
1

DILF: Deep Incremental Learning Framework over TensorFlow 1

 2

Camilo Narváez, Information Technology Research Group, Universidad del Cauca, Sector Tulcán Edificio FIET, Office 3

422, Popayán, Colombia, camilonar@unicauca.edu.co 4

David Muñoz, Information Technology Research Group, Universidad del Cauca, Sector Tulcán Edificio FIET, Office 5

422, Popayán, Colombia, davidmu@unicauca.edu.co 6

Carlos Cobos, Information Technology Research Group, Universidad del Cauca, Sector Tulcán Edificio FIET, Office 7

422, Popayán, Colombia, ccobos@unicauca.edu.co 8

Abstract. 9

Incremental Learning seeks to improve the accuracy of models in which training data only become available over 10

time. TensorFlow is one of several libraries used in implementing such solutions, but its scale and high learning 11

curve make for an overly complex task. This paper presents Deep Incremental Learning Framework (DILF), an 12

object-oriented framework (based on TensorFlow) implemented in python that facilitates the design, 13

implementation, testing, and comparison of incremental learning algorithms using different neural network 14

architectures, and on various datasets. DILF is divided into four highly independent and extensible modules, 15

namely: 1) extraction, transformation, and load, 2) network architectures, 3) training, and 4) experiments. 16

 17

Keywords: 18

Incremental Learning; Deep Learning; Neural Networks 19

 20
1. Motivation and Significance 21

In Artificial Intelligence (AI), training models requires both quantity and quality of data to generalize most 22

accurately the problem to be solved. All data are not always available in the initial training, but obtained in batches 23

or increments, over time. To maintain or improve quality, measured in accuracy, recall, F-measure, etc. [1] in such 24

cases, models must be retrained using all of the available data (old and new), a time-costly task. Deep Learning 25

(DL) faces similar difficulties, especially when the success of a model depends largely on the high volumes of data 26

used in training deep neural networks (DNNs) [2]. 27

Incremental learning (IL) has therefore emerged as an option for training AI models, including DL ones, when there 28

are incremental data flows over time and the aim is to avoid re-training models from scratch. IL seeks to develop a 29

method in DL capable of refining the weights of a DNN based on new data, without the network forgetting what 30

has already been learned (Flexibility and Stability Trade-Off) and with a quality similar or superior to that obtained 31

were the DNN to be trained from scratch with all of the available data up to a certain point in time. This would 32

mean a substantial reduction in the time required for refining models, as well as in the computational resources 33

needed for their training [1]. 34

High-level libraries such as Keras [3] are available for developing DL solutions. These provide a simple and clear 35

syntax and a complete documentation, so that problems can be solved using very few lines of code. Unfortunately, 36

this type of library is not suitable if the existing learning algorithms require to be modified in order to become 37

2

incremental or to include new algorithms with this characteristic, since the high degree of abstraction of the 38

operation blocks used makes this task very complex. 39

Other libraries that allow access to lower level aspects include TensorFlow (TF) [4], Caffe [5], and Torch [6]. 40

Implementing solutions using these libraries directly, however, is also a complex task that requires same or more 41

time than with high-level libraries. In addition, as a result of freedom of use of the operators existing in these 42

libraries, most proposals are developed in a single scripting file and do not comply with basic principles of software 43

design; less so in the case of an organized, reusable and extensible architecture. IL proposals developed to date 44

have used this approach and the available code is undocumented, not modularized, mixes data with code, does 45

not control versions, and is difficult to understand, modify, debug, apply to other problems (datasets) or use with 46

other DNN architectures, due to its high coupling and low cohesion (basic principles of software design). 47

This paper presents Deep Incremental Learning Framework (DILF), an object-oriented framework implemented in 48

python that facilitates the design, implementation, testing, evaluation and comparison of IL algorithms in DL. DILF 49

establishes a set of weakly coupled modules and classes with clearly defined tasks (high cohesion), which makes it 50

easier to separate the responsibilities of each component and encourages the development of new incremental 51

learning algorithms that are more extensible and with replicable results. A more prolific and rapid development of 52

the research area would thus be expected. These modules allow loading data in two different formats, defining 53

new learning algorithms (incremental or not), training and validating the results of a DNN with existing and new 54

algorithms, and configuring experiments with different datasets (problems), network architectures and learning 55

algorithms. Connector methods are also provided to eliminate much of the verbosity and complexity of TF, so that 56

the focus is on the research and construction of new learning algorithms, and not on the number of operators TF 57

has. 58

DILF incorporates four datasets widely used in incremental learning: MNIST, Fashion-MNIST, CIFAR-10 and Caltech 59

101. These were first divided into 5 megabatches (increments) and are presented sequentially to the learning 60

algorithms. Division of the megabatches was done for two incremental scenarios: the first with megabatches that 61

include new classes and the second with megabatches that have unbalanced classes, i.e. classes appear in multiple 62

megabatches in different proportions. In DILF, all the learning algorithms available in TF such as RMSProp, Adam, 63

and Gradient Descent can be used; in addition, two IL algorithms proposed by the framework authors are included. 64

2. Software Description 65

2.1. Software Architecture 66

In Fig. 1. a high-level view is shown of the developed Framework divided into 4 modules: 67

• Extraction, Transformation, and Load (ETL) module: focused on loading data for training and testing (light 68
green background in Fig. 1.). 69

• Network Architectures module: allows the integration of new neural network architectures (light blue 70
background in Fig. 1.). 71

• Training module: responsible for training a network and designed to add new IL algorithms without affecting 72
the other modules (light red background in Fig. 1.). 73

• Experiments module: makes it possible to create and perform experiments on multiple architectures, 74
algorithms and datasets (light yellow background in Fig. 1.). 75

3

 76

Fig. 1 Framework Architecture. The blue classes represent the core, and the green classes are a sample of subclasses 77
associated with the implementation of domain-specific algorithms. 78

2.2. Software Functionalities 79

Data Pipeline: The ETL module allows the loading of datasets by dividing them into megabatches and batches as 80

shown in Fig. 2. Megabatches are used to facilitate execution of IL on different data sets, and batches are used to 81

give flexibility in the feeding of data for training the DNN. There are two main classes in this module: Reader, which 82

focuses on the extraction of data from disk; and Data, responsible for processing and loading data in the form of 83

batches. ETL stages thus become independent. DILF provides Reader implementations for two commonly used 84

formats: TensorFlow TFRecords and a directories hierarchy like the one used in Caltech 101 [7] or Tiny Imagenet 85

[8]. In Data, implementations are provided to process several datasets widely used in DL research, such as MNIST 86

[9], Fashion-MNIST [9], CIFAR-10 [10], and Caltech-101 [7]. Implementations are based on the TF Dataset class, 87

which allows parallelization of operations thanks to the functions it already provides. This also makes it possible to 88

use the ETL module independently of the rest of the framework, if it is only required to load data easily and 89

efficiently. 90

Defining a Network Architecture: The Network class makes it possible to represent a generic DNN that can have N 91

layers of different types. This class provides several methods aimed at facilitating the development of networks 92

with different architectures, offering useful functions that support the creation of various types of layers such as 93

ReLU, convolutions and pooling. This class was adapted and extended from the Caffe-Tensorflow library [11] to 94

facilitate the aggregation of multiple DNN architectures without affecting the other parts of the model. 95

Additionally, it supports the use of Transfer Learning and allows freezing some layers during training. The 96

framework provides some well-known network architectures, such as LeNet [12] and AlexNet [13], as well as other 97

generic architectures. 98

4

 99

Fig. 2 Division of a dataset into megabatches and batches 100

Training a Neural Network: The Trainer class is the central component of the Training module. It allows executing 101

the training process according to the provided configuration. For this, three methods are used that work at 102

different levels: train, to prepare the environment, start the training and train the network in a complete dataset; 103

train_megabatch, to perform the training on a dataset megabatch, comprising multiple batches; and _train_batch, 104

to apply the chosen optimizer selected to train the network with a data batch. Handling the training this way 105

makes it possible to apply different configurations at each level of specificity (e.g., a global learning rate, but with a 106

different number of epochs for each megabatch) and supports carrying out an incremental training. Additionally, 107

Trainer features _create_loss and _create_optimizer functions that allow each subclass to use different loss 108

measures (e.g. Cross Entropy) and optimizers (e.g. RMSProp). 109

Define an experiment: the experiments module is responsible for uniting the functionality of the previous modules 110

for carrying out an experiment. Here, the specific class of each module to be used is defined, and training and 111

validation configured. It furthermore offers support for completely incremental (i.e. only data from the current 112

megabatch is used) or cumulative training (all megabatches seen so far are used), with the possibility of adding 113

more training modes if required. Moreover, it provides the Tester class to validate the model by calculating and 114

storing metrics in a log file that can be read by TensorBoard. It also provides an implementation to record loss and 115

accuracy during training. It is possible to replace or extend this class to use other metrics. 116

3. Illustrative Example 117

Set out below are the steps for using RMSProp algorithm [14] for training over the MNIST dataset [9] with LeNet 118

[12]. Implementation of other algorithms and integration of other datasets use similar steps. 119

Step 1 - Data pipeline: To use the input pipeline and support the new dataset, it is necessary to create a class that 120

inherits from Data, implementing the following methods: 1) _build_generic_data_tensor() where the tensors 121

corresponding to images and labels are built, and 2) close() where any file opened by the pipeline is closed. 122

Implementation should also take account of the way in which the dataset is stored in disk, to use the appropriate 123

Reader. In this case, TFRecordsReader is used as data source for the pipeline. 124

Implementation of the _build_generic_data_tensor method enables building the training tensors and evaluation in 125

the Data super class. Before starting the training, different operations such as data transformation, data 126

augmentation, and random ordering can be applied to the data. An example of implementation is shown in Fig. 3, 127

where a data transformation is performed using the map function. Subsequently, use is made of the 128

prepare_basic_dataset function that incorporates the application of several common transformations, such as 129

ordering, use of caching, repetition for several epochs, and division into batches. Finally an iterator is created and 130

the tensors corresponding to images and labels are obtained. To make use of an already created Pipeline, it is only 131

necessary to invoke the build_train_data_tensor and build_test_data_tensor methods to obtain, respectively, the 132

training and validation data. 133

5

 134
Fig. 3 Source code of _build_generic_data_tensor 135

Step 2 - Defining a Network Architecture: To create a new network architecture, it is necessary to create a new 136

class that inherits from Network class and implements the setup() method, defining and linking each of the layers 137

in the appropriate order. In this case, a LeNet network is created by linking the conv, pool and fc methods of the 138

Network class, and assigning the input tensor via feed. 139

Step 3 - Training a Neural Network: To implement the RMSProp algorithm it is necessary to create a class that 140

inherits from Trainer class, and that implements the following methods: 1) _create_loss() where the loss measure 141

to be used is defined, e.g. Softmax Cross Entropy from TF; 2) _create_optimizer () where the optimizer to be used 142

is defined; and 3) _train_batch () where the samples of a batch are received and the optimizer is applied. 143

The created class can be seen in Fig. 4. The loss measure used is Softmax Cross Entropy and it must be provided 144

with the output of the network and the ground truth labels of the samples to be calculated. Mask_tensor is also 145

used, which stores the classes seen so far, to simulate a training in which the DNN increases its number of output 146

nodes over time. The optimizer provided is RmsProp, and the learning rate, loss measure, and list of variables 147

should be passed to it to be optimized. It is this component that modifies the weights of the network during 148

training. To use this component, it is only necessary to instantiate a class by providing the configuration, input 149

pipeline and network to be trained. 150

 151
Fig. 4 Source code of RMSPropTrainer 152

Step 4 – Defining the Experiment: In this module the link with the other modules is made and all aspects required 153

to execute the experiment are defined. The experiment must inherit from the Experiment class, implementing the 154

following methods: 1) _prepare_data_pipeline(), where the pipeline that supplies the data is created; 2) 155

_prepare_neural_network(), where an instance of the model to be trained is created; 3) _prepare_trainer(), where 156

the trainer object is created; and 4) _prepare_config(), where the specific configurations for training and validation 157

are created. A single global configuration object (GeneralConfig) and as many local configuration objects as there 158

are megabatches in the dataset (MegabatchConfig) should be instantiated. It is important to highlight that if, for 159

example, it is sought to run a test using a neural network other than LeNet, or using the Adagrad training algorithm 160

6

rather than RMSProp, it is only necessary to define it in a new experiment, without modifying the other 161

components of the framework. 162

Step 5 - Executing the Experiment: To execute an experiment, it is first necessary to have a folder with the data 163

that will be used for the training (i.e. the dataset). Then, the class constructor and the prepare_all and 164

execute_experiment methods are used, providing the directory addresses, intervals at which the validations will be 165

carried out, and training mode. While the experiment is running, the training results are saved in real time into the 166

summaries folder and can be viewed by accessing them with TensorBoard. 167

Fig. 5 shows the results of multiple incremental training experiments (30 executions per experiment) using two 168

algorithms and four datasets (MNIST, Fashion-MNIST, CIFAR-10 and Caltech 101), with different configurations. 169

The datasets are used in two scenarios: incremental classes (i.e. each class appears in a single megabatch) and 170

unbalanced classes (i.e. classes appear in multiple megabatches in different proportions). The training algorithms 171

used are RMSProp and Naive Incremental Learning (NIL), an incremental proposal by the authors that uses 172

RMSProp alongside a set of randomly selected representatives (1% or 10% of the total dataset data for these 173

experiments). RMSProp is used incrementally (i.e. using only the data of the new megabatch) and in an 174

accumulated way in which it is trained with all data seen so far. Using RMSProp in the accumulated scenario allows 175

a goal or upper-limit to be set that is expected to be achieved or surpassed using incremental algorithms, and in 176

less time. Overall, it can be seen that the best results are obtained with NIL 10%, then NIL 1% and finally 177

incremental RMSProp, which catastrophically forgets the information learned from the megabatches previously 178

used in training the DNN. In addition, it can be observed that the most complex scenario to be faced by the 179

algorithms is that of incremental classes. 180

4. Impact 181

Current research on AI and IL is broad and vibrant. This framework seeks to assist researchers in these fields by 182

providing a tool that abstracts at a medium level the most common functionalities of TensorFlow, one of the 183

libraries most widely used in DL, thereby facilitating implementation of new solutions, so that researchers can 184

focus on the core of their research, letting the framework take care of necessary but not central aspects of the 185

research: how to load data, or result validation. A clear and flexible architecture is also provided that facilitates the 186

creation and reading of the source code so that other researchers can easily understand it, meaning that 187

researchers no longer require to invest time in reimplementing complex algorithms. Thus, adoption of the 188

developed algorithms is facilitated for the purposes of comparison as well as those of extension and modification. 189

DILF enables the comparison of multiple algorithms, using different neural network architectures, and on various 190

datasets. This is achieved because each module has a clear responsibility and is independent of any other (low 191

coupling), so each component is implemented only once but can be used in as many different types of experiments 192

as is required. This is not currently the case in many code implementations released by a number of researchers, 193

since their components are highly coupled and it is difficult to modify them to be used in experiments different 194

from that proposed by the authors. DILF is currently being used by the authors to develop a new incremental 195

learning algorithm and compare its results with other state-of-the-art algorithms. The framework presented here 196

has facilitated the development of the research. 197

7

Fig. 5 Sample tests using four algorithms and four datasets. The vertical lines represent the change of megabatch. The graphs 198

on the left show the results when each megabatch includes new classes (incremental) are used and the graphs on the right 199
show the results when unbalanced megabatches are used. 200

8

5. Conclusions 201

The modular structure of the proposed framework facilitates the development, evaluation and comparison of 202

incremental learning algorithms in Deep Learning. The ETL module allows easy addition of datasets to conduct 203

tests and experiments without modifying the code of existing algorithms, while the Networks module allows easy 204

addition of new neural network architectures. In the Training module - the core of the framework - multiple 205

common training tasks are abstracted, facilitating the extension and design of new training algorithms and the 206

Experimentation module allows the conditions of an experiment to be clearly specified so that other researchers 207

can replicate the results obtained. Taking into account the low adoption of modularized and decoupled designs in 208

implementations of incremental algorithm, using DILF is expected to encourage these good practices and ensure 209

that the implemented algorithms will be used by other researchers, increasing their visibility. DILF is available as 210

open source software, and we hope it will be used and expanded, adding support for more ample range of 211

datasets and training algorithms in the future. 212

 213

References 214

[1] A. Gepperth and B. Hammer, “Incremental learning algorithms and applications,” in European Symposium 215
on Artificial Neural Networks (ESANN), 2016. 216

[2] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural Networks, vol. 61, pp. 85–117, 217
2015. 218

[3] F. Chollet and others, “Keras.” 2015. 219
[4] M. Abadi et al., “TensorFlow : A System for Large-Scale Machine Learning This paper is included in the 220

Proceedings of the TensorFlow : A system for large-scale machine learning,” Proc 12th USENIX Conf. Oper. 221
Syst. Des. Implement., pp. 272–283, 2016. 222

[5] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Embedding,” arXiv Prepr. arXiv1408.5093, 223
2014. 224

[6] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A Matlab-like Environment for Machine Learning,” in 225
BigLearn, NIPS Workshop, 2011. 226

[7] R. F. and P. P. L. Fei-Fei, “Caltech 101.” 227
[8] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” Ttechnical Rreport, Dep. Comput. 228

Sci. Univ. Toronto, pp. 1–60, 2009. 229
[9] Y. LeCun and C. Cortes, “{MNIST} handwritten digit database,” 2010. 230
[10] “The cifar-10 dataset.” [Online]. Available: https://www.cs.toronto.edu/~kriz/cifar.html. 231
[11] Ethereon, “Caffe-Tensorflow.” GitHub, 2016. 232
[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” 233

Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998. 234
[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural 235

Networks,” in Advances in Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, 236
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105. 237

[14] G. E. Hinton, N. Srivastava, and K. Swersky, “Lecture 6.5- Divide the gradient by a running average of its 238
recent magnitude,” COURSERA: Neural Networks for Machine Learning. p. 31, 2012. 239

 240

9

Required Metadata 241

 242

Current code version 243

 244

Table 1 – Code metadata (mandatory) 245

Nr Code metadata description

C1 Current code version v1.0.0

C2 Permanent link to code/repository used of

this code version

https://github.com/camilonar/DILF/

C3 Legal Code License GNU General Public License (GPL) 3.0

C4 Code versioning system used Git

C5 Software code languages, tools, and

services used

Python 3.6

TensorFlow

TensorBoard

C6 Compilation requirements, operating

environments & dependencies

 S.O. independent, tested on Windows 10

TensorFlow >= 1.9.0

Numpy >= 1.14.5

C7 If available Link to developer

documentation/manual

https://camilonar.github.io/DILF/

C8 Support email for questions camilonar@unicauca.edu.co

 246

