Client and the Mobile Client are software entities in charge of running

and showing SDN Mashups, anywhere and anytime. The former uses a Web Run-

time Environment (WRE) and the latter a Mobile Web Runtime Environment (MWRE)

to execute client-side mashup functionalities. Both types of Clients can execute SDN

Mashups. Therefore, browsers running on personal computers, notebooks, and smart-

phones, act as front-ends of SDN management tools based on mashups. In return, the

M&E Builder only can be executed on Web Clients, which means that SDN Mashups are

programmed on Web and not on mobile environments. Since SDN Mashups and the

M&E Builder deploy Web 2.0 user interfaces, Client devices must support JavaScript,

Asynchronous Javascript And XML (AJAX), Cascading Style Sheets (CSS), HyperText

Markup Language (HTML) version 5, among other technologies for supporting Web

2.0-based solutions.

Regarding the users, the M&E Framework considers three actors: the Service De-

veloper, the M&E Developer, and the Network Administrator. The Service Developer

represents an information technology programmer responsible for (i) developing and

deploying Services and Visual Elements and, with this, (ii) extending and improving the

Service Container, the Service Repository, and the M&E Builder. The Service Devel-

oper performs these tasks by using a suitable IDE. The M&E Developer is in charge of
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(i) composing, customizing, and extending SDN Mashups that carry out management

tasks in the SDN environment, (ii) defining event patterns that allow the M&E Frame-

work to automatically recognize events occurring in SDN managed resources, and

(iii) configuring relationships between events and SDN Mashups that enable the M&E

Framework to dynamically generate SDN Mashups that address specific events. The

M&E Developer interacts with the M&E Framework via the Designer (i.e., the Mashup

Designer and the Event Designer) running on a Web Client. The Network Adminis-

trator is responsible for (i) performing management functions—including coping with

recognized events—on the SDN environment by launching and using statically and dy-

namically generated SDN Mashups and (ii) composing, customizing, and extending

such SDN Mashups. The Network Administrator interacts with the M&E Framework

by means of SDN Mashups executed on either Clients (i.e., the Web Client and/or the

Mobile Client) and the Mashup Designer running on the Web Client.

3.4 Final remarks

This chapter presented a groundbreaking Management Plane approach that lever-

aged CIM and Web (2.0/3.0) technologies for carrying out an effective management

of the virtual, dynamic, and heterogeneous environment of SDN. The contributions

achieved in this thesis divides into two categories: conceptual and specific.

• Conceptual contributions.

– The Management Plane that referenced the OSI network management sub-

models (i.e., Information, Organizational, Communication, and Functional) to

depict an integrated management architecture for the virtual, dynamic, and

heterogeneous SDN environment.

– The SDN Mashup concept that defined the use of the mashup technology

for building and customizing, in a high-level abstraction, management tools

in the SDN environment.

• Specific contributions.

– The CIM-based Information Model that represented the entire SDN manage-

ment environment as a technology-independent and consistent conceptual

framework (i.e., CIM Schemas) across distinct vendors and SDN instances.
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– The M&E Framework that proposed a structure to deploy in the Manager

component of the Management Plane the creation and execution of static

and dynamic SDN Mashups.





Chapter 4

Evaluation

This chapter provides an extensive evaluation about the feasibility of employing the

Management Plane based on a common Information Model and on Web technologies

(2.0/3.0) for effectively carrying out management tasks in the virtual, dynamic, and het-

erogeneous environment of SDN. Specifically, this chapter presents two case studies

for evaluating the main components of such Management Plane approach: the CIM-

based Information Model and the M&E Framework.

4.1 Case study for the CIM-based Information Model

The case study for evaluating the proposed CIM-based Information Model, first, es-

tablishes a network management scenario that deploys different SDN management

technologies. Second, it implements a system prototype that relies on the introduced

Management Plane reference architecure. Third, it builds up a test environment based

on the described scenario. Fourth, it conducts a late evaluation of the architecture com-

ponents deployed for supporting the CIM-based Information Model. A late evaluation of

a software architecture takes place when its implementation is complete [87]. The late

evaluation is performance-based [88] and intented to determine the feasibility of us-

ing the introduced approach in terms of time-consuming, response time, and network

traffic. The time-consuming is related to the process required to conduct configuring op-

erations on heterogenous SDN resources. The response time and the network traffic

correspond to the behavior on runtime of solutions used to configure the heterogeneous

SDN environment.

51
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4.1.1 Scenario

In this scenario, a Cloud Service Provider enables access to its cloud resources by

deploying a basic SDN data center network: three tiers (i.e., core, aggregation, and

edge) of NetDevs handled by a Current NOS and arranged in a simple tree topology

(i.e., each NetDev has a single parent). Usually, the Network Administrator of such

Cloud Service Provider purchases SDN resources from Vendor A. However, at some

point of time, the Network Administrator decided to buy NetDevs from Vendor B be-

cause of economic profits. Now, the Network Administrator requires to configure each

NetDev for being controlled by a New NOS that offers better performance, reliability,

and security features.

Considering that Vendor A provides a different NetDev management interface than

Vendor B, the Network Administrator typically would use an Isolated Solution (i.e., Ven-

dor A Tool and Vendor B Tool) to execute specific configuration commands on NetDevs

from distinct vendors. This solution hinders and retards managing tasks of the Network

Administrator. Instead, the Management Plane approach hides network heterogeneity

by establishing a common NetDev configuration model and by adapting to each vendor

management interface. Thus, the Management Plane affords an Integrated Solution

that allows the Network Administrator to seamlessly configure every NetDev to be con-

trolled by the New NOS, mitigating the complexity and time-consumption of managing

hetereogeneous SDN resources.

Figure 4.1 illustrates the above described scenario. NetDevs provided by Vendor

A are OpenFlow switches that enable the OVSDB management interface to accept

configuration requests (i.e., OVSDB switches). NetDevs from Vendor B are OpenFlow

switches that run the OF-Config server to support configuration through the OF-Config

protocol (i.e., OF-Config switches). The Current NOS that initially handles the Open-

Flow switches is a Floodlight controller. The New NOS that has to be set in the Open-

Flow switches for controlling them is an Opendaylight controller. This scenario defines

the SetController operation as the process of configuring a number of OVSDB switches

and OF-Config switches for being controlled by the Opendaylight controller.
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Figure 4.1. Scenario: configuring heterogeneous SDN resources

4.1.2 Reference implementation

To carry out the present case study, two prototypes were developed to conduct the

SetController operation: the Integrated Solution and the Isolated Solution.

Integrated Solution

The Integrated Solution prototype relies on the reference architecture of the pro-

posed Management Plane to perform SetController regardless the different configu-

ration interfaces. Figure 4.2 depicts the implemented Integrated Solution. The Data

Repository is a CIM Object Manager (CIMOM) that provides RRM as CIM schemas

and stores instance data as CIM instances. CIMOM is the main component of a Web-

Based Enterprise Management (WBEM) framework [89]. CIM schemas characterize

the SDN managed environment, while CIM instances represent the SDN managed re-

sources. To build RRM, this prototype compiled both the CIM Schema 2.18.1 and the

SDN Extension Schema. The SDN Extension Schema implements the introduced CIM-

based Information Model.

Since this prototype focuses on the SetController operation, the compiled SDN Ex-
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Figure 4.2. Prototype based on the Management Plane reference architecture

tension Schema is limited to the following extended classes from the CIM-based Infor-

mation Model: AgentService, NetDevAgentService, AdapterService, NetDevAdapterSer-

vice, NetDevService, and SouthboundService. In addition, CIMOM stores CIM in-

stances of the above extended clases and of those included in the CIM Schema 2.18.1:

ComputerSystem, HostedService, RemotePort, ServiceSAPDependency, TCPProto-

colEndpoint, ProvidesEndpoint, IPProtocolEndpoint, and BindsTo. In addition, the Inte-

grated Solution uses the Managed Object Format (MOF) to formally express the SDN

Extension Schema and the CIM instances.

The Manager is carried out in a Java application. This Manager deploys the Set-

Controller operation as a Configuration Service. The User Interface of the Manager is

a simple Command Line Interface (CLI) that allows executing the configuration com-

mands of SetController. The Repository Interface uses the WBEM API to read and

write instances stored in CIMOM. The Adapter Interface relies on the Remote Method

Invocation (RMI) to communicate the Manager and the Adapters.

The Java application also deploys the NetDev Adapters: the OVSDB Adapter and

the OF-Config Adapter. The OVSDB Adapter employs the Opendaylight OVSDB API

to communicate with the OVSDB Agent that maintains the configuration database of

OVSDB switches. The OF-Config Adapter relies on the NETCONF4J API to connect

with the OF-Config Agent deployed by the OF-Config switches for accepting configura-

tion requests. OF-Config utilizes NETCONF as the associated protocol.

Based on the information retrieved from CIMOM, the Manager invokes the appropi-
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ate Adapter. Once achieved the configuration in each requested OpenFlow switch, the

Manager updates the instance data stored in CIMOM.

Isolated Solution

This prototype describes a classic solution of using a configuration tool for each

management technology (i.e., OVSDB and OF-Config) to perform operations as Set-

Controller. Both the OVSDB Tool and the OF-Config Tool are bash scripts that au-

tomatize the usage of their underlying software. The OVSDB Tool uses the ovs-vsctl

program to configure OVSDB switches. The OF-Config Tool employs the NETCONF

client netopeer-cli to communicate with OF-Config switches. Both tools provide a sim-

ple CLI to specify the configuration parameters.

4.1.3 Test Environment

This case study was conducted in a test environment that allowed to deploy the

above-mentioned scenario. Figure 4.3 depicts this environment formed by two Open-

Flow networks, two OpenFlow controllers, the Manager Client, and CIMOM. Each

OpenFlow network ran on an Ubuntu Server 14.04 Virtual Machine (VM) with 1 vir-

tual processor and 1.5GB RAM assigned, both hosted by an Ubuntu 14.04 machine

with 2.53GHz Intel Core i5 processor and 4GB RAM. Each VM executed Mininet 2.2.1,

a software for emulating OpenFlow-based networks [90], to deploy a simple tree topol-

ogy with 111 Open vSwitches 2.3.1. A tunnel over an IP network interconnected the

root switches from each tree topology. The Open vSwitches used the OpenFlow pro-

tocol over a second IP network to communicate with an specific OpenFlow controller:

Floodlight v1.0.1 or Opendaylight Helium. Later, the evaluation for each metric defines

the exact quantity of switches per controller. The OpenFlow controllers operated on an

Ubuntu 14.04 machine with 2.4GHz Intel Core 2 duo processor and 2GB RAM.

4.1.4 Time-consuming: results and analysis

The time-consuming (i.e., tC) is the time that the Network Administrator spends for

carrying out management tasks on the SDN environment. Specifically for this case,

tC represents the time in seconds (s) that the Network Administrator takes to conduct

the SetController operation by means of the CLIs provided by the Integrated Solution
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Figure 4.3. Test environment for the heterogeneous SDN configuration scenario

and the Isolated Solution. Certainly, the Isolated Solution aggregates an overhead

(i.e., tC:oh:isolated) compared with the time consuming of the Integrated Solution (i.e.,

tC:integrated). This is because the Isolated Solution forces the Network Administrator

to decide which tool must use to configure each OpenFlow switch. Unlike this, the

Integrated Solution abstracts the heterogeneity of the configuration technologies of the

OpenFlow switches.

Computing the time-consuming was realized using the Keystroke-Level Model (KLM)

[91] because it is useful to estimate the time that an expert user (i.e., the Network Ad-

ministrator) spends to accomplish a routine task (i.e., perform SetController on the CLI)

supported on computer keyboard and mouse. In KLM, each task is modeled as a se-

quence of actions. Table 4.1 presents the original KLM-actions [91] and some helpful

extensions [92] found in the literature.

Compared with the Isolated Solution, in the best case, the Network Administrator

carries out on the Isolated Solution the following additional actions: (i) change once

from one tool to another by pressing ALT and TAB keys, and (ii) decide which tool must

use for each switch. Based on these actions, tC:oh:isolated is proportional to the number
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Table 4.1. KLM actions

Action Description Time-average

K Press and release a key 0.2s

NC ∗K Type a string NC ∗ 0.2s

P Point the mouse 1.1s

B Hold or release the mouse 0.1s

H Move the hand from mouse to keyboard 0.4s

M Mentally preparing for executing physical actions 1.35s

Dnd Drag-and-drop a visual element 1.3s

Wire Wire two visual elements 4.1s

of configured switches (i.e., nSw): tC:oh:isolated = K + M ∗ nSw = 0.4 + 1.35 ∗ nSw .

4.1.5 Response time: results and analysis

Continuing the evaluation, it was measured the response time of the Integrated So-

lution and the Isolated Solution when used in the test environment (see Figure 4.3)

to carry out the operation SetController. This response time represents the time in

seconds (s) measured since the Network Administrator executes the operation Set-

Controller on the Manager Client until receiving the reply of the last configured switch.

Nevertheless, since a configuration reply is received for each switch, a per switch basis

analysis is also provided. This evaluation was conducted by using different amounts

of configured switches: 2, 20, 50, 100, 150, and 200. Half were OVSDB Switches, and

the other half were OF-Config Switches. In this and the following evaluations involving

average values for time and network traffic, 30 measurements were took with a 95%
confidence level.

Figure 4.4 depicts the response time results. Considering that the response time

(r in s) of Web systems can be ranked as optimal (r ≤ 0.1), good (0.1 < r ≤ 1), admis-

sible (1 < r ≤ 10), and deficient (r > 10) [93], these results reveal: (i) SetController of

both the Isolated Solution and the Integrated Solution has an admissible r that grows
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Figure 4.4. Response time on conducting the SetController operation

moderately (less than 1.5s and 1.8s per switch, respectively) when the number of con-

figured switches increases, (ii) the Integrated Solution takes longer than the Isolated

Solution, as expected for using additional components (e.g., CIMOM and Adapters)

to cope with the heterogeneity; and (iii) the response time overhead per switch of the

Integrated Solution is 0.8s for 2 switches and less than 0.35s for 20 switches or more.

Based on the above results, the response time overhead of the Integrated Solution

(i.e., tR:oh:integrated) depends on nSw (i.e., the amount of configured switches) as shown

in Equation 4.1. Furthermore, the results obtained for the time response and the pre-

viously estimated results for the time-consuming reveal that tR:oh:integrated is always less

than tC:oh:isolated.

tR:oh:integrated


≤ 0.8 ∗ nSw , nSw < 20

≤ 0.35 ∗ nSw , nSw ≥ 20
(4.1)
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Summing up, although the Integrated Solution includes additional modules (e.g.,

CIMOM and adapters) to cope with the complexity of managing heterogeneous SDN

environments, it introduces a response time overhead shorter than the time-consuming

overhead of the Isolated Solution. Certainly, the difference between the time overheads

increases as more switches and distinct technologies incorporate the SDN managed

environment. Additionally, considering the total time (tT ) as the sum of the response

time and the time-consuming, the difference between the time overheads demonstrates

that the Integrated Solution reduces the time for carrying out the operation SetCon-

troller, as can be seen in Equation 4.2. Therefore, the response time results corroborate

that, in terms of such metric, it is feasible to use the proposed approach for executing

management operations like the proved SetController.

tT :integrated = tR:integrated + tC:integrated

tT :isolated = tR:isolated + tC:isolated

tR:integrated = tR:oh:integrated + tR:isolated

tC:isolated = tC:oh:isolated + tC:integrated

tT :integrated = tC:isolated + tR:isolated + tR:oh:integrated − tC:oh:isolated

tT :integrated


tT :isolated − 0.4− 0.55 ∗ nSw , nSw < 20

tT :isolated − 0.4− nSw , nSw ≥ 20

(4.2)

4.1.6 Network traffic: results and analysis

To continue the evaluation, it was proceeded to measure the network traffic gener-

ated by the Integrated Solution and the Isolated Solution when carrying out the Set-

Controller operation in the deployed test environment (see Figure 4.3). Such network

traffic is the amount of data in kilobytes (kB) transmitted and received by the network

interface of the Manager Client. Similarly to the response time, the number of config-

ured switches for this evaluation varied among 2, 20, 50, 100, 150, and 200, where half

were OVSDB Switches and the other half were OF-Config Switches.

Figure 4.5 presents the network traffic results. These results reveal: (i) the traf-

fic generated by SetController on both the Isolated Solution and the Integrated Solu-
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Figure 4.5. Network traffic on conducting the SetController operation

tion grows moderately (approximately 106kB and 124kB per switch, respectively) when

the number of configured switches increases, (ii) the Integrated Solution generates

more traffic than the Isolated Solution, as expected for handling managed information

of switches in CIMOM; and (iii) the additional traffic generated by the Integrated So-

lution is 32% for 2 switches and less than 17% for 20 switches or more. Considering

that the Integrated Solution, unlike the Isolated Solution, copes with the heterogene-

ity of SDN environments by operating with standardized management data, the above

facts corroborate that SetController of the Integrated Solution has a good behavior on

network traffic.

Regarding the results obtained in the response time and network traffic evaluation of

the operation SetController, it is important to mention: (i) approximately 94% of the re-

sponse time of Isolated Solution corresponds to the OF-Config Tool, (ii) the OVSDB Tool

generated about 87% of the network traffic of Isolated Solution; and (iii) the response

time and network traffic overheads introduced by the Integrated Solution is smaller for
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many switches than for a few; this is because the connection and authentication with

CIMOM was realized just once for any number of configured switches. Summarizing,

the time and traffic results demonstrated that, in terms of such metrics, it is feasible to

use the Management Plane along with the CIM-based Information Model in heteroge-

neous SDN environments to perform operations as the executed SetController.

4.2 Case study for the M&E Framework

To assess the M&E Framework, first, this case study outlines a network manage-

ment scenario that deploys virtual SDN resources using different technologies. Sec-

ond, it implements an M&E System prototype as an instance of the proposed frame-

work. Third, it builds a test environment regarding the explained scenario. Fourth, sim-

ilarly to the previous case study, it conducs a performance-based late evaluation of the

M&E Framework in order to determine its feasibility in terms of time-recognition, time-

composition, time-consuming, response time, and network traffic. The time-recognition

and the time-composition correspond to the behavior for recognizing events and dy-

namically composing SDN Mashups, respectively. The time-consuming is associated

with the process that the Network Administrator requires for performing and coping with

monitoring requirements. The response time and the network traffic are related to the

behavior on runtime of solutions used to monitor heterogeneous SDN resources.

4.2.1 Scenario

This scenario assumes that a Network Administrator manages an SDN-based Net-

work Operator that provides virtual network infrasctructure to Small and Medium Enter-

prises (SME) by using SDN resources, such as OpenFlow controllers (i.e., NOS) and

virtual switches (i.e., NetDev), supplied by several Virtual Network Providers (VNP).

In this sense, the Network Administrator is responsible for monitoring the virtual SDN

resources provisioned by each VNP, since, for example, an abrupt performance degra-

dation in virtual links of one or more SMEs (e.g., caused by unidentified errors in the

virtual switches of VNPs) might lead the operator to break the Service Level Agree-

ments established with such SMEs and, as a result, lose money.

Figure 4.6 shows the above described scenario. Considering that each VNP uses

distinct technologies for deploying virtual SDN resources (i.e., Beacon Controller, POX
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Figure 4.6. Scenario: monitoring heterogeneous virtual SDN resources

Controller, and Floodlight Controller), the Network Administrator usually employs dis-

parate management solutions (e.g., proprietary CLIs and administrative Web interfaces)

for monitoring the virtual network infrastructure. Instead, the M&E Framework allows

the Network Administrator to build, in a high-level abstraction, own management tools

(i.e., SDN Mashups) that carry out monitoring tasks on such virtual SDN resources.

For example, a SDN Mashup that display NOS performance data of all VNPs in an un-

derstandable, friendly, and integrated way. Therefore, the M&E Framework enables the

Network Administrator to easily and rapidly conduct management tasks and cope with

events on the virtual network infrastructure.

4.2.2 Reference Implementation

Figure 4.7 depicts the M&E System prototype. The prototype was built upon the

M&E Framework and deployed by using a MySQL Server and an Apache Tomcat
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Figure 4.7. M&E System prototype

Server. The MySQL Server hosts the Database that implements the Mashup Repos-

itory, the Event Repository, and the Service Repository. The Apache Tomcat Server

provides a Web Engine and uses the Spring API provided by JBoss Drools to integrate

a Rules Engine.

The Web Engine displays through a browser-based interface the Designer (i.e., the

Mashup Designer and the Event Designer), the Visual Elements, and the results of the

Mashup Executor (i.e., executed SDN Mashups). This Web Engine relies on HTML5,

JavaScript, Java Servlets, and AJAX for granting interactive and dynamic interaction

among the Designer, the Visual Elements, the Handler, the Mashup Executor, and the

Services.

The Designer incorporates the Yahoo User Interface (YUI) API and the WireIt API

to assist (i) the M&E Developer and the Network Administrator for composing, reusing,

and launching static and dynamic SDN Mashups and (ii) the M&E Developer for defining
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event patterns. The Visual Elements are JavaScript representations that allow the M&E

Developer and the Network Administrator to select and combine Services and SDN

Mashups on the Designer. The Handler is a Java-based application for managing the

Mashup Repository, the Event Repository, and the Service Repository. The Mashup

Executor is a Web application that implements the Router and the Engine. Internally,

the Mashup Executor invokes by HTTP(S) the Services that form SDN Mashups. The

Web Engine displays the results of these SDN Mashups on the browser-based interface

by using graphics APIs.

The M&E System prototype deploys six Services: the Beacon Service, the POX Ser-

vice, the Floodlight Service, the Addition Service, the Monitor Service, and the RRDtool

Service. The Beacon Service, the POX Service, and the Floodlight Service are Man-

agement Services for carrying out monitoring fuctions on OpenFlow Controllers (i.e.,

Beacon, POX, and Floodlight, respectively). For the sake of evaluating the M&E Frame-

work, these Management Services directly communicate with the OpenFlow Controllers

(i.e., SDN managed resources) instead of interacting with the components and inter-

faces defined by the Management Plane.

The Addition Service is an Operation Service that aggregates data from two or more

Management Services. This service checks that every input data holds the same format

and produces an output data with such format. The Monitor Service and the RRDtool

Service are instances of Visualization Services that provide graphics APIs to display

management information. The Monitor Service relies on the Google Visualization API

and the RRDtool Service provides a local implementation of the RRD4J API.

The Web Engine also deploys the Dynamic Composer and the Sensor component

of the Event Recognizer. The Dynamic Composer is a Java-based application that cus-

tomizes SDN Mashups. It is noteworthy that, first, the M&E Developer and the Network

Administrator build and configure these SDN Mashups to address specific events. Sec-

ond, such SDN Mashups are stored in JSON format in the Mashup Repository. Third,

once an SDN Mashup has been dynamically generated, it is also stored using JSON in

the Mashup Repository and, further, automatically exposed in the Designer as a Visual

Element (i.e., Visual Mashup).

The Sensor is a Java-based application that calls and listens to the Services for

retrieving management data. This Sensor delivers such data to the Pattern Matcher

deployed by the Rules Engine. The Pattern Matcher is also a Java-based applica-

tion that employs the PHREAK algorithm implemented by JBoss Drools for recognizing
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events. Furthermore, this Pattern Matcher translates from JSON to the Drools Rule

Language (DRL) the event patterns stored in the Event Repository—JBoss Drools only

understands DRL.

4.2.3 Test environment

Figure 4.8 depicts the test environment deployed for conducting this case study. In

such environment, the M&E System prototype ran on a Apache Tomcat 7.0.26 (i.e.,

Web Engine) that integrated a JBoss Drools 6.1 (i.e., Rules Engine) by means of the

Spring API. The Database operated on a MySQL 5.5 Server. An Ubuntu 12.04 machine

with 2.53GHz Intel Core i5 processor, 4GB RAM, and 250GB hard disk, hosted the M&E

System and the Database. In turn, the applications used to perform the evaluation ran

on an Ubuntu 12.04 Test Client with 2.4GHz Core 2 duo processor and 2GB RAM.

Based on the scenario, the test environment also included three OpenFlow-based

networks (i.e., in reference to SDN resources from VNPs) each controlled by different

OpenFlow controllers: Beacon 1.0.2, POX 1.0.0, and Floodlight 0.9. These OpenFlow-

based networks deployed a lot of Open vSwitches 1.4; later each evaluation case de-

fines the exact quantity of switches per network. The OpenFlow controllers operated on

an Ubuntu 12.04 machine with 2.33GHz Core 2 duo processor and 2GB RAM. In turn,

the Open vSwitches were executed using Mininet 2.2.1 on an Ubuntu 12.04 server with

3.4GHz Core i7 processor and 8GB RAM.

4.2.4 Time-recognition: results and analysis

The time-recognition is the time in milliseconds (ms) that the M&E System takes for

recognizing event patterns. To measure the time-recognition, this evaluation used the

OpenFlow-based networks controlled by POX and Floodlight (see Figure 4.8). Each

OpenFlow controller handled a datacenter network topology with 259 switches dis-

tributed in four levels of depth (i.e., layers of access, aggregation, core, and edge) and 6
servers per rack. Thus, in total, the test environment for evaluating the time-recognition

deployed 2 controllers, 518 switches, and 3626 ports.

Using the Event Designer, an event pattern was defined to detect when any port of

any switch controlled by either POX or Floodlight had more than 5% of dropped packets.

It is important to highlight that, first, the M&E System performs the translation from
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Figure 4.8. Test environment for the heterogeneous SDN monitoring scenario

JSON to DRL. Second, such translation is always hidden for the Network Administrator

and the M&E Developer. Following, the event pattern encoded using the JSON and

DRL formats.

JSON

{
" complexEventName ": " testEvent ",
" events " : [

{
" eventName ": " increaseTransmittedDroppedPackages ",
"eac" : [

{
" entity " : " openflowController ",
" properties ": [

{
" attribute " : "ip",
" constraint ": " 143.54.12.210 or 190.5.203.123 "

}, {
" attribute " : "port",
" constraint ": "8080"

}, {
" attribute " : "type",
" constraint ": "pox or floodlight "

}, {
" attribute " : " openflowElement ",
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" constraint ": " openflowSwitch "
}

]
}, {

" entity " : " openflowSwitch ",
" properties ": [

{
" attribute " : "dpid",
" constraint ": "all"

}, {
" attribute " : " openflowSwitchComponent ",
" constraint ": " openflowPort "

]
}, {

" entity " : " openflowPort ",
" properties ": [

{
" attribute " : " number ",
" constraint ": "all"

}, {
" attribute " : " percentTransmittedDropped ",
" constraint ": "> 5"

]
}

]
}

]
}

DRL

package net. mashment . drools .rules
import net. mashment . drools . entities .*
import net. mashment . drools . DynamicMashmentComposer
rule "test"

when
$e0 : OpenflowController (

ip == " 143.54.12.210 " || == " 190.5.203.123 ",
port == "8080", type == "pox" || == " floodlight ")

$e1 : OpenflowSwitch ( openflowController == $e0)
$e2 : OpenflowPort ( openflowSwitch == $e1 ,

percentTransmittedDropped > 5)
then

DynamicComposer ($e0 ,$e1 ,$e2)
end

The time-recognition evaluation, first, loaded one single event pattern (i.e., just one

rule in the Rule Engine) and varied the quantity of generated events from 250 to 1750
in each OpenFlow-based network. Thus, the total number of generated events ranged

from 500 to 3500. Second, this evaluation varied the number of loaded rules from 1
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Figure 4.9. Time-recognition behavior

to 400; for each variation about the quantity of rules, the amount of generated events

ranged from 500 to 3500.

Figure 4.9 presents the time-recognition results. These results reveal that the M&E

System is able to recognize event patterns in a short time. The worst behavior took

approximately 30.3ms to identify 3500 events with 400 loaded rules/patterns. Further-

more, the time-recognition increases linearly in a negligible way with the growth of

events and loaded rules. Consequently, this evaluation demonstrates that, in terms

of time-recognition, it is feasible to deploy the M&E Framework for effectively dealing

with events that happen in the SDN environment.

4.2.5 Time-composition: results and analysis

The time-composition is the time in milliseconds (ms) that the M&E System takes for

dynamically composing SDN Mashups. This evaluation measured the time-composition

by using the OpenFlow-based networks handled by Beacon, POX, and Floodlight (see

Figure 4.8). Each controller was in charge of handling a datacenter network topology
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with 259 switches distributed in four levels of depth and 6 servers per rack. Thus, in

total, the test environment for evaluating the time-composition deployed 3 controllers,

777 switches, and 4662 ports.

By using the Mashup Designer, several SDN Mashups were built and configured for

carrying out monitoring tasks when any port of any switch handled by either Beacon,

POX, or Floodlight had more than 5% of dropped packages. Following, a snippet of the

WORKFLOW in JSON format of a static SDN Mashup that lacks configuration parame-

ters and the corresponding customization conducted by the M&E System to generate a

dynamic SDN Mashup.

SDN Mashup statically created without configuration parameters

{
" elements ": [

{
"id": 1,
" element ": " Monitor ",
" service ": " monitorService ",
" config " : {

" position ": [298 ,109] ,
"input" : "[wired]"

}
}, {

"id": 2,
" element ": " Openflow Controller ",
" service ": "",
" config " : {

" position " : [35 ,113] ,
"ip" : "",
"port" : "",
"type" : "",
" eventParams ": ""

}
}

],
"links": [

{" source ": 1, " destination ": 2}
]

}

SDN Mashup dynamically generated

{
" elements ": [

{
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"id": 1,
" element ": " Monitor ",
" service ": " monitorService ",
" config " : {

" position ": [298 ,109] ,
"input" : "[wired]"

}
}, {

"id": 2,
" element ": " Openflow Controller ",
" service ": " poxService ",
" config " : {

" position " : [35 ,113] ,
"ip" : " 143.54.12.210 ",
"port" : "8080",
"type" : "pox",
" eventParams ": {

" openflowSwitch ": {
"dpid" : " 00:00:00:00:00:00:04:0 e",
" openflowPort ": {

" number " : "1",
" percentTransmittedDropped ": "5"

}
}

}
}

}
],
"links": [

{" source ": 1, " destination ": 2}
]

}

The time-composition evaluation, first, varied the number of elements forming the

static SDN Mashup from 2 to 8. It is noteworthy that more than 60% of mashups consist

of 3 to 8 resource components (i.e., elements) [94]. Second, this evaluation modified

the amount of static SDN Mashups from 10 to 50; note that the number of static SDN

Mashups defines the quantity of simultaneously generated dynamic SDN Mashups.

Figure 4.10 presents the time-composition results. These results reveal that the

M&E System generates dynamic SDN Mashups by customizing static ones in a short

time. The worst behavior took approximately 14500ms to dynamically compose 50 SDN

Mashups formed by 8 resources. Furthermore, the time-composition increases linearly

with the growth of dynamically generated SDN Mashups and of the elements that com-

pose such SDN Mashups. Considering the above results, this evaluation corroborates

that (i) the module for generating dynamic SDN Mashups has a similar time-composition
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Figure 4.10. Time-composition behavior

behavior than the composition proposals introduced on other application domains [95]

and (ii) it is feasible, in terms of time-composition, to implement the M&E Framework

for coping effectively with events occurring in the SDN environment.

4.2.6 Time-consuming: results and analysis

The time-consuming (i.e., tcons) is the time in seconds (s) that the Network Adminis-

trator spends to carry management tasks on SDN managed resources. This evaluation

raised a management operation called MonitoringAS. Such operation considered the

OpenFlow-based networks handled by Beacon, POX, and Floodlight as three inter-

connected Autonomous Systems (AS), called AS1, AS2, and AS3, respectively. If an

unexpected degradation takes place in the performance of the links that connect these

ASs, the Network Administrator needs to identify in each AS which are the switches

that are causing such problem. In this sense, the Network Administrator requires to

rapidly and easily obtain a monitoring tool that presents, in an integrated, visual, and

intelligible way, information about these switches and their connecting links.
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To conduct the MonitoringAS operation, the Network Administrator tests several op-

tions: the Monitoring Script, the Static Monitoring Mashup, and the Dynamic Monitoring

Mashup. In general terms, the Monitoring Script is an application programmed and

executed by the Network Administrator in a low-level abstraction. The Static Monitoring

Mashup is an SDN Mashup statically built and launched by the Network Administrator

using the M&E System. The Dynamic Monitoring Mashup is an SDN Mashup automat-

ically generated by the M&E System that offers the same functionalities as the Static

Monitoring Mashup.

To assess tcons, this evaluation uses KLM (see Table 4.1). A result publication of this

thesis [96] corroborates the feasibility of using KLM for estimating time-consuming by

conducting an experiment that measured the time spent by end-users for carrying out

management tasks—like the aforedescribed MonitoringAS—on a similar Static Moni-

toring Mashup approach.

Time-consuming of Monitoring Script

tcons:script is the time spent by the Network Administrator for carrying out the Moni-

toringAS operation with the Monitoring Script. Without the M&E System, the Network

Administrator retrieves monitoring information by using one Web-based management

tool per controller, such as the Beacon Web UI, the POX Web UI, and the Floodlight

Web UI. As these tools operate similarly, tcons:beacon = tcons:pox = tcons:floodlight.

The Network Administrator retrieves information in HTML tables about the packet

traffic of a switch from the Beacon Web UI (see Figure 4.11) by conducting the follow-

ing actions: (i) point the mouse to Core Components tab, (ii) press and release the

mouse to select the Core Components tab, (iii) point the mouse to the Overview tab

that presents a list of switches, (iv) press and release the mouse to select the Overview

tab, (v) point the mouse to select a switch, (vi) press and release the mouse to select a

switch, (vii) point the mouse to the Ports link; and (viii) press and release the mouse to

select Ports of switch. Considering these actions, tcons:beacon = H+(4∗P )+(8∗B) = 5.6s.

Therefore, the time for separately using the above-mentioned tools is tcons:nonIntegrated =
3 ∗ tcons:beacon = 16.8s.

To obtain in a unique GUI the retrieved information by the Web-based tools, the

Network Administrator develops (i.e., tdev:script) and launches (i.e., tlau:script) the Moni-

toring Script. As this script generates HTML tables and RRDtool images tdev:script =
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Figure 4.11. Beacon Web UI

tdev:table + tdev:rrdImages. Considering solely the time to type the code for generating

the tables and images, tdev:script = [H + (290 ∗ K)] + [H + (1200 ∗ K)] = 298.8s. In

turn, tlau:script = H + P + (2 ∗ B) + (11 ∗ K) = 3.9s. Thus, the time-consuming for

conducting the MonitoringAS operation by using the Monitoring Script is tcons:script =
tcons:nonIntegrated + tdev:script + tlau:script = 319.5s.

Time-consuming of Static Monitoring Mashup

tcons:static is the time spent by the Network Administrator for carrying out the Mon-

itoringAS operation with the Static Monitoring Mashup. Here, tcons:static = tdev:static +
tlau:static + tuse:static. Since the Network Administrator uses the Mashup Designer to build

the Static Monitoring Mashup, then tdev:static = tsel + tcon + tcom: [96].

To develop the Static Monitoring Mashup (see Figure 4.12), the Network Administra-

tor initially selects the mashable entities by dragging-and-dropping the corresponding

Visual Elements: Beacon, POX, Floodlight, Addition, RRDtool, and Monitor. Thus,

tsel = 6 ∗ Dnd = 7.8s. Afterwards, the Network Administrator configures the selected

resources by providing the operation parameters of Beacon, POX, Floodlight, Addition,

and RRDtool. As this end-user manually writes these parameters, tcon:beacon = tcon:pox =
tcon:floodlight = {2 ∗ [P + H + (2 ∗B)]}+ [(15 + 5) ∗K] = 7.4s and tcon:addition = tcon:rddtool =
P + H + (2 ∗ B) + (3 ∗ K) = 2.3s. Therefore, tcon = 26.8s. Finally, the Network Ad-

ministrator combines the selected and configured Visual Elements by wiring Beacon
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Figure 4.12. Static and dynamic monitoring SDN Mashup

with Addition, POX with Addition, Floodlight with Addition, Addition with Monitor, and

RRDtool with Monitor. Thus, tcom = 5 ∗Wire = 20.5s.

Before requesting the execution of the Static Monitoring Mashup, the Network Ad-

ministrator saves it: (i) point the mouse in the Save button and click it, (ii) point the

mouse in the dialog that asks for the name of the SDN Mashups and click it; and (iii)

type the string “SMM”—stands for Static Monitoring Mashup. Once the Static Moni-

toring Mashup has been saved, the Network Administrator launches it by clicking the

button Run. Thus, tlau:static = 3 ∗ [H + P + (2 ∗B)] + (3 ∗K) = 5.7s.

On runtime, the Static Monitoring Mashup (see Figure 4.13) allows the Network

Administrator to retrieve monitoring information about switches and links from three

different controllers by the following actions: (i) points the mouse to the Controllers list,

(ii) presses and releases the mouse to select three distinct controllers, (iii) points the

mouse to the button Switches/Links; and (iv) presses and releases the mouse to click

the button Switches/Links. Furthermore, to retrieve information about flows, tables,

ports, or traffic of three switches: (i) presses and releases the mouse to select three

switches in different controllers, (ii) points the mouse to the button Flows, Tables, Ports,

or Traffic; and (iii) presses and releases the mouse to click the button Flows, Tables,

Ports, or Traffic. Thus, tuse:static = H + (3 ∗ P ) + (16 ∗B) = 5.3s.

Finally, the computed values of tdev:static, tlau:static, and tuse:static provide an estimated

value of tcons:static. As a result, it is expected that the Network Admistrator takes 66.1s to

carry out MonitoringAS with the Static Monitoring Mashup.
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Figure 4.13. Static and dynamic monitoring SDN Mashup on runtime

Time-consuming of Dynamic Monitoring Mashup

tcons:dynamic is the time spent by the Network Administrator for carrying out the Mon-

itoringAS operation with the Dynamic Monitoring Mashup. As the Dynamic Monitoring

Mashup is generated by the M&E System (see Figure 4.12), tcons:dynamic = tlau:dynamic +
tuse:dynamic. Since the Dynamic Monitoring Mashup is an SDN Mashup dynamically

composed, the Network Administrator launches it by clicking the button Run. There-

fore, tlau:dynamic = H + P + (2 ∗ B) = 1.7s. Furthermore, since on runtime both the

Dynamic Monitoring Mashup and the Static Monitoring Mashup provide identical func-

tionalities and show the same GUI (see Figure 4.13), tuse:dynamic = 5.3s. Therefore,

tcons:dynamic = 7s.

Figure 4.14 depicts the time-consuming results that reveal: (i) the time-consuming

for developing the Static Monitoring Mashup (i.e., tdev:static = 55.1s) is less than for the

Monitoring Script (i.e., tdev:script = 298.8s), achieved through the mechanisms provided

by the Mashup Designer, (ii) the time that the Network Administrator takes for develop-

ing the Dynamic Monitoring Mashup is zero, attained by the automatic recognition of

events and the dynamic composition of SDN Mashups, (iii) since the Mashup Designer

requires saving SDN Mashups before executing them, the time-consuming for launch-

ing the Static Monitoring Mashup (i.e., tlau:static = 5.7s) is greater than for the Monitoring

Script (i.e., tlau:script = 3.9s); and (iv) because every dynamic SDN Mashup is ready to
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Figure 4.14. Time-consuming on conducting the MonitoringAS operation

be launched by the Mashup Designer, the time for launching the Dynamic Monitoring

Mashup (i.e., tlau:dynamic = 1.7s) is less than for the Monitoring Script and the Static

Monitoring Mashup.

Summing up, the time-consuming results for conducting the MonitoringAS opera-

tion with the Static Monitoring Mashup (i.e., tcons:static = 66.1s) and the Dynamic Moni-

toring Mashup (i.e., tcons:dynamic = 7s) are less—about 79.3% and 97.8%—than without

these approaches (i.e., tcons:script = 319.5s). In fact, the Dynamic Monitoring Mashup

reduces approximately 89.4% of the time-consuming estimated for the Static Monitoring

Mashup. The overall result and the results per task demonstrated that, in terms of time-

consuming, it is feasible to deploy the M&E Framework for carrying out management

tasks in the SDN environment.
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4.2.7 Response time: results and analysis

To continue the evaluation, it was measured the response time in milliseconds (ms)

of the Monitoring Mashup—on runtime both the Static Monitoring Mashup and the Dy-

namic Monitoring Mashup work equally—and the Beacon Web UI when conducting the

operations MonitoringSwitches and MonitoringLinks on the SDN resources deployed

by the test environment (see Figure 4.8). These operations offer visual information of

the switches and their connection links, which is useful to carry out the MonitoringAS

operation.

The response time evaluation of MonitoringSwitches varied the number of switches

from 20 to 100 per OpenFlow-based network. Thus, the total number of switches in

each evaluation was 60, 120, 180, 240, and 300. Figure 4.15 presents the correspond-

ing results. Considering the ranking of the response time (r in s) established by the

performance analysis for Java Websites [93], the response time results reveal: (i) Mon-

itoringSwitches of the Monitoring Mashup has a good r that grows negligibly (less than

1ms per switch) when the number of switches is increased; and (ii) r is ranked as op-

timal for the Beacon Web UI and as good for the Monitoring Mashup; this result was

expected because Beacon Web UI operates with one type of OpenFlow controller (i.e.,

Beacon) and the Monitoring Mashup with three different types of OpenFlow controller

(i.e., Beacon, POX, and Floodlight).

The response time evaluation of MonitoringLinks modified the number of links from

50 to 250 per OpenFlow-based network. Therefore, the total number of links in each

evaluation was 150, 300, 450, 600, and 750. Figure 4.16 depicts the corresponding re-

sults that reveal: (i) MonitoringLinks of the Monitoring Mashup has a good r that grows

negligibly (less than 1ms per switch) when the number of links is increased; and (ii) r is

ranked as optimal for Beacon Web UI and as good for the Monitoring Mashup; again,

this result was expected because Beacon Web UI works with one type of OpenFlow

controller and the Monitoring Mashup with three different types.

Although, at runtime, the Monitoring Mashup uses several software modules (e.g.,

the Beacon Service and the OFMonitor Service) to integrate and present monitoring

information from different controllers, its behavior on response time ranks as good for

the most operations, regardless of deployed technologies and the number of monitored

switches and links. Such behavior is because the Adapters hides the heterogeneity

of OpenFlow controllers and, in turn, their centralized nature handles the number of
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Figure 4.15. Response time on conducting the MonitoringSwitches operation

network elements. Summing up, the response time results corroborated that, in terms

of such metric, it is feasible to deploy the M&E Framework for conducting management

tasks on SDN resources.

4.2.8 Network traffic: results and analysis

Continuing the evaluation, it was proceeded to measure the network traffic in kilo-

bytes (kB) generated by the Monitoring Mashup and the Beacon Web UI when carrying

out MonitoringSwitches and MonitoringLinks on the SDN-based networks deployed by

the test environment (see Figure 4.8). This evaluation uses bytes (B) and kilobytes (kB)

to express the network traffic. It is to highlight that the traffic generated by the Monitor-

ing Mashup and the Beacon Web UI for the aforementioned operations is independent

of the deployed topology (e.g., linear and tree).

The network traffic evaluation of MonitoringSwitches varied the number of switches

from 20 to 100 per OpenFlow-based network. Thus, the total number of switches in
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Figure 4.16. Response time on conducting the MonitoringLinks operation

each evaluation was 60, 120, 180, 240, and 300. Figure 4.17 presents the correspond-

ing results, revealing: (i) the traffic generated by MonitoringSwitches of the Monitoring

Mashup grows negligibly (approximately 112B per switch) when the number of switches

is increased, (ii) the Monitoring Mashup generates more traffic than the Beacon Web

UI; and (iii) the additional traffic generated by the Monitoring Mashup is always less

than 10%. Considering that the Beacon Web UI operates with just one type of controller

and the Monitoring Mashup integrates data from three different types, the above facts

corroborated that MonitoringSwitches of he Monitoring Mashup has a good behavior

on network traffic.

The network traffic evaluation of MonitoringLinks modified the number of links from

50 to 250 per OpenFlow-based network. Therefore, the total number of links in each

evaluation was 150, 300, 450, 600, and 750. Figure 4.18 depicts the corresponding re-

sults that reveal: (i) the traffic generated by MonitoringLinks of the Monitoring Mashup

grows negligibly (about 129 Bytes per link) when the number of links is increased, (ii)
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Figure 4.17. Network traffic on conducting the MonitoringSwitches operation

the Monitoring Mashup generates more traffic than the Beacon Web UI; and (iii) the

additional traffic generated by the Monitoring Mashup is always less than 5%. Since the

Beacon Web UI operates with just one type of controller and the Monitoring Mashup

integrates data from three different types, the above facts corroborated that Monitor-

ingLinks of the Monitoring Mashup has a good behavior on network traffic.

Regarding the results of the network traffic evaluation of the Monitoring Mashup,

it is important to mention: (i) JSON was used to decrease the size of information ex-

changed between the modules of the M&E System because JSON is less verbose than

XML; and (ii) the size of GUIs is too small to impact the quantity of traffic generated

by the Monitoring Mashup. Furthermore, although the Monitoring Mashup integrates

monitoring information from different controllers by using several additional software

modules, its extra traffic is always less than 10% (the worst operation was Monitor-

ingSwitches). Summing up, the above results demonstrated that, in terms of network

traffic, it is feasible to implement the M&E Framework for performing management tasks
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Figure 4.18. Network traffic on conducting the MonitoringLinks operation

in the SDN environment.

4.3 Final remarks

This chapter presented the evaluation and analysis of the CIM-based Information

Model and the M&E Framework by conducting a case study for each one. Through a

quantitative perspective, this evaluation and analysis was carried out in terms of the

following metrics: (i) time-consuming, related to the process required by Network Ad-

ministrators to perform managements operations in the virtual, dynamic, and hetero-

geneous environment of SDN, (ii) response time and network traffic, associated with

the behavior on runtime of solutions used to manage SDN-based networks; and (iii)

time-recognition and time-composition, related to the M&E Framework modules for au-

tomatically recognizing events and dynamically composing SDN Mashups, respectively.

The evaluation results from the case study for the CIM-based information model
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revealed several facts. First, regarding the performance analysis for Java Websites,

the proposed approach has an admissible behavior in terms of response time, similar

than using isolated tools. Second, it introduces a small response time overhead (i.e., <

0.8s per switch) compared with the minimal time required by Network Administrators to

handle dispersed solutions (i.e., > 1.35s per switch). Third, it has a good behavior on

network traffic when managing several devices (i.e., < 17% for 20 switches or more) in

relation to employing distinct tools.

Regarding the case study for the M&E Framework, the evaluation results demon-

strated that, first, if the Network Administrator carries out management operations (e.g.,

MonitoringAS) by developing and launching static SDN Mashups, the time-consuming

decreases. Second, such decreasing is greater when mechanisms for automatic recog-

nition of events and dynamic composition of SDN Mashups are used. Third, although

SDN Mashups use extra software modules to cope with events, such layers gener-

ate few additional response time and network traffic in relation to Web-based network

management tools (e.g., Beacon Web UI) and proprietary scripts. This last fact demon-

strates that the proposed approach has a good behavior in terms of response time and

network traffic.

From a qualitative point of view, the introduced Management Plane reference archi-

tecture provides mainly simplicity and formalization. The simplicity refers to that this

Management Plane facilitates integrating the SDN management operations of network

administrators. They do not require to employ multiple solutions to completely manage

SDNs deployed with various technologies because this approach addresses the man-

agement requirements of the whole SDN environment and hides the heterogeneity of

the deployed resources. Regarding the formalization, the CIM-based Information Model

introduced in this paper can be considered as a step forward in unifying a conceptual

understanding of the virtual, dynamic, and heterogeneous environment of SDN. It is

feasible because the Information Model relies on CIM to provide a technology-agnostic

and consistent characterization of SDN. Moreover, future SDN proposals may extend

this approach for tackling arising challenges in SDN management.

In turn, the M&E Framework provides mainly flexibility and extensibility. The flex-

ibility refers to that the M&E Framework allows the Network Administrators and the

M&E Developer to customize and improve their workspace. These end-users do not

require a lot of Web programming skills to compose management tools (e.g., the Static

Monitoring Mashup and the Dynamic Monitoring Mashup) because the M&E Frame-
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work provides a high-level abstraction (i.e., mashable entities) of network management

technologies as well as of management operations.





Chapter 5

Conclusions

This chapter starts summarizing the research work carried out in this thesis. Then,

it provides the answers for the fundamental questions that guided the verification of the

hypothesis defended in this thesis. Afterward, the chapter overviews the main contribu-

tions achieved when conducting such verification. The last section outlines directions

for future work.

This thesis presented the investigation carried out to verify the hypothesis: “a Man-

agement Plane that establishes a common Information Model and employs Web

technologies (2.0/3.0) would provide an effective approach for managing virtual,

dynamic, and heterogeneous networks based on the SDN paradigm”. Based on

the hypothesis, this work proposed a Management Plane aimed to facilitate the inte-

grated management of the whole SDN architecture in virtual, dynamic, and hetero-

geneous environments. Such Management Plane delineated a reference architecture

using the four submodels that compose the OSI network management model: Infor-

mation, Organizational, Communication, and Functional. Focusing on the Information

Model, this thesis relied on CIM to define a consistent characterization of the entire SDN

management environment regardless of the deploying technologies. This Information

Model extended the CIM Schema to accomplish a generic abstraction of the SDN man-

aged and managing resources and their relationships. Furthermore, the Management

Plane introduced a M&E Framework in the Manager component to support the high-

level and dynamic creation of composite applications (i.e., SDN Mashups) that carry

out management tasks in the SDN environment.

This thesis also displayed the reference implementation of the proposed approach

as well as an extensive evaluation and analysis about effectively carrying out manage-

85



86 Chapter 5. Conclusions

ment tasks with and without this proposal. In particular, different case studies raised

specific management requirements in realistic scenarios based on SDN to evaluate

and analyze the effectivity in terms of time and network traffic. The evaluation results

demonstrated that the approach is effective for managing the virtual, dynamic, and het-

erogeneous environment of SDN because: (i) the integrated solution built upon the

CIM-based Information Model reduced the time for managing an SDN deployed with

virtual and heterogeneous technologies, (ii) composing—statically or dynamically—and

launching SDN Mashups decreased the time for carrying out management tasks in a

virtual, dynamic, and heterogeneous SDN environment; and (iii) both aforementioned

solutions demonstrated good behavior on the response time as well as on the network

traffic.

5.1 Answers for the fundamental questions

At first, this thesis defined two fundamental questions that guided the investigation

about the feasibility of deploying a Management Plane that establishes a common Infor-

mation Model and employs Web technologies (2.0/3.0) for effectively managing virtual,

dynamic, and heterogeneous networks based on the SDN paradigm. This section re-

views and answers such questions.

Fundamental question I: What is the performance, in terms of time and network traf-

fic, of solutions based on a technology-agnostic and consistent Information Model for

managing virtual, dynamic, and heterogeneous networks based on the SDN paradigm?

The lack of frameworks for integrated SDN management forces network adminis-

trators to handle separated tools (i.e., isolated solution) for managing resources from

distinct planes as well as various technology instances. This isolated solution remains

complex and time-consuming because of the diversity of vendors and technologies for

deploying SDN resources. The Management Plane along with the CIM-based Informa-

tion Model enabled to cope with such time—and to some extent with the complexity—

corroborating the importance of establishing a common Information Model as the key to-

wards building an integrated management architecture for the SDN environment. From

a qualitative point of view, the proposed approach reduces the complexity of manage-
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ment by including modules (e.g., Data Repository and Adapters) that hide heterogeneity

of SDN environments. From a quantitative perspective, this thesis employed KLM [91]

to illustrate that the proposal consumes less time than the isolated solution for carrying

out management tasks in SDNs deployed with virtual and heterogeneous technologies,

such as the raised case study. Particularly, the integrated solution built upon the pro-

posed approach reduced the consuming of time at a rate about 1.35s per switch in

relation to the isolated solution.

In addition, considering that the proposed approach incorporated extra modules to

address the heterogeneity of SDN environments, the evaluation results for response

time revealed a good behavior. Specifically, according to the performance analysis

for Java Websites [93], the response time results for the integrated solution ranked

as admissible, similar than for the isolated solution. In fact, the integrated solution

introduced a small response time overhead (less than 0.8s per switch) compared with

the minimal time required by network administrators to handle the isolated solution

(more than 1.35s per switch). Likewise, the additional components of the proposed

approach generated low traffic overhead, demonstrating a moderate behavior in terms

of network traffic. Explicitly, the traffic overhead for managing more than 20 network

devices was always less than 17%.

Fundamental question II: What is the performance, in terms of time and network

traffic, of solutions that use Web 2.0 and Web 3.0 technologies for managing virtual,

dynamic, and heterogeneous networks based on the SDN paradigm?

For network administrators—end-users with poor programming skills—carrying out

management tasks in SDN environments consumes a lot of time. The M&E frame-

work enabled network administrators to overcome such time, confirming the effectivity

of employing the technologies from Web 2.0 (i.e., mashups) and Web 3.0 (i.e., CEP,

Rule-based Systems, and JSON) to deploy the Manager component of the introduced

Management Plane. This thesis used per-task metrics [97, 91] to demonstrate that

the proposed solution is less consuming of time than conventional solutions (i.e., pro-

prietary and incompatible CLIs, GUIs, and scripts) used for coping with management

requirements like the raised in the case study. In particular, the static SDN Mashup

solution was approximately 79% less consuming of time than the conventional solution,

whereas the dynamic SDN Mashup solution reduced more than 89% of the consuming
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of time. The latter was achieved because the M&E framework provided mechanisms

for automatically recognizing events and dynamically composing SDN Mashups.

Furthermore, although the M&E framework included additional software modules

for creating and executing SDN Mashups, it evidenced a good behavior in terms of

response time. Indeed, regarding the performance analysis for Java Websites [93],

the response time results of the proposed approach ranked as good. Similarly, the

M&E framework demonstrated a good behavior in terms of network traffic because its

additional modules generated few extra traffic in relation to the conventional solutions

aforementioned. Specifically, the traffic overhead was always less than 10%.

5.2 Contributions

This thesis investigated the feasibility of deploying a Management Plane that es-

tablishes a common Information Model and employs Web technologies (2.0/3.0) for

effectively managing virtual, dynamic, and heterogeneous networks based on the SDN

paradigm. The carrying out of such investigation led to the following major contributions.

• The reference architecture for the Management Plane. This reference ar-

chitecture relied on the OSI network management submodels (i.e., Information,

Organizational, Communication, and Functional) to define a Management Plane

aimed to facilitate integrated management of the virtual, dynamic and heteroge-

neous SDN environment.

• The CIM-based Information Model. This model provided a technology-agnostic

and consistent characterization of the entire SDN environment from a manage-

ment perspective.

• The SDN Mashup concept. This concept presented how to use mashups to

build and customize, in a high-level abstraction, management tools in the SDN

environment.

• The M&E Framework. This mashup-based and event-driven framework enabled

the creation and execution of static and dynamic SDN Mashups in the Manager

component of the proposed Management Plane.
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5.3 Future work

During the carrying out of this thesis, interesting opportunities for further research

were observed. These opportunities are outlined below.

• SDN management architecture. The Management Plane approach provided a

reference architecture focused on the Information Model. Therefore, there is an

opportunity to extend this Management Plane by defining and assessing the re-

maining submodels (e.g., Communication and Functional) in order to afford a

complete, well-defined SDN management architecture. Furthermore, since SDN

mutually complements with other networking technologies, such as the Network

Function Virtualization and the Cloud Networking, there is a chance to improve the

proposed Management Plane for encompassing the management requirements

and challenges of such technologies.

• Big Data approach. The M&E framework deployed a centralized approach not

suitable to handle the huge amount of data generated by networks based on the

SDN paradigm. Thus, there is an opportunity to investigate the feasibility of using

Big Data technologies to deploy the Manager component in order to capture, pro-

cess, and analyze enormous sets of information for obtaining significant results

that allow to forecast events and improve the decision-making.
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technology for network management. This paper introduces an approach,

called Rich Dynamic Mashments, to facilitate the daily work of network ad-

ministrators when dealing with unexpected, dynamic, and heterogeneous sit-

uations. We have referred to as nmsits to such type of network management

situations (e.g., a sudden packet loss in a core router of a network backbone

and an unforeseen slowness in data transmission over a link between virtual

routers) and mashments to tunable mashups that use Situation Management

for conducting network management tasks. The proposed approach is made

up by the models of nmsits and mashments, the mechanisms to automati-

cally recognize nmsits and dynamically compose mashments, and the archi-

tecture supporting these models and mechanisms. We further implement a

prototype of our approach and conduct an extensive analysis on networks

based on the Software-Defined Networking paradigm. The analysis results

have provided directions and evidence that corroborate the feasibility of us-

ing Rich Dynamic Mashments as an effective approach for network manage-

ment in terms of time-recognition, time-composition, time-consuming, time-

response, and network traffic.
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to develop and execute Mashments, and the Mashment Maker that supports
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such model and process. We use IT Service Management metrics to evalu-

ate our approach, measuring the complexity of facing, with and without the

Maker, a specific nmsit that occurs in several networks based on the Soft-

ware Defined Networking paradigm. The evaluation results demonstrate that
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tackle network management situations. We evaluate the Mashment Ecoys-

tem by estimating with the Keystroke-Level Model and measuring in a test

scenario the time that Network Administrators take to perform the activities

of creating, launching, and publishing Mashments. Similarly, we evaluate

the time for retrieving information about a network management situation by

using or not Mashments. The evaluation results corroborated that Network

Administrators, in our ecosystem, need short-time to deal with network man-

agement situations.
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ment. The 37th IEEE Annual International Computer Software & Applications

Conference (COMPSAC 2013), July 22-26, 2013, Kyoto, Japan.
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• Status: Published.

• Qualis CAPES index: A2.

• Contribution: SDN Mashup concept.

• Abstract: The Software Defined Networks paradigm aided by the Network

Virtualization is a key driver to cope the Internet ossification. There are dif-

ferent proposals to deploy this paradigm, but there is not an integrated or

standardized way for the management of networks built with such propos-

als. In this sense, the network management becomes too complex because

multiple solutions must be used by Network Administrators to perform their

tasks. In this paper, we introduce a mashup-based approach that allows

Network Administrators to customize and combine management solutions,

in order to they build composite applications aiming the integrated manage-

ment of Virtual Software Defined Networks in heterogeneous environments.

We evaluate our approach by building a SDN Mashup for the management

of a network slice that uses three distinct Network Operating Systems and

by running performance tests, corroborating that the mashup built has small

response time.
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• Status: Submitted.

• Colciencias index: A1.

• Contribution: Management Plane reference architecture and CIM-based In-

formation Model.

• Abstract: The Software-Defined Networking paradigm establishes a three-

plane architecture that facilitates the deployment of network functions and

simplifies traditional network management tasks. However, this architecture

lacks an integrated or standardized framework for managing the SDN itself.

Some investigations have addressed such shortage by proposing different

solutions that tackle specific management requirements for particular SDN
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technology instances. This isolated approach forces network administrators

to use multiple frameworks to achieve a complete SDN management that

is complex and time-consuming in heterogeneous environments. In this pa-

per, we introduce an Information Model based on the Common Information

Model that establishes a technology-agnostic and consistent characteriza-

tion of the whole SDN architecture. Such Information Model represents the

core towards building a Management Plane aimed to facilitate the integrated

SDN management in heterogeneous environments. To test our Information

Model, we developed a prototype and conducted a performance evaluation

in an SDN configuration scenario that deploys different managing technolo-

gies. The obtained results provide directions that corroborate the feasibility of

our approach (in terms of time-response and network traffic) for configuring

heterogeneous SDNs.
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to such type of network management situations (e.g., a sudden packet loss in a core router

of a network backbone and an unforeseen slowness in data transmission over a link between

virtual routers) and mashments to tunable mashups that use Situation Management for con-

ducting network management tasks. The proposed approach is made up by the models of
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1. Introduction

The Situation Management (SM) discipline is intended to

address situations happening or that might happen in dy-

namic systems [1]. SM aims to provide solutions that enable

analyzing, correlating, and coordinating interactions among

people, information, technologies, and actions targeted to
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enbach Tarouco), granville@inf.ufrgs.br (L.Z. Granville).

overcome situations [2]. The basis of SM are [3]: (i) a situ-

ation modeled as a collection of entities in a domain, their

attributes, and relationships in a time interval, (ii) the inves-

tigative aspect related to retrospective cause analysis of situ-

ations, (iii) the control aspect devised to change or preserve

situations; and (iv) the predictive aspect aimed to foresee sit-

uations.

SM has been employed in diverse domains, such as dis-

aster response [4], smart power grids [5], civil crisis [6], avi-

ation [7], public health [8], electric power systems [9], and

medical emergencies [10]. However, up to now, SM has not

been used to deal with unexpected, dynamic, and hetero-

geneous situations that network administrators face in their

daily work. Hereinafter, such type of situations are referred

http://dx.doi.org/10.1016/j.comnet.2015.10.024

1389-1286/© 2015 Elsevier B.V. All rights reserved.
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to as nmsits [11]. Some examples of nmsit are: (i) a sudden

packet loss in a core router of a network backbone, (ii) an un-

foreseen slowness in data transmission over a link between

two virtual routers; and (iii) an unexpected increases in the

number of corrupted packages transmitted by switches han-

dled by an OpenFlow Controller.

Mashups are composite Web applications centered on

end-users and created by combining resources (e.g., data, ap-

plication logic, and user interfaces) available along the Web

[12]. In the previous definition, end-user centric means that

mashups may be developed by users without advanced pro-

gramming skills [13]. Mashups have been used in several

domains, such as fire emergencies [14], telco services [15],

and immersive mirror worlds [16]. Also, we have analyzed

the mashup technology as a mechanism to compose network

management applications [17] and accomplish specific tasks

like virtual nodes monitoring [18].

Although a large number of research efforts [19–25] has

been carried out to support management tasks, to the best of

our knowledge, none of such efforts has jointly used SM and

mashups to automate and facilitate the work of network ad-

ministrators. In our previous work [11,26], we introduced the

concept of mashments (i.e., tunable mashups that automate

the investigative and control aspects of SM for carrying out

network management). We observed that mashments are a

suitable approach to facilitate the tasks of network adminis-

trators when facing nmsits. Nevertheless, we have identified

some features that are missing in current mashments: (i) they

are not able to automatically recognize nmsits, constraining

the analysis and resolution of such situations; and (ii) they

are not dynamically composed, limiting the overcoming of

recognized nmsits.

In this paper, we take a step further and introduce Rich

Dynamic Mashments (RDM) to facilitate the work of network

administrators when facing nmsits. We argue that the use of

mechanisms to automatically recognize nmsits and dynami-

cally compose mashments allows to make timely decisions in

a less complex way. Our major contributions are

• Mechanisms to automatically recognize nmsits and dy-

namically compose mashments.

• An architecture that supports the above mentioned

mechanisms and enables building up RDMs.

• A prototype that implements the proposed architecture.

• The demonstration, in a network that follows the

Software-Defined Networking (SDN) paradigm, of the

feasibility of using RDM to deal effectively with nmsits

in terms of time-recognition, time-composition, time-

consuming, time-response, and network traffic.

The remainder of this paper is organized as follows. In

Section 2, we present scenarios and challenges of nmsits. In

Section 3, we present related work. In Section 4, we intro-

duce the RDM Architecture. In Section 5, we describe and

discuss the proof-of-concept used to evaluate RDM. Finally,

in Section 6, we provide conclusions and implications for fu-

ture work.

2. Scenarios and challenges

In this section, we introduce motivating scenarios and

their challenges. In the first scenario, let’s consider network

administrators manage a large company. In this company, the

communication between the Pin Pads shops and the Enter-

prise Resource Planning system is provided by an outsourced

Internet Service Provider (ISP). If a sudden failure in packet

transmission in the ISP takes place or if an internal connec-

tion error in the border router of one or more shops occurs,

the company might lose a significant amount of revenues be-

cause the payment by cards becomes inoperative.

In the second scenario, let’s assume network administra-

tors manage an SDN-based Network Operator. This operator

provides network infrastructure to Small and Medium Enter-

prises (SMEs) using resources, such as OpenFlow controllers

and virtual switches, supplied by several Virtual Network

Providers. If an abrupt performance degradation in virtual

links of one or more SMEs (e.g., generated by unidentified er-

rors in the virtual switches of providers) occurs, the operator

might break the Service Level Agreements established with

SMEs and, as a result, lose money.

In these both scenarios, network administrators need to

easily and rapidly overcome nmsits. In particular, they face

the following challenges: (i) conduct situational manage-

ment operations (e.g., collect, split, filter, add, and merge

data) on multiple and heterogeneous devices/networks in-

volved in nmsits, (ii) compose and tune solutions for nmsits

in a less complex and time consuming way; and (iii) visual-

ize information of nmsits in an understandable and friendly

way.

The challenges of nmsits may be addressed, among other,

with the following options. The first one is to use several mis-

matched network management solutions from the industry

[27,28] and academy [24] [25], but it hinders and overloads

the tasks of network administrators. Thus, this option is com-

plex and time consuming.

A second option to cope with nmsits, it is to improve ex-

isting network management solutions, such as Nagios [29],

ZenOSS [27], and OpenNMS [28], by deploying on them plu-

gins that support SM. To the best of our knowledge, up to

now, there is not a research that develops and adds plug-

ins/packages based on the SM discipline to extend and en-

hance the above-referred solutions.

A third option to deal with nmsits, it is to use home-

brewed scripts that integrate two or more network manage-

ment solutions. The weaknesses of this option are, first, the

skill required to write and run scripts (the development of

scripts is a daunting and complex task for network admin-

istrators who usually do not have advanced programming

knowledge). Second, the loss of focus and time of network

administrators; instead of management the network itself,

they are forced to acquire knowledge that is not necessarily

relevant to their daily tasks.

A fourth option to address nmsits, it is to use our mash-

ments [11,26]. In a broad sense, a mashment is a solution

based on the SM discipline and the mashup technology for

carrying out network management in an effective way. In

particular, a mashment is defined as a tunable mashup that

combines diverse types of resources from multiple providers

and automates the investigative and control aspects of SM,

aiming to facilitate the work of network administrators.

We argue that mashments are closer and more appro-

priate to facilitate the daily needs of network administra-

tors. Notwithstanding, as the network administrator is even
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Table 1

Proposals on SM.

Aspect

Ref Description Domain Investigative Control Predictive

[4] An architecture based on Wireless Sensor Networks and

Delay-Tolerant Networking to aid disaster responders in

making decisions

Disaster response � � �

[5] An architecture based on SOA that uses linked open data to

meet the continuous changes in the electricity usage

patterns of customers

Smart power grids � �

[6] A mobile agent platform to provide timely and protected

access to situational information for on-site personnel and

tactical center

Civil crisis � �

[7] An approach for deploying distributed systems that aim to

assist a timely and correct making-decision during air

security incidents

Aviation � �

[8] A rule-based platform supporting the development of

situation-aware applications for monitoring suspicious

cases of tuberculosis

Public health � � �

[9] A situation awareness application aimed to face major

disturbances (e.g., snow storms) suffered by distribution

system operators in Finland

Electric power systems � �

[10] A system based on finite-state machines and complex event

processing to enhance information availability in

emergency medical services

Medical emergencies � �

responsible for identifying nmsits and creating the workflow

of current mashments, the mashment-based approach still

keeps some complexity and consumption of time. In this

paper, the RDM-based approach is introduced to overcome

the shortcomings and weaknesses of options previously de-

scribed.

3. State-of-the-art

This section reviews the three top topics related to the

RDM-based approach: situation management, mashup tech-

nology, and network management. To visit the related work

on the SM literature, we focus on the SM fundamental as-

pects [3,30]: investigative, control, and predictive. The inves-

tigative aspect related to carrying out actions intended to

comprehend situations (i.e., what is happening?). The con-

trol aspect associated with creating plans for overcoming sit-

uations (i.e., how to solve a situation?). The predictive aspect

related to conducting actions for foreseeing future situations

by taking into account past situations (i.e., what is going to

happen?).

Table 1 presents relevant proposals in SM by considering

the application domain and the SM aspects. This table reveals

that the most of SM-based proposals focuses on the inves-

tigative and control aspects. That is so because such aspects

are the basis to carry out the predictive one. It is noteworthy

that although SM has been used in different domains, ranging

from disaster response to public health, none of SM-based

proposals has been targeted to automate or facilitate tasks in

network management.

Regarding mashups, it is important to mention that their

use has been disseminated over the last decade thank mainly

to two facts [31]: (i) the number of online services, widgets,

and APIs rose significantly; and (ii) new usability-oriented

technologies (e.g., frameworks JavaScript, HTML5, and Web

Sockets) arose to allow the creation of more dynamic

applications and advanced Graphical User Interfaces (GUIs)

by end-users.

Thanks the dissemination of the mashup technology,

mashups mainly involving mapping services have been used

in diverse domains, ranging from fire emergencies to net-

work management. Table 2 presents relevant proposals in the

mashup technology by considering its application domain

and evaluated characteristics. This table reveals two facts: (i)

the most of mashup-based proposals neither evaluates the

complexity nor the time involved in the tasks supported by

mashups; and (ii) none of proposals that uses mashups for

network management employs the SM aspects.

We are pioneers in investigations that involve SM and

mashups to automate and facilitate the daily tasks of

network administrators. However, in the literature there

are proposals for network management that uses other

points-of-views. Table 3 presents relevant proposals in the

network management domain by considering their main

mechanism (i.e., Agent, Rule, Policy, SOA, and BPM). This table

reveals that in proposals such as COOLAID, NetOpen, Pyretic,

and Procera, network administrators are in charge of writ-

ing/programming policies, rules, or basic services using spe-

cific languages or controllers. Thus, when using such propos-

als, the work of the network administrator remains complex

and consumes a lot of time, hindering their use as situational

solutions. In turn, OMNI and MEICAN are proposals that pro-

vide friendly GUIs to facilitate several network management

tasks, but they were not conceived to be extended or im-

proved by network administrators. Therefore, these propos-

als also are constrained when used as situational solutions.

Unlike the reviewed proposals, we consider concepts

from SM and mashups to facilitate the handling of unex-

pected, dynamic, and heterogeneous situations happening in

network management. It is important to highlight that in ad-

dition to the traditional metrics (e.g., network traffic and time

of response) evaluated in such proposals, we evaluate the
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Table 2

Proposals on mashups.

Evaluated characteristics

Ref Description Domain SM Extensibility Flexibility Time of tasks

[14] A mashup providing information of active fires, evacuation

routes, and available hospitals

Fire emergencies � �

[15] An architecture that aims to facilitate the provisioning of

telco mashups for end-users

Telco services � �

[16] A platform to create mashups aimed to show immersive

street-level depictions of the physical world

Immersive mirror worlds � � �

[32] A system that allows the creation of new musical content by

developing multi-song mashups

Music � �

[33] A mashup-based approach to face the botnets security

problem in a more flexible and extensible way

Network management � �

[34] A mashup system to qualitatively evaluate the feasibility of

using Web 2.0 for network management

Network management � �

[17] A generic architecture to support the static composition of

network management applications

Network management � �

Table 3

Proposals on network management.

Ref Description Agent Rule Policy SOA BPM

[19] The COnfiguring cOmpLex and dynamic networks AutomatIcally and Declarative

(COOLAID) is a data-centric framework aimed to network configuration

operations

�

[21] The OpenFlow MaNagement Infrastructure (OMNI) proposes a multi-agent

system that offers an specific API to build up applications for managing

OpenFlow-based networks

�

[20] NetOpen is a solution that permits to create network composite services, by

combining networking primitives, aimed to monitor and configure

OpenFlow-based networks

�

[22] MEICAN is a solution that offers a Web-based friendly GUI to allow network

administrators to participate in the provisioning process of virtual

inter-domain circuits

�

[23] Pyretic is a domain-specific and imperative language built over Python, which

supports the development of modular applications for managing

OpenFlow-based networks

�

[24] Procera is a control framework that provides a language and an engine for

creating and executing policy-based applications intended to control and

monitor SDN-based networks

�

[25] A framework based on policy-controlled management patterns that offers

abstractions for orchestrating OpenFlow applications by combining individual

resilience services

�

time of recognition of nmsits, the time of composition of rich

dynamic mashments, and the time spent by network admin-

istrators when facing situations.

4. Rich dynamic mashments

To detail our approach, initially, we present the model

of nmsits. Afterwards, we introduce the model of RDMs. Fi-

nally, we present the RDM Architecture. Before introducing

the models, Table 4 defines the most important abbreviations

used to describe the proposed approach.

4.1. Fundamental models

We use JSON to represent the models of nmsits and RDMs.

That is so because JSON is more lightweight than the eXtensi-

ble Markup Language (XML) [35]. In such models, capital and

lowercase letters indicate names and values of JSON proper-

ties, respectively.

Model of nmsits. The nmsits are unexpected, dynamic,

and heterogeneous situations that network administrators

face in their daily work. Fig. 1(a) presents the model of nmsits.

The model of nmsits encoded in JSON is:

[{NAMESIT: namesit, NMSIT: [{nmsit1}, {nmsitn}]}]

Where, NAMESIT represents the global name of NMSIT

that is formed by several nmsitn. A single nmsitn, in turn, is:

[{SITUATION: situation, EAC: [{eac}]}]

Where, SITUATION is the specific name of nmsitn and EAC

is the collection of entities, attributes, and constraints in-

volved in such nmsitn. Each entity has a collection of at-

tributes and their corresponding constraints. Note that these

constraints serve to determine when nmsitn happens.

Examples of a single nmsit are:

(−) namesit = {drop of received packages},

situation = {sudden drop of received packages in virtual

router}, and

eac = {ENTITY : vyattaRouter,

[{ATTRIBUTE : receivedPkg,CONSTRAINT :< 95%}]}
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Table 4

Abbreviations.

Abbreviation Meaning Explanation

EAC Entity attribute constraint A collection of entities, attributes, and constraints involved in a nmsit

NMR Network management resource An entity intended to conduct network management operations

NMRS NMR as a service A service that offers the functionalities provided by NMR

NMSIT Network management situation An unexpected, dynamic, and heterogeneous situation on network management

NSR Network situational resource An entity that provides functionalities aimed to automate SM aspects

NSRS NSR as a service A service that offers the functionalities provided by NSR

OpR Operator resource An entity suitable to combine resources and, so, to create RDMs

OpRS OpR as a service A service that offers the functionalities provided by OpR

RDM Rich dynamic mashment A solution based on SM and mashups for carrying out network management

SM Situation management A discipline to addresses situations in dynamic systems

SMR Situation management resource An entity that provides interaction to and from entities involved in nmsits

SMRS SMR as a service A service that offers the functionalities provided by SMR

WMR Web-based network management resource A Web entity conceived or that can be used for network management

WMRS WMR as a service A service that offers the functionalities provided by WMR

Fig. 1. Fundamental models.

(−) namesit = {drop of sent packages},

situation = {unexpected drop of sent packages in a switch},

and

eac = {ENTITY : cysco2960,

[{ATTRIBUTE: sentPkg, CONSTRAINT: <90%}]}

An example of a nmsit formed by two nmsits is:

(-) namesit = {link has overload},

situation1 = {switch has overload in memory and proces-

sor},

eac1 = {ENTITY : cysco1000,

[{ATTRIBUTE: mem, CONSTRAINT: >95%},

{ATTRIBUTE: processor, CONSTRAINT: >97%}]},

situation2 = {switch has overload in memory and proces-

sor},

eac2 = {ENTITY : openvSwitch,

[{ATTRIBUTE: mem, CONSTRAINT: >96%},

{ATTRIBUTE: processor, CONSTRAINT: >98%}]}.

Model of RDMs. RDMs are tunable composite solutions

based on the SM discipline and the mashup technology for

carrying out network management. An RDM is characterized

by: (i) it recognizes automatically nmsits; and (ii) its work-

flow is generated without direct intervention of network ad-

ministrators. Fig. 1 (b) presents the model of RDMs that en-

coded in JSON is:

[{IDRDM: id, RDMNAME: name, δ: [{delta}], NMSITaddr:

[{nmsitaddr}]}]

Where, IDRDM, RDMNAME, NMSITaddr, and δ are the

unique identifier, the friendly name, the set of nmsits ad-

dressed, and the workflow of an specific RDM, respectively.

In turn, δ is:

[{IDD: idd, RES: [{res1}, {resn}], CONN: [{conn1}, {connn}]}]

Where, IDD is the unique identifier of δ, RES is the set of

resources that form a particular RDM, and CONN is the set
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Fig. 2. Proposed architecture.

of logical connections created among these resources. Note

that RES and CONN define how NMSITaddr are handled (i.e.,

investigated and/or resolved).

Resources are helpful entities to interact (e.g., to access,

communicate, and send-retrieve information) with network

elements involved in nmsits and for presenting, in an intelli-

gible way, information about nmsits. A resn is:

[{IDRES: idres, RESNAME: resname, OPERATION: [{op1,

opn}]}]

Where, IDRES and RESNAME are the unique identifier and

the name of the resource, respectively. OPERATION is the col-

lection of operations offered by the resource. An opn is:

[{OPNAME: opname, PARAM: [{par1, parn}], PROD: pro-

duce}]

Where, the name of the operation, the set of parameters

need to invoke the operation, and the data type that the op-

eration produces are, correspondingly, represented by OP-

NAME, PARAM, and PRODUCE.

Connections define the propagation of data between re-

sources by specifying which outputs of a resource are inputs

of other resources. A connn is:

[{IDC: idc, SRC: [{idresS, idparS}], DES: [{idresD, idparD}]}]

Where, IDC is the unique identifier, SRC is the source re-

source, and DES is the destination resource of the connection,

respectively. The resource (idresS or idresD) and the parame-

ter (idparS or idparD) represents the connection among SRC

and DES.

4.2. Architecture

The RDM Architecture (see Fig. 2) leverages the main

foundations of the SM discipline and the mashup technology

to facilitate the work of network administrators. In particu-

lar, this architecture offers: (i) the automatic recognition of

nmsits by using matching pattern algorithms; and (ii) the dy-

namic creation of RDMs by using composition templates.

Two actors (i.e., Mashment Creators and Network Admin-

istrators) are involved in tackling nmsits. The Creators are

mainly responsible for: (i) creating models/patterns of nm-

sits that will be automatically recognized by the proposed

approach, (ii) building up composition templates that will

be dynamically customized by the RDM-based approach for

A.1. Papers: accepted and on reviewing 111



O.M. Caicedo Rendon et al. / Computer Networks 94 (2016) 285–306 291

addressing nmsits recognized; and (iii) customizing and ex-

tending rich dynamic mashments. In turn, an Administrator is

fundamentally in charge of coping with nmsits by using RDMs

as well as customizing and extending them.

Fig. 2 depicts the RDM Architecture and the networks that

it can manage. Three layers made up this architecture: (i) the

Adaptation Layer that hides the intricacy and heterogeneity

of Managed Networks (e.g., SDN-based, NVE, and traditional

networks), (ii) the Dynamic Composition Layer that recog-

nizes nmsits and builds RDMs to face such situations; and (iii)

the Presentation Layer that depicts the GUIs of RDMs and the

RDM Maker. The next paragraphs present in detail these ar-

chitectural layers.

4.2.1. Adaptation layer

This layer provides services to the Dynamic Composition

Layer and offers as a mashable resource (i.e., services) any

entity that is useful to deal with nmsits. The elements that

form the Adaptation Layer are the set of Situation Manage-

ment Resources (SMR) and its respective representation as a

service (SMRS). An SMR is an entity that provides interaction

to and from network elements or entire networks involved in

nmsits.

There are five types of SMR: Network Management Re-

source (NMR), Web-based Network Management Resource

(WMR), Analytics Management Resource (AMR), Network

Situational Resource (NSR), and Operator Resource (OpR). An

NMR is an entity intended to conduct network management

operations. Examples of NMR are Ganglia [36], Nagios [29],

and ZenOSS [27] to manage traditional networks, Citrix Cen-

ter [37] for monitoring virtual resources, NetOpen [20] and

OMNI [21] to control OpenFlow-based networks, monitoring

systems based on SNMP, and all APIs that provide interaction

with network elements.

A WMR is a Web entity conceived or that can be used

to perform network management tasks. Examples of WMR

are the Multi Router Traffic Grapher (MRTG) [38] for generat-

ing Web pages with images presenting the traffic of network

links, the RRDTool [39] for displaying over time the perfor-

mance data of routers, the Yahoo Maps API [40] for showing

the geographic location of several network devices, and the

Google Chart API [41] for depicting the memory consump-

tion of virtual switches.

An AMR is an entity intended to analyze network man-

agement information. Examples of AMR are the Management

Traffic Analyzer [42] to interpret the functioning of network

devices supporting SNMP, the Junos Network Analytics Suite

[43] to understand what is happening on networks using

Junos devices, and the Sandvine Network Analytics [44] to

get right-time information of networks regardless of under-

lying technologies.

An NSR is an entity that provides functionalities aimed

to automate the aspects of SM. These functionalities are:

(i) collecting to retrieve information about nmsits, (ii) fus-

ing&correlating to merge and correlate the information re-

trieved by collecting, supporting the creation of investigative

plans (i.e., workflows useful to determine the cause of nm-

sits); and (iii) resolving to enable conducting network man-

agement operations aimed to change or preserve nmsits, as-

sisting the creation of resolutive plans (i.e., workflows helpful

to solve nmsits).

Examples of NSR are JESS [45], JBOSS Drools [46], and

Apache Camel [47]. The JESS is a general-purpose platform

that permits detecting and controlling situations by rules

(defined using XML or the JESS Rule Language) and Java ap-

plications. The JBOSS Drools is a solution that allows recog-

nizing and controlling generic situations by rules (defined us-

ing Drools Rule Language - DRL) and Java applications. The

Apache Camel is a platform that enables processing events

(i.e., generic situations) from multiple sources employing a

Complex Event Processor (CEP) based on Java.

An OpR is an entity that allows combining resources and,

so, building up and generating RDMs. There are three OpR

types: (i) control patterns (e.g., sequential, parallel, condi-

tional, and templates) that allow defining the workflow of

RDMs, (ii) structures for configuring and invoking (e.g., func-

tionalities to set security credentials of virtual routers) the

resources that form RDMs; and (iii) structures for receiving,

sorting, and filtering (e.g., functionalities to perform informa-

tion selection on text-plain containing data of NVEs) the re-

trieved information from any type of resource.

SMRS are mashable entities that offer as a service net-

work management operations of one or more NMR, WMR,

AMR, NSR, and OpR, aiming to hide the complexity of these

resources. The representation of resources as services con-

sists in defining and providing a common data format to in-

terchange information of resources, well-known interfaces to

resources, and a common protocol to communicate with such

interfaces.

Types of SMRS are NMR as a Service (NMRS), WMR as a

Service (WMRS), AMR as a Service (AMRS), NSR as a Service

(NSRS), and OpR as a Service (OpRS). An example of NMR is

the Floodlight Controller API to handle switches OpenFlow,

the associated NMRS is the Floodlight Service that allows, via

requests-and-responses HTTP, to monitor these switches.

Internally, a Wrapper and a UWrapper made up an SMRS.

A Wrapper is a service based on the REpresentational State

Transfer (REST) [48] architectural model. In turn, a UWrap-

per is a URI pointing to one Wrapper. Since every Wrapper

is based on REST, in the RDM architecture, the set of SMRS

provides a mediator bus in which the communication is con-

ducted by following the request-response model of HTTP.

This bus enables the interaction between the layers of Adap-

tation and Dynamic Composition.

The Adaptation Layer responds to HTTP requests from the

Dynamic Composition Layer as follows. First, the requests

are targeted to UWrappers. Second, Wrappers invoke one or

more SMR by using protocols (e.g., SNMP, SOAP, HTTP, Open-

Flow, and Proprietary) provided by network vendors for man-

aging their solutions. Third, each invoked SMR carries out

the requested functionalities by performing operations in

the Managed Networks. Fourth, Wrappers receive responses

from the invoked SMR. Fifth, Wrappers encode SMR results

on JSON data and put such data on HTTP responses. Sixth,

Wrappers send their HTTP responses to the Dynamic Com-

position Layer.

4.2.2. Dynamic composition layer

This layer offers RDMs to the Presentation Layer. In the

Dynamic Composition Layer is the RDM Maker that supports:

(i) the definition of nmsit patterns, (ii) the recognition of nm-

sit patterns, (iii) the specification of composition templates;
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Fig. 3. Automatic recognition of nmsits.

and (iv) the generation from templates of RDMs that face nm-

sits recognized. The Mashment Resource Repository, NMSit

Repository, Mashment Repository, Handler, Automatic NMSit

Recognizer, Dynamic Mashment Composer, and Mashment

Executor form the RDM Maker.

The Mashment Resource Repository stores metadata that

describes and points out functionalities offered by SMRS.

NMRS, AMRS, OpRS, and NSRS point out to services located

on privative repositories accessible only by network adminis-

trators. In turn, WMRS by definition points out services avail-

able on the Web. A metadata of SMRS is an instance of resn.

The following example of metadada describes two operations

provided by a particular NMRS. These operations are to get

the list of virtual switches and get the statistics of a virtual

switch by an OpenFlow Controller.

(−) [{IDRES: /path1, RESNAME: nmrs1,

OPERATION : [{OPNAME : SwitchList,

PARAM : [{IPCTRL : ipctrl, PORT : port,USER :

user, PWD : pwd}],

PROD: json},

{OPNAME : SwitchStat,

PARAM : [{IPCTRL : ipctrl, PORT : port,USER :

user, PWD : pwd, IDSWITCH : ids}],

PROD: json}]}]

The NMSit Repository stores nmsit patterns defined by

Mashment Creators. A pattern is an instance of the nmsits

model that represents a collection of entities, attributes, and

constraints. These constraints are conditions defined in at-

tributes of entities for detecting nmsits. Thus, this repository

contains the patterns that allows recognizing nmsits.

The Mashment Repository stores metadata of composi-

tion templates and RDMs that handle the recognized nmsits.

A metadata of RDM stored in this Repository is an instance

of the RDM model (see Section 4.1). It is relevant to point out

that, first, if several RDMs constitute one RDM, its metadata

includes the metadata of them. This inclusion means that a δ
may encompass other δs. Second, several SMRS can be used

and connected to form a δ that defines how to face one or

more nmsits. Third, as our approach inherits the end-user

composition model from mashups, network administrators

can also customize and enhance RDMs.

The composition templates are useful skeletons to auto-

matically compose RDMs. The metadata of templates is:

[{IDTEMPLATE: id, NAMESIT: namesit, δ: delta}]

Where, IDTEMPLATE is the unique identifier of template

and δ is a predefined workflow (i.e., an investigative and/or

resolutive plan) to deal with NMSitaddr identified by NAMESIT.

The Handler manages (i.e., search, create, update, and

delete) the metadata of nmsits and composition templates

by manipulating the repositories of NMSit and Mashment.

The Mashment Creator handles in the GUI of the NMSit De-

signer the nmsits metadata. The Mashment Creator manages

in the GUI of the Template Designer the metadata of compo-

sition templates. The Handler also manages the Mashment

Resource Repository to support the enhancement and im-

provement of RDMs that can be conducted by network ad-

ministrators in the GUI of the RDM Designer.

The repositories described above support the generation

of RDMs. Such generation follows two phases:

(1) when < nmsits > — mechanism to automatically rec-

ognize nmsits.

(2) then < rdms > — mechanism to dynamically compose

mashments.

The first phase is the automatic recognition of nmsits by

using matching pattern algorithms. The second phase is the

dynamic composition of RDMs by composition templates.

The Automatic NMSit Recognizer (see Fig. 3) conducts the

automatic recognition of nmsits. The modules Sensing and

Matching Mechanism form the Recognizer. The Sensing is

in charge of retrieving network management information by

SMRS and delivering such information as streaming to the

Matching Mechanism. The retrieving of information depends

on communication model (pull or push) provided by SMRS.

The Matching Mechanism recognizes a nmsit as follows.

First, it reads and loads nmsit patterns from the NMSit Repos-

itory. Second, it obtains information from Managed Networks

and their devices by Sensing. Third, it conducts matching

operations (i.e., comparison of samples vs patterns) among

the network information and the loaded nmsit patterns.

RETE [45] and PHREAK [46] are algorithms that can be used

to carry out this matching. Fourth, every time a nmsit is
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Fig. 4. Dynamic composition of mashments.

detected (i.e., there is match), this mechanism defines

NMSITaddr and invokes the Dynamic Mashment Composer.

The Dynamic Mashment Composer (see Fig. 4) performs

the dynamic composition of RDMs. This Composer creates

RDMs by automating our process to develop and launch

mashments [26]. Specifically, it automates the tasks Select,

Configure, and Combine of such process. Select is to define

the resources (i.e., RES) to be used to generate RDMs. Config-

ure is to provide all functioning settings of resources selected.

Combine is to define how a particular RDM will face an spe-

cific NMSITaddr by creating diverse connections (i.e., CONN)

among selected and configured resources.

The modules Selector and Generator form the Dynamic

Mashment Composer. The Selector operates as follows. First,

it receives NMSITaddr from the Automatic NMSit Recognizer.

Second, it retrieves NAMESIT from NMSITaddr. Third, it re-

trieves composition templates by reading the Mashment

Repository. Fourth, it selects the δ (RES and CONN) for such

NMSITaddr. This selection is carried out by calculating the

highest linguistic similarity among the NAMESIT of compo-

sition templates and the retrieved from NMSITaddr. Such cal-

culation is conducted by using the linguistic similarity algo-

rithm [49] that is based on NGram [50], CheckSynonym [51],

and ElementMatch [52]. Fifth, it invokes the Generator.

The Generator operates as follows: (i) it receives δ and

NMSITaddr from the Selector, (ii) it uses such δ and NMSITaddr

to generate an instance of the RDM model, (iii) it stores in the

Mashment Repository the RDM generated by writing the cor-

responding metadata; and (iv) it publishes such RDM in the

RDM Designer of the RDM Maker GUI. It is noteworthy that

using such Designer, the network administrator can enhance,

improve, and run RDMs.

The Mashment Executor executes RDMs. The Mashment

Router and the Mashment Engine form the Executor. The

Router is in charge of coordinating the execution of δs that

are the core of RDMs. Thus, on runtime, the Router: (i) it re-

ceives invocations from the Engine, which means that the

Router is called by the Engine to select RDMs to serve initial

requests, (ii) it selects and links multiple resources (including

one or more RDMs into another RDM) to attend invocations,

by reading information from the repositories of Mashments

and Resources; and (iii) it calls the Engine to request the in-

stantiation of RDMs and their underlying resources.

The Mashment Engine is a lifecycle manager responsible

for creating, deleting, and caching instances of RDMs. When

initial requests to execute RDMs arrive from a browser, the

Engine invokes the Router. Afterwards, the Engine waits in-

dications from the Router to manage the instances of RDMs

and their constitutive resources.

4.2.3. Presentation layer

This layer executes and presents, in the client-side, the

RDM Maker GUI and the RDM GUI. The NMSit Designer, the

Template Designer, and the RDM Designer form the RDM

Maker GUI. All these GUIs are accessible by Web browsers.

The NMSit Designer is a Web-based friendly GUI in which

Mashment Creators define nmsit patterns to be recognized.

The Template Designer is another GUI where Mashment Cre-

ators specify composition templates used to cope with nm-

sits. The RDM Designer is the GUI in which network adminis-

trators can enhance, save, delete, and run RDMs.

The RDM GUI represents the visualizations of composi-

tions generated by the RDM Maker. Examples of visualiza-

tions useful for network management are [53]: (i) a 2D scat-

terplot chart to present information about packet errors in a

virtual router involved in a nmsit; and (ii) a link/node repre-

sentation to display a network topology (e.g., a glyph-based

representation) and 2D charts (e.g., line and bar charts) to

provide additional information of corresponding nodes and

links.

5. Proof-of-concept

To assess our approach, first, we implemented the RDM

System prototype that is an instance of the architecture de-

scribed in the previous chapter. Second, we built a test en-

vironment. Third, we conducted a late evaluation of our ar-

chitecture. A late evaluation of a software architecture takes

place when its implementation (e.g., the RDM System proto-

type) is complete [54].
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Fig. 5. RDM system prototype.

The late evaluation of the proposed approach is

performance-based [55] and intended to determine its

feasibility in terms of time-recognition, time-composition,

time-consuming, time-response, and network traffic. The

time-recognition and time-composition related to the

mechanisms for automatic recognition of nmsits and dy-

namic composition of mashments, respectively. The time-

consuming associated with the process that network ad-

ministrators need to carry out for facing nmsits. The time-

response and traffic related to the behavior during runtime

of solutions used to handle nmsits.

5.1. Prototype

Fig. 5 depicts the RDM System prototype and the Man-

aged Networks. The prototype was built upon the Mashment

Maker [11] [26] and deployed by using a MySQL Server and an

Apache-Tomcat Server (running a Web Engine and a Drools

Engine). The Maker is a browser-based mashup development

environment that provides functionalities for assisting Mash-

ment Creators and network administrators in the creation,

reuse, and launching of traditional mashments.

Presentation layer. The Web Engine deploys the NMSit De-

signer, the Template Designer, and the RDM Designer. These

designers were built using the Yahoo User Interface (YUI) API

and the Google Chart API. These APIs are based on the Asyn-

chronous Javascript and XML (AJAX), granting dynamic and

interactive interaction of all GUIs of designers with SMRS.

Dynamic composition layer. The Web Engine also de-

ploys the modules Sensing, Handler, and Mashment Execu-

tor. These modules are services implemented by using the

Java Language and following the REST architectural model

[56]. REST was used because it is the de-facto model for de-

veloping mashups. Specifically, we implemented: (i) Sensing

(i.e., SensorService) for interacting with Managed Networks,

(ii) Handler (i.e., HandlerService) for managing the Mash-

ment Repository, the NMSit Repository, and the Mashment

Resource Repository; and (iii) Mashment Executor (i.e., Ex-

ecutorService) for controlling the execution and lifecycle of

RDMs.

The Drools Engine deploys the Matching Mechanism and

the Dynamic Mashment Composer. The Matching Mecha-

nism is a Java-based application that uses for recognizing nm-

sits the implementation of the PHREAK algorithm offered by

Drools. Furthermore, this mechanism translates from JSON to

DRL the nmsit patterns stored in the RDMDB. This translation

is needed because Drools only understand DRL.

The Dynamic Mashment Composer is also a Java-based

application that customizes composition templates. It is to

note that, first, the Mashment Creator defines these tem-

plates in the Template Designer that saves them in JSON

format in RDMDB. Second, once a template has been cus-

tomized, it is also stored using JSON in RDMDB and, fur-

ther, automatically exposed in the RDM Designer like a visual

element.

RDMDB is a unique database that implements the

Mashment Resource Repository, the Mashment Repository,

and the NMSit Repository. A MySQL Server deploys such

database.

Adaptation layer. SMRS are also services that follow the

REST architectural model. In particular, REST-based services

(i.e., POXService, BeaconService, and FloodlightService) en-

ables the interaction with the Managed Networks of this

proof-of-concept.

5.2. Managed networks

In the proof-of-concept, we chose to manage SDN-based

networks because of their commercial and investigative sig-

nificance. SDN proposes an architecture for future networks
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Fig. 6. Test environment.

[57], which separates data and decision policies to sim-

plify the network operation. SDN-based networks follow

three layers [58–60]: (i) the packet forwarding datapath (e.g.,

switches and routers passing packets), (ii) the Network Op-

erating System (NOS) that controls such datapath by using a

vendor-independent protocol; and (iii) the Network Services

(e.g., a new routing protocol) running on the top of NOS.

There are different proposals for deploying SDN like the

Forwarding and Control Element Separation (ForCES) frame-

work [61] and OpenFlow [62]. In OpenFlow, the Controller

(i.e., NOS), such as POX [63], Beacon [64], and Floodlight [65],

handles network devices (i.e., the datapath) by the Open-

Flow protocol. Furthermore, the Controller supports deploy-

ing new and centralized Network Applications (i.e., Network

Services), such as groundbreaking applications to path selec-

tion and novel multicasting protocols.

5.3. Test environment

To evaluate the proposed approach, we conducted a

proof-of-concept in a test environment (see Fig. 6). In such

environment, the RDM System prototype was executed on a

Web engine 7.0.26 and a Drools engine 6.1. RDMDB was ex-

ecuted on a MySQL 5.5. The RDM System and RDMDB were

deployed on a machine with Linux Ubuntu O.S., 2.53 GHz In-

tel Core i5 processor, 4 GBytes RAM, and 250 GBytes hard

disk. In turn, the applications used to evaluate the proposed

approach were executed on a Test Client with 2 GBytes RAM

and 2.53 GHz core 2 duo processor.

In the test environment, we managed three SDN-based

networks controlled by Beacon 1.0.2, POX 1.0.0, and Flood-

light 0.9. These controllers handled a lot of Open vSwitches

1.4; later in each evaluation, we will define the exact quan-

tity of switches per network. Each OpenFlow controller was

executed on a machine with 2.33 GHz Core 2 Duo processor,

2 GBytes RAM, and 160 GBytes hard disk. In turn, the Open

vSwitches were executed on Mininet 2.2.1 and deployed on

a server with 8 GBytes RAM and 3.4 GHz Core i7 processor.

Mininet [58] is a software useful for emulating OpenFlow-

based networks.

Fig. 7 presents the high-level operation of our test envi-

ronment: (i) the RDM System gets the network information

of SDN-based networks by the modules Sensing and SMRS,

(ii) the above-mentioned modules return the network infor-

mation to the RDM System, (iii) it retrieves the nmsit pat-

terns from RDMDB, (iv) the RDM System conducts a match

operation among the information and patterns retrieved, (v)

if there is a match, it retrieves from RDMDB a composition

template to address the recognized nmsit, (vi) it uses the re-

trieved template to generate the RDM that will address the

detected nmsit; and (vii) it executes network management

operations in the SDN-based networks when the network ad-

ministrator launches the generated RDM by the Mashment

Maker GUI.
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Fig. 7. Test environment high-level operation.

5.4. Time-recognition

The time-recognition is the time that the RDM Sys-

tem takes for recognizing nmsit patterns. To measure

time-recognition, we used two OpenFlow-based networks

handled by POX and Floodlight (see Fig. 6). Each controller

handled a datacenter network topology with 259 switches

distributed in 4 levels of depth (i.e., layers of access, aggrega-

tion, core, and edge) and 6 servers per rack. Thus, in total, we

used 2 controllers, 518 switches, and 3626 ports. In this and

the following evaluations involving average time in millisec-

onds (ms), we took 30 measurements with 95% confidence

level.

Using the NMSit Designer, we defined a nmsit pattern to

detect when any port of any switch handled by POX or Flood-

light had more than 5% of dropped packets. Fig. 8 depicts

such pattern encoded on JSON and DRL. It is important to

highlight that, first, the RDM System performs the transla-

tion from JSON to DRL. Second, for network administrators

and Mashment Creators such translation is always hidden.

In the time-recognition evaluation, first, we loaded only a

nmsit pattern (i.e., just a rule in the Drools Engine) and var-

ied the number of generated nmsits from 250 to 1750 in each

OpenFlow-based network. Thus, the total number of gener-

ated nmsits in each evaluation was from 500 to 3500. Second,

we varied the number of loaded rules from 1 to 400 and once

again the amount of generated nmsits from 500 to 3500.

Fig. 9 presents the time-recognition results. These re-

sults reveal that the RDM System is able to recognize nm-

sit patterns in a short time; in the worst behavior ap-

proximately 30.3 ms to identify 3500 nmsits having 400

loaded rules/patterns. Furthermore, the time-recognition is

increased linearly in a negligible way with the growth of

nmsits and loaded rules. Consequently, we can state that, in

terms of time-recognition, it is feasible to use our approach

to dealing effectively with nmsits.

5.5. Time-composition

The time-composition is the time that the RDM System

takes for dynamically customizing composition templates

and, so, generating RDMs. To measure time-recognition, we

use three OpenFlow-based networks handled by POX, Flood-

light, and Beacon (see Fig. 6). Each controller was in charge of

handling a datacenter network topology with 259 switches

distributed in 4 levels of depth and 6 servers per rack. Thus,

in total, we used 3 controllers, 777 switches, and 4662 ports.

Using the Template Designer, we defined composition

templates for monitoring when ports of switches handled

by POX, Floodlight, or Beacon had more than 5% of dropped

packages. Fig. 10 depicts a snippet of a composition template

and the corresponding dynamic mashment generated by the

RDM Maker.

In the time-composition evaluation, first, we varied the

number of resources forming the composition templates

from 2 to 8. It is noteworthy that more than 60% of mashups

consist of 3 − 8 components/resources [66]. Second, we

modified the number of templates from 10 to 50; note that

the number of templates defines the number of simultane-

ously generated RDMs.

Fig. 11 presents the time-composition results. These re-

sults reveal that the RDM System generates RDMs by cus-

tomizing composition templates in a short time. In the worst

behavior, approximately 14500 ms to dynamically compose

50 RDMs formed by 8 resources. Furthermore, the time-

composition increases linearly with the growth of generated

RDMs and resources per composition template. Considering,

first, the above results. Second, the mechanism for generating

RDMs has similar time-composition behavior than the com-

position proposals introduced on other application domains

[67]. We can state that, in terms of time-composition, it is

feasible to use the proposed approach to coping effectively

with nmsits.

5.6. Time-consuming

The time-consuming (i.e., Tcons) is the time that network

administrators spend to cope with nmsits. In this evalua-

tion, we raise a nmsit called NMSit-AS. Let’s consider that

a network administrator manages three Autonomous Sys-

tems, called AS1, AS2, and AS3. AS1, AS2, and AS3 are handled

by Beacon, Floodlight, and POX, respectively. When there is
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Fig. 8. Test nmsit.
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Fig. 9. Time-recognition behavior.

unexpected degradation in the performance of links that

connect these ASs, he/she needs to identify in each AS which

are the Open vSwitches that are causing such performance.

In this way, he/she requires to rapidly and easily obtain

a situational solution that presents, in an integrated, vi-

sual, and intelligible way, information about links and Open

vSwitches.

To deal with NMSit-AS, the network administrator tests

several options: (i) without RDM by the Situational Script,

(ii) without RDM by the Performance Monitoring Mashment

(PMM); and (iii) with the proposed approach by the RDM of

Performance (RDMP). In general terms, the Situational Script

is an application programmed and executed by the network

administrator in a low-abstraction level. PMM is a composite

solution developed and launched by the network adminis-

trator in the Mashment Maker [11] [26]. RDMP is a mashment

automatically generated by the RDM System and offers the

same functionalities as PMM.

To assess Tcons, we use the Keystroke–Level Model (KLM)

[68] because it is useful to estimate the time that network
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Fig. 10. Snippet of template and generated mashment.
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Fig. 12. Beacon Web Tool [64].

administrators spend to carry out tasks supported on com-

puter keyboard and mouse. In KLM, each task is modeled

as a sequence of actions. The original KLM-actions [68] and

some helpful extensions [69] are: (i) press and release a key −
k = 0.2 s, (ii) type a string − nk ∗ 0.2 s, (iii) point the mouse −
p = 1.1 s, (iv) hold or release the mouse − b = 0.1 s, (v) move

the hand from mouse to keyboard − h = 0.4 s, (vi) drag-and-

drop a visual element − dnd = 1.3 s; and (vii) wire two visual

elements − wire = 4.1 s.

Addressing with Situational Script. Tcons: script is the spent

time by the network administrator for addressing NMSit-AS

with the Situational Script. Without the mashment-based ap-

proach, for retrieving situational information, he/she uses a

monitoring Web-based tool per controller, such as Beacon

Web Tool [64], POX Web Tool [63], and Floodlight Web Tool

[65]. As these tools operate similarly, Tcons:beacon = Tcons:pox =
Tcons: f loodlight .

The network administrator retrieves information in HTML

tables about the packet traffic of a switch from the Bea-

con Web Tool [64], by the actions (see Fig. 12): (i) point

the mouse to Core Components tab, (ii) press and release

the mouse to select the Core Components tab, (iii) point the

mouse to the Overview tab that presents a switches list, (iv)

press and release the mouse to select the Overview tab, (v)

point the mouse to select a switch, (vi) press and release the

mouse to select a switch, (vii) point the mouse to the Ports

link; and (viii) press and release the mouse to select Ports of

switch. Considering these actions, Tcons:beacon = h + 4p + 8b =
5.6 s and the time of separately use the above mentioned

tools is Tcons:nonIntegrated = 16.8 s.

To obtain in a unique GUI, the retrieved information

by the Web-based tools, the network administrator devel-

ops and launches the Situational Script. As this script gen-

erates HTML tables and RRDTool images, Tcons:dev = Ttable +
TrrdImages. Considering only the time to type the code for

generating the tables and images, Tcons:dev = (h + 290k) +
(h + 1200k) = 298.8 s. In turn, Tcons:lau = h + p + 2b + 11k =

3.9 s. Thus, Tcons:script = Tcons:nonIntegrated + Tcons:dev + Tcons:lau =
319.5 s.

Addressing with PMM. Tcons: pmm is the time spent by the

network administrator for handling NMSit-AS with PMM.

Here, Tcons:pmm = Tcons:dev + Tcons:lau + Tcons:use. As PMM is de-

veloped in the Mashment Maker [11] [26], Tcons:dev = Tsel +
Tcon + Tcom.

To develop PMM (see Fig. 13), the network administrator

initially selects Visual Resources by dragging-and-dropping

Beacon, POX, Floodlight, RRDTool, and OF Monitor. Thus,

Tsel = 5 ∗ dnd = 6.5 s. Afterwards, he/she configures the

selected resources by providing the functioning parameters

of Beacon, POX, Floodlight, and RRDTool. As he/she manually

writes these parameters, Tcon:beacon = Tcon:pox = Tcon: f loodlight =
[4 ∗ (p + h + 2b) + (16 + 8 + 8 + 5) ∗ k] = 14.2 s and

Tcon:rrd = p + h + 2b + 3k = 2.3 s. Therefore, Tcon = 44.9 s.

Finally, he/she creates connections among the selected and

configured resources by wiring Beacon - OF Monitor, POX - OF

Monitor, Floodlight - OF Monitor, and RRDTool - OF Monitor.

Thus, Tcom = 4 ∗ wire = 16.4 s.

Before requesting the execution of PMM, the network ad-

ministrator saves it: (i) point the mouse in the Save button

and click it, (ii) point the mouse in the dialog that asks for the

mashment name and click it; and (iii) type the string “PMM”.

Once PMM has been saved, he/she launches it by clicking the

button Run. Thus, Tcons:lau = 3(h + p + 2b) + 3k = 5.7 s.

On runtime, PMM (see Fig. 14) allows the network ad-

ministrator to retrieve information about NMSit-AS. He/she

carries out in PMM the following actions to retrieve generic

information of switches/links in three different controllers:

(i) points the mouse to the Controllers list, (ii) presses

and releases the mouse to select three distinct controllers,

(iii) points the mouse to the button Switches/Links; and

(iv) presses and releases the mouse to click the but-

ton Switches/Links. Furthermore, to retrieve information

about flows, tables, ports, or traffic of three switches: (i)

presses and releases the mouse to select three switches in
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Fig. 13. Rich Dynamic Mashment of Performance.

Fig. 14. RDMP and PMM on runtime.

different controllers, (ii) points the mouse to the button

Flows, Tables, Ports, or Traffic; and (iii) presses and releases

the mouse to click the button Flows, Tables, Ports, or Traffic.

Thus, Tcons:use = h + 3p + 16b = 5.3 s.

Since we have already calculated Tcons:dev, Tcons: lau, and

Tcons: use, we can calculate Tcons: pmm. As a result, it is expected

that a network admistrator takes 78.8 s to deal with NMSit-

AS by using PMM.

Addressing with RDMP. Tcons: rdmp is the time spent by the

network administrator for facing NMSit-AS with RDMP. As

RDMP is generated by the RDM System (see Figs. 10 and

13), Tcons:rdmp = Tcons:lau + Tcons:use. As RDMP is a mashment

dynamically composed, the network administrator launches

it by clicking the button Run. Therefore, Tlau = h + p + 2b =
1.7 s. Furthermore, since on runtime RDMP and PMM provide

identical functionalities and show the same GUI (see Fig. 14),

Tcons:use = 5.3s. Thus, Tcons:rdmp = 6s.

Fig. 15 depicts the time-consuming results that reveal: (i)

the time that the network administrator spends for devel-

oping RDMP is zero, attained by mechanisms for automatic

recognition of nmsits and dynamic composition of mash-

ments; and (ii) because every RDM is ready to be launched by
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the RDM Designer, the time for launching RDMP (Tcons:lau =
1.7 s) is less than for SituationalScript (Tcons:lau = 3.9 s) and

PMM (Tcons:lau = 5.7 s).

Summing up, the time for addressing NMSit-AS with

RDM (Tcons:rdmp = 6 s) is less (about 92.3%–98.1%) than with-

out our approach (Tcons:pmm = 78.8 s and Tcons:script = 319.5 s).

This global result and the results per task demonstrate that,

in terms of time-consuming, it is feasible to use our approach

to handling effectively nmsits.

5.7. Time-response

To continue the evaluation, it is measured the time-

response of RDMP and Beacon Web Tool when conducting the

operations SwitchesList and LinksList over the networks of the

test environment (see Fig. 6). These operations offer visual

information of Open vSwitches and their links, which is use-

ful to tackle the NMSit-AS.

In the time-response evaluation of SwitchesList, the

number of Open vSwitches was varied from 20 to 100

per OpenFlow-based network. Thus, the total number of

switches in each evaluation was 60, 120, 180, 240, and 300.

Fig. 16 presents the corresponding results. Considering that

the time-response (r in ms) of Web systems can be ranked as

optimal (r ≤ 100), good (100 < r ≤ 1000), admissible (1000 <

r ≤ 10000), and deficient (r > 10000) [70], the time-response

results reveal: (i) SwitchesList of RDMP has a good r that grows

negligibly (less than 1 ms per switch) when the number of

switches is increased in linear and tree topologies; and (ii) r is

ranked as optimal for Beacon Web Tool and as good for RDMP;

this result was expected because Beacon Web Tool operates

with one type of controller and RDMP with three different

types of controller.

In the time-response evaluation of LinksList, the number

of links was varied from 50 to 250 per OpenFlow-based net-

work. Therefore, the total number of links in each evaluation

was 150, 300, 450, 600, and 750. Fig. 17 depicts the corre-

sponding results that reveal: (i) LinksList of RDMP has a good r

that grows negligibly (less than 1 ms per link) when the num-

ber of links is increased in linear and tree topologies; and (ii)

r is ranked as optimal for Beacon Web Tool and as good for

RDMP; again, this result was expected because Beacon Web

Tool works with one type of controller and RDMP with three

different types.

Although, at runtime, RDMP uses several software mod-

ules (e.g., NMRS like BeaconService and Visual Resources like

OF Monitor) to integrate and present monitoring informa-

tion from different controllers, its behavior on time-response

is good for the most of operations and regardless of con-

trollers, topologies, and number of switches and links. Such

behavior is because the Adaptation Layer hides the hetero-

geneity of controllers and, in turn, their centralized nature

handles the number of network elements. Summing up, the

time-response evaluation results demonstrate that, in terms

of such metric, it is feasible to use the proposed approach to

dealing with nmsits like the raised NMSit-AS.

5.8. Network traffic

To continue the evaluation, we measured the network

traffic generated by RDMP and Beacon Web Tool when carry-

ing out SwitchesList and LinksList in the networks of the test

environment (see Fig. 6). In this and the following evalua-

tions, the network traffic is expressed in Bytes or KBytes.

In the traffic evaluation of SwitchesList, the number of

Open vSwitches was varied from 20 to 100 per OpenFlow-

based network. Thus, the total number of switches in each

122 Appendix A. Scientific Production



302 O.M. Caicedo Rendon et al. / Computer Networks 94 (2016) 285–306

0

25

50

75

100

125

150

175

200

225

60 120 180 240 300

ti
m

e-
re

sp
o

n
se

 (
m

s)

 # switches

Beacon Web Tool on Linear
Beacon Web Tool on Tree

Rich Dynamic Mashment of Performance on Linear
Rich Dynamic Mashment of Performance on Tree

Fig. 16. Time-response on SwitchesList.
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Fig. 17. Time-response on LinksList.

evaluation was 60, 120, 180, 240, and 300. Fig. 18 presents

the corresponding results in which there is not discrimina-

tion by topology because, the traffic generated by Switches-

List of RDMP and Beacon Web Tool was independent of topolo-

gies (linear and tree) tested. In addition, these results reveal:

(i) the traffic generated by SwitchesList of RDMP grows neg-

ligibly (approx 112 Bytes per switch) when the number of

switches is increased, (ii) in relation to this operation, RDMP

generates more traffic than Beacon Web Tool; and (iii) the ad-

ditional traffic generated by RDMP is always less than 10%.

Considering that Beacon Web Tool operates with just one type

of controller and RDMP integrates data from three different

types, the above facts corroborate that SwitchesList of RDMP

has a good behavior on network traffic.

In the traffic evaluation of LinksList, the number of links

was varied from 50 to 250 per OpenFlow-based network.
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Fig. 18. Traffic on SwitchesList.
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Fig. 19. Traffic on LinksList.

Therefore, the total number of links in each evaluation was

150, 300, 450, 600, and 750. Fig. 19 depicts the correspond-

ing results in which there is not discrimination by topology

because the traffic generated by LinksList of RDMP and Beacon

Web Tool was independent of topologies tested. Furthermore,

these results reveal: (i) the traffic generated by LinksList of

RDMP grows negligibly (approx 129 Bytes per link) when the

number of links is increased, (ii) regarding this operation,

RDMP generates more traffic than Beacon Web Tool; and (iii)

the additional traffic generated by RDMP is always less than

5%. Since the Beacon Web Tool operates with just one type

of controller and RDMP integrates data from three different

types, the above facts corroborate that LinksList of RDMP has

a good behavior on network traffic.

Regarding the results of the network traffic evaluation

of RDMP, it is important to mention: (i) JSON was used to
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decrease the size of information exchanged between the lay-

ers of Adaptation, Dynamic Composition, and Presentation

because JSON is less verbose than XML; and (ii) the size of

GUIs is too small to impact the quantity of traffic generated

by RDMP. Furthermore, although RDMP integrates monitor-

ing information from different controllers by using several

additional software modules, its extra traffic is always less

than 10% (worst operation - SwitchesList). Summing up, the

above results corroborate that, in terms of network traffic, it

is feasible to use our approach to coping with nmsits like the

raised NMSit-AS.

5.9. Final remarks

The addressing with and without RDM of several nmsits

was evaluated and analyzed in terms of: (i) time-recognition

and time-composition related to mechanisms of automatic

recognition of nmsits and dynamic composition of mash-

ments, (ii) time-consuming related to the process followed

by network administrators to face nmsits; and (iii) time-

response and network traffic associated with the runtime be-

havior of solutions used to handle nmsits.

The evaluation results revealed several facts. First, the

RDM Architecture allows recognizing automatically and

composing dynamically rich dynamicmashments in a short

time. Second, if network administrators cope with nmsits

(e.g., NMSit-AS) by developing and launching static mash-

ments (e.g., PMM), the time-consuming decreases. Third, such

decreasing is greater when mechanisms to automatically rec-

ognize nmsits and dynamically compose mashments are used

(e.g., RDMP). Fourth, although an RDM uses extra software

layers to face nmsits, such layers generate few additional

time-response and network traffic in relation to Web-based

network management tools (e.g., Beacon Web Tool).

Summing up, the evaluation results demonstrate that,

in terms of time-recognition, time-composition, time-

consuming, time-response, and network traffic, it is feasible

to use the proposed approach to deal with nmsits in an ef-

fective way. Therefore, such results confirm the relevance of

the models of rich dynamic mashments and nmsits, the mech-

anisms to automatically recognize nmsits and dynamically

compose mashments, the RDM Maker, and the RDM Archi-

tecture as a whole.

From a qualitative point of view, our approach provides

mainly flexibility and extensibility. The flexibility refers to

that RDM allows network administrators by themselves to

customize and improve their workspace. They do not re-

quire a lot of Web programming skills to create situational

management capabilities (e.g., PMM and RDMP) because RDM

provides a high-level abstraction (i.e., mashable components)

of network management technologies as well as of situa-

tional management operations.

The extensibility refers to that with our approach, net-

work administrators can create (by conducting a simple pro-

cess and using existing mashments) novel, advanced, and

complex situational composite services targeted to overcome

nmsits. It is possible because RDM leverages the composition,

abstraction, and reusing models from mashups as well as al-

lows implementing the investigative and control aspects of

SM. Furthermore, in our approach the Mashment Creators

can extend the RDM Maker by aggregating mashments, nmsit

patterns, and composition templates. Such extension leads to

improving the workspace of network administrators.

According to the evaluation results and the qualitative

characteristics of RDM, it can be considered as a step for-

ward in the network management, the SM discipline, and

the mashup technology. In this regard, the network manage-

ment is driven towards an environment focused on situa-

tions, composite situational solutions, and network adminis-

trators. The mashup foundations are brought up to SM to car-

rying out its investigative and control aspects. The mashup

technology is led to a novel application domain located at the

intersection of SM and network management.

6. Conclusions and future work

In this paper, we investigated the feasibility of using SM

and mashups as an effective approach to facilitate the daily

work of network administrators. The more significant con-

tributions achieved by such investigation are: (i) the nmsits

model that presented a way to characterize unexpected, dy-

namic, and heterogeneous situations in the network manage-

ment domain by SM, (ii) the rich dynamic mashments model

that introduced how to use mashups to conduct the inves-

tigative and control aspects of SM on network management,

(iii) the mechanism to automatically recognize nmsits that

presented how to detect such situations by rules and match-

ing algorithms, (iv) the mechanism to dynamically compose

mashments that introduced how to generate situational solu-

tions by composition templates, and (v) the architecture that

supported the proposed approach as a whole.

We also presented a prototype that carried out our ap-

proach and its evaluation in an SDN-based realistic scenario.

In this scenario, we raised diverse nmsits and analyzed the

feasibility of using rich dynamic mashments as an effective

approach for network management. Considering the evalu-

ation results, we can state about our approach: (i) it rec-

ognizes nmsits and composes rich dynamic mashments in a

short time, (ii) it decreases the consumption of time of daily

tasks performed by network administrators when facing nm-

sits, (iii) it has a good behavior in terms of time of response;

and (iv) it has a good behavior in terms of network traffic

because its additional entities and layers generate few extra

traffic (less than 10%) in relation to the solutions currently

used to cope with nmsits.

In the next research steps, we plan to extend and enhance

the prototype to support other management tasks (e.g., con-

figuration and accounting) on traditional, SDN-based, and

virtual networks. Finally, we also are interested in evaluat-

ing the productivity of network administrators that use rich

dynamic mashments.
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Abstract— The work performed by network administrators
to address sudden, dynamic, heterogeneous, and time specific
situations that happen in the network management domain is
complex. In this paper, we introduce an approach that allows
network administrators to overcome the complexity of handling
these network management situations (called NMSits). The ap-
proach is made up of Mashments that are special mashups used to
cope with NMSits, the process to develop and execute Mashments,
and the Mashment Maker that supports such model and process.
We use IT Service Management metrics to evaluate our approach,
measuring the complexity of facing, with and without the Maker,
a specific NMSit that occurs in several networks based on
the Software Defined Networking paradigm. The evaluation
results demonstrate that the complexity decreases when network
administrators use our approach to handle NMSits.

Keywords-Complexity; Mashment; Mashup; NMSit, Situation
Management; Web-based Network Management;

I. INTRODUCTION

The Situation Management (SM) discipline provides so-

lutions that enable analyzing, correlating, and coordinating

interactions among people, information, technologies, and ac-

tions intended to overcome situations happening or that might

happen in dynamic systems [1] [2]. SM foundations are [3]:

(i) a Situation that is modeled as a collection of entities in a

domain, their attributes, and relationships in a time interval, (ii)

the investigative aspect related to retrospective cause analysis

of Situations, (iii) the control aspect devised to change or

preserve Situations; and (iv) the predictive aspect aimed to

predict Situations.

SM has been used in domains such as disaster response [4],

smart power grid networks [5], security crisis management [6],

and public health [7]. However, to the best of our knowledge,

there is no SM-based approach to address the complexity of

sudden, dynamic, heterogeneous, and time specific Situations

that network administrators face in their daily work. An

example of network management Situation is the unexpected

failures in the packet transmission of virtual routers belonging

to a slice made up of SDN (Software Defined Networking)

networks handled by different NOS (Network Operating Sys-

tems). Hereinafter, we will refer to this type of Situations in

the network management domain as NMSits [8].

We argue that the work conducted by network administra-

tors to address NMSits is complex. This complexity exists

because, first, although large research efforts have been made

to deal with the intricacy of network management [9] [10]

[11] [12] [13], they do not focus on handling such a com-

plexity when Situations arise unexpectedly. Thus, they have

a constrained response capacity to meet NMSits. Second, to

face sudden Situations, network administrators must handle

and rely on a vast amount of non-integrated tools (e.g., tracer-

oute, ZenOSS, OpenNMS, and so on), which hinders their

work. Third, to cope with situational requirements, network

administrators are usually forced to develop low-level scripts;

developing these scripts itself is also complex because network

administrators may not be experienced programmers.

Mashups are Web applications built up by end-users through

the combination of Web resources available along the Internet

[14] [15]. The mashup technology has been employed to

manage Situations in many domains, such as project manage-

ment [16], telco services [17], immersive mirror worlds [18],

and data integration [19]. In our previous work, we analyzed

mashups as a feasible mechanism to accomplish specific tasks

for network management in both traditional [20] and SDN-

based networks [21]. Nevertheless, we have not addressed

how to overcome the complexity of tasks fulfilled by network

administrators dealing with NMSits. We refer to mashups used

to cope with one or more NMSits as Mashments [8].

In this paper, we take a step further, proposing a novel

Mashment-based approach that assists network administrators

to overcome the complexity of NMSits and, consequently,

facilitates their work. The key contributions from this paper

are: (i) a conceptual model that presents how to address

NMSits by Mashments, (ii) a process to develop and execute

Mashments, targeted to surpass the intrincacy of tasks carried

out by network administrators to handle NMSits, (iii) a Mash-

ment Maker prototype that supports the model and process

abovementioned; and (iv) a Mashment that faces a NMSit on

SDN, demonstrating the decrease of complexity when network

administrators use our approach to deal with NMSits.

The remainder of this paper is organized as follows. In Sec-

tion II, we review both the background and the related work.

In Section III, we introduce the Mashment-based approach. In

Section IV, we describe and discuss the case study raised to

evaluate our approach. In Section V, we provide conclusions

and implications for future work.



II. BACKGROUND AND RELATED WORK

In this section, we describe research concerning SM,

mashups, and mashups on network management. We also

present related work with handling the complexity of network

management.

A. Situation Management

The goal of SM is to provide solutions aimed to investigate,

control, and predict Situations that are composite entities

whose components are other entities, their attributes, and

relationships in a time interval [1] [2]. To accomplish such a

goal, SM-based solutions offer a global vision of Situations by

collecting, correlating, and merging information from multi-

entities, seeking to maximize the user comprehension and, so,

supporting the opportune and correct decision making.

SM has been used in diverse domains. In the disaster re-

sponse [4], a situation-aware architecture and a set of protocols

support the timely delivery of high volumes of accurate data

that the disaster responders need to make correct decisions. In

the smart grid power networks [5], an architecture, based on

semantics, linked open data, and complex event processing,

enables to respond intelligently to the active power demand

of end-users. In the security crisis management [6], a mobile

agents platform allows to provide timely information to the

on-site personnel, the tactical crisis command, and the off-

site strategic command centre. In the public health [7], a

platform permits the development of situation-aware appli-

cations targeted to monitor suspicious cases of tuberculosis.

To the best of our knowledge, up to now, SM has been not

used to handle the complexity of Situations in the network

management domain.

B. Mashups

Mashups are Web applications formed by combining Web

resources available on the Internet [14] [15]. This combination

is mainly achieved by a simple composition model, which al-

lows end-users the development of customized applications, in

an easy and rapid way [22]. Furthermore, mashups encourage

the reuse by permitting end-users to generate more advanced

applications through extending the existing compositions.

The mashup technology has been employed to manage

Situations in several domains. In the project management [16],

a mashup system allows managers to easily compose small

solutions for displaying and filtering information about their

projects. In the telco services [17], a reference architecture

was defined to facilitate the provisioning of telco-mashups for

end-users; a telco-mashup is a composite service that combines

functionalities from telecom networks like streaming, quality

of service, and billing. In the immersive mirror worlds [18],

the Cloud City Scene platform enables end-users to create,

in a mashup manner, realistic and immersive street-level

representations of the physical world. In the data integration

[19], Mashroom, a spreadsheet-like programming environment

allows non-developers to create composite services, by aggre-

gating data sources on the fly and in an interactive way.

In our previous work, we analyzed the mashup technology

as a feasible mechanism to carry out specific tasks in the

network management domain. Initially, we used mashups to

accomplish the botnet detection [23] and the traffic monitoring

of the border gateway protocol among two autonomous sys-

tems [24]. Afterwards, we introduced a generic architecture to

support the composing of network management applications

[20]. Recently, we leveraged the features of the mashup

technology to conduct the integrated monitoring of SDN-

based networks [21] and identified a mashup ecosystem around

NMSits [8]. However, we have not addressed how to overcome

the complexity of coping with NMSits.

C. Complexity of Network Management

There is a lot of research works about addressing the

complexity of network management. COOLAID [9] automates

network configuration by queries performed on an abstract

database containing network information. NetOpen [10] allows

to build up SOA services for monitoring and configuring

OpenFlow networks by networking primitives. MEICAN [11]

uses the business process management for permitting network

administrators take part in the decision-making process of

provisioning virtual inter-domain circuits. Pyretic [12] enables

network programmers to build SDN applications using an

abstract packet model, parallel and sequential composition

operators, and topology abstraction. Procera [13] permits to

manage SDN networks by expressing event-driven and reactive

policies based on control domains. In the aforecited works,

the network administrator is responsible for manually writing

policies, queries, rules, or primitives in specific languages

and/or controllers. Thus, his/her daily work to overcome

sudden Situations of network management remains complex.

Unlike the above works, we consider concepts from SM

and mashups, to propose an approach (section III) that acts

in a more high-abstraction level and focuses on decrease the

complexity of tasks fulfilled by network administrators when

facing NMSits. Furthermore, as opposed to the aforementioned

works that have been evaluated using metrics, such as band-

width, response time, and code lines, we concern about the

complexity perceived by network administrators (section IV).

III. MASHMENTS COMPLEXITY & NMSITS

To better explain our approach, at start, we present a

conceptual model about how to address NMSits by Mash-

ments. Afterwards, we introduce the process and complexity

to develop and execute Mashments. At last, we present the

Mashment Maker.

A. Addressing NMSits by Mashments

A NMSit is a sudden, dynamic, heterogeneous, and time

specific Situation happening or that might happen in the

network management domain. Examples of NMSits, that may

be faced by network administrators in their daily work, are:

in Faults, to find the cause root of unexpected and multiple

packet transmission failures in network slices formed by

several OpenFlow networks. In Performance, (i) to control
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the abrupt performance degradation of one or more nodes

(switches, routers, and so on) on networks that use diverse

virtualization environments; and (ii) to monitor, in a near

real time way, sudden violations in service level agreements.

NMSits as the aforementioned may be addressed by using

mismatched tools but it overloads and becomes complex the

work of network administrators. Also, network administrators

may develop home-brew situational scripts. However, such a

development is daunting and complex for non-programmers.

The Figure 1 depicts the conceptual model for addressing

NMSits by Mashments. If a NMSit happens, the network

administrator: (i) orchestrates a Mashment (i.e., combines

services, processes, user interfaces, and mashup operations to

define a plan and deal with such a NMSit), or (ii) reuses

a Mashment (i.e., takes advantage of existing plans to face

the NMSit). Then, he/she executes the Mashment; on run-

time, it performs Network Management Operations targeted

to investigate/resolve the NMSit. These Operations are inter-

nally conducted via Network Situational Processes, Situation

Management Resource as a Service (SMRS), Mediating, and

Situation Management Resources (SMR).

Figure 1: Addressing NMSits by Mashments: Conceptual Model

A SMR is any solution that provides access and communica-

tion to and from network elements or entire networks involved

in NMSits. There are three types of SMR: Network Manage-

ment Resources (NMR) that are solutions, like ZenOSS, Citrix

Center, OpenFlow MaNagement Infraestructure (OMNI), and

Nagios, intended to conduct network management operations.

Web-based Network Management Resources (WMR) that are

tools available in the Internet, such as the Multi Router Traffic

Grapher (MRTG) and RRDTool, useful to perform network

management tasks. Analytics Management Resources (AMR)

that are solutions, like Junos Network Analytics Suite, Man-

agement Traffic Analyzer, and Sandvine Network Analytics,

suitable to analyze network management information.

A SMRS is a software entity that offers the network

management operations of a SMR to the Network Situational

Processes, aiming to hide the complexity of NMR, WMR,

and AMR. Specifically, a Network Management Resource as

a Service (NMRS) is responsible for providing functionalities

of NMR, a Web-based Management Resource as a Service

(WMRS) is in charge of offering capabilities of WMR, and

an Analytics Management Resource as a Service (AMRS) is

responsible for supplying functionalities of AMR.

The Network Situational Processes help to automate and

carry out the investigative/control aspects of SM by using

NMRS, WMRS, and/or AMRS. There are three Network

Situational Processes: Collecting, Fusing&Correlating, and

Resolving. Collecting allows to retrieve information about

NMSits through SMRS. Fusing&Correlating permits to merge

and correlate the information retrieved by Collecting. Fus-

ing&Correlating and Collecting aid in the creation of inves-

tigative plans that are useful to determine the cause of NM-

Sits. Resolving enables to perform, by using SMRS, network

management operations aimed to control (change/preserve)

NMSits. Consequently, Resolving supports the building up of

resolutive plans.

The Mashup Processes provide the automation needed to

orchestrate, save&reuse, and execute Mashments that are

composite and customisable situational solutions which allow

network administrators to deal with NMSits. In particular, Or-

chestrating includes selecting, configuring, and connecting the

resources that form a Mashment: SMRS, Network Situational

Processes, GUI, Mashup Operations, and even Mashments.

The GUI are internal and external libraries helpful to gen-

erate advanced and integrated Mashment interfaces targeted

to network administrators. An external GUI is an Application

Program Interface (API), such as Yahoo Maps and Google

Chart, provided by a third-party and that may be used to

illustrate composed information about networks and their

devices. An internal GUI is, for instance, a specific user

interface developed to show, in a correlated way, network

traffic information.

The Mashup Operations are: (i) control patterns (e.g., se-

quential, parallel, and conditional) that allow to define the

process flow of Mashments and, consequently, investigative

and resolutive plans, (ii) structures for configuring and invok-

ing the resources that form Mashments; and (iii) structures for

receiving, sorting, and filtering information from any SMRS.

Executing enables network administrators to run Mash-

ments. It is noteworthy that, on run time, all Mashments dele-

gates their management operations to one or more SMRS via

Network Situational processes. In turn, each SMRS carries out

its operations through Mediating, which is a process always

hidden for network administrators. To assist Executing and

Orchestrating, Mediating offers SMRS to Network Situational

Processes and delegates network management operations to

SMR. This mediation is needed because there is not a common

format neither a standardized interface/protocol to retrieve

and/or bidirectionally interact with data, application logic, and

user interfaces of SMR involved in NMSits. Saving&Reusing

permits network administrators to store Mashments for their

later reuse. Thus, Mashments can be extended and improved to

create other ones or customized to handle analogous NMSits.

Leveraging the automation of Network Situational Procesess

and Mashup Processes, our approach enables network admin-

istrators to: (i) collect, correlate, and fuse information about

NMSits, (ii) present information related to NMSits, in a visual

130 Appendix A. Scientific Production



and comprehensible way, (iii) perform network management

operations to resolve (change or preserve) NMSits, (iv) build

up composite situational solutions, in a Mashment manner,

targeted to address NMSits; and (v) as a global result, to

overcome the complexity of network management tasks in

front of NMSits.

B. Process and Complexity in the Development and Execution

of Mashments

Considering the conceptual model to address NMSits

by Mashments, the set of Mashments is formally ex-

pressed as: Mashment = {mashmentx|mashmentx =
(Rused, rroot, δ, NMSitaddr)}. Where, Rused is the set of

resources (SMRS, GUIs, Mashup Operations, and Mashments)

used in the mashmentx creation, rroot is the root resource

(∈ Rused) that starts the mashmentx execution, δ is the

execution flow (i.e., investigative and resolutive plans) of

resources that make up the mashmentx, and NMSitaddr is

the set of one or more nmsits addressed by the particular

mashmentx. It is noteworthy to mention that NMSit is

the set of Situations happening in the network management

domain and NMSitaddr ⊆ NMSit.

Figure 2: Process to Develop and Execute Mashments

In our approach, network administrators are able to tackle

nmsits by performing the following process (see Figure 2)

that allows to develop and execute mashments. Such a

process is formed by the tasks: Select, Configure, Combine,

Execute, and Tune.

Select Resources. The network administrator defines the

Rused from Available Resources. This task is divided in

two: (i) The network administrator selects the SMRS, GUIs,

and Mashup Operations needed to create the mashmentx.
(ii) If it is feasible (there is a mashmenty that addresses

similar nmsits), the network administrator chooses one or

more elements of the set Mashment (it is part of avail-

able resources) to reuse them. Configure Resources. The

network administrator provides the functioning settings of one

or several elements belonging to Rused, defining the set of

resources configured Rconf ⊆ Rused. Combine Resources.

The network administrator defines the δ of mashmentx that

is formed by combining (connecting/linking) the selected and

configured resources. It is important to highlight that the δ
creation includes the definition of rroot. Execute Mashment.

The network administrator launches the mashmentx. Tune
Mashment. If it is needed, the network administrator tunes

the δ of mashmentx under construction, which may imply

the selection, configuration, and combination of new resources

or simply the re-arrangement of Rused.

The complexity of mashmentx (i.e., ζ) is calculated by

computing the individual complexity of tasks forming the

process aforedescribed. In this way:

ζ =

i∑

1

ζsel +

j∑

1

ζcon +

k∑

1

ζcom +

e∑

1

ζexe (1)

Where, ζsel, ζcon, ζcom, and ζexe represent the complexity of

Select, Configure, Combine, and Execute, respectively. In turn,

i, j, k, and e denote the number of times that such tasks are

conducted, allowing to consider the complexity of Tune. In

the next paragraphs, ζsel, ζcon, ζcom, and ζexe are expressed

by using per-task metrics defined for IT Service Management

processes [25].

The complexity of Select is expressed as:

ζsel =

M∑

m=1

ςm +(nAvailableResources− 1) ∗ gF ∗ cF (2)

Where, M is the total number of elements on Rused and

ςm = selT ype(m) is the complexity of selecting the m-

resource. Here, selT ype(m) can take one of three values

depending on the automation of m-selection: 0 - if fully

automated, 1 - if manual but tool-assisted, or 2 - if manual.

In turn, nAvailableResources is the number of resources

available to build up the mashmentx (i.e., more available

resources result in higher complexity of selection). gF is the

grade of guidance provided to select the resources needed to

form the mashmentx. gF can take one of three values: 1
- if correct recommendation about resources to be selected

is offered, 2 - if general information about each available

resource is supplied, or 3 - if non information is provided.

cF represents the impact of wrong selection of resources and

can take one of three values: 0 - if negligible impact, 1 - if

moderate impact, or 2 - if severe impact.

The complexity of Configure is defined as:

ζcon =

N∑

n=1

ςn. (3)

Where, N is the total number of resources on Rconf

and ςn is the complexity of configuring the n-resource.
Note that as Rconf ⊆ Rused, so, N ≤ M . ςn =∑P

p=1 sourceParameter(p). Here, P is the total num-

ber of parameters to be configured in the n-resource and

sourceParameter(p) can take one of seven values: 0 -

if the p-parameter value is produced from automation, 1
- if the p-parameter value may be chosen freely (e.g., a

new password), 2 - if the p-parameter value is taken from

task documentation (e.g., set up port=8080 for a HTTP

server), 3 - if the p-parameter value is extrapolated from

task documentation (e.g., define a range of IP addresses),

4 - if the p-parameter value is not trivial for unexperi-

enced network administrators (e.g., set up the URL=http :
//IPAddressOfXenServer/rrdUpdates?host = true to
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retrieve statistics of virtual machines running on a determined

XenServer), 5 - if the p-parameter is fixed by the environment

to a specific value that is defined after additional research

(e.g., set up the SNMP OID=1.3.6.1.4.1.9.9.91.1.1.1.1.4 to

obtain the temperature of Catalyst Cisco Switch), or 6 - if

the p-parameter value is constrained by the environment to a

limited set of possible choices where network administrators

need to infer the right choice (e.g., set up the type of server

virtualization technology to be monitored: virtTech=VMware).

The complexity of Combine is expressed as:

ζcom =

L∑

l=1

linkType(l) + (M − 1) ∗ goF ∗ coF (4)

Where, L is the total number of links (logical connections)

created to build up the mashmentx. linkType(l) represents
the complexity of creating the l-link that connects two ele-

ments of Rused and can take one of four values: 0 - if the

l-link is automatically created, 1 - if the l-link is manually

created by a support tool and data transferred among resources

connected must not be adapted, 2 - if the l-link is manually

created and data transferred among resources connected must

not be adapted, and 3 - if the l-link is manually built and

data transferred among resources connected must be adapted.

In turn, M is the total number of Rused (i.e., more selected

resources result in higher complexity of combination). goF is

the grade of guidance provided to link the selected resources

and can take one of three values: 1 - if correct recommendation

to link the selected resources is supplied, 2 - if general

information about the links that can be established is offered,

or 3 - if non information is provided. coF represents the impact

of wrong combination of resources and can also take one of

three values: 0 - if negligible impact, 1 - if moderate impact,

or 2 - if severe impact.

ζexe can take one of three values depending on the automa-

tion of mashmentx execution: 0 - if entirely automated (e.g.,

an autonomous mashment system that executes mashments
on demand), 1 - if manual but tool-assisted (e.g., using an

execution environment to start the mashmentx), or 2 - if

manual (e.g., programming and customizing a script every time

that the mashmentx needs to be executed).

C. Mashment Maker Architecture

The Mashment Maker is defined to accomplish the follow-

ing goal: to support the conceptual model of Mashments and,

as a consequence, their developing and executing process.

Therefore, the Maker is targeted to decrease the intricacy

of Select (ζsel), Configure (ζcon), Combine (ζcom), Execute

(ζexe), and Tune (i.e., the complexity of repeating once or more

times the other tasks). The Figure 3 depicts the Mashment

Maker Architecture that is formed by: SMRS, Mashment Op-

erations, Mediator Bus, Visual Resources (i.e., Visual-SMRS,

Visual-BI, Visual-MO, and Visual-Mashment), Designer, Con-

textual Help System (CHS), Mashment Router, Mashment

Engine, Mashment Repository, and Users Repository.

The Mediator Bus provides as a service the Mediating

Process and enables the communication among all elements

Figure 3: Mashment Maker Architecture

of the Maker Architecture. Mashment Operations are services

that supply the functionalities of both Network Situational

Processes and Mashup Operations. The functioning of SMRS

(NMRS, WMRS, and AMRS), Network Situational Processes,

Mashup Operations, and Mediating Process was already de-

scribed in the subsection III-A. Here, it is important to point

out that, first, the Bus, Mashment Operations, and SMRS are

key to achieve the Maker goal because these architectural ele-

ments drive the intricacy of underlying technologies involved

in the investigation and resolution of NMSits. Second, network

administrators never have direct access to these three elements.

This access is always conducted through Visual Resources.

Visual Resources represent SMRS, GUI, Mashments Oper-

ations, and Mashments, in a high-level abstraction, in order

to hide complexity for network administrators. Visual-SMRS

includes three types of resources: (i) Visual-NMRS (e.g., a

box offering management functionalities of Vyatta Virtual

Router) represents NMRS, (ii) Visual-WMRS (e.g., a box

representing functional features of RRDTool) depicts WRMS;

and (iii) Visual-AMRS (e.g., a box providing functions of

the Management Traffic Analyzer) supplies, in a graphic way,

AMRS.

A Visual-BI offers an useful basic user interface to create

composite and advanced Mashment GUIs. For instance, a

Mashment GUI can be composed by inserting one or more

network traffic images (from NMRG) into a map (from

Google Maps). In turn, a Visual-MO graphically represents

a Mashment Operation. A box offering a dashboard (it hides

the collection, correlation, and fusion of network management

information) to monitor heterogeneous OpenFlow Controllers

is an example of Visual-MO. On design time, to facilitate

the reuse, each existing Mashment is depicted as a Visual-

Mashment.

The Designer allows network administrators to develop and

execute Mashments. Accordingly, the Designer, first, provides

services for the δ definition by means of Dragging-and-

Dropping and Wiring of Visual Resources. Second, it offers

capabilities for saving, deleting, loading, and launching Mash-

ments. In this sense, on design time, Saving permits to write

in the Mashment Repository the δ of Mashments. Deleting

allows to remove a specific δ. Loading is responsible for

reading the δ of Mashments and visually presenting them (i.e.

generate Visual-Mashments). Launching permits to request to

the Engine the execution of a determined Mashment. Third,

132 Appendix A. Scientific Production



the Designer uses CHS to offer guidance about Visual Re-

sources, Mashments, and the Maker as a whole. All Designer

functionalities are targeted to facilitate the creation, re-usage

and execution of Mashments and, as a consequence, to reduce

ζsel, ζcon, ζcom, and ζexe. Also, such functionalities are key

to permit network administrators to customize their workspace

when addressing NMSits.

The Mashment Repository stores the metadata of Mash-

ments built in the Designer. The metadata of a specific

Mashment is an object containing the information/definition of

its δ. If a Mashment is formed by one or more Mashments, its

metadata also includes the metadata of these Mashments. This

inclusion means that a δ can encompass other δs. In turn, the

Users Repository stores the data of Network Administrators;

this data is used to perform the access control to the Maker.

The Mashment Router is in charge of performing the δ of

Mashments. Thus, on run time, the Router is responsible for:

(i) receiving Mashments invocations from the Engine, which

means that the Router is called by the Engine to select a Mash-

ment to service an initial request, (ii) selecting and chaining

multiple resources (including Mashments into a Mashment) to

attend invocations, by reading the needed information from

repositories of Mashments and Users; and (iii) calling the

Engine to request the instantiation of Mashments and their

constitutive elements. It is to point out that the Router is

required by the Engine to function, but the Router is a separate

architectonic element.

The Mashment Engine is a lifecycle manager, responsible

for creating, deleting, and caching instances of Mashments

and their associated resources. The Engine is splitted in

two: Server-Side Engine and Client-Side Engine. The Server-

Side is a Web engine that supports the execution of SMRS,

Network Situational Processes, and Mashup Operations. The

Client-Side is a Web browser engine that supports Web 2.0

technologies to be able to run the integrated and advanced

user interfaces of Mashments.

Concerning the Maker, it is important to highlight that: (i)

the Drag-and-Drop Service assists Select, aiming to reduce

selT ype(m), (ii) CHS provides guidelines for supporting

Select, Configure, and Combine, which is targeted to diminish,

respectively, gF , sourceParameter(f), and goF , (iii) the

Wire Service, that does not require data mapping, bears

Combine, aiming to cut down linkType(l), (iv) the high-level
launching mechanism, integrated in the Designer, expedites the

running of every mashment, seeking to decrease ζexe; and
(v) high-level Visual Resources allow the flexible construction

of Mashments, in a designer-assisted way, which is directed

to cut down ζsel, ζcon, and ζexe.

IV. CASE STUDY

To assess our approach, first, we performed a test envi-

ronment make up of the Mashment Maker prototype, three

SDN-based networks built using OpenFlow, and a NMSit that

happens in these networks. Second, we conducted experiments

to measure the complexity of addressing such a NMSit when

the network administrator follows the proposed process with

and without the Maker. In this section, we describe the test

conditions, present the experiments, and analyze the obtained

results.

A. Test Environment

Mashment Maker Prototype. The Figure 4 depicts the GUI

of Maker. This GUI is formed by the Designer, the Buttons

(i.e., New, Load, Save, Delete, Help, and Run), the Visual

Resources (i.e. Beacon, Floodlight, POX, Open vSwitch,

Vyatta Virtual Router, Virtual Box Server, VMware Server,

Xen Server, Google Maps, Monitoring Panel, Switch Traffic

Grapher, RRDTool, OF Monitor, Virtual Servers Monitor, and

the Performance Monitoring Mashment - after described), and

CHS.

Figure 4: Mashment Maker Prototype and Performance Monitoring
Mashment

The Designer is a Web application built using YUI 2.7 and

WireIt 0.5. YUI is an open source, javascript, and cascading

style sheets framework, used to implement the Drag-and-Drop

Service. WireIt is a set of open source javascript libraries,

used to create the Wire Service. The Buttons and Visual

Resources (e.g., the Switch Traffic Grapher) are also javascript

components, implemented on YUI. CHS is a GUI component

developed using cascading style sheets and javascript.

The Mediator Bus, SMRS, and Mashment Operations were

developed using the Java Language, like Web Services based

on the Representational State Transfer (REST) architectural

style. We use REST-based services because they are suitable

to achieve integration and interoperability in heterogeneous

environments. Each Web Service that interacts with Beacon,

Floodlight, and POX was created using the Java Jersey API

2.3, the Floodlight REST API 1.0, and the Java Socket API

1.0, respectively. In turn, each Web Service that communi-

cates with VirtualBox, Xen, and VMware was correspond-

ingly implemented using the VirtualBox SDK API 4.1, the

XenSDK API 6.0, and the VMware WebServices SDK 5.1.

The Mashment Router was built with Java Servlets and the

Asynchronous Javascript and XML (AJAX). We use Servlets

and AJAX because they allow the interactive and asynchronous

interaction among the Maker GUI and the aforementionedWeb

Services.
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The Mashment Maker prototype was unfolded (see Fig-

ure 5) in the Apache-Tomcat Server 7.0 and the MySQL Server

5.1. Specifically, in the Apache-Tomcat were deployed the

Designer, Buttons, Visual Resources, CHS, SMRS, Mediator

Bus, and Mashment Operations. In the MySQL were installed

the Users Repository and Mashments Repository. The browser

Mozilla Firefox was the client used to run the Maker GUI.

OpenFlow Networks. Three OpenFlow networks (see Fig-

ure 5) were built using, in the control tier, Beacon 1.0,

Floodlight 0.9, and POX 1.0. Each OpenFlow controller was

deployed to handle 27 Open vSwitches located in the datapath

tier. These switches were deployed, in a tree topology, on

Mininet that is an emulation platform for OpenFlow net-

works. The communication among the controllers and their

corresponding Open vSwitches was made by the OpenFlow

protocol 1.0.

Figure 5: Test Environment

NMSit-SDN. Let’s suppose the following Situation: the

network administrator needs to identify which are the Open

vSwitches that are causing sudden performance degradation

on the OpenFlow networks of the test environment described

earlier. Thereby, he/she requires a situational solution that

presents, in an integrated, visual, and intelligible way, network

traffic information of Open vSwitches handled by Beacon,

POX, and Floodlight. To get such a solution and deal with

the NMSit-SDN, the network administrator has two options:

(i) Without the Maker, to create and launch a Situational

Script; or (ii) With the Maker, to develop and execute the

Performance Monitoring Mashment. The complexity and detail

of developing and executing these options is presented in the

next subsection.

B. Complexity: Evaluation and Analysis

To evaluate our approach, initially, we measured the com-

plexity of addressing the NMSit-SDN when the network ad-

ministrator follows the proposed process to tackle NMSits

but does not use the Maker. In a workspace without the

Maker, he/she develops and executes a Situational Script that

retrieves network traffic information from the switches handled

by Beacon, POX, and Floodlight. Such a Script presents the

information retrieved in a user interface formed by text-plane

tables and chart images. According to the equation (1) and

considering the no conducting of Tune (i = j = k = e = 1),
ζnomaker = ζsel:nomaker + ζcon:nomaker + ζcom:nomaker +
ζexe:nomaker .

Select without Maker. The network administrator

performs the selection of controller tools (i.e., BeaconTool,

POXTool, and FloodlightTool) and their specific commands

that allow to monitor Open vSwitches. An example

of specific command is to retrieve the statistics

of an Open vSwitch controlled by Floodlight: curl

http://IPAddress:8080/wm/core/switch/switchId/statType/json.

The above mentioned selection is complex because it

is not tool-assisted and guidelines are scattered on

the Internet. In this way, ςm = 2, gF = 3, and

cF = 1. Using these values in the equation (2),

ζsel:nomaker =
∑4

m=1 2+(nAvailableResources−1)∗3∗1.
Where, considering nAvailableResources = 14, we use this

value to facilitate the comparison with the Maker prototype,

ζsel:nomaker = 47.
Configure without Maker. The network administrator

configures N = 4 resources (BeaconTool, POXTool,

FloodlightTool, and YUI Chart API) by providing

their corresponding functioning parameters. Thus,

in accordance to the equation (3), ζcon:nomaker =
ςbeaconTool + ςpoxTool + ςfloodlightTool + ςyc.
Where, ςbeaconTool = ςpoxTool = ςfloodlightTool =
sourceParameter(login) + sourceParameter(key) +
sourceParameter(ip) + sourceParameter(port) +
sourceParameter(statisticCommand). As he/she takes

the configuration information of controller tools from

documentation easy to find on the Internet and defines

the specific statistic commands after additional search,

sourceParameter(login) = sourceParameter(key) =
sourceParameter(ip) = sourceParameter(port) = 2 and

sourceParameter(statisticCommand) = 5. Furthermore,

since he/she extrapolates the YUI Chart configuration

information from documentation simple to find on the

Internet, ςyc = 3. Using these values, ζcon:nomaker = 42.
Combine without Maker. The network administrator man-

ually develops (writes programming code) one logical link

among each of controller tools and the YUI Chart API.

Regarding these links, it is to point out that: (i) he/she adapts

the data retrieved because controller tools, involved in the

NMSit-SDN, use different data type (e.g., Beacon employs data

type in Java and Floodlight uses JSON); and (ii) he/she neither

has explicit nor centralized guidelines to support the links

development. Thus, linkType(l) = 3, goF = 3, and coF = 1.
Using these values in the equation (4), ζcom:nomaker = 21.
Execute without Maker. As the network administrator

launches the Situational Script by typing a specific command

in a Linux Command Line, ζexe:nomaker = 2. After executing
this Script, the network administrator is able to find the Open

vSwitches involved in the NMSit-SDN, by analyzing YUI

Chart images and text-plane tables.

Once computed the intricacy of facing the NMSit-SDN

without the Maker, we proceed to evaluate the complexity

of developing and executing the Performance Monitoring

Mashment. In a broad sense, the network administrator builds

and launches this Mashment (see Figure 4) by dragging-and-

dropping, wiring, and clicking several Visual Resources and

Buttons of the Maker. The Maker also assists such a process

by providing contextual guidelines for the network adminis-

trator. In accordance to the equation (1) and considering that
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Figure 6: Performance Monitoring Mashment on Runtime

he/she just one time conducts Select, Configure, Combine,

and Execute, ζpmm = ζsel:maker + ζcon:maker + ζcom:maker +
ζexe:maker .

Select on Maker. The network administrator uses the Drag-

and-Drop service (i.e., a Maker-assisted way) to select the

Visual Resources (M = 5) that form the Performance Mon-

itoring Mashment. Thus, Rused ={Beacon, POX, Floodlight,
Switch Traffic Grapher, OFMonitor}. Furthermore, to facilitate

such a selection, the Maker via CHS provides him/her con-

textual guidance about each of nAvailableResources = 14.
Therefore, ςm = 1, gF = 2, and cF = 1. Using these values

in the equation (2), ζsel:maker = 31.

Configure on Maker. The network adminis-

trator configures (N = 4) Visual Resources,

Rconf ={Beacon,POX,Floodlight,Switch Traffic Grapher}, by
providing their functioning settings. Then, in accordance to the

equation (3), ζcon:maker = ςbeacon + ςpox + ςfloodlight + ςstg .
Where, ςbeacon = ςpox = ςfloodlight =
sourceParameter(login) + sourceParameter(key) +
sourceParameter(ip) + sourceParameter(port) and

ςstg = sourceParameter(refreshT ime). Considering that

the Maker via CHS offers him/her configuration guidelines

about Visual Resources, ςbeacon = 8 and ςstg = 2. Using
these values, ζcon:maker = 26.

Combine on Maker. The network administrator uses the

Wire Service (linkType(l) = 1) to create L = 4 links: Beacon
- OF Monitor, POX - OF Monitor, Floodlight - OF Monitor,

and Switch Traffic Grapher - OF Monitor. Regarding these

links, it is to stand out that: (i) he/she does not need to adapt

the data transferred because the Mediator Bus is responsible

for hiding the data mapping; and (ii) he/she obtains guidelines

about links creation from the Maker via CHS. Therefore,

goF = 2 and coF = 1. Using these values in the equation

(4), ζcom:maker = 12.

Execute on Maker. Since the network administrator can run

the Performance Monitoring Mashment from the Designer by

clicking the Run Button, ζexe:maker = 1. After launching

this Mashment (see Figure 6), the network administrator can

identify the three Open vSwitches implicated in the NMSit-

SDN, by analyzing, in an integrated GUI, Switch Traffic

Grapher images and HTML tables.

Figure 7: NMSit-SDN: Tasks Complexity

The Figure 7 depicts the obtained results in the complexity

assessment when the network administrator faces the NMSit-

SDN with and without the Maker. In accordance to these re-

sults, the use of the Maker to conduct the proposed process: (i)

diminishes the complexity of Select in 34.04%, ζsel:maker =
31 < ζsel:nomaker = 47, attained by the services Drag-and-

Drop and CHS, (ii) reduces the complexity of Configure in

38.09%, ζcon:maker = 26 < ζcon:nomaker = 42, reached by

CHS, (iii) decreases the complexity of Combine in 42.85%,

ζcom:maker = 12 < ζcom:nomaker = 21, obtained by the Wire

Service and the Mediator Bus; and (iv) diminishes the com-

plexity of Execute in 50%, ζexe:maker = 1 < ζexe:nomaker =
2, gotten by the Designer.

Since in a Maker-based workspace the complexity of each

task is less than the corresponding complexity when the Maker

is not used, ζpmm = 70 is also less than ζnomaker = 112
and the global reduction is 37.50%. Considering the results

of the raised case study, we demonstrated that if network
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administrators follow the process to develop and execute

Mashments in the Maker, the complexity of handling NMSits

is decreased. Consequently, we conclude that our approach can

be used by network administrators to overcome the complexity

of NMSits.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced an approach that allows to

overcome the complexity on the work performed by network

administrators to face NMSits. The approach is formed by

the Mashments conceptual model, the process to develop and

execute Mashments, and the Mashment Maker that supports

such model and process. Furthermore, we presented the com-

plexity evaluation of process that the network administrator

conducts to build up and run two solutions: Situational Script

and Performance Monitoring Mashment. Both solutions were

targeted to address the NMSit-SDN: identify switches that

are suddenly causing performance degradation on several

OpenFlow networks handled by different controllers.

Our approach permitted the network administrator to ad-

dress the complexity involved in overcoming the NMSit-

SDN, confirming the importance of the Mashment conceptual

model, the process to develop and execute Mashments, and

the Mashment Maker. In this sense, using per-task metrics,

we demonstrated that the complexity decreases when network

administrators conduct the following situational tasks: Select,

Configure, Combine, and Execute. As a result, we can state

that our approach cuts down the complexity on the work

carried out by network administrators to cope with NMSits.

We consider the proposed approach as a step forward in

the network management, the situation management, and the

mashup technology. In this regard, we drive the first towards

an environment focused on situations, composite situational

solutions, and network administrators. We bring mashup foun-

dations up to the second to perform its investigative and control

aspects. We lead the third to a novel application domain

located in the intersection of the situation management and

the network management.

As future work, we plan to correlate time and complexity

metrics, in order to evaluate the productivity of network

administrators that face NMSits by Mashments. Furthermore,

we are interested in propose the deployment costs model of

our approach by considering the heterogeneity of resources to

be integrated/combined. Finally, we also pretend to add more

resources and services to improve the Maker implementation.
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L. Hluchý, “Securing Mobile Agents for Crisis Management Support,”
in STC. New York, NY, USA: ACM, 2012, pp. 85–90.

[7] Pereira, I.S.A. and Costa, P.D. and Almeida, J.P.A., “A Rule-based
Platform for Situation Management,” in CogSIMA, 2013, pp. 83–90.

[8] O. Caicedo, F. Estrada, and Granville., “A Mashup Ecosystem for
Network Management Situations,” in Globecom, december 2013, p. to
appear.

[9] X. Chen, Y. Mao, Z. M. Mao, and J. Van der Merwe, “Declarative
Configuration Management for Complex and Dynamic Networks,” in
Co-NEXT. New York, NY, USA: ACM, 2010, pp. 6:1–6:12.

[10] N. Kim and J. Kim, “Building NetOpen Networking Services over
OpenFlow-based Programmable Networks,” in ICOIN, january 2011, pp.
525 –529.

[11] J. de Santanna, J. Wickboldt, and L. Granville, “A BPM-based Solution
for Inter-domain Circuit Management,” in NOMS, 2012, pp. 385–392.

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing Software-defined Networks,” in NSDI. Berkeley, CA, USA:
USENIX Association, 2013, pp. 1–14.

[13] H. Kim and N. Feamster, “Improving Network Management with
Software Defined Networking,” Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[14] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh,
“Damia: Data Mashups for Intranet Applications,” in ACM SIGMOD.
New York, NY, USA: ACM, 2008, pp. 1171–1182.

[15] N. Laga, E. Bertin, R. Glitho, and N. Crespi, “Widgets and Composition
Mechanism for Service Creation by Ordinary Users,” Communications

Magazine, vol. 50, no. 3, pp. 52–60, 2012.
[16] N. Ozkan and W. Abidin, “Investigation of Mashups for Managers,” in

ISCIS, september 2009, pp. 622 –627.
[17] H. Gebhardt, M. Gaedke, F. Daniel, S. Soi, F. Casati, C. Iglesias, and

S. Wilson, “From Mashups to Telco Mashups: A Survey,” Internet

Computing, vol. 16, no. 3, pp. 70–76, may-june 2012.
[18] V. Stirbu, Y. You, K. Roimela, and V. Mattila, “A Lightweight Platform

for Web Mashups in Immersive Mirror Worlds,” Pervasive Computing,
vol. 12, no. 1, pp. 34–41, 2013.

[19] Y. Han, G. Wang, G. Ji, and P. Zhang, “Situational Data Integration
with Data Services and Nested Table,” Service Oriented Computing and

Applications, vol. 7, no. 2, pp. 129–150, 2013.
[20] C. dos Santos, R. Bezerra, J. Ceron, L. Granville, and L. Rocken-

bach Tarouco, “On Using Mashups for Composing Network Manage-
ment Applications,” Communications Magazine, vol. 48, no. 12, pp.
112–122, december 2010.

[21] O. Caicedo, F. Estrada, and Granville., “A Mashup-based Approach for
Virtual SDN Management,” in COMPSAC, july 2013, pp. 143–152.

[22] J. Yu, B. Benatallah, F. Casati, and F. Daniel, “Understanding Mashup
Development,” Internet Computing, vol. 12, no. 5, pp. 44 –52, sept.-oct.
2008.

[23] C. dos Santos, R. Bezerra, J. Ceron, L. Granville, and L. Tarouco,
“Botnet Master Detection Using a Mashup-based Approach,” in CNSM,
october 2010, pp. 390 –393.

[24] B. R.S., C. dos Santos, L. Bertholdo, L. Granville, and L. Tarouco, “On
the Feasibility of Web 2.0 Technologies for Network Management: A
Mashup-based Approach,” in NOMS, april 2010, pp. 487 –494.

[25] Y. Diao and A. Keller, “Quantifying the Complexity of IT Service
Management Processes,” ser. DSOM’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 61–73.

136 Appendix A. Scientific Production



A Mashup Ecosystem for Network Management

Situations

Oscar Mauricio Caicedo Rendon

Computer Networks Group

Institute of Informatics

University Federal do Rio Grande do Sul

Email: omcrendon@inf.ufrgs.br

Felipe Estrada-Solano

Telematics Engineering Group

Telematics Department

University of Cauca

Email: festradasolano@unicauca.edu.co

Lisandro Zambenedetti Granville

Computer Networks Group

Institute of Informatics

University Federal do Rio Grande do Sul

Email: granville@inf.ufrgs.br

Abstract—Current network management approaches and
their implementations are not intended to address dynamic situa-
tions that need rapid delivery of good-enough and comprehensive
solutions. In this paper, we introduce a novel mashup ecosystem,
called Mashment Ecosystem, that allows Network Administrators
to conduct on a Mashment Maker the activities and interac-
tions necessary to provide Mashments. Mashments are mashups
aimed to tackle network management situations. We evaluate
the Mashment Ecoystem by estimating with the Keystroke-
Level Model and measuring in a test scenario the time that
Network Administrators take to perform the activities of creating,
launching, and publishing Mashments. Similarly, we evaluate the
time for retrieving information about a network management
situation by using or not Mashments. The evaluation results
corroborated that Network Administrators, in our ecosystem,
need short-time to deal with network management situations.

I. INTRODUCTION

Nowadays, the use of computer networks has become vital
to most enterprises. Up to now, in these networks, many man-
agement tasks require manual intervention by Network Ad-
ministrators, mainly, to manage dynamic Situations that need
rapid delivery of good-enough and comprehensive solutions
[1]. In general, a Situation is a collection of entities (i.e., things
in a domain), their attributes, and relations in a time interval
[2]. Hereinafter, we call a network management Situation as
NMSit. Information technology departments do not provide
situational solutions for NMSits because the requirements of
these types of Situations are usually located in the long-tail
of enterprise needs [3] [4]. As result, Network Administrators
must create by themselves solutions for NMSits.

The Situation Management (SM) is an approach to provide
solutions that enable to analyze, correlate, and coordinate
the interaction between people, information, technologies, and
actions intended to overcome Situations [2][5]. SM includes
three aspects always linked to the time axis [2]: (i) the
investigative aspect is related to retrospective cause analysis
of Situations (e.g., finding the root of a packet transmission
failure in an OpenFlow-based network), (ii) the control aspect
is directed to change or preserve Situations (e.g., migrating
a virtual switch from an overloaded server); and (iii) the
predictive aspect is aimed to presage Situations (e.g., projecting
the appropriate time to migrate a critical router before a service
disruption happen). In addition, as Situations are dynamic, SM
emphasizes an adaptive management style.

Current network management solutions, such as Ganglia[6]
and Nagios [7], are not intended to address the NMSits.
Regarding these solutions, it is important to point out that
they are not compatible, difficulting the information collection
and information fusion that are necessaries to deal with a
NMSit. Furthermore, the referred solutions are created without
taking into account their rapid integration, extension, and
improvement by Network Administrators, making hard the
coping of NMSits. Thus, during a NMSit, the job of Network
Administrators is hindered, since they are not able to enhance
their workspace and must use numerous mismatched solutions
from the Web and the network management.

Different research works have been developed about net-
work management in traditional [8], virtual [9], Software
Defined (SDN) [10], and cloud [11] networks. Such researches
do not focus on face the NMSits and are developer centric. In
the last years, mashups [12], that are end-user centric solutions
formed by combining resources from different providers, have
been applied in several domains as situational projects [13]
and natural disasters [14] [15]. Nevertheless, mashups have not
been used for tackling the NMSits. In this way, we raise the
following question: how to tackle the NMSits by focusing on
the Network Administrator?. In order to answer this question,
we introduce a mashup ecosystem, named Mashment Ecosys-
tem, which allows to carry out SM in network management.
To the best of our knowledge, this work is the first to use
an approach centric in the Network Administrator, SM, and
mashup-based to deal with NMSits.

The Mashment Ecosystem, first, helps and encourages to
Network Administrators to build up Mashments (i.e., mashup
used to deal with a NMSit) by themselves. Second, it al-
lows Network Administrators to collect, correlate, and fuse
information from heterogeneous resources offered by diverse
providers. Third, it promotes the sharing and reuse of Mash-
ments to avoid their wasting and to push the rise of innovative
ones. Summarizing, the key contributions presented in this
paper are to: (i) propose a novel Mashment Ecosystem for
rapidly tackling NMSits by focusing in the Network Admin-
istrator; and (ii) demonstrate the short time that the Network
Administrator needs to address a NMSit by building up and
using a Mashment in our ecosystem.

The remainder of this paper is organized as follows. In
Section II, we present SM and the mashup technology. In
Section III, we introduce the Mashment Ecosystem. In Section
IV, we expose and analyze the case study developed to evaluate



our proposal. In Section V, we provide some conclusions and
implications for future work.

II. BACKGROUND

In this section, we present a SM background. Also, we
describe mashups and research works about mashups–SM.

A. Situation Management

SM is an emerging approach to provide solutions that need
the planning and implementing of actions aimed to overcome
a determined Situation [2]. SM requires the use of novel
techniques [5], first, to collect time/state information about
Situations. Second, to correlate and fuse multi-source infor-
mation for timely and correct decision making in Situations.
Third, to analyze past and predict future Situations. Fourth,
to present information aiming at the human comprehension
maximization.

Solutions based on the SM concepts are found in several
domains. For instance, in the domain of polyester film base
manufacturing, a situational solution, based on an expert
system, has been proposed for monitoring the non-steady state
events and assisting human operators with the event tasks [16].
In the aviation domain, a scalable and distributed situational
system has been introduced for the management of air security
incidents such as terrorist attacks that need, to be overcomed,
the coordination and sharing of information from different
organizations [17]. An architecture, based on SM, the Service
Oriented Architecture, and developer centric, has been outlined
for supporting demand response aspects of the smart grid
domain [18]. Althoug SM has been used in several domains,
there is not a SM-based approach to deal with NMSits.

B. Mashups

Mashups are web applications centered in end-users and
built up by combining several resources (e.g., data, applica-
tion logic, and user interfaces) from one or more providers
[12]. Here, end-user centric means that mashups can be built
by users without advanced programming skills. In addition,
regarding the mashups is to noteworthy [19]. First, they
encourage the sharing among end-users. Second, the providers
that supply resources, the end-users/developers that create
mashups, and the end-users that use mashups act as a single
unit known as mashup ecosystem.

If a mashup is developed for rapidly coping an immediate
need of one or a set of end-users, it can be considered as a
situational solution [20]. Mashups have been useful to manage
Situations in diverse domains. For instance, Mashups were
used to help to overcome a fire emergency in San Diego
(California, United States) by sharing weather and rescue
information among civil organizations and the government
[14]. In situational projects that involve a small number of
users and have a short lifespan, a mashup environment has
been introduced in order to support management tasks. In
such environment, the project manager is able to quickly
develop a mashup for visualizing and filtering the information
of his/her project [13]. An architecture, based on the Web 2.0
and wireless sensor networks, has been proposed in order to
estimate the speed and timing of possible floods. A mashup
prototype that collects, correlates, and presents data from

multiple wireless sensors was developed to test the architecture
[15]. Despite the use of mashups in several domains, there is
not a mashup-based approach for tackling the NMSits.

III. MASHMENT ECOSYSTEM

In order to better explain our proposal, we present an
overview of the Mashment Ecosystem. Subsequently, we
describe its Resources, Stakeholders, Activities&Interactions,
and Software Entities.

A. Overview

Current network management approaches do not focus on
dealing with NMSits. In the same way, although the mashup
technology provides good basis for developing composite
situational solutions by end-users, it has not been used for
tackling the NMSits. Therefore, there is a gap in the mashup
and network management related research and, consequently,
there is a chance for innovation. Hereinafter, we present how
a Mashment Ecosystem, based on the abstraction of resources,
the mashups composition model, and a Network Administrator
centric approach, can be targeted to address the NMSits. In
particular for coping the NMSits, the Mashment Ecosystem
faces three issues: (i) the complexity and heterogeneity to
collect, correlate, and fuse information from multiple resources
of the Web and the network management, (ii) the demand by
functionalities that allow Network Administrators to rapidly
create adaptable solutions for NMSits; and (iii) the need by
visualization functionalities that enable Network Administra-
tors to get NMSit information, in a very understandable way.

Before detailing the Mashment Ecosystem, we introduce
the Mashment concept and a motivating scenario. A Mashment
is a tunable situational mashup that allows Network Admin-
istrators (their end-users) to tackle a NMSit by combining
diverse types of resources from multiple providers. Tunable
means that Mashments are adaptable and easily customizable.
Since Mashments are a special type of mashup, they can be
created by Network Administrators. Regarding a Mashment
is also relevant to point out. First, it hides the heterogeneity,
complexity, and stiffness of resources used to deal with a
NMSit. Second, it bears the easy collection, correlation, and
fusion of information about a NMSit. Third, it presents NMSit
information, in a visual and clear way. Fourth, it can be rapidly
created to cope a determined NMSit.

Motivating Scenario. Let’s suppose the following NMSit:
in a virtual network formed by OpenFlow-based heterogeneous
Slices from different providers (NPa, NPb, and NPc), a
packet failure transmission occurs because of sudden and
unidentified errors. To tackle this NMSit, the Network Ad-
ministrator needs to found errors from Slices in NPa, NPb,
and NPc. As every NP uses a different OpenFlow Controller,
aiming at overcoming this NMSit, the Network Administrator
has three options. The first one is to collect, correlate, and
visualize network monitoring information by using disparate
solutions, such as command line interfaces to execute specific
commands on each Controller, distinct web user interfaces to
monitor virtual switches, and external web tools to display
non-integrated information about packet traffic. A drawback
of first option is that the use of several mismatched solutions
consumes more time than use an integrated solution. The
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second option is to develop a low-level script to integrate
the aforementioned commands, user interfaces, and web tools.
This option also consume a lot of time because, the Network
Administrator usually does not have advanced knowledge in
programming. The third option is to participate in the Mash-
ment Ecosystem. A Network Administrator in our ecosystem
is able to quickly build up, in a high-level abstraction, by
him/herself a Mashment to face the described NMSit. This
Mashment hides the resources heterogeneity from NPa, NPb,
and NPc. Furthermore, the Mashment presents the network
management information of virtual network in an integrated
and intelligible way.

Fig. 1: Mashment Ecosystem

The Mashment Ecosystem (see Figure 1) is formed by:
resources (Network Management Resources, Web Resources,
and Operator Resources), Mashments, stakeholders (Network
Administrator, Mashup Creator, Resource Creator, Web Re-
source Providers, Network Management Resource Providers,
and Software Entity Providers), software entities (Mashment
Maker, Mashment Engine, Mashment Repository, and Mash-
ment Store), activities performed by stakeholders, interactions
between stakeholders, and interactions between software enti-
ties. In this ecosystem, Network Administrators and Mashup
Creators build up Mashments by using the Mashment Maker.
Mashments are made up of resources from different providers
and are executed in the Mashment Engine. The resources
are released by the Resource Creator. In the Martketplace,
the Mashments are shared, sold, and purchased by Mashup
Creators and Network Administrators.

If a NMSit occurs, a Network Administrator can address
it as follows: (i) buying or getting free of charge a Mash-
ment(s), rapidly creating one or more Mashments, or quickly
reusing a Mashment(s) previously built; and (ii) executing the
purchased or created Mashment(s). It is important to highlight
that the Mashment Ecosystem evolves over time because of
the emerging and perishing of resources, the sharing and
commercialization of Mashments, and the dynamic interactions
between stakeholders.

The Mashment Ecosystem can be expressed as MEco =
{M,St,A, I, Se}. Where: St, A, I , and Se are sets of
stakeholders, activities, interactions, and software entities, re-
spectively. In turn, the set of Mashments M = {mi|mi =
(Rused, rroot, δ, nmsit) : Rused ⊂ R, rroot ∈ R, nmsit ∈
NMSit}. Here, Rused is the set of resources on mi, rroot
is the root resource that starts the mi execution, δ is the
execution flow of resources on mi, and nmsit is the specific

NMSit tackled by mi. The other sets forming our ecosystem
are described in next subsections.

B. Resources

A resource is a clearly identifiable entity in a time interval,
which is conceived or can be adapted to tackle a NMSit. The
set of resources is R = {ri|ri ∈ NMR ∪ WR ∪ OpR}.
Where, Network Management Resources (NMR) are entities
intended for the network management. NMR examples are
Ganglia to manage traditional networks, Citrix Center for
monitoring virtual resources, NetOpen to control OpenFlow-
based networks, network monitoring systems based on the
Simple Network Management Protocol, and all Application
Programming Interfaces (API) that provide interaction with
network elements.

Web Resources (WR) are Internet entities conceived or
useful (via adaptation) for the network management. WR
examples are the Google Maps API to show the geographic
location of several network devices, the Multi Router Traffic
Grapher (MRTG) to generate web pages with images present-
ing the traffic of network links, and the RRDTool to display
over time the performance data of routers.

Operator Resources (OpR) are entities for combining re-
sources (i.e., NMR, WR, and even Mashments). There are
two classes of OpR. Configuration OpR to set up parameters
for both access and communication to resources. An example
of Configuration OpR is a service to configure the security
credentials required to monitor a virtual router. Control OpR
are composition patterns, such as Split, Merge, Aggregate,
Invoke, Trigger, and Receive, useful, for instance, to collect,
correlate, and fuse resources.

C. Stakeholders

A stakeholder affects and is affected by the ac-
tivities and interactions performed by other one. The
set of stakeholders is St = {sti|sti ∈ NMRP ∪
WRP ∪ SEP ∪ ResourceCreators ∪ MashupCreators ∪
NetworkAdministrators}. Where, The Network Manage-
ment Resource Provider (NMRP) is in charge of supplying
NMR. Citrix Systems and Cisco Systems, providing solu-
tions and programming interfaces to manage virtual servers
and network devices, are examples of NMRP. The Web
Resource Provider (WRP) is responsible for supplying WR.
An example of WRP is a big player as Yahoo Inc. that
provides visualization libraries and map services useful to
present network management information. Another example
is Oetieker&Partners Inc. that supplies web solutions intended
for network monitoring, such as RDDTool and SmokePing.

The Software Entity Provider (SEP) is in charge of offering
one or more software entities. In general, the Mashment
Maker (containing visual representations of NMR, WR, OpR,
and Mashments) and the Mashment Engine are provided, in
an unified way, by the same SEP. In turn, the Mashment
Repository and Mashment Store are usually offered, in a
distributed way, by different SEP. In the Mashment Ecoystem
can exist several Makers, Engines, Repositories, and Stores.

Before participating in the building of a Mashment, many
WR and NMR need of adaption, in data format and/or com-
munication protocol. The Resource Creator is responsible for
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this adaptation that we called releasing. Since such a releasing
requires strong programming skills, Resource Creators are
usually software companies and professional developers. The
Open Software community, that provides APIs to interact
via standardized protocols with network devices and servers
containing virtual routers, is an example of Resource Creator.

The Mashup Creator creates, publishes, and launches
Mashments by means of the Mashment Maker and the Mash-
ment Engine. Also, he/she is able to share, sell, and buy
Mashments in the Marketplace. A Mashup Creator can get
profits by commercializing Mashments. Software companies,
professional developers, and end-users are examples of this
class of stakeholder.

The Network Administrator is responsible for tackling the
NMSits in traditional, virtual, SDN, and cloud networks. The
Mashment Ecosystem allows Network Administrators to: (i)
create and execute Mashments, (ii) reuse existing Mashments,
NMR, OpR, and WR, (iii) improve their workspace as result of
(i) and (ii); and (iv) get profits through publishing and selling
Mashments.

D. Activities and Interactions

The activities are actions conducted by stakeholders
in the software entities. The set of activities is A =
{Releasing, Creating,Reusing, Publishing,Launching,
Selling,Buying, Sharing}. Where, Releasing is carried out
by Resource Creators to enable the combination of hetero-
geneous resources through adapting NMR and WR. After
Releasing, the adapted resources can be used to build up
Mashments.

Mashup Creators and Network Administrators perform
Creating, Reusing, Publishing, Sharing, Selling, and
Buying. Creating allows to build up a Mashment (i.e., define
δ or execution flow), which involves: (i) discover the available
resources (NMR, WR, OpR, and Mashments), (ii) select the
suitable resources to address a NMSit, (iii) orchestrate a static
or dynamic plan for tackling a NMSit, by combining the
previously selected resources, (iv) monitor if the WR, NMR,
and Mashments used on the orchestrated plan are available
and flawless; and (v) reconfigure the orchestrated plan if any
resource is in flaw or unavailable.

Reusing enables to take advantage of existing Mashments,
aiming at the creation of more complex and innovative Mash-
ments. Publishing allows to package and put Mashments in
the Mashment Repository, aiming at their sharing, selling, and
buying. Sharing enables to offer and get Mashments free
of charge. Selling and Buying allow the commercialization
of Mashments. Sharing, Selling, and Buying promote the
reuse of Mashments and encourage the evolution of the Mash-
ment Ecosystem. Mashments (built and purchased) are sent
to execute through performing Launching, which, in turn,
is conducted by Network Administrators. Every Mashment
launched is called Mashup Instance.

The interactions take place in the relationships:
stakeholder/stakeholder and software entity/software
entity. The set of interactions can be expressed as I =
{Provides, Consume, Tackling, Commercialize, Occur,
Instantiate, Announce}. Where, Provide and Consume

occur from the need of supplying and consumption of NMR
and WR, during: the building up of the Mashment Maker,
the resources releasing, and the Mashments creation that
enhances and improves the Mashment Maker. Provide and
Consume take place among: Resource Providers, Resource
Creator, Mashup Creators, and Network Administrators.

Instantiate is conducted among the Mashment Maker and
the Mashment Engine when a Network Administrator launches
a Mashment. Announce is performed among the Mashment
Maker and the Mashment Marketplace, aiming at publishing
of Mashments that can be later shared, purchased, and sold
in Commercialize. Mashup Creators and Network Admin-
istrators carry out Commercialize. Occur and Tackling
are special interactions used to represent the emerging of a
NMSit and the corresponding responses offered by Mashment
Instances. During Tackling, Mashment Instances interact with
NMR, WR, and OpR in order to face a NMSit.

E. Software Entities

The software entities are responsible for supporting
and automating the activities and interactions
aforedescribed. The set of software entities is
Se = {Maker,Engine,Marketplace}. Where, the
Mashment Maker allows Network Administrators and
Mashment Creators to build up Mashments, in an easy and
rapid way. The Maker is a development environment that
provides a composition approach, high-level programming
tools, and a lightweight development process. The composition
approach consists of four phases related to Creating and
Reusing activities: (i) discover and select, (ii) orchestrate,
(iii) monitor and reconfigure; and (iv) reuse. The above
phases enable, first, to use the last information retrieved from
available resources. Second, to avoid the use of redundant,
incomplete, or irrelevant information provided by resources
in failure. Third, to avoid the lack of information because of
unavailable resources.

The high-level programming tools are visual facilities,
based on drag-and-drop and wire mechanisms, that allow
to perform the composition approach, Publishing, and
Launching. Such tools are responsible for hiding the data
mapping among WR, NMR, and OpR. The data mapping is
a problem particularly daunting for Network Administrators,
because, generally, they are not expert developers. As the
Mashment Maker is devoted to Network Administrators, we
define a simple process to tackle whatever NMSit: (i) conduct
the approach of composition above described and so build
up Mashments for the NMSit or buy the Mashment for the
NMSit, (ii) use the Mashments to deal the NMSit; and (iii)
maintenance of Mashments to avoid their malfunctioning.

The Mashment Marketplace allows to establish a new value
chain in which revenues are shared not only by WRP and
NMRP but all stakeholders. Marketplaces that involve end-
users (as Network Administrators) and professional developers
(as Mashup Creators) have proved valuable to promote the
evolution over time of Service Ecosystems (as the Mashment
Ecosystem). The Android Market and the Apple Store are
succesful examples of solutions marketplaces. The Mashment
Marketplace is make up of the Mashment Store(s) and the
Mashment Repository(s). In the Mashment Store are performed
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Selling, Sharing, and Buying. As result of Announce,
in the Mashment Respositoy are stored MashmentPkgs (a
packaged Mashment) to be sold or shared. The reuse of
existing Mashments, by Selling and Sharing, is a key aspect
for the evolution of proposed ecosystem.

The Mashment Engine is responsible for the lifecycle
(i.e., Instantiate) of Mashment Instances that are Mashments
on run time. A Mashment Instance allows to tackle (i.e.,
Tackling) a NMSit. As the Mashments are make up of WR,
NMR, OpR, and even Mashments, that function in back-end
or front-end, the Mashment Engine is an enabler to create,
destroy, and cache such resources into both web servers and
web/mobile clients.

IV. CASE STUDY

To assess our proposal, we perform a test environment
for the Mashment Ecosystem. This section describes the test
conditions and analyzes the obtained results.

A. Test Environment

The Figure 2 depicts the test environment for the raised
case study. To set up such environment, first, we created
a heterogeneous virtual network. Second, we developed the
Mashment Maker, the Mashment Engine, and the Market-
place Repository (as a Database). Third, we released into the
Mashment Maker the resources to create, launch, and publish
a Mashment, hereinafter called MVN. When suddenly and
unidentified transmission errors occur (i.e., the NMSit) in the
virtual network built, MVN allows the Network Administrator
to visually look for them (i.e., tackling the NMSit) by present-
ing, in a visual and integrated way, the collected, correlated,
and fused information about packet traffic from switches.

Fig. 2: Test Environment

The virtual network was created by using Open vSwitch
and one different OpenFlow Controller in each network
provider (NPa, NPb, and NPc), namely, Floodlight, Beacon,
and POX. Beacon and Floodlight are controllers based on the
Java programming language. In turn, POX is based on Python.
The controllers and switches were deployed on the Mininet that
is a software for emulating OpenFlow networks. The Mininet
was executed on Oracle VM VirtualBox. The Mashment Maker
was developed by using Asynchronous Javascript and XML
(AJAX), web services based on the Representational State
Transfer (REST), and APIs for Floodlight, Beacon, POX, and

RRDTool. The Mashment Maker was deployed on the Apache
Tomcat Server. This Apache Tomcat was used as the Mashment
Engine in the server-side. In the client-side, the Mashment
Engine used was Firefox. The Marketplace Database was
implemented on a MySQL Server. Network Administrators
created the MVN by using the Mashment Maker.

B. Evaluation and Analysis

To evaluate the Mashment Ecosystem, we estimated and
experimentally measured the time that Network Administrators
take to perform Creating, Launching, and Publishing
MVN. MVN (see Figure 3) is formed by five visual com-
ponents (i.e., Rused): BeaconController, FloodlightController,
and POXController representing the OpenFlow controllers
(i.e., NMR) used in the virtual network, RRDTool (i.e., WR)
representing the web tool used to generate images that present
packet traffic information, and Monitoring Panel that is a
merge operator (i.e., OpR) and the root resource (i.e., rroot).
Subsequently, we also estimated and experimentally measured
the time that Network Administrators take to retrieve, by using
MVN, information about the NMSit above presented.

The time estimation was made by using the Keystroke-
Level Model (KLM). In KLM, each activity is modeled as a
sequence of actions. The time average for KLM actions is [21]:
(i) Press and release a key → K = 0.2s, (ii) Type a string →
Tn = n ∗ K , (iii) Hold or release the mouse → B = 0.1s,
(iv) Point the mouse → P = 1.1s, (v) Move the hand from
mouse to keyboard or viceversa → H = 0.4s; and (vi) Mental
preparation → M = 1.35s. In addition to these actions, we
used, drag-and-drop a visual element → Tdnd and wire two
visual elements → Twire. Tdnd and Twire are given by [4]:
Tdnd = P + 2B = 1.3s and Twire = 3P + 8B = 4.1s.

Fig. 3: Mashment Maker - Creating MVN

To tackle the NMSit, the Network Administrator creates
MVN, the corresponding actions sequence (i.e., δ) is as fol-
lows (see Figure 3): (1) Drag-and-drop Beacon → Tdnd, (2)
Configure Beacon (IP Address=190.90.69.93) → Tcon12, (3)
Drag-and-drop POX → Tdnd, (4) Configure POX (IP Ad-
dress=143.54.12.210)→ Tcon13, (5) Drag-and-drop Floodlight
→ Tdnd, (6) Configure Floodlight (IP Address=190.5.203.123)
→ Tcon13, (7) Drag-and-drop RRDTool → Tdnd, (8) Config-
ure RRDTool (Time in seconds = 600) → Trrd, (9) Drag-
and-drop Monitoring Panel → Tdnd, (10) Wire Beacon to
Monitoring Panel → Twire, (11) Wire POX to Monitoring
Panel → Twire, (12) Wire Floodlight to Monitoring Panel
→ Twire; and (13) Wire RRDTool to Monitoring Panel →
Twire. Where, Tcon38 = P + 2H + Tn=38 = 8.8s and
Trrd = P + 2H + Tn=3 = 2.5s.

A.1. Papers: accepted and on reviewing 141



According the previous sequence, the
estimated time for Creating MVN is
Cest = 13M+Tcon38 +Trrd + 5Tdnd + 4Twire. Then,
it is expected that, by using the Mashment Maker, Network
Administrators take 56.25s to build up MVN. We consider this
Cest is good because, for instance, just typing the example
script (10 lines with 40 characters each one) to generate a
single RRD image takes Tscript = 10M + Tn=400 = 93.5s.
In this way, we can state that Network Administrators,
participating in the proposed ecosystem, can rapidly create
Mashments aimed to tackle a NMSit. Generalizing, the
estimated time to create any Mashment can be expressed as:

δ(t) = Tsel+Tconn+Tconf+Tment. Where, Tsel =
∑i

1 Tdnd,

Tconn =
∑j

1 Twire, Tconf = P + H + (nt ∗ K), and
Tment = M ∗ (i + j + o). Here, i is the number of elements
in the set Rused (drag-and-dropped), j is the number total
of wires linking Rused, nt is the number total of characters
to configure Rused, and o is the number of Rused to be
configurated. In δ(t) a dynamic composition model could
be used to decrease both Tsel and Tconn. This dynamic
composition for Mashments is a future work.

The Network Administrator performs the following ac-
tions sequence for Launching MVN. This sequence is the
same for every Mashment: (1) Drag-and-drop MVN (when
a Mashment is created, it is represented as a resource in
the Mashment Maker) → Tdnd, (2) Point the mouse to Run
button → P ; and (3) Press and release Run button → 2B.
Therefore, the estimated time for Launching is given by
Lest = 3M+P+Tdnd + 2B. As result, it is expected that
Network Administrators take 6.65s to start MVN by means of
the Mashment Maker.

The Network Administrator performs the following actions
sequence for Publishing MVN. This sequence is the same for
every Mashment. (1) Point the mouse to Save button → P , (2)
Point the mouse to dialog that asks the Mashment name → P ,
(3) Type the string MVN → Tn=3, (4)Mouse press and release
to store MVN in the Mashment Maker → 2B, (5) Point the
mouse to Publish button → P , (6) Point the mouse to dialog
that asks the Marketplace location → P , (7) Type a repository
string, for instance, http://www.mashments.mplace.com/repos
→ Tn=37; and (8) Mouse press and release to store
MVN in the Marketplace Database → 2B. Therefore, the
time estimated for the Publishing activity is given by
Pest = 8M+ 4(P+B) +Tn=3 +Tn=37. As result, it is
expected that the Network Administrator takes 23.60s to
publish any Mashment. Afterwards, MVN and, in general,
any Mashments can be shared, sold, and purchased in the
Marketplace Store that will be presented in a future work.

Fig. 4: Activities Time: Estimated vs Experimental

We also conducted an experimental study to measure the
time that Network Administrators take to perform Creating,

Launching, and Publishing. In the study participated 30
Network Administrators whose age ranged from 22 to 35.
Although all participants frequently had used web tools none of
them had used a mashup maker before. Thus, each participant
was trained to use the Mashment Maker by 45 minutes. We
took the experimental average time in seconds with a 95%
confidence level. The results of estimated and experimental
times (see Figure 4) corroborate the short time that Network
Administrators need to tackle a NMSit by performing activities
in the proposed ecosystem. Furthermore, as the experimen-
tal times of Creating (41.55s), Launching (5.46s), and
Publishing (21.92s) were always less than the corresponding
estimated times, we can state that the implementation of
proposed ecosystem had a good behavior in front of KLM
estimations.

Fig. 5: MVN on runtime

On runtime, MVN (see Figure 5) allows Network Admin-
istrators to tackle the raised NMSit. MVN during its execu-
tion presents, simultaneously in an integrated user interface,
the information of flows, links, and packect traffic of Open
vSwitches, regardless of controllers from network providers.
For instance, into MVN, the actions sequence to retrieve packet
traffic information of three switches, each one in a different
controller, is as follows: (1) Point the mouse to controllers list
→ P , (2) Mouse press and release to select three controllers
→ 6B; (3) Point the mouse to Switches button → P , (4)
Mouse press and release the Switches button→ 2B, (5)Mouse
press and release to select three switches → 6B, (6) Point the
mouse to Traffic button → P , (7) Mouse press and release the
Traffic button to open the RRDTool images that contain the
packet traffic information → 2B. The estimated time to the
above sequence is given by Rest = 7M+ 3P+ 16B. Thus,
it is expected that, by using MVN, Network Admistrators take
14.35s to deal the raised NMSit, by analyzing, in an integrated
user interface, three RRDTool images that present information
about packets received, transmitted, dropped, and with error.
This result was corroborated by the experimental study in
which Rexp = 9.01s < Rest.

If the Network Administrator does not participate in the
Mashment Ecosystem, he/she performs the following actions
sequence to retrieve the information about the packet traffic on
one switch from a specific controller web tool: (1) Point the
mouse to Switches tab → P , (2) Mouse press and release to
select the Switches tab → 2B, (3) Point the mouse to select
a switch → P , (4) Mouse press and release to select a switch
→ 2B, (5) Point the mouse to Ports button → P ; and (6)
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Mouse press and release to select ports of switch → 2B. These
actions must be repeated three times, one by each controller
web tool. Therefore, without MVN the estimated time to
retrieve non-integrated information about the packet traffic on
three switches is: R3s = 3(6M+ 6B+ 3P) = 36s. There-
fore, Rexp < Rest < R3s. In this sense, it is important to
highlight that the retrieving time for MVN is significantly
smaller (a 60% taking into account the estimated time) than for
the non-MVN case. According this result, we can state that a
Network Administrator in the Mashment Ecosystem can tackle
a NMSit faster than one out of it.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a mashup ecosystem (Mash-
ment Ecosystem) that allows to tackle network management
situations (NMSit). The Mashment Ecosystem and its imple-
mentation are based on the high-level abstraction of NMR,
WR, and OpR, the composition model of mashups, and an
approach centered in the Network Administrator for building
up of composite solutions. Our ecosystem empowers the Net-
work Administrator with the important ability to rapidly create,
launch, and publish Mashments that are mashups devised
to collect, correlate, fuse, and present integrated information
about a NMSit. We also presented experimental measured and
KLM estimation of time that the Network Administrator take
to: (i) create, launch, and publish MVN that is a Mashment
aimed to address a specific NMSit: transmission errors in
a heterogeneous virtual network; and (ii) retrieve, by using
MVN, the integrated information about the referred NMSit.

The aforementioned NMSit has a particular challenge: it
needs the fast development of a solution (MVN) able to
retrieve, merge, and rapidly present, in an integrated way,
network management information from different OpenFlow
controllers and their underlying virtual network elements.
The Mashment Ecosystem allowed the Network Adminis-
trator to overcome such a challenge, corroborating its sig-
nificance and the relevance of Mashment concept. Through
an experimental and KLM evaluation, we have confirmed,
first, the short time that a Network Administrator takes
to MVN: create (estimated=56.25s, experimental=67.24),
launch (estimated=6.65s, experimental=5.46s), and publish
(estimated=23.60s, experimental=21.92). Second, the short
time that a Network Administrator, that is using MVN, takes
to retrieve (estimated=14.35s, experimental=9.01s) the inte-
grated information about the raised NMSit. The experimen-
tal evaluation confirmed KLM predictions and, consequently,
the feasibility of using our ecosystem to tackle any NMSit.
Furthermore, it is important to highlight that the time to
retrieve non-integrated information about this NMSit, by using
mistmached solutions, is 36s. Thus, it is expected that a
Network Administrator in the Mashment Ecosystem can tackle
a NMSit 60% faster than one out of it.

As future work, we plan to propose and implement a
Mashment dynamic composition model in order to tackle
the NMSits more rapidly. Furthermore, we are interested in
evaluating the productivity of Network Administrators partici-
pating in the Mashment Ecosystem. We also plan to implement
the Mashment Marketplace to evaluate its feasibility. The
acceptance of Mashments by Network Administrators is a topic
to explore too.
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Abstract—The Software Defined Networks paradigm aided
by the Network Virtualization is a key driver to cope the
Internet ossification. There are different proposals to deploy
this paradigm, but there is not an integrated or standardized
way for the management of networks built with such proposals.
In this sense, the network management becomes too complex
because multiple solutions must be used by Network Admin-
istrators to perform their tasks. In this paper, we introduce a
mashup-based approach that allows Network Administrators to
customize and combine management solutions, in order to they
build composite applications (called SDN Mashups) aiming the
integrated management of Virtual Software Defined Networks
in heterogeneous environments. We evaluate our approach by
building a SDN Mashup for the management of a network
slice that uses three distinct Network Operating Systems and
by running performance tests, corroborating that the mashup
built has small response time.

Keywords-OpenFlow; SDN; SDN Mashup; Virtual SDN;
Web-based Management;

I. INTRODUCTION

The Internet constantly evolves to support a lot of new

technologies and protocols in Application and Link Layers.

However, at the Internet core (Transport and Internet Lay-

ers), the evolution has come to a standstill that is known

as Internet ossification. The Software Defined Networks

(SDN) and the Network Virtualization are key drivers to

overcome such ossification [1]. The SDN paradigm proposes

to separate data (packet forwarding) and control (decision

policies) planes in order to simplify the network operation

[2]. The Network Virtualization allows to share a network

physical infrastructure among several virtual networks. This

type of virtualization may help to deploy the SDN-based

networks, because it facilitates the control plane migration

from network devices (e.g., routers, switches) to servers and

allows to perform network experiments in an isolated way

[3]. Hereinafter, we will call a SDN aided by the Network

Virtualization as Virtual SDN.

There are different proposals for deploying the SDN

paradigm, such as OpenFlow [4] and the Forwarding and

Control Element Separation (ForCES) framework [5]. In

these proposals common components are: the Network Op-

erating System (NOS) at the control plane and the Network

Services running on it. However, there is not an integrated

or standardized way for managing these components, which

certainly is not suitable for the whole management of SDN-

based networks on heterogeneous and virtual environments.

For instance, in a future scenario, if a Network Administrator

needs to manage several Virtual SDN Slices from different

providers, which are using distinct NOS to operate and

provide Virtual SDN Resources, the SDN management will

become too complex because multiple tools must be used to

perform control and monitoring tasks.

Although large research efforts have been made about

the SDN deployment [2] [6] [7], few investigations are

found in the literature concerning the control and monitor-

ing of non-homogeneous SDNs. In this paper, we take a

step further, proposing a novel mashup-based approach that

provides a suitable model of composition and abstraction to

cope the heterogeneity of virtual resources on SDN. In the

approach, we introduce the SDN Mashup concept that lets

Network Administrators create SDN Management solutions

(called SDN Mashups) to meet their own requirements.

The SDN Mashups stimulate Network Administrators to

customize and combine, in a high-level abstraction, their

SDN management tools, aiming to facilitate the enforcement

of management tasks.

In summary, the key contributions presented in this pa-

per are: (i) propose a mashup-based approach aimed to

manage Virtual SDNs on heterogeneous environments and

allow Network Administrators to build up SDN Management

solutions, (ii) present a SDN Mashup prototype based on the

representation of Virtual SDN Resources as Services; and

(iii) demonstrate a monitoring scenario of a Virtual SDN

that uses three different NOS, confirming the small response

time of the mashup built.

The remainder of this paper is organized as follows. In

Section II, we present both the background and the related

work. In Section III, we introduce the SDN Mashup concept.

In Section IV, we present the SDN Mashup System. In

Section V, we expose and analyze the case study developed

to evaluate our approach. The paper concludes in Section

VI.
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II. BACKGROUND AND RELATED WORK

In this section, first, we present a mashups background.

Second, we describe the main SDN concepts. Third, we

discuss the related work about the SDN management.

A. Mashups

Mashups are Web applications created through the inte-

gration of different resources (e.g., data, application logic,

and user interfaces) available on the Internet [8]. The

Mashup technology has been considered a fundamental

piece in Web 2.0 [9], allowing end-users, without advanced

programming skills, to create their own and customized

applications. Furthermore, mashups encourage both coop-

eration and reuse among end-users [10].

In accordance to the ProgrammableWeb site, the main

mashup service directory, about 60% of current mashups are

related to mapping services [11]. The Mashup technology

has been also used in many other areas, for instance,

helping to overcome an emergency situation [12] by sharing

weather and rescue information among civil organizations

and government entities. In the telecommunications area, the

telco-mashup concept [13] was defined to provide composite

services for end-users, by combining features like streaming,

Quality of Service, and billing. Mashups, based on the

REpresentational State Transfer (REST) architectural model

and the semantic Web, were proposed to facilitate the

composition of small applications by end-users [14]. In this

paper, we introduce the SDN Mashup concept to extend the

use areas of mashups and cover the SDN management.

B. Software Defined Networks

The SDN paradigm has emerged as an important trend

that defines how future networks are architected. A SDN is

formed by three architectural components [2] [6]: the packet

forwarding datapath (e.g., switches and routers passing pack-
ets), the NOS that controls such datapath through a vendor-

independent protocol, and the Network Services (or Network

Features) running on the top of NOS. The possibility to

add these Network Services, in an easier way, is the key

advantage of SDN to facilitate the innovation in the Internet.

The SDN deployment proposals define aforementioned

components in a different way. For instance, in the ForCES

framework [5], the ForCES protocol is used to communicate

Control Elements (i.e., the NOS) and Forwarding Elements

(i.e., the datapath). In such framework, Network Services can

be developed as distributed features in Control Elements.

In an OpenFlow-based SDN [4], a Controller (i.e., the

NOS), such as POX [15], Beacon [16], and FloodLight

[17], uses the OpenFlow protocol to control OpenFlow-

capable network devices (i.e., the datapath). The Controller

is also used for deploying new-centralized Network Services

(e.g., a new routing protocol) that are known as Network

Applications.

C. Management of Software Defined Networks

Although, in previous researches, the problems about

the management of heterogeneous SDNs by using high-

level tools have not been directly addressed. Below, we

review some of the most important OpenFlow management

solutions found in the literature.

The Stanford University introduced a graphical tool,

called OpenRoads [18], to facilitate the management of IP

addresses in OpenFlow networks and to show monitoring

information of switches on the datapath. The OpenFlow

MaNagement Infrastructure (OMNI) [19] is a solution aimed

to control and monitor OpenFlow networks. This solution

is based on a multi-agent system that can be accessed by

Network Administrators from a Web user interface. The

NetOpen [20] uses a Service Oriented Architecture (SOA) to

support the creation of Network Services by combinig basic

SOA services that are named networking primitives. The

NetOpen considered, among others, the following Network

Services: to retrieve information of switches, link states, and

flow tables, and to configure the network device capabilities.

It is worth noting that the described solutions were not

devised to be extended and enhanced by Network Adminis-

trators themselves. Such solutions can be solely improved by

network programmers in a low-level abstraction. Moreover,

up to now, OpenRoad and OMNI were just tested in network

slices controlled by NOX that is an OpenFlow-based NOS

implemented in the C language. In turn, NetOpen can

be considered as a specialization of NOX. Consequently,

OpenRoad, OMNI, and NetOpen cannot manage a Virtual

SDN that uses more than one type of NOS. Thus, regarding

the NOS, these solutions are constrained to homogeneous

environments.

III. SDN MASHUPS

In order to better explain our approach, first, we present

the global vision of SDN Mashups. Second, we describe a

network management scenario in which is necessary to use

such type of mashup.

A. Global Vision

Before defining what is a SDN Mashup, we present the

main concepts used in our approach. A Virtual Network

Provider (VNP) is a company in charge of operating Virtual

SDN Resources and providing them to distinct Virtual Net-

work Operators (VNOs). A VNO is a company responsible

for supplying the Virtual SDN Slices requested by customers

and/or applications [1]. A Virtual SDN is a subset of the

underlying physical network and, usually, can be formed

by several Virtual SDN Resources [3]. One or more Virtual

SDN form a Virtual SDN Slice.

Every Virtual Network Element (VNE), Network AP-

plication (NAP), and NOS is a Virtual SDN Resource. A

VNE is located at the bottom of the SDN architecture.

Virtual network devices (e.g., the Vyatta Router and the
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Open vSwitch), virtual nodes and hosts (using, for instance,

VMWare, Xen, or VirtualBox), links, and flows are types of

VNE. A NAP is a program that handles the control software

of VNE, through interfaces and protocols provided by NOS.

Rendezvouz services and applications to path selection are

examples of NAP. A NOS is in charge of monitoring and

handling the resources and the entire state of Virtual SDN.

The SDN Mashups are composite Web applications aimed

to manage any SDN that has been deployed using Network

Virtualization. In our approach, Network Administrators are

able to create SDN Mashups by using wiring and drag-

and-drop mechanisms. Thus, Network Administrators do not

require intimate knowledge about the Application Program

Interfaces (APIs) of NAP, NOS, and VNE, or concerning the

data mapping among these APIs. It is important to highlight

that an end-user programming approach, as the used by SDN

Mashups, provides flexibility for Network Administrators

to build their solutions by themselves, and promotes the

innovation in SDN management solutions.

A SDN Mashup poses some features that existing

mashups do not support. First, it combines information, on

the fly, from multiple resources, such as NAP, NOS, and

VNE. Second, it hides the heterogeneity and complexity of

Virtual SDN Resources in order to facilitate the carrying

out of management tasks. Third, it blends local and external

visualization APIs to generate integrated Graphical User

Interfaces (GUIs). Fourth, it provides access to multiple

end-users to enable communication and collaboration among

them by sharing and reusing SDN Mashups. It is worth

noting that, by the SDN Mashup concept and the aforemen-

tioned features, we lead the Network Management towards

an end-user centric environment, where millions of Network

Administrators are able to participate and collaborate in

order to cope their own needs, and even obtain profits.

In a general way, a SDN Mashup is formed by combining

Virtual SDN Resources represented as Services, Mashup

Operations, and GUIs. The representation of Resources as

a service consists on defining and providing a common

data-format to interchange information of resources, a well-

known interface to each resource, and a common protocol

to communicate with every interface. Specifically, we define

the following Virtual SDN Resources as a service (see details

in the section IV): Network Operating System as a service

(NOSS), Network APplication as a service (NAPS), and

Virtual Network Element as a service (VNES). The Mashup

Operations are structures of composition, such as Sequential,
Split, and Merge. A Mashup Operation can be used, for in-

stance, to sort, filter, and aggregate the information retrieved

from one or more NOSS. The GUIs represent visualization

and presentation libraries used to generate the integrated user

interfaces of SDN Mashups.

The Figure 1 presents the global vision of SDN Mashups,

in which we mainly propose the creation of SDN man-

agement solutions by end-users: (1) The mediation process

Figure 1. Global Vision of SDN Mashups

is responsible for offering the Virtual SDN Resources as

Services. This mediation is necessary because there is not

a standardized interface/protocol to access the data, the

application logic, and the user interfaces provided by dif-

ferent types of resources. (2) The end-user (e.g., a SDN

Administrator: the Network Administrator of a VNO), in

the composition process, defines the Mashup Operations that

act on NOSS, NAPS, and/or VNES. The results of these

Operations are shown by Web 2.0 GUIs, that are also defined

and customized by the end-user in the composition process.

(3) In the reuse process, a SDN Mashup can be used to

create another one. Different end-users may use the same or

similar candidate resources/services/mashups and glue them

to compose a new complex SDN Mashup. (4) The end-

user, by executing SDN Mashups, is able to manage one

or several Virtual SDNs that are formed by Virtual SDN

Resources belonging to VNPs. A SDN Mashup carries out

their management tasks through the mediation process that

is always hidden for the end-user.

B. Motivating Scenario

Management of Virtual SDN. Let’s suppose that a

Network Administrator, here called SDN Administrator,

requires to purchase new Virtual SDN Slices to satisfy

the demand of its customers, for instance, Internet Service

Providers and small companies. Usually, V NPa is the

choosen option to meet such requirement. However, at this

time, the SDN Administrator decides to buy required Slices

from V NPb because of economic profits. As a result, the

SDN Administrator will need to control and monitor the

Slices provided by V NPa and V NPb.

Considering that V NPa uses a different NOS than V NPb,

the SDN Administrator will have to manage each type of

Virtual SDN Slice by using disparate management solutions,

such as proprietary command line interfaces to execute
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specific commands on each NOS or dissimilar Web user

interfaces to administrate virtual routers. Instead, if the SDN

Administrator uses our approach, he/she will be able to build

by him/herself a SDN Mashup devoted to manage the Virtual

SDN Slices, in an integrated way. This SDN Mashup will

hide the NOS heterogeneity from V NPa and V NPb. Thus,

the complexity of SDN management tasks carried out by the

SDN Administrator will be also mitigated.

IV. SDN MASHUP SYSTEM

Usually generic mashup systems (in the literature, they

are also known as mashup makers) provide good basis for

developing small composite applications, named mashups.

However, these systems do not address, in a native way,

special concerns of the SDN management. In particular,

the complexity, heterogeneity, and high-level interaction

of SDN Resources must be driven to enable the control

and monitoring of SDN Slices in virtual environments.

Therefore, there is a gap in the mashup-and-SDN related

research and, consequently, there is a chance for innovation.

In next paragraphs, we describe how a system based on

the abstraction and composition models of the mashup

technology, called SDN Mashup System, can be targeted to

resolve the shortcomings of the SDN management in non-

homogeneous and virtual surroundings.

Figure 2. SDN Mashup System

The Figure 2 depicts the SDN Mashup System that

enables to carry out the SDN Mashup concept, the System

users, and the Virtual SDN Resources (i.e., NAP, NOS, and
VNE) to be managed by SDN Mashups. The SDN Mashup

System is made up by the SDN Mediators, the Mashup

Resource Container, the Mashup Development Environment,

the Publisher, and the Mashup Engine. The users that interact

with our System by using a Web Client, a Mobile Client,

and/or an Integrated Development Environment (IDE) are

the SDN Administrator, the SDN Mashup Developer, and

the SDN Resource Builder.

The Virtual SDN Resources, provided by VNPs, are

heterogeneous. Therefore, in the SDN Mashup System,

these resources are accessed and handled through SDN

Mediators. A Mediator hides the complexity of one or more

resources in two ways: (i) accessing and retrieving the

information from Virtual SDN Resources, and presenting

it to the SDN Mashup System in a standardized data-

format (e.g, XML and JSON); and (ii) providing a two-way

communication between the Virtual SDN Resources and the

SDN Mashup System via gateways (e.g, SNMP/HTTP and

Proprietary/HTTP). This communication allows complete

interaction among any VNO and its VNPs.

In the SDN Mashup System, SDN Mediators were de-

fined for NAP, NOS, and VNE. A new Mediator must be

developed every time a new kind of Virtual SDN Resource

arises. In our approach, we propose that Mediators must

be developed and extended by the SDN Resource Builder

through the use of a conventional IDE. For example, if the

NOX is integrated into a VNP, the SDN Resource Builder

will be in charge of developing the corresponding Mediator

(e.g., NOX Mediator) to adapt such NOS into the SDN

Mashup System.

The Mashup Resource Container stores services that

represent the Virtual SDN Resources in the SDN Mashup

System. We define three types of services: (i) NAPS that

offers the functionalities provided by Network Applications

(e.g., a Video Multicasting solution) running on the top of a

specific NOS, (ii) NOSS, in turn, provides the management

facilities (e.g., slice topology discovery) supplied by a de-

termined NOS; and (iii) VNES that offers the information

about one or a set of virtual network elements, for instance,

quantity of sent/lost packets in a Vyatta virtual router. The

communication between the Mashup Resource Container

and every SDN Mediator is made via a standardized protocol

(e.g., HTTP and SOAP). NAPS, NOSS, and VNES interact

with corresponding Virtual SDN Resources through SDN

Mediators. Similarly to Mediators, services in the Resource

Container must be implemented by the SDN Resource

Builder.

In very general terms, SDN Administrators and SDN

Mashup Developers use the Mashup Development Environ-

ment to compose and execute SDN Mashups (SDN man-

agement solutions). The Mashup Development Environment

provides flexibility to the SDN Mashup System through

a high-level abstraction of Virtual SDN Resources, GUIs,

and Mashup Operations used in the composition process.

In this sense, it is important to point out that we propose

a Mashup Development Environment in which, during the
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building of SDN Mashups, it is not necessary to work with

data mapping. The data mapping is one of the least intuitive

tasks in current mashup makers because non-programmers

(as the SDN Administrators) are usually not able to specify

it correctly.

The Mashup Development Environment is formed by the

Visual Elements, the Designer, the SDN Mashup Container,

the Device Container, and the User Container. The Visual

Elements are graphical representations of the Mashup Oper-

ations, the services stored into the Mashup Resource Con-

tainer, and the SDN Mashups. In addition to SDN Mashups,

we define four types of Visual Elements: Visual NAP,

Visual NOS, Visual VNE, and Visual MashupOperation.

An instance of Visual NAP is a box symbolizing a new

tunneling algorithm to be executed on the top of a NOS. An

example of Visual NOS is a box representing a particular

NOS as Beacon, NOX, FloodLight, or POX. A type of

Visual VNE is a box symbolizing a virtual switch as the

Open vSwitch. A visual filter to be applied to the infor-

mation collected from NOSS invocations is an example of

Visual MashupOperation.

The Designer is an user interface based on drag-and-

drop and wiring mechanisms. Using these mechanisms, SDN

Mashup Developers and SDN Administrators can blend,

in an easy way, different Visual Elements to create SDN

Mashups. By considering, the Visual Elements, the Me-

diators, and the Designer, the Mashup Development En-

vironment becomes technology-agnostic. Here, technology-

agnostic means that the Mashup Development Environment

allows to combine Resources/Services regardless the cor-

responding underlying protocols (e.g., OpenFlow/ForCES),
controller libraries (e.g., Beacon/POX API), and so on.

In the Designer, the SDN Mashups can be used to develop

new and complex ones, which promotes: (i) the reuse of

SDN Mashups, (ii) the extension and improvement of SDN

Mashups and the Mashup Development Environment; and

(iii) the fast development of SDN Mashups. In brief, the

SDN Administrator and the SDN Mashup Developer can use

the Designer to extend and enhance their SDN Management

solutions and the own Designer. Likewise, the SDN Re-

source Builder can also improve the Mashup Development

Environment (including the Designer) by adding new Visual

Elements using an IDE.

The SDN Mashup Container stores the metadata of all

SDN Mashups built in the Mashup Development Environ-

ment. This metadata is used on design time to present each

SDN Mashup as a Visual Element. Thus, the SDN Mashup

Container is also a key module that enables the reuse in our

approach. On runtime the metadata is read to execute every

SDN Mashup. The User Container stores the user profiles

metadata, that is used to control the access to SDN Mashups.

The Device Container hosts the information related to device

capabilities. This information is processed to identify what

type of Client device is able to run the SDN Mashups and

the Mashup Development Environment.

The Publisher module is responsible for adapting the GUI

of each SDN Mashup to different Client devices (i.e., the
Web Client and the Mobile Client). Moreover, this module

controls the access to available elements in the containers

of the SDN Mashup System. After that a SDN Mashup

is launched, for example from the Mashup Development

Environment, the Mashup Engine acts as the SDN Mashup

life cycle manager in charge of creating, deleting, and

caching Mashups Instances. As a result, this Engine interacts

with all modules of the SDN Mashup System.

The Web Client and the Mobile Client are software

entities in charge of running and showing SDN Mashups,

anywhere and anytime. The former uses a Web RunTime

environment and the latter a Mobile Web RunTime environ-

ment to execute client-side mashup functionalities. The SDN

Mashups can be executed on both types of Clients. There-

fore, browsers, running on personal computers, notebooks,

and smartphones, are enabled to be used as front-end of

SDN management solutions based on mashups. The Mashup

Development Environment only can be executed on Web

Clients, which means that SDNMashups are programmed on

Web and not on Mobile environments. Since SDN Mashups

and the Mashup Development Environment are Web 2.0

solutions, Client devices must support Javascript, Asyn-

chronous Javascript And XML (AJAX), Cascading Style

Sheets (CSS), and HyperText Markup Language (HTML)

version 5, among other Web 2.0 technologies.

Regarding the users of the SDN Mashup System, we

consider: first, the SDN Resource Builder is an informa-

tion technology developer responsible for programming and

providing SDN Resources as Services, Visual Elements,

and Mediators. The Resource Builder interacts with our

Mashup System by means of a conventional IDE. Second,

the SDN Mashup Developer is in charge of combining

Visual Elements and even existing SDN Mashups in order

to develop new mashups. The Mashup Developer interacts

with our Mashup System via the Mashup Development

Environment running on a Web Client. Third, the SDN

Administrator is responsible for the management of virtual

and heterogeneous SDNs through mashups running on the

Web Client and/or the Mobile Client. Using the Mashup

Development Environment, the SDN Administrator is also

able to perform two actions: (i) create, customize, and

improve composite applications addressed to manage Virtual

SDNs; and (ii) as a result of developing mashups, extend,

and enhance his/her workspace.

V. CASE STUDY

In order to evaluate our approach, first, we created an

infrastructure of OpenFlow-based Virtual SDNs. Second,

we developed a SDN Mashup for monitoring such infras-

tructure. Third, we conducted experiments to measure the

response time of the SDN Mashup built.
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A. OpenFlow Virtual SDN

The Figure 3 presents the test environment of our case

study. V NPa has an OpenFlow-based network where virtual

switches (Open vSwitches), links and flows are monitored

via Beacon version 1.0.2. The Beacon is an OpenFlow

Controller developed in the Java language. V NPb has an

OpenFlow-based network that is monitored by POX version

1.0.0. The POX is a Controller implemented in the Phyton

language. V NPc has an OpenFlow-based network that is

monitored by FloodLight version 0.9.0. The FloodLight is a

Controller developed in the Java language. All OpenFlow-

based Virtual SDNs were deployed on Mininet version 1.0.0

[6] that, in turn, was executed on Oracle VM VirtualBox

version 4.2.6. The Mininet is a software for emulating

OpenFlow networks. Here, we use OpenFlow because of

its commercial and research significance [4].

Figure 3. Test Environment

V NO provides network services to Customers A and

B by means a Virtual SDN Slice made up of OpenFlow

Controllers, virtual switches, links and flows from V NPa,

V NPb, and V NPc (see Figure 3). In this sense, the SDN

Administrator of V NO requires to monitor Virtual SDN

Resources, in an integrated way, regardless of controllers,

network topologies, and implementation technologies. The

previous requirement is met by the Slice Monitoring Mashup
that is an instantiation of our SDN Mashup concept.

B. Slice Monitoring Mashup

The Slice Monitoring Mashup was composed in the

Designer of the SDN Mashup System by connecting

the VisualBeacon (i.e., a Visual NOS), the VisualFlood-

Light, and the VisualPOX to the MonitorSDN (i.e., a Vi-

sual MashupOperation). The VisualBeacon, the VisualPOX,

and the VisualFloodLight are boxes built to represent,

respectively, Beacon, POX, and FloodLight. In turn, the

MonitorSDN is a visual box created to encapsulate the next

monitoring operations: SwitchesList, LinksList, and

FlowsList. These operations are applied to the Visu-

alBeacon, the VisualPOX, and/or the VisualFloodLight to

retrieve the list of virtual switches, links, and flows. The

Slice Monitoring Information results from executing one or

more of the above mentioned operations.

Figure 4. Internal Operation of Slice Monitoring Mashup

In a general way, the Slice Monitoring Mashup is in

charge of splitting, aggregating, and merging the information

collected from different Virtual SDN Resources in V NPa,

V NPb, and V NPc. The Figure 4 depicts the internal op-

eration of the mashup developed to the raised case study:

(i) in the Mashup Development Environment running on a

Firefox Web Client, the SDN Administrator sends a request

to execute the Slice Monitoring Mashup, (ii) this request is
Splitted in three solicitations, the first solicitation targeted

to the BeaconService, the second to the POXService, and

the third to the FloodLightService, (iii) each Service in-

vokes NOSS operations (SwitchesList, LinksList,
and FlowsList) to collect information from a particular

Controller, (iv) each Service carries out the corresponding

mediation process to interact with its specific OpenFlow-

based Virtual SDN, (v) the information retrieved by Flood-

Light/POX/Beacon Services is Aggregated and Merged to

generate the Slice Monitoring Information; and (vi) finally,
such information is shown, in an integrated way, in the Web

GUI (see Figure 5) of the Slice Monitoring Mashup.
As result of composing and executing the Slice Moni-

toring Mashup, the SDN Administrator is able to observe,

in an unique GUI, the detailed information of resources
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Figure 5. Slice Monitoring Mashup

forming the Virtual SDN Slice. For instance, (i) the Figure 5
(A) depicts the information about several virtual switches,

monitored by either Beacon, POX, or FloodLight, (ii) the

Figure 5 (B) presents details of links located in three

OpenFlow-based SDNs; (iii) and the Figure 5 (C) illustrates

flows in three virtual switches, each one monitored by a

different OpenFlow Controller.

C. Implementation Highlights

Regarding the communication details, it is important

to highlight that, first, the interaction between each Con-

troller (Beacon, POX, and FloodLight) and its correspond-

ing virtual switches (Open vSwitches) is made by the

OpenFlow protocol. Second, the interaction between me-

diation processes and Controllers is based on Remote

Procedure Calls (Beacon and POX do not expose their

monitoring operations through interfaces of services) and

HTTP (FloodLight exposes its monitoring operations as

Web services). In this sense, the interactions Beacon-

Controller/BeaconService, POXController/POXService, and

FloodLightController/FloodLightService were implemented

by using the Java Remote Method Invocation API, the

PYthon Remote Objects Library, and the FloodLight REST

API, respectively.

The POXService, the BeaconService, and the FloodLight-

Service are based on the REST architectural model [21].

We have used REST because it is becoming in the de-

facto model for developing mashups. Furthermore, REST-

based solutions are suitable for heterogeneous environments

(as in our case study) because their HTTP interaction is

independent of programming languages. Specifically, the

POXService was developed by using the Phyton Flask API.

In turn, the BeaconService and the FloodLightService were

implemented by using the Java Jersey API.

The GUIs of the Slice Monitoring Mashup and the

Mashup Development Environment were built using the

Yahoo User Interface (YUI) API, that provides a lot of high-

level widgets, and the Google Chart API, that allows to

create advanced graphics for websites. It is to point out that

both APIs are based on AJAX. AJAX granted us two aspects:

dynamic and interactive SDN Mashups, and asynchronous

interaction of GUIs with POX/Beacon/FloodLightServices.
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D. Evaluation and Analysis

The test environment (see Figure 3) was deployed on

servers and personal computers running the Linux Ubuntu

O.S. 11.10 (64 bits). The SDN Mashup System was executed

on a server with 4 GBytes RAM and 2.53 GHz core 2 duo

processor. Each virtual OpenFlow-based network, in a tree

or linear topology, was deployed on a server with 8 GBytes

RAM and 3.4 GHz core i7 processor. The Slice Monitoring
Mashup was ran on a personal computer with 2 GBytes

RAM and 2.53 GHz core 2 duo processor.

To test our approach, we evaluate the operations

(SwitchesList, LinksList, and FlowsList) of the
Slice Monitoring Mashup when it is used to monitor, in

an integrated way, the Virtual SDN Slice composed by

Virtual SDN Resources in V NPa, V NPb, and V NPc.

In all evaluation cases, we took 30 measurements with

a 95% confidence level for the average response time in

milliseconds.

Figure 6. Slice Monitoring Mashup - SwitchesList

The Figure 6 depicts the response time results of the

SwitchesList operation when the number of switches

was increased from 20 to 100 in each Virtual SDN of

V NPa, V NPb, and V NPc. Thus, pertest, the total number

of switches was 60, 120, 180, 240, and 300. Since the

response time (r in milliseconds - ms) of Web systems can

be ranked as optimal (r ≤ 100), good (100 < r ≤ 1000),
admissible (1000 < r ≤ 10000), and deficient (r > 10000)
[22], we can state that the Slice Monitoring Mashup has

a good r when executing the SwitchesList operation.

Moreover, r has a similar behavior in tested topologies and

its growth is less than 1 ms per switch.

The Figure 7 presents the response time results of the

LinksList operation when the number of links was

increased from 50 to 250 in each Virtual SDN of our

case study. Thus, pertest, the total number of links was

150, 300, 450, 600, and 750. According to obtained results,

we can assert that the LinksList operation of the Slice
Monitoring Mashup has a good r that grows negligibly (less

than 1 ms per link) when the number of links is raised in

linear and tree topologies.

Figure 7. Slice Monitoring Mashup - LinksList

Figure 8. Slice Monitoring Mashup - FLowsList

The Figure 8 presents the response time results of the

FlowsList operation when the number of flows is in-

creased from 1000 to 10000 in the Virtual SDN Slice.

For this operation, the Slice Monitoring Mashup has an

admissible r that grows less than 3 ms per flow, regardless

network topology. As in a network the number of flows may

be large, in practice, FlowsList retrieves 1000 flows per

block, getting so a good r. Such constraint is not relevant

because the use of an unique GUI to display all flows is not a

good practice of usability. Furthermore, using a mechanism

of pagination, flows can be suitably retrieved and displayed

to the SDN Administrator.

Summarizing, although the Slice Monitoring Mashup uses
11 additional software modules to integrate the monitoring

information of the Virtual SDN Slice, the response time of

all mashup operations is good on heterogeneous environ-

ments. In this way, we can state that the Slice Monitoring
Mashup can be used to monitor a Virtual SDN Slice re-

gardless of NOS, the network topology, and the number of

virtual switches, links, and flows. The NOS heterogeneity

is hidden by NOSS and SDN Mediators. The topologies

and the number of virtual resources are handled by own

centralized-nature of each NOS.

On the other hand, since the SDN Mashup System is

based on visual mechanisms as dragging-and-dropping and
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wiring, we can state that the SDN Administrator and the

SDN Mashup Developer do not need programming skills

to develop similar SDN Mashups to the Slice Monitoring
Mashup. In the mashup composition process, the Adminis-

trator and the Developer only need to link Visual Elements

and provide configuration information, such as IP address

and type of NOS. Thus, if a SDN Administrator or a SDN

Mashup Developer have to build SDN Mashups, he/she does

not need to worry about the data mapping between Visual

Elements.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a mashup-based approach

formed by the SDN Mashup concept and the SDN Mashup

System that allows to carry it out. The concept and its in-

stantiation are based on the abstraction and representation of

any SDN Resource as a Service, and on the end-user centric

development of composite applications. Thus, our approach

empowers the SDN Administrator with the important ability

to build, extend, and customize SDN management systems.

We also presented a realistic Virtual SDN management

scenario where multiple information sources and services

are aggregated/merged to create a new application, namely

the Slice Monitoring Mashup that is a SDN Mashup aimed

to meet a specific purpose: integrated monitoring of a Slice

formed by Virtual SDNs that use different NOS.

The aforementioned scenario has a particular challenge:

the monitoring of heterogeneous Virtual SDNs. Our ap-

proach was able to overcome such challenge, corroborat-

ing the significance of the SDN Mashup concept and the

SDN Mashup System. In this sense, through a quantitative

evaluation, we have confirmed, first, a good response time

(r ≤ 1000) of the Slice Monitoring Mashup, regardless

of network topologies and Virtual SDN Resources (NOS,

virtual switches, links, flows). Second, the negligible growth

of this response time as the number of Virtual SDN Re-

sources increases. The evaluation of the Slice Monitoring
Mashup confirms the feasibility of using our approach to

cope the complexity and heterogeneity of the Virtual SDN

management.

From a qualitative point of view, the use of Visual

Elements, drag-and-drop, and wiring facilities, provides an

easy-to-use Mashup Development Environment with lit-

tle compromise on usability, particularly during the SDN

Mashup composition process. The Visual Elements and the

Mashup Designer allow to create and reuse SDN Mashups

to manage, in an integrated manner, Virtual SDNs. Addi-

tionally, the SDN Mashup System, as a whole, hides imple-

mentation details about types of NOS, network topologies,

virtual switches, flows, and links. Thus, our approach over-

comes the stiffness of current SDN management solutions.

In this sense, we consider SDN Mashups a step forward, in

both the mashup technology and the network management

area. We lead the former towards a new application domain

and the latter to an environment centric in the Network

Administrator.

As future researches, we plan to extend the SDN Mashup

System, adding new features to perform other management

tasks and appending more powerful GUIs to automati-

cally compose SDN Mashups. Also, we are interested on

evaluating the decrease on the carrying out time of SDN

management tasks by using our mashup-based approach.

The acceptance by Network Administrators of mashups as

network management solutions is a topic that we are going

to explore too.
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do Sul, Av. Bento Gonçalves, 9500 Porto Alegre, RS, Brazil

Abstract

The Software-Defined Networking paradigm establishes a three-plane archi-
tecture that facilitates the deployment of network functions and simplifies
traditional network management tasks. However, this architecture lacks an
integrated or standardized framework for managing the SDN itself. Some
investigations have addressed such shortage by proposing different solutions
that tackle specific management requirements for particular SDN technology
instances. This isolated approach forces network administrators to use multi-
ple frameworks to achieve a complete SDN management that is complex and
time-consuming in heterogeneous environments. In this paper, we introduce
an Information Model based on the Common Information Model that estab-
lishes a technology-agnostic and consistent characterization of the whole SDN
architecture. Such Information Model represents the core towards building
a Management Plane aimed to facilitate the integrated SDN management in
heterogeneous environments. To test our Information Model, we developed a
prototype and conducted a performance evaluation in an SDN configuration
scenario that deploys different managing technologies. The obtained results
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provide directions that corroborate the feasibility of our approach (in terms
of time-response and network traffic) for configuring heterogeneous SDNs.

Keywords: Common Information Model, Software-Defined Networking,
heterogeneous environments, resource characterization, configuration
management.

1. Introduction

Over the past 20 years, programmable networks have evolved as a key
driver to innovate and to cope with complexity and management in computer
networks. Nowadays, Software-Defined Networking (SDN) paradigm is an
attractive trend to program networks in both research and industry [1, 2].
From a high-level point of view, SDN separates control and forwarding planes,
allowing to operate networks in a simpler way from a logically centralized
software program often referred to as controller [3].

SDN standardization bodies (e.g., Open Network Foundation [ONF] and
Linux Foundation) and networking vendors (e.g., Cisco and Juniper) de-
scribe a typical SDN architecture as three horizontal planes [4, 5]: (i) a
lower Data Plane to forward packets, (ii) a middle Control Plane to compile
decision policies and to enforce them on the Data Plane through Southbound
Interfaces (SBI); and (iii) an upper Application Plane to orchestrate busi-
ness functions and high-level services that manage network behavior using
Northbound Interfaces (NBI) provided by the Control Plane. Additionally,
the SDN architecture includes East/Westbound Interfaces (EWBI) to enable
deploying a distributed Control Plane.

At the top of the SDN architecture, a lot of research has proposed services
and applications to simplify traditional network management tasks, such
as load-balancing [6], efficient energy usage [7], and access control [8, 9].
Furthermore, some studies have addressed the need to manage SDN itself,
including, for example, frameworks to configure the Data Plane [10, 11], to
deploy [12, 13] and monitor [14, 15] the Control Plane, to virtualize SDNs
[16, 17], and to develop the Application Plane [18, 19]. However, to the best
of our knowledge, no integrated solution exists to manage SDN as a whole
by employing well-defined interfaces and supporting different deployment
technologies.

The lack of frameworks for integrated network management forces net-
work administrators to handle several isolated solutions to manage resources
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from distinct planes of the SDN architecture as well as various technology
instances. Thus, SDN management remains complex and time-consuming
because of the diversity of solutions. In our previous work, we evaluated
the feasibility of using mashups to control and monitor heterogeneous SDN
environments by composing management applications at the top of the SDN
architecture [20, 21, 22, 23]. Still, there is the need to characterize SDN as a
whole from the management perspective to accomplish a joint understanding
in heterogeneous and distributed environments. Some approaches have ad-
dressed the formal representation of SDN [24, 25, 26, 27], nonetheless, they
are focused exclusively on specific technologies or fall short in modeling the
SDN environment.

Recent proposals have considered a Management Plane in the SDN archi-
tecture for carrying out Operation, Administration, and Maintenance (OAM)
functions [4] [5]. These proposals expose a very high-level view of their man-
agement component. We argue that is needed to extend and detail such
Management Plane aiming to facilitate integrated control and monitoring of
heterogeneous SDNs. As a first critical step, this Management Plane requires
an Information Model that homogenizes management data to achieve consis-
tency among all OAM tasks. In this paper, we specify the SDN Management
Plane using the four Open System Interconnection (OSI) submodels [28]
(i.e., Information, Organizational, Communication, and Functional). Then,
we focus on introducing a novel Information Model that represents the SDN
management environment as a Common Information Model (CIM) concep-
tual framework [29]. We preferred CIM over other information definition
languages (e.g., Structure of Management Information [SMI] [30] and Guide-
lines for the Definition of Managed Objects [GDMO] [31]) because its high
expressiveness affords future robust semantic integration [32]. Leveraging
CIM features, we provide a technology-independent and consistent model
across distinct vendors and SDN instances. Furthermore, our Information
Model establishes a shared abstraction of managed and managing SDN re-
sources from Data, Control, and Application planes to achieve a complete
SDN management. It is noteworthy that the proposed model provides con-
cepts and artifacts that may complement or enhance the Information Model
structured by ONF (i.e., ONF-CIM1) [24].

1ONF-CIM is not based on the CIM specification defined by the Distributed Manage-
ment Task Force (DMTF).
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The main contributions presented in this paper are:

• An Information Model based on CIM that describes managed and man-
aging SDN resources regardless of deploying technologies;

• An SDN management system prototype that is based on the above
Information Model;

• The demonstration that our proposal is effectively feasible (in terms of
time-response and network traffic) when managing an SDN deployed
with heterogeneous technologies.

The remainder of this paper is organized as follows. In Section II, it is
discussed both the background and related work. In Section III, we overview
the proposed Management Plane. In Section IV, we introduce our CIM-based
Information Model. In Section V, we present a case study used to evaluate
the proposed approach. The paper concludes in Section VI.

2. Background

In this section, first, we present the SDN architecture. Second, we discuss
the related work about the SDN management.

2.1. Software-Defined Networking architecture

Multiple standardization bodies, such as ONF and Linux Foundation,
focus on encouraging and normalizing open SDN frameworks. Also, various
private networking vendors, such as Cisco and Juniper, offer proprietary SDN
deployments. In turn, several research efforts work on improving architec-
tural aspects of SDN. These open, proprietary, and research SDN solutions
establish a typical SDN architecture [4, 5] composed of three horizontal planes
(i.e., Data Plane, Control Plane, and Application Plane) and three interfaces
(i.e., SBI, NBI, and EWBI).

The Data Plane deploys the network infrastructure composed of intercon-
nected hardware and software-based Network Devices (NetDev) that perform
forwarding operations. A NetDev ranges from dumb switches to custom
switches. A dumb switch merely carries out simple forwarding functions,
such as Longest Prefix Match (LPM). For example, OpenFlow-Only switches
[33] just forward packets regarding their flow tables that are updated by the
Control Plane. A custom switch relies on programmable platforms (e.g.,
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OpenWrt and NetFPGA) to integrate more complex forwarding functions,
such as Network Address Translation (NAT) and firewall. For example, For-
warding Elements (FE) in ForCES [34] include multiple associated Logical
Functional Blocks (LFB) to carry out such forwarding functions. An LFB
defines either a punctual action for handling packets or a configuration entity
operated by the Control Plane.

The Control Plane enforces decision policies on the Data Plane through
SBIs. Each SBI defines the set of instructions and the communication proto-
cols to allow the interaction between components in the Control Plane and in
the Data Plane. The OpenFlow protocol is the most well-known open stan-
dard SBI because its widespread usage by vendors and research [1]. Other
SBI proposals are ForCES [34] and Protocol-Oblivious Forwarding (POF)
[35].

The Control Plane comprises Network Slicers (NetSlicer) and Network
Operative Systems (NOS). A NetSlicer divides the underlying network in-
frastructure into several isolated logical network instances (a.k.a. slices),
assigning their control to multiple tenant NOSs. For example, FlowVisor
[36] acts as an OpenFlow proxy between switches and controllers, redirect-
ing messages according to specific slicing dimensions, such as bandwidth and
forwarding tables. An NOS compiles the network logic for instructing the
underlying Data Plane and provides generic services (e.g., topology discov-
ering and host tracking) and NBIs to the Application Plane, facilitating to
add custom Network Applications (NetApp). OpenFlow Controllers [33] and
ForCES Control Elements (CE) [34] are NOS instances. This architecture
avoids considering the NetSlicer as a specific NOS in order to demarcate
their functionality (i.e., network virtualization versus decision making). In
addition, some approaches may provide network virtualization as an NOS
service for multiple tenant NetApps [37] [38].

As aforementioned, the Control Plane provides NBI to the Application
Plane. An NBI encompasses common Application Programming Interfaces
(API) based on protocols (e.g., Floodlight REST API [39]), programming
languages (e.g., Pyretic [18] and Procera [19]), file systems (e.g., YANC [40]),
among others. The Control Plane also defines EWBIs to deploy distributed
NOSs. For example, SDNi [41] and ForCES CE-CE interface [34].

The Application Plane consists of NetApps that deploy and orchestrate
business logic and high-level network functions, such as routing policies and
access control. NetApps run either locally or remotely regarding NOSs. Local
NetApps prefer NBIs based on programming languages. Remote NetApps
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usually employ protocol-based APIs.

2.2. Software-Defined Networking management

Most SDN proposals have tackled traditional network management tasks
by carrying out managing functions in NetApps at the Application Plane.
For example, wildcard-based algorithms [6] to better redistribute traffic in
SDN networks, ElasticTree [7] to efficiently provide energy for SDN com-
ponents, and Resonance [8] and OpenRoads [9] to control access to SDN
resources. However, functions in NetApps lack of mechanisms to deal with
several management requirements from distinct SDN architectural planes,
such as: (i) in the Data Plane, configure certain NetDevs to communicate
with a preferred NOS, (ii) in the Control Plane, set up a NetSlicer to link
NOSs to their corresponding virtual network instances; and (iii) in the Ap-
plication Plane, modify business parameters to customize NetApps logic.

Some investigations have tackled the above gap by providing isolated tools
that address specific management requirements for particular SDN technol-
ogy instances. For example: (i) OpenFlow Management and Configuration
Protocol (OF-CONFIG) [10] and Open vSwitch Database (OVSDB) [11] that
define protocols to configure NetDevs, (ii) Kandoo [12] and HyperFlow [13]
to scale and distribute NOSs, (iii) OpenFlow Management Infrastructure
(OMNI) [14] and ROVIZ [15] that provide graphic interfaces to monitor
NOSs, (iv) VeRTIGO [16] and ADVisor [17] to configure NetSlicers; and (v)
Pyretic [18] and Procera [19] that supply development tools to build Ne-
tApps. Considering that heterogeneous SDNs deploy a variety of resources
from multiple vendors and distinct technologies, it is to highlight that a
classic solution based on using isolated tools to accomplish a complete SDN
management is complex and time-consuming.

In our previous work, we assessed the feasibility of a mashup-based ap-
proach to allow network administrators to compose NetApps that control
and monitor heterogeneous SDNs [20, 21, 22, 23]. In such mashup-based
approach, management applications relied on services and middlewares de-
veloped and extended by builder actors. These builder actors realized their
job according to deployed SDN technology and their own managing data
models, constraining such management applications to operate only on par-
ticular SDN domains. Therefore, as an essential step, an SDN management
solution requires an Information Model that establishes a shared characteri-
zation of the entire SDN to enable integrated management in heterogeneous
environments.
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Few approaches have defined Information Models to characterize the SDN
managed environment: (i) ONF-CIM [24] defines a Core Information Model
(CoreModel) [25] that uses the Unified Modeling Language (UML) to struc-
ture the forwarding functions of Data Plane resources, (ii) ForCES Net-
work Abstraction Model [26] employs a building block approach to represent
ForCES FEs; and (iii) CIM-SDN [27] proposes a CIM extension schema to
model SDN resources. It is worth noting that these Information Models
fall short in representing the whole SDN managed environment and are tied
to specific SDN technology instances. ONF CoreModel and ForCES Ab-
straction Model describe only the Data Plane. The former was designed for
OpenFlow and the latter for ForCES. CIM-SDN merely includes the main
elements from the Data and the Control Planes. Although CIM-SDN is
based on a technology-neutral model (i.e., CIM), the extended schema is
highly attached to the OpenFlow architecture. Finally, ONF-CIM simply
includes CoreModel so far but provides a flexible environment that allows to
expand and refine its structure as new insights emerge, such as the approach
described in this paper.

Table 1 summarizes the targets and gaps in SDN management of the
above-reviewed proposals. Unlike these proposals, we consider an SDN man-
agement approach based on a reference, technology-agnostic model of the
whole SDN in order to achieve integrated management in heterogeneous SDN
environments.

3. A Management Plane for SDN

To define our approach, we extend the Management Plane concept con-
sidered by early SDN proposals for covering OAM functions omitted and
restricted in the traditional SDN architecture [4, 5]. For example, assign-
ing the Data Plane resources to the corresponding control components and
configuring the policies and Service Level Aggreements (SLA) of the Control
and Application planes. Although the NOS may implement many of these
OAM functions, flooding the Control Plane with a lot of management tasks
may cause low network performance. Unlike the above proposals, our Man-
agement Plane aggregates components that facilitate the integrated manage-
ment in heterogeneous SDN environments. To better explain our approach,
we present a high-level overview of the Management Plane using the four OSI
submodels: Information, Organizational, Communication, and Functional.

7

160 Appendix A. Scientific Production



Table 1: Proposals on SDN management

Requirements for SDN management

References Approach
Managing
the whole

SDN

Integrated
management

Heterogeneous
environment

Information
Model

[6]–[9] Functions
in NetApps

[10]–[19] Isolated
tools

X

[20]–[23] Mashup
based

X X

[24]–[27] Information
Models

X X

- This
approach

X X X X

3.1. Overview

Fig. 1 depicts our Management Plane. This plane is formed by the Data
Repository, the Manager, Adapters, Management Interfaces, and Agents.
The Data Repository holds the Resource Representation Model (RRM) and
serves the Manager to store management instance data. RRM handles meta-
data to provide an abstract, technology-neutral characterization of SDN re-
sources. The Manager orchestrates and deploys Management Services to
carry out different SDN management functions. These Management Ser-
vices expose user interfaces to allow interaction of Network Administrators.
Adapters afford a protocol-agnostic communication between the Manager
and Agents through well-defined Management Interfaces. Each Management
Interface connects both corresponding Adapter and Agent. Agents situate
on SDN resources to act on behalf of the Manager. The whole operation
of the Management Plane is based on RRM to achieve an integrated and
technology-independent SDN management.

It is important to highlight that we define the Management Plane by
referencing the four OSI network management submodels [28]: (i) an Infor-
mation Model to establish a shared abstraction of SDN resources, (ii) an
Organizational Model to specify roles and collaboration forms, (iii) a Com-
munication Model to delineate the exchange of management data; and (iv)
a Functional Model to structure management requirements.
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Figure 1: High-level SDN architecture with Management Plane

3.2. Submodels

Following we overview the four submodels of the proposed Management
Plane.

3.2.1. Information Model

Our approach introduces a CIM model to describe the SDN manage-
ment environment at a conceptual level regardless of deploying technologies.
We use UML to graphically represent SDN resources and their relationships
as CIM classes and associations, respectively. This object-oriented, well-
understood abstract framework standardizes SDN management information
across disparate vendors and SDN instances. Thus, enabling to carry out
integrated management in heterogeneous SDNs. Further network designers
may extend the proposed CIM model to include customized resource behav-
ior. In our approach, the Information Model is realized by RRM in the Data
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Repository. We focus on the details of the proposed Information Model in
Section 4.

3.2.2. Organizational Model

We depict a two-tier like network management model that incorporates
three kinds of entities (a.k.a. roles). A Managing Tier that encloses manager
and adapter entities, and a Managed Tier that contains agent entities. A
manager entity is responsible for: (i) housing and coordinating logic of man-
agement functions, (ii) providing user interaction with deployed management
functions through tailored user interfaces (e.g., command-line, graphical, and
Web-based); and (iii) sending requests to and receiving replies and events
from agents by means of adapters. An adapter entity allows a manager
to interact with any specific agent by parsing data formats and protocols
handled by their communication interfaces (i.e., Adapter Interface and Man-
agement Interfaces). An agent entity resides on managed resources to carry
out management requests delegated by a manager, such as performing an
operation or responding to a query. In addition, an agent entity may dis-
patch unsolicited events to a manager. Each organizational component in our
Management Plane gets the same name as its corresponding role. The Man-
ager acts as a manager entity. NetApp Adapter, NOS Adapter, NetSlicer
Adapter, and NetDev Adapter play an adapter role. NetApp Agent, NOS
Agent, NetSlicer Agent, and NetDev Agent perform agent tasks. We dif-
ferentiate Adapters and Agents regarding of SDN managed resources (i.e.,
NetApp, NOS, NetSlicer, and NetDev) to demarcate the communication be-
tween such kind of entities located at different architectural planes.

3.2.3. Communication Model

Our Management Plane defines the User Interface, the Repository Inter-
face, the Adapter Interface, and the set of Management Interfaces. The User
Interface enables Network Administrators to interact with Management Ser-
vices exposed by the Manager. The Repository Interface connects the Man-
ager with the Data Repository. The Adapter Interface and Management
Interfaces transport request messages (i.e., operations and queries) from the
Manager to a particular Agent, passing through the related Adapter. These
both kind of interfaces also transmit reply messages and unsolicited events
sent by an Agent towards the Manager. In order to match each Agent with
its respective Adapter, we establish a Management Interface (MI) per SDN
managed resource: NetApp MI, NOS MI, NetSlicer MI, and NetDev MI. Re-
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garding communication support, the User Interface and the Adapter Inter-
face must employ a consistent data format (e.g., JavaScript Object Notation
[JSON] [42] and eXtensible Markup Language [XML] [43]) and a standard-
ized protocol (e.g., HyperText Transfer Protocol [HTTP] [44] and Simple
Object Access Protocol [SOAP] [45]) to exchange management data. The
Repository Interface relies on technologies deployed by the Data Reposi-
tory (e.g., XML over HTTP). Finally, Management Interfaces handle data
formats and protocols implemented by Agents (e.g., OVSDB [11], Network
Configuration Protocol [NETCONF] [46], and Simple Network Management
Protocol [SNMP] [47]).

3.2.4. Functional Model

This proposal references the five OSI management functional areas to
classify Management Services: Fault Services, Configuration Services, Ac-
counting Services, Performance Services, and Security Services. Fault Ser-
vices detect, separate, and fix failures in physical and logical SDN resources.
Configuration Services modify and update behavior of SDN resources. Ac-
counting Services tracks and allocate usage of SDN resources. Performance
Services monitor, collect, and report information about the operation of SDN
resources. Security Services control and analyze access to SDN resources.
In addition, we include Programming Services to coordinate programmable
software of SDN resources, such as checking and deploying versions of a
particular NetApp running on a specific NOS. By using or combining the
aforementioned Management Services, our Management Plane allows net-
work administrators to carry out different SDN management requirements,
as those described in [4].

4. Information Model

As aforementioned, our Management Plane requires an Information Model
that provides a technology-agnostic and consistent abstraction of the whole
SDN environment to enable integrated management. Few approaches pro-
vide models that attempt to characterize the SDN management environment
[10, 26, 27], but they are tied to specific SDN instances and expose incomplete
SDN representations.

In this paper, we introduce a CIM-based Information Model that provides
a technology-independent and consistent abstraction of SDN managed and
managing resources. This Information Model represents every plane in the
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SDN architecture to encourage a complete SDN management regardless of
deploying technologies. We adopted CIM because it offers higher expressive-
ness than other information definition languages (e.g., SMI [30] and GDMO
[31]), affording future robust semantic integration [32]. CIM supplies several
classes, associations, properties, and methods to describe network resources
at a conceptual level, such as Ethernet ports, LAN endpoints, and VLANs
[48]. However, CIM lacks elements that represent specific SDN features for
management [27]. Thus, our Information Model introduces new elements
that extend the actual CIM Schema to characterize the whole SDN man-
agement environment. We present this extended schema as a graphical vi-
sualization composed of UML classes and associations that represent SDN
managed and managing resources and their relationships.

In next paragraphs and figures (Figs. 2, 5, 4, and 3) we describe a simple
version of the proposed Information Model. Specific properties and methods
from each class are out of scope. We exclude the CIM prefix from the cur-
rent CIM elements and the SDN prefix from the new elements. For example,
CIM System appears as System and SDN AgentService as AgentService. To
provide a better visualization, the proposed class schema displays gray back-
ground for the new classes, white background for the current CIM classes,
bold characters for the new associations, and thin characters for the current
CIM associations. For the sake of simplicity, we omit inheritance associa-
tions between the new classes and the current CIM classes. Unless otherwise
stated, general inheritance associations satisfy the following: (i) the new
classes with suffix Capabilities represent subclasses from the EnabledLogi-
calElementCapabilities CIM class, (ii) with suffix Service from the Service
CIM class; and (iii) with suffix Settings from the SettingData CIM class. In
addition, we skip the BindsTo CIM associations for the CIM classes Service-
AccessPoint and ProtocolEndpoint. The BindsTo association connects the
class itself to define a protocol layering dependency between an upper and a
lower protocol. For example, the OpenFlow protocol binds the TCP protocol
to set the port and address enabled for OpenFlow communication.

Fig. 2 illustrates the extended class schema for the proposed Management
Plane. We introduced five new classes to characterize the novel components
defined in this approach: in the Managing Tier, the ManagementService, the
ManagementServiceCapabilities, and the AdapterService; and in the Man-
aged Tier, the AgentService and the EventIndication.

The ManagementService class represents Management Services that allow
carrying out different SDN management functions. Through the Element-
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Figure 2: Class schema to model SDN Management Plane

Capabilities association, the ManagementServiceCapabilities class describes
both supported and excluded abilities for Management Services. The Man-
agementServiceCapabilities relies on the Functional Model to classify SDN
Management Services as Fault, Configuration, Accounting, Performance, Se-
curity, or Programming services (see Section 3.2.4). For example, a Man-
agement Service that modifies the SBI communication of NetDevs declares
capabilities of Configuration Services.

The RegisteredProfile class models a CIM profile specification defined by
any standard organization for managing SDNs. Each profile specification
includes a small subset of the proposed class schema and delineates cor-
responding behavior as management requirements. The ReferencedProfile
association indicates that a profile specification may reference others. In
addition, the ElementConformsToProfile association describes which CIM
profile specifications a Management Service apply. For example, a Configu-
ration Service fulfills with a profile specification of DMTF that standardizes
how to achieve seamless migration in NetDevs.

The Manager represents the system hosting the SDN Management Ser-
vices. The HostedService association realizes this relationship between the
ManagementService and the Manager. Although this model presents the
Manager as an instance of the System class, it also may implement an in-
stance of a subclass from System, such as ComputerSystem, J2eeServer, or
a new class. For example, a Configuration Service may be carried out as a
Web application running on either an Apache Tomcat Server or a GlassFish
Server.

The ProtocolEndpoint class tagged as User Interface models the commu-
nication point that enables access of Network Administrators. The corre-
sponding ProvidesEndpoint association implies that the ManagementService
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supplies such user ProtocolEndpoint. For example, a Configuration Service
provides an HTTP interface to allow Network Administrators to set SBI
parameters of NetDevs through a Web browser.

The ServiceAccessPoint class tagged as Adapter Interface represents the
communication point between the ManagementService and the AdapterSer-
vice. The ProvidesEndpoint associations connected to the adapter ServiceAc-
cessPoint indicate that both the ManagementService and the AdapterService
establish their own communication points to allow access from the other. The
ServiceSAPDependency associations imply that both the ManagementSer-
vice and the AdapterService utilize the adapter ServiceAccessPoint to access
the other. The ManagementService and the AdapterService support proper-
ties and methods for sending and receiving requests, responses, and events
through the adapter ServiceAccessPoint. For example, a Configuration Ser-
vice and a NetDev Adapter establish a mutual communication using JSON
over HTTP. Using this channel, the NetDev Adapter forwards to the Con-
figuration Service an event from a NetDev Agent that notifies about failures
with misconfiguration. Similarly, the Configuration Service uses the same
channel to fix this failure by sending a configuration request to the NetDev
Adapter. The NetDev Adapter forwards this request to the corresponding
NetDev Agent.

The AdapterService class models an Adapter in charge of parsing and
forwarding requests, responses, and events between the ManagementService
and the AgentService. The AdapterService is a superclass that holds proper-
ties and methods for handling the communication through the adapter and
management interfaces. Four subclasses inherit from the AdapterService: the
NetDevAdapterService, the NetSlicerAdapterService, the NOSAdapterService,
and the NetAppAdapterService. For the sake of brevity and because the be-
havior of these subclasses is very similar, we decide to exclude them in Fig. 2.
Each subclass from the AdapterService adds properties and methods to sup-
port functionality provided by the subclass from the AgentService that uses
the same managed resource name (e.g., the NetDevAdapterService matches
the NetDevAgentService). In addition, regarding this correlation, every sub-
class deriving from the AdapterService instruments specific aspects from the
proposed class schema. For example, a NetDev Adapter, which matches a
NetDev Agent, only concerns about functionality for managing NetDevs (see
Fig. 5).

The AdapterService may be hosted by either the Manager or the Adapter.
Both HostedService associations linked to the AdapterService indicate this
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relationship. As well as the Manager, the Adapter may be an instance of
either the System class or one of its subclasses. For example, a NetDev
Adapter may be executed on either the same server running Management
Services or a different server.

The ServiceAccessPoint class tagged as Management Interfaces repre-
sents the communication point between the AdapterService and the Agent-
Service. The ProvidesEndpoint and the ServiceSAPDependency associations
related to the management ServiceAccessPoint indicate that both the Adapt-
erService and the AgentService provide and utilize management interfaces to
perform their functionality. Subclasses from the AdapterService and from the
AgentService inherits these associations. Each instance of the subclasses from
the AdapterService handles the protocol used by the corresponding instance
of the subclasses from the AgentService, affording a protocol-agnostic com-
munication for the ManagementService. For example, a NetDev Adapter uses
the OF-CONFIG protocol to access a NetDev Agent for OpenFlow switches.
A second NetDev Adapter utilizes the SNMP protocol to contact a second
NetDev Agent for ForCES FEs. A Configuration Service communicates with
both NetDev Adapters using a standardized data format and protocol (e.g.,
JSON over HTTP). The NetDev Adapters forward to the NetDev Agents the
management requests received from the Configuration Service. Similarly, the
NetDev Adapters forward to the Configuration Service responses and events
received from the NetDev Agents. Thus, the Configuration Service carry out
a protocol-agnostic management on different NetDev technology instances.

The AgentService class represents an Agent running on SDN managed re-
sources, such as NetDev, NetSlicer, NOS, and NetApp. This is a superclass
that defines properties and methods for supporting the management Service-
AccessPoint and for handling the EventIndication. The EventIndication is
a subclass from the ProcessIndication class. The EventIndication maps an
unsolicited event sent by the AgentService towards the ManagementService
to notify about changes and alerts in SDN managed resources. For example,
a NetDev Agent dispatches an event that notifies a detected misconfigura-
tion on its hosting NetDev. The corresponding NetDev Adapter receives this
unsolicited event and forwards it to a Configuration Service.

Four subclasses derive from the AgentService: the NetDevAgentService,
the NetSlicerAgentService, the NOSAgentService, and the NetAppAgentSer-
vice. Each subclass supports methods to carry out management tasks in its
hosting SDN managed resource, such as retrieving statistical information,
modifying configuration parameters, discovering capabilities, and changing
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communication attributes.
We use the System class to model the SDN as an entity composed of the

DataPlane, the ControlPlane, and the AppPlane. The Network class repre-
sents the DataPlane as a logical, virtual, or physical network that groups
interconnected NetDevs capable of exchanging information. The AdminDo-
main class indicates that the ControlPlane and the AppPlane gather sim-
ilarly managed components, such as NetSlicers and NOSs for the Control
Plane, and NetApps for the Application Plane.

The ServiceAffectsElement association between the SDN and the Man-
agementService reflects that Management Services have an effect in the entire
SDN, such as changing resource behavior, monitoring failures, and analyz-
ing performance. Besides, the SAPAvailableForElement association between
the SDN and the management ServiceAccessPoint implies that management
interfaces provide managing access for the whole SDN.

Fig. 3 shows the extended class schema for the Application Plane. We
introduced three new classes and two novel associations to describe specific
management features of NetApps. The new classes are the NetAppCapabili-
ties, the NetAppSettings, and the NorthboundService. The new associations
are the NetAppHostedOnNOS and the NetAppHostedOnServer.

The AppPlane, modeled with the AdminDomain class, uses the System-
Component association to aggregate instances of the NetApp. Leveraging
the ApplicationSystem class, the NetApp represents NetApps holding busi-
ness logic on top of the SDN architecture. For example, NetApps that carries
out load-balancing and access control tasks.

We use the HostedService association to indicate that the NetApp hosts
the NetAppAgentService and the NorthboundService. The NorthboundService
class models modules that communicate with services exposed by NOSs. The
ProvidesEndpoint and the ServiceSAPDependency associations reflect that
the NorthboundService uses and provides functions through the northbound
ServiceAccessPoint. For example, a load-balancing and access-control Ne-
tApps retrieve and supply data from and to tracking and firewall services
deployed by an NOS.

The ServiceAccessPoint tagged as Northbound Interfaces models the com-
munication between the Application Plane and the Control Plane. This
northbound ServiceAccessPoint encompasses different NBIs, such as APIs
based on protocols (e.g., REST) and on programming languages (e.g., Pyretic
and Procera).

The NetAppHostedOnNOS association between the NetApp and the NOS
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Figure 3: Class schema to model SDN Application Plane

represents local NetApps running on NOSs. Usually, these local NetApps uti-
lize NBIs based on programming languages to access and supply functionality
from and to NOS services. The NetAppHostedOnServer between the NetApp
and the Server system models NetApps running on remote servers. These
remote NetApps prefer NBIs based on protocols for communicating with the
Control Plane.

Using the ElementCapabilities association, the NetAppCapabilities class
describes the supported and excluded abilities of NetApps. The NetApp-
Settings class establishes configuration parameters for the NetApp. This re-
lationship is depicted through the ElementSettingData association between
the NetAppSettings and the NetApp. The SettingsDefineCapabilities associ-
ation between the NetAppSettings and the NetAppCapabilities reflects that
the setting data affect some NetApps capabilities. For example, configuring a
different load-balancing algorithm modifies the behavior of the corresponding
NetApp.

Fig. 4 describes the extended class schema for the Control Plane. Consid-
ering that CIM lacks elements that characterize the management information
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of NetSlicers and NOSs, we introduce seven new classes: the SlicingService,
the SlicingStatistics, the SlicingCapabilities, the SlicingSettings, the NOS-
Service, the NOSServiceCapabilities, and the NOSServiceSettings.

Figure 4: Class schema to model SDN Control Plane

The AdminDomain class uses the SystemComponent association to de-
scribe the ControlPlane as an entity composed of NOSs and NetSlicers. The
NOS models an NOS, such as OpenFlow controllers and ForCES CEs. The
NetSlicer represents a NetSlicer system, such as FlowVisor for OpenFlow-
based networks. The NOS is the hosting system for the NOSAgentService
and the NetSlicer for the NetSlicerAgentService.

The NOSService is a superclass that models network services hosted in
NOSs. The HostedService association between the NOSService and the NOS
indicates this relationship. Subclasses must inherit from the NOSService in
order to define specific NOS services, such as tracking, route calculation, and
firewall. We present three subclasses for NOS services: the ApplicationSer-
vice, the DistributingService, and the ControlService. The ApplicationService
depicts services that expose functionality to the Application Plane through
the northbound ServiceAccessPoint. The DistributingService defines services
that enable to deploy distributed Control Plane through the east/westbound
ServiceAccessPoint. The ControlService describes services that handle the
communication with NetDevs and NetSlicers through the southbound Ser-
viceAccessPoint.

The ServiceServiceDependency association indicates that NOS services
collaborate with or are necessary for other NOS services to perform their
operation. For example, a topology service requires a tracking service to
recognize hosts connected to specific switches.
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We use the ProvidesEndpoint and the ServiceSAPDependency associa-
tions to correlate the ApplicationService with the northbound ServiceAccess-
Point, the DistributingService with the east/westbound ServiceAccessPoint,
and the ControlService with the southbound ServiceAccessPoint.

The ServiceAccessPoint tagged as East/Westbound Interfaces represents
the communication point between distinct Control Plane domains. For ex-
ample, the SDNi protocol from IETF and the CE-CE interface from ForCES.
Although the exchange of information is usually carried out by NOSs, Net-
Slicers may also need to deploy a distributed architecture. This is reflected
by the HostedService association between the DistributingService and the
NetSlicer.

The ServiceAccessPoint tagged as Southbound Interfaces models the com-
munication point between the Control Plane and the Data Plane. The
ServiceSAPDependency and the ProvidesEndpoint associations reflect that
the ControlService uses and supplies the southbound ServiceAccessPoint to
send and receive messages to and from the Data Plane. This southbound
ServiceAccessPoint encompasses different SBI protocols, such as OpenFlow,
ForCES, and POF.

The NOSServiceCapabilities class declares the supported abilities of NOSs
services. The ElementCapabilities association between the NOSServiceCapa-
bilities and the NOSService reflects this relationship. The NOSServiceSet-
tings class defines the configuration parameters for NOSs services. The El-
ementSettingData association between the NOSServiceCapabilities and the
NOSService indicates this relationship. The SettingsDefineCapabilities as-
sociation between the NOSServiceSettings and the NOSServiceCapabilities
implies that configuring NOS services establishes some capabilities. For ex-
ample, the time interval of a tracking service to send discovery messages.

The SlicingService class represents the functionality of a NetSlicer: divide
the Data Plane into several isolated logical network instances (a.k.a. slices)
and assign them to different NOSs. The NetSlicer hosts the SlicingService
using the HostedService association. The ProvidesEndpoint and the Service-
SAPDependency associations between the SlicingService and the southbound
ServiceAccessPoint indicate that NetSlicers provide and use SBIs to commu-
nicate with NetDevs and NOSs. For example, FlowVisor uses the OpenFlow
protocol to communicate with both OpenFlow switches and OpenFlow con-
trollers.

The SlicingStatistics class defines collections of metrics suitable to in-
stances of the SlicingService. The SlicingStatistics is a subclass that derives
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from the StatisticalData. The ServiceStatistics association relates the Slic-
ingStatistics with the SlicingService. For example, the total number of slices
handled by a NetSlicer.

Through the ElementCapabilities association, the SlicingCapabilities class
describes the supported and excluded capabilities of the SlicingService. Some
of these capabilities are specified in the SlicingSettings class by means of
the SettingsDefineCapabilities association. The SlicingSettings delineates
the configuration parameters for the SlicingService. The ElementSetting-
Data association between the SlicingSettings and the SlicingService reflects
this relationship. For example, the maximum number of concurrent slices
supported by a NetSlicer.

Fig. 5 depicts the extended class schema for the Data Plane. In order
to describe specific management features of NetApps, we introduce five new
classes: the NetDevCapabilities, the NetDevResource, the NetDevResource-
Settings, the NetDevService, and the NetDevServiceSettings.

Figure 5: Class schema to model SDN Data Plane
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As aforementioned, the Network class indicates that the DataPlane mod-
els a network composed of interconnected NetDevs. The NetDev represents
a NetDev system within a network, such as OpenFlow switches and custom
forwarding hardware (e.g., OpenWrt and NetFPGA). The DataPlane ag-
gregates the NetDev using the SystemComponent association. The NetDev
hosts the NetDevAgentService.

The supported and excluded abilities of a NetDev are described by in-
stances of the NetDevCapabilities. The ElementCapabilities association be-
tween the NetDev and the NetDevCapabilities indicates this relationship. For
example, an OpenFlow switch declares simple capabilities such as forward-
ing functions based on match/action flow tables; a NetFPGA programmable
hardware exposes more complex capabilities such as plugging modules to
enable customizable functions. Both kinds of NetDevs also reveal network
capacity enabled by its components, such as speed of ports and size of queues.

The NetDevResource class inherits from the EnabledLogicalElement to
model network elements composing a NetDev, such as ports, queues, and
tables. The SystemComponent association between the NetDev and the
NetDevResource implies this aggregation. The NetDevResource is a super-
class from which individual subclasses inherit to represent NetDev compo-
nents. For example, a subclass called FlowTable to characterize flow tables
that compose OpenFlow switches. In addition, the Component association
connected to the NetDevResource models a network element composed of
others, such as ports including various queues.

The StatisticalData is a superclass to define arbitrary collections of statis-
tical information applicable to instances of the NetDevResource. The Statis-
tics association attaches the StatisticalData with the NetDevResource. For
example, ports in switches delineate transmission metrics, such as received
and transmitted bytes, packets, and errors.

The NetDevResourceSettings class describes the configuration of network
elements that compose NetDevs. The ElementSettingData association be-
tween the NetDevResourceSettings and the NetDevResource reflects this re-
lationship. For example, the speed operation of ports and the buffer size of
queues. The SettingsDefineCapabilities association between the NetDevRe-
sourceSettings and the NetDevCapabilities indicates that the configuration
parameters of NetDev components specify some capabilities of NetDevs.

The NetDevService is a superclass that represents network services hosted
in NetDevs. This hosting relationship is depicted with the HostedService as-
sociation between the NetDevService and the NetDev. Subclasses must derive
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from the NetDevService in order to model particular NetDev services, such
as forwarding, route calculation, and firewall. This is the case of the South-
boundService, which defines services that query, receive, and execute instruc-
tions to and from the Control Plane. The SouthboundService inherits from
the NetDevService and includes properties and methods to handle the com-
munication through the SBIs. For example, the Secure Channel component
in OpenFlow switches manipulates the OpenFlow protocol to communicate
with external controllers and update internal flow tables.

The ServiceServiceDependency association indicates that NetDev services
cooperate with or are required for other NetDev services to perform their
functions. For example, an inspection service requires a forwarding service
to redirect malicious packets to a specific destination.

The ServiceSAPDependency and the ProvidesEndpoint associations re-
flect that the SouthboundService uses and supplies the southbound Service-
AccessPoint to send and receive messages to and from the Control Plane.
The SAPAvailableForElement association between this ServiceAccessPoint
and the NetDev implies that the SBIs allow access from the Control Plane for
managing NetDevs components and hosted services. For example, the Open-
Flow protocol enables to manipulate flow tables within OpenFlow switches
and the ForCES protocol facilitates to configure logical functions residing in
ForCES FEs.

Through the ElementSettingData association, the NetDevServiceSettings
class describes the configuration parameters of services hosted in NetDevs.
For example, the routing algorithm of a route calculation service and the list
of OpenFlow controllers of a southbound service. The SettingsDefineCapa-
bilities association between the NetDevServiceSettings and the NetDevCapa-
bilities implies that the configuration of NetDev services characterizes some
capabilities of NetDevs.

5. Case Study

To assess our approach, first, we establish a network management scenario
that deploys different SDN management technologies. Second, we implement
the system prototype that relies on the present approach. Third, we build
up a test environment based on the described scenario. Fourth, we conduct
a performance evaluation to determine the feasibility of using the proposed
approach in terms of time-response and network traffic. These metrics are
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related to the behavior on runtime of solutions used to manage heterogeneous
SDNs. Finally, we expose the qualitative features of this approach.

5.1. Scenario: configuring SDN-based networks by using heterogeneous man-
agement interfaces

Let us suppose that a Cloud Service Provider (CSP) enables access to its
cloud resources by deploying a basic SDN data center network: three tiers of
NetDevs (i.e., core, aggregation, and edge) handled by a Current NOS and
arranged in a simple tree topology (i.e., each NetDev has a single parent).
Usually, the CSP Network Administrator purchase SDN forwarding resources
from Vendor A. However, at some point in time, the Network Administrator
decided to buy NetDevs from Vendor B because of economic profits. As the
network became bigger and since the SDN technology updates constantly, the
CSP decided to install a New NOS that offers better performance, reliability,
and security features. Now, the Network Administrator faces the challenge
of configuring heterogeneous NetDevs for being controlled by the New NOS.

Considering that Vendor A provides a different NetDev management in-
terface than Vendor B, the Network Administrator typically would use an
Isolated Solution (i.e., Vendor A Tool and Vendor B Tool) to execute spe-
cific configuration commands on NetDevs from distinct vendors. This solu-
tion hinders and retards managing tasks of Network Administrator. Instead,
our approach hides network heterogeneity by establishing a common NetDev
configuration model and by adapting to each vendor management interface.
Thus, we afford an Integrated Solution that allows the Network Administra-
tor to seamlessly configure every NetDev to be controlled by the new NOS,
mitigating the complexity and time consumption of managing heterogeneous
SDN resources.

Fig. 6 illustrates the above-described scenario. NetDevs provided by
Vendor A are OpenFlow switches that enable the OVSDB management in-
terface to accept configuration requests (i.e., OVSDB switches). NetDevs
from Vendor B are OpenFlow switches that run the OF-CONFIG server to
support configuration through the OF-CONFIG protocol (i.e., OF-CONFIG
switches). The Current NOS that initially handles the OpenFlow switches is
a Floodlight controller. The New NOS that has to be set in the OpenFlow
switches for controlling them is an Opendaylight controller. In addition,
we defined a managing operation called SetController. This operation de-
scribes the process of configuring a number of NetDevs that provide distinct
management interfaces (i.e., OVSDB switches and OF-CONFIG switches)
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in order to establish the New NOS (i.e., Opendaylight) as their controller.
SetController represents a common management task that Network Adminis-
trators must perform when conducting updating, maintenance, and recovery
functions in heterogeneous SDN-based networks.

Figure 6: Scenario

5.2. Implementation

To evaluate our approach, we developed two prototypes to conduct the
SetController operation: Integrated Solution and Isolated Solution.

5.2.1. Integrated Solution

We built this prototype upon the proposed approach for performing Set-
Controller regardless the different configuration interfaces. Fig. 7 depicts
the implemented Integrated Solution. The Data Repository is a CIM Object
Manager (CIMOM) that provides RRM as CIM schemas and stores instance
data as CIM instances. CIMOM is the main component of a Web-Based En-
terprise Management (WBEM) framework. CIM schemas characterize the
SDN managed environment while CIM instances represent the SDN man-
aged resources. To build RRM, we compiled both the CIM Schema 2.18.1
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and the SDN Extension Schema. The SDN Extension Schema implements
the proposed Information Model.

Figure 7: Integrated Solution prototype

Since this prototype focuses on the SetController operation, the com-
piled SDN Extension Schema is limited to the following new classes from the
proposed Information Model: AgentService, NetDevAgentService, Adapter-
Service, NetDevAdapterService, NetDevService, and SouthboundService. In
addition, CIMOM stores CIM instances of the above-mentioned classes and
of classes included in the CIM Schema 2.18.1: ComputerSystem, HostedSer-
vice, RemotePort, ServiceSAPDependency, TCPProtocolEndpoint, Provides-
Endpoint, IPProtocolEndpoint, and BindsTo. We used the Managed Object
Format (MOF) to formally express the SDN Extension Schema and the CIM
instances.

The Manager is carried out in a Java application. This Manager deploys
the SetController operation as a Configuration Service. The User Interface of
the Manager is a simple Command Line Interface (CLI) that allows executing
the configuration commands of SetController. The Repository Interface uses
the WBEM API to read and write instances stored in CIMOM. The Adapter
Interface relies on the Remote Method Invocation (RMI) to communicate
the Manager and the Adapters.

The Java application also deploys the NetDev Adapters: the OVSDB
Adapter and the OF-CONFIG Adapter. The OVSDB Adapter employs the
Opendaylight OVSDB API to communicate with the OVSDB Agent that
maintains the configuration database of OVSDB switches. The OF-CONFIG
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Adapter relies on the NETCONF4J API to connect with the OF-CONFIG
Agent deployed by the OF-CONFIG switches for accepting configuration
requests. OF-CONFIG utilizes NETCONF as the associated protocol.

Based on the information retrieved from CIMOM, the Manager invokes
the appropriate Adapter. Once achieved the configuration in each requested
OpenFlow switch, the Manager updates the instance data stored in CIMOM.

5.2.2. Isolated Solution

This prototype describes a classic solution of using a configuration tool
for each management technology (i.e., OVSDB and OF-CONFIG) to perform
operations as SetController. We built both the OVSDB Tool and the OF-
CONFIG Tool as bash scripts that automatize the usage of their underlying
software. The OVSDB Tool uses the ovs-vsctl program to configure OVSDB
switches. The OF-CONFIG Tool employs the NETCONF client netopeer-cli
to communicate with OF-CONFIG switches. Both tools provide a simple
CLI to specify the configuration parameters.

5.3. Test environment

To evaluate the proposed approach, we conducted a case study in a test
environment that allowed deploying the described scenario. Fig. 8 depicts
this environment formed by two OpenFlow networks, two OpenFlow con-
trollers, the Manager Client, and CIMOM. Each OpenFlow network ran on
an Ubuntu Server 14.04 Virtual Machine (VM) with 1 virtual processor and
1.5 GB RAM assigned, both hosted by an Ubuntu 14.04 machine with 2.53
GHz Intel Core i5 processor and 4 GB RAM. Each VM executed Mininet
2.2.1, a software for emulating OpenFlow-based networks, to deploy a simple
tree topology with 111 Open vSwitches 2.3.1. A tunnel over an IP network
interconnected the root switches from each tree topology.

The Open vSwitches used the OpenFlow protocol over a second IP net-
work to communicate with a specific OpenFlow controller: Floodlight v1.0.1
or Opendaylight Helium. Later in each evaluation, we will define the exact
quantity of switches per controller. Each OpenFlow controller operated on
an Ubuntu 14.04 machine with 2.4 GHz Intel Core 2 duo processor and 2 GB
RAM.

A third IP Network transmitted management data among the OpenFlow
networks, the Manager Client, and CIMOM. The Manager Client was an
Ubuntu 14.04 machine with 2.33 GHz Intel Core 2 duo processor and 2 GB
RAM. The Manager Client hosted the Manager and Adapters components of
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Figure 8: Test Environment

the Integrated Solution, and the configuration tools of the Isolated Solution.
We executed CIMOM from the WBEM Services 1.0.2 on an Ubuntu 14.04
machine with 2.53 GHz Intel Core 2 Duo processor and 4 GB RAM. CIMOM
realizes the Data Repository of the Integrated Solution prototype.

5.4. Evaluation and analysis

To evaluate the proposed approach, it was proceeded to measure the time-
response and the network traffic of the Integrated Solution and the Isolated
Solution when used in the test environment (see Fig. 8) to conduct the
operation SetController. Although the test environment allows to perform
such operation in parallel for reducing the overall time-response, we carried
out a sequential configuration for assuming the worst scenario. Furthermore,
since many Open vSwitches run on the same VM, executing the operation in
sequence avoided readings distorted by the overuse of shared resources. The
number of configured switches for each evaluation was 2, 20, 50, 100, 150,
and 200. Half were OVSDB Switches, and the other half were OF-CONFIG
Switches. It is worth to mention that the values of 2 and 20 configured
switches allowed us to demarcate a boundary for the analysis in terms of
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time-response and network traffic. In all evaluation cases, we took the average
values for 30 measurements with a 95% confidence level.

Fig. 9 depicts the time-response results. Time-response is the time in
seconds (s) measured since the Network Administrator executes the oper-
ation SetController on the Manager Client until receiving the reply of the
last configured switch. Nevertheless, since a configuration reply is received
for each switch, we provide a per switch basis analysis. Considering that the
time-response (r in s) of Web systems can be ranked as optimal (r ≤ 0.1),
good (0.1 < r ≤ 1), admissible (1 < r ≤ 10), and deficient (r > 10) [49], the
time-response results reveal: (i) SetController of both the Isolated Solution
and the Integrated Solution has an admissible r that grows moderately (less
than 1.5s and 1.8s per switch, respectively) when the number of configured
switches increases, (ii) the Integrated Solution takes longer than the Isolated
Solution, as expected for using additional components (e.g., CIMOM and
Adapters) to cope with the heterogeneity; and (iii) the time-response over-
head per switch of the Integrated Solution is 0.8s for 2 switches and less than
0.35s for 20 switches or more. Based on the above results, the time-response
overhead of the Integrated Solution (Troh:integrated) depends on the number
of configured switches (Nsw): (i) if Nsw < 20, Troh:integrated ≤ 0.8Nsw and
(ii) if Nsw ≥ 20, Troh:integrated ≤ 0.35Nsw.

Let us compare the time-response results with the time that the Network
Administrator takes to build the configuration command on the CLIs (i.e.,
time composing). In this case, the Isolated Solution aggregates an overhead
to the time composing of the Integrated Solution. This is because the Isolated
Solution forces the Network Administrator to decide which tool must use
to configure each OpenFlow switch. Unlike this, the Integrated Solution
abstracts the heterogeneity of the configuration technologies of the OpenFlow
switches.

To compute the time composing overhead of the Isolated Solution (Tcoh:isolated),
we use the Keystroke-Level Model (KLM) [50] because it is useful to estimate
the time that an expert user (i.e., the Network Administrator) spends to ac-
complish a routine task supported on computer keyboard and mouse (i.e.,
build the configuration command on the CLI). Previous researches demon-
strate the feasibility of using KLM for conducting this kind of time eval-
uation [22, 51]. In KLM, each task is modeled as a sequence of actions.
We take two KLM operators: (i) press and release a key, K = 0.2s, and
(ii) mentally preparing for decision making, M = 1.35s. In the best case,
the Network Administrator carries out on the Isolated Solution the follow-
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Figure 9: Configuring evaluation: time-response

ing additional actions: (i) change once from one tool to another by pressing
ALT and TAB keys, and (ii) decide which tool must use for each switch.
Based on these actions, Tcoh:isolated is also proportional to Nsw, therefore:
Tcoh:isolated = K + MNsw = 0.4 + 1.35Nsw. The results obtained and esti-
mated reveal that Troh:integrated is always less than Tcoh:isolated.

Summing up, although the Integrated Solution includes additional mod-
ules (e.g., CIMOM and adapters) to cope with the complexity of managing
heterogeneous SDN environments, it introduces a time-response overhead
shorter than the time composing overhead of the Isolated Solution. Cer-
tainly, the difference between the time overheads increases as more switches
and distinct technologies incorporate the SDN managed environment. Addi-
tionally, considering that the time-consumption (Tt) is the sum of the time-
response and the time composing, the difference between the time overheads
demonstrates that the Integrated Solution reduces the time-consumption for
carrying out the operation SetController, as can be seen in Eq. (1). There-
fore, the time-response results corroborate that, in terms of such metric, it is
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feasible to use the proposed approach for executing management operations
like the proved SetController.

Ttintegrated = Trintegrated + Tcintegrated

Ttisolated = Trisolated + Tcisolated

Trintegrated = Troh:integrated + Trisolated

Tcisolated = Tcoh:isolated + Tcintegrated

Ttintegrated = Trisolated + Tcisolated

+Troh:integrated − Tcoh:isolated

Ttintegrated =

{
Ttisolated − 0.4 − 0.55Nsw , Nsw < 20

Ttisolated − 0.4 −Nsw , Nsw ≥ 20

(1)

Fig. 10 presents the network traffic results. Network traffic is the amount
of data in kilobytes (KB) transmitted and received by the network interface
of the Manager Client. These results reveal: (i) the traffic generated by Set-
Controller of both the Isolated Solution and the Integrated Solution grows
moderately (approx 106 KB and 124 KB per switch, respectively) when the
number of configured switches increases, (ii) the Integrated Solution gener-
ates more traffic than the Isolated Solution, as expected for handling man-
agement information of switches in CIMOM; and (iii) the additional traffic
generated by the Integrated Solution is 32% for 2 switches and less than 17%
for 20 switches or more. Considering that the Integrated Solution, unlike
the Isolated Solution, copes with the heterogeneity of SDN environments by
operating with standardized management data, the above facts corroborate
that SetController of the Integrated Solution has a good behavior on network
traffic.

Regarding the results obtained in the time-response and network traffic
evaluation of the operation SetController, it is important to mention: (i)
approx 94% of the time-response of Isolated Solution corresponds to the OF-
CONFIG Tool, (ii) the OVSDB Tool generated approx 87% of the network
traffic of Isolated Solution; and (iii) the time-response and network traffic
overheads introduced by the Integrated Solution is smaller for many switches
than for a few; this is because both the connection and the authentication
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Figure 10: Configuring evaluation: network traffic

with CIMOM were realized just once for any number of configured switches.
Summarizing, the time-response and network traffic results demonstrated
that, in terms of such metrics, it is feasible to use the proposed approach
in heterogeneous SDN environments to perform operations as the executed
SetController.

From a qualitative point of view, our approach provides mainly simplic-
ity and formalization. The simplicity refers to that the proposed Manage-
ment Plane facilitates integrating the SDN management operations of net-
work administrators. They do not require to employ multiple frameworks
to completely manage SDNs deployed with various technologies because the
proposed plane addresses the management requirements of the whole SDN
environment and hides the heterogeneity of the deployed resources. Regard-
ing the formalization, the Information Model introduced in this paper can be
considered as a step forward in unifying a conceptual understanding of the
SDN managed environment. It is possible because the Information Model
relies on CIM to provide a technology-agnostic and consistent characteriza-
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tion of SDN. Moreover, future SDN proposals may extend this approach for
tackling arising challenges in SDN management.

6. Conclusions and Future Work

In this paper, we introduced a Management Plane aimed to facilitate
the integrated management of the whole SDN architecture in heterogeneous
environments. We provided a description of this Management Plane by ref-
erencing the four OSI network management submodels: Information, Orga-
nization, Communication, and Function. Furthermore, we relied on CIM
to define a consistent Information Model that characterizes the entire SDN
management environment regardless of the deploying technologies. This In-
formation Model extends the CIM Schema to accomplish a generic abstrac-
tion of the SDN managed and managing resources and their relationships.
It is noteworthy that our proposal looks at the complete SDN management
aspect instead of only modeling a certain part, empowering a fully integrated
solution for managing heterogeneous SDNs.

We carried out and evaluated the proposed approach with a prototype in
a realistic scenario based on SDN. This scenario established a particular chal-
lenge: configuring a heterogeneous SDN composed of NetDevs that deploy
distinct management technologies. Our approach corroborated to be feasible
when effectively (in terms of time-response and network traffic) overcoming
such challenge. Through a quantitative perspective, the evaluation results
revealed: (i) regarding the performance analysis for Java Websites [49], it
has an admissible behavior in terms of time-response, similar than using iso-
lated tools, (ii) it introduces a small time-response overhead (< 0.8s per
switch) compared with the minimal time required by network administrators
to handle dispersed solutions (> 1.35s per switch), and (iii) it has a good
behavior on network traffic when managing several devices (< 17% for 20
switches or more) in relation to employing distinct tools. From a qualitative
point of view, the proposed approach reduces the complexity of SDN man-
agement by including modules (e.g., Data Repository and Adapters) that
hide heterogeneity of the SDN environments.

As future research, we plan to evaluate the proposed Information Model
with other SDN technology instances (e.g., ForCES). We are also interested in
focusing on assessing the remaining submodels from the Management Plane
(e.g., Communication and Functions) in order to afford a complete SDN
management architecture.
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