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Abstract

Network Function Virtualization (NFV) is an emerging solution that improves the

flexibility, efficiency, and manageability of networks by leveraging virtualization and

cloud computing technologies to run networked devices in software. The implemen-

tation of NFV presents issues such as the introduction of new software components,

bottleneck performance and monitoring of hidden traffic. A considerable amount of

NFV traffic is invisible using traditional monitoring strategies because it does not

hit a physical link. The implementation of autonomous management and supervised

algorithms of Machine Learning (ML) become a key strategy to manage this hidden

traffic.

In this undergraduate work, we focus on analyzing NFV traffic features in two

test environments with different components and traffic generation. We perform

a benchmarking of the performance of supervised ML algorithms concerning its

efficiency; considering that the efficiency of the algorithms depends on the trade-

off between the time-response and the precision achieved in the classification. The

results show that the NaiveBayes and C4.5 algorithms reach values greater than

90.68 % in a response time range between 0.37 sec and 3 sec.
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Chapter 1

Introduction

1.1 Problem Statement

The Network Functions Virtualization (NFV) describes and defines how network

services are designed, constructed, and deployed using virtualized software compo-

nents and how these are decoupled from the hardware upon which they execute

[2]. Organizations need to implement NFV to address dynamic user requirements,

growing workloads, and the complexity of agile development. However, there are a

lot of issues to implement NFV such as the introduction of new software compo-

nents (e.g., hypervisor and management/orchestration elements), the management

of bottleneck, and monitoring the hidden traffic [3]. In NFV-based networks, a con-

siderable amount of traffic communicates among virtual machines (VMs) running

inside a physical host [4]. It changes how and where monitoring network virtual

networks, in fact, the NFV hidden traffic is commonly referred to as the blind spots

of east-west traffic as it never hits a physical interface [5]. It is to highlight that

the hidden traffic could lead to difficulties in diagnosing network performance and

detecting malicious agents within a virtualized data center [6].

The growth of networks, the hidden traffic in NFV, and the need for advanced

monitoring architectures are challenges that human administrators face to carry

out their daily management tasks [7]. The autonomic management assists to cope

1
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with these challenges by automating and distributing decision-making processes.

This type of the management also aids to improve security, prevention, detection,

control and error handling, and allows tracking the evolution of network applications

[8, 9, 10, 11, 12, 13]. Within the field of autonomic management, the Machine

Learning (ML) is an important technique that has been successfully applied to deal

with problems such as the accurate classification of traffic on traditional networks,

detection of network anomalies [14], medical diagnostics [15], and data mining [16].

Indeed, traffic classification is a fundamental block needed to enable any traffic

management operation, such as differentiating traffic pricing and treatment (e.g.,

policing and shaping) and security (e.g., firewall, filter and anomaly detection) [17].

Traffic classification has been extensively worked on traditional networks by using

ML algorithms. The works [18, 19, 20, 21, 22, 23, 24] reveal that the supervised

algorithms have an excellent behavior in traffic classification. However, none of

such works have focused on classifying traffic in NFV. This classification differs

from traditional networks because, in NFV-based networks, the traffic passes by

physical links but sometimes the traffic only flows by virtual links. To the best

our knowledge, in NFV-based networks, there are few works that perform traffic

classification [25, 26, 27]. These works focus on classifying the traffic by using ML

algorithms as virtual network functions, analyzing the traffic in the deployment of

NFV in data center networks, and evaluating the traffic of NFV middleboxes. Unlike

the above works, in this paper, we perform a benchmarking to analyze the behavior

of several supervised ML algorithms in the IP traffic classification in NFV-based

networks.

To sum up, ML algorithms have been widely used for classifying traffic in traditional

networks. However, there is little research on their behavior in NFV-based networks.

Consequently, we propose the following research question:

How do supervised algorithms behave in autonomic classification of IP

traffic in NFV-based networks?

To answer this research question, we present the following objectives.
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1.2 Objectives

1.2.1 General

• Performing an analysis of the behavior of supervised algorithms during the

autonomic classification of IP traffic in an NFV-based network.

1.2.2 Specifics

• Adapting an IP traffic dataset, already used for studies in traditional networks,

to an NFV-based network to verify the changes in their behavior in those

networks.

• Selecting the most efficient decision tree and Bayesian algorithms for the clas-

sification of traffic in traditional networks.

• Evaluating qualitatively and quantitatively the efficiency of the algorithms

selected for the autonomic classification of IP traffic in NFV.

1.3 Research Contributions

The main contributions provided in this work are mentioned below:

• A dataset of IP traffic adapted to the features of NFV-based networks. This

dataset allows the analysis and observation of the hidden traffic that travels

by the virtual components of the network.

• A benchmarking of the behavior of the most efficient algorithms in the auto-

nomic classification of IP traffic in traditional and NFV-based networks. The

efficiency of the algorithms is presented regarding the time-response and the

precision of each algorithm.
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• A quantitative and qualitative evaluation of the autonomic classification of IP

hidden traffic in NFV-based networks.

1.4 Methodology and Activities

To organize the activities developed during our undergraduate work, we take as a

reference the Documentary Research Model (MID) and Building Solutions Model

(MCS), defined as follows:

• MID used for the construction of the state-of-the-art of the project that fo-

cuses on the autonomic traffic management of an NFV-based network with

automatic learning techniques [28].

• MCS used as a methodological reference for the construction of solutions aimed

at classifying of traffic in NFV- based networks using automatic learning clas-

sifiers [29].

Activities undertaken in our work are shown below.

Initial knowledge basis generation

• Review of related work. The different works carried out in the field of traffic

classification, autonomic management, and NFV were collected and analyzed.

• Synthesis. The research problem is determined, consolidating and relating the

different works studied.

• Generation of the theoretical basis. Knowledge was expanded in the area of

autonomic traffic classification in virtualized networks.
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Dataset for traffic classification

• Data and features recognition of a dataset in a traditional network. Some

features of the traffic in traditional networks, used in the task of traffic classi-

fication, were taken as a basis to construct a new dataset.

• Create test NFV-based networks. NFV-based networks are proposed for the

analysis and data collection.

• Feature detection in an NFV-based network. Features were determined that

allowed to know the route and behavior of the hidden traffic in this type of

networks.

• Generate and collect data. Traffic was generated and captured in the test

network for further analysis.

Benchmarking

The benchmarking process was performed by using the methodology called Training,

Validation and Testing [30].

• Data adaptation. The data collected for the training of supervised classifica-

tion algorithms (i.e., C4.5, NaiveBayes, and BayesNet) were prepared.

• Training, validating and testing. Datasets adapted to train and test supervised

classification algorithms were used to determine their efficiency.

Publishing

• Papers writing. We carried out and submitted a journal paper named “A

benchmarking of the efficiency of supervised ML algorithms in the NFV traffic

classification”, and a conference paper named “IP traffic classification in NFV:

a benchmarking of supervised Machine Learning algorithms”.

• Monograph writing. We wrote the monograph as a highly detailed study of

the work done.
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1.5 Publications

The work presented in this monograph was reported to the scientific community

through paper submissions.

• Juliana Alejandra Vergara Reyes, Maria Camila Martinez Ordoñez,

Armando Ordonez, Oscar Mauricio Caicedo Rendon. IP traffic classifica-

tion in NFV: a benchmarking of supervised Machine Learning al-

gorithms IEEE Colombian Conference on Communications and Computing

(COLCOM 2017), August 16th - 18th, Cartagena, Colombia.

– Status: Accepted

– Classification: H1 (SCIMAGO)

• Juliana Alejandra Vergara Reyes, Maria Camila Martinez Ordoñez,

Oscar Mauricio Caicedo Rendon. A benchmarking of the efficiency of

supervised ML algorithms in the NFV traffic classification. INGE-

NIERÍA E INVESTIGACIÓN journal.

– Status: Submitted

– Classification: A1 (COLCIENCIAS)

1.6 Document Structure

This document has been divided into chapters described below.

• Chapter 1 presents the Introduction that contains the Problem Statement,

Objectives, Research Contributions, Methodology and Activities, Publications

and the structure of this document .

• Chapter 2 presents the Background about the relevant topics concerning our

research. These topics include Autonomic Management, Machine Learning,

and Network Functions Virtualization.
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• Chapter 3 presents the Related Work that describes the researches that are

closer to our proposal.

• Chapter 4 presents the Dataset construction and Benchmarking Pro-

cess. Initially, we present the process of constructing a dataset for training

supervised ML algorithms. Subsequently, the process of generating and col-

lecting data, the method of training the algorithms to determine its efficiency.

Finally, the benchmarking process that we follow to determine the behavior of

the algorithms according to their efficiency.

• Chapter 5 presents the Benchmarking results from two case studies, where

we present the results of precision and time-response obtained in the training,

validation, and testing of each algorithm. Finally, we present the analysis of

such results to determine the efficiency of the algorithms evaluated.

• Chapter 6, we present Conclusions and Future work, where we provide the

main conclusions of our work and important implications for future works.



Chapter 2

Background

In this chapter, we present the concepts necessary for developing our work. The

initial description is about the autonomic management and its applications, after

we introduce the concept of the machine learning for traffic classification and finally,

we present NFV and its components.

2.1 Autonomic Management

The autonomic management is a systematic approach to handle computer-based

systems without human intervention [31]. In networks, an autonomic environment

needs characteristics such as self-configuring, self-healing, self-optimizing and self-

protecting. Self-configuring allows a system to adapt to dynamic environments (e.g.,

the deployment and removal of new network components) and refers to the dynamic

configuration capability [32]. Self-healing is to discover, diagnose and react to dis-

ruptions becoming networks more resilient [33]. Self-optimizing allows automatically

monitoring resources to improve their overall utilization and perform tasks promptly

[34]. Self-protecting is to anticipate, detect, identify, and protect against attacks

making networks less vulnerable [35].

Figure 2.1 presents the architecture of an autonomic manager and its loop divided

into monitoring, analysis, planning and execution fuctions. These functions share

8
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Figure 2.1: Architecture of Autonomic Manager
Source: [35]

knowledge and work together to provide the functionality of this loop [35]. An

autonomic manager is an application that manages to automate some of the pri-

mary management functions according to the behavior defined by the management

interfaces. The main fuctions of an autonomic manager are:

• Monitoring Function is to provide the collection and filtering mechanisms of

the system and informs details collected from the monitored resource.

• Analysis Function is to allow the regional administrator to learn about the

environment and help predict future situations.

• Planning Function is to provide the mechanisms necessary to achieve the goals

and objectives of the system, makes use of the guidance information to perform

this work.

• Execution Function is to provide the mechanisms that control the execution

of a plan with considerations for dynamic updates.
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Autonomic management functions (e.g., monitoring and analysis) may be performed

by using ML techniques as part of self-configuring and self-healing characteristics

that allow systems, for instance, to identify network features, determine errors in

run time, improve networks deployment, overcome issues, and discover knowledge

regarding network traffic [8].

2.2 Machine Learning

ML is an evolving branch of computational algorithms that are designed to emu-

late human intelligence by learning from the surrounding environment [36]. In this

sense, ML is an important technique that has been successfully applied to deal with

problems such as the precise classification of traffic on traditional networks [24],

detection of network anomalies [14], medical diagnostics [37], and data mining [16].

ML can learn from experience, analytical observation, and other means, resulting in

a system that can be improved continuously and automatically, providing greater

efficiency and effectiveness.

In this work, we argue that ML is fundamental to networks because it allows to use

and mix clustering, regression, anomaly detection and artificial neural networks to

perform complex tasks, such as reduce training time and computational complexity

in some network processes [21]. We used ML algorithms because they provide meth-

ods useful to classify flows based on independent statistical features, such as packet

length and arrival intervals [19].

ML algorithms are classified, in a general way, into Supervised and Unsupervised

algorithms which has been also used in traffic classification [38]. Supervised learn-

ing (e.g., a decision tree or Bayesnet) designs a model from a training dataset used

to classify unseen data. Unsupervised learning creates groups with similar char-

acteristics of data without prior knowledge, and the groups are transformed into

a classification model [21].In this undergraduate work, we focus on analyzing the

behavior of these algorithms in NFV-based networks [18] [21] [39] [40].
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2.2.1 Supervised Algorithms

The supervised classification consists mainly of three stages [41] (see Figure 2.2).

First, training stage. In this stage, the algorithm learns and trains with a set of data

designed for that, which contains the initial reference data. Second, classification

stage. At this stage the algorithm receives new samples, by way of a test, those

samples may or may not hold the test data together. In this stage it is necessary

to know if the data and the information are correct, for this reason, the third stage

corresponds to the validation. In this stage, the results obtained in the classification

stage are compared with the data of the initial set of reference used in the training

stage. This final stage allows evaluating and identifying the performance of the

algorithms in the data classification and estimating their behavior on a real operating

network.

Figure 2.2: Workflow of Supervised Classification
Source: [41]

Supervised classification algorithms base their performance on the construction of

pre-tagged models for self-training. These models allow them to learn and make
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decisions, to ensure good behavior and precision when implementing them with other

datasets. The following are different classes of supervised algorithms according to

their mode of operation [42]:

The Bayesian algorithms. These algorithms are the focus on the problems of

classification and regression by applying the Bayes Theorem. Within this group of

algorithms exist two relevant algorithms that are using in the context of traditional

networks, these algorithms are:

• Näıve Bayes. This algorithm is known as a probabilistic classifier that uses

the Bayesian theorem and some hypothesis, with which it can determine an

independence between the predictive variables of a set of data. This algorithm

requires a small amount of data for its training and thus to be able to estimate

certain parameters for the classification of another set of data.

• Bayesian Network. This algorithm model a phenomenon using a previous

set of variables and their respective dependency ratios. With this model, we

can estimate the probability of possible unknown variables, based on known

variables.

The algorithm of Artificial Neural Network. This type of algorithm is inspired

by how the neurons function in the human brain. These algorithms start from a

significant set of data to teach the network the desired properties.

The Decision Tree Algorithms. These algorithms take a set of data and gen-

erate logical diagrams that serve to categorize a series of conditions and then make

decisions. In this category one of the most used algorithms for the classification of

traffic by its high values of efficiency reached is the algorithm C4.5.

• C4.5 Decision Tree. This algorithm is based on the structure of a tree, where

the nodes represent the features and the branches represent the values of con-

nection between such features. C4.5 constructs a tree with the criterion of

dividing the gain ratio based on entropy.
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2.3 Network Functions Virtualization

NFV is the virtualization of processes and internal functions of different components

of the network, such as routers, switches, and storage equipment. NFVs primary

function is to bring the network functions from hardware to software to reduce

Operational Expenditure (OPEX) and Capital Expenditure (CAPEX), in addition

to facilitating the proper deployment of new services more quickly and efficiently

[43]. Virtualizing the network functions allows service providers to flexibility, among

other things, traffic management by enabling them to host the network functions in

virtual machines [44].

...
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Figure 2.3: NFV Architecture
Source: [45]

According to ETSI, the NFV architecture (see Figure 2.3) has three key parts:

Network Function Virtualization Infrastructure (NFVI), Virtual Network Functions

(VNFs) and NFV Management and Orchestration (MANO) [45]. NFVI is the com-

bination of physical and virtual resources (hardware and software) that form the

environment in which VNFs are deployed. Physical resources include commercial

resources outside the software platform, storage, and network that provide treat-
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ment, storage, and connectivity to VNFs. In turn, virtual resources are abstractions

of computing, storage, and network resources [46].

A Network Function (NF) is a functional block within a network infrastructure,

which is accessible through external interfaces. NFs can be elements of a home

network, such as DHCP servers, firewalls, and routers. A VNF is an implementation

of an NF that uses virtual resources as a VM. A single VNF can be composed of

multiple internal components and can be deployed in multiple VMs, where each VM

hosts a single component of the VNF [47].

NFV MANO provides the necessary functionality for provisioning VNFs, and related

operations such as configuring and deploying those functions and focuses on all

management and virtualization tasks within the NFV framework. Also, MANO

defines the interfaces for the communication between the different components of

the architecture, as well as the coordination with traditional network management

systems such as Operations Support System (OSS) and Business Support Systems

(BSS) to allow the management of VNFs [43].

2.4 Traffic Classification on NFV

NFV is an excellent tool for deploying next generation networks and services, which

brings benefits in scalability, high level of flexibility, efficient utilization of network

resources, and reduction of costs and power consumption [48]. The NFV traffic flows

by distinct ways in different scenarios. First, the traffic goes via a physical link in

three different cases:

• VMs are connected to the same Virtual Switch (vSwitch), different port group,

and distinct Virtual Local Area Network (VLAN)

• VMs are linked with separate vSwitch but same port group

• VMs run on different hosts and are connected to different vSwicthes and port

groups
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Second, the traffic never hits a physical link if two VMs are connected to the same

vSwitch, port group, VLAN, and both are running on the same physical host. These

VMs communicate within the vSwitch [49].

The most of the NFV traffic communicates from VM to VM and this traffic does

not pass by a physical link becoming invisible to traditional monitoring and creates

a big blind spot for network operations [4]. Since this traffic increases the network

speed and reduces network latency, it is so important to classify it [6]. In fact, traffic

classification allows automatically recognizing the application that has generated a

stream or individual packets. This classification has become a fundamental issue

for network management that is of extreme interest to carriers, Internet Service

Providers and network administrators [17].



Chapter 3

Related Works

In this chapter, we introduce the closest works to our benchmarking in traffic clas-

sification. The first section describes the works focused on classifying traffic in

traditional networks. Subsequently, we present the works that include a traffic clas-

sification in networks based on NFV. Finally, Table 3.1 is presented as a summary

of the works mentioned.

3.1 Traffic Classification in Traditional Networks

with ML Algorithms

The autonomic management of traffic in NFV-based networks has been little studied

by the research published so far. However, different authors in their work have

performed the classification of traffic in traditional networks by using ML algorithms.

Some of the most relevant proposals are described below:

The work “Practical machine learning based multimedia traffic classification for

distributed QoS management” presents the desing, implementation and performance

evaluation of a distributed, ML-based traffic classification and control system for

FreeBSD’s IP Firewall (IPFW) [18]. On an Intel Core i7 2.8 GHz PC the system can

classify up to 400.000 packets per second using only one core and their system scales

16
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well to up to 100.000 simultaneous flows. Also, the corresponding implementation

allows controlling subsequent traffic shaping or blocking at multiple (potentially

lower performance) routers or gateways distributed around the network. It is to

note that this work analyzed and compared the classification speeds of different ML

algorithms (based on the Java implementations of WEKA). Measured speeds range

from 27, 000 flows/sec to 60, 000 flows/sec, on PCs with different CPUs.

In the work “IP traffic classification based on machine learning”, the authors use the

ML-based classification method to identify the classes of the unknown flows using the

payload-independent statistical features such as packet length and arrival-interval

[19]. To improve the efficiency of the classification methods and refine the selected

features the authors adopted the feature reduction techniques. They compare and

evaluate the ML classification algorithms (e.g., NaiveBayes, Decision Tree, Nearest

Neighbor and Support Vector Machine) based on the BRASIL data source regarding

overall precision, average precision, and average recall. The experiments performed

by the authors reveals that the decision-tree algorithm is the best for IP traffic

classification and is able to construct the real-time classification system.

The work “A method for classification of network traffic based on C5.0 Machine

Learning Algorithm” presents the process of collecting data, the arguments used in

the classification process, introduces the C5.0 classifier, and finally evaluates and

compares the obtained results. The authors proposed the usage of C5.0 Machine

Learning Algorithm (MLA) to overcome the drawbacks of existing methods for traffic

classification [20]. The authors of this work, constructed a boosted classifier, which

can distinguish between seven different applications (i.e., Skype, FTP, torrent, web

browser traffic, web radio, interactive gaming, and SSH) with an average precision

ranking from 99.3% to 99.9%.

In the work “A Near Real-time IP Traffic Classification Using Machine Learning”

a real-time internet traffic dataset was developed using packet capturing tool for

2-second packet capturing duration and other datasets have been developed by re-

ducing a number of features of 2-second duration dataset using Correlation and

Consistency based Feature Selection (FS) Algorithms [21]. The authors of this

work, employed five ML algorithms MLP, RBF, C4.5, BayesNet and NäıveBayes
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for IP traffic classification with the datasets above mentioned. The results reveals

that BayesNet gives very high precision with smaller training time making it more

suitable for near real-time IP traffic classification with a reduction in a number

of features characterizing each internet application using correlation-based feature

selection algorithm.

In the work “Comparative analysis of machine learning algorithms along with classi-

fiers for network intrusion detection”, several classification techniques and machine

learning algorithms have been considered to categorize the network traffic [22]. The

authors found nine classifiers like BayesNet, Logistic, IBK, C4.5, PART, JRip, Ran-

dom Tree, Random Forest and REPTree. The comparison of these algorithms has

been performed using the WEKA tool, the NSL-KDD based dataset, and a 10-

fold cross validation. The results reveals that the Bayes-Net and Random Forest

algorithms are the most suitable for intrusion detection and classification.

In the work “WeChat: Text and Picture Messages Service Flow Traffic Classification

Using Machine Learning Technique”, text and picture messages traffics are classified

using two different types of datasets (i.e., Harbin Institute of Technology (HIT)

and Dorm13) and 4 well-known machine learning algorithms (i.e., C4.5 decision

tree, BayesNet, NaiveBayes and Support Vector Machine) [23]. Experimental result

analysis reveals that using HIT dataset all the applied machine learning classifiers

classify WeChat text and picture messages traffic very accurately as compared to

Dorm13 dataset. Using HIT dataset, all ML classifier perform very well, but C4.5

and Support Vector Machine are the ones that give very effective precision results

of 99.91% and 99.57%, respectively, as compared to other ML classifiers.

In the work “Network Traffic Classification techniques and comparative analysis

using Machine Learning algorithms”, the authors discuss network traffic classifica-

tion techniques. Also, they developed a real time internet dataset using network

traffic capture tool (i.e., Wireshark Tool), then to perform a comparative analysis

by applying four machine learning classifiers (i.e., Support Vector Machine, C4.5

decision tree, NaiveBays, and BayesNet) [24]. The experimental result reveals that

C4.5 classifier gives high precision as compared to other machine learning classifiers

which are 78.91 %.
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3.2 Traffic Classification in NFV-based Networks

To the best our knowledge, in NFV-based networks, there are few works that perform

traffic classification [25, 26, 27].These works are described in the next paragraphs.

In the work “vTC: Machine Learning Based Traffic Classification As a Virtual Net-

work Function”, the authors propose a design of virtual network functions (vTC)

to flexibly select and apply ML classifiers on run time [25]. This work analyzes

and observes the effectiveness of several ML classifiers, such as K-Nearest Neigh-

bors, Support Vector Machine, Decision Tree, Adaptive Boosting, Naive Bayes and

Multi-Layer Perception, that have been helpful in classification problems.

The results of evaluating these classifiers disclose that their effectiveness depends

highly on the analyzed protocols as well as the features collected from network data.

The proposed vTC for traffic classification can improve the precision by up to 13%.

Although the authors do not analyze the main features of hidden NFV traffic, they

improve the efficiency of traffic classification on NFV-based networks.

The authors of “Traffic-Aware Placement of NFV Middleboxes” proposed an algo-

rithm that processes and filters the traffic among middleboxes [26]. They analyze

the traffic changing effects and study the efficient deployment of NFV middleboxes

in Software-Defined Networks (SDN) to reduce the traffic. Although the authors

analyze the effects of traffic changing with an algorithm, they do not focus on the

features that compose this traffic.

In the work “Efficient NFV deployment in data center networks”, the authors focus

on deploying NFV in data center networks proposing a heuristic algorithm for allo-

cating Virtual Network Functions (VNFs) [27]. This algorithm was trained by using

collected data from a simulated data center supporting multiple VNFs deployed in

VMs. The proposed algorithm is a solution to slow down the growth of the east-west

traffic and reduce the waste of data center computation resources. Also, it allows

the scaling of the networks in a more agile way in comparison with other algorithms.
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3.3 Summary

Table 3.1 presents a summary of the related work. Unlike the works mentioned

in the previous sections, we carry out a benchmarking to analyze the behavior of

ML supervised algorithms in the IP traffic classification in NFV. Consequently,

first, a traditional dataset was adapted from traditional networks to the conditions

of NFV to classify traffic. Second, the behavior of three supervised algorithms

(i.e., C4.5, NaiveBayes, and BayesNet) that have been used on traditional networks

was compared for traffic classification. Third, the algorithms were tested and their

efficiency in terms of time-response and precision was analyzed.

Table 3.1: Related Work

Reference Focus
Network Type of

Traffic
Techniques

Traditional NFV

[18]
Classification
and Control

X IP
Supervised
algorithms

[19] Classification X IP
Supervised
algorithms

[20] Classification X
SSH,
Skype

Supervised
algorithms

[21] Classification X IP
Supervised
algorithms

[22] Comparative Analysis X HTTP
Supervised
algorithms

[23] Classification X
Text ,

Picture
Supervised
algorithms

[24] Classification X IP
Supervised
algorithms

[25] Classification X NFV
Supervised
algorithms

[26] Deployment X NFV
Heuristic
algorithm

[27] Allocation X NFV
Authors

algorithm

This work Classification X IP
Supervised
algorithms



Chapter 4

Dataset Construction

To characterize the hidden traffic that travels by NFV-based networks, we propose

the adaptation and construction of the structure of a dataset that contains the

information of these networks.

In this chapter, we describe the process for constructing the dataset in the NFV

classification and present the test NFV-based networks (i.e., a Software-defined net-

work (SDN) and an LTE EPC network) that allow us to obtain the characterization

of the initial datasets (i.e.,Traditional and Virtual).

4.1 Dataset Construction Process

To classify the traffic in NFV-based networks is needed a dataset that represents their

intrinsic features. Therefore, to structure this dataset is needed to select features

that reflect the behavior of NFV traffic including the applications or types of services

involved in the application layer. Figure 4.1 presents the process that we follow to

build up the dataset proposed for traffic classification in NFV-based networks. To

develop this process, we take as a basis the methodology developed in [50], that

proposes a cascade model (i.e., each step has a step as a prerequisite).

21
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Figure 4.1: Process for dataset creation

In particular, our process is formed by five steps as follows.

Define labels of apps is to categorize a set of applications that use the TCP

protocol in the transport layer and that are used to classify the traffic. In this

step we take as a base 13 labels of applications that were used in the work [1] for

classifying their TCP traffic. The authors defined applications for each label with

a deep analysis of their traffic. In our case, we determine each application with

the analysis of the protocols extrated from the NFV-based network traffic. These

applications allow us to categorize our TCP traffic (See Table 4.1).

Consider traditional features is to take as a basis the features of the dataset

proposed in [50]. This dataset has 10 features such as frame length, IPv4 packet

size, client and server IP and TCP ports, length of IP and TCP headers in bytes,

IP protocol, TCP sequence number, and the size of the TCP window on reception.

These features (Table 4.2) provide information about the TCP traffic and allow the

authors to classify it in normal and anomalous. These features form the structure

of our Traditional dataset.

Create the test NFV-based network aims to emulate an NFV-based network,
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Table 4.1: Labels of applications [1]

Class Applications
WEB Web browsers, web applications
MAIL IMAP, POP, SMTP
BULK FTP, wget
ATTACK Port scans, worms, viruses, sql injections
CHAT MSN Messenger, Yahoo IM, Jabber
P2P Napster, Kazaa, Gnutella, eDonkey, BitTorrent
DATABASE MySQL, dbase, Oracle
MULTIMEDIA Windows Media Player, Real, iTunes
VOIP Skype
SERVICES X11, DNS, IDENT, LDAP, NTP
INTERACTIVE SSH, TELNET, VNC, GotoMyPC
GAMES Microsoft Direct Play
GRID Grid computing

where we can generate and collect data for their subsequent analysis.

Identify virtual features is to determine the particular features that characterize

the traffic in NFV-based networks. Here, to identify the virtual features, we collect

and analyze the traffic in different points of the network for identifying the main

features that determine the behavior and route of such traffic using Wireshark [50].

Generate and collect data aims to build up and fill the structure of datasets

created, using traffic-generated tools and traffic analyzers such as D-ITG, Iperf, and

Wireshark.

4.1.1 Case 1: Dataset construction on NFV-based SDN

Initially, with the emulation of a test NFV-based SDN network, we follow the dataset

construction process:

(1) We consider the features described in Table 4.2 to construct the structure of the

dataset called Traditional.
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Table 4.2: Structural Traditional Features

Network Feature Description Example
frame.len Frame length on the wire 60bytes-(480bits)
ip.src Source address 192.168.0.24
ip.dst Destination address 192.168.0.27
ip.hdr len Header length 5-(20 bytes)

Traditional tcp.srcport Source port 43266
tcp.dstport Destination port 22
tcp.seq Secuence number 37
tcp.hdr len Header length 32
tcp.window size Calculated window size 1247
ip.proto Protocol 6-(TCP)17-(UDP)

Figure 4.2: NFV-based SDN

(2) We propose the test NFV-based network of Figure 4.2 that is composed by

four VMs, two running a Ryu controller [51] (i.e., a controller to increase
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network agility, facilitating the traffic management) and the other ones running

Open vSwitch [52] (OVS, which is used to forward traffic between VMs on

the same physical host, and between VMs and the physical network) emu-

lated in Mininet [53]. The characteristics of this network are listed in Table 4.3.

Table 4.3: Configuration of NFV-based SDN

Name Processor Memory Disk OS Virtualization
Ryu Intel Core i3-2328M

CPU 2.20 GHz
2.0 GiB 6.2 GB Ubuntu

16.04
VM

VrtualBox
Mininet

OVS
Intel Core i3-2328M
CPU 2.20 GHzx4

5.6 GiB 66.0 GB

In particular, in the above mentioned environment, the Ryu controller was ex-

ecuted on two VMs (i.e.,VM1 and VM3), an OVS was deployed (to enable

communication among the VMs) on a server, and in this OVS, we create a

bridge with four virtual ports to connect the VMs (see Snippet 4.1).

Snippet 4.1: Bridge configuration

93763522−282c−41fa−83eb−a116c5e2c64e

Bridge br idge

Port ” enp2s0 ”

I n t e r f a c e ” enp2s0 ”

Port ”vmport1”

I n t e r f a c e ”vmport1”

Port ”vmport2”

I n t e r f a c e ”vmport2”

Port ”vmport3”

I n t e r f a c e ”vmport3”

Port ”vmport4”

I n t e r f a c e ”vmport4”

Port br idge

I n t e r f a c e br idge

type : i n t e r n a l
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o v s v e r s i o n : ” 2 . 5 . 2 ”

The Snippet 4.1 presents the bridge state, the first line refers to the Unique

Universal ID (UUI) of our environment according to RFC 4122 [54]. Next, we

see the name of our bridge “bridge” and its respective ports enp2s0, vmport1,

vmport2, vmport3, and vmport4. Finally, the interface “bridge” that is of internal

type and is recognized like another interface of the system.

(3) To identify virtual features, the traffic was analyzed in each VM, getting similar

features than in traditional networks. Then, the traffic was analyzed in the

bridge, observing that it varies when passes by virtual ports. In these ports,

traffic presents changes in the origin and destination addresses. The traffic that

is before the virtual port has the addresses of VMs. However, when traffic passes

by the port and it is on the bridge, the addresses are modified and correspond

to the addresses of such a port. Therefore, the indicators of Protocol in the

Frame (i.e., frame.protocols) and Ethernet Type (i.e., eth.type) were selected to

characterize the traffic in the bridge. Finally, the four features above mentioned

(i.e., source and destination Ethernet addresses, frame protocols and Ethernet

type) were selected as the basis for building the structure of the Virtual dataset

(Table 4.4).

Table 4.4: Structural Virtual Features

Network Feature Description Example
frame.protocols Protocols in frame eth:ethertype:arp

Virtual
SDN

eth.dst Destination 68:a0:f6:b0:14:84
eth.src Source 08:00:27:f0:dc:db
eth.type Type 0x0800-Ipv4 0x86DD-Ipv6

(4) In this case, to generate traffic, we use the Distributed Internet Traffic Generator

(D-ITG) tool [55]. Snippet 4.2 depicts the command line for traffic generation

with D-ITG. In our case, we regularly change the parameter “-t” (from 5 sec

to 30 minutes), in order to generate traffic with variations of time between the

hosts of the networks emulated.

Snippet 4.2: Configuration D-ITG commands
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−a <des t addre s s> −C <r a t e [ pkts / s ]> −c <p k t s i z e >\\
−t <durat ion [ ms]> −T <protoco l>

In the data collection process, we used two networks (one per machine, VM2

and VM4) handled by the Ryu Controller deployed in VM3 (i.e., a tree topology

of depth 3, 21 switches, and 64 hosts; see Figure 4.3). The IP addresses assigned

to each are presented in Table 4.5.

Figure 4.3: Mininet networking configuration

Table 4.5: Assignment of IP addresses

Host Range IP address
Network 1 h1 - h64 10.0.0.1-64
Network 2 h65 - h128 10.0.1.65-128

Ryu Controller 1 - 10.0.0.112
Ryu Controller 2 - 10.0.0.113
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The collection was performed as follows.

• We put sniffers on two points of reference: Point A (vmport2 and bridge)

and Point B (vmport4 and bridge).

• At Point A, we captured ten random periods of 30 minutes, and in the

Point B we captured one period of 30 minutes.

• We collected the data in a .pcapng file using Wireshark.

• We use the T-shark command [50] of Snipper 4.3 for the conversion of the

data to .csv (for managing in Weka [56]) and the extraction of the features

of Tables 4.2 and 4.4.

Snippet 4.3: T-shark command to extract data

tshark −r PointA . pcapng −T f i e l d s −e frame . l en \\
−e frame . p r o t o c o l s −e eth . dst −e eth . s r c \\
−e eth . type −e ip . proto −e ip . s r c −e ip . dst \\
−e ip . hdr l en −e tcp . s r c p o r t −e tcp . ds tpor t \\
−e tcp . seq −e tcp . hdr l en −e tcp . window size \\
−E header=y −E separa to r =, −E quote=d \\
−E occur rence=f > PointA . csv

In this command, the “-r” parameter reads the “PointA.pcapng” file previously

extracted using Wireshark, “-T” as a text file with “-e” fields representing the

characteristic of Table 4, “-E” indicates the print option fields of the data; and

“>” followed by the file name and its extension (“PointA.csv”) allows saving

that new document.
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As a summary the traditional and Virtual datasets in the NFV-based SDN network

are constructed as follows:

Table 4.6: Structure of Traditional and Virtual datasets

Network Feature Description Example
frame.len Frame length on the wire 60bytes-(480bits)
ip.src Source address 192.168.0.24
ip.dst Destination address 192.168.0.27
ip.hdr len Header length 5-(20 bytes)

Traditional tcp.srcport Source port 43266
tcp.dstport Destination port 22
tcp.seq Secuence number 37
tcp.hdr len Header length 32
tcp.window size Calculated window size 1247
ip.proto Protocol 6-(TCP)17-(UDP)
frame.protocols Protocols in frame eth:ethertype:arp

Virtual
SDN

eth.dst Destination 68:a0:f6:b0:14:84
eth.src Source 08:00:27:f0:dc:db
eth.type Type 0x0800-Ipv4 0x86DD-Ipv6

Number of
instances

1.048.575
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4.1.2 Case 2: Dataset construction on NFV-based LTE EPC

4.1.3 Test Environment

Figure 4.4: NFV-based LTE EPC Network
Source: [57]

We consider mobile networks as a second scenario for classifying traffic in NFV,

since these networks, nowadays, are faced with an increase in the traffic that passes

through them. And this increase presents a problem for the operators in the deploy-

ment of new services and the location of new hardware devices in the network.

For emulating a mobile network, we take as the basis the emulation of an NFV-based

LTE EPC network, proposed in [57] (see Figure 4.4). This emulation is based on

the client-server paradigm, in which, the server is multi-threaded to serve all client

requests.

In this network, the authors present six entities, including the main network func-

tions of EPC (i.e., MME, HSS, SGW, and PGW), a RAN simulator to generate

traffic in EPC, and a Sink module responsible for receiving the traffic generated

(uplink) and generate acknowledgment data (downlink). These functions are pre-
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sented as software modules running on VMs hosted on a private cloud. These VMs

have specific characteristics listed in Table 4.7 and were deployed in VMware vSphere

[58].

Table 4.7: Configuration of NFV-based EPC modules

Entity No.Cores RAM Disk OS Virtualization
RAN 8 4 GB

10 GB
Ubuntu
14.04

VMware vSphereMME, SGW,
PGW, HSS

2 2 GB

Sink 4 2 GB

The implementation of this emulation is based on the object-oriented paradigm in

which each entity uses a server or a client object in each of its ports. These ports

correspond to the interfaces described by 3GPP (i.e., S1-MME, S1-U, S11, S5-C, S5-

U, S6a, and SGi). The communication by these objects occurs by sending requests

and responses between different entities of LTE EPC. The description of the EPC

entities [57] is presented below:

The Mobility Management Entity (MME) maintains a global map throughout

the communication to store the connection information and the status related to the

user equipment (UE). MME communicates with other system entities using three

different ports corresponding to three different standard interfaces: S1-MME, S6a,

and S11. On the S1-MME interface, it uses an SCTP server object to communicate

with eNodeB. On the S6a interface, it uses an SCTP client object to communicate

with HSS to obtain information related to the UE and the updating of their loca-

tions. At interface S11, it uses a UDP client object to communicate with SGW for

session/bearer related procedures.

The Home Subscriber Server (HSS) uses a MySQL object for database-related

operations and an SCTP client object for communicate with MME over the S6a

interface. Multiple instances are created in the MySQL database where UE infor-

mation is stored, such as authentication, subscription profile, and location tracking.

The Serving Gateway (SGW) manages control plane communication with MME

and PGW on interfaces S11 and S5-C, respectively. On the S11 interconnect port,

it uses a UDP server object and on the S5-C interface port, it uses a client UDP
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object. On the other hand, it manages the data plane communication with eNodeB

and PGW in the interface S1-U and S5-U respectively. On the S1-U interface, it

uses a Uplink object from the UDP server and a UDP client downlink object.

The Packet Data Network Gateway (PGW) handles control plane communi-

cation with SGW on interface port S5-C through a UDP server object. It manages

the data plane communication with SGW and Sink on interface ports S5-U and SGi,

respectively. On the S5-U interface, it uses a Uplink object from the UDP server

and a UDP client downlink object. A separate IP table map is also used to assign

a static IP address for each UE being connected to the EPC.

The Radio Access Network (RAN) Simulator proposed in [57] combines the

functionalities of UE and eNodeB to generate control and data traffic to EPC. This

RAN simulator performs multiple threads and creates a RAN object for each wire,

which in turn controls the control plane and data plane communication with MME

and SGW respectively. For the tunneling process during UE data transfer, sepa-

rate threads are generated to monitor and retrieve UE packets from the core stack.

For control plane communication, an SCTP client object is used on the S1-MME

interface port. For data plane communication, it uses separate UDP client/server

objects on interface port S1-U for uplink/downlink data transfer. A global array of

RAN contexts is used to maintain all information related to UEs and eNodeBs.

The Sink module represents the Packet Data Network (PDN) server. It is respon-

sible for receiving the generated uplink traffic and returning the acknowledgment

data as downlink traffic. As in the case of the RAN simulator, several Sink objects

are created, each in their thread.

For the specific dataset construction in the NFV-based LTE EPC:

(1) We identified three labels for this dataset MOBILE (i.e., gsm protocols), SER-

VICES (i.e., SLL and X11), and CONTROL (i.e., only TCP/IP protocol).

(2) We consider the features of Tables 4.2 and 4.4, for the construction of the struc-

ture of new Traditional and Virtual datasets, respectively.
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(3) We deploy the network of Figure 4.4 with its respective characteristics (Table

4.7).

(4) We tested the EPC implementation using data traffic, determining a specific

number of UEs to EPC from the RAN simulator to the Sink module. For the

traffic generation between EPC modules, we use the Iperf3 [59] tool. Iperf3

allows sending TCP data with different bandwidths and duration. In this case,

the particular Iperf3 Client process is started in the RAN simulator, with a

required input data rate. And the Iperf3 operation in Server mode in the Sink

module. The Snippet 4.4 present the command used for generating traffic by

Iperf3.

Snippet 4.4: Iperf3 Command Line

i p e r f 3 −B <c l i e n t I P > −c <s e rve r IP> −p <s e r v e r p o r t >\\
−b <data rate> −M <mtu> −t <time [ s e c ]>\\
−S <t y p e o f s e r v i c e s >

In this command line, the “-B” link Host Interface (i.e., 172.16.0.2), “-c” run

iperf3 in Client mode, “-p” configure the Server port to listen, and it is the

same as the Client (i.e., 55000), “-b” sets the transmission bit rate per second

(default 1 Mbps), “-M” maximun segment size TCP/STCP (default MTU - 40

bytes), “-t” time in seconds to transmit (default 10 sec); and “-S” set the IP

service type.

In this second case study, we performed eleven captures of thirty minutes each

one in the MME entity, to know the behavior of TCP traffic in the EPC. For

the analysis of data traffic, the authors in [57] propose to modify the speed of

traffic generation in Iperf3. For this reason, we vary the value of parameter

“-b”, between 20 Mbps and 110 Mbps.
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As a summary the traditional and Virtual datasets in the NFV-based LTE-EPC

network are constructed as follows:

Table 4.8: Structure of Traditional and Virtual datasets

Network Feature Description Example
frame.len Frame length on the wire 60bytes-(480bits)
ip.src Source address 192.168.0.24
ip.dst Destination address 192.168.0.27
ip.hdr len Header length 5-(20 bytes)

Traditional tcp.srcport Source port 43266
tcp.dstport Destination port 22
tcp.seq Secuence number 37
tcp.hdr len Header length 32
tcp.window size Calculated window size 1247
ip.proto Protocol 6-(TCP)17-(UDP)
frame.protocols Protocols in frame eth:ethertype:arp

Virtual
SDN

eth.dst Destination 68:a0:f6:b0:14:84
eth.src Source 08:00:27:f0:dc:db
eth.type Type 0x0800-Ipv4 0x86DD-Ipv6

Number of
instances

1.048.575



Chapter 5

Benchmarking Results

This chapter presents the process for benchmarking the efficiency of the supervised

ML algorithms (i.e., C4.5, NaiveBayes y BayesNet) in the traffic classification in the

two NFV-based test networks presented in the chapter previous.

In this process, we introduce the preparation of the data collected in the Dataset

Construction process and its adaptation, in addition to the training, validation, and

testing processes of the three supervised algorithms.

5.1 Benchmarking Process

Benchmarking is a systematic process useful for evaluating services or tasks within

a system. This allows performing a comparison for generating changes in the perfor-

mance or development of such a system [60]. In this work, the Benchmarking allows

comparing the efficiency of supervised ML algorithms in NFV-based networks. Here,

the efficiency is related to the trade-off between time-response (i.e., time spent by

algorithms for traffic classification) and precision (i.e., the number of class members

classified correctly over the total number of instances classified for a given class) [1].

The benchmarking was performed by using the methodology called Training, Valida-

tion and Testing [30]. For data classification and prediction processes, this method-

35



5.1. Benchmarking Process 36

ology proposes a division of the overall dataset into two subsets. The first one for

training and validation (2/3 of the data) and the second subset for testing (1/3 of

the data), see Figure 5.1.

Figure 5.1: Division of data

The previously labeled training subset is used by the algorithms to create their

previous classification model and to validate it, and the subset of tests is used to

verify the classification models in a final stage, such that this unlabeled subset is

subjected to classification.

In this sense, we propose the benchmarking process composed of four steps, as shown

in Figure 5.2.

In this process, the input data are the Traditional and Virtual dataset, which will

be subjected to a selection of features to determine the features with which we will

create a third dataset called Combined. For the whole process that follows, we use

the Weka tool [56] that allows performing an adequate preparation of the data.

Dataset Adaptation is to prepare the Traditional and Virtual data sets to train

supervised classification algorithms. In this preparation, we perform two processes:

(1) Lebeling process: We analyze the protocols found in the frames of the collected

data streams and based on the labels that the authors propose in [1], we identify

for each dataset the necessary labels.
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Figure 5.2: Benchmarking process

(2) Filtering process: We use Weka data management options such as filters. It is

necessary to use some filters to organize the data so that the algorithms can

perform a correct use of them, in this sense we used the following filters:

• Discretize is to transform features with continuous values to features with

a finite range of values. We disallowed Bayesian algorithms to have better

data handling because they work better in their training using categorical

data.

• Normalize is to scale an attribute to a particular range generally -1 to

1, or 0 to 1. We normalized to avoid that some attributes with higher

values gain a significantly more significant weight in the final model. (e.g.,

frame.length, tcp.window size).

• Class balancer allows adjusting the weights of the data labels keeping the

same weight. We use a class balancer because the selected algorithms (i.e.,

C4.5, NaiveBayes, and BayesNet) are designed to optimize overall precision

without considering the distribution of each class, and as a result, tend to

ignore small classes in classifying.

Correlation based Feature Selection is to identify the features that have greater

relation with the feature Class, the labels of apps. From this process, the features
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with a correlation upper to 0,4 are chosen. This selection was made as follows:

(1) The Traditional and Virtual datasets were opened in Weka.

(2) GreedyStepwise was selected as the search method and CfsSubsetEval as the

evaluator in Weka (select attributes option).

(3) The selection was executed to determine the features.

(4) The most correlated features were selected, for the Traditional dataset, and for

the Virtual dataset.

Information Gain Feature selection consists of identifying the features that

contribute a significant amount of information to determine the corresponding label

in Traditional and Virtual datasets. This selection was carried out by selecting the

following combination:

• We selected the Ranker search method to classify the features according to an

individual evaluation.

• We used the evaluator InfoGainAttributeEval to determine the relation of gain

information per feature and the types of application.

At the end of the two feature selections, we obtain the most relevant data from the

Traditional and Virtual dataset for the construction of the Combined data set.

Training, Validation and Testing aim to divide the Traditional, Virtual and

Combined datasets into the two respective subsets of data proposed for the Method-

ology. Re-sampling extracted these subsets of data: the first for training correspond-

ing to 60% of the total data and the second subset for the test corresponding to the

remaining 40%.

Here, the supervised algorithms C4.5, NaiveBayes, and BayesNet are trained and

evaluated since they have been successfully (achieving high results of precision) used

to classify traffic in traditional networks. Initially, in the training stage, the training

data subset is used for preparing (i.e., to generate a previous classification model)
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each algorithm. Then, in the validation stage, the algorithms improve their corre-

sponding classification model by using Cross-validation. Finally, in the testing step,

the testing subset is used for obtaining the final classification model of algorithms

above mentioned.

To train the supervised algorithms with the data sets extracted in each case study

proposed in Chapter 4, we perform the benchmarking process in each one.

5.2 Case 1: Traffic Classification on NFV-based

SDN

In this case, we obtained the following benchmarking results:

(1) In the Dataset Adaptation step, by analyzing the protocols, we identify three of

the thirteen labels we took as the basis of the work [1] (i.e., INTERACTIVE,

SERVICES, and WEB). To categorize the applications on the OpenFlow proto-

col we define a fourth label that we call OPENFLOW, and finally to tag other

types of protocols found we propose a fifth label that we call OTHER.

(2) Continuing with the two Features Selection processes, we identified the most

relevant features. For the Traditional dataset we have tcp.srcport, tcp.dstport,

tcp.window size, ip.src and ip.dst, and for Virtual dataset only frame.protocols.

(3) Finally, we continued with Training, Validation and Testing processes (Section

5.1) and the corresponding results are presented below.

5.2.1 Results

In this case, the algorithms C4.5, NaiveBayes, and BayesNet were trained by using

the Traditional, Virtual and Combined datasets. Initially, in the validation step, the

algorithms perform their first classification (they construct a classification model)

where we obtain initial values of time-response and precision. Then, when the
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algorithms test their model, we extract another value for those two metrics. Finally,

to define the behavior of each algorithm and its variation in time-response and

precision, we calculate the standard deviation using the results of the validation and

test processes, this analysis is performed in each capture of thirty minutes.

Table 5.1: Precision comparison

Point A
Dataset C4.5 NaiveBayes BayesNet

Traditional 92, 535± 0, 185 80, 802± 0, 034 91, 118± 0, 034
Virtual 99, 998± 0, 001 99, 998± 0, 001 99, 998± 0, 001
Combined 99, 998± 0, 001 98, 673± 0, 006 99, 225± 0, 002

Point B
Dataset C4.5 NaiveBayes BayesNet

Traditional 88, 854± 0, 018 79, 500± 0, 375 90, 234± 0, 116
Virtual 99, 998± 0, 001 99, 915± 0, 012 99, 953± 0, 350
Combined 99, 998± 0, 001 90, 174± 0, 380 99, 890± 0, 005

Table 5.1 depicts the precision results when C4.5, NaiveBayes, and BayesNet are

used for classifying traffic in NFV-based SDN, of the Figure 4.2. These results re-

veal diverse facts. First, the overall precision is higher than 79,5%, being a similar

effect to that achieved by the same algorithms in the traffic classification in tradi-

tional networks, which proves that they are a good choice for the classification in

virtual networks [1][21]. Second, C4.5 and BayesNet are more accurate than Naive-

Bayes; this behavior depends on the model that creates each algorithm. On the one

hand, C4.5 analyzes and selects as nodes (in its tree model) the features with the

highest gain of information which makes it more precise with values between 88,8%

- 99,9%. While the NaiveBayes and BayesNet algorithms consider the independence

and dependence between the data, respectively, in this way their models perform a

longer and more complex data processing than C4.5. Third, the results obtained

in the classification for the Combined dataset for Point A (98 % - 99 %) show an

increase of more than 7 % compared to the results in the classification of the Tra-

ditional dataset. And in Point B there is an increase of more than 9 % in the same

case. This increase is directly related to the features that make up each dataset

since they provide a different type of information to the algorithms for creating the

classification models. And in this case, the Combined dataset is composed of the
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features with a greater information gain and correlation of the Traditional and Vir-

tual datasets. Therefore, when C4.5, NaiveBayes, and BayesNet process and classify

the Combined dataset, they build a more effective classification model than with the

Traditional dataset.

Table 5.2: Time-response comparison

Point A
Dataset C4.5 NaiveBayes BayesNet

Traditional 39, 88± 0, 968 1, 540± 0, 113 11, 21± 1, 718
Virtual 0, 240± 0, 980 0, 254± 0, 063 0, 235± 0, 091

Combined 1, 565± 0, 063 1, 480± 0, 834 7, 345± 1, 732
Point B

Dataset C4.5 NaiveBayes BayesNet
Traditional 0, 405± 0, 120 0, 120± 0, 070 0, 350± 0, 140

Virtual 0, 040± 0, 028 0, 030± 0, 028 0, 060± 0, 560
Combined 0, 145± 0, 035 0, 007± 0, 000 0, 680± 0, 210

Table 5.2 present the time-response results of C4.5, NaiveBayes and BayesNet when

used to classify traffic in the Points A and B (Figure 4.2), respectively. These

results disclose that, first, the algorithms in Point A require more time (from 0,2

sec to 39,8 sec) than in Point B (from 0.007 sec to 0.68 sec), for classifying the

datasets. This variation between the time ranges is related to the difference between

the number of flows captured at each point, in Point A there are 1,048.575 flows

and in Point B 52,264 data flows. Second, in both points, the three algorithms

present their lowest time-response of classification when using the Virtual dataset,

this is presented by the number of features that compose such a dataset (only five

features). Third, in both points, the NaiveBayes algorithm presents the smallest

variation between the time-responses in the classification of each dataset. And this

is because NaiveBayes requires a minimum amount of information, to estimate the

data needed for classifying traffic, regardless of the number of dataset features.

To sum up, although C4.5 and BayesNet achieve a precision greater than 88%, they

have significant variations (0,04 sec - 39 sec) in their time-response results, because

their classification models depend on the amount of data contained in each dataset.

While NaiveBayes reaches a precision greater than 79,5%, and its time-responses
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Figure 5.3: Precision per-class in NaiveBayes Classification

results range from 0,007 sec to 2,5 sec. The difference between C4.5, as the algorithm

with the highest level of precision, and NaiveBayes, as the most constant in time, is

approximately 5,5% in precision; a difference that NaiveBayes compensates, without

losing precision, reducing the time-response about 6 sec.
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Therefore, we argue than NaiveBayes is the best algorithm to classify traffic in NFV-

based SDN since it presents a better trade-off between precision and time-response.

It is to highlight that this algorithm has also a high performance for classifying

traffic with the Traditional dataset achieving a precision range upper 79,5% and

time-responses lesser than 1,54 sec.

Figure 5.3 presents the precision results, achieved by NaiveBayes, when classifies the

application labels INTERACTIVE, SERVICES, OPENFLOW, WEB, and OTHER.

These results reveal first, in both points, NaiveBayes presents its lowest values of

precision (from 49,8% to 76,5%) in the classification of some labels (i.e., SERVICES,

OPENFLOW, and OTHER). This reduction in precision indicates that i) the dis-

tribution of these labels in the training subset is not uniform; and ii) these labels

are composed of a less number of members, on the other labels. Second, in the clas-

sification using the Virtual dataset the precision values are greater than 99,6% for

the five classes, with the Combined dataset the rank is upper than 94,9%, whereas

the classification with the Traditional dataset is greater than 70%. These values

indicate again that the classification is linked to the quantity and types of features

that compose each dataset.
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5.3 Case 2: Traffic Classification on NFV-based

LTE EPC

In this case, we obtained the following benchmarking results:

(1) In the Dataset Adaptation process, we identify only one of the thirteen labels we

took as the basis (i.e., SERVICES). In this case, as in case 1, we propose new

tags to categorize other types of applications. In this case, we propose a label

called CONTROL to identify frames that contain only the TCP. And another

label called MOBILE, to categorize the basic applications of an LTE network

that are part of the gsm protocol.

(2) After processing the Traditional and Virtual datasets in the Features Selec-

tion processes, we obtained the following: for the Traditional dataset we have

frame.len tcp.srcport, tcp.dstport, tcp.seq, tcp.hdr len, and tcp.window size, and

for Virtual dataset only frame.protocols.

(3) Finally, With the three datasets created (i.e., Traditional, Virtual, and Com-

bined) we train the three supervised ML algorithms (i.e., C4.5, NaiveBayes, and

BayesNet). The respective results of these processes are presented below.

5.3.1 Results

Table 5.3 presents the precision results obtained by each algorithm. These results

reveal that, first, the precision values obtained are higher than 70,7%, which shows a

similar behavior of the algorithms that in Case 1. Second, C4.5 and BayesNet achieve

higher precision values than the NaiveBayes algorithm, with a difference greater than

1 %. This difference in precision is related to the construction of the classification

model of each algorithm. Third, the behavior of Case 1 is repeated in which the

three algorithms present their lowest percentage of precision when classifying the

Traditional dataset, this is because of the amount of information provided by the

features of such a dataset during the classification. In this sense, a variation greater
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than 4% between the classification precision between the Traditional and Combined

dataset is identified.

Table 5.3: Precision comparison - LTE EPC System

Dataset C4.5 NaiveBayes BayesNet
Traditional 96, 178± 0, 020 70, 770± 2, 512 94, 913± 0, 029
Virtual 100± 0 100± 0 100± 0
Combined 100± 0 98, 802± 0, 002 99, 569± 0, 021

Table 5.4 presents the results of time-response for classifying each dataset. These

results reveal that, first, in this second case study, we have a range of values between

0,035 sec to 0,3 s, being a range of values with a smaller difference, than the difference

obtained in Case 1. This range of values is related to the quantity of data that

contains each dataset, and in this case, the three datasets are composed of 24,105

data streams. Likewise, we note that the variations between the results of each

algorithm are minimal and somewhat similar. Second, we identify a behavior similar

to that of Case 1, the three algorithms (i.e., C4.5, NaiveBayes, and BayesNet) take

a little more time in the classification of the Traditional dataset, whereas for the

Virtual dataset they present the least time for classifying, this because of the six

more features that compose the Traditional dataset. Third, although the values are

very close, Naive Bayes presents the lowest values, with an approximate average of

0.04 sec for classifying the three datasets (i.e., Traditional,Virtual, and Combined).

Table 5.4: Time-response comparison - LTE EPC System

Dataset C4.5 NaiveBayes BayesNet
Traditional 0, 300± 0, 056 0, 045± 0, 007 0, 135± 0, 007
Virtual 0, 045± 0, 007 0, 010± 0 0, 050± 0, 042
Combined 0, 085± 0, 021 0, 035± 0, 007 0, 090± 0, 028

To determine the most efficient algorithm, we consider that, first, the difference in

precision between C4.5 and BayesNet is less than 2 %, reaching higher precision levels

than NaiveBayes. Second, regarding the time-response results, NaiveBayes has the

lowest variation in its results and the lowest average time-response, approximately

0,04 sec. Third, the difference in response time results indicates that C4.5 and
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BayesNet require more time, 0,1 sec and 0,05 sec respectively than Naive Bayes in

the classification. With these small differences in time-response, we argue that the

BayesNet algorithm is more efficient than NaiveBayes, thus guaranteeing precision

values in a higher range with a small increase of 0,05 sec in the time-response.

Figure 5.4: Precision per-class in BayesNet Classification

Figure 5.4 presents the precision results, achieved by BayesNet, when classifies the

defined application labels MOBILE, CONTROL and SERVICES. With these results,

we note, first, BayesNet delivers higher results than 80 %, being excellent values for

the classification of IP traffic. Second, for the three labels, the algorithm behaves

very similar to classification precision averages. Third, it is relevant that for the

Virtual dataset the classification percentages are the highest, not only for the labels

presented above but also in the ranking with the other two algorithms. These

significant results are presented by the amount of data in the Virtual dataset and

the information they provide for the classification.



Chapter 6

Conclusions and Future Work

In this chapter, we start by answering the proposed research question. Then, we

provide the main comparative conclusions obtained by the evaluation. Finally, we

expose directions and implications for future work.

6.1 Conclusions

This work presented the investigation perform to answer the research question:

How do supervised algorithms behave in autonomic classification of IP

traffic in NFV-based networks?.

To answer this question, we carried out a benchmarking of some supervised ML

algorithms (i.e., C4.5, NaiveBayes, and BayesNet) in the traffic classification in a

NFV-based SDN and in a NFV-based LTE EPC.

Performing our benchmarking, it was needed to analyze certain features and the

behavior of traffic in NFV networks, to adapt a traditional dataset to a NFV-based

network, and to train and validate the algorithms with the adapted data for deter-

mining their behavior. In this sense, the behavior of C4.5, NaiveBayes and BayesNet

was evaluated in two aspects, first, quantitatively as follows:

47
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In this aspect it is necessary to emphasize that the behavior is related to the efficiency

achieved in the classification that depends on the trade-off between time-response

and percent of precision. The results obtained reveal that:

• In the Case 1, we find out that the supervised algorithms C4.5 and NaiveBayes

has a range of precision from 80% to 99% for traffic classification in traditional

and NFV-based SDN. And NaiveBayes algorithm is the most efficient classi-

fier, since it has a precision value range upper than 80,8%, similar to C4.5,

and between response times in the classification of each dataset, has minimal

variations.

• In Case 2, the results obtained by the evaluated algorithms increased regarding

the Case 1. C4.5 presented the best precision in the classification of traffic with

values higher than 96,17 %, Naive Bayes and Bayes Net likewise have values,

higher than 70,7 % and 94,9 %, respectively. Although there is a percentage

difference upper than 1 % between these results, the three algorithms handle a

similar time-response range between 0,03 sec and 0,3 sec, being a smaller and

more balanced range than Case 1.

Considering the above results, we can state that supervised ML algorithms have a

good performance in the classification of NFV traffic, and they can improve their

precision in this type of classification concerning the classification in traditional

networks.

Second, qualitatively, we emphasize that the new features identified for NFV-based

networks allow: i) monitoring hidden traffic circulating by VMs, ii) improving the

management of such a traffic; and iii) increasing the precision levels in the classifica-

tion. Furthermore, these features allow the algorithms to improve their classification

models which lead to possible improvements in the precision and reduction in time-

response.

Finally, we can highlight the importance and contributions that network virtual-

ization currently represents. NFV not only provides scalability and cost reduction

in hardware resources, but also brings benefits in the management and control of

traffic.
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6.2 Future work

According to the work carried out for developing this undergraduate project, we

expose some ideas to continue it. These ideas are outlined below.

• UDP traffic classification. We propose to make a comparative analysis of these

algorithms with UDP traffic. This review offers a different characterization of

the dataset and some different labels of apps.

• Real-time traffic capture. This proposal would be aimed at attracting traffic in

a data center, where the amount of data and applications would be greater. In

this way, the training of the algorithms would be more robust and the results

more accurate.
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“Reviewing traffic classification,” in Data Traffic Monitoring and Analysis.

Springer, 2013, pp. 123–147.

[42] Y. Wang and S. Z. Yu, “Machine learned real-time traffic classifiers,” in Intelli-

gent Information Technology Application, 2008. IITA ’08. Second International

Symposium on, vol. 3, Dec 2008, pp. 449–454.

[43] J. Elias, F. Martignon, S. Paris, and J. Wang, “Efficient orchestration mecha-

nisms for congestion mitigation in nfv: Models and algorithms,” IEEE Trans-

actions on Services Computing, vol. PP, no. 99, pp. 1–1, 2015.

[44] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualiza-

tion: Challenges and opportunities for innovations,” Communications Maga-

zine, IEEE, vol. 53, no. 2, pp. 90–97, 2015.

[45] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and R. Boutaba,

“Network function virtualization: State-of-the-art and research challenges,”

IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[46] R. Mijumbi, J. Serrat, and J.-L. Gorricho, “Self-managed resources in network

virtualisation environments,” in IM, 2015.

[47] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “Nfv: state of the art,

challenges, and implementation in next generation mobile networks (vepc),”

Network, IEEE, vol. 28, no. 6, pp. 18–26, 2014.



BIBLIOGRAPHY 55

[48] A. Al-Quzweeni, A. Lawey, T. El-Gorashi, and J. M. H. Elmirghani, “A frame-

work for energy efficient nfv in 5g networks,” in 2016 ICTON, July 2016, pp.

1–4.

[49] V. communities. (2014) understand how virtual machine traffic routes. [Online].

Available: https://communities.vmware.com/docs/DOC-25426

[50] H. R. Chishti, “A traffic classification method using machine learning algo-

rithm,” 2013.

[51] (2017) ryu sdn framework. [Online]. Available: http://osrg.github.io/ryu/

[52] Ovs - openv vswitch. [Online]. Available: http://openvswitch.org/

[53] M. Team. (2017) Mininet: An instant virtual network on your laptop (or other

pc) - mininet. [Online]. Available: http://mininet.org

[54] M. M. Leach, P. and R. Salz. (2005, July) A universally unique identifier (uuid)

urn namespace. [Online]. Available: http://www.rfc-editor.org/info/rfc4122

[55] A. Botta, A. Dainotti, and A. Pescapè, “A tool for the generation of realistic
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