ANÁLISIS DEL ESTÁNDAR ISDB-Tsb Y LA VIABILIDAD TÉCNICA PARA SU IMPLEMENTACIÓN EN UNICAUCA ESTÉREO

YOHNY ORLANDO MENESES TOBAR
DIEGO MAURICIO SOLANO BOHOJORGE

Universidad del Cauca
Facultad de Ingeniería Electrónica y Telecomunicaciones
Departamento de Telecomunicaciones
Grupo I+D Nuevas Tecnologías en Telecomunicaciones – GNTT
Gestión Integrada de Redes, Servicios y Arquitecturas de Telecomunicaciones
Popayán
2010
ANÁLISIS DEL ESTÁNDAR ISDB-Tsb Y LA VIABILIDAD TÉCNICA PARA SU IMPLEMENTACIÓN EN UNICAUCA ESTÉREO

YOHNY ORLANDO MENESES TOBAR
DIEGO MAURICIO SOLANO BOHOJORGE

Trabajo de Grado presentado como requisito para obtener el Título de Ingeniero en Electrónica y Telecomunicaciones

Director
I.E. JENNY CUATINDIOY IMBACHI

Universidad del Cauca
Facultad de Ingeniería Electrónica y Telecomunicaciones
Departamento de Telecomunicaciones
Grupo I+D Nuevas Tecnologías en Telecomunicaciones – GNTT
Gestión Integrada de Redes, Servicios y Arquitecturas de Telecomunicaciones
Popayán
2010
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>CAPÍTULO I. RADIODIFUSIÓN SONORA</td>
<td>2</td>
</tr>
<tr>
<td>1.1 RADIODIFUSIÓN SONORA ANALÓGICA</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1 Cuadro Comparativos Entre Radiodifusión Sonora en AM y FM</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 Características y Problemas del Servicio de Radiodifusión Sonora en FM</td>
<td>3</td>
</tr>
<tr>
<td>1.2 DESCRIPCIÓN GENERAL E INFRAESTRUCTURA DEL SISTEMA DE RADIODIFUSIÓN SONORA EN FM DE UNICAUCA ESTÉREO</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1 Generalidades</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2 Equipos de los Estudios</td>
<td>5</td>
</tr>
<tr>
<td>1.2.3 Equipos Utilizados en el Enlace Estudio y Sitio de Transmisión</td>
<td>5</td>
</tr>
<tr>
<td>1.2.4 Sistema de Transmisión de Unicauca Estéreo</td>
<td>5</td>
</tr>
<tr>
<td>1.2.5 Estructura General de Radiodifusión de Unicauca Estéreo</td>
<td>5</td>
</tr>
<tr>
<td>1.2.6 Servicios</td>
<td>6</td>
</tr>
<tr>
<td>1.2.7 Cobertura</td>
<td>7</td>
</tr>
<tr>
<td>1.2.8 Necesidades de Unicauca Estéreo</td>
<td>7</td>
</tr>
<tr>
<td>1.2.9 Características de Unicauca Estéreo</td>
<td>7</td>
</tr>
<tr>
<td>1.3 RADIODIFUSIÓN SONORA DIGITAL</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1 Radiodifusión Sonora Digital Terrestre</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.1 Características de la radiodifusión sonora digital</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.2 Ventajas de la radiodifusión sonora digital</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1.3 Bandas de frecuencias utilizadas</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2 Topologías para la Difusión del Servicio de Radiodifusión Sonora Digital Terrestre</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.1 Transmisión local</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.2 Transmisión regional y/o nacional</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2.3 Redes SFN centralizadas</td>
<td>11</td>
</tr>
<tr>
<td>1.3.2.4 Redes SFN descentralizadas</td>
<td>11</td>
</tr>
<tr>
<td>1.4 ESTÁNDRES DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1 DAB</td>
<td>12</td>
</tr>
<tr>
<td>1.4.2 IBOC</td>
<td>13</td>
</tr>
<tr>
<td>1.4.3 DRM</td>
<td>14</td>
</tr>
<tr>
<td>1.4.4 ISDB</td>
<td>14</td>
</tr>
<tr>
<td>1.5 CONSIDERACIONES GENERALES DEL SISTEMA DE TRANSMISIÓN ISDB-TSB</td>
<td>15</td>
</tr>
<tr>
<td>1.5.1 Técnica de Transmisión de ISDB-TSB</td>
<td>16</td>
</tr>
<tr>
<td>1.5.2 Transmisión Jerárquica</td>
<td>17</td>
</tr>
<tr>
<td>1.5.3 Modos de Transmisión</td>
<td>17</td>
</tr>
<tr>
<td>1.6 CODIFICACIÓN DE CANAL EN ISDB-TSB</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1 Codificación y Multiplexación MPEG-2</td>
<td>19</td>
</tr>
<tr>
<td>1.6.2 Re-multiplexación de TS</td>
<td>20</td>
</tr>
<tr>
<td>1.6.3 Codificación Externa (Código Reed-Solomon)</td>
<td>20</td>
</tr>
<tr>
<td>1.6.4 División en Niveles de Jerarquía</td>
<td>21</td>
</tr>
<tr>
<td>1.6.5 Dispersión de Energía</td>
<td>21</td>
</tr>
</tbody>
</table>
1.6.10 Combinador de Niveles de Jerarquía ... 24
1.6.11 Tiempo y Frecuencia de Entrelazado ... 24
1.6.12 Señales Piloto ... 24
1.6.13 Estructura de la Trama OFDM ... 24
1.6.14 FFT .. 24
1.6.15 Conversor D/A ... 24
1.6.16 Circuito de Salida de Transmisión ... 25

1.7 CUADRO COMPARATIVO DE LOS ESTÁNDARES .. 25

CAPÍTULO II. REQUERIMIENTOS TÉCNICOS Y CONDICIONES NECESARIAS 26

2.1 REQUERIMIENTOS PARA EL SERVICIO DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE ... 26

2.2 CONSIDERACIONES BÁSICAS PARA LA IMPLEMENTACIÓN DE LA RADIODIFUSIÓN SONORA DIGITAL TERRESTRE ... 27

2.3 PROBLEMAS QUE HAN TENIDO LAS TECNOLOGÍAS DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE PARA SU IMPLEMENTACIÓN ... 28

2.4 ESTRATEGIAS PARA LA TRANSICIÓN DE RADIODIFUSIÓN SONORA ANALÓGICA A DIGITAL ... 29

2.5 MÉTODOS DE TRANSICIÓN DE RADIODIFUSIÓN ANALÓGICA A DIGITAL 29

2.6 MÉTODOS QUE Hacen POSIBLE LA TRANSICIÓN DE RADIODIFUSIÓN SONORA ANALÓGICA A DIGITAL ... 29

2.6.1 Alto Nivel ... 30
2.6.2 Combinado de Bajo Nivel o Amplificación Común ... 30
2.6.3 Antenas Separadas .. 31

2.7 ELEMENTOS QUE COMPonen UN SISTEMA DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN ISDB-TSB ... 31

2.7.1 Equipos de los Estudios .. 32
2.7.2 Enlace Estudio Sitio de Transmisión .. 33
2.7.3 Sistema de Transmisión ... 34

2.8 REQUERIMIENTOS TÉCNICOS NECESARIOS PARA LA IMPLEMENTACIÓN Y PLANIFICACIÓN DE LA RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN ISDB-TSB ... 35

2.8.1 Espectro Radioeléctrico ... 35
2.8.2 Bandas de Guarda .. 35
2.8.3 Relación de Protección en Radiofrecuencia ... 36
2.8.3.1 Relación de protección entre señales ISDB-TSB interferidas por señales NTSC ... 36
2.8.3.2 Relación de protección para ISDB-TSB interferida por ISDB-TSB 37
2.8.4 C/N Requerida .. 38
2.8.5 Degradación de Realización .. 39
2.8.6 Margen de Interferencia ... 39
CAPÍTULO III. ANÁLISIS DE LA VIABILIDAD TECNICA DE LA IMPLEMENTACIÓN DEL ESTÁNDAR ISDB-TSB EN UNICAUCA ESTÉREO

3.1 ENTORNO COLOMBIANO Y SITUACION NORMATIVA DE RADIODIFUSIÓN SONORA

3.1.1 Geografía Colombiana

3.1.2 Situación Normativa de Radiodifusión Sonora

3.1.3 Asignación de Bandas de Frecuencia para los Servicios de Radiodifusión Sonora

3.2 ANALISIS DE FACTIBILIDAD DE IMPLEMENTACIÓN DE ISDB-TSB

3.2.1 Análisis de los Equipos en los Estudios de Unicauca Estéreo

3.2.2 Análisis del Enlace Estudio Sitio de Transmisión

3.2.3 Análisis del Sistema de Transmisión

3.2.4 Mejorar la Calidad de los Servicios

3.2.5 Brindar Mayor Cobertura que el Actual Servicio de Radiodifusión Sonoro en FM

3.2.6 Satisfacer las Necesidades de Unicauca Estéreo

3.2.7 Factibilidad Técnica de Implementar ISDB-TSB en Unicauca Estéreo

3.3 CRITERIOS DE EVALUACIÓN

Criterio 1. Adaptabilidad del Estándar ISDB-TSB a las Condiciones del Entorno

Criterio 2. Protección Contra Interferencias a Servicios Existentes en la Banda III de VHF

Criterio 3. Simulcast de los Servicios de Radiodifusión Sonora Analógicos y Digitales

Criterio 4. Adaptabilidad del Estándar ISDB-TSB a Unicauca Estéreo

Criterio 5. Satisfacer las Necesidades de Unicauca Estéreo

Criterio 6. Economías de Escala para Tecnologías ISDB

Criterio 7. Acceso Libre al Servicio de Radiodifusión y Tecnología no Patentada

Criterio 8. Cooperación y Transferencia Tecnológica

Criterio 9. Cumplimiento de ISDB-TSB a Requerimientos Definidos en la Recomendación ITU-R BS 1114-2

3.4 VIABILIDAD TECNICA DE LA IMPLEMENTACIÓN DEL ESTÁNDAR ISDB-TSB
CAPÍTULO IV. LINEAMIENTOS TÉCNICOS PARA LA IMPLEMENTACIÓN DE UN SISTEMA DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASEADO EN EL ESTÁNDAR ISDB-TSB

4.1 CONSIDERACIONES INICIALES PARA LA IMPLEMENTACIÓN DE LA RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASEADO EN EL ESTÁNDAR ISDB-TSB

4.1.1 Incidencia de los Parámetros de Transmisión en una Señal ISDB-TSB

4.2 LINEAMIENTOS

4.2.1 Modelo de Transición a Adoptar

4.2.2 Método de Transición

4.2.3 Adquisición de Equipos

4.2.4 Adecuación y/o Actualización de la Infraestructura de Radiodifusión Sonora

4.2.5 Dimensionamiento del Servicio

4.2.5.1 Servicios fijos

4.2.5.2 Servicios móviles

4.2.5.3 Servicios recepción portátil (Recepción Parcial)

4.2.5.4 Parámetros de transmisión para los servicios Fijo/Móvil/Portátil

4.2.5.5 Redes de frecuencia única

4.2.5.6 Potencia de transmisión

4.2.5.7 Prestación de servicios de valor agregado

4.2.6 Adquisición de Contenidos

4.2.7 Pruebas de Funcionamiento

4.2.8 Capacitación

4.2.9 Diseño de un Modelo de Negocios

4.2.10 Periodos de Tiempo para la Digitalización

4.3 DISEÑO Y ELECCIÓN DE LOS EQUIPOS PARA LA IMPLEMENTACIÓN DEL SISTEMA DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN ISDB-TSB EN UNICAUCA ESTÉREO

4.3.1 Estudios

4.3.2 Enlace STL

4.3.3 Sistema de Transmisión

4.4 BENEFICIOS DE LA IMPLEMENTACIÓN DEL SERVICIO DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN ISDB-TSB EN UNICAUCA ESTÉREO

CAPÍTULO V. CONCLUSIONES

5.1 CONCLUSIONES

5.2 RECOMENDACIONES Y TRABAJOS FUTUROS

BIBLIOGRAFÍA

ANEXOS
ÍNDICE DE FIGURAS

Figura 1. Diagrama de Bloques de un Sistema Analógico……………………………………………………………………………………………………… 3
Figura 2. Estructura de Equipos de los Estudios……… 6
Figura 3. Estructura de los Equipos Sistema de Transmisión……………………………………………………………………………………………………… 6
Figura 4. Alcance de Unicauca Estéreo con la Tecnología de Radiodifusión en FM…………………………………………………………………………….. 7
Figura 5. Transmisión Local. [9]……… 10
Figura 6. Transmisión Regional. [9]……… 11
Figura 7. Red con Sistema de Transmisión Centralizada. [9]……… 11
Figura 8. Red con Sistema de Transmisión Descentralizado. [9]…… 12
Figura 10. Generación de una Señal IBOC Modo Híbrido. [12]…… 14
Figura 11. Estructura del Sistema de Transmisión Digital ISDB. [14]………………………………………………………………………………………………… 15
Figura 12. Descripción General de ISDB-TSB. [16]……… 15
Figura 13. Sistema de Transmisión ISDB-TSB. [16]……… 17
Figura 14. Inserción Intervalo de Guarda. [16]……… 18
Figura 15. Diagrama de Bloques del Codificador de Canal. [16]…… 19
Figura 16. Paquetes de Flujo Elementales. [18]……… 20
Figura 17. Paquetes TS de MPEG-2. [15]……… 20
Figura 18. A) MPEG-2 TSP sin Corrección de Errores…… 21
Figura 19. Generador PRBS para la Dispersión de Energía del Flujo de Transporte. [16]…………………………………………………………………………………… 21
Figura 20. Resultado de la Aleatorización y Dispersión de Energía MPEG-2………………………………………………………………………………………… 22
Figura 21. Circuito Entrelazador…… 22
Figura 22. Codificador Convolucional de relación 1/2. [16]…… 23
Figura 23. Configuración del Modulador de la Portadora. [15]……… 23
Figura 24. Símbolos en OFDM e Intervalos de Guarda. [20]…… 24
Figura 25. Diagrama Método de Alto Nivel. [27]…… 30
Figura 26. Combinado de Bajo Nivel o Amplificación Común. [27]…… 31
Figura 27. Antenas Separadas. [27]……….. 31
Figura 28. Equipos de un Estudio Digital…… 32
Figura 29. Enlace STL Digital…… 33
Figura 30. Diagrama de Bloques de un Enlace Digital. ……… 33
Figura 31. Modelo del Sistema de Transmisión de ISDB-TSB. [16]…… 34
Figura 32. Subcanales. [37]……… 36
Figura 33. Bandas de Guarda para Coexistir con una Señal de Televisión NTSC. [37]…………………………………………………………………………………… 36
Figura 34. Banda de Guarda y Disposición de Señales…… 38
Figura 35. Utilización de Receptores GPS para la Sincronización de una Red SFN. [16]……………………………………………………………………………………… 43
Figura 36. Diagrama de Conexión de los Equipos en los Estudios de Unicauca Estéreo………………………………………………………………………………………… 47
Figura 37. Actualización de los Equipos STL. Para Mayor Capacidad de Transmisión. [35]…………………………………………………………………………………… 48
Figura 38. Sistemas de Transmisión FM y ISDB-TSB………. 50
Figura 39. Cobertura del Servicio de Radiodifusión Sonora Digital ISDB-TSB…………………………………………………………………………………………… 52
Figura 40. Cubrimiento del Servicio de Radiodifusión Sonora Digital Mediante una Red SFN…………………………………………………………………………………………………… 52
Figura 41. Distribución de Frecuencia de la Banda de VHF…… 57
Figura 42. Cobertura en Sistemas Analógicos y Digitales. [60]…… 61
Figura 43. Modulación Jerárquica. [60]……… 61
Figura 44. Proceso para Implementar el Servicio de Radiodifusión Sonora Digital………………………………………………………………………………………… 64
Figura 45. Estructura de Organización de Servicios de Radiodifusión Sonora Digital. [63]……………………………………………………………………………………………………. 65
Figura 46. Estructura de Gestión de Servicios. (Varios Radiodifusores). [63]……………………………………………………………………………………………………. 65
Figura 47. Comparación SNR vs BER. [64]…… 66
ÍNDICE DE TABLAS

Tabla 1. Estaciones de Radio según Frecuencia de Operación .. 2
Tabla 2. Características de la Radiodifusión Analógica en AM y FM .. 3
Tabla 3. Coordenadas Geográficas del Sitio de Transmisión ... 5
Tabla 5. Modos de Transmisión, [16] .. 18
Tabla 6. Numero de TSP Transmitidos Dentro de una Trama Multiplex, [16] .. 20
Tabla 9. Relación de Protección para ISDB-TSB Interferida por una Señal NTSC, [37] .. 37
Tabla 10. Relación de Protección para NTSC Interferida por ISDB-TSB, [37] .. 37
Tabla 11. Relación de Protección para ISDB-TSB Interferida por ISDB-TSB, [37] .. 38
Tabla 12. Relación de Protección (dB) Dependiendo de la Banda de Guarda, [37] .. 38
Tabla 13. C/N Requerida, [37] ... 38
Tabla 14. Degradación de Realización, [37] ... 39
Tabla 15. Márgenes de Desvanecimiento, [37] ... 39
Tabla 16. C/N Necesaria en Recepción, [37] .. 39
Tabla 17. Potencia Mínima Utilizable, [37] .. 41
Tabla 18. Valores de Emissn, [37] .. 41
Tabla 19. Distancias Entre Transmisores SFN, [16] ... 43
Tabla 20. Bandas del Espectro de Frecuencias, [51] ... 45
Tabla 21. Requerimientos de los Métodos de Transición ... 49
Tabla 22. Análisis de Factibilidad Técnica .. 53
Tabla 23. Parámetros de Transmisión .. 57
Tabla 24. Criterios de Evaluación para Determinar la Viabilidad Técnica de ISDB-TSB ... 63
Tabla 25. Parámetros de Configuración Servicios Fijo/Móvil/Portátil ... 78
INTRODUCCIÓN

La radiodifusión sonora analógica a través de la historia ha sido influenciada por una serie de procesos que implican transformaciones como se indica en el libro titulado La Radio en la Convergencia Multimedia, Tres Fases en la Metamorfosis de la Radio, en el cual se señala que dos de estas fases corresponden a la radiodifusión analógica y la tercera a la radiodifusión digital. La primera generación estuvo definida por la adopción de la tecnología, ampliación de coberturas territoriales y la incorporación creciente de contenidos, la segunda generación se produjo por la aparición de los transistores, la Modulación en Frecuencia (FM, Frequency Modulation) y el magnetófono; la tercera emprende ahora el salto de la radiodifusión analógica a la radiodifusión digital”.

Con la aparición de la radiodifusión sonora digital terrestre la cual ha sido posible por el desarrollo de estándares digitales, se ha empezado a migrar en algunos países de sistemas analógicos a sistemas digitales, con el objetivo de brindar nuevos y mejores servicios que cautiven el mercado, además de contrarrestar los problemas que experimentan las transmisiones analógicas como lo son la degradación de la señal, acumulación de ruido y distorsiones por cada una de las etapas que va pasando la señal, mediante la utilización de técnicas digitales que incorporan métodos de corrección de errores, compresión y modulación las cuales también proporcionan mayor calidad a la señal.

El presente trabajo de grado presenta un estudio técnico y teórico con el cual se analiza la viabilidad de implementar el sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, para lograrlo se considera a Unicauca Estéreo como modelo de estudio del sistema actual de radiodifusión sonora analógica dentro del contexto colombiano. De acuerdo a esto, en el presente trabajo de grado se desarrollan los siguientes capítulos:

En el capítulo I, Radiodifusión Sonora, se abordan los conceptos sobre la radiodifusión sonora analógica y digital, la descripción del sistema de radiodifusión sonora de Unicauca Estéreo y los estándares de radiodifusión sonora digital terrestre, haciendo énfasis en el estándar ISDB-TSB motivo de estudio con el fin de establecer bases conceptuales que permitan la apropiación de conceptos teóricos necesarios para el desarrollo del trabajo.

En el capítulo II, Requerimientos y Condiciones Necesarias para la Implementación del Estándar de Radiodifusión Sonora Digital Terrestre ISDB-TSB, se definen los requerimientos técnicos y condiciones a tener en cuenta para llevar a cabo la implementación de un sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB.

En el capítulo III, Análisis de la Viabilidad Técnica de la Implementación del Estándar ISDB-TSB, se determina la viabilidad técnica para implementar el sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB en Unicauca Estéreo, mediante la generación y evaluación de criterios.

En el capítulo IV, Lineamientos Técnicos para Implementar el Servicio de Radiodifusión Sonora Digital Terrestre Basado en el Estándar ISDB-TSB, se definen los lineamientos técnicos que posibilitan la implementación del sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, y los beneficios que tendrá Unicauca Estéreo con su implementación.

En el capítulo V, Conclusiones, se presenta el desarrollo de las conclusiones de la experiencia adquirida durante la realización del trabajo de grado y recomendaciones necesarias para trabajos futuros. Finalmente se presentan anexos en los cuales se incluyen las especificaciones técnicas para el desarrollo del presente trabajo.
CAPÍTULO I. RADIODIFUSIÓN SONORA

La radiodifusión sonora es un servicio de carácter público, desde sus inicios ha tratado de hacer frente a una serie de problemas que afectan sus transmisiones, como son: degradación de la señal, acumulación de ruido, distorsiones, interferencias, entre otros, y aunque sus avances tecnológicos han sido significativos, no se ha logrado contrarrestar los problemas por completo. Los avances en la radiodifusión y en general en las telecomunicaciones han logrado en los últimos años mitigar considerablemente estos problemas haciendo uso de tecnologías digitales. Estas tecnologías incluyen nuevas técnicas de codificación, compresión, modulación y transmisión, las cuales brindan una serie de ventajas y beneficios a los radiodifusores. Por esta razón algunos países están adoptando tecnologías digitales para radiodifusión sonora, las cuales permiten además, la inclusión de nuevos servicios.

En este capítulo se realiza la descripción general de un sistema de radiodifusión sonora analógico de acuerdo al Plan Nacional de Radiodifusión Sonora en Frecuencia Modulada, considerando como modelo a Unicauca Estéreo para establecer su situación actual. Se describe además, el servicio de radiodifusión sonora digital terrestre, bandas utilizadas, características y ventajas, y finalmente estándares para su implementación enfatizando en el estandar de Radiodifusión Digital de Servicios Integrados – Radiodifusión Sonido Terrestre (ISDB-TSB, Integrated Services Digital Broadcasting – Terrestrial Sound Broadcasting), con el objetivo de generar bases teóricas para el desarrollo del proyecto.

1.1 RADIODIFUSIÓN SONORA ANALÓGICA

La radiodifusión sonora permite la transmisión de señales radioeléctricas de audio a través de ondas electromagnéticas que se propagan a través de la atmósfera. Las primeras emisiones se realizaron a principios del siglo pasado en las bandas de frecuencias por debajo de los 30 MHz. Las estaciones de radiodifusión respecto al rango de frecuencia de operación se clasifican en estaciones de onda corta, estaciones de amplitud modulada y estaciones de frecuencia modulada, como se presenta en la tabla 1.

<table>
<thead>
<tr>
<th>Estación</th>
<th>Rango Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onda corta (SW)</td>
<td>2300 KHz - 29900 KHz</td>
</tr>
<tr>
<td>Amplitud Modulada (AM)</td>
<td>535 KHz - 1605 KHz</td>
</tr>
<tr>
<td>Frecuencia Modulado (FM)</td>
<td>88 Mhz – 108 Mhz</td>
</tr>
</tbody>
</table>

Según el Plan Técnico Nacional de Radiodifusión en FM, las estaciones de radiodifusión sonora en FM en Colombia se clasifican de acuerdo a la Potencia Isotrópica Radiada Equivalente (PIRE) requerida para obtener los niveles de servicios adecuados en: Estaciones Clase A destinadas a cubrir áreas extensas de uno o varios municipios con un mínimo de potencia de 15 Kw y máximo 100 Kw, Estaciones Clase B destinadas a cubrir uno o mas municipios con potencia superior a 5 Kw e inferior a 15 Kw, Estaciones Clase C destinadas a cubrir uno o varios centros de población y áreas rurales contiguas a los mismos con parámetros restringidos, potencia mínima de 1 Kw y máxima de 5 Kw, y Estaciones Clase D destinadas a cubrir una ciudad o una población con potencia mínima de 100 Watts y máximo de 250 Watts. Otros criterios de clasificación para el servicio de radiodifusión sonora se describen en el anexo A. [1]

Para transmitir señales de audio, un sistema de radiodifusión sonora analógico primero realiza la conversión de voz/sonido a señales eléctricas por medio de un transductor (micrófono), el cual convierte las vibraciones mecánicas del aire en señales de tipo eléctrico. Además de la conversión a señales eléctricas, es necesario que estas sean amplificadas para que tengan un nivel de potencia adecuado, seguido de la amplificación se realiza el proceso de
modulación. A la salida del modulador se implementa otra etapa de amplificación de alta potencia (PA) para proporcionar a la señal un nivel suficiente para cubrir el alcance deseado. En la figura 1 se presenta el diagrama de bloques de un sistema analógico.

Figura 1. Diagrama de Bloques de un Sistema Analógico

En recepción, la señal es introducida inicialmente a la etapa de amplificación denominada Amplificador de Bajo Ruido (LNA, Low Noise Amplifier) el cual trata de limitar el ruido presente en recepción. Posteriormente se utiliza un mezclador para convertir la señal de Radio Frecuencia (RF, Radio Frequency) en una Frecuencia Intermedia (FI, Frequency Intermediate) mas baja y se realiza el proceso de demodulación para obtener la señal original. Las técnicas de modulación más utilizadas en los sistemas actuales de radiodifusión sonora analógica son: Modulación en Amplitud y Modulación en Frecuencia.

1.1.1 Cuadro Comparativos Entre Radiodifusión Sonora en AM y FM

Los servicios de radiodifusión sonora analógicos en AM y FM presentan diferentes ventajas y desventajas, algunas de estas se presentan en la tabla 2. Este trabajo de grado está orientado al estudio de uno de los estándares de radiodifusión sonora digital terrestre que permiten mejorar el servicio de radiodifusión sonora en FM, y debido a esto se hace énfasis en la radiodifusión en FM.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Radiodifusión en AM</th>
<th>Radiodifusión en FM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobertura</td>
<td>Nacional</td>
<td>Menor Cobertura que el sistema AM.</td>
</tr>
<tr>
<td>Calidad</td>
<td>No es un sistema de alta fidelidad</td>
<td>Mayor calidad auditiva. La señal presenta gran nitidez.</td>
</tr>
<tr>
<td>Ancho de banda</td>
<td>Menor ancho de banda</td>
<td>Señal más compleja. Por esta razón utiliza mayor ancho de banda.</td>
</tr>
<tr>
<td>Interferencias eléctricas</td>
<td>Sensible a interferencias</td>
<td>Mayor inmunidad a las interferencias</td>
</tr>
<tr>
<td>Complejidad de la tecnología</td>
<td>Circuitos demoduladores sencillos</td>
<td>Mayor complejidad</td>
</tr>
<tr>
<td>Potencia en transmisión</td>
<td>Alta</td>
<td>Moderada</td>
</tr>
<tr>
<td>Rango de Operación</td>
<td>535 KHz -1605 KHz</td>
<td>88 MHz - 108 Mhz</td>
</tr>
</tbody>
</table>

1.1.2 Características y Problemas del Servicio de Radiodifusión Sonora en FM

A continuación se describen algunas de las características y problemas más sobresalientes del servicio de radiodifusión sonora en FM:

- La propagación del servicio de radiodifusión sonora en FM se realiza en la banda de Muy Alta Frequency (VHF, Very High Frequency) por medio de ondas directas las cuales se caracterizan por su direccionalidad y debido a esto, su limitada cobertura ya que estas se pierden rápidamente en el horizonte y son fácilmente absorbidas por obstáculos que se encuentren en la trayectoria de propagación.
• La longitud de onda de la banda de frecuencia utilizada por el servicio de radiodifusión sonora en FM, permite que las antenas en recepción sean de dimensiones relativamente pequeñas.
• El servicio fue diseñado para ser recibido en receptores fijos con antenas externas, por lo cual se presenta dificultades para la recepción en vehículos en movimiento y receptores portátiles debido a las señales reflejadas y otras formas de interferencia, particularmente en ciudades y áreas urbanas.
• Sufre problemas de degradación de la señal, debido a que el sistema de transmisión va acumulando ruidos y distorsiones por cada una de las etapas por las que pasa.
• La señal se ve afectada por los efectos de difracción y reflexión producto de la propagación por múltiples trayectorias, lo cual puede provocar distorsión y atenuación de las señales recibidas.
• La tecnología de transmisión del servicio de radiodifusión sonora analógica en FM no ofrece una recepción de calidad uniforme a través del área de cobertura.
• Es limitado en su capacidad de transmisión, permite únicamente la transmisión del programa radial e información adicional al programa de audio por medio del Servicio de Datos vía Radio (RDS, Radio Data System) el cual es un estándar para transmisión de datos en el servicio de radiodifusión sonora en FM.

Para mayores especificaciones técnicas y de funcionamiento de un sistema de radiodifusión sonora analógico en FM remítase al anexo A.

1.2 DESCRIPCIÓN GENERAL E INFRAESTRUCTURA DEL SISTEMA DE RADIODIFUSIÓN SONORA EN FM DE UNICAUCA ESTÉREO

Unicauca Estéreo al igual que otras estaciones de radiodifusión sonora en FM en nuestro país iniciarán en un futuro estudios pertinentes para adoptar uno de los estándares del sistema de radiodifusión sonora digital terrestre. En estos estudios se abordará la forma de implementar y migrar hacia este nuevo sistema de radiodifusión digital. Para ello es necesario tener en cuenta ciertos aspectos claves para su implementación; entre estos se encuentran la infraestructura de la estación para determinar si puede ser reutilizada y las condiciones actuales del servicio. A continuación se describe algunas generalidades de Unicauca Estéreo, su infraestructura y condiciones actuales del servicio.

1.2.1 Generalidades

Unicauca Estéreo (HJC20 104.1 FM) es una emisora de tipo cultural, de interés público y carácter universitario, adscrita a la Universidad del Cauca a la cual se le otorgó la concesión No 0498 del 28 de febrero de 1990, código 52134, para la operación de Unicauca Estéreo en la frecuencia de 104.1 MHz. [2]

Por ser una emisora de interés público (Decreto 1446 de 1992) su programación es orientada hacia los sectores educativos y culturales. La programación de la emisora se emite durante las 24 horas del día con la participación de la comunidad universitaria representada por profesores, estudiantes y administrativos, se basa en la producción y emisión de mensajes, promociones institucionales y de interés público, así como también de cubrimientos periodísticos y transmisiones de eventos institucionales o de interés a la comunidad en general. [2]

Unicauca Estéreo se encuentra ubicada dentro del perímetro urbano del municipio de Popayán departamento del Cauca en el Edificio de Comunicaciones de la Facultad de Ciencias Naturales, Exactas y de la Educación Carrera 3 No 3N-100. Actualmente pertenece a la Red de Radio Universitaria de Colombia (RRUC) y es además la única emisora universitaria en la ciudad de Popayán. Unicauca Estéreo como toda la Red de Radio Universitaria de Colombia apuesta a la “inmensa minoría”, como se le ha denominado en nuestro país a una audiencia diferente y exigente que reclama información diferente del sesgo comercial.
1.2.2 Equipos de los Estudios

Los equipos utilizados en los estudios de Unicauca Estéreo pueden ser divididos en: equipos para procesamiento de datos fuera del aire y equipos para el procesamiento de datos al aire. La función principal de los equipos del sistema de procesamiento de datos fuera del aire es realizar el procesamiento del audio correspondiente a programación pregrabada como lo pueden ser mensajes institucionales, entrevistas, jingles, contenidos periodísticos e información que posteriormente será emitida por Unicauca Estéreo. Los equipos utilizados para el procesamiento de datos al aire son los encargados de unir, procesar y organizar la señal de audio en vivo y/o pregrabada que esta siendo emitida al oyente. Los equipos de los estudios al igual que las especificaciones técnicas se describen en el anexo A.

1.2.3 Equipos Utilizados en el Enlace Estudio y Sitio de Transmisión

Para lograr enlazar los estudios de producción con el sistema de transmisión Unicauca Estéreo cuenta con un enlace de radiofrecuencia (STL, Study Transmission Link) que opera en la frecuencia de 302.9 MHz. Los equipos para realizar el enlace son: equipo transmisor y receptor marca TFT modelo 7700B, dos antenas Yagui una para transmisión y otra para recepción, marca SCALA, modelo CA5-300 de 10 dB de ganancia y un rango de operación de 216 MHz a 398 MHz. Para mayores especificaciones técnicas de estos equipos remítase al anexo A. [3]

1.2.4 Sistema de Transmisión de Unicauca Estéreo

El sistema de transmisión sigue las recomendaciones del Plan Técnico Nacional de Radiodifusión Sonora en FM, el cual establece que las estaciones de radio que utilicen la banda de frecuencia de 88 a 108 MHz deben estar ubicadas por fuera del perímetro urbano del municipio en que se otorga la concesión del servicio, pero dentro de sus delimitaciones geográficas. Unicauca Estéreo ha ubicado su sistema de transmisión por fuera del perímetro urbano de la ciudad de Popayán en la Finca la Rejoya la cual tiene una altura de 1794 msnm. Las coordenadas geográficas de este sitio se presentan en la tabla 3. [1] [3]

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Longitud (W)</th>
<th>Latitud (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema de Transmisión</td>
<td>76° 35' 32.6''</td>
<td>2° 31' 1.8''</td>
</tr>
</tbody>
</table>

El sistema de transmisión de Unicauca Estéreo tiene como función modular una señal de alta frecuencia de 104.1 MHz con la señal de información, amplificar la señal modulada y emitirla a los oyentes por medio de la antena. Los equipos más representativos son: receptor STL, excitador FM el cual modula la señal en la frecuencia de transmisión deseada 104.1 MHz y transmisor Iradio de 5 Kw. Unicauca Estéreo cuenta además con equipos de medición y control para el monitoreo de la señal, las características técnicas de los equipos son expuestas en el anexo A.

1.2.5 Estructura General de Radiodifusión de Unicauca Estéreo

Los equipos del sistema de radiodifusión sonora de Unicauca Estéreo cumplen las funciones y especificaciones técnicas definidas en el Plan Técnico Nacional de Radiodifusión sonora en FM. La fuente principal de Unicauca Estéreo es la programación musical, mensajes institucionales, contenidos periodísticos, entrevistas, entre otros. Estos son realizados en el estudio de grabación y/o Máster dependiendo si la programación es pregrabada o en vivo respectivamente. Todas las señales a emitir son entregadas por la consola Audio Digital D-75. Esta genera los canales Left y Right, y los pasa posteriormente al procesador de audio OPTIMOD FM quien se encarga de suavizar la señal para que esté libre de ruido, ecualizarla y generar la señal estéreo. La salida de este equipo va directamente hacia el transmisor del enlace STL el cual se encarga de transmitir la señal hasta el sitio de transmisión. La estructura definida en los estudios de Unicauca Estéreo se presenta en la figura 2.
La señal enviada desde los estudios de Unicaqua Estéreo hasta el sitio de transmisión, es recibida por la antena receptora del enlace STL que se encuentra en el sitio de transmisión (Vereda la Rejoya). La información recibida es procesada por el equipo receptor STL quien entrega al excitador FM la señal estéreo. Este a su vez se encarga de modular la señal en la frecuencia de transmisión 104.1 MHz y amplificar la señal para entregarla al transmisor. Este último aumenta el nivel de potencia hasta 5 KW. La señal de salida del transmisor se conecta a la antena de transmisión para radiar la señal. La estructura definida en el sistema de transmisión se presenta en la figura 3.

1.2.6 Servicios

Los servicios que actualmente ofrece Unicaqua Estéreo son: programación musical y contenidos periodísticos los cuales pueden emitirse en vivo y en directo o de forma pregrabada, transmisión de eventos institucionales, producción y emisión de mensajes institucionales. La calidad de los servicios ofrecidos está determinada por la tecnología de radiodifusión sonora analógica en FM utilizada.
1.2.7 Cobertura
La cobertura del servicio de radiodifusión sonora analógico en FM ofrecido por Unicauca Estéreo está determinada por la ubicación del sistema de transmisión, características físicas y eléctricas de la antena, la topografía de terreno y la potencia de transmisión de 5 Kw. De acuerdo a estudios técnicos realizados por Unicauca Estéreo se estima que el servicio de radiodifusión sonora analógico brindado por esta estación alcanza un área de 18,860 Km. El alcance de la estación comprende el sector urbano de la ciudad de Popayán y alrededores cercanos; a través del software ICS TELECOM, facilitado por la empresa Test América se obtuvo una aproximación del alcance del servicio de radiodifusión sonora de Unicauca Estéreo. En la figura 4 se presenta dicho alcance. [3] [4]

1.2.8 Necesidades de Unicauca Estéreo
Unicauca Estéreo es un medio de comunicación institucional y su región de cobertura o de influencia es el municipio de Popayán y alrededores cercanos, debido a esto, se ha planteado la necesidad de aumentar su cobertura a lugares donde la Universidad del Cauca ha creado nuevas sedes dentro del departamento con el fin de promover su oferta educativa, emitir información institucional y potenciar el nivel educativo en la región. Otras necesidades o servicios que Unicauca Estéreo pretende ofrecer en un futuro son: interactividad con el oyente ya que esta es la tendencia de los medios de comunicación y servicio de datos.

1.2.9 Características de Unicauca Estéreo
En la tabla 4 se consignan las características más relevantes del sistema de radiodifusión sonora de Unicauca Estéreo. Esta información fue tomada del estudio técnico y de medidas de radiación no ionizante realizados por Unicauca Estéreo y Test América respectivamente. [3] [4]

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estación de radiodifusión sonora</td>
<td>FM</td>
</tr>
<tr>
<td>Frecuencia de operación</td>
<td>104.1 MHZ</td>
</tr>
<tr>
<td>Categoría</td>
<td>Clase C</td>
</tr>
<tr>
<td>Potencia de transmisión</td>
<td>5 Kw</td>
</tr>
<tr>
<td>Potencia Radiada Aparente (P.R.A)</td>
<td>4888.9<P.R.A<5053.6</td>
</tr>
<tr>
<td>Ubicación de los estudios</td>
<td>Perímetro urbano de Popayán</td>
</tr>
<tr>
<td>Enlace de radio frecuencia</td>
<td>302.9 Mhz</td>
</tr>
<tr>
<td>Ubicación sitio de transmisión</td>
<td>Fuera del perímetro urbano</td>
</tr>
<tr>
<td>Altura sobre nivel del mar sitio de transmisión</td>
<td>1794 msnm</td>
</tr>
<tr>
<td>Orientación de la antena</td>
<td>Omniidireccional 360º</td>
</tr>
<tr>
<td>Altura de la torre de Tx</td>
<td>50 metros</td>
</tr>
<tr>
<td>Relación de ondas estacionarias</td>
<td>1.09:1</td>
</tr>
<tr>
<td>Alcance del servicio</td>
<td>18860 metros</td>
</tr>
<tr>
<td>Nivel en el punto mas alejado del perímetro urbano</td>
<td>77 dBu</td>
</tr>
<tr>
<td>Distancia del punto mas alejado al sitio de Tx</td>
<td>11,208,54 metros</td>
</tr>
<tr>
<td>Nivel de la señal en los extremos angulares</td>
<td>81.28 dBu</td>
</tr>
<tr>
<td>de la zona urbana</td>
<td>87.64 dBu</td>
</tr>
<tr>
<td>Límite exposición ocupacional</td>
<td>61 V/m</td>
</tr>
</tbody>
</table>

1.3 RADIODIFUSIÓN SONORA DIGITAL.

La radiodifusión sonora digital aparece por la tendencia continua hacia la adopción de la tecnología digital para la radiodifusión, la convergencia mundial a la digitalización de redes y servicios, y para dar solución a problemas como la interferencia en la señal transmitida, desvanecimiento en la señal debido a la propagación por multitrayecto, distorsión de la señal, entre otros, presentados en los sistemas de radiodifusión sonora analógica. Según la Comisión Federal de Comunicaciones (FCC, Federal Communications Comission) la radiodifusión sonora digital consiste en “la transmisión y la recepción de sonido que ha sido procesado utilizando una tecnología comparable a la que se usa en los reproductores de discos compactos”. En síntesis, un transmisor de radio digital transmite por medio de ondas de radio la señal que previamente ha sido convertida a digital, la cual debido a los procesos de compresión, codificación y modulación alcanza una mayor calidad del sonido. [5]

Un sistema de radiodifusión sonora digital convierte la señal analógica a señal digital. Este proceso de conversión incluye la técnica de muestreo que consiste en tomar muestras periódicas de la amplitud de la señal analógica y la técnica de cuantificación de las muestras la cual mide el nivel de voltaje de cada una de las muestras y asigna un único nivel de salida a cada una. Una vez realizado el muestreo y la cuantificación se lleva a cabo la codificación que consiste en asignar un código binario a los valores obtenidos en la cuantificación.

Algunos tipos de codificación de audio utilizados en los sistemas de radiodifusión sonora digital son los desarrollados por el Grupo de Expertos de Imágenes en Movimiento en sus versiones 1, 2 y 4 (MPEG-1, Moving Pictures Expert Group 1), (MPEG-2, Moving Pictures Expert Group 2), (MPEG-4, Moving Pictures Expert Group 4) y Enmascaramiento de Modelo Universal Sub.-Banda Integrada de Cifrado y Multiplexado (MUSICAM, Masking Universal Sub.-Band Integrated Coding and Multiplexing). Estos permiten comprimir la información de audio eliminando la información redundante e imperceptible por el oído humano. [6]

Para dar solución a los problemas que sufre la señal en el recorrido hacia el receptor como: la interferencia, desvanecimiento, distorsión, entre otros, los sistemas de radiodifusión sonora digital utilizan la técnica de transmisión de Multiplexación por División de Frecuencia Ortogonal (OFDM, Orthogonal Frequency Division Multiplex) o Multiplexación por División de Frecuencia Ortogonal Codificada (COFDM, Coded Orthogonal Frequency Division Multiplexing), diferentes esquemas de modulación digital como Modulación de Amplitud en Cuadratura (QAM,
Quadrature Amplitude Modulation), de 4, 16 o 64 estados, Modulación por Desplazamiento en Fase (QPSK, Quadrature Phase Shift Keying), Modulación por Desplazamiento en Fase Diferencial (DQPSK, Differential Quadrature Phase Shift Keying) y esquemas de codificación como Reed-Solomon y/o codificación Convencional para la codificación de canal. [6]

Las técnicas de transmisión OFDM o COFDM utilizadas por los sistemas de radiodifusión sonora digital permiten un uso más eficiente del espectro radioeléctrico y del ancho de banda, proveen mayor inmunidad al desvanecimiento de la señal y la utilización de Redes de Frecuencia Única (SFN, Simple Frequency Network) donde una misma frecuencia puede ser usada en múltiples sitios de transmisión con mínima interferencia. [6]

La elección de las técnicas de codificación, modulación y transmisión difieren de acuerdo al tipo de sistema de radiodifusión sonora digital. Dentro de estos sistemas se encuentran: sistema de radiodifusión sonora digital satelital, por cable y terrestre.

1.3.1 Radiodifusión Sonora Digital Terrestre

El sistema de radiodifusión sonora digital terrestre transmite las señales (sonido/datos) por medio de ondas electromagnéticas que se propagan en la superficie terrestre, las cuales han sido previamente procesadas con técnicas digitales. La transmisión de las señales presenta mayor inmunidad a las interferencias por multitrayecto al utilizar técnicas de transmisión como OFDM y COFDM, también permite ofrecer servicios de alta calidad por las técnicas de compresión y multiplexación MPEG utilizadas.

1.3.1.1 Características de la radiodifusión sonora digital

Las características del sistema de radiodifusión sonora digital terrestre son las siguientes:

- Permite la interactividad con los oyentes mediante un canal de retorno.
- Recepción de imágenes estáticas y publicidad al instante.
- Facilidad de sintonizar una frecuencia única en toda la geografía.
- Recepción de una programación personalizada con información diversa.
- Reducción significativa de la potencia de transmisión.
- El receptor digital puede recibir señales de sistemas de radiodifusión sonora digital terrestre como también de sistemas de radiodifusión sonora analógicos.
- Calidad del sonido similar a la del Disco Compacto (CD, Compact Disc).

1.3.1.2 Ventajas de la radiodifusión sonora digital

La introducción de las tecnologías digitales y de compresión de audio/datos de elevada eficacia ha permitido aumentar la programación (contenidos) en comparación con los sistemas de radiodifusión analógicos, además de ofrecer alta calidad de sonido. Las principales ventajas de la radiodifusión sonora digital terrestre son las siguientes:

- Se superan los efectos que produce la propagación por multitrayecto y se protege la información frente a interferencias por la utilización de técnicas de transmisión como OFDM o COFDM.
- Calidad de recepción de señales sonora equivalentes a la del CD.
- Multiplexación de servicios de audio y datos sobre un mismo canal de RF.
- Garantiza calidad elevada en recepción con niveles mínimos de recepción.
- Optimiza el uso del espectro radioeléctrico multiplexando varios programas y servicios de datos para formar un bloque y ser emitidos juntos, obteniéndose la misma área de servicio para cada uno de ellos.
- La cobertura puede ser local, regional o nacional. Permite establecer SFN con transmisores de baja potencia para lograr este objetivo.
1.3.1.3 Bandas de frecuencias utilizadas

El sistema de radiodifusión sonora digital terrestre, está diseñado para trabajar en el rango de frecuencias de 30 MHz a 3000 MHz, considera el uso de las bandas de Media Frecuencia (MF, Medium Frequency), Altas Frecuencias (HF, High Frequency), banda I, II, III de VHF y banda IV y V de Ultra Alta Frecuencia (UHF, Ultra High Frequency), además puede utilizar el segmento de frecuencia de 1452 a 1492 MHz (banda L) para realizar transmisiones de radio, la cual fue designada para la transmisión de servicios de radiodifusión sonora digital por la Unión Internacional de Telecomunicaciones (ITU, International Telecommunication Union) a través de la Conferencia Mundial de Radiocomunicaciones (WRC, World Radiocommunication Conference) celebrada en Málaga-Torremolinos, España en 1992. [7] [8]

1.3.2 Topologías para la Difusión del Servicio de Radiodifusión Sonora Digital Terrestre

Las topologías de difusión se clasifican en función del ámbito geográfico y de acuerdo a la ubicación del sistema de transmisión OFDM; a continuación se describen cada una de las topologías de difusión.

1.3.2.1 Transmisión local

La topología utilizada para transmisión local es presentada en la figura 5. Esta topología debe ser configurada en estaciones de radiodifusión donde su cobertura vaya a ser un área geográfica no muy extensa, como por ejemplo la zona urbana y/o rural de una ciudad. La señal a transmitir es originada en el estudio y enviada al sitio de transmisión por medio de una red de distribución la cual puede ser terrestre, satelital o por cable. Este tipo de transmisión se caracteriza por la utilización de un único transmisor. [9]

![Figura 5. Transmisión Local.](image)

1.3.2.2 Transmisión regional y/o nacional

La topología para la transmisión regional y/o nacional se presenta en la figura 6, en este tipo de transmisión se utiliza una red SFN para dar cobertura a una zona geográfica que puede extenderse a todo un país. La señal a transmitir es originada en el estudio y enviada hasta los sitios de transmisión por medio de una red de distribución. La red SFN esta formada por un conjunto de transmisores los cuales envían la misma información, a la misma frecuencia y al mismo tiempo. [9]

Las tecnologías de radiodifusión sonora analógicas aplican la teoría celular, en la cual se asignan frecuencias distintas a transmisores de células contiguas para dar cobertura a todo un país, asignando la misma frecuencia a una distancia de reutilización, la cual para mantener una elevada relación de protección puede ser del orden de los 300 Km. Con las técnicas de transmisión digital OFDM o COFDM es posible utilizar la misma frecuencia en emisiones de células adyacentes permitiendo que con una misma frecuencia se pueda brindar cobertura a todo un país. Las redes SFN hacen uso de estas técnicas de transmisión permitiendo mayor cobertura lo que implica mayor eficiencia en el uso del espectro radioeléctrico. [9] [10]
Existen tres tipos de configuraciones en las redes SFN, redes con transmisores similares ubicados homogéneamente en la zona de servicio, redes con uno o más transmisores principales y otros secundarios de menor potencia y redes con transmisores principales y re-emisores para cubrir zonas de sombra.\[10\]

1.3.2.3 Redes SFN centralizadas

Los servicios de audio y datos son enviados desde el estudio hacia el sitio de generación de la señal digital, por medio de una red de distribución. En este lugar se realizan los procesos de codificación, multiplexación y modulación de la información, posteriormente la señal es enviada a los transmisores de red, cada sitio de transmisión recibe la señal digital modulada, la sitúa en el mismo canal de frecuencia y la transmite. En la figura 7 se presenta la configuración de este tipo de red. \[9\]

1.3.2.4 Redes SFN descentralizadas

En la topología de red SFN descentralizada cada sistema de transmisión realiza la generación de la señal digital de manera independiente, los servicios de audio y datos son enviados por medio de la red de distribución desde el estudio hacia los sitios de transmisión, donde se realizan los procesos de codificación, multiplexación y transmisión OFDM. En la figura 8 se presenta la configuración de esta topología. \[9\]
Para que una red SFN funcione adecuadamente, es necesario mantener una sincronización de las frecuencias y los tiempos en transmisión; para lograr este objetivo se utilizan como referencia el Sistema de Posicionamiento Global (GPS, Global Positioning System) en los transmisores. Además se debe garantizar que las señales lleguen en fase desde el estudio al sitio de transmisión. Para mayor información de redes SFN remítase al anexo B. [10]

1.4 ESTÁNDRES DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE

El proceso de transición del de la radiodifusión sonora analógica a digital ha sido posible mediante la adopción de los diferentes estándares para la radiodifusión sonora digital terrestre. La recomendación ITU-R BS 1114 propone que cuando alguna administración implemente este servicio en la gama de frecuencias de 30 MHz -3000 MHz utilice alguno de los estándares descritos en dicha recomendación.

Los estándares a los cuales hace referencia la recomendación son: el estándar Radiodifusión de Audio Digital (DAB, Digital Audio Broadcasting) de origen Europeo, el Servicio de Transmisión en Banda o en Canal (IBOC, in Band on Channel) utilizado por los Estados Unidos, Radio Digital Mundial (DRM, Digital Radio Mondiale) desarrollado por el Consorcio Radio Digital Mundial, y del cual ningún país es propietario, considerado por esta razón un estándar mundial, y el estándar Japonés de ISDB-TSB.

Los estándares de radiodifusión sonora digital terrestre necesitan de nuevas bandas de frecuencia y nuevos equipos tanto para la transmisión como para la recepción, a excepción del estándar IBOC que solo requiere de nuevos equipos. En las siguientes secciones se dan consideraciones generales de estos estándares, y se profundiza en el estándar de radiodifusión digital japonés ISDB-TSB, motivo del estudio, para comprender su funcionalidad y establecer bases conceptuales que permitan determinar la viabilidad de implementación de un sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB.

1.4.1 DAB

DAB es un estándar europeo conocido por hacer parte del proyecto EUREKA 147, el cual permite la recepción de señales libres de interferencias con alta calidad de sonido. DAB fue desarrollado como proyecto en 1986 por la Unión Europea, sus primeras pruebas fueron realizadas por la ITU y por el Instituto Europeo de Estándares de Telecomunicaciones (ETSI, European Telecommunications Standards Institute) en los años de 1994 y 1997 respectivamente. Este estándar permite recepción exterior y en movilidad con una calidad similar a la de un CD y además hace uso eficiente del espectro radioeléctrico. [11]
El sistema DAB puede transportar varias señales de audio digital junto con señales de datos, las cuales se consideran componentes de servicio y son agrupadas para formar servicios de valor agregado. La técnica de transmisión utilizada se basa en el sistema de multiportadora COFDM. En la figura 9 se puede apreciar el proceso realizado para la generación de una señal en el sistema DAB. [11]

DAB emplea el sistema MUSICAM para realizar la codificación de audio, además usa codificación convolucional, entrelazado en el tiempo y modulación QAM o QPSK [11].

1.4.2 IBOC

Conocido también como HD radio, adoptado oficialmente por la FCC como estándar técnico para la radio digital terrestre en Estados Unidos en octubre de 2002. IBOC fue desarrollado al encontrar inconvenientes en la escogencia del estándar DAB como estándar digital para Estados Unidos debido a que el rango de frecuencias utilizado por DAB estaba siendo ya utilizado por el sistema de defensa nacional. [12]

El estándar IBOC contrariamente a otros estándares digitales no requiere de nuevas bandas de frecuencia para realizar la transmisión, ya que IBOC no utiliza el segmento de 1452 a 1492 MHz asignado por la UIT. IBOC hace uso de las frecuencias asignadas al sistema de radiodifusión sonora analógico en FM. Este sistema esta diseñado para trabajar de dos maneras, la primera es en modo híbrido y la segunda en modo digital; estas maneras de trabajo emplean técnicas de codificación, modulación y transmisión que permiten evitar las interferencias que se puedan presentar entre las señales analógicas y digitales. El modo de operación híbrido permite la difusión de programas en formato analógico y digital, y el modo digital solo permite la difusión de programas en formato digital. [12]

El estándar IBOC provee servicios de datos básicos los cuales se dividen en servicios de tasa de datos fija dedicada, servicios de tasa de datos ajustable de acuerdo a la cantidad de datos a transmitir y los servicios de tasa de datos variable los cuales están sujetos a la complejidad del audio codificado que incide en la mayor o menor cantidad de datos a ser transmitidos. [12]

IBOC tiene un ancho de banda suficiente para la transmisión de audio de alta calidad, utiliza la técnica de transmisión OFDM, codificación FEC, entrelazado en el tiempo y modulación QAM. En la figura 10 se aprecia el diagrama de bloques de un transmisor para la generación de una señal en el sistema IBOC en modo híbrido.
1.4.3 DRM

La radiodifusión digital con modulación de amplitud en la banda AM, conocida como DRM, es un estándar creado para radiodifusión sonora digital terrestre utilizando modulación en onda larga, onda media y onda corta, creado por el consorcio DRM. “El estándar fue aprobado en el año 2003 por la UIT (recomendación UIT-R BS 1514) y recomendado por este organismo como único estándar mundial en las bandas entre 3 y 30 MHz (Onda Corta). También ha sido estandarizado por la norma IEC-62272-1 y por la ETSI ES-201980”. [13]

El estándar DRM mejora la calidad de las transmisiones del sistema AM, proporcionándoles una calidad similar a las transmisiones en FM. DRM utiliza MPEG-4 el cual ofrece tres opciones en la codificación: la primera opción es MPEG-4 Codificación de Audio Avanzado (AAC, Advanced Audio Coding) para radiodifusión en mono o estéreo, con protección contra errores; la segunda opción es MPEG-4 Predicción Lineal Excitada por Código (CELP, Code Excited Linear Prediction) codificación de voz para radiodifusión en mono, cuando se requiere baja velocidad binaria o alta protección contra errores y la tercera opción MPEG-4 Excitación Armónica de Vectores de Codificación (HVXC, Harmonic Vector Excitation Coding) para la codificación de voz cuando se requiere muy baja velocidad binaria y protección frente a errores. [13]

El sistema DRM utiliza la técnica de transmisión COFDM, codificación convolucional, entrelazado en frecuencia y en tiempo, modulación 4-QAM, 16-QAM o 64-QAM y se compone de una combinación de técnicas que contrarrestan los efectos adversos de la propagación en las bandas de onda larga, onda media y onda corta. [13]

1.4.4 ISDB

Radiodifusión Digital de Servicios Integrados ISDB (Integrated Services Digital Broadcasting) es un sistema desarrollado para la transmisión de radio y televisión en formato digital por la Asociación de Industrias y Negocios de Radiodifusión del Japón (ARIB, Association of Radio Industries and Businesses) la cual asocia una multitud de empresas japonesas y extranjeras relacionadas con la radiodifusión. [13]

ISDB se divide en tres estándares según la forma de transmisión: Radiodifusión Digital de Servicios Integrados por Satélite (ISDB-S, Integrated Services Digital Broadcasting -Satellital), Radiodifusión Digital de Servicios Integrados por Cable (ISDB-C, Integrated Services Digital Broadcasting –Cable) y Radiodifusión Digital de Servicios Integrados Terrestres (ISDB-T Integrated Services Digital Broadcasting –Terrestrial). Este último permite la transmisión de sonido y televisión digital terrestre. Las características más sobresalientes del sistema de transmisión ISDB son la robustez, flexibilidad del sistema de recepción, utilización de frecuencia, movilidad y portabilidad. En la figura 11 se presenta el sistema general de transmisión digital ISDB. [14]
Para la transmisión de audio digital, ARIB ha creado ISDB-TSB, el cual permite la transmisión de audio de alta calidad, texto e imágenes estáticas. El estándar fue adoptado en octubre del 2003 para la transmisión de audio digital y datos de alta calidad, en la banda III de VHF. [15]

1.5 CONSIDERACIONES GENERALES DEL SISTEMA DE TRANSMISIÓN ISDB-TSB

ISDB-TSB es un estándar de radiodifusión de sonido digital terrestre, incluido por la UIT en la recomendación UIT-R BS. 1114-3, sus especificaciones fueron desarrolladas por la ARIB en octubre de 1998 y las pruebas de campo para evaluar el desempeño del sistema se llevaron a cabo en 1999 en Tokio-Japón, las cuales dieron como resultado altos niveles de calidad en los servicios de audio de los sistemas de radiodifusión. El estándar además de brindar mayor calidad de audio, permite ofrecer servicios de datos e imágenes estáticas. [16]

En ISDB-TSB, uno o más Flujos de Transporte (TS, Transport Streams) de entrada, definidos por el sistema MPEG-2 son re-multiplexados para crear un solo TS, el cual es sujeto a múltiples procesos en la codificación del canal de acuerdo con las características del servicio (recepción móvil, fija o portátil), o según su cobertura, luego es enviado en una señal OFDM. En la figura 12 se presenta el proceso de transmisión del sistema ISDB-TSB. Para mayores especificaciones del sistema MPEG-2 remítase al anexo C. [16]

Figura 12. Descripción General de ISDB-TSB. [16]

ISDB-TSB utiliza la técnica de multiplexación y compresión de la información MPEG-2, técnicas de modulación digital para proporcionar robustez a la señal, Transmisión de Banda Segmentada OFDM (BST-OFDM, Band Segmented Transmission OFDM) para facilitar los servicios de recepción móvil y contrarrestar interferencias. La etapa de
codificación se divide en codificación externa “Reed Solomon” y codificación interna “convolucional” para fortalecer la detección y corrección de errores. La elección de la tasa de codificación para el código interno y modulación de la portadora depende de las características del servicio que se vaya a ofrecer. [16]

El canal de transmisión de ISDB-TSB puede ser usado para servicios de recepción fija, móvil y portátil. Las señales de transmisión son definidas de acuerdo a niveles de jerarquía. Cada nivel de jerarquía consiste de uno o más segmentos OFDM, y parámetros como el esquema de modulación de la portadora, y tasa de codificación del código interno que se pueden especificar para cada nivel independientemente de acuerdo al tipo de información. [14]

1.5.1 Técnica de Transmisión de ISDB-TSB

El sistema ISDB-TSB utiliza BSTROFDM, la cual con el uso de OFDM esta diseñada para mitigar los problemas de recepción de múltiples trayectorias. Esto se logra transmitiendo un mayor número de señales de banda angosta sobre el ancho de banda. [14] [16]

En OFDM las señales de información de múltiples fuentes son combinadas para formar un solo flujo de datos multiplexado creado a partir de un denso paquete de subportadoras de reducido ancho de banda (típicamente de 100 a 8000 subportadoras), necesitando de esta manera mayor sincronización para el funcionamiento del sistema. Estas subportadoras se traslapan en el dominio de la frecuencia pero no causan un destructivo nivel de Interferencia entre Portadoras (ICI, Inter-Carrier Interference) debido a la ortogonalidad. La transmisión de múltiples portadoras hace que la longitud del símbolo de transmisión sea mayor que en un sistema de una sola portadora y como consecuencia habrá menor degradación en la señal por Interferencia entre Símbolos (ISI, Inter Symbol Interference) causada por efecto de múltiples trayectorias. [14] [17]

BST-OFDM divide la banda de frecuencia de un canal en catorce bloques de frecuencia denominados “Segmentos OFDM”. El número de segmentos utilizados en ISDB-TSB para un servicio de recepción fijo/móvil son 3, mientras que para recepción parcial2 solo se utiliza uno. Cada uno de los segmentos tiene un ancho de banda de (BW/14) MHz, donde BW corresponde al ancho de banda de un canal de (6, 7 o 8 MHz), el cual debe seleccionarse de acuerdo con la situación de frecuencias en cada país. [16]

ISDB-TSB ha sido probado y configurado para trabajar en la banda de 6 MHz (5.57 MHz útil) para la distribución de radiodifusión de sonido digital terrestre, debido a esto, el análisis técnico y los parámetros tomados en cuenta para este capítulo giran alrededor de este ancho de banda, en el cual se obtienen 14 segmentos OFDM de 428,6 KHz (aproximadamente 429 KHz). El estándar ha evolucionado técnicamente para operar en canales diferentes como 7 MHz u 8 MHz (actualmente en pruebas). De estos 14 segmentos se utilizan 3 para el servicio de recepción fijo/móvil, cuyo segmento central es denominado “ONE-SEG”. La figura 13 presenta el sistema de transmisión y los niveles de jerarquía utilizados en ISDB-TSB. [14] [16]

2 Se trata de un caso especial de la transmisión jerárquica, en que la codificación de canal y entrelazado en frecuencia de una señal es completamente autocontenida dentro del segmento central de la banda de transmisión, la cual es una solución eficiente para los terminales portátiles.
Análisis del Estándar ISDB-TSB y la Viabilidad Técnica para su Implementación en Unicaña Estéreo
Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

17

Figura 13. Sistema de Transmisión ISDB-TSB. [16]

ISDB-TSB utiliza el segmento ubicado en el centro del espectro para brindar servicios a dispositivos portátiles y los otros dos segmentos para el servicio de recepción fija y/o móvil. El sistema ISDB-TSB puede enviar múltiples señales de los radiodifusores desde un mismo punto en común, sin presentar interferencia entre ellos, permite además la utilización de SFN. En ISDB-TSB se han definido tres modos de transmisión los cuales tienen diferentes parámetros de configuración y espaciamiento de las portadoras OFDM que dependen del servicio y la información que se requiera transmitir. [16]

1.5.2 Transmisión Jerárquica

BST-OFDM, es un sistema de transmisión que permite enviar diferentes parámetros de la señal en el mismo ancho de banda y se le denomina también transmisión en modo jerárquico. [14]

La transmisión en modo jerárquico de ISDB-TSB permite seleccionar un adecuado esquema de modulación, tasa de codificación del código interno, intervalo de guarda, número de segmentos y portadoras a transmitir de acuerdo al servicio y el tipo de recepción. Además con la transmisión en modo jerárquico cada segmento de datos puede tener su propio método de protección de errores y tipo de modulación. [16]

1.5.3 Modos de Transmisión

ISDB-TSB tiene tres modos de transmisión que permiten utilizar una amplia gama de frecuencias de transmisión, los cuales dependen del espaciamiento entre las portadora OFDM, estas separaciones son de 4 KHz (modo 1), 2 KHz (modo 2) y 1 KHz. (modulo 3), los cuales tienen una duración del símbolo de 252 μs, 504 μs y 1008 μs respectivamente. Varios parámetros de transmisión pueden ser configurados para cada uno de los tres modos. La elección del modo depende del servicio a proporcionar y tipo de recepción. [15][16]

En los modos de transmisión, diferentes intervalos de guarda pueden ser seleccionados de acuerdo a los siguientes tamaños: 1/4, 1/8, 1/16 y 1/32 de la duración efectiva del símbolo. Como se muestra en la figura 14, el intervalo de guarda es agregado al inicio y al final de los símbolos efectivos, este es agregado con el fin de brindar mayor
robustez frente a efectos de multitrayectoria, causantes de ISI y de pérdida de datos. Esta interferencia se elimina aumentando el periodo durante el cual el receptor realiza el proceso de integración de la señal. [16]

![Figura 14. Inserción Intervalo de Guarda. [16]](image)

En ISDB-TSB el intervalo de guarda a utilizar se determina de acuerdo a las condiciones de implantación del servicio, considerando que un mayor intervalo de guarda implica mayor cobertura y menor interferencia por multitrayectoria pero menor tasa binaria. Los parámetros de configuración para cada uno de los tres modos son presentados en la tabla 5. [15] [16]

<table>
<thead>
<tr>
<th>Tabla 5. Modos de Transmisión. [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modo</td>
</tr>
<tr>
<td>BW segmento</td>
</tr>
<tr>
<td>Número de Portadoras</td>
</tr>
<tr>
<td>Espaciamiento de Frecuencia entre Portadoras</td>
</tr>
<tr>
<td>Modulación de la Portadora</td>
</tr>
<tr>
<td>Símbolos por Trama</td>
</tr>
<tr>
<td>Longitud del Símbolo Efectivo</td>
</tr>
<tr>
<td>Intervalo de Guarda</td>
</tr>
<tr>
<td>Longitud de la Trama</td>
</tr>
<tr>
<td>Frecuencia de Muestreo IFFT</td>
</tr>
<tr>
<td>Codificación</td>
</tr>
<tr>
<td>Longitud Tiempo Entrelazado</td>
</tr>
<tr>
<td>Duración Trama OFDM</td>
</tr>
</tbody>
</table>

En el anexo D se presenta información complementaria de los tres modos de transmisión.

1.6 CODIFICACIÓN DE CANAL EN ISDB-TSB

Múltiples salidas TS del multiplexor MPEG-2 son enviadas al re-multiplexor TS que los organiza formando arreglos de Paquetes de Flujo de Transporte (TSP, Transport Stream Packets) para el procesamiento de la señal, cada TS es convertido en TSP de longitud fija de 188 bytes y luego es aplicado un codificador externo. Cuando la transmisión jerárquica es configurada, el TS debe ser obligatoriamente dividido en niveles jerárquicos de acuerdo con la información de cada nivel, la cual depende a su vez del servicio y el tipo de recepción, seguidamente los TS son enviados al procesador en paralelo. [16]

En el procesador en paralelo los datos digitales son procesados por pasos incluyendo corrección de errores, división en niveles de jerarquía, dispersión de energía, ajuste de retardo, byte de entrelazado, codificación convolucional,
modulación de la portadora, entre otros. Estos pueden ser especificados para cada nivel de jerarquía de manera independiente. Después del procesamiento paralelo, son combinados y se agregó un tiempo y frecuencia de entrelazado para asegurar una efectiva corrección de errores. [16]

Para asegurar que el receptor realice correctamente la demodulación y decodificación, una señal de Transmisión de Control y Configuración de la Multiplexación (TMCC, Transmission and Multiplexing Configuration Control) se transmite usando una portadora específica. La señal TMCC forma parte de la trama OFDM junto con otras señales que son insertadas para sincronización. El diagrama de bloques de la codificación de canal se presenta en la figura 15. [16]

Figura 15. Diagrama de Bloques del Codificador de Canal. [16]

1.6.1 Codificación y Multiplexación MPEG-2

Las señales de audio y datos entrantes al re-multiplexor TS son previamente comprimidas y multiplexadas de acuerdo a la norma MPEG-2. En esta norma, la codificación genera Flujos Elementales (ES, Elementary Stream). Estos se segmentan en paquetes de longitud variable a los cuales se les denomina Paquetes de Flujo Elementales (PES, Packets Elementary Stream). Cada PES está formado por una cabecera y carga útil como se presenta en la figura 16. Estos posteriormente son multiplexados formando un único TS, estructurándose con base en paquetes de 188 bytes de longitud. En la figura 17 se presenta como es conformado un TS en la norma MPEG-2. [18]
Análisis del Estándar ISDB-TS y la Viabilidad Técnica para su Implementación en Unicauca Estéreo

Yohny Orlando Meneses R - Diego Mauricio Solano Bohojorge

Figura 16. Paquetes de Flujo Elementales. [18]
Para la codificación de audio se utiliza MPEG-2 AAC, la cual proporciona alta compresión y calidad en la codificación de audio. Además, soporta varios tipos de audio (calidad/formato). Para mayor información del sistema de codificación de audio y datos remitase al anexo C. Los tipos de formato que puede soportar son: mono/estéreo/multicanal estéreo y también conversiones de multicanal a mono y estéreo. [18]

1.6.2 Re-multiplexación de TS
En la remultiplexación se realiza la formación de un TS. Este consiste de un número (n) de paquetes TSP. El número de TSP usados por los modos de transmisión y diferentes intervalos de guarda en cada uno de ellos es presentado en la tabla 6. [16]

Tabla 6. Numero de TSP Transmitidos Dentro de una Trama Multiplex. [16]

<table>
<thead>
<tr>
<th>Modo</th>
<th>Intervalo Guarda (1/4)</th>
<th>Intervalo Guarda (1/8)</th>
<th>Intervalo Guarda (1/16)</th>
<th>Intervalo Guarda (1/32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Segmento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modo 1</td>
<td>80</td>
<td>72</td>
<td>68</td>
<td>66</td>
</tr>
<tr>
<td>Modo 2</td>
<td>160</td>
<td>144</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>Modo 3</td>
<td>320</td>
<td>288</td>
<td>272</td>
<td>254</td>
</tr>
<tr>
<td>3-Segmentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modo 1</td>
<td>320</td>
<td>288</td>
<td>272</td>
<td>254</td>
</tr>
<tr>
<td>Modo 2</td>
<td>640</td>
<td>576</td>
<td>544</td>
<td>258</td>
</tr>
<tr>
<td>Modo 3</td>
<td>1280</td>
<td>1152</td>
<td>1088</td>
<td>1056</td>
</tr>
</tbody>
</table>

Cada TSP tiene una longitud de 204 bytes, los cuales consisten de 188 bytes de datos de programa y 16 bytes de datos nulos.

1.6.3 Codificación Externa (Código Reed-Solomon)
Se aplica codificación Reed Solomon a cada TSP para generar un TSP protegido. La codificación RS es un método de Corrección Directa de Errores (FEC, Forward Error Correction) que permite detectar errores aleatorios y en ráfagas mediante la utilización de bits de redundancia. El codificador RS por cada 188 bytes de entrada entrega 204 bytes de salida es decir RS (204,188). RS permite detectar 16 bytes erróneos y corregir hasta 8 bytes de errores aleatorios en un paquete de 204 bytes recibido. La corrección de errores en paquetes de 204 bytes es también llamado “Transmisión TSP”. En la figura 18 se presenta TSP sin corrección de errores y TSP con corrección de errores por RS. [16] [17]

Figura 17. Paquetes TS de MPEG-2. [15]
La codificación RS (204,188) se obtiene con un código Reed Solomon (255, 239) que implica la adición de 16 bytes de corrección a los 239 bytes de información. Debido a que los paquetes de flujo de transporte tienen solo 188 bytes, los primeros 51 bytes se llevan a cero y no son transmitidos, de lo que resulta el código RS (204, 188). [19]

1.6.4 División en Niveles de Jerarquía

Los segmentos OFDM pueden utilizar dos niveles de jerarquía, Jerarquía A o Jerarquía B y ser transmitidos simultáneamente. El segmento central es utilizado para brindar servicios de recepción parcial (jerarquía A), los otros segmentos son utilizados para recepción portátil y fija (jerarquía B). [16]

La división en niveles de jerarquía permite seleccionar los parámetros adecuados para realizar la transmisión de acuerdo a las características del servicio y el tipo de recepción. Las principales ventajas de una transmisión jerárquica son el mejor aprovechamiento del espectro de frecuencia debido a que en un solo canal es posible multiplexar varios servicios, además del ahorro de la infraestructura de transmisión ya que con un solo transmisor es posible enviar servicios a receptores fijos/móviles/portátiles. El divisor jerárquico debe obligatoriamente dividir el TS remultiplexado en 204 bytes y asociar cada parte al nivel de jerarquía, al mismo tiempo remueve los paquetes nulos. [16]

1.6.5 Dispersión de Energía

La dispersión de energía se realiza para cada uno de los niveles de jerarquía usando el circuito que se presenta en la figura 19. La dispersión de energía se realiza con el fin de aleatorizar la señal de entrada y evitar la presencia de largas series de unos y ceros, su objetivo es que la energía se distribuya uniformemente a lo largo del ancho de banda del canal de transmisión y mantenga su nivel constante. Con este circuito se obtiene una Secuencia Binaria Seudoaleatoria (PRBS, Pseudo Random Binary Sequence) para lo cual se usa el polinomio: [16]

\[
G(x) = 1 + x^{14} + x^{15}
\]

El valor inicial de los registros del generador PRBS, que sirve tanto para ordenar como para desordenar, son inicializados con la secuencia “1001010100000000” (ordenados los bits en orden ascendente de izquierda a derecha), este valor se inicializa al comienzo de un conjunto de 8 paquetes de transporte. Los bytes de sincronización no son considerados para la aleatorización. [16]

Para indicar al decodificador el conjunto de 8 paquetes que han sido efecto de la aleatorización, se proporciona una señal de inicialización, para esto el byte de sincronización del primer paquete de cada conjunto de 8 esta invertido, pasando de 0x47 (01000111) a 0xB8 (10111000), a este proceso se le conoce como adaptación del flujo de transporte. La adaptación y dispersión de energía del flujo de transporte se indica en la figura 20. [16]
1.6.6 Ajuste de Retardo

El ajuste de retardo proporciona tiempo de retardo idéntico en transmisión y recepción para todos los niveles de jerarquía, este ajuste es realizado en transmisión para compensar la diferencia que se presenta entre los parámetros de codificación de las capas jerárquicas, los cuales generan desalineamientos entre los flujos de transporte de las capas, este es seleccionado y especificado para cada nivel de jerarquía. [16]

1.6.7 Entrelazado

El entrelazado ordena los bytes facilitando la corrección de errores en ráfagas, esto se logra modificando el orden de los paquetes de transporte de tal manera que en recepción los errores se distribuyen aleatoriamente y afecten en forma mínima la transmisión de los datos. El entrelazado puede entenderse como la dispersión de los bytes de los paquetes MPEG-2, los cuales son combinados para dar origen a nuevos paquetes del mismo tamaño pero combinados, esto permite aumentar la confiabilidad del sistema debido a que una mínima cantidad de información podrá extraviarse y recuperarse al mismo tiempo gracias a la codificación.

EL entrelazado es realizado por medio de un circuito denominado entrelazador, el cual consta de 12 derivaciones conectadas a un conmutador de entrada al cual ingresa el flujo de datos, cada derivación constituye un registro de desplazamiento FIFO (primero que ingresa, primero que sale), el conmutador avanza un paso cada byte de datos, los bytes de sincronismo son enrutados en la rama 0 (n=0) y los siguientes bytes son enrutados por la rama (17 x n, n=0,1,2,3…,11), así se logra que los paquetes de transporte queden separados entre sí un número de posiciones y su valor esta dado por (17 x n), de acuerdo a esto, el paquete original quedará dividido en paquetes consecutivos, así se reducirán los errores que afectan los bytes consecutivos y disminuirán los errores de ráfaga que se generan en el canal de transmisión. En la figura 21 se presenta el circuito entrelazador. [16]

1.6.8 Codificación Interna (Código Convolucional)

La función del codificador interno es permitir al receptor detectar y corregir los errores provenientes de interferencias producidas en el medio de transmisión, el codificador interno pertenece a la familia de códigos convolucionales perforados, basados en un código convolucional de relación 1/2 con 64 estados (K= 7 tomas). [16]
La codificación interna está orientada al bit y distribuye en dos salidas (X y Y) el flujo de datos original con objeto de combinar (sumas modulo 2) los datos de entrada con los obtenidos en las tomas situadas detrás de una serie de registros de desplazamiento, cada una de las salidas corresponde a un polinomio generador llamado G, para X es G1= 171 octal y para Y es G2= 133 octal, esto significa que los datos de entrada son sumados a los polinomios generadores en forma binaria, considerando que si el dato de entrada es 1 es sumado y si es 0 no es considerado. La figura 22 presenta el circuito de codificación. [16]

Figura 22. Codificador Convolucional de relación 1/2. [16]

Una relación de 1/2 significa que para cada bit de entrada existirán 2 bits de salida, presentando la mayor redundancia favoreciendo la corrección de errores, pero esta limita la capacidad del canal por lo cual, el sistema permite seleccionar otros valores para la tasa de codificación, estos son: 2/3, 3/4, 5/6, y 7/8.

1.6.9 Modulación de la Portadora

En el proceso de modulación de la portadora, a la señal se agregan bits de entrelazado y se mapea a través del esquema de modulación especificado por cada nivel de jerarquía, el cual puede ser realizado en QPSK, 16QAM o 64QAM. El número de bits del entrelazador de bits dependerá del tipo de modulación, por ejemplo 2 niveles para QPSK, 4 para 16QAM y 6 para 64QAM.

La modulación tiene como objetivo representar cada uno de los símbolos con un punto en el plano bidimensional, cada uno de estos puntos está determinado por un par de coordenadas, donde la primera de ellas representa la parte real y la segunda la parte imaginaria, de esta manera se obtienen símbolos representados por dos valores que determinan su posición en el plano o constelación. El ajuste de retardo es necesario para compensar los atrasos de transmisión y recepción, este varía dependiendo del esquema de modulación de la portadora, es decir, del número de bits comprendido en el símbolo de la portadora. La figura 23 presenta la configuración del modulador. Para mayor información de los esquemas de modulación remítase al anexo D. [16]

Figura 23. Configuración del Modulador de la Portadora. [15]
1.6.10 Combinador de Niveles de Jerarquía
En el combinador, señales de diferentes niveles de jerarquía, sujetas al procesamiento en paralelo y modulación de la portadora son combinadas e insertadas en un segmento de datos. [16]

1.6.11 Tiempo y Frecuencia de Entrelazado
El entrelazado en tiempo y frecuencia es empleado para mitigar los efectos de los errores producidos en ráfaga, esto permite dispersar los errores y realizar una corrección más sencilla, garantiza robustez en el sistema frente al desvanecimiento e interferencia y provee una codificación con la menor tasa de errores. [16]

El entrelazado en tiempo consiste en separar en el tiempo los bits de un código de forma que no se transmitan consecutivamente. El entrelazado en frecuencia lleva los símbolos a diferentes portadoras para separar los datos consecutivos en distintas frecuencias y así en el caso de darse desvanecimiento no son afectadas las muestras sucesivas de la señal. [16]

1.6.12 Señales Piloto
Existen algunas portadoras que son utilizadas como información de referencia para el receptor. Algunas se asignan como portadoras de control, las cuales transportan información sobre los parámetros de transmisión. Dentro de estas se encuentran: Piloto Disperso (SP, Scattered), Piloto Continuo (CP, Continual Pilot) que son utilizadas para la sincronización de la frecuencia y la estimación del canal, TMCC es utilizada para informar al receptor sobre el esquema de modulación utilizado, tasa de codificación del código interno, longitud del entrelazado y número de segmentos, y el Canal Auxiliar (AC, Auxiliary Channel) sirve para transportar información auxiliar para el funcionamiento de la red. Para mayor información de estas señales remítase al anexo D. [16]

1.6.13 Estructura de la Trama OFDM
El formato de transmisión de la trama BST-OFDM consta de 204 símbolos los cuales son transportados mediante un conjunto de portadoras, donde la cantidad depende del modo de transmisión, por ejemplo el modo 1, modo 2 y modo 3 utilizan 108, 216 y 432 portadoras respectivamente, las cuales pueden ser moduladas en QPSK o en diferentes esquemas de QAM, dependiendo de la robustez y capacidad del sistema que se requiera. En la figura 24 se presenta un conjunto de portadoras que representa un símbolo OFDM [20]. Para mayor información de OFDM y la estructura de la trama remítase al anexo D.

![Figura 24. Símbolos en OFDM e Intervalos de Guarda. [20]](image)

1.6.14 IFFT
El bloque IFFT toma la información y lleva a cabo la Transformada Rápida de Fourier Inversa (IFFT, Inverse Fast Fourier Transform). En este, un conjunto de pares de coordenadas que representan los símbolos OFDM son agrupados de acuerdo al modo de transmisión utilizado, cada par del conjunto de datos es utilizado para generar el n-ésimo dato de la secuencia de salida. El efecto de la IFFT es reproducir n símbolos a la salida de este bloque, n representa el número de portadoras del modo de transmisión utilizado. [16] [21]

1.6.15 Conversor D/A
La Conversión de digital a analógico se realiza con el fin de generar una señal compatible con la banda de transmisión de 6 MHz. El responsable de esta función es un conversor Analógico a Digital (A/D, Analog/Digital). [16]
1.6.16 Circuito de Salida de Transmisión

El circuito de salida de transmisión está formado por un Up-Converter y un amplificador de potencia. El Up-Converter tiene la función de transferir la señal de FI a la frecuencia designada para la transmisión de la señal y el amplificador de potencia tiene la función de amplificar la señal al nivel de potencia deseado de acuerdo a la zona a cubrir, este último es conectado a la antena. [16]

1.7 CUADRO COMPARATIVO DE LOS ESTÁNDARES

En la tabla 7 se presentan los parámetros más importantes, que caracterizan y diferencian los sistemas de radiodifusión sonora digital terrestre más utilizados.

<table>
<thead>
<tr>
<th>PARÁMETRO</th>
<th>ISDB-TSB</th>
<th>DAB</th>
<th>IBOC</th>
<th>DRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen</td>
<td>Japón</td>
<td>Europa</td>
<td>Estados Unidos</td>
<td>Consorcio DRM (Mundial)</td>
</tr>
<tr>
<td>Estandarización</td>
<td>ARIB, ITU</td>
<td>ETSI, ITU</td>
<td>FCC, ITU</td>
<td>ETSI, ITU</td>
</tr>
<tr>
<td>Banda de Frecuencia</td>
<td>Banda 174-216 MHz</td>
<td>Banda L 1452 –1492 MHz</td>
<td>Sobre las bandas existentes de AM y FM.</td>
<td>Bandas LW, MW, SW</td>
</tr>
<tr>
<td>Técnica de transmisión</td>
<td>BST-OFDM</td>
<td>COFDM</td>
<td>OFDM</td>
<td>COFDM</td>
</tr>
<tr>
<td>Codificación Audio/Datos</td>
<td>MPEG-2</td>
<td>MUSICAM</td>
<td>MPEG-2</td>
<td>MPEG-4</td>
</tr>
<tr>
<td>Codificación de Canal</td>
<td>FEC, Convolucional</td>
<td>Convolucional</td>
<td>FEC</td>
<td>Convolucional</td>
</tr>
<tr>
<td>Modulación</td>
<td>QAM, 16QAM, 64QAM</td>
<td>QPSK y QAM</td>
<td>QAM y QPSK</td>
<td>QAM, 16QAM y 64QAM</td>
</tr>
<tr>
<td>Entrelazado</td>
<td>Tiempo y Frecuencia</td>
<td>Tiempo</td>
<td>Tiempo</td>
<td>Tiempo</td>
</tr>
<tr>
<td>Movilidad</td>
<td>Muy buena</td>
<td>Muy buena</td>
<td>Buena</td>
<td>Buena</td>
</tr>
<tr>
<td>Calidad</td>
<td>Semejante al CD</td>
<td>Muy cercana al CD</td>
<td>Cerca al CD</td>
<td>Cerca al FM</td>
</tr>
</tbody>
</table>

El estándar de radiodifusión sonora digital terrestre ISDB-TSB, es una tecnología que debido a su alta eficiencia en la codificación de fuente y la flexibilidad en la multiplexación, nuevos y múltiples programas de audio y servicios de datos están disponibles en un mismo canal. Además presenta gran robustez frente a efectos de multitrayectoria, ruido y desvanecimiento, por la utilización de codificación de canal, entrelazado y diversos esquemas de modulación, además permite servicios de recepción fija, móvil y portátil, y hace uso eficiente del espectro radioeléctrico con la posibilidad de la utilización de redes SFN. [16][20]

La realización de este capítulo ha permitido conformar una base técnica y teórica del estándar ISDB-TSB y conocer la situación actual del sistema de radiodifusión sonora analógico en FM de Unicauca Estéreo; bases necesarias para continuar con el proceso de análisis de la viabilidad técnica de la implementación del sistema de radiodifusión sonora digital terrestre ISDB-TSB, en el escenario particular de Unicauca Estéreo.
La implementación de la radiodifusión sonora digital terrestre ha iniciado desde hace algunos años en diferentes partes del mundo; países como Canadá, Estados Unidos, Reino Unido, España, Australia, Japón, entre otros, ya realizan transmisiones digitales; no solo la han implementado, sino que también han comenzado un periodo de transición hacia la radiodifusión sonora digital terrestre, lo cual ha sido posible gracias a iniciativas de los radiodifusores, el gobierno y entidades involucradas con la radiodifusión sonora.

Aunque el objetivo de la radiodifusión sonora digital es el mismo para todos, el camino que han recorrido para dicha implementación no lo es, este difiere de acuerdo a la tecnología de radiodifusión sonora digital adoptada, los servicios a ofrecer, la regulación del espectro e intereses de cada país. Es por esta razón que no existe un método común que permita su implementación, pero si es de resaltar que existen algunas estrategias que han sido tenidas en cuenta para implementar la radiodifusión sonora digital terrestre.

La experiencia adquirida en la implementación, debe ser tenida en cuenta por los países que aún no han iniciado este proceso, entre ellos Colombia, para definir un camino que les permita alcanzar este objetivo.

En el presente capítulo se abordarán los requerimientos que han sido definidos por la ITU para el servicio de radiodifusión sonora digital terrestre, las consideraciones básicas a tener en cuenta para su implementación, problemas, métodos y estrategias para la transición digital, de acuerdo a las experiencias obtenidas en otros países, además de los requerimientos técnicos necesarios que posibilitan la implementación del estándar ISDB-TSB.

2.1. REQUERIMIENTOS PARA EL SERVICIO DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE

El servicio de radiodifusión sonora digital terrestre debe satisfacer los siguientes requerimientos para dar cobertura local, regional y nacional y para ser ofrecido a receptores fijos, móviles y portátiles, en la gama de frecuencias de 30-3000 MHz (ondas métricas). [22]

- **Requerimiento 1.** Alta calidad en la señal de audio transmitida, semejante a la calidad de un disco compacto mediante dos o más canales para receptores fijos, móviles y portátiles.

- **Requerimiento 2.** Mayor eficiencia en la utilización del espectro radioeléctrico en comparación al sistema de radiodifusión sonora en frecuencia modulada.

- **Requerimiento 3.** Robustez frente a entornos afectados por propagación multitrayecto y zonas de sombra.

- **Requerimiento 4.** Permitir servicios de audio y datos a receptores fijos, móviles y portátiles en un mismo canal.

- **Requerimiento 5.** Posibilidad de seleccionar y configurar parámetros del sistema de transmisión para ofrecer servicios de audio y datos a diferentes velocidades binarias a expensas de la calidad y requerimientos del radiodifusor.

- **Requerimiento 6.** Una solución de compromiso entre el grado de cobertura con una potencia de emisión determinada, la calidad del servicio y el numero de servicios de audio y datos transmitidos.

- **Requerimiento 7.** Posibilidad de utilización de un receptor común para distintas formas de distribución de programas.

- **Requerimiento 8.** Posibilidad de ofrecer servicios de valor agregado con capacidades de datos y velocidades binarias diferentes.

- **Requerimiento 9.** Permitir la fabricación de receptores con bajo consumo de potencia independientemente de la complejidad del sistema.
• **Requerimiento 10.** Transición gradual del sistema analógico al digital permitiendo radiodifusión sonora analógica y digital de manera simultánea. Simulcast en el caso de utilizar el servicio de radiodifusión sonora digital terrestre la misma banda de frecuencia del servicio de radiodifusión sonora analógico o Multicast si el servicio digital utiliza una banda de frecuencia diferente al analógico.

• **Requerimiento 11.** Que haya una estructura múltiplex del sistema que permita intercomunicación con equipos de tecnología de información y redes de comunicación, además de satisfacer los requisitos del modelo de Interconexión de Sistemas Abiertos (OSI, Open System Interconnection).

• **Requerimiento 12.** Interacción con el radioyente.

Estos requisitos son los que refuerzan la viabilidad para que el servicio de radiodifusión sonora digital pueda alcanzar la conquista del mercado digital.

2.2 **CONSIDERACIONES BÁSICAS PARA LA IMPLEMENTACIÓN DE LA RADIODIFUSIÓN SONORA DIGITAL TERRESTRE**

Para lograr la implementación del servicio de radiodifusión sonora digital terrestre en el contexto colombiano es necesario estudios a nivel técnico, normativo, social y realizar una serie de pruebas de campo y de laboratorio para evaluar el desempeño de cada uno de los estándares de radiodifusión sonora digital terrestre en condiciones reales de operación, de esta manera tomar la decisión que permita escoger el estándar que favorezca las condiciones propias del país.

A continuación se exponen algunas de las consideraciones básicas a tener en cuenta en los procesos de implementación del servicio de radiodifusión sonora digital terrestre.

• Es necesario la modificación del marco regulatorio en cuanto a la asignación de frecuencias para lograr la coexistencia del servicio de radiodifusión sonora analógico y el servicio de radiodifusión sonora digital terrestre durante un periodo de transición, esto debido a que las bandas de frecuencias son asignadas o adjudicadas basándose en un plan nacional de regulación. Plan que hasta el momento en Colombia solo reglamenta las tecnologías de radiodifusión sonora analógicas en AM y FM. Es de resaltar que estas modificaciones al plan regulatorio dependen de la tecnología de radiodifusión a adoptar.

• Realización de estudios técnicos, de impacto socioeconómico y hábitos de consumo, estudio de las ofertas en materia de cooperación y transferencia tecnológicas entregadas por los promotores de los estándares. La cooperación se puede reflejar en apoyo financiero para proyectos de investigación y desarrollo promovidos en Colombia por los radiodifusores con el fin de generar servicios que apunten directamente a las necesidades de los oyentes colombianos.

• Apoyo a la implementación de la digitalización y crédito blando a los radiodifusores para impulsar la digitalización.

• Re-equipamiento de los radiodifusores y oyentes, para lograr la migración a la radiodifusión sonora digital deben tanto radiodifusores como oyentes participar activamente en la compra de nuevos equipos para transmisión y recepción respectivamente.

• Nuevos tipos de programación y servicios. La introducción de tecnologías digitales y de compresión de audio de elevada eficacia ha permitido optimizar el uso del ancho de banda, permitiendo la aparición de nuevos programas (contenidos), información variada y servicios de valor agregado. [23]

• Costos de migración. Los costos de migración van a depender de varios factores como son el sistema de radiodifusión sonora digital terrestre a adoptar, estado de la tecnología que el radiodifusor esté utilizando y la cobertura del servicio.
• Proceso de transición el cual supone mucho más que una migración técnica, esta no solo influye en lo económico sino que también en lo social, político, entre otros, además, afecta la cadena de valor de la radiodifusión, exactamente en la producción, transmisión y recepción de contenido. [24]
• Interacción entre las tecnologías de radiodifusión analógicas existentes y las nuevas tecnologías de radiodifusión digital.

2.3 PROBLEMAS QUE HAN TENIDO LAS TECNOLOGÍAS DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE PARA SU IMPLEMENTACIÓN

Los promotores de las tecnologías de radiodifusión sonora digital terrestre como DAB, IBOC, DRM y ISDB-TSB desde hace ya algunos años vienen exponiendo las ventajas y servicios que pueden ofrecer estas tecnologías a nivel mundial. A pesar que han sido aprobadas como estándares por la ITU y la ETSI e implementadas en algunos países, la migración ha sido demasiado lenta, debido a algunos problemas que acarrea la implementación de la radiodifusión sonora digital terrestre. Los principales problemas se han visto reflejados en:
• Posición escéptica de los radiodifusores privados a la cual puede resumirse en problemas derivados con los costos de implementación y en la incertidumbre de los beneficios económicos que puede reportar el cambio digital.
• Decisión por parte del estado para definir un plazo límite para el apagón analógico.
• La ausencia de receptores digitales económicos en el mercado, lo cual ha logrado un estancamiento en la implementación del servicio de radiodifusión sonora digital terrestre. Esta ausencia ha llevado a los radiodifusores a no motivarse por la implementación de este servicio.
• Escasez de contenidos especializados para los nuevos servicios de transmisión digital.
• Divergencia de intereses entre los radiodifusores públicos y privados, y el manejo político ha bloqueado el despliegue y desarrollo de la radio digital.
• Ausencia de mecanismos de control del nuevo servicio de radiodifusión sonora digital terrestre, en el caso específico, el manejo de las redes SFN.
• La transición al servicio de radiodifusión sonora digital terrestre obliga a una redistribución de licencias en una banda de frecuencias diferente para estándares que utilizan bandas de frecuencia diferentes a las del servicio de radiodifusión sonora analógico, lo que implica modificación en la asignación del espectro radioeléctrico.

2.4 ESTRATEGIAS PARA LA TRANSICIÓN DE RADIODIFUSIÓN SONORA ANALÓGICA A DIGITAL

El proceso de implementación y transición que han llevado a cabo algunos países ha sido abordado considerando algunas estrategias en común, las cuales han sido adaptadas de acuerdo al estándar de radiodifusión sonora digital terrestre escogido y los intereses propios de los países que han empezado la transición. Las estrategias son las siguientes:
• Implementación del servicio de radiodifusión sonora digital terrestre liderado por el gobierno con la participación de radiodifusores, universidades, grupos de investigación, entre otros. [25]
• Realización de inversiones en cuanto a equipos e infraestructura que apunten hacia un sistema totalmente digital, teniendo en cuenta que el apagón analógico de los servicios de radiodifusión se está estableciendo con el fin de beneficiarse de las ventajas de las tecnologías digitales. [26]
• Transición ordenada de la radiodifusión sonora analógica a digital. La transición es un proceso complejo el cual requiere que se evalúen todas las posibilidades y se defina un camino de implementación a seguir. [26]
• Definición de un calendario para el marco de reglamentación en el cual se estime una fecha límite para llevar a cabo el apagón de los servicios de radiodifusión sonora analógica. [26]
• Protección de servicios. Algunas tecnologías de radiodifusión requieren nuevas bandas de frecuencias, posiblemente estas nuevas bandas estén siendo ocupadas por otros servicios diferentes a la radiodifusión sonora y debido a esto es necesario protegerlos, para que puedan operar conjuntamente mientras se adecuan o reasignan nuevas bandas para su funcionamiento. [26]

• Realización de un enfoque de planificación flexible. Es importante que se evalúe la posibilidad de que los servicios de radiodifusión sonora digital terrestre puedan interactuar con otros tipos de radiodifusión sonora digital como por ejemplo la radiodifusión sonora digital por satélite y por cable. [26]

• Considerar una base técnica sólida y de probada eficacia para el establecimiento del nuevo plan de regulación. [26]

• Definición de criterios técnicos que permitan la gestión del espectro para los nuevos servicios de radiodifusión. [26]

• Realización de un plan de frecuencias que conserve vigencia en el futuro. [26]

2.5 MODELOS DE TRANSICIÓN DE RADIODIFUSIÓN ANALÓGICA A DIGITAL

Se pueden identificar dos modelos básicos de transición de radiodifusión analógica a digital, el modelo de Estados Unidos y el modelo de Reino Unido los cuales han servido de base a los países que han liderado este proceso. El modelo de transición de Estados Unidos está orientado a la asignación de un canal adicional a los radiodifusores existentes con el compromiso de realizar inversiones para complementar la transición, liderar este proceso, adquirir nuevas licencias de radiodifusión o crear nuevos servicios de telecomunicaciones, y una vez el 85 % de los usuarios estén equipados para recibir señales digitales, el radiodifusor este obligado a devolver el canal. [25]

El modelo adoptado por Reino Unido considera que sea el gobierno el encargado de promover la implementación de la radiodifusión digital, de ampliar la oferta de servicios y optimizar el uso del espectro radioeléctrico, dejando para posterior implementación, los servicios de mayor calidad por requerir mayor ancho de banda y exigir mayores inversiones en la compra de equipos receptores digitales. Este modelo también considera abrir licitación a nuevos operadores para crear una mayor competencia en el mercado de la radiodifusión digital. Las características de estos dos modelos se presentan en la tabla 8. [25]

<table>
<thead>
<tr>
<th>Tabla 8. Modelos de Transición. [25]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinación de la Implementación</td>
</tr>
<tr>
<td>Realizada por los mismos radiodifusores</td>
</tr>
<tr>
<td>Licencias</td>
</tr>
<tr>
<td>Modelo de Regulación</td>
</tr>
<tr>
<td>Objetivos Principales</td>
</tr>
</tbody>
</table>

2.6 METODOS QUE HACEN POSIBLE LA TRANSICIÓN DE RADIODIFUSIÓN SONORA ANALÓGICA A DIGITAL

Proporcionar servicios de radiodifusión sonora analógica y digital de manera simultánea en espera de un apagón analógico debe realizarse con el fin de propiciar un periodo de transición donde radiodifusores puedan generar nuevos servicios, organizar sus modelos de negocios, adecuar y modificar su infraestructura, y los oyentes puedan conocer los nuevos servicios, la calidad de los mismos y adquirir los nuevos receptores digitales.
Para un radiodifusor ya existente que desee iniciar un proceso de transición en el cual requiera transmitir los servicios de radiodifusión sonora analógica y digital terrestre de manera simultánea, es necesario que este realice mejoras el sistema de transmisión introduciendo un nuevo transmisor y/o actualizando el existente en caso de poder realizarse, compra de nuevos equipos y adecuación de las instalaciones.

Para la transmisión de servicios de radiodifusión sonora analógicos y digitales simultáneamente se pueden considerar los siguientes 3 métodos de transición: el primero es llamado de Alto Nivel en la cual se combina la señal de un transmisor digital y uno analógico para utilizar una misma antena. El segundo método, utiliza un sistema de amplificación común en el cual las señales digitales y analógicas utilizan un mismo sistema de amplificación y una misma antena, este es denominado Combinado de Bajo Nivel. El tercer método es conocido como Antenas Separadas en el cual las señales analógicas y digitales se transmiten de manera independiente utilizando infraestructura de red diferente. [24]

2.6.1 Alto Nivel

El método de alto nivel, realiza el procesamiento y amplificación de las señales analógicas y digitales por separado, posteriormente son combinadas y transmitidas por una misma antena. Las consideraciones para implementar este método son: adecuación de la caseta de transmisión ya que se hace necesario la instalación de nuevos equipos para procesar y generar una señal digital, además de un nuevo transmisor digital, también es necesario robustecer el sistema de ventilación y compensar las pérdidas producto de la utilización de un combinador.

En este método es necesario la inserción de un retardo en la señal analógica debido a que el procesamiento de la señal digital es más complejo y requiere más tiempo que la señal analógica, esto con el fin de transmitir las dos señales al mismo tiempo. El combinador de RF, se utiliza para multiplexar dos o más canales de radiofrecuencia con el fin de alimentar una misma antena. Las ventajas que presenta son: procesamiento de la señal analógica y digital por separado, utilización de una misma antena para transmitir las señales analógicas y digitales, reutilización de infraestructura de radiodifusión existente, puede ser implementado en estaciones de radiodifusión que utilicen alta potencia de transmisión y no cuenten con infraestructura para el montaje de una nueva antena. La figura 25 presenta el diagrama de bloques general de esta configuración. [24] [27]

![Figura 25. Diagrama Método de Alto Nivel. [27]](image)

2.6.2 Combinado de Bajo Nivel o Amplificación Común

En este método las señales analógicas y digitales son combinadas y amplificadas por un mismo amplificador de potencia el cual brinda el nivel de potencia deseado para la prestación del servicio. La señal resultante después de la amplificación es transmitida por una misma antena. El sistema de amplificación debe ser específicamente diseñado para ofrecer mayor linealidad respecto a la ofrecida por los actuales sistemas de amplificación utilizados en los sistemas de radiodifusión sonora analógicos ya que el sistema digital requiere mayor linealidad. La etapa de amplificación puede realizarse con un amplificador lineal de estado sólido de banda ancha. La configuración de este método se presenta en la figura 26. [24] [27]
Figura 26. Combinado de Bajo Nivel o Amplificación Común. [27]

Las ventajas de utilizar esta configuración son: menor consumo de energía, utilización de una misma antena para transmitir la señal analógica y digital, menor generación de calor respecto al método de alto nivel y puede ser implementado en estaciones de radiodifusión sonora que utilicen bajas potencias de operación. La desventaja que presenta son las pérdidas por la inserción del combinator. [24] [27]

2.6.3 Antenas Separadas

En el método de antenas separadas la señal digital y analógica a ser transmitidas son procesadas y amplificadas por separado, la transmisión se realiza de la misma forma considerando para esto la utilización de diferentes antenas. Para transmitir la señal analógica, el radiodifusor no requiere de nueva infraestructura y equipos ya que puede ser utilizada la que actualmente cuenta para su funcionamiento, a diferencia de la señal digital que requiere de la adquisición de nuevos equipos. La configuración del método de antenas separadas se presentada en la figura 27. [24] [27]

Figura 27. Antenas Separadas. [27]

Las consideraciones a tener en cuenta en esta configuración son: antenas aisladas eléctricamente, patrones de radiación, espacio suficiente en la caseta y torre de transmisión para la instalación de los nuevos equipos del sistema de transmisión digital y la nueva antena respectivamente, y robustez en el sistema de ventilación. Las ventajas que presenta son: no hay pérdidas por la inserción de un combinator y utiliza un sistema de transmisión independiente para cada uno de los servicios de radiodifusión. [24] [27]

2.7 ELEMENTOS QUE COMPONEN UN SISTEMA DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN ISDB-Tsb

Un sistema de radiodifusión sonora digital terrestre está compuesto por una serie de elementos que por sus características pueden ser clasificados en elementos software y elementos hardware. En Colombia se ha definido un modelo para el sistema de radiodifusión sonora analógico, y de acuerdo a él, para determinar los elementos que componen una estación de radiodifusión sonora se deben considerar las siguientes partes:
• Equipos de los estudios.
• Enlace estudio sitio de transmisión.
• Sistema de transmisión.

2.7.1 Equipos de los Estudios

El estudio de una estación de radiodifusión sonora digital terrestre es el lugar donde se genera la programación que va a ser emitida a los oyentes. Los equipos de los estudios son los que permiten dar origen a las señales de audio y datos.

El estándar ISDB-TSB al igual que DAB, IBOC o DRM se relacionan directamente con el sistema de transmisión y parten del principio de que los equipos de los estudios usen tecnología de Procesamiento Digital de Señales (DSP, Digital Signal Processing). De acuerdo a los actuales planes técnicos de radiodifusión sonora del país, los radiodifusores están en libertad de escoger los equipos que consideren convenientes para operar en los estudios siempre y cuando estos sean de una calidad que contribuyan de manera positiva a la transmisión de una señal de alta calidad y es precisamente por este motivo que no se hace mucho énfasis en esta parte, a pesar de que muy probablemente este sea uno de los primeros pasos que deban realizar las emisoras para su digitalización. [1]

De manera general los equipos que conforman un estudio de radiodifusión sonora digital terrestre son: microfónos de bajo nivel de ruido, baja distorsión de frecuencia, amplio rango dinámico, alto nivel de presión acústica y alta respuesta en frecuencia, mezclador/consola de audio digital con varios canales de entrada, híbrido telefónico el cual permite extraer el audio de la línea telefónica y al mismo tiempo ingresar un retorno al oyente, monitor para controlar la calidad del audio, reproductor/grabador de sonidos, parlantes de monitoreo para escuchar lo que está saliendo al aire, amplificador, software automático de difusión para configurar automáticamente la programación, cámara de efectos para producir distintos tipos de efectos en el sonido, entre otros. Además, hardware y software requeridos para ofrecer servicios de datos. En la figura 28 se presenta algunos de los equipos que se pueden encontrar en un estudio de radiodifusión sonora digital.

![Figura 28. Equipos de un Estudio Digital](image)

La consola de audio es el centro de coordinación, está encargada de controlar todas las señales de audio provenientes de las fuentes en el estudio y tiene tres funciones principalmente: permitir al operador seleccionar una señal o combinación de señales de las fuentes de entrada, amplificar las señales entrantes a un apropiado volumen y/o nivel, y dirigir las señales de salida hacia el transmisor. La señal de salida de la consola puede estar en formato analógico o digital en la interfaz interna de la Sociedad de Ingenieros de Audio/Unión Europea de Radiodifusión.
(AES/EBU3, Audio Engineering Society/European Broadcasting Union). Por su parte los datos son generados por equipos destinados a ofrecer servicios de este tipo, estos son transmitidos conjuntamente con el audio. [9] [28]

2.7.2 Enlace Estudio Sitio de Transmisión

Para enviar audio y datos desde el estudio al sitio de transmisión es necesario un enlace STL. Este puede realizarse por medio de un enlace de radiofrecuencia, por Línea Suscrita Digital (DSL, Digital Subscriber Line), Wi-Fi (Wireless Fidelity 2.4 GHz) o tecnologías de Radiodifusión para Internet de Codificación Confiable (BRIC, Broadcast Reliable Internet Codec) que permiten transmitir audio y datos de forma óptima al sitio de transmisión mediante redes IP. En este documento solo se abordará el enlace por radiofrecuencia, debido a que la mayoría de estaciones de radiodifusión actuales en Colombia, unen sus estudios con el sitio de transmisión de esta manera y debido a ello, cuentan con infraestructura y equipos que pueden ser reutilizados y/o modificados para transmitir el nuevo formato digital, no siendo Unicauca Estéreo la excepción. La configuración del STL es presentada en la figura 29. [29] [30]

Figura 29. Enlace STL Digital

El servicio de radiodifusión sonora digital terrestre a diferencia del servicio de radiodifusión sonora analógico tiene la necesidad de transmitir más información desde el estudio al sitio de transmisión debido a que requiere enviar sonido y datos de mayor calidad. Los actuales enlaces realizados con tecnologías analógicas no cuentan con la capacidad de soportar las nuevas necesidades del servicio de radiodifusión sonora digital terrestre y debido a esta razón se requieren de enlaces digitales, que permitan mayor capacidad para transmitir varios canales de audio y datos, entradas y salidas de audio digital AES/EBU. Con radioenlaces digitales la transmisión desde el estudio al sitio de transmisión es completamente digital logrando de esta manera mayor robustez en la señal. [31]

Los enlaces digitales permiten la eliminación de la distorsión de armónicos, intermodulación y diafonía, mayor eficiencia en la utilización del espectro, regeneración de la señal y uniformidad en la transmisión de audio y datos. Para implementar un enlace digital se requiere un codificador digital, que adapta las señales de audio analógico, digital AES/EBU y señales de datos originadas en los estudios en una señal banda base. La codificación básica de datos se realiza en formato de texto ASCCI o HTML y los gráficos en formatos GIF, BMP, PNG o JPEG. Otros equipos utilizados son: transmisor/receptor digital que operen en la banda de frecuencia asignada a la radiodifusión de información desde los estudios al sitio de transmisión, antenas para transmisión y recepción, conectores, línea de transmisión e infraestructura para la ubicación de equipos y antenas. El diagrama de bloques de los equipos necesarios para un enlace digital se presenta en la figura 30. [32] [33] [34] [35] [36]

Figura 30. Diagrama de Bloques de un Enlace Digital.

En recepción la señal en banda base es decodificada para obtener nuevamente las señales enviadas desde el estudio (datos, sonido digital AES/EBU, sonido formato analógico), señales que posteriormente son entregadas a los equipos del sistema de transmisión.

3 Anexo E se explica detalladamente el formato de señal digital AES/EBU.
En el mercado se encuentran diversos equipos que pueden utilizarse para realizar el enlace STL digital. Estos cuentan con diferentes especificaciones técnicas, de funcionamiento y marcas. Por esta razón no existe una única posibilidad para su elección, por el contrario esta depende de los recursos económicos y servicios que desee ofrecer un radiodifusor. A continuación se presentan algunos requerimientos técnicos y consideraciones técnicas que deben tenerse en cuenta a la hora de la elección de estos equipos.

• El codificador digital debe permitir varios canales de entradas de audio analógico y/o digital AES/EBU, y al menos un canal de datos (Interfaz RS-232), además debe permitir la configuración para diferentes frecuencias de muestreo (32 KHz, 44.1 KHz, 48 KHz).

• Transmisor/receptor digital con bajo retardo de procesamiento, que pueda operar en el rango de frecuencias de 300 MHz – 330 MHz, y ofrezca suficiente potencia (0 a 20 W) para evitar la utilización de amplificadores externos.

• Las antenas Yagui deben ser seleccionadas para operar en la banda de frecuencia del enlace (300 MHz – 330 MHz), permitir su configuración en polarización horizontal o vertical.

• El sistema STL debe estar en la capacidad de proveer transporte bidireccional de audio y datos combinado con otra clase de tráfico, incluyendo datos LAN/WAN.

• Es necesario que los equipos utilizados realicen un proceso de compresión de datos con el fin de poder enviar la mayor cantidad de información.

2.7.3 Sistema de Transmisión.

Los radiodifusores deben adecuar su sistema de transmisión considerando las nuevas características del estándar a implementar, quien define los equipos a utilizar y la forma de interconexión de cada uno de ellos. El modelo del sistema de transmisión para el estándar ISDB-TSB se presenta en la figura 31, los equipos necesarios para su implementación son: codificador MPEGR2 AAC, multiplexor MPEG-2, generador de señal ISDB-TSB, transmisor digital, línea de transmisión, estructura para el soporte de la antena, antena de transmisión en el rango de frecuencias para el estándar, conectores, equipos de medición y control.

Figura 31. Modelo del Sistema de Transmisión de ISDB-TSB. [16]

En el sistema de transmisión las señales de audio analógico, digitales en formato AES/EBU y datos provenientes del estudio y entregadas por el decodificador digital del enlace STL, son codificadas de acuerdo a MPEG-2 AAC y multiplexadas en MPEG-2 para formar un solo TS, el cual es entregado al generator de radio frecuencia ISDB-TSB quien realiza la codificación de canal descrita en el capítulo I. Seguido de este proceso la señal resultante es enviada al transmisor. Para la elección de los equipos del sistema de transmisión se definen a continuación algunos requerimientos y consideraciones técnicas:

• Codificador MPEG-2: permita conectar varios canales de audio, codificación acorde a ISO/IEC 11178-1, codificación mono, estéreo, diferentes frecuencias de muestreo (32 KHz, 44.1 KHz, 48 KHz), interfaz RS-232 para configuración y control de los parámetros del sistema.

• Multiplexor MPEG: flujo de salida acorde a ISO/IEC 13818-1, que reciba varios flujos de transportes para multiplexación, simplicidad en operación, alta velocidad en procesamiento, salidas para interconectar con el
generador de RF ISDB-TSB, parámetros configurables, entradas tipo BNC 75 ohm, longitud del paquete MPEG 188/204 bytes, salidas BNC 75 ohm, interfaz RS 232 para configuración.

- **Generador de señal ISDB-TSB**: debe permitir realizar configuración de los parámetros de transmisión como son: el nivel de jerarquía (A o B), número de segmentos a transmitir, modo de transmisión, intervalo de guarda 1/4, 1/8, 1/16, 1/32, esquema de modulación de la portadora QPSK, 16QAM, 64QAM, tasa de codificación del código convolucional 1/2, 2/3, 3/4 y 7/8. Además, permitir transmisión de segmentos concatenados y salida de la señal OFDM en la banda de VHF.

- **Transmisor digital**: el transmisor deberá ser de estado sólido que garantice linealidad; que la banda de frecuencia de operación deberá ser a la utilizada por ISDB-TSB, que permita ser controlado remotamente. La potencia de transmisión será determinada de acuerdo a normas establecidas para salvaguardar los límites de exposición definidos por la ITU para las zonas ocupacional, poblacional.

- **La línea de transmisión**: debe ser cable coaxial cuya impedancia característica permita el acoplamiento adecuado entre transmisor y la antena.

- **La antena a utilizar**: debe permitir tener polarización omnidireccional, debe operar en el rango de frecuencias que utiliza el estándar, impedancia nominal de 50 ohm.

2.8 REQUERIMIENTOS TÉCNICOS NECESARIOS PARA LA IMPLEMENTACIÓN Y PLANIFICACIÓN DE LA RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN ISDB-TSB

En la implementación de un sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, es necesario considerar los elementos que componen el sistema de radiodifusión, además de los siguientes requerimientos técnicos y de planificación que se exponen a continuación.

2.8.1 Espectro Radioeléctrico

Una consideración importante para la prestación del servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB es la asignación de frecuencias del espectro radioeléctrico para este servicio. Para los servicios de radiodifusión sonora analógica han sido asignadas la porción del espectro de 535 KHz – 1605 KHz para AM y 88 MHz – 108 MHz para FM, debido a que el estándar ISDB-TSB no opera en ninguna de estas bandas de frecuencia y por el contrario ha sido implementado en la banda III de VHF es necesario que el estado por medio del Ministerio de Comunicaciones permita la utilización de la banda III de VHF para ofrecer el servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB. [37]

Colombia pertenece a la Zona II, distribución realizada por la ITU, ofrece en la banda III de VHF el servicio de radiodifusión de televisión por medio del estándar de la Comisión Nacional de Sistemas de Televisión (NTSC, National Television System Comité). Por esta razón es necesario realizar control frente a interferencias que se puedan presentar entre los servicios ofrecidos por NTSC y ISDB-TSB en estas bandas de frecuencia.

2.8.2 Bandas de Guarda

Uno de los aspectos más importantes para la implementación del estándar ISDB-TSB es prevenir las posibles interferencias con el sistema de televisión NTSC. La interferencia está definida como el efecto de una energía no deseada en recepción lo cual puede provocar degradación en la señal y pérdida de información, por esta razón, es necesario limitar los posibles efectos perjudiciales entre las señales de ISDB-TSB y NTSC. Para evitar las interferencias entre un sistema y otro se requieren bandas de guarda en la parte inferior y superior del canal. Una banda de guarda es una separación de frecuencia. [37]

El ancho de banda 6 MHz de ISDB-TSB es dividido en segmentos de 428.57 KHz, a su vez el ancho de banda es dividido en subcanales que se enumeran desde 0 hasta 41. El ancho de banda de un subcanal es 1/3 del ancho de banda de un segmento (142.85 KHz). Para indicar la posición de la señal ISDB-TSB cada segmento se enumera
La relación de protección requerida para una señal ISDBRT de cada uno de estos sistemas de radiodifusión. A continuación se define la relación de protección requerida entre señales ISDBRT frecuencias portadoras, la tolerancia de frecuencia de la portadora, características de la señal, el nivel de entrada en la Figura 33. Bandas de Guarda para Coexistir con una Señal de Televisión NTSC. [37]

2.8.3 Relación de Protección en Radiofrecuencia

La relación de protección en radiofrecuencia indica el valor mínimo de la relación entre la señal deseada y la señal interferente permisible, expresada normalmente en dB, a la salida de audiofrecuencia del receptor y determinada en condiciones tales que se obtengan una calidad de recepción específica. Las condiciones comprenden diversos parámetros tales como la diferencia en frecuencia entre la portadora deseada y la interferente, la separación entre frecuencias portadoras, la tolerancia de frecuencia de la portadora, características de la señal, el nivel de entrada en el receptor y las características del receptor de las cuales la más importante es la selectividad y sensibilidad. [39] [40]

Las interferencias se pueden clasificar en simples cuando hay una sola señal interferente, múltiples cuando existen varias señales interferentes, interferencia cocanal la cual es producida en la misma frecuencia portadora de la señal deseada y de canal adyacente en la cual la frecuencia de la señal interferente corresponde a canales contiguos al de la señal deseada. A continuación se define la relación de protección requerida entre señales ISDB-TSB y NTSC y la relación de protección requerida entre señales del mismo sistema ISDB-TSB. [39] [40]

2.8.3.1 Relación de protección entre señales ISDB-TSB interferidas por señales NTSC

El estándar ISDB-TSB al igual que el estándar NTSC utiliza la banda III de VHF con canalización de 6 MHz para brindar los servicios de radiodifusión sonora digital terrestre y televisión analógica respectivamente, por esta razón hay que asegurar una relación de protección para evitar la interferencia que se pueda presentar entre las señales de cada uno de estos sistemas de radiodifusión.

La relación de protección requerida para una señal ISDB-TSB interferida por una señal NTSC en recepción fija y móvil considerando una Tasa de Error de Bit (BER, Bit Error Rate) de 2×10^{-4}, se presenta en la tabla 9. [37]
Tabla 9. Relación de Protección para ISDB-TSB Interferida por una Señal NTSC. [37]

<table>
<thead>
<tr>
<th>Señal Deseada</th>
<th>Interferencia</th>
<th>Relación de Protección (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Señal Interferente</td>
<td>Diferencia de Frecuencias</td>
</tr>
<tr>
<td>ISDB-TSB (1 segmento)</td>
<td>Cocanal</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Adyacente Inferior</td>
<td>-31</td>
</tr>
<tr>
<td></td>
<td>Adyacente Superior</td>
<td>-33</td>
</tr>
<tr>
<td>ISDB-TSB (3 segmento)</td>
<td>Cocanal</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Adyacente Inferior</td>
<td>-26</td>
</tr>
<tr>
<td></td>
<td>Adyacente Superior</td>
<td>-28</td>
</tr>
</tbody>
</table>

La relación de protección para una señal NTSC interferida por una señal ISDB-TSB se ha determinado de acuerdo a evaluaciones subjetivas que han dado una nota de degradación de 4 de una escala de 5 notas posibles. Los experimentos de evaluación han sido realizados considerando el método de escala de degradación de doble estímulo descrito en la recomendación UIT-R BT. 500. Este es un método cíclico que evalúa dos señales de la misma fuente, se presenta al evaluador una señal de referencia no degradada y después la misma señal con degradación, seguido se pide al evaluador que opine sobre la segunda señal teniendo como referencia la primera señal, se continúa el método de evaluación con una serie de señales con degradaciones aleatorias y al final de las pruebas se calcula la nota de degradación, para la cual se utiliza una escala de apreciación. Esta escala cuenta con 5 notas de degradación, de las cuales la nota 1 indica muy molesta, nota 2 molesta, nota 3 ligeramente molesta, nota 4 perceptible, pero no molesta y nota 5 imperceptible. La relación de protección requerida para una señal del sistema NTSC interferida por una señal del sistema ISDB-TSB se presenta en la tabla 10. [37]

Tabla 10. Relación de Protección para NTSC Interferida por ISDB-TSB. [37]

<table>
<thead>
<tr>
<th>Señal Deseada</th>
<th>Interferencia</th>
<th>Relación de Protección (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Señal Interferente</td>
<td>Diferencia de Frecuencias</td>
</tr>
<tr>
<td>NTSC</td>
<td>ISDB-TSB (1 Segmento)</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Cocanal</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Adyacente Inferior</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Adyacente Superior</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Canal Imagen</td>
<td>-9</td>
</tr>
<tr>
<td>ISDB-TSB (2 Segmento)</td>
<td>Cocanal</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Adyacente Inferior</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Adyacente Superior</td>
<td>-14</td>
</tr>
<tr>
<td></td>
<td>Canal Imagen</td>
<td>-14</td>
</tr>
</tbody>
</table>

De acuerdo a las relaciones de protección presentadas en las tablas 9 y 10 se puede corroborar que las señales digitales son más robustas que las señales analógicas y por tanto se requieren relaciones de protección más bajas en las señales digitales.

2.8.3.2 Relación de protección para ISDB-TSB interferida por ISDB-TSB

A fin de evitar interferencias entre señales ISDB-TSB que operen en canales adyacentes, la relación de protección para una BER de 2×10^{-4} se presenta en la tabla 11 y en la tabla 12 la relación de protección para diferentes bandas de guarda, las cuales especifican la separación en frecuencia entre los bordes del espectro. [37]
Tabla 11. Relación de Protección para ISDB-TSB Interferida por ISDB-TSB. [37]

<table>
<thead>
<tr>
<th>Señal Deseada</th>
<th>Señal Interferente</th>
<th>Diferencias de Frecuencias</th>
<th>Relación de Protección</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISDB-TSB (1-segmento)</td>
<td>ISDB-TSB (1-segmento)</td>
<td>Cocanal</td>
<td>29 dB</td>
</tr>
<tr>
<td>ISDB-TSB (3-segmento)</td>
<td>ISDB-TSB (3-segmento)</td>
<td>Adyacente</td>
<td>Ver tabla 12</td>
</tr>
<tr>
<td>ISDB-TSB (1-segmento)</td>
<td>ISDB-TSB (1-segmento)</td>
<td>Cocanal</td>
<td>24 dB</td>
</tr>
<tr>
<td>ISDB-TSB (3-segmento)</td>
<td>ISDB-TSB (3-segmento)</td>
<td>Adyacente</td>
<td>Ver tabla 12</td>
</tr>
<tr>
<td>ISDB-TSB (1-segmento)</td>
<td>ISDB-TSB (1-segmento)</td>
<td>Cocanal</td>
<td>29 dB</td>
</tr>
<tr>
<td>ISDB-TSB (3-segmento)</td>
<td>ISDB-TSB (3-segmento)</td>
<td>Adyacente</td>
<td>Ver tabla 12</td>
</tr>
</tbody>
</table>

Tabla 12. Relación de Protección (dB) Dependiendo de la Banda de Guarda. [37]

<table>
<thead>
<tr>
<th>Señal Deseada</th>
<th>Señal Interferente</th>
<th>Banda de Guarda (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISDB-TSB (1-segmento)</td>
<td>ISDB-TSB (1-segmento)</td>
<td>0 1/7 2/7 3/7 4/7 5/7 6/7 7/7 o Superior</td>
</tr>
<tr>
<td>12 6 -3 -6 -8 -15 -20 -21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISDB-TSB (3-segmentos)</td>
<td>ISDB-TSB (3-segmentos)</td>
<td>7 1 -8 -11 -13 -20 -25 -26</td>
</tr>
<tr>
<td>ISDB-TSB (1-segmento)</td>
<td>ISDB-TSB (1-segmento)</td>
<td>17 11 2 -1 -3 -10 -15 -16</td>
</tr>
<tr>
<td>ISDB-TSB (3-segmentos)</td>
<td>ISDB-TSB (3-segmentos)</td>
<td>12 6 -3 -6 -8 -15 -20 -21</td>
</tr>
</tbody>
</table>

Para la relación de protección presentada en las tablas 11 y 12 se ha considerado el margen de desvanecimiento de 18 dB para recepción móvil, con el fin de proteger a las señales ISDB-TSB deseadas, en el 99 % contra la interferencia procedente de otras transmisiones ISDB-TSB. La banda de guarda entre los bordes del espectro se presenta en la figura 34. [37]

Figura 34. Banda de Guarda y Disposición de Señales

2.8.4 C/N Requerida

La Razón Portadora a Ruido (C/N, Carrier/Noise) es la relación entre la potencia de la portadora y el ruido blanco en un ancho de banda específico, C/N determina básicamente la calidad de la señal del sistema. En la tabla 13 aparecen los valores de C/N requeridos para distintos esquemas de modulación y tasas de codificación, los valores se refieren al ancho de banda de canal de 6 MHz y una frecuencia de operación de 200 MHz. Estos pueden convertirse en caso de otros anchos de banda utilizados por ISDB-TSB (7 u 8 MHz). [37] [41]

Tabla 13. C/N Requerida. [37]

<table>
<thead>
<tr>
<th>Modulación</th>
<th>Tasa de Codificación para Codificación Convolucional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
</tr>
<tr>
<td>QPSK</td>
<td>4,9 dB</td>
</tr>
<tr>
<td>16-QAM</td>
<td>11,5 dB</td>
</tr>
<tr>
<td>64-QAM</td>
<td>16,5 dB</td>
</tr>
</tbody>
</table>
2.8.5 Degradación de Realización

Es la cantidad de degradación de la relación C/N (en dB). En la tabla 14 se presenta los valores de esta degradación. [37]

<table>
<thead>
<tr>
<th>Degradación de Realización (dB)</th>
<th>Recepción Móvil</th>
<th>Recepción Portátil</th>
<th>Recepción Fija</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>16QAM</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>64QAM</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

2.8.6 Margen de Interferencia

El margen de interferencia indica el límite o el máximo valor de interferencia en el que el sistema puede trabajar con una tasa de error aceptable, también puede ser definido como el margen de la degradación C/N (en dB) equivalente causada por la interferencia procedente de los sistemas de radiodifusión analógica o de otros sistemas. Este valor para las diferentes formas de recepción (móvil, portátil y fija) debe ser igual a 2 dB. Una interferencia por encima de este valor puede influir en la probabilidad de ocurrencia de errores en recepción. [37] [42]

2.8.7 Margen de Multitrayecto para Recepción Portátil o Fija

Es el margen de degradación C/N equivalente causada por la interferencia multitrayecto en recepción portátil o fija. Este valor debe ser igual a 1 dB. [37]

2.8.8 Margen de Desvanecimiento para Recepción Móvil

El margen de desvanecimiento se define como la diferencia en dB entre el nivel de la potencia recibida y el nivel de potencia que asegura una determinada tasa de error; este puede ser afectado debido a la presencia de obstáculos, interferencias y desvanecimientos en la señal por la propagación multitrayecto. El margen de desvanecimiento para recepción móvil consiste en la degradación de C/N causante por la fluctuación temporal que sufre la intensidad de campo. En la tabla 15 se presenta el margen de fluctuación temporal de la intensidad de campo. [37] [43]

<table>
<thead>
<tr>
<th>Modulación</th>
<th>Tasa de Codificación</th>
<th>Margen de Desvanecimiento (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>1/2</td>
<td>9,4</td>
</tr>
<tr>
<td>16-QAM</td>
<td>1/2</td>
<td>8,1</td>
</tr>
<tr>
<td>64-QAM</td>
<td>1/2</td>
<td>--</td>
</tr>
</tbody>
</table>

2.8.9 C/N Necesaria en el Receptor

C/N necesaria en el receptor para los diferentes tipos de recepción se presentan en tabla 16. [37]

<table>
<thead>
<tr>
<th>Esquema de Modulación</th>
<th>Recepción Móvil</th>
<th>Recepción Portátil</th>
<th>Recepción Fija</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/N necesaria dB</td>
<td>QPSK</td>
<td>16QAM</td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>QPSK</td>
<td>16QAM</td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>QPSK</td>
<td>16QAM</td>
<td>64QAM</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

La relación C/N necesaria en el receptor se puede determinar por la expresión (2): [37]

\[
\frac{C}{N_{RX}} = \frac{C}{N_{requerida}} + \text{Degradación realización} + M \text{ argen _Interferencia} + M \text{ argen _Multitrayecto} + M \text{ argen _Desvanecimiento}
\]

\[
(2)
\]
2.8.10 Factor de Ruido en el Receptor

El factor de ruido se define como la relación entre la señal a ruido de entrada y la señal a ruido a la salida de un dispositivo y hace referencia a la pérdida de la calidad de la Relación Señal a Ruido (S/N, Signal/Noise) que sufre una señal al atravesar un sistema, suponiendo que esté adaptado y que la fuente esté a una temperatura de 290 grados Kelvin. Al representar esta relación en dB recibe el nombre de Figura de Ruido (NF, Noise Figure), representa la degradación de la relación señal a ruido mientras la señal está pasando por un dispositivo. Las expresiones 3 y 4 representan el factor de ruido y la figura de ruido respectivamente.

\[
NF = 10 \log \left(\frac{S_{input}}{N_{input}} / \frac{S_{output}}{N_{output}} \right)
\]

(3)

\[
NF = 10 \log F
\]

(4)

Para condiciones de diseño y planificación de la radiodifusión sonora digital terrestre, ISDB-TSB considera que el valor de NF para receptores móviles, portátiles y fijos sea igual a 5 dB. [37]

2.8.11 Ancho de Banda de Ruido, \(BW_{Ruido} \)

El ancho de banda de ruido en ISDB-TSB es el ancho de banda de transmisión de la señal de un segmento \(BW_{Ruido} = 429\,KHz \). [37]

2.8.12 Perdidas en el Alimentador, \(L \)

Las pérdidas por alimentador no deben superar los 2 dB. [37]

2.8.13 Potencia de Ruido Térmico del Receptor, \(N_r \)

El ruido térmico es producto del movimiento aleatorio de los electrones en un conductor, este tipo de ruido se encuentra presente en todos los circuitos electrónicos. Para determinar la potencia de ruido térmico se recurre a la expresión (5).

\[
N_r = 10 \log (KTB) + NF
\]

(5)

Donde \(k = 1.38 \times 10^{-23}\, julio/k \) es la constante de Boltzmann, \(T = 290^0\, K \) la temperatura equivalente de ruido, \(B \) el ancho de banda en el cual se está midiendo el ruido y \(NF \) la figura de ruido del receptor. [38] [45]

Reemplazando \(k, T, B \) y \(NF \) en (4) se obtiene que \(N_r = -112,7\,dBm \). Este valor debe ser considerado para la planificación de la radiodifusión sonora digital terrestre con ISDB-TSB.

2.8.14 Potencia de Ruido Externo, \(No \)

La potencia de ruido externo es el ruido externo recibido a través de la antena. Basándose en los valores de potencia de ruido artificial en la recomendación UIT-R P.372 el valor requerido está determinado por la expresión (6). [37]

\[
No = -104,6\,dBm - \text{perdidas _alimentador}
\]

(6)

El valor de ruido externo para diseño y planificación de la radiodifusión sonora digital terrestre con ISDB-TSB es \(N_o = -106,6\,dBm \).

2.8.15 Potencia Total de Ruido del Receptor, \(N_t \)

La potencia total de ruido en la entrada del receptor está dado por la suma de la potencia de ruido térmico del receptor el cual es intrínseco y la potencia de ruido externo. La expresión (7) determina la potencia total de ruido del receptor. [37]

\[
N_t = N_r + No
\]
\[N_r = 10 \log(10^{(N_r/10)} + 10^{(N_0/10)}) \]
(7)

Reemplazando \(N_r \) y \(N_0 \) en la expresión 7 el valor de la potencia de ruido a tener presente para el diseño y la planificación de la radiodifusión sonora digital con ISDB-TSB es -105,6 dBm.

2.8.16 Potencia Mínima Utilizable a la Entrada del Receptor

Potencia mínima utilizable en recepción está determinada por la expresión (8). En la tabla 17 se presentan los valores para diferentes tipos de modulaciones y formas de recepción. [37]

\[P_{\text{min, utilizable}} = (C/N)_{\text{necesaria_receptor}} + N_t \]
(8)

<table>
<thead>
<tr>
<th>Tabla 17. Potencia Mínima Utilizable. [37]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esquema de Modulación</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>QPSK</td>
</tr>
<tr>
<td>Potencia Mínima Utilizable (dBm)</td>
</tr>
</tbody>
</table>

2.8.17 Ganancia de la Antena de Recepción

La antena de recepción, es una antena monopolo de \(\lambda/4 \) representativa de la recepción móvil y portátil, la cual tiene una altura de 1,5 metros sobre el nivel del suelo y una ganancia para recepción móvil, portátil o fija no inferior a –0,85 dBi. [37]

2.8.18 Intensidad de Campo Mínima Utilizable (Emin)

Es el valor mínimo de intensidad de campo que permite obtener una calidad aceptable en recepción en presencia de ruidos naturales, artificiales y en ausencia de interferencias producto de otras transmisiones. El valor mínimo de campo utilizable depende de la sensibilidad del receptor, la antena y el ruido. La calidad deseada viene determinada por la relación de protección contra el ruido y, en caso de fluctuaciones de este, por el porcentaje de tiempo durante el cual ha de lograrse la relación de protección.

El valor de Emin para diferentes modulaciones y formas de recepción se presenta en la tabla 18. [37] [46]

<table>
<thead>
<tr>
<th>Tabla 18. Valores de Emin. [37]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esquema de Modulación</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>QPSK</td>
</tr>
<tr>
<td>Emin (dB (µV / m))</td>
</tr>
</tbody>
</table>

El método de la predicción de la intensidad de campo se basa en curvas de 50% de los emplazamientos y el 50 % del tiempo de la señal deseada, y el 50 % de los emplazamientos y el 1 % del tiempo de la señal deseada.

2.8.19 Corrección de la Tasa de Emplazamientos

La desviación típica de las variaciones o de acuerdo a la recomendación UIT-R P.1546 es de 5,5 dB para la señal de radiodifusión digital. En el caso de recepción móvil, el valor de corrección de emplazamiento del 50% al 99%1 es 12,9 dB (2,33 x σ), en el caso de recepción portátil, el valor de corrección de emplazamiento del 50% al 70%1 es 2,9 dB (0,53σ). [37]
2.8.20 Pérdidas de Penetración en Muros
Para la recepción en interiores, debe considerarse la pérdida que sufre la señal al atravesar las paredes. Las pérdidas de penetración media son de 8 dB con una desviación típica de 4 dB. Suponiendo una tasa de emplazamientos del 70% (0,53σ) para receptores portátiles, el valor es de 10,1 dB. [37]

2.9 REQUERIMIENTOS PARA REDES SFN EN ISDB-TSB
Para implementar redes SFN es necesario realizar inicialmente un diseño del enlace en el cual se debe llevar a cabo análisis geográfico del terreno para determinar los emplazamientos para la ubicación e instalación de los sistemas de transmisión y/o estaciones repetidoras, altura de las torres, línea de vista, exploración de los lugares para determinar el acceso a los sitios, disponibilidad de energía eléctrica, entre otros factores. Además, es necesario realizar cálculos de propagación para determinar zonas de Fresnel, pérdidas por propagación, cálculos de potencia y margen de umbral en recepción para determinar la viabilidad del enlace. El siguiente paso es determinar los parámetros técnicos de los equipos como son la frecuencia de operación, potencia de transmisión, ganancia de las antenas, entre otros. Finalmente se realiza la instalación de los equipos en los lugares establecidos considerando una adecuada puesta a tierra de los mismos, alineamiento de antenas y pruebas en transmisión.

Uno de los requerimientos más importantes en las redes SFN es la sincronización de la red para lo cual es necesario tener en cuenta la estabilidad y exactitud en la frecuencia de trabajo, frecuencia de muestreo y formación de las señales OFDM, con el fin de establecer sincronismo en la red y con otros radiodifusores de redes SFN. A continuación se exponen los requerimientos más importantes a tener en cuenta para implementación de redes SFN. [16]

2.9.1 Estabilidad y Exactitud en la Frecuencia de Trabajo
Para prevenir interferencias entre portadoras dentro del área de servicio de una red SFN, las variaciones en la frecuencia de transmisión de cada radiodifusor en caso de presentarse, no deben exceder de 1 Hz, para obtener estabilidad y exactitud en la frecuencia se debe garantizar que cada subportadora tenga la misma posición de frecuencia en el canal de radio frecuencia. [16]

2.9.2 Frecuencia de Muestreo
Para implementar redes SFN utilizando la técnica de transmisión OFDM, las señales generadas mediante la IFFT deben ser idénticas, cuando se usan diversos multiplexores OFDM, con el fin de que las frecuencias no difieran entre ellas. La diferencia afecta el periodo de los símbolos OFDM, por tanto su velocidad; un cambio más allá de la longitud del intervalo de guarda entre señales OFDM produce interferencia entre símbolos. La frecuencia de muestreo del multiplexor OFDM debe tener una precisión de +/- 0,3 partes por millón. [16]

2.9.3 Señales OFDM
Cuando se utilizan múltiples sistemas OFDM, la señal de salida OFDM debe ser la misma en todas las estaciones de la red SFN. [16]

2.9.4 Distancia Máxima de Separación Entre Transmisores
La distancia de separación entre dos transmisores permite obtener la diferencia de tiempo, o intervalo de guarda en la que debe llegar la señal de cada transmisor al punto de medida, si se sabe que los dos transmisores transmiten al mismo tiempo y en la misma frecuencia. Durante el intervalo de guarda todas las señales recibidas por el receptor contribuyen positivamente y las señales retrasadas no causan interferencia. Las señales recibidas después del intervalo de guarda causan interferencia entre símbolos y como consecuencia perdida de información de la señal en recepción. Por esta razón se debe garantizar que las señales que recibe el receptor lleguen dentro del intervalo de guarda para lo cual los dos transmisores deben estar separados una distancia menor a la que recorre la onda en el
intervalo de guarda. La distancia máxima de separación entre dos transmisores se obtiene a partir de la expresión (8). \[d_{\text{max}} = C \cdot T_g \] \[(9) \]

Donde, \(d_{\text{max}} \) distancia máxima de separación, \(C \) velocidad de propagación y \(T_g \) tiempo o intervalo de guarda. La expresión (8) indica que para garantizar que la señal llegue al receptor durante el intervalo de guarda, los transmisores deben estar separados una distancia menor o igual a la distancia máxima de separación. En la tabla 19 se presentan las máximas distancias a la cual pueden estar separados los transmisores de una red SFN.

<table>
<thead>
<tr>
<th>Modo</th>
<th>Longitud Símbolo (µs)</th>
<th>Intervalo Guarda</th>
<th>Duración (µs)</th>
<th>Distancia entre Transmisores (Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>252</td>
<td>1/4</td>
<td>63</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8</td>
<td>31.5</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/16</td>
<td>15.75</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/32</td>
<td>7.875</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>504</td>
<td>1/4</td>
<td>126</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8</td>
<td>63</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/16</td>
<td>31.5</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/32</td>
<td>15.75</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>1008</td>
<td>1/4</td>
<td>252</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/8</td>
<td>126</td>
<td>37.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/16</td>
<td>63</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/32</td>
<td>31.5</td>
<td>9.5</td>
</tr>
</tbody>
</table>

2.9.5 Ajustes de Retardo de la Señal

Con el fin de transmitir una señal sincronizada en una red SFN es necesario ajustar un tiempo preciso de sincronización, para lo cual se debe emplear una referencia de tiempo y frecuencia, esto se consigue por medio de la utilización de receptores GPS. En la figura 35 se presenta un modelo de sincronización en una red SFN. \[16\]

![Figura 35. Utilización de Receptores GPS para la Sincronización de una Red SFN. \[16\]](image)

Para concluir con este capítulo, el avance logrado permite dar a conocer los requerimientos de los servicios de radiodifusión sonora digital terrestre y los requerimientos técnicos del estándar ISDB-TSB que posibilitan su planificación e implementación como sistema de radiodifusión sonora digital. Estos son de gran importancia para determinar la viabilidad técnica de implementación del estándar ISDB-TSB como sistema de radiodifusión sonora digital. Además de los requerimientos, se expusieron consideraciones básicas, estrategias, modelos y métodos de transición que deberán ser tenidos en cuenta para una futura implementación del servicio de radiodifusión sonora digital terrestre en Colombia con el fin de definir el mejor camino que permita su implementación.
CAPÍTULO III. ANÁLISIS DE LA VIABILIDAD TECNICA DE LA IMPLEMENTACIÓN DEL ESTÁNDAR ISDB-TSB EN UNICAUCA ESTÉREO

La radiodifusión digital terrestre ha demostrado su eficacia en la utilización del espectro radioeléctrico y la capacidad de brindar servicios de alta calidad a usuarios a través de receptores fijos, móviles y portátiles, además de permitir la creación de nuevos contenidos, por esta razón, un gran número de países en los que se incluye Colombia han manifestado su interés en estas tecnologías, iniciando estudios encaminados a determinar la viabilidad de la implementación de sistemas de radiodifusión de video y sonido digital terrestre, plantando además estudios técnicos, sociales, políticos, económicos, con el fin de determinar la tecnología de radiodifusión más adecuada de acuerdo a las condiciones y necesidades de cada país. Debido a esto y al interés presentado por Colombia en esta temática, se realiza el análisis de la viabilidad técnica de la implementación del estándar de radiodifusión sonora digital terrestre ISDB-TSB en Unicauca Estéreo.

En este capítulo se realiza el análisis del entorno, ya que es necesario conocer las condiciones geográficas y de regulación existentes en cuanto a los servicios de radiodifusión sonora; posteriormente se analiza la infraestructura de Unicauca Estéreo con el fin de determinar la factibilidad técnica de implementar el sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB y por último se proponen criterios de evaluación los cuales permiten determinar la viabilidad técnica de la implementación del estándar ISDB-TSB en Unicauca Estéreo.

3.1 ENTORNO COLOMBIANO Y SITUACION NORMATIVA DE RADIODIFUSIÓN SONORA

Colombia ya inició la implementación de la Televisión Digital Terrestre TDT y ha planteado estudios encaminados a analizar las tecnologías orientadas al servicio de radiodifusión sonora digital terrestre, en estos estudios es necesaria la realización de pruebas técnicas y de funcionamiento de los diferentes estándares para evaluar su desempeño en condiciones reales de operación, para este proceso deben tenerse en cuenta las condiciones geográficas del territorio colombiano, la regulación de los servicios de radiodifusión sonora, la disponibilidad de frecuencias para este servicio, entre otros aspectos. A continuación se describen las condiciones geográficas del territorio colombiano haciendo énfasis en el departamento del Cauca debido a que es el entorno de interés de este proyecto.

3.1.1 Geografía Colombiana

Colombia cuenta con una superficie de 2.070.408 Km² de los cuales 1.141.748 Km² corresponden a su territorio continental y los restantes 928.660 Km² a su extensión marítima, sus características topográficas están definidas por el conjunto de cordilleras, cadenas montañosas y zonas planas. El territorio colombiano está dividido en una región montañosa y una región plana, la región montañosa está constituida por el nudo de los Pastos, el Macizo Colombiano, la Cordillera de los Andes, la cual se ramifica en tres secciones formando las Cordilleras Occidental, Central y Oriental, las regiones planas se localizan al este de la Cordillera Oriental, al oeste de la Cordillera Occidental, al norte del país, así como en los valles y altiplanos interandinos. El departamento del Cauca, es una representación de la geografía colombiana donde su superficie representa el 2.56% del territorio nacional, su topografía se ve representada por la llanura del pacífico, la cordillera central, la cordillera occidental que se extiende del suroeste al noroeste del departamento, los valles y llanuras. [47]

Debido a que el territorio colombiano presenta una geografía bastante accidentada uno de los mayores problemas que se presenta en los servicios de telecomunicaciones es la propagación por multitrayecto, la cual hace referencia a los diferentes trayectos por los cuales pasa la señal antes de llegar al receptor, también se presentan problemas de interferencia, desvanecimientos, entre otros los cuales deben ser superados por el sistema de radiodifusión sonora digital que se adopte.
3.1.2 Situación Normativa de Radiodifusión Sonora

En Colombia existen dos organismos encargados de la regulación del sector de las telecomunicaciones, cada uno con sus propias funciones atribuidas por ley y con sus respectivos reglamentos, estos organismos son la Comisión de Regulación de Comunicaciones CRC y el Ministerio de Comunicaciones. La CRC se encarga de promover y regular la competencia entre los operadores de servicios de comunicaciones del sector, fijar regímenes tarifarios, facilitar el uso de las tecnologías, entre otras funciones, con el fin de que toda la población pueda acceder a los beneficios de la sociedad del conocimiento. [48][49]

Por su parte el Ministerio de Comunicaciones es el encargado de la gestión, administración y control del espectro radioeléctrico, dentro de las funciones antes mencionadas corresponden las actividades de planeación, coordinación, fijación del cuadro de frecuencias mediante la asignación y verificación de frecuencias, otorgamiento de permisos para su utilización, también tiene como función la protección y defensa del espectro radioeléctrico, comprobación técnica de emisiones radioeléctricas, establecimiento de condiciones técnicas de equipos terminales y redes que utilicen en cualquier forma el espectro radioeléctrico, detección de irregularidades, perturbaciones y la adopción de medidas tendientes a establecer el correcto y uso racional del espectro radioeléctrico, y restablecerlo en caso de perturbaciones o irregularidades. Es entonces el Ministerio de Comunicaciones el ente oficial que regula el servicio de radiodifusión sonora. [48][49]

El Ministerio de Comunicaciones ha establecido para los servicios de radiodifusión sonora analógicos los planes técnicos de radiodifusión sonora en AM y FM, este último establece el marco técnico que posibilita la adjudicación del mayor número de canales radioeléctricos posibles para un municipio libre de interferencias objetables, de tal forma que se facilite la asignación de estos canales y se racionalice su uso, además de la asignación de frecuencias necesarias para la operación de las estaciones de radiodifusión sonora en FM y enlaces entre estudio y sitio de transmisión. [48][49]

Por otra parte, hasta la fecha el Ministerio de Comunicaciones ha propuesto adelantar estudios con el fin de determinar el estándar digital de radiodifusión sonora más apropiado al entorno colombiano y sus alternativas de implementación, definir las políticas regulatorias del servicio y del uso del espectro, pero no ha establecido ninguna iniciativa de regulación y tampoco ha definido un cronograma que guíe el proceso en los próximos años.

3.1.3 Asignación de Bandas de Frecuencia para los Servicios de Radiodifusión Sonora

El espectro radioeléctrico según la ITU es el conjunto de ondas electromagnéticas, cuya frecuencia se fija convencionalmente por debajo de los 300 GHz, las cuales se propagan por el espacio sin guía artificial. El espectro radioeléctrico se divide por medio de bandas de frecuencias las cuales por convención han distribuido los distintos servicios de telecomunicaciones. En la tabla 20 se presentan las bandas del espectro radioeléctrico de acuerdo a los rangos de frecuencias utilizados. [50][51]

<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Frecuencias</th>
<th>Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELF (Extra Baja Frecuencia)</td>
<td>3-30 Hz</td>
<td>Sonido en la parte más baja (grave) del intervalo de percepción del oído</td>
</tr>
<tr>
<td>SLF (Súper Baja Frecuencia)</td>
<td>30-300 Hz</td>
<td>Sonidos graves que percibe el oído humano</td>
</tr>
<tr>
<td>ULF (Ultra Baja Frecuencia)</td>
<td>300 – 3000 Hz</td>
<td>Frecuencia sonora normal</td>
</tr>
<tr>
<td>VLF (Frecuencias muy Bajas)</td>
<td>3 – 30 KHz</td>
<td>Comunicaciones gubernamentales y militares.</td>
</tr>
<tr>
<td>LF (Frecuencias Bajas)</td>
<td>30 – 300 KHz</td>
<td>Navegación aeronáutica y marina</td>
</tr>
<tr>
<td>MF (Frecuencias Medias)</td>
<td>300 – 3000 KHz</td>
<td>Radiodifusión de AM</td>
</tr>
<tr>
<td>HF (Frecuencias Altas)</td>
<td>3 – 30 Mhz</td>
<td>Radiodifusión, comunicaciones gubernamentales y militares</td>
</tr>
<tr>
<td>VHF (Muy Alta Frecuencia)</td>
<td>30 – 300 Mhz</td>
<td>Radio móvil, comunicaciones marinas y aeronáuticas, transmisión de radio en FM</td>
</tr>
</tbody>
</table>
El Ministerio de Comunicaciones de Colombia cuenta con un Cuadro Nacional de Atribución de Bandas de Frecuencias para llevar a cabo el control de los diversos servicios de telecomunicaciones en las bandas anteriormente mencionadas. La distribución de frecuencias para los servicios de radiodifusión sonora analógica que actualmente ofrece Colombia se rige de acuerdo a la distribución realizada por la ITU para la Zona II a la cual pertenece Colombia, estas bandas de frecuencias se encuentran en las bandas de MF y VHF. La primera va desde los 535 KHz hasta 1605 KHz y corresponde a la banda de frecuencia asignada al servicio de radiodifusión sonora en AM, por otra parte la segunda banda correspondiente a las frecuencias desde 88 MHz hasta 108 MHz la cual es destinada al servicio de radiodifusión sonora en FM. [34]

El Ministerio de Comunicaciones ha definido el plan técnico nacional de frecuencias para enlaces entre estudios y sistema de transmisión, este tiene como objetivo asignar los canales necesarios para la operación de las estaciones de radiodifusión sonora, la banda adjudicada para su operación es de 300 MHz hasta 328.6 MHz con una separación por canal de 200 KHz. [1]

Para el servicio de radiodifusión sonora digital terrestre, Colombia no cuenta con una banda de frecuencia que este siendo regulada y/o reservada a futuro para este nuevo servicio, lo que implica que la banda de frecuencia de operación a establecer dependerá básicamente del estándar de radiodifusión sonora digital terrestre adoptado en el país. Dependiendo del estándar escogido, se podrán liberar o no ciertas bandas de frecuencia usadas actualmente, por ejemplo la adopción del estándar IBOC, permitiría utilizar la misma banda de frecuencia del servicio analógico en FM, en caso de no escoger esta opción; el servicio de radiodifusión sonora digital terrestre se podría trasladar a la banda III VHF (174 MHz - 240 MHz) si es seleccionado el estándar ISDB-TSB o la banda L (1452 MHz -1492 MHz) al seleccionar el estándar DAB, siguiendo la recomendación 1114R2 de la UIT. [34]

3.2 ANÁLISIS DE FACTIBILIDAD DE IMPLEMENTACIÓN DE ISDB-TSB

Para implementar el estándar ISDB-TSB se deben considerar los métodos de transición expuestos en la sección 2.6 del capítulo II y las alternativas que tiene un radiodifusor para iniciar este proceso. La primera consiste en la adaptación de las características del estándar a la infraestructura actual de un sistema de radiodifusión sonora, la segunda alternativa de un radiodifusor se basa en la adquisición de equipos digitales e infraestructura totalmente nueva para brindar el servicio de radiodifusión sonora digital terrestre, cabe resaltar que esta opción, es posiblemente la más conveniente ya que se tendría en un futuro inmediato una estación de radiodifusión sonora totalmente digital, pero a su vez involucra una gran inversión económica que puede posiblemente retrasar la implementación. La primera opción reduce costos de implementación y por esta razón se tiene en cuenta para determinar la factibilidad técnica de implementar el estándar ISDB-TSB.

La factibilidad técnica de un proyecto implica de acuerdo a su definición, la realización de una evaluación que demuestre que el proyecto puede ponerse en marcha, teniendo en cuenta los problemas que involucra. De acuerdo a lo anterior, factibilidad técnica en el presente contexto se adopta como la evaluación que demuestre que el sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB puede ser implementado en Unicauca Estéreo, mostrando evidencia cómo puede ser logrado contemplando los problemas que involucra dicha implementación. Para determinar la factibilidad técnica se analizarán los equipos actuales de los estudios, el enlace estudio-sitio de transmisión, sistema de transmisión con el fin de establecer si la infraestructura de Unicauca Estéreo puede ser adaptada para ofrecer el servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, además se analizará si ISDB-TSB permite: mejorar la calidad de los servicios que ofrece Unicauca Estéreo, brindar...
mayor cobertura que el actual sistema de radiodifusión sonora analógico en FM y satisfacer las necesidades de Unicauca Estéreo. A continuación se presenta el desarrollo de la evaluación de estos aspectos.

3.2.1 Análisis de los Equipos en los Estudios de Unicauca Estéreo

El equipo principal de los estudios de Unicauca Estéreo es la consola Audio Digital D-75, a la cual se conectan todas las fuentes de entrada y salida de audio, es la encargada de amplificar o atenuar el nivel de la señal, mezclar las fuentes de audio de entrada, permitir el monitoreo del audio y generar la señal del programa que será emitida por Unicauca Estéreo, entre otras funciones. La consola Audio Digital D-75 es híbrida debido a que se pueden conectar fuentes de audio analógicas con la utilización de tarjetas ADC-75 y/o digitales AES/EBU con la utilización de tarjetas SRC-75. La tarjeta ADC-75 realiza la conversión de señales de audio analógico entrantes a digitales y la SRC-75 acepta señales de audio de entrada en formato digital AES/EBU, lo anterior con el fin de realizar internamente el procesamiento de la señal del programa en formato digital. La consola Audio Digital D-75 posibilita la generación de la señal del programa en formato analógico (canal Left y canal Right) y digital AES/EBU de manera simultánea. [52]

Actualmente Unicauca Estéreo entrega desde sus estudios a los equipos del enlace STL encargados de enviar la información al sitio de transmisión, la señal del programa en formato analógico, por lo que la consola Audio Digital entrega a su salida los canales Left y Right. Para mayores especificaciones técnicas de la consola remítase al anexo A. En la figura 36 se presenta el diagrama de conexiones de todas las fuentes de audio de entrada y salida de la consola Audio Digital D-75. [52]

![Figura 36. Diagrama de Conexión de los Equipos en los Estudios de Unicauca Estéreo.](image)

El procesamiento del audio (canales Left y Right) se realiza en los estudios por medio del generador estéreo Orban Optimod FM 8100/A el cual se encarga de procesar los canales L y R para generar la señal estéreo (L+R y L-R) que posteriormente es entregada al transmisor STL 7700B, el cual realiza el envío de la señal hasta el sitio de transmisión.
Los equipos utilizados actualmente por Unicauca Estéreo en sus estudios son destinados exclusivamente para generar la señal del programa, implicando que para ofrecer otros servicios (datos) es necesaria la adquisición de nuevos equipos, en su elección Unicauca Estéreo debe considerar la calidad y el servicio a ofrecer.

De acuerdo a lo anterior, por las características de la consola Audio Digital D-75 es posible transmitir desde los estudios un flujo de audio digital conjuntamente con el audio analógico de forma simultánea hacia los equipos del enlace estudio-sitio de transmisión.

3.2.2 Análisis del Enlace Estudio Sitio de Transmisión

La frecuencia asignada para el enlace entre el estudio y el sitio de transmisión es 302.9 MHz, la transmisión se realiza utilizando un transmisor/receptor de la serie 7700B de la marca TFT descritos en el anexo A. Estos equipos no tienen directamente la capacidad de transmitir varios canales de audio en formato analógico, señales digitales AES/EBU y datos, necesarios para satisfacer las nuevas necesidades de transmisión de información desde los estudios hasta el sistema de transmisión que implican los servicios de la radiodifusión sonora digital terrestre.

El transmisor/receptor 7700B por condiciones técnicas es posible adaptarlo para que transmita y reciba una señal en banda base, para esto es necesaria la adición de un modem/multiplexor digital DMM92E en transmisión y un modem/demultiplexor DMM92D en recepción. La adición permite transmitir desde los estudios al sitio de transmisión una señal de audio digital AES/EBU, canales de audio analógico y un canal de datos de 32 Kbps, en un flujo de datos multiplexado de 450 Kbps o 590 Kbps. El diagrama de bloques de la nueva configuración es presentado en la figura 37. [35]

[Diagrama de bloques]

Figura 37. Actualización de los Equipos STL. Para Mayor Capacidad de Transmisión. [35]

Mediante la adición del Modem/Multiplexor DMM92 Digital STL en transmisión y Modem/Demultiplexor DMM92 Digital STL en recepción, es posible conservar los mismos equipos utilizados para realizar el enlace STL, debido a que permiten multiplexar audio y datos que se generen en el estudio y realizar el proceso de demultiplexación en el sitio de transmisión. El Modem/Multiplexor digital incrementa la capacidad de transmisión, permite considerar mayores distancias de transmisión, provee una alta relación señal a ruido por canal de audio, entradas y salidas en el estándar AES/EBU, además de proveer corrección de errores. [35]

3.2.3 Análisis del Sistema de Transmisión

El sitio de transmisión de Unicauca Estéreo es tal vez el lugar donde deben realizarse las mayores modificaciones y/o adecuaciones ya que es básicamente aquí donde el sistema de radiodifusión sonora digital terrestre ISDB-TSB es implementado. Para que Unicauca Estéreo pueda brindar los servicios de radiodifusión sonora analógico y digital de manera simultánea durante un periodo de transmisión, se debe considerar los métodos de transición expuestos en el capítulo II sección 2.6; a continuación se expondrá el análisis de la factibilidad de cada método para ser implementado en Unicauca Estéreo.

- Método de Alto Nivel y Combinado de Bajo Nivel

En el método de alto nivel y combinado de bajo nivel, se utiliza la misma antena para la transmisión del servicio de radiodifusión sonora analógico y digital, debido a esta razón es necesario que la antena de transmisión cuente con un amplio rango de frecuencias de operación (antena multibanda), el cual debe comprender las bandas de...
frecuencias de 88 MHz – 108 MHz para el servicio de radiodifusión en FM y banda III de VHF para el servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB.

La antena que actualmente utiliza Unicauca Estéreo opera solamente en el rango de frecuencias de 88 MHz – 108 MHz, con lo cual se descartaría la posibilidad de implementar estos métodos de transición, a menos que se adquiera una nueva antena con las condiciones de operación antes mencionadas, además es necesario tener en cuenta las consideraciones expuestas en la sección 2.6.1 y 2.6.2 para cada uno de los métodos.

La necesidad de adicionar un combinador en ambos métodos hace necesario compensar las pérdidas introducidas por este, por lo cual se hace necesario aumentar la potencia de transmisión. El combinador utilizado es denominado combinador híbrido, el cual se caracteriza por la gran cantidad de potencia que desperdicia, un híbrido puede ser de 3 dB (50 % de la potencia de salida), 4,8 dB (67 % de la potencia de salida) y 6 dB (75 % de la potencia de salida).

- **Método de Antenas Separadas**

En el método de antenas separadas la condición básica, es el procesamiento de la señal analógica y digital por separado, el cual requiere de espacio disponible en la torre de transmisión, además de las consideraciones mencionadas en la sección 2.6.3 del capítulo II. La implementación del método de antenas separadas considera los equipos y la infraestructura actual de Unicauca Estéreo para proporcionar el servicio de radiodifusión sonora analógico, mientras que para el servicio de radiodifusión sonora digital terrestre se hace necesario la adquisición de nuevos equipos definidos en la sección 2.6.3 para la generación y transmisión de la señal ISDB-TSB.

Un factor determinante en el método de antenas separadas es la necesidad de instalar una nueva antena en la torre de transmisión de Unicauca Estéreo. La torre de 50 metros utilizada por Unicauca Estéreo está debidamente tensada y no se encuentra sobrecargada dado que solo están instaladas la antena de recepción del enlace STL y la antena de transmisión del servicio de radiodifusión sonora en FM, esta última se encuentra ubicada a una altura de 48 metros del suelo, de acuerdo a lo anterior hay disponibilidad de espacio y las condiciones de la torre de transmisión permiten instalar una nueva antena para el servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB, para esto se debe considerar una separación entre las antenas (servicio analógico y servicio digital), la cual puede estar determinada por el diámetro de las mismas, ya que por operar en diferentes frecuencias (88-108 MHz y banda III VHF) y utilizar señales con modulación en frecuencia y señales OFDM no interfieren la una con la otra, también se podría considerar la distancia de separación dada por la expresión (10).

\[d_{\text{separación}} = \frac{3\lambda}{2} \]

La implementación de cualquiera de los tres métodos de transición requiere mayor consumo de energía, nuevos equipos en los que se incluye el transmisor digital, debido a que el transmisor utilizado actualmente por Unicauca Estéreo no ofrece condiciones de operación adecuadas para ser adaptado a las condiciones de transmisión digital, debido a esto, solo se considera su utilización para la continuación del servicio de radiodifusión sonora analógico en FM para la etapa de transición, otras consideraciones a tener en cuenta son: adecuaciones a la caseta y sistema de ventilación. En la tabla 21 se presentan las implicaciones que involucra cada método de transición para ser implementado en Unicauca Estéreo.

<table>
<thead>
<tr>
<th>Implicaciones</th>
<th>Alto Nivel</th>
<th>Amplificación Común</th>
<th>Antenas Separadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generador Digital ISDB-TSB</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Excitador/Up converter (transmisión)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nueva Antena (87,5-108) MHz y Banda III de VHF</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Línea de transmisión</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combinador</td>
<td>✓</td>
<td>✓</td>
<td>No</td>
</tr>
<tr>
<td>Necesidad de Introducir Retardo</td>
<td>✓</td>
<td>✓</td>
<td>No</td>
</tr>
</tbody>
</table>

Tabla 21. Requerimientos de los Métodos de Transición
De acuerdo a la tabla 21, el método de transición que más se adecua para ser implementado en Unicauca Estéreo es el método de antenas separadas debido a que no hay necesidad de adicionar un combinador e introducir retardos en la señal analógica, hay disponibilidad para la instalación de una nueva antena en la torre de transmisión además que este método permite ofrecer redundancia debido a que los problemas que afecten al sistema de transmisión analógico son independientes del sistema digital y viceversa.

El diagrama de bloques de la configuración del sistema de radiodifusión de Unicauca Estéreo para proporcionar el servicio de radiodifusión sonora analógico en FM y radio digital basado en el estándar ISDB-TSB de forma simultánea, con el método de antenas separadas es presentado en la figura 38.

La nueva configuración del sistema de radiodifusión de Unicauca Estéreo presentada en la figura 38, permite la transmisión simultánea de los servicios de radiodifusión sonora en FM y radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, con la cual se lograría transmitir un flujo de audio analógico para el servicio en FM, un flujo de audio digital, además de datos para el servicio de radiodifusión sonora digital basado en ISDB-TSB desde los estudios hasta el sitio de transmisión.

Figura 38. Sistemas de Transmisión FM y ISDB-TSB
3.2.4 Mejorar la Calidad de los Servicios

Como se expuso en la sección 1.2.6 del capítulo I, la calidad de los servicios ofrecidos por Unicauca Estéreo está determinada por la tecnología de radiodifusión sonora analógica utilizada.

Para brindar mayor calidad en sonido comparado con el sistema analógico, ISDB-TSB ha adoptado la tecnología de multiplexación MPEG-2 y el sistema de codificación flexible de audio de alta eficiencia MPEG-2 AAC, este último permite codificación de audio en versiones mono, estéreo, estéreo multicanal (3/1, 3/2, 3/2+LFE) y/o 2 señales de audio (dual mono), como resultado de la utilización de MPEG-2 y MPEG-2 AAC, ISDB-TSB permite ofrecer audio con tasas de bit que van desde los 8 Kbps para señales monofónicas de voz, hasta tasas de bits de 192 Kbps para señales de audio de muy alta calidad.

La tasa de bits para las señales de audio depende directamente de la frecuencia de muestreo seleccionada, la cual puede ser escogida entre: 16 KHz, 22,05 KHz, 24 KHz, 32 KHz, 44.1 KHz frecuencia que se usa en los CD de música y 48 KHz. ISDB-TSB cuenta además, con tres modos que indican la calidad de las señales de audio, estos modos son denominados modo A, modo B y modo C. El modo A indica calidad de audio disponible para radiodifusión digital satelital con tasas de bits desde 192 Kbps hasta 256 Kbps; el modo B, indica la calidad de audio definido por la ITU para la radiodifusión digital 144 Kbps o más, y el modo C, indica una calidad de audio limitada al comparado con los modos A y B. [53] [54] [55]

De acuerdo a lo expuesto en esta sección, el estándar de radiodifusión sonora digital terrestre permitiría mejorar la calidad de los servicios ofrecidos por Unicauca Estéreo.

3.2.5 Brindar Mayor Cobertura que el Actual Servicio de Radiodifusión Sonoro en FM

Como se expuso en la sección 1.2.7 del capítulo I, la cobertura de Unicauca Estéreo se estima en 18,8 Km, donde su alcance comprende el sector urbano y alrededores cercanos de la ciudad de Popayán, la figura 4 del capítulo I representa una estimación gráfica de la cobertura.

ISDB-TSB permitiría a Unicauca Estéreo brindar mayor cobertura local, porque gracias a la tecnología utilizada logra igualar y superar la cobertura del servicio de radiodifusión sonora analógico en FM. En la figura 39, se muestra como se logra superar la cobertura local del servicio de radiodifusión analógico mediante la utilización de la tecnología ISDB-TSB con la utilización de menor consumo de potencia de transmisión; esta descripción gráfica es posible mediante la herramienta de simulación ICS TELECOM.

Para alcanzar cobertura a nivel regional y a nivel nacional, ISDB-TSB utiliza las ventajas de la implementación de una red SFN, la cual además de brindar mayor cobertura, permite optimizar el uso del espectro radioeléctrico en el sentido que no utiliza un gran número de frecuencias como lo hacen las redes de frecuencia múltiple.

El estándar ISDB-TSB permite el establecimiento y configuración de redes SFN donde su área de cobertura dependerá del modo de transmisión elegido, el intervalo de guarda, el esquema de modulación, la tasa de codificación y las características geográficas donde se encuentre instalada la infraestructura de transmisión. En la figura 40 se puede apreciar el cubrimiento del servicio de radiodifusión sonora digital terrestre en las zonas de interés de Unicauca Estéreo mediante la implementación de una red SFN. En el anexo F, se demuestra como ISDB-TSB puede dar cubrimiento a una área de cobertura similar a la alcanzada por el servicio de radiodifusión sonora analógico en FM, con la utilización de menor consumo de potencia y en el anexo G se presenta la configuración de los parámetros establecidos para transmisión local y para el establecimiento de una red SFN para dar mayor cobertura local y regional respectivamente.

4 Canal Enlace Baja Frecuencia, permite la mejora de las frecuencias bajas (LFE, Low Frequency Enhancement)

5 Número de Canales Frontales y Traseros: Ejemplo: (3/1, 3 Frente/1 Atrás)
Figura 39. Cobertura del Servicio de Radiodifusión Sonora Digital ISDB-TSB

Figura 40. Cubrimiento del Servicio de Radiodifusión Sonora Digital Mediante una Red SFN
De acuerdo a lo expuesto en esta sección y considerando las figuras 39 y 40, el estándar de radiodifusión sonora digital terrestre ISDB-TSB permitiría aumentar la cobertura del servicio de radiodifusión sonora ofrecido por Unicauca Estéreo en el municipio de Popayán y con la implementación de una red SFN lograría dar cubrimiento a los sitios de interés para ampliar su oferta educativa en el departamento.

3.2.6 Satisfacer las Necesidades de Unicauca Estéreo

De acuerdo a lo expuesto en la sección 1.2.8 del capítulo I, las necesidades de Unicauca Estéreo se pueden resumir en: aumentar cobertura, lograr interactividad con el oyente y ofrecer servicios de datos.

La distribución del servicio de radiodifusión sonora digital terrestre no incorpora directamente un canal de retorno como medio de transmisión que garantice la interactividad completa entre el oyente y el radiodifusor, este último debe considerar el canal de retorno como un componente adicional del sistema, el cual puede ser provisto por cualquier tecnología disponible de acceso a redes de datos. El número de alternativas es cada vez mayor debido al desarrollo tecnológico, en principio el canal de retorno puede ser realizado contemplando algunas de las siguientes tecnologías de acceso a redes: Red Telefónica Publica Commutada (PSTN, Public Switched Telephone Network), Red Digital de Servicios Integrados (ISDN, Integrated Services Digital Network), Línea Suscrita Digital Asimétrica (ADSL, Asymmetric Digital Subscriber Line), Sistema de Distribución Local Multipunto (LMDS, Local Multipoint Distribution Service), Sistema Global Comunicaciones (GSM, Global System for Mobile communications), Servicio General de Paquetes vía Radio (GPRS, General Packet Radio Service), Sistema Universal de Telecomunicaciones Móviles (UMTS, Universal Mobile Telecommunications System), entre otros. El desarrollo de los servicios interactivos a través de las redes de transmisión terrestre digital está condicionado al uso de alguna de estas tecnologías. [56]

ISDB-TSB cuenta con una serie de protocolos los cuales se relacionan con la capa de aplicación, capa de transporte, capa de red, capa de enlace de datos y capa física para la interconexión con redes de datos para la implementación del canal de retorno. En las tablas 7, 8, 9 y 10 del anexo C se listan los protocolos que utilizan cada una de estas capas para el acceso a redes de datos. Es de resaltar que el servicio de interactividad está aún en desarrollo y no se cuenta con un canal de retorno definido.

ISDB-TSB logra la interacción con el oyente, por medio de la comunicación entre el usuario y el programa que está recibiendo, por ejemplo al escuchar una canción el usuario puede acceder a información opcional como nombre del artista, título de la canción, nombre del álbum, programación que se esté ofreciendo, siempre y cuando dicha información sea puesta a disposición por el radiodifusor. El estudio de la implementación del canal de retorno para el servicio de radiodifusión sonora digital terrestre no se considera en este trabajo de grado debido a que no hay un canal de retorno definido para este servicio por el estándar ISDB-TSB.

De acuerdo a lo expuesto en esta sección y en la sección 3.2.5, ISDB-TSB logra satisfacer las necesidades de interactividad con el oyente y cobertura planteadas por Unicauca Estéreo.

3.2.7 Factibilidad Técnica de Implementar ISDB-TSB en Unicauca Estéreo

En la tabla 22 se presenta en resumen la evaluación de la factibilidad técnica de implementar ISDB-TSB en Unicauca Estéreo, teniendo en cuenta el problema encontrado y la forma de solucionarlo.

<table>
<thead>
<tr>
<th>Planteamiento</th>
<th>Respuesta</th>
<th>Método</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Es posible utilizar los actuales equipos del estudio de Unicauca Estéreo para un servicio multicast?</td>
<td>SI</td>
<td>El equipo más representativo de los estudios es la consola Audio Digital D-75 la cual genera de manera simultánea la señal del programa en formato analógico y digital, de acuerdo a esto se lograría la transmisión de audio analógico y digital desde los estudios. Para ofrecer servicio de datos, es indispensable conocer los servicios a ofrecer para la adquisición de equipos o</td>
</tr>
<tr>
<td>¿Es posible la reutilización de los equipos del enlace STL para lograr una transmisión digital hasta el sitio de transmisión?</td>
<td>Si</td>
<td>Con la adición del modem/multiplexor digital DMM92E en transmisión y el modem/demultiplexor DMM92D en recepción es posible una transmisión digital; con esta adición se logra mayor capacidad de transmisión, logrando transmitir un canal de audio en formato digital AES/EBU, dos canales de audio analógico y uno datos.</td>
</tr>
<tr>
<td>¿Es posible la reutilización de los equipos e infraestructura del sistema de transmisión?</td>
<td>Si/No</td>
<td>Los equipos del sistema de transmisión por sus características técnicas de operación solo se consideran para la continuidad del servicio de radiodifusión sonora analógico en FM, para el digital es necesario la adquisición de nuevos equipos. La torre de transmisión puede ser reutilizada al igual que la caseta de transmisión la cual requiere de algunas adecuaciones.</td>
</tr>
<tr>
<td>¿Es posible la implementación de ISDB-TSB en Unicauca Estéreo con alguno de los métodos de transición?</td>
<td>Si</td>
<td>De acuerdo a lo expuesto en la sección 3.2.3 el método de transición más adecuado para ser implementado en Unicauca Estéreo es el método de antenas separadas.</td>
</tr>
<tr>
<td>¿La implementación de ISDB-TSB permite una cobertura similar al servicio analógico?</td>
<td>Si</td>
<td>La implementación de ISDB-TSB permite aumentar la cobertura local en el municipio de Popayán y sus alrededores con la utilización de menor potencia de transmisión. Esto se puede corroborar comparando las figuras 4 y 39 y remitiéndose al anexo F.</td>
</tr>
<tr>
<td>¿ISDB-TSB logra satisfacer las necesidades presentadas por Unicauca Estéreo?</td>
<td>Si</td>
<td>Las necesidades se reflejan en aumento de cobertura, mejorar calidad de los servicios e interactividad con el oyente. Estas logran ser suplidas por ISDB-TSB.</td>
</tr>
</tbody>
</table>

Según lo expuesto en las secciones 3.2.1 hasta 3.2.6 y la tabla 22, se puede determinar que es factible técnicamente la implementación de un sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB en Unicauca Estéreo dado a que puede ser implementado con la infraestructura actual y mejorar el servicio de radiodifusión ofrecido, además de satisfacer las necesidades de esta estación. Para esto es necesario realizar algunas modificaciones en el sitio de transmisión, actualizar los equipos del enlace STL, adquirir nuevos equipos para la generación y transmisión de la señal digital, y considerar el método de antenas separadas para la transmisión simultánea del servicio de radiodifusión sonora analógico en FM y digital basado en ISDB-TSB.

3.3 CRITERIOS DE EVALUACIÓN

Este trabajo se centra en el análisis de los aspectos técnicos que involucra el estándar ISDB-TSB, pero es necesario considerar otros aspectos que inciden en la implementación del servicio de radiodifusión sonora digital terrestre basado en este estándar, los cuales son tenidos en cuenta para la definición de condiciones o reglas denominadas criterios que permiten en su conjunto determinar la viabilidad técnica de su implementación.

A continuación se plantean criterios de evaluación que permiten analizar la viabilidad técnica de la implementación del estándar de radiodifusión sonora digital terrestre ISDB-TSB en Unicauca Estéreo, modelo de radiodifusión sonora analógico en FM del contexto colombiano seleccionado para esta investigación. Los criterios expuestos no pretenden ser excluyentes ya que a juicio de otras personas pueden existir otros criterios que los complementen.
Criterio 1. Adaptabilidad del Estándar ISDB-TSB a las Condiciones del Entorno

Para estudiar la posibilidad de adoptar el estándar ISDB-TSB para el servicio de radiodifusión sonora digital terrestre en Colombia, es necesario que el estándar permita adaptarse a las condiciones geográficas del territorio colombiano y a la regulación actual y futura de los servicios de radiodifusión sonora. Para este proyecto se deben analizar las condiciones que presenta el entorno de Unicauca Estéreo.

La diversidad geográfica del territorio obliga a que el estándar de radiodifusión sonora digital terrestre ISDB-TSB contrarreste las implicaciones de transmisión debido a las condiciones agrestes de la topografía, en la cual se presentan efectos de desvanecimiento, interferencias, multirrayecto, ruido impulso, entre otros aspectos, es por esta razón que el estándar debe contar con un sistema de transmisión robusto, que permita utilizar diferentes esquemas de modulación y mecanismos de corrección de errores para contrarrestar estos efectos.

Por otra parte es necesario que el estándar ISDB-TSB se ajuste a la regulación normativa actual y a futuro que considera Colombia en materia del servicio de radiodifusión sonora, debido a que esta, es la que reglamenta los servicios de radiodifusión y estimula las frecuencias y mecanismos de protección para estos servicios.

De acuerdo a lo anterior se hace necesario que ISDB-TSB se adapte a las condiciones del entorno para realizar la implementación del sistema, si se adopta ISDB-TSB como estándar digital para el servicio de radiodifusión sonora.

Criterio 2. Protección Contra Interferencias a Servicios Existentes en la Banda III de VHF

Debido a que el estándar de radiodifusión sonora digital ISDB-TSB opera en la banda III de VHF, la cual es usada actualmente en Colombia para difundir el servicio de televisión analógica, es necesario que el estándar ISDB-TSB pueda operar conjuntamente en esta banda de frecuencia sin ocasionar interferencias objetables, para lograr la coexistencia[6] se deben definir y respetar niveles de protección para interferencia cocanal y de canal adyacente que garanticen que el servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB no interfiera al servicio de televisión y este a su vez no interfiera con el sistema ISDB-TSB.

Criterio 3. Simulcast de los Servicios de Radiodifusión Sonora Analógicos y Digitales

Durante un periodo de transición, los servicios de radiodifusión sonora analógico y digital deben ser ofrecidos por los radiodifusores de manera simultánea sin generar interferencias objetables, esto para propiciar un cambio paulatino de este servicio, donde radiodifusores adecuen su infraestructura, creen nuevos contenidos y servicios, y los oyentes adquieran los receptores digitales. Para facilitar la transmisión simultánea sin la necesidad de asignar una banda frecuencia para el servicio de radiodifusión sonora digital terrestre el estándar a adoptar debería considerar la utilización de la misma banda de frecuencia asignada a los servicios de radiodifusión sonora analógicos.

Criterio 4. Adaptabilidad del Estándar ISDB-TSB a Unicauca Estéreo

Dado que el trabajo se centra en analizar la viabilidad técnica de implementar el estándar de radiodifusión sonora digital terrestre ISDB-TSB en Unicauca Estéreo, es necesario que ISDB-TSB pueda ser adaptado a la infraestructura actual de esta estación de radiodifusión.

Criterio 5. Satisfacer las Necesidades de Unicauca Estéreo

La implementación del estándar de radiodifusión sonora digital terrestre ISDB-TSB debe satisfacer las necesidades presentadas por Unicauca Estéreo las cuales se resumen en: mejorar la calidad en el servicio de radiodifusión de sonido, aumentar la cobertura en el departamento del Cauca, ofrecer servicios de datos e interactividad con el usuario.

Criterio 6. Economías de Escala para Tecnologías ISDB

Una variable crítica para la implementación del estándar de radiodifusión sonora digital terrestre ISDB-TS es el costo que involucra dicha implementación y la disponibilidad de equipos capaces de transmitir y recibir señales digitales a un costo razonable para favorecer el proceso de implementación y transición. De acuerdo a esto es necesario estimar las economías de escala para tecnologías ISDB en Sur América ya que estas favorecen la implementación de un sistema de radiodifusión sonora digital debido a la mayor demanda en equipos que se puede presentar, facilitando de esta manera la producción masiva de equipos a bajos precios y accesibilidad de los radiodifusores y oyentes a estos equipos. La ausencia de economías de escala encarecería los equipos destinados a transmitir y recibir señales digitales, con lo cual el proceso de implementación y transición se vería estancado.

Criterio 7. Acceso Libre al Servicio de Radiodifusión y Tecnología no Patenteada

El servicio de radiodifusión sonora desarrollada a inicios del siglo XX es un medio abierto, que no tiene fronteras y que no cobra por su acceso, este se ha convertido en uno de los medios de difusión más escuchados y utilizados para emitir noticias, entretenimiento, deportes y servicios públicos, entre otros. En el mundo moderno esto ha venido cambiando con la aparición de tecnologías para radiodifusión digital lo cual ha llevado a que cada país, consorcio de países, o en algunos casos de empresas globales pretenden implementar un estándar de facto y cobrar licencias para su utilización, esta condición lleva a no ser viable la implementación del servicio de radiodifusión sonora digital terrestre basado en un estándar que cobre una licencia de utilización para estaciones de radiodifusión comunitaria, educativa o públicas, debido a esta razón es necesario que el estándar de radiodifusión sonora digital terrestre sea adoptado por Colombia no haga cobro de licencias para su uso e implementación.

Criterio 8. Cooperación y Transferencia Tecnológica

La implementación de la radiodifusión sonora digital terrestre requiere de un trabajo organizado por todos los estamentos involucrados, además es necesario tener en cuenta la oferta en materia de cooperación y transferencia tecnológica comprometida para la implementación de la radiodifusión sonora digital por los consorcios industriales y gobierno que promueva la norma.

Los requerimientos definidos por la ITU en la recomendación ITU-R BS 1114-2 para el servicio de radiodifusión sonora digital terrestre expuestos en el capítulo II sección 2.1, permiten contribuir con el análisis para determinar la viabilidad técnica de implementar estándar de radiodifusión sonora digital terrestre ISDB-TSB, debido a esto es necesario que el estándar ISDB-TSB cumpla cada uno de los requerimientos definidos para este servicio.

3.4 VIABILIDAD TECNICA DE LA IMPLEMENTACIÓN DEL ESTÁNDAR ISDB-TSB

Para determinar la viabilidad de la implementación del estándar ISDB-TSB es necesario conocer cómo este suple los diferentes criterios planteados con anterioridad y de acuerdo a esto determinar la viabilidad de su implementación en Unicauca Estéreo, tal como se expone a continuación:

- Consideraciones de ISDB-TSB para el criterio 1.

El estándar ISDB-TSB ha sido diseñado para contrarrestar los efectos de la propagación por múltiples trayectorias y zonas de sombra presentadas particularmente en regiones montañosas, para esto hace uso de la técnica de transmisión BST-OFDM y transmisión jerárquica con las cuales es posible configurar diferentes parámetros de transmisión como lo son: modo de transmisión, esquema de modulación, entrelazado, tasa de codificación del código interno e intervalo de guarda, con el fin de brindar mayor robustez a la señal transmitida de acuerdo al tipo de recepción fijo/móvil/portátil y tasa de bits a ofrecer. Los parámetros de transmisión que permiten ser configurados se presentan en la tabla 23. [14] [16]
Tablas 23 a 26 del anexo D, presentan las diferentes tasas de bits de información que se pueden alcanzar en los servicios ofrecidos a receptores fijos, móviles y portátiles de acuerdo a los parámetros de transmisión presentados en la tabla 23.

Robustez frente a entornos afectados por propagación multitrayecto y zonas de sombra, BST-OFDM lo logra con la utilización de la técnica de transmisión multiprotadora OFDM, en el cual la longitud del símbolo de transmisión es igual al número total de portadoras, mucho mayor que en un sistema de una única portadora donde la longitud del símbolo tiene la misma longitud que la señal original. De acuerdo a esto la señal no se ve afectada considerablemente por la ISI, ya que esta es inversamente proporcional a la longitud del símbolo. La robustez en la señal es mejorada en ISDB-TSB con la adición de un intervalo de guarda a cada símbolo, este aumenta la relación entre la señal deseada y no deseada hasta un valor de 0 dB. [14] [16]

Por otra parte, para implementar el servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB se requiere de la utilización de un rango de frecuencias de la banda III de VHF, actualmente Colombia tiene una amplia variedad de servicios sobre la banda de VHF, dentro de los cuales se encuentran servicios fijos, móviles, de radioastronomía, radionavegación aeronáutica y por satélite, y radiodifusión, entre otros. Para los servicios de radiodifusión tiene una distribución de frecuencias para televisión analógica y radiodifusión sonora. Las bandas de frecuencias asignadas para el servicio de radiodifusión de televisión analógica son las bandas I canal 2 al 4 (54 MHz – 72 MHz), II canal 5 al 6 (76 MHz – 88 MHz) y III canal 7 al 13 (174 MHz – 216 MHz), y para radiodifusión sonora analógica en FM (88 MHz – 108 MHz). La distribución se puede apreciar en la figura 31.

La implementación de la televisión digital terrestre que actualmente lleva a cabo Colombia considera hasta el momento la utilización de las bandas IV canal 21 al 36 (512 MHz – 608 MHz) y V canales 38 al 69 (614 MHz – 806 MHz) de UHF, con lo cual se podría librar a futuro las bandas I, II y III de VHF para otros servicios. Debido a que ISDB-TSB fue diseñado para operar en las bandas de frecuencia utilizadas por la televisión analógica más exactamente en la banda III de VHF, una buena alternativa para la utilización de esta banda de frecuencia que no será utilizada a futuro para el servicio de televisión analógica podría ser la implementación del servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB. Colombia hasta el momento no ha definido el uso de las bandas de frecuencias que quedarían libres con la implementación de la televisión digital, y es por esta razón que el estándar ISDB-TSB se puede convertir en una alternativa para la utilización de la banda III de VHF. [57]
Según lo planteado anteriormente ISDB-TSB se puede adaptar al entorno colombiano, y las probabilidades para que el estándar sea viable técnicamente para el país no son bajas.

- **Consideraciones de ISDB-TSB para el Criterio 2.**

 Para asegurar operatividad, minimizar la probabilidad de interferencias objetables y permitir la coexistencia de servicios analógicos procedentes del sistema de televisión analógico y digitales del sistema ISDB-TSB, han sido establecido relaciones de protección para estos servicios mediante la realización de pruebas de laboratorio y de campo para establecer una base de datos cuantitativos sobre las variables de interferencia cocanal y de canal adyacente para los servicios analógico – digital, digital – analógico y digital – digital. Las relaciones de protección necesarias aplicables a la interferencia de sistemas analógicos a ISDB-TSB, del sistema ISDB-TSB a sistemas analógicos y entre señales ISDB-TSB fueron determinadas por la ITU y ARIB de acuerdo a evaluaciones subjetivas las cuales han dado una nota de degradación de 4 de una escala de 5 notas posibles. Los experimentos de evaluación para determinar estas relaciones de protección fueron realizados considerando el método de escala de degradación de doble estimulo descrito en la recomendación UIT-R BT. 500, además de las relaciones de protección se han definido bandas de guarda en la parte inferior y superior del canal de 6 MHz las cuales se describieron en la sección 2.8.2 del capítulo II. [37]

 El resultado de las mediciones establece relaciones de protección que se deben mantener entre el servicio de televisión analógica y el servicio de radiodifusión sonora digital terrestre ISDB-TSB, con el fin de evitar interferencias en la prestación de sus servicios de radiodifusión analógica y digital respectivamente. El valor en dB de estas relaciones de protección se puede apreciar en las tablas 9, 10, 11 y 12 del capítulo II sección 2.8, de acuerdo a lo anterior el estándar ISDB-TSB respetando los niveles de protección establecidos puede operar conjuntamente en la banda de frecuencia destinada para el servicio de televisión analógica sin generar interferencias y perturbaciones a este servicio.

- **Consideraciones de ISDB-TSB para el Criterio 3.**

 Para ofrecer el servicio de radiodifusión sonora analógico en FM y digital basado en el estándar ISDB-TSB de manera simultánea, es necesaria la utilización de las bandas de frecuencias de 88 MHz – 108 MHz para el servicio en FM y banda III de VHF para ISDB-TSB. Debido a que estos servicios de radiodifusión operan en bandas de frecuencias diferentes no se producirían interferencias de canal o de canal adyacente que no permitan la recepción de cada servicio.

 Por otra parte, la utilización de la banda III VHF por parte de ISDB-TSB hace necesario la asignación de esta banda de frecuencia por parte del Ministerio de Comunicaciones para la radiodifusión sonora digital, lo anterior deja a ISDB-TSB en desventaja con respecto a otros estándares que utilizan la misma banda de frecuencia asignada al servicio de radiodifusión sonora analógico para ofrecer ambos servicios de radiodifusión sonora (analógico y digital) ya que para estos no habría necesidad de asignación de una nueva banda de frecuencia.

- **Consideraciones de ISDB-TSB para el Criterio 4.**

 Las consideraciones para este criterio fueron expuestas en la sección 3.2 la cual permitió determinar la factibilidad técnica de la implementación del estándar de radiodifusión sonora digital terrestre ISDB-TSB en Unicauca Estéreo.

- **Consideraciones de ISDB-TSB para el Criterio 5.**

 Las consideraciones para este criterio fueron expuestas en la sección 3.2 la cual permitió determinar la factibilidad técnica de la implementación del estándar de radiodifusión sonora digital terrestre ISDB-TSB en Unicauca Estéreo.

- **Consideraciones de ISDB-TSB para el Criterio 6.**

 La tecnología ISDB ha venido expandiéndose significativamente en algunos países, especialmente en Japón, lugar de origen y en Sur América donde países como Brasil, Perú, Argentina y Chile decidieron adoptar las
tecnologías ISDB para radiodifusión de televisión digital terrestre, otros países como Venezuela, Ecuador, Bolivia y Paraguay están en periodo de pruebas experimentales y se plantean la opción de adoptar tecnologías ISDB para televisión digital. [58] [59]

Lo anterior demuestra que las tecnologías ISDB para radiodifusión digital terrestre en Sur América están encontrando gran acogida, lo que implica que en un futuro habrá mayor facilidad para la adquisición de equipos de radiodifusión digital, ya que habrá un mayor comercio por la demanda de productos por varios países, esto favorecerá de manera considerable la implementación más rápida de las tecnologías ISDB debido a un mayor número de consumidores, con lo cual la fabricación de equipos a gran escala abarataría los precios de los mismos.

La ventaja que poseen los países que hasta el momento han elegido el estándar japonés para televisión digital terrestre, es que este mismo estándar puede ser utilizado para el servicio de radiodifusión sonora digital terrestre, con lo cual los equipos utilizados para el servicio de radiodifusión de video digital, con algunos parámetros de configuración pueden ser utilizados para el servicio de radiodifusión sonora digital terrestre. Lo anterior facilitaría estudios y pruebas para analizar la viabilidad de implementación de este servicio para un país interesado.

Por otra parte, ISDB-TSB ha constituido un grupo de normalización para investigar y conseguir la fabricación de receptores económicos mediante técnicas de producción en manera de integración en gran escala, esto ha contribuido en la reducción de los costos de los receptores digitales y su aceptación más rápida en el mercado. La fabricación de dispositivos de bajo consumo de potencia lo logra con la utilización de microcircuitos. [14]

- **Consideraciones de ISDB-TSB para el Criterio 7.**
 El estándar ISDB-TSB parte del principio de radiodifusión de libre acceso a la programación de radio centrada en noticias, entretenimiento, deportes, contenidos musicales y crea una oferta alternativa a servicios especializados o de valor agregado para sectores de mayor poder adquisitivo. ISDB-TSB ha sido definido por la ITU como estándar de radiodifusión en la recomendación ITU-R 1114-2 y es una tecnología no patentada la cual no hace cobro de alguna licencia para su implementación. [16]

- **Consideraciones de ISDB-TSB para el Criterio 8.**
 Japón creador de la tecnología de radiodifusión sonora digital ISDB-TSB ha demostrado ser un país involucrado en materia de cooperación a los países interesados en el estudio y/o implementación de las tecnologías ISDB, esta cooperación se manifiesta en formación de talento humano para una implementación del sistema y uso adecuado del mismo, donación de equipos para dar a conocer el funcionamiento del estándar en condiciones reales de operación e impulsar la implementación de la radiodifusión sonora digital terrestre basada en este estándar, además de liderar y realizar acompañamiento investigativo a los países interesados a adecuar el estándar a las condiciones propias del país.

- **Consideraciones de ISDB-TSB para el Criterio 9.**
 A continuación se expondrá como ISDB-TSB da cumplimiento a cada uno de los requerimientos definidos para el servicio de radiodifusión sonora digital terrestre:

 ✓ **Requerimiento 1:** Alta Calidad de audio transmitido, semejante a la calidad de un disco compacto mediante dos o más canales para receptores fijos

 Alta calidad en el sonido es tal vez el requerimiento más importante para un sistema de radiodifusión sonora digital terrestre, para lograr una calidad aceptable ISDB-TSB ha adoptado la tecnología de multiplexación MPEG-2 y el sistema de codificación flexible de audio de alta eficiencia MPEG-2 AAC. Los aspectos para suplir este requerimiento fueron considerados la sección 3.2.4.

 ✓ **Requerimiento 2:** Mayor eficiencia en la utilización del espectro radioeléctrico en comparación al sistema de radiodifusión sonora en frecuencia modulada.
La eficiencia en la utilización del espectro por ISDB-TSB es elevada debido a que se pueden implementar redes SFN para lograr amplia cobertura con una misma frecuencia, como resultado es posible reducir el número de frecuencias y no es necesario cambiar el canal de recepción en receptores móviles y portátiles cuando se están desplazando por la zona de cobertura.

Por otra parte, la técnica de transmisión BST-OFDM utilizada por ISDB-TSB permite transmisión de manera concatenada y normal las cuales se describen en el anexo D, la transmisión concatenada no considera la utilización de bandas de guarda entre segmentos, mientras que la transmisión con bandas de guarda considera separaciones de 1/7 MHz, 2/7 MHz, 3/7 MHz, 4/7 MHz, 5/7 MHz 6/7 MHz y 7/7 MHz. Para lograr mayor eficiencia en la utilización del ancho de banda, se utiliza la transmisión concatenada sin bandas de guarda en la cual es posible multiplexar hasta 12 segmentos de transmisión, estos pueden ser utilizados para brindar servicios de recepción fija (transmisiones de 3 segmentos) o servicios de recepción parcial (transmisión de un segmento). [14][16]

Requerimiento 3: Robustez frente a entornos afectados por propagación multitrayecto y zonas de sombra.

Los aspectos para cumplir con el requerimiento de robustez frente a entornos afectados por propagación multitrayecto y zonas de sombra fueron expuestos en el criterio 1.

Requerimiento 4: Permitir servicios de audio y datos a receptores fijos, móviles y portátiles en un mismo canal.

Para permitir servicios de audio y datos a receptores fijos, móviles y portátiles en un mismo canal, ISDB-TSB hace uso de la técnica de transmisión BST-OFDM y transmisión jerárquica, con las cuales se pueden transmitir uno o tres segmentos OFDM dependiendo del tipo de recepción. Un segmento de transmisión es utilizado para servicios de recepción portátil, mientras que tres segmentos son utilizados para recepción fija y/o móvil, lo anterior fue expuesto en el capítulo I sección 1.5.1.

En la transmisión de un solo segmento deben ser consideradas condiciones como poca ganancia de la antena de recepción y fluctuación del nivel de la señal, entre otras, debido a esto es necesario brindar mayor robustez a la señal la cual se alcanza con el esquema de modulación QPSK. Por otra parte, considerando que los receptores fijos y móviles presentan antenas de mayor ganancia se pueden utilizar mayores velocidades de transferencia de información y es usada la modulación 64QAM. [16]

Requerimiento 5: Posibilidad de seleccionar y configurar parámetros del sistema de transmisión para ofrecer programas radiofónicos a diferentes velocidades binarias a expensas de la calidad y requerimientos del radiodifusor.

La posibilidad de seleccionar y configurar parámetros del sistema de transmisión para ofrecer programas radiofónicos a diferentes velocidades binarias a expensas de la calidad y requerimientos de radiodifusor, ISDB-TSB lo realiza por medio de la técnica de transmisión BST-OFDM y transmisión jerárquica con las cuales es posible configurar diferentes parámetros de transmisión. Las consideraciones de la utilización de BST-OFDM y transmisión jerárquica son las expuestas en el criterio 1.

Por otra parte la multiplexación de los datos por medio del sistema MPEG-2 permite configurar la velocidad de los datos de audio con el fin de establecer una correspondencia entre la calidad del audio y el número de servicios. [14][16]

Requerimiento 6: Una solución de compromiso entre el grado de cobertura con una potencia de emisión determinada y la calidad del servicio.

El servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB, al igual que con otros estándares digitales sufre un efecto abrupto del umbral de recepción en el borde del área de servicio degradando completamente la señal, caso que no ocurre con los sistemas analógicos donde la degradación es más leve, esta condición se representa en la figura 42. [60]
Figura 42. Cobertura en Sistemas Analógicos y Digitales. [60]

Para mitigar este problema y conseguir una cobertura similar o mayor a los sistemas de transmisión analógicos, el sistema ISDB-TSB utiliza esquemas de modulación jerárquica, donde dos flujos distintos de datos se modulan. Un flujo de datos se designa de alta prioridad, el cual se destina para zonas más alejadas del transmisor donde la relación S/N es menor, mientras que el otro es denominado de baja prioridad el cual está destinado a zonas más cercanas del transmisor donde la relación S/N es mayor. Para los datos de alta prioridad se utiliza la modulación QPSK, mientras que para los de baja prioridad se utiliza la modulación 16QAM o 64QAM. [14] [60]

La recepción de mayor calidad se tiene cuando se puede decodificar bien un flujo de datos de baja prioridad, en tanto que en zonas lejanas donde la recepción es más leve o en el caso de receptores móviles o portátiles, el receptor solo puede percibir o resolver los datos de mayor prioridad. En la figura 43 se presenta la representación gráfica de los flujos de alta prioridad (QPSK) y baja prioridad (64QAM). [14] [60]

Figura 43. Modulación Jerárquica. [60]

El compromiso entre cobertura y potencia de transmisión de acuerdo a lo demostrado en el anexo F es mayor en un sistema de radiodifusión sonora digital con respecto a uno analógico debido a que con la utilización de menor potencia de transmisión es posible cubrir la misma área de cobertura de un sistema de radiodifusión sonora analógico.

Requerimiento 7: Posibilidad de utilización de un receptor común para distintas formas de distribución de programas.

ISDB-TSB permite servicios terrestres, híbridos (terrestres-satelitales) y por cable. Los servicios terrestres pueden ser locales, regionales o nacionales los cuales pueden utilizar la misma modulación y un mismo transmisor o múltiples que funcionan en una red de frecuencia única. En los servicios híbridos se puede utilizar la banda de radiodifusión sonora terrenal, así como la utilización de repetidores terrestres en el canal
para reforzar la cobertura por satélite. Estos servicios son recibidos transparentemente mediante la utilización de un receptor común. [14]

✓ **Requerimiento 8: Posibilidad de ofrecer servicios de valor agregado con velocidades binarias diferentes.**

Distintas velocidades binarias pueden obtenerse en ISDB-TSB, estas dependen de la tasa de codificación del código convencional, el esquema de modulación de la portadora y los segmentos de transmisión utilizados. En las tablas 10, 11, 12 y 13 del anexo C se presentan las velocidades binarias que se pueden obtener con ISDB-TSB. Los servicios de valor agregado que pueden ofrecerse son: distribución de datos empresariales, radio búsqueda, gráficos en imagen estática, control de tráfico, noticias, entre otros. [14] [16]

✓ **Requerimiento 9: Permitir la fabricación de receptores con bajo consumo de potencia independientemente de la complejidad del sistema.**

ISDB-TSB ha constituido un grupo de normalización para investigar y conseguir la fabricación de receptores económicos mediante técnicas de producción a gran escala, la fabricación de dispositivos de bajo consumo de potencia lo logra con la utilización de microcircuitos, los cuales permiten la reducción del tamaño de la batería. [14]

✓ **Requerimiento 10: Transición gradual del sistema analógico al digital permitiendo radiodifusión sonora analógica y digital de manera simultánea.**

El sistema de radiodifusión sonora digital terrestre ISDB-TSB es un sistema totalmente digital que opera en una banda de frecuencia diferente a la banda del servicio de radiodifusión sonora analógico en FM, en consecuencia para garantizar al público radioescucha durante un periodo de transición la recepción del servicio analógico y digital, se debe mantener el servicio de radiodifusión sonora analógico en FM en la banda de 88-108 MHz y operar el servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB en la banda III de VHF según recomendación ITU-R 1112-2.

Para la transmisión del servicio de radiodifusión sonora analógico y digital de manera simultánea, se puede considerar el método de antenas separadas descrito en el capítulo II, en el cual se realiza por dos caminos diferentes el procesamiento de las señales analógicas y digitales, aunque es de resaltar que no se pueden descartar los otros métodos de transición descritos anteriormente. [14]

✓ **Requerimiento 11: Que haya una estructura multiplex del sistema que satisfaga los requisitos del modelo de Interconexión de Sistemas Abiertos (OSI, Open System Interconnection) que permita a intercomunicación con equipos de tecnología de información y con redes de comunicación.**

La estructura del multiplex del sistema ISDB-TSB se ajusta totalmente a la estructura del sistema MPEG-2, el cual satisface los requisitos del modelo de capas definido por ISO. MPEG-2 recomendación ISO/IEC 13818.1 es el estándar utilizado para la multiplexación del audio y datos. Este sistema direcciona todos los flujos de datos en una sola trama múltiple MPEG la cual es posible utilizar tanto para transmisión como para almacenamiento. La adopción de MPEG-2 provee a los radiodifusores múltiples tramas de audio y datos en una sola trama de transporte. Este sistema está diseñado para ser usado en ambientes donde los errores de transmisión son comunes. [14] [61] [62]

✓ **Requerimiento 12: Interacción con el oyente.**

De acuerdo a lo considerado en la sección 3.2.6, la interacción ISDB-TSB la logra entre el oyente y el programa que está escuchando, por otro lado dado a que no hay un canal de retorno definido para el servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB, y las tecnologías de acceso a redes de datos son independientes del estándar, ISDB-TSB ha definido una serie de protocolos para la interconexión a redes de datos para llevar a cabo la unión de estas tecnologías para ofrecer la interacción entre el oyente y el radiodifusor.
La tabla 24 resume los criterios que fueron motivo de análisis, los cuales permitirán evaluar el cumplimiento o no de estos por el estándar ISDB-TSB y de esta manera determinar la viabilidad técnica de la implementación del estándar en el contexto colombiano y en especial en el sistema de radiodifusión de Unicauca Estéreo.

<table>
<thead>
<tr>
<th>Criterio a Evaluar</th>
<th>Cumple (Sí / No)</th>
<th>Como lo Cumple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterio 1</td>
<td>Sí</td>
<td>Técnica de transmisión BST-OFDM y transmisión jerárquica, OFDM, diferentes parámetros de configuración</td>
</tr>
<tr>
<td>Criterio 2</td>
<td>Sí</td>
<td>Bandas de guarda y relaciones de protección entre ISDB-TSB Vs. NTSC y ISDB-TSB Vs. ISDB-TSB</td>
</tr>
<tr>
<td>Criterio 3</td>
<td>Sí/No</td>
<td>La operación simultánea del servicio de radiodifusión sonora analógico y digital es posible con la utilización de una banda de frecuencia diferente a la asignada al servicio analógico. Por la utilización de bandas de frecuencias diferentes no se producen interferencias entre estos servicios.</td>
</tr>
<tr>
<td>Criterio 4</td>
<td>Sí</td>
<td>Realizando algunas modificaciones, reutilizando equipos y el método de antenas separadas</td>
</tr>
<tr>
<td>Criterio 5</td>
<td>Sí</td>
<td>ISDB-TSB permite aumentar la cobertura ofrecida por el servicio analógico, mejorar la calidad en los servicios, satisfacer las necesidades de Unicauca Estéreo.</td>
</tr>
<tr>
<td>Criterio 6</td>
<td>Sí</td>
<td>Crecimiento del mercado en tecnologías ISDB en América Latina</td>
</tr>
<tr>
<td>Criterio 7</td>
<td>Sí</td>
<td>Tecnología no patentada, no hace cobro por su utilización</td>
</tr>
<tr>
<td>Criterio 8</td>
<td>Sí</td>
<td>Formación talento humano, donación de equipos, investigación</td>
</tr>
<tr>
<td>Criterio 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Requerimiento 1</td>
<td>Sí</td>
<td>MPEG-2, MPEG-2 AAC, diferentes frecuencias de muestreo.</td>
</tr>
<tr>
<td>Requerimiento 2</td>
<td>Sí</td>
<td>Redes SFN, diferentes esquemas de modulación, transmisión concatenada</td>
</tr>
<tr>
<td>Requerimiento 3</td>
<td>Sí</td>
<td>Técnica de transmisión BST-OFDM y transmisión jerárquica, OFDM, diferentes parámetros de configuración.</td>
</tr>
<tr>
<td>Requerimiento 4</td>
<td>Sí</td>
<td>BST-OFDM, 1-segmento portable, 3-segmentos recepción fija/móvil</td>
</tr>
<tr>
<td>Requerimiento 5</td>
<td>Sí</td>
<td>BST-OFDM, transmisión Jerárquica, multiplexación MPEG-2</td>
</tr>
<tr>
<td>Requerimiento 6</td>
<td>Sí</td>
<td>Esquemas de modulación jerárquica (QPSK, 16QAM, 64QAM), menor potencia de transmisión que un sistema de radiodifusión sonora analógico.</td>
</tr>
<tr>
<td>Requerimiento 7</td>
<td>Sí</td>
<td>Servicios terrestres, híbridos (terrestres y satelitales) y por cable</td>
</tr>
<tr>
<td>Requerimiento 8</td>
<td>Sí</td>
<td>Capacidad de datos de transmisión hasta la capacidad de la carga útil.</td>
</tr>
<tr>
<td>Requerimiento 9</td>
<td>Sí</td>
<td>Técnicas de producción a gran escala</td>
</tr>
<tr>
<td>Requerimiento 10</td>
<td>Sí</td>
<td>Banda de 88-108 MHz para FM y bandas III de VHF ISDB-TSB</td>
</tr>
<tr>
<td>Requerimiento 11</td>
<td></td>
<td>Multiplexación MPEG-2</td>
</tr>
<tr>
<td>Requerimiento 12</td>
<td>Sí</td>
<td>Comunicación entre usuario y programa.</td>
</tr>
</tbody>
</table>

Por lo planteado anteriormente y el resumen realizado en la tabla 24, se concluye que el estándar ISDB-TSB suple satisfactoriamente con todos los criterios de evaluación planteados, a excepción del criterio 3 “Simulcast de los servicios de radiodifusión sonora”, el cual plantea la utilización de la misma banda de frecuencia utilizada por el servicio de radiodifusión sonora analógico para ofrecer los servicios de radiodifusión sonora analógico y digital de manera simultánea, el no cumplimiento de este criterio no da base suficiente para determinar la no viabilidad del estándar ISDB-TSB a ser implementado, debido a que hasta la fecha el Ministerio de Comunicaciones de Colombia, no ha determinado que el estándar de radiodifusión sonora digital terrestre a adoptar, debe utilizar la misma banda de frecuencia del servicio de radiodifusión sonora analógico. Lo anterior permite concluir la viabilidad técnica del estándar ISDB-TSB para ser implementado en Unicauca Estéreo en función de brindar el servicio de radiodifusión sonora digital terrestre.
CAPÍTULO IV. LINEAMIENTOS TÉCNICOS PARA LA IMPLEMENTACIÓN DE UN SISTEMA DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN EL ESTÁNDAR ISDB-TSB

La implementación de un sistema de radiodifusión sonora digital terrestre varía dependiendo de la perspectiva en la que se realice, por ejemplo, un radiodifusor ya establecido que posee una infraestructura de radiodifusión sonora (analógica) inicia un despliegue diferente con respecto a un nuevo radiodifusor, el cual no cuenta con infraestructura de radiodifusión; esta situación permite encontrar diferencias significativas en el proceso de implementación de un sistema de radiodifusión sonora digital terrestre, específicamente en el dimensionamiento y adecuación de la infraestructura de radiodifusión.

Un radiodifusor ya establecido para implementar un sistema de radiodifusión sonora digital terrestre necesita realizar modificaciones a su infraestructura de radiodifusión para adaptar e instalar los nuevos equipos de acuerdo al estándar y a las características del servicio a implementar, mientras que un nuevo radiodifusor necesita realizar una etapa de dimensionamiento que le permita determinar la infraestructura de radiodifusión necesaria. En esta, el radiodifusor debe considerar ubicación y diseño de los estudios, sitio de transmisión, equipos para el estudio, enlace STL y sistema de transmisión, después de finalizar este proceso, inicia para ambos radiodifusores la implementación de la radiodifusión sonora digital terrestre. En la figura 44 se presenta una línea de tiempo en la implementación de un sistema de radiodifusión sonora digital para un radiodifusor ya existente y para uno por constituirse.

Figura 44. Proceso para Implementar el Servicio de Radiodifusión Sonora Digital

En el presente capítulo se proponen lineamientos técnicos y consideraciones que un radiodifusor ya existente o uno por constituirse deberá tener en cuenta para la implementación de un sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, en el supuesto de que esta tecnología sea adoptada por Colombia. Además se presenta un diseño del sistema de radiodifusión sonora bajo el estándar ISDB-TSB para Unicauca Estéreo y se enumeran las ventajas de su implementación.

4.1 CONSIDERACIONES INICIALES PARA LA IMPLEMENTACIÓN DE LA RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN EL ESTÁNDAR ISDB-TSB

El servicio de radiodifusión sonora analógico requiere de una estructura simple de gestión de servicios, en la cual se destaca el proveedor del programa (editor, supervisor o similar) quien es el responsable de la producción del contenido (programas de audio) y de entregar la señal de salida del estudio al sitio de transmisión para distribuirla hacia los oyentes. A diferencia del servicio de radiodifusión sonora analógico, el sistema digital basado en el estándar ISDB-TSB requiere de una estructura de gestión de servicios más compleja, debido a que la señal digital ISDB-TSB puede estar compuesta por programas de audio con diferentes formatos y niveles de calidad, datos asociados al programa, servicios de datos independientes o servicios de información.

La nueva estructura de organización para la gestión del servicio de radiodifusión sonora digital terrestre para generar una señal ISDB-TSB, se presenta en la figura 45, en esta se destacan los siguientes actores:
• Proveedor del Programa: es el que provee los programas de audio que serán ofrecidos a los oyentes.
• Proveedor de Contenido: similar al proveedor de programa pero este se encarga de generar los programas relacionados con la programación actual, servicios de información, servicios de datos independientes, entre otros.
• Proveedor de Servicio: el proveedor de servicio es el mismo radiodifusor, este se encarga de multiplexar en una sola señal el audio y/o datos que van a ser ofrecidos a los oyentes, además es quien deberá definir los parámetros de transmisión de acuerdo al tipo de servicio a ofrecer (fijo/móvil/ portátil), tasa de transmisión, entre otros.
• Proveedor de Multiplex: es el encargado de la multiplexación de servicios, realiza la gestión de la señal a transmitir de acuerdo a los parámetros de transmisión previamente establecidos por el proveedor de servicio y finalmente entregar la señal al transmisor. En numerosos países, en los que se puede incluir Colombia, el Proveedor de Multiplex es el mismo radiodifusor quien define la explotación de su propia red de radiodifusión.

En otros países, los proveedores de servicio dirigen sus contenidos (audio y datos) a uno o más operadores de red o multiplex, los cuales se encargan de transmitir la información hacia los usuarios finales.

El estándar ISDB-TSB permite la multiplexación de varios servicios (programas de audio/datos) provistos por diferentes radiodifusores para que estos puedan utilizar un mismo sistema de transmisión (Generador ISDB-TSB/Transmisor/Torre/Antena). Lo anterior debe ser considerado en el momento del dimensionamiento del servicio si un grupo de radiodifusores pretende utilizar un mismo sistema de transmisión. De acuerdo a lo anterior, la estructura de organización de servicios de radiodifusión sonora digital se vería modificada en el número de proveedores como se presenta en la figura 46.

Figura 45. Estructura de Organización de Servicios de Radiodifusión Sonora Digital. [63]

Figura 46. Estructura de Gestión de Servicios. (Varios Radiodifusores). [63]
En este trabajo se considera la operación de un único radiodifusor en la estructura de gestión del servicio, debido a que las estaciones de radiodifusión sonora de Colombia, incluida Únicauna Estéreo motivo de estudio, no utilizan una estructura de gestión como la presentada en la figura 46.

Para el dimensionamiento de los servicios orientados a receptores fijos, móviles y portátiles, se describen a continuación las indicaciones fundamentales que deben ser tenidas en cuenta para cada servicio, en los cuales diferentes parámetros de transmisión es posible configurar; esto es necesario para generar lineamientos técnicos que permitan la implementación de cada uno de estos servicios.

4.1.1 Incidencia de los Parámetros de Transmisión en una Señal ISDB-TSB

Los parámetros de transmisión son los que definen el grado de robustez, calidad y tasa de transmisión de los bits de información; debido a esta razón se define la incidencia de cada uno de estos parámetros de transmisión en la señal ISDB-TSB.

- **Incidencia del Esquema de Modulación:**

 En ISDB-TSB es posible elegir el esquema de modulación entre QPSK, 16-QAM y 64-QAM, la modulación QPSK es la más robusta debido a que las distancias geométricas de los puntos en la constelación son más amplias a las comparadas con 16QAM y 64QAM, permitiéndole soportar mayor ruido e interferencia por multiplex trayectorias, pero es a la vez el esquema de modulación que menos aprovecha el ancho de banda debido a que solo transporta dos bits por portadora en cada símbolo OFDM. Los esquemas de modulación 16QAM y 64QAM, hacen un uso más eficiente del ancho de banda debido a que es posible transmitir 4 y 6 bits respectivamente por portadora en un símbolo OFDM, pero debido a que las distancias entre los puntos de la constelación se reducen, estos esquemas de modulación se ven afectados considerablemente por los efectos de multitrayectoria.

 Considerando lo anterior la modulación 64QAM es la más eficiente en la utilización del ancho de banda pero es la más sensible al ruido y efectos de multitrayectoria, y la modulación QPSK es la más robusta pero tiene menor tasa de transmisión. En la figura 47 se presenta las implicaciones de la utilización de los esquemas de modulación QPSK, 16QAM y 64QAM. [64] [65]

![Figura 47. Comparación SNR vs BER. [64]](image)

De acuerdo a la comparación entre SNR y BER, la curva QPSK muestra mayor eficiencia en cuanto al desempeño de ruido pero menor capacidad que 16QAM y 64QAM, por esta razón la elección del esquema de modulación a utilizar dependerá básicamente de la capacidad de transmisión y el grado de robustez que se desee brindar a la señal.
Considerando lo anterior se puede elegir el esquema de modulación 64QAM para mayor capacidad de transmisión, cuando la zona de cobertura no sea muy amplia y sea poco ruidosa, o el esquema de modulación QPSK para lograr mayor cobertura y en zonas que presenten efectos de multitrayecto. La modulación 16QAM es un compromiso intermedio entre ambos esquemas de modulación. [64] [65]

- **Incidencia del Modo de Transmisión:**

Los modos de transmisión consideran diferentes espaciamientos entre las portadoras OFDM y diferente número de portadoras, el modo 8K tiene 4 veces las portadoras del modo 2K, esta condición aumenta en 4 veces la duración del símbolo OFDM con respecto al modo 2K y permite contrarrestar de manera más eficiente los efectos de degradación en la señal. En la figura 48 se presenta la relación SNR vs la BER para los modos 2K y 8K. [64] [65]

![Figura 48. Relación SNR vs BER. [64]](image)

De acuerdo a la comparación de la relación SNR vs BER de la grafica 48, el modo 2K presenta menores requerimientos de SNR con respecto al modo 8K para alcanzar una BER determinada, de acuerdo a esto es posible transmitir con menor energía, este a su vez utiliza el menor número de portadoras, lo cual hace que el intervalo de guarda sea también menor, lo cual convierte a este modo de transmisión en el modo más susceptible a los efectos de multitrayecto. El modo 4K es un compromiso entre los modos 2K y 8K. [64] [65]

- **Incidencia de la Codificación Convolucional:**

En la codificación convolucional se agregan bits de redundancia para aumentar la capacidad del decodificador para detectar y corregir errores originados en el canal de transmisión, en la figura 49 se presenta la relación SNR vs BER para las distintas tasas de codificación.
Figura 49. Relación SNR vs Tasa de Codificación Convolucional. [64]

De acuerdo a la relación SNR vs BER presentada en la figura 49, al reducir la tasa de codificación hasta 1/2 se mejora el desempeño del sistema reduciendo a su vez la tasa de transferencia efectiva hasta la mitad debido a que por cada bit transmitido es agregado uno para redundancia, al considerar una tasa de 7/8 solo se agrega un bit de redundancia por cada 7 bits de datos transmitidos y de esta manera se consigue una mejor utilización en el ancho de banda. Para la elección de la tasa de codificación se puede hacer uso de las implicaciones definidas en la figura 50.

Figura 50. Implicaciones de la Elección de la Tasa de Codificación Convolucional. [66]

- Incidencia del Intervalo de Guarda:

 El tiempo de guarda es una extensión del tiempo útil durante el cual se espera detectar la señal en el receptor, de tal manera que se brinde un lapso para la llegada de señales por múltiples trayectorias evitando de esta manera la interferencia entre símbolos, el intervalo de guarda es considerado en la implementación de las redes SFN, este determina la distancia de separación entre transmisores de una misma red SFN, la separación para los distintos valores de intervalo de guarda fueron expuestos en la tabla 19 del capítulo II. En la figura 51 se presenta el compromiso entre cobertura y mayor velocidad de los bits de información de acuerdo a la elección del intervalo de guarda y el modo de transmisión 8K.

Figura 51. Compromiso Entre Cobertura y Mayor Velocidad de Transmisión. [66]
• **Incidencia de la Tasa de Transmisión:**

La tasa de transmisión depende básicamente de la duración del símbolo OFDM, intervalo de guarda, la tasa de codificación y el esquema de modulación; para determinar la velocidad de transmisión en los bits de información para un servicio determinado, es necesario cambiar los parámetros de transmisión antes mencionados. En la figura 52 se presenta la velocidad de transferencia alcanzada con la variación de los parámetros de transmisión.

![Figura 52. Relación SNR versus Capacidad de Transmisión. [67]](image)

Con la modulación QPSK se logra un sistema con baja velocidad de transmisión, con 16QAM se logran medianas prestaciones de transmisión y con 64QAM alta velocidad de transmisión.

• **Incidencia del Tiempo de Entrelazado**

El tiempo de entrelazado es empleado para mitigar los errores que se producen en ráfagas, permite dispersar los errores, realizar una corrección más sencilla y mejorar la robustez contra el ruido impulsivo, para su elección es necesario considerar la topografía del terreno donde se va a realizar el despliegue del servicio, un mayor tiempo de entrelazado permite una mejor dispersión de los errores que se puedan producir en el canal de transmisión y es ideal para servicios de recepción móvil y condiciones de multitrayecto, donde se presentan altas probabilidades de errores, un valor menor deberá ser considerado para condiciones de despliegue mas favorables.

4.2 LINEAMIENTOS

La definición de lineamiento en el presente contexto se adopta como el conjunto de indicaciones técnicas que deben considerarse para realizar un despliegue adecuado del sistema, de acuerdo a lo anterior, se proponen los siguientes lineamientos:

- Modelo de transición a adoptar
- Método de transición a adoptar
- Adquisición de Equipos
- Adecuación de infraestructura de radiodifusión
- Dimensionamiento del servicio
- Adquisición de contenidos
- Pruebas
- Capacitación
- Diseñar un modelo de negocios
- Periodos de tiempo para la digitalización

En la figura 53 se presenta un proceso secuencial de los lineamientos mediante un diagrama de flujo.
Análisis del Estándar ISDB-TSB y la Viabilidad Técnica para su Implementación en Unicauca Estéreo
Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

Figura 53. Diagrama de flujo
4.2.1 Modelo de Transición a Adoptar
El proceso hacia la transición y futura migración a un sistema de radiodifusión sonora digital terrestre debe ser una tarea multidisciplinaria donde se involucre el gobierno, radiodifusores, grupos de investigación, universidades entre otros sectores interesados en la radiodifusión sonora. Para obtener mayor dinamismo en la adopción de un estándar de radiodifusión sonora digital terrestre, implementación e inicio de un proceso de transición se debería considerar un híbrido entre los dos modelos de transición, que son el de Estados Unidos y Reino Unido, escogiendo de cada uno lo más significativo, de esta manera el gobierno como radiodifusores y otras medios interesados en la radiodifusión sonora contribuirían de una forma más dinámica en estos procesos.

4.2.2 Método de Transición
El radiodifusor de acuerdo a estudio técnico debe determinar el método de transición o la forma más adecuada de implementar el sistema de radiodifusión sonora digital terrestre ISDB-TSB de ser considerado por Colombia como estándar digital para el servicio de radiodifusión sonora digital terrestre. Para la elección de alguno de los métodos de transición expuestos en el capítulo II, el radiodifusor deberá conformar un grupo asesor calificado que le oriente, evalúe y decida cuál puede ser el método de transición más ideal a ser implementado de acuerdo a los equipos, adecuaciones y condiciones que involucra.

4.2.3 Adquisición de Equipos
Dentro de cualquier implementación técnica un punto importante a tener en cuenta es la marca de los equipos y la posibilidad de adquisición de los mismos, por esto es necesario realizar una comparación entre las principales marcas comerciales, la que debe realizarse de manera técnica, económica y en facilidades en cuanto a garantías y servicio técnico. Una opción para la adquisición de equipos podría consistir en presentar a los proveedores de equipos, el proyecto de implementación a realizar, estos estudiaran los requerimientos y harán la oferta de sus productos según las condiciones presentadas por el radiodifusor a través de demostraciones o pruebas de desempeño, el radiodifusor será quien deberá decidir que oferta cumpla sus necesidades de acuerdo a la comparación efectuada entre los diferentes proveedores. Una estación de radiodifusión sonora digital terrestre comprende equipos en estudios de emisión y/o producción, enlace STL y sistema de transmisión. Para la elección de estos se deben tener en cuenta las especificaciones técnicas definidas en el capítulo II secciones 2.7.1, 2.7.2 y 2.7.3.

4.2.4 Adecuación y/o Actualización de la Infraestructura de Radiodifusión Sonora
Las adecuaciones y/o actualizaciones que sean necesarias en la infraestructura de radiodifusión sonora deben realizarse de acuerdo a los requerimientos que posibiliten la implementación del sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB; es de resaltar que este proceso lo debe llevar a cabo un radiodifusor ya existente que posea infraestructura de radiodifusión sonora analógica, debido a que un radiodifusor por constituirse, dentro del despliegue e implementación del sistema deberá considerar todos los factores que permitan la prestación del servicio de radiodifusión. Lo expuesto en esta sección deberá ser considerado por un nuevo radiodifusor dentro del dimensionamiento del servicio.

Las adecuaciones y/o actualizaciones para la implementación de un sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB deben llevarse a cabo en estudios, enlace STL y sistema de transmisión. A continuación se describen los aspectos que deben ser tenidos en cuenta para la adecuación de la infraestructura de radiodifusión.

4.2.4.1 Estudios de producción y/o grabación
El estudio o estudios de una estación de radiodifusión sonora es uno de los espacios más importantes, debido a que en estos se generan y producen los programas que van a ser entregadas a los oyentes, de acuerdo a esto es preciso que sean acondicionados de tal manera que permitan producir señales de la mejor calidad posible.
Los equipos a utilizar en los estudios de producción y/o grabación deben utilizar tecnología digital de procesamiento de señales, los cuales deben contribuir de manera positiva en la transmisión de señales de alta calidad, en cuanto a la planta física de los estudios es necesario que presenten un alto nivel de absorción a la reverberancia que es un efecto del sonido que ocurre en todos los ambientes cerrados y es ocasionada por la sumatoria de todas las reflexiones del sonido en cada uno de los puntos de reflexión por ejemplo las paredes, lo anterior con el fin de garantizar que los sonidos registrados suenen de la mejor manera posible y que se capture la fuente principal de sonido, además es necesario que cuenten con aislación acústica que impida el ingreso de sonidos provenientes desde el exterior.

Lo anterior se hace necesario debido a que un sistema de radiodifusión sonora digital terrestre como el caso de ISDB-TSB motivo de análisis parte del principio de que el estudio es digital y que la calidad de las señales es tan buena como las señales que alimentan el sistema de transmisión. ISDB-TSB no puede superar cualquier ruido o deterioro en las señales introducido antes del sistema de transmisión, lo cual hace necesario digitalizar primeramente los estudios.

4.2.4.2 Enlace STL

Con la transición hacia la radio digital surge la necesidad de tener estaciones de radiodifusión sonora totalmente digitales desde los estudios hasta el sitio de transmisión, para esto es necesario que el enlace STL sea también digital, ya que de nada vale mejorar la calidad en la transmisión y recepción, si las señales de audio y datos transmitidos desde el estudio al sitio de transmisión han sido expuestas a un sinnúmero de factores que estropean la calidad de las mismas, lo anterior también se debe a la necesidad de transmitir más canales de audio de igual o menor calidad al audio principal y canales de datos desde estudio al sitio de transmisión para ofrecer los nuevos servicios que posibilita la implementación de un sistema de radiodifusión sonora digital terrestre.

El enlace STL digital debe ser compatible con el ancho de banda requerido por el servicio fijo/móvil/portátil a implementar, ya que de esta manera el enlace STL podrá transmitir la cantidad de datos requeridos por el servicio. Considerando la distribución de los servicios (audio y datos) que pueden ser ofrecidos para recepción fija/móvil/portátil de acuerdo al estándar ISDB-TSB es necesario primeramente determinar la velocidad mínima necesaria de transmisión de datos del enlace STL, esta se puede determinar haciendo uso de las ecuaciones (11), (12) y (13).

\[
V_{elocidad_{\text{min,STL}}} = \sum \text{velocidades } de \ _{tx} \tag{11}
\]

\[
V_{elocidad_{tx}} = \text{canales } _{audio} \times \text{frecuencia } _{muestreo} \times \text{bits } _{resolución} \tag{12}
\]

\[
Relacion \ _{de} \ _{Compresion} = V_{elocidad} _{Binaria} / \text{fl}ujo \ _{de} \text{ datos } _{Comprimido} \tag{13}
\]

Considerando como ejemplo la transmisión de dos canales de audio estéreo y un flujo de datos de 550 Kbps, desde los estudios, un enlace STL deberá tener la siguiente velocidad de transmisión:

\[
V_{elocidad_{tx}} = 2 \text{canales(estereo)} \times 44.1KHz \times 16\text{bits(recomendado)} = 1.4112\text{Mbps}
\]

\[
V_{elocidad_{min,STL}} = 1.4112\text{Mbps} + 550\text{Kbps} = 1.9612\text{Mbps}
\]

Considerando una relación de compresión de 13.77:1, para los equipos de transmisión del enlace STL, el flujo de datos para transportar audio y datos comprimidos se determina a partir de la ecuación (12):

\[
13.77 = 1.9612\text{Mbps} / \text{flujo } _{de} \text{ datos } _{Comprimido} _{Kbps} \tag{12}
\]

\[
\text{flujo } _{de} \text{ datos } _{Comprimido} _{Kbps} = 142.425\text{Kbps}
\]
De acuerdo a lo anterior el enlace STL digital podrá transportar 2 canales de audio estéreo muestreados a una frecuencia de 44.1 KHz y datos a 550 Kbps en un solo flujo de datos multiplexado de 142.425 Kbps.

Los enlaces STL digitales deben operar en la banda de frecuencia asignada por el Ministerio de Comunicaciones para los actuales enlaces analógicos, los cuales operan en la banda de 300 MHz – 330 MHz, ya que de esta manera no sería necesario asignar una nueva banda de frecuencia. Para la elección de los equipos necesarios para realizar el enlace STL digital se deben tener en cuenta los requerimientos técnicos definidos en el capítulo II sección 2.7.2 y la velocidad mínima de transmisión del STL.

4.2.4.3 Sistema de transmisión

La transición y futura migración a un nuevo sistema de radiodifusión sonora digital terrestre independientemente del estándar adoptado hace que sea necesaria la adquisición de nuevos equipos y realizar adecuaciones en el sistema de transmisión, este último es uno de los elementos críticos a la hora de implementar el sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB debido a que es en el sitio de transmisión donde se requieren las mayores modificaciones y altos niveles de inversión por parte del radiodifusor.

Las primeras adecuaciones deben realizarse en la caseta de transmisión donde se encuentran alojados todos los equipos destinados a transmitir las señales a los oyentes, esta debe ser ampliada en caso de no contar con espacio suficiente para permitir la instalación de nuevos equipos incluido el nuevo transmisor digital, además se debe mejorar el sistema de ventilación y/o refrigeración de la misma ya que al haber más equipos instalados lo más probable es el aumento de la temperatura. Para realizar las modificaciones se debe contratar los servicios de ingeniero civil, quienes son los más capacitados para realizar esta labor.

Por otro lado, para que la estación de radiodifusión pueda ofrecer los servicios de radiodifusión sonora digital terrestre basados en el estándar ISDB-TSB y radiodifusión sonora analógicos en FM de manera simultánea durante un periodo de transición se debe implementar alguno de los métodos de transición expuestos en el capítulo II, para la elección de los equipos necesarios del sistema de transmisión se deben considerar las especificaciones técnicas definidas en el capítulo II.

4.2.5 Dimensionamiento del Servicio

4.2.5.1 Servicios fijos

La transmisión de señales a receptores fijos presenta condiciones de propagación más favorables a las presentadas en los receptores móviles y portátiles, ya que estos no se encuentran en movimiento con respecto al transmisor y debido a esta razón las señales no se ven afectadas por el efecto doppler; además los receptores fijos cuentan con antenas de mayor ganancia respecto a los receptores portátiles lo que permite mayores velocidades de transmisión de los bits de información, debido a esto es posible ofrecer servicios de audio y datos de alta calidad a altas tasas de bit, para lograrlo es necesario seleccionar los parámetros de transmisión más adecuados del sistema ISDB-TSB. A continuación se describe los parámetros de transmisión que deben ser seleccionados para ofrecer audio y datos de alta calidad en un servicio de recepción fija.

- **Ancho de Banda:**

 El ancho de banda necesario para brindar servicios a receptores fijos debe ser 1.29 MHz (tres segmentos OFDM), en este ancho de banda es posible multiplexar varias señales de audio, datos y control a diferentes tasas de transmisión, en la figura 54 se presenta un ejemplo de las señales de audio y datos que pueden ser multiplexadas en un servicio de recepción fija, de igual manera se presentan las velocidades de transmisión de los bits de información que se pueden alcanzar.
Análisis del Estándar ISDB-TSB y la Viabilidad Técnica para su Implementación en Unicauca Estéreo
Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

La velocidad de transmisión de los bits de información no solamente depende del número de segmentos OFDM utilizados sino también de otros parámetros de transmisión como lo son el esquema de modulación, intervalo de guarda y tasa de codificación convolucional. En las tablas 13, 14, 15 y 16 del anexo D se pueden apreciar con mayor detalle las tasas de transmisión posibles para tres segmentos de transmisión utilizando diferentes esquemas de modulación, intervalos de guarda y tasa de codificación convolucional.

- **Modo de Transmisión:**
 Debido a las condiciones agrestes de la geografía colombiana como se planteó en la sección 3.1.1 del capítulo III, es necesario escoger un modo de transmisión que permita brindar mayor robustez a los efectos causados por la propagación por múltiples trayectorias, la elección del modo de transmisión para el servicio de recepción fija debe considerar la mayor longitud del símbolo efectivo ya que esta condición permite brindar a la señal de transmisión mayor robustez frente a efectos de propagación de multitrayectoria, de acuerdo a lo anterior, el modo 8K de transmisión del estándar ISDB-TSB debe ser elegido ya que es el más adecuado a ser utilizado en la topografía colombiana, de esta manera se logra la mayor robustez a la ISI.

- **Esquema de Modulación:**
 El ancho de banda utilizado en los servicios de recepción fija (1.29 MHz) permite lograr la mayor velocidad de transmisión de los bits de información en el sistema ISDB-TSB, por esta razón para la elección del esquema de modulación es necesario considerar el que permita manejar altas tasas de transmisión, estas particularmente se pueden obtener con los esquemas de modulación QAM.

- **Intervalo de Guarda:**
 Para la elección del intervalo de guarda para el servicio de recepción fija es necesario evaluar el compromiso entre velocidad binaria en los bits de información y la cobertura del sistema de radiodifusión sonora, elegir un mayor tiempo de guarda implica mayor probabilidad de cobertura, aunque por otro lado significa disminución en la tasa de transmisión de los bits de información, el propósito del intervalo de guarda es proveer inmunidad a la dispersión de canal y su elección depende principalmente de la geografía del entorno de transmisión. En regiones montañosas se debe optar por valores de 1/4 o 1/8 debido a que estos permiten brindar mayor robustez a los efectos de multitrayectoria, mientras que en llanuras se debe optar por valores menores.

![Figura 54. Ejemplo de Servicios para Receptores Fijos. [66]](image-url)
• **Tasa de Codificación:**
 La tasa de codificación 1/2 otorga el máximo grado de protección a los datos, ello permite decodificar la señal a distancias mayores donde la relación SNR es débil, pero sacrifica la tasa de datos puesto que por cada 8 bits transmitidos solo 4 contienen información, por otro lado la tasa de codificación de 7/8 agrega un bit de redundancia por cada 7 bits de información, y provee un grado de protección más débil a los datos, pero permite mayor capacidad de transmisión, la ventaja es que 7 de cada 8 bits transmitidos contienen información, la desventaja es que la cobertura es reducida puesto que se requiere una señal fuerte (alta SNR) para lograr la descodificación sin errores.
 El nivel de redundancia adecuado a añadir a la señal de información depende de diversos componentes del sistema como lo pueden ser el tipo de información a transmitir, las condiciones de propagación, interferencia, entre otros, por lo cual para la elección de la tasa de codificación del código convolucional para el servicio de recepción fija se debe evaluar las condiciones de implantación del servicio, donde se considere, robustez (mayor cobertura) lo cual implica menor capacidad de transmisión o mayor capacidad de datos con su equivalente en menor robustez a la señal transmitida. Para brindar a la señal un valor intermedio entre robustez y capacidad de bits de información se debe seleccionar la tasa de codificación de 3/4.

4.2.5.2 **Servicios móviles**
Los servicios hacia dispositivos móviles constituyen uno de los servicios comerciales básicos en la radiodifusión sonora digital terrestre, debido a esto el estándar ISDB-TSB permite ofrecer servicios de recepción móvil los cuales están orientados a receptores ubicados en trenes, buses o automóviles.
 La movilidad no necesariamente implica un consumo bajo de batería y por ende no debe confundirse con los servicios brindados a dispositivos portátiles (recepción parcial). Los servicios móviles se caracterizan por la recepción en vehículos dentro de ciertos límites de velocidad, lo cual representa retos técnicos sustanciales para una recepción confiable de la señal, la movilidad a altas velocidades hace que los receptores se vean afectados por el efecto doppler, por lo cual es necesario definir parámetros de transmisión que permitan contrarrestar este efecto. A continuación se describen los parámetros que deben ser seleccionados para ofrecer audio y datos de alta calidad y contrarrestar los problemas presentados en los servicios de recepción móvil.

• **Ancho de Banda:**
 El ancho de banda para los servicios de recepción móvil debe ser 1.29 MHz (3 segmentos de transmisión x 429 KHz), en este ancho de banda es posible la multiplexación de servicios de audio y datos de alta calidad, las tasas de transmisión alcanzadas en los servicios de recepción móvil son similares a las del servicio fijo. Un ejemplo de la distribución de servicios ofrecidos a receptores móviles en el ancho de banda de 1.29 MHz es similar al presentado en la figura 54.

• **Modo de Transmisión:**
 Los servicios destinados a receptores en movimiento se ven afectados considerablemente por el desplazamiento en frecuencia causado por el efecto doppler, el modo 2k de transmisión del sistema ISDB-TSB es el más robusto frente al desplazamiento en frecuencia debido a que permite la mayor velocidad en receptores móviles dado que presenta el menor espaciamiento entre las portadoras OFDM, permitiendo así variaciones de canal más rápidas, precisamente hasta 4 y 2 veces superiores al modo 8K y modo 4K respectivamente. En la figura 55 se presenta el compromiso entre movilidad y número de portadoras OFDM. [66]
De acuerdo al compromiso entre movilidad y número de portadoras presentado en la figura 54, el modo de transmisión 2K es el más adecuado para ofrecer servicios que apunten particularmente a receptores móviles, la desventaja de usar el modo 2K es que está limitado a canales 2 y 4 veces menos dispersos comparado con el modo 4K y 8K respectivamente, debido a esto menor área de cobertura, para contrarrestar esta condición deberá ser utilizado el modo 4K que ofrece compromiso intermedio entre cobertura y movilidad.

- **Esquema de Modulación:**
 Los servicios orientados a receptores móviles al igual que receptores fijos consideran mayor ancho de banda y antenas de mayor ganancia, de acuerdo a esto se debería seleccionar un esquema de modulación que permita ofrecer alta velocidad de transferencia en los bits de información como la ofrecida por los esquemas QAM. Por otro lado, dadas las condiciones adversas que se presentan en los casos de movilidad se debería escoger el esquema de modulación QPSK para brindar mayor robustez a la señal a cambio de perdida en la velocidad de transmisión en los bits de información.
 De acuerdo a lo anterior, la elección del esquema de modulación para los servicios destinados a receptores en movimiento deberá ser seleccionada de acuerdo al grado de robustez de la señal y la velocidad de transferencia de los bits de información.

- **Intervalo de Guarda:**
 De igual manera al servicio de recepción fija el intervalo de guarda en el servicio de recepción móvil debe ser seleccionado de acuerdo a las condiciones de implantación del servicio, donde es necesario evaluar el compromiso entre cobertura y capacidad transmisión en los bits de información.

- **Tasa de Codificación:**
 La adversidad de la propagación en el canal de transmisión presentada en los servicios destinados a receptores móviles hace que la señal transmitida a un usuario móvil sufra diversos efectos indeseados en el camino hacia el receptor, esto impone la necesidad de proteger la información cuando es transmitida por el canal de transmisión.
 Para definir una tasa óptima de codificación en un servicio de recepción móvil es necesario retomar lo expuesto en la sección 4.1.1 ítem tasa de codificación. Un valor intermedio entre robustez y velocidad de transmisión en los bits de información se debe seleccionar la tasa de codificación de 3/4.

4.2.5.3 Servicios recepción portátil (Recepción Parcial)
El servicio de radiodifusión sonora digital terrestre ISDB-TSB permite transmitir servicios a dispositivos portátiles, estos servicios se caracterizan por la necesidad de reducir el consumo de energía, para lograrlo ISDB-TSB disminuye...
la velocidad de procesamiento en transmisión y recepción, y utiliza antenas de menor ganancia a las comparadas con los receptores fijos y/o móviles. El servicio está orientado particularmente a teléfonos celulares, PDA (Asistentes Digitales Personales), sintonizadores USB, computadores portátiles, entre otros los cuales pueden equiparse con demoduladores digitales. A continuación se definen los parámetros de transmisión para esta clase de servicios.

- **Ancho de Banda:**
 El ancho de banda para los servicios de recepción portable o parcial debe ser 429 KHz (1 segmento de transmisión), ya que el servicio está orientado hacia receptores de banda estrecha los cuales solo pueden recibir un solo segmento. En el ancho de banda de 429 KHz es posible multiplexar audio y datos de alta calidad donde los datos pueden ser entregados a través de una red de interconexión de datos. En la figura 56 se presenta un ejemplo de una posible distribución de servicios que se pueden ofrecer en un segmento de transmisión, en esta figura se presenta además las velocidades de transmisión.

![Figura 56. Ejemplo de Servicios para Receptores Portátiles. [66]](image)

- **Modo de Transmisión:**
 La movilidad en los servicios de recepción portátil no se considera como una mayor dificultad debido a que el servicio es orientado a dispositivos que se mueven a poca velocidad con respecto del transmisor, debido a esto para la elección del modo de transmisión se debe tener en cuenta el que permita brindar la mayor robustez frente a los efectos causados por la propagación por multirrayector.

 Las condiciones para la elección del modo de transmisión considerando robustez frente a efectos de multirrayector fueron expuestas en la sección 4.1.1 ítem modo de transmisión.

- **Esquema de Modulación:**
 Los servicios de radiodifusión sonora digital ofrecidos a receptores portátiles consideran condiciones como baja ganancia en las antenas de recepción y fluctuación de la señal por lo cual es necesario utilizar un esquema de modulación robusto, la mayor robustez se logra con la utilización del esquema de modulación QPSK, además este esquema de modulación presenta la menor potencia de operación comparándola con los esquemas de modulación 16QAM y 64QAM que necesitan 6 dB y 12 dB más respectivamente. Debido a estas razones el esquema de modulación QPSK debe ser seleccionado para ofrecer servicios a receptores portátiles.

- **Intervalo de Guarda:**
 De igual manera al servicio de recepción fija y móvil el intervalo de guarda en el servicio de recepción parcial debe ser seleccionado de acuerdo a las condiciones de implantación del servicio, donde es necesario evaluar el compromiso entre cobertura y capacidad de bits de información. Seleccionar un intervalo de guarda de 1/16 para el servicio de recepción parcial puede representar un buen compromiso entre robustez y menor consumo de energía.
• **Tasa de Codificación:**

La elección de la tasa de codificación debe ser determinada entre el grado de robustez del servicio frente a propagación por multitrayectoria y la tasa de bits a transmitir, para su elección se pueden considerar un valor de 2/3 que representa un compromiso intermedio, es de resaltar que la tasa de codificación debe ser seleccionada de acuerdo a las condiciones geográficas donde se realice el despliegue del servicio.

4.2.5.4 Parámetros de transmisión para los servicios Fijo/Móvil/Portátil

En la tabla 25 se presenta un resumen de los parámetros de transmisión que se deben configurar para cada uno de los servicios fijo/móvil/portátil ofrecidos por el estándar de radiodifusión sonora digital terrestre ISDB-TSB.

Tabla 25. Parámetros de Configuración Servicios Fijo/Móvil/Portátil

<table>
<thead>
<tr>
<th>Parámetro de Transmisión</th>
<th>Servicio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fijo</td>
</tr>
<tr>
<td>Segmentos de Transmisión</td>
<td>3</td>
</tr>
<tr>
<td>Modo de Transmisión</td>
<td>8K</td>
</tr>
<tr>
<td>Ancho de banda</td>
<td>1.289 MHz</td>
</tr>
<tr>
<td>Separación entre Portadoras</td>
<td>3.968 KHz</td>
</tr>
<tr>
<td>Esquema de Modulación</td>
<td>64QAM</td>
</tr>
<tr>
<td>Intevalo de Guarda</td>
<td>1/8</td>
</tr>
<tr>
<td>Longitud del Entrelazado</td>
<td>0.2s</td>
</tr>
<tr>
<td>Tasa de Codificación</td>
<td>3/4</td>
</tr>
</tbody>
</table>

4.2.5.5 Redes de frecuencia única

Para implementar una red SFN, se deben considerar los requerimientos definidos en la sección 2.9 del capítulo II, además es necesario considerar una buena inspección de emplazamientos, el modo de transmisión y el intervalo de guarda.

• **Inspección de Emplazamientos para Ubicar Infraestructura de Radiodifusión**

El despliegue de un sistema de radiodifusión sonora digital terrestre requiere llevar a cabo una inspección de todos los posibles emplazamientos para ubicar los equipos e infraestructura de radiodifusión necesaria para el procesamiento y la transmisión de señales hasta los oyentes. Un reconocimiento detallado de todos los emplazamientos debe realizarse considerando aspectos como la accesibilidad al lugar, fuentes de alimentación de energía disponibles para los equipos, otros servicios de radiodifusión sonora existentes en el área con el fin de evitar interferencias, la legislación establecida para la ubicación de torres de transmisión, condiciones climáticas, las normas para la construcción de obras civiles necesarias, entre otros con el fin de elegir adecuadamente el mejor lugar para la ubicación de la infraestructura de radiodifusión.

• **Modo de Operación e Intervalo de Guarda**

El objetivo principal de una red SFN es hacer uso más eficiente del espectro radioeléctrico y la utilización de una misma frecuencia para cubrir una área geográfica extensa, de acuerdo a esto se puede tener en cuenta en la implementación de una red SFN la utilización del modo 8K y el intervalo de guarda de 1/4, debido a que permiten la mayor separación entre los transmisores de la red SFN. Es de resaltar que son estos dos parámetros de transmisión solo consideran mayor distancia de separación entre los transmisores de una red SFN, por lo que para determinar los otros parámetros de transmisión se debe realizar de acuerdo a las
condiciones geográficas del terreno y el tipo de servicio a ofrecer; para esto se debe considerar los lineamientos definidos para cada uno de los servicios fijos, móviles o portátiles.

4.2.5.6 Potencia de transmisión
La potencia de transmisión de una estación de radiodifusión sonora digital terrestre deberá determinarse de acuerdo a la zona que se desee cubrir, garantizando que los niveles de emisión no exceda el límite máximo de exposición correspondiente a su frecuencia de operación, a fin de salvaguardar la vida y la salud de las personas. En la tabla 1 del anexo A se presentan los límites máximos según la frecuencia de operación.

4.2.5.7 Prestación de servicios de valor agregado
Se deberán generar y considerar normas adecuadas que permitan regular los servicios de valor agregado, los cuales se vean reflejados en servicios multimedia y servicios secundarios como información variada.

4.2.6 Adquisición de Contenidos
La digitalización del servicio de radiodifusión sonora hace posible que nuevos contenidos (sonido, datos e incluso imágenes) sean posibles de introducir para generar una programación totalmente nueva. La adopción del estándar ISDB-TSB permite proporcionar un contenido plurilingüe y entregar el canal de audio principal junto con otros canales de audio y datos en los cuales se puede brindar información de noticias, cotizaciones bursátiles, estado del tiempo, deportes, entre otros. Debido a esto, el radiodifusor deberá establecer acuerdos con proveedores de contenido para determinar cuáles pueden ser ofrecidos de acuerdo a las intensiones del servicio y al tipo de recepción fijo/móvil/portátil.

Los radiodifusores y proveedores deben garantizar que la información suministrada sea compatible con el estándar de codificación MPEG-2 AAC para audio y MPEG-2 para compresión. En el anexo C se definen las especificaciones para audio soportadas por MPEG-2 AAC.

4.2.7 Pruebas de Funcionamiento
Luego de haber completado la instalación e integración de los equipos en estudios, enlace STL y sistema de transmisión se deberá realizar pruebas para determinar el adecuado funcionamiento del servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, esto con el fin de obtener información acerca de la percepción del servicio. A continuación se describe los aspectos a tener en cuenta y la metodología de medición que se podría utilizar.

El diagrama de bloques de la figura 57, presenta la metodología de medición que puede ser utilizada para realizar pruebas de funcionamiento del servicio fijo, la descripción de los equipos utilizados se presenta a continuación:

- Antena omnidireccional en la banda de operación del estándar, que pueda ser configurada en polarización vertical y/o horizontal, ubicada a una altura promedio de 2 metros.
- Receptor digital para la señal de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB, la figura de ruido debe ser 5 dB de acuerdo a los requerimientos del estándar, lo que equivale a un umbral de potencia de ruido a la entrada del receptor de -105.6 dBm.
- Medidor de potencia y analizador de espectro para toma de medidas de potencia y capturar trazas de espectro respectivamente.
- GPS para registrar los puntos de medición.
- Equipo de medición o software diseñado e implementado para registrar los valores obtenidos.
La metodología plantea la realización de medidas en diferentes emplazamientos dentro del sector urbano, semiurbano y rural, analizar la potencia de la señal obtenida en recepción, trazas del espectro de la señal y valorar la calidad de la señal recibida a través de la BER para el servicio fijo. Los valores mínimos necesarios para un nivel de potencia mínima utilizable a la entrada del receptor para el servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB fueron expuestos en el capítulo II sección 2.8.6.

4.2.8 Capacitación
Las tecnologías digitales que hacen posible la implementación de un sistema de radiodifusión sonora digital terrestre son tecnologías complejas, por lo cual se deberá capacitar a las personas encargadas en su instalación y operación, esto debido a que es necesario garantizar la pericia necesaria del personal para el control y la supervisión correspondiente de la implantación del sistema y el servicio de radiodifusión, de acuerdo a esto es necesario solicitar a los fabricantes de estas tecnologías previa capacitación de la tecnología suministrada.

4.2.9 Diseño de un Modelo de Negocios
Las técnicas de compresión y multiplexación utilizadas en los sistemas de radiodifusión sonora digital terrestre permiten hacer un uso más eficiente del ancho de banda permitiendo multiplexar un mayor número de señales de audio y datos en un mismo canal, esto ha permitido la creación de nuevos contenidos al igual que de nueva programación.

La flexibilidad de ISDB-TSB, permite a los radiodifusores diseñar estrategias de negocio que estimulen la competencia y permitan una programación variada con la posibilidad de brindar servicios interactivos a usuarios fijos, móviles y portátiles, por medio de la utilización de un canal de retorno el cual puede ser realizado a través de tecnologías de acceso a redes descritas con anterioridad en este trabajo. Debido a que la radiodifusión sonora digital terrestre es una temática totalmente nueva en el contexto colombiano se debe diseñar e implementar modelos de negocios orientados a servicios fijos, móviles y portátiles o uno que permita ser utilizado para estos servicios.

Un modelo de negocio para el servicio de radiodifusión sonora digital terrestre debe involucrar los siguientes actores: creador de contenidos, radiodifusor, proveedor de red celular considerando un servicio orientado a receptores portátiles, oyentes y otros. El creador de contenidos es el encargado de crear todos los contenidos audio y datos, el radiodifusor es el encargado de seleccionar y organizar la programación (audio y datos) que serán emitidos, este puede ofrecer un paquete de programación orientado a un grupo de consumidores los cuales cancelarán por el respectivo servicio, proveedor de red celular, es quien alquila su red de difusión y usuario final el oyente. En la figura 58 se presenta la descripción de un modelo de negocios para receptores portátiles.
Figura 58. Descripción del Modelo de Negocios

Un factor importante que se debe tener en cuenta en este modelo es que tanto el radiodifusor como el operador de telefonía móvil se deben poner de acuerdo en relación a los dispositivos que utilizará cada uno para su interconexión, los cuales deben ser compatibles con cada una de las redes para poder recibir los diversos servicios.

4.2.10 Periodos de Tiempo para la Digitalización

Poner límites fijos para la digitalización permitiría de alguna manera presionar al gobierno para escoger un estándar de radiodifusión sonora digital y a radiodifusores realizar modificaciones en la infraestructura de radiodifusión de acuerdo a la tecnología de digital que se adopte.

Como se mencionó en el capítulo III, Colombia aún no ha decidido que tecnología de radiodifusión sonora digital adoptar, pero ha propuesto por medio del Ministerio de Comunicaciones, estudios correspondientes para conocer el impacto técnico, social, económico y político de las tecnologías de radiodifusión sonora digital terrestre, debido a esta razón se hace necesario definir un tiempo prudencial para elegir el estándar de radiodifusión sonora digital a adoptar en Colombia.

Al tomar como referencia el proceso llevado a cabo en Colombia para la adopción del estándar de TDT, el cual inicio en el 2002 con el estudio de las características técnicas de los distintos estándares de TDT existentes en el mundo y que no definó sino hasta el 2008 el estándar DVB-T para la implementación de la TDT, un tiempo prudencial para determinar el estándar de radiodifusión sonora digital a adoptar por Colombia sería entre 5 y 6 años.

4.3 Diseño y Elección de los Equipos para la Implementación del Sistema de Radiodifusión Sonora Digital Terrestre Basado en ISDB-TSB en Unicauca Estéreo

A continuación se describe como podría ser implementado el sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB en Unicauca Estéreo con la infraestructura de radiodifusión actual y con el método de antenas separadas, para brindar el servicio de radiodifusión sonora digital terrestre. Para el diseño y elección de equipos se considera los estudios, enlace STL y sitio de transmisión.

4.3.1 Estudios

Esta sección de Unicauca Estéreo está conformada por un estudio de procesamiento de datos fuera del aire y un estudio de procesamiento de datos al aire, este último hace las veces de estudio maestro, debido a que realiza todo el procesamiento para la generación de la señal del programa. Actualmente todas las conexiones de las fuentes de entrada y salida de audio en los estudios de Unicauca Estéreo se realizan directamente sobre los equipos y no se cuenta con circuitos de interconexión y/o monitoreo que permitan realizar un control más eficiente; debido a esta razón se deben utilizar paneles de parcheo (Patch Panel) en el cual fuentes múltiples que van a un único destino deben agruparse por destino y no por tipo de fuente, en el Patch Panel se deben concentrar todas las conexiones de los equipos y se deben utilizar cables de parcheo (Patch Cord) para interconectar el Patch Panel con el equipo.
destino. En la figura 58 se representa la forma como deberían realizarse las conexiones en los estudios de Unicauca Estéreo.

Actualmente el procesamiento del audio (canales Left y Right) entregados por la consola Audio Digital D-75 se realiza en los estudios de Unicauca Estéreo por medio del generador estéreo ORBAN OPTIMOD FM el cual recibe los canales y entrega a su salida la señal estéreo (L+R, L-R); debido a que el objetivo de un sistema de radiodifusión sonora digital terrestre es realizar todo el procesamiento de audio y datos en el sitio de transmisión, se debe ubicar el generador estéreo en el sitio de transmisión y por esta razón es necesario enviar desde los estudios hasta el sitio de transmisión, los canales Left y Right mediante el enlace STL para que sean procesados y sea generada la señal estéreo, lo anterior con el fin de dar continuidad al servicio de radiodifusión sonora analógico en FM.

Por otra parte, como se expuso en la sección 3.2.1, la consola audio digital puede generar de manera simultánea la señal del programa en formato analógico (canales Left y Right) y digital AES/EBU las cuales deben ser enviadas por medio de los equipos del enlace STL hacia el sitio de transmisión. Conjuntamente con las señales de audio se debe enviar el canal de datos, el cual se limita a una tasa de bits de 32 Kbps debido a la reutilización de los equipos, los cuales por especificaciones técnicas solo permiten esta tasa de transmisión para el canal de datos. De acuerdo a esto se deben generar datos a esta tasa de transmisión hasta tanto se adquieran otros equipos que permitan mayor capacidad para transmisión en el enlace STL. En la figura 59 se presenta las señales de salida que deben ser entregadas a los equipos destinados a realizar el enlace STL.
Con los actuales equipos de Unicaucu Estéreo solo es posible generar una única señal de audio principal, la cual es generada en formato analógico y digital de manera simultánea; debido a esto, de necesitarse otra señal de audio diferente al flujo de audio principal se hace necesario la adquisición de nuevos equipos que permitan generar esta señal.

4.3.2 Enlace STL

Los equipos de transmisión y recepción del enlace STL con la adición del Modem/Multiplexor DMM92 Digital STL, como se había expuesto anteriormente permiten mayor capacidad de transmisión y reutilizar los equipos actuales destinados al enlace STL para lograr una transmisión totalmente digital. La nueva configuración de las conexiones y equipos del enlace STL se presenta en la figura 60.

La nueva configuración del enlace STL, permite la transmisión de los canales Left y Right, un flujo de audio digital AES/EBU y un canal de datos.

4.3.3 Sistema de Transmisión

El sistema de transmisión es el lugar donde se deben realizar las mayores modificaciones, ya que es necesario mayor espacio para la instalación de nuevos equipos y mejorar el sistema de ventilación debido al aumento de calor, entre otras modificaciones.

En la caseta de transmisión se deben instalar los equipos para utilización para recepción del enlace STL, procesamiento de la señal del sistema de radiodifusión sonora analógico en FM y procesamiento de la señal de la señal del sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB. Para la continuidad del sistema de radiodifusión sonora en FM, como se había expuesto anteriormente se considera los equipos que están siendo actualmente utilizados, mientras que para el sistema de radiodifusión sonora digital basado en ISDB-TSB es necesaria la adquisición de nuevos equipos. La nueva configuración del sistema de transmisión se presenta en la figura 61.
Análisis del Estándar ISDB-TSB y la Viabilidad Técnica para su Implementación en Unicauca Estéreo
Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

- **Generador ISDB-TSB:**
 Es el encargado de realizar la codificación de canal descrita en la sesión 1.6 del Capítulo I, el generador de señal ISDB-TSB escogido es marca LG 3802, que permite configurar los parámetros de transmisión por medio de un panel frontal, es decir definir el número de segmentos, modo de transmisión, intervalo de guarda, esquema de modulación, tasa de codificación convolucional y tiempo de entrelazado. En la figura 62 se presenta el equipo mencionado.

![Figura 62. Generador de Señal LG 3802 ISDB-TSB](image)

El generador LG 3802, tiene las siguientes especificaciones técnicas:

- Rango de frecuencias 50 a 860 MHz.
- Potencia de salida -100 hasta +13 dBm.
- Impedancia 50 ohm.
- Conectores de entrada tipo BNC 75 ohm y multipin DR25.
- Permite paquetes de entrada en MPEG-2 13818.
- Relación portadora a ruido C/N variable 0 a 30 dB.
- Temperatura de operación de 0 a 40 °C.
- Requerimientos de potencia de 90 a 250 VAC 60 Hz.
- Señal de referencia 10 MHz.
- Entrada DVB-ASI

- **Transmisor Digital:**
 El transmisor digital seleccionado es de la marca EMCEE modelo LPV serie TM, soporta los requerimientos técnicos del estándar, es un transmisor modular lo cual permite fácil mantenimiento, puede ser configurado de acuerdo a la potencia de transmisión por medio de un panel frontal, tiene alta capacidad de precisión en el control de frecuencia, cuenta además con Up-Converter y una interfaz de usuario para control remoto. En la figura 63 se presenta el equipo seleccionado.

![Figura 63. Transmisor LPV-1000 PLUS](image)

El transmisor LPV-1000 Plus, tiene las siguientes especificaciones técnicas:

- Potencia de salida: 10, 20, 30, 40, 50, 60, 70, 75 o 100 Watts.
- Frecuencia de operación: banda III VHF (174 MHz – 216 MHz).
- Estabilidad en frecuencia: ±1kHz, <1Hz con entrada GPS.
Análisis del Estándar ISDB-TSb y la Viabilidad Técnica para su Implementación en Unicauca Estéreo
Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

- Estabilidad en la potencia de salida: ±0,3 dB.
- Señal a Ruido Digital: 34dB.
- Nivel de entrada de IF: -5 a -15dBm.
- Impedancia de entrada: 75Ohm/BNC.
- Impedancia de salida: 50 Ohm/N.
- Temperatura de Operación: 0° a +50° C.
- Conector de salida RF: Tipo N 5/8 EIA.

- **Antena de Transmisión:**

La antena seleccionada para el sistema de radiodifusión sonora digital es marca RYMSA modelo AT13-111, la cual permite configurar el patrón de radiación de acuerdo a la ubicación de sus elementos, el patrón de radiación puede ser direccional (un elemento), cuasi-omnidireccional (dos elementos) y peanut. En la figura 64 se presenta la antena mencionada.

![Figura 64. Antena RYMSA AT 13-111](image)

Otras especificaciones técnicas de la antena RYMSA AT 13-111 son las siguientes:
- Rango de frecuencias 174-216 MHz
- Impedancia 50 ohm
- VSWR 1.3:1
- Máxima potencia 500 W
- Ganancia 5.7 dB con referencia al dipolo de \(\frac{\lambda}{2} \)
- Temperatura de operación – 40° C a + 80° C
- Conector tipo Din 7/16

- **Línea de Transmisión:**

Con el fin de eliminar las pérdidas y permitir mayor acoplamiento entre el transmisor y antena, la línea de transmisión seleccionada es de la marca RYMSA, serie LHK058 5/8". Algunas especificaciones técnicas son las siguientes:
- Rango de frecuencias 0 – 862 MHz.
- Impedancia de 50 Ohm.
- Temperatura de operación -40° C hasta +80° C.

- **Conectores:**

Para unir la línea de transmisión con la antena y otros equipos del sistema de transmisión, los conectores seleccionados son de la marca RYMSA con impedancia de 50 ohm y banda de operación de 0 – 8862 MHz.
• **Codificador Multiplexor MPEG-2:**
 El codificador multiplexor EMX 1000 series escogido, es una solución efectiva ya que permite la codificación y multiplexación en un mismo equipo, permite hasta 4 entradas de audio las cuales son codificadas en tiempo real, permite configurar los parámetros de codificación y multiplexación mediante un puerto RS232 o un panel frontal de fácil utilización, cuenta con un puerto RS232 y Ethernet 10/100 base T para datos. Algunas aplicaciones del codificador multiplexor EMX 1000 Series son: radiodifusión digital terrestre, radiodifusión digital satelital. En la figura 65 se presenta el diagrama de bloques del equipo MPEG-2 seleccionado.

Figura 65. Diagrama General de Bloques EMX 1000 Series

El multiplexor EMX 1000 Series, tiene las siguientes especificaciones técnicas:

- Dos entradas analógicas (mono, estéreo, dual, joint estéreo) o una digital AES/EBU por codificador.
- Frecuencia de muestreo 32 KHz, 44.1 KHz o 48 KHz.
- Salida DVB-ASI.
- Entrada opcional de datos al flujo de transporte.
- Potencia de operación 0° C hasta 45° C.
- Consumo de potencia: 85 hasta 260 VAC 50/60 Hz (depende de los requerimientos de funcionamiento).

• **Analizador de Señal:**
 El analizador de señal que puede ser utilizado para medidas y evaluación del desempeño del estándar de radiodifusión sonora digital terrestre ISDB-TB es el N6155A ISDB-T, el cual permite mediciones de la potencia de RF, análisis del espectro, ancho de banda ocupado, forma de onda en el espectro, entre otros. En la figura 66 se presenta el analizador N6155A ISDB-T.

Figura 66. Analizador N6155A ISDB-T
4.4 BENEFICIOS DE LA IMPLEMENTACIÓN DEL SERVICIO DE RADIODIFUSIÓN SONORA DIGITAL TERRESTRE BASADO EN ISDB-TSB EN UNICAUCA ESTÉREO

Algunos de los beneficios que lograría Unicauca Estéreo con la implementación de un sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB se exponen a continuación:

- **Audio a una mayor calidad.** El estándar de radiodifusión sonora digital terrestre ISDB-TSB permite ofrecer servicios de audio a una tasa de transmisión de 144 Kbps o más, lo cual es la tasa de transmisión definida por la ITU para los servicios de radiodifusión digital.

- **Posibilidad de ofrecer servicios de datos.** Con la implementación del servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB Unicauca Estéreo podrá brindar servicios de datos a diferentes tasas de transmisión dependiendo de las intenciones del servicio.

Como se había descrito con anterioridad la tecnología de radiodifusión actual de Unicauca Estéreo permite la transmisión de datos desde los estudios hasta el sitio de transmisión a una tasa de 32 Kbps, para una mayor tasa de transmisión y aprovechar la capacidad de datos soportado por el estándar de radiodifusión sonora digital terrestre ISDB-TSB es necesario utilizar nuevos equipos que permitan mayores tasas de transmisión entre el estudio y sitio de transmisión.

- **Posibilidad de ofrecer otras señales de audio de igual o menor calidad conjuntamente con la señal diaria que emite Unicauca Estéreo su programación.** En el ancho de banda utilizado por ISDB-TSB, se pueden multiplexar varios programas de audio, además de los datos; estas señales pueden ser ofrecidas conjuntamente con la programación diaria y podrán estar destinadas a programas educativos u otros programas de interés.

- **El estándar ISDB-TSB permitirá a Unicauca Estéreo aumentar la cobertura del servicio de radiodifusión sonora.**

- **Disminución en la potencia de transmisión para cubrir el área de cobertura del actual servicio de radiodifusión sonora analógico en FM.** Este beneficio se lograría a futuro después de un apagón analógico, cuando solo se transmitan las señales del servicio de radiodifusión sonora digital terrestre ISDB-TSB.

- **El estándar ISDB-TSB permitirá a Unicauca Estéreo aumentar la cobertura del servicio de radiodifusión sonora.** Por medio de la implementación de una red SFN puede aumentarse el área de cobertura a las zonas de interés planteadas por Unicauca Estéreo, más exactamente en la región de influencia de la Universidad del Cauca la cual es todo el departamento del Cauca.

- **Posibilidad de ofrecer interactividad entre el oyente y Unicauca Estéreo, es de resaltar que esto se podría obtener a mediano o largo plazo debido a que es una temática que aún se encuentra en desarrollo.**

- **Con ISDB-TSB, Unicauca Estéreo podría generar un modelo de negocios que apunte a receptores fijos, móviles o portátiles.**

Para concluir con este capítulo, el análisis desarrollado permite dar a conocer los lineamientos técnicos que posibilitan la implementación de un sistema de radiodifusión sonora digital terrestre a un radiodifusor ya existente o uno nuevo por constituirse. Además de los lineamientos se expuso el diseño y la elección de los equipos necesarios para la implementación del sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB en Unicauca Estéreo; estos son a modo de consideración ya que por condiciones técnicas o económicas pueden existir otros que superen las prestaciones de los equipos expuestos.
CAPÍTULO V. CONCLUSIONES

El desarrollo del trabajo Análisis del Estándar ISDB-TSB y la Viabilidad Técnica para su Implementación en Unicalua Estéreo llevado a cabo permite generar las siguientes conclusiones, recomendaciones y trabajos futuros.

5.1 CONCLUSIONES

- Se consideró a Unicalua Estéreo como modelo de estudio del sistema de radiodifusión sonora analógico en FM debido a que incluye todos los elementos y condiciones técnicas de un escenario particular de radiodifusión sonora dentro del contexto colombiano, además al interés presentado por Unicalua Estéreo en la temática de la radiodifusión sonora digital terrestre. Lo anterior permitió conocer el alcance del servicio en FM de Unicalua Estéreo, la infraestructura de radiodifusión, características técnicas de los equipos, servicios y necesidades de la estación.

- A pesar que el Ministerio de Comunicaciones de Colombia propuso el estudio del impacto técnico, político, económico y social de los diferentes estándares de radiodifusión sonora digital terrestre a finales del 2007, aún no ha iniciado un proceso que le permita ir generando bases técnicas y teóricas del desempeño de los diferentes estándares de radiodifusión sonora digital terrestre, lo anterior se hace necesario con el fin de ir consolidando puntos a favor y en contra de cada uno de los estándares digitales para determinar el más favorable de acuerdo a las condiciones geográficas e intereses propios del país. Es de resaltar que los estudios realizados hasta el momento para abordar esta temática han nacido de la iniciativa de grupos de investigación de algunas universidades y radiodifusores. Este trabajo contribuye en la temática de migración hacia la radiodifusión sonora digital terrestre en el sentido que se abordo el estudio técnico del estándar ISDB-TSB, además a que se definieron requerimientos, consideraciones, problemas, métodos y modelos de transición, y estrategias para la implementación de la radiodifusión sonora digital terrestre.

- La implementación, transición y migración hacia la radiodifusión sonora digital terrestre debe realizarse paulatinamente, empezando con la adopción de un estándar digital; para tal elección la ITU ha definido que una administración que desee implementar el servicio de radiodifusión sonora digital terrestre destinado a receptores fijos, móviles y portátiles en la gama de frecuencias de 30 MHz - 3000 MHz, considere los estándares ISDB-TSB, DAB o IBOC para su implementación. De igual manera la ITU ha definido que para el servicio de radiodifusión sonora digital terrestre en la gama de frecuencias por debajo de los 30 MHz considere el estándar DRM.

- El estándar de radiodifusión sonora digital terrestre ISDB-TSB posee un sistema de transmisión robusto que permite ser configurado de acuerdo a las condiciones geográficas del terreno donde vaya a realizarse el despliegue del servicio y necesidades planteadas por el radiodifusor; los parámetros de transmisión que pueden ser configurados son: esquema de modulación de la portadora (QPSK, 16QAM o 64QAM), modo de transmisión (2K, 4K y 8K los cuales tienen un espaciamiento entre portadoras de 3,968 KHz, 1,984 KHz y 0.992 KHz respectivamente), tasa de codificación del código convolucional (1/2, 2/3, 3/4, 5/6 y 7/8), intervalo de guarda (1/4, 1/8, 1/16 y 1/32) y tiempo de entrelazado.

- El sistema de transmisión BST-OFDM, utilizado por el estándar de radiodifusión sonora digital terrestre ISDB-TSB permite ser configurado para hacer frente a las condiciones agrestes de la geografía donde se presenten efectos de propagación por multitrayectoria, desvanecimientos selectivos en frecuencia, interferencias y errores propios del canal de transmisión, entre otros. Esto lo logra transmitiendo un mayor número de canales de banda angosta sobre el ancho de banda, agregando un intervalo de guarda al final de los datos y con la utilización de técnicas de corrección de errores.
ISDB-TSB permite hacer uso eficiente del espectro radioeléctrico mediante la implementación de redes SFN, ya que con una sola frecuencia es posible una gran área de cobertura, además de eliminar la necesidad de reutilización de frecuencias. Otras ventajas de las redes SFN son la ganancia de la red debido a la suma de las señales que recibe el receptor proveniente de dos o más transmisores y el menor consumo de potencia de los transmisores.

El servicio de radiodifusión sonora digital terrestre independiente del estándar digital adoptado para su implementación, es más competitivo que los actuales servicios de radiodifusión sonora analógico en AM y FM, dado a las técnicas digitales de codificación, compresión, multiplexación y transmisión utilizadas en los estándares de radiodifusión digital, esto hará que los servicios de radiodifusión sonora en AM y FM sean en un futuro reemplazados; lo que no está claro es cuando puede llegar a darse este reemplazo de manera total y cómo puede responder el mercado a los nuevos servicios que puede ofrecer dicha implementación.

La implementación de un sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB, DAB, IBOC o DRM por países como Colombia que aún no han iniciado este proceso y más aún no han tomado la decisión del estándar a adoptar; debe ser abordada considerando las estrategias y modelos de transición llevados a cabo por países que ya han tomado la iniciativa en la implementación de este servicio y que además ya realizan transmisiones digitales, esto con el fin de aprovechar el camino recorrido por estos.

La implementación de la radiodifusión sonora digital terrestre independiente del estándar digital adoptado obliga a los radiodifusores a adaptar, renovar y mejorar los equipos de los estudios, enlace STL y sistema de transmisión, en primer lugar hacia un sistema híbrido donde se ofrezca el servicio de radiodifusión sonora analógico y digital de manera simultánea, esto con el fin de propiciar un periodo de transición que permita a radiodifusores adecuar su infraestructura, crear nuevos contenidos y servicios, y a los oyentes, conocer la nueva tecnología de radiodifusión digital y adquirir los receptores digitales, en segundo lugar hacia un sistema totalmente digital, el cual solo se ofrecerá por parte de los radiodifusores el servicio de radiodifusión sonora digital después del apagón analógico.

Para implementar el servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB y dar continuidad al servicio de radiodifusión sonora analógico, un radiodifusor puede considerar los métodos de transición de alto nivel, combinado de bajo nivel o amplificación común y antenas separadas, la implementación de cualquiera de los tres métodos involucrará mayor consumo de energía, compra de nuevos equipos y adecuación del sitio de transmisión.

Actualmente en Colombia la banda III de VHF necesaria para implementar el servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB está siendo utilizada por el servicio de televisión analógica bajo el estándar NTSC; debido a que este último será reemplazado con la implementación de la Televisión Digital Terrestre (TDT) con en el estándar DVB-T, el cual liberara las bandas I, II y III de VHF para otros usos, ya que la TDT solo utilizará la banda de UHF, se podría utilizar la banda III de VHF para implementar el servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB.

El uso compartido de la banda III de VHF por los servicios de televisión analógica y radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB sin generar interferencias perjudiciales entre estos, es posible con la utilización de bandas de guarda las cuales se destinan a la parte inferior y superior del canal, además de niveles de protección que deben cumplirse. Lo anterior permitirá durante un periodo de transición y apagón analógico que puedan coexistir estos servicios sin problema alguno, lo anterior si llegase a tomarse la decisión por parte de Colombia de adoptar el estándar ISDB-TSB para la implementación de la radiodifusión sonora digital terrestre.
Análisis del Estándar ISDB-TSB y la Viabilidad Técnica para su Implementación en Unicauca Estéreo

Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

• La necesidad del estándar ISDB-TSB de utilizar una nueva banda de frecuencia para proporcionar el servicio de radiodifusión sonora digital terrestre diferente a la utilizada por el servicio de radiodifusión sonora analógico, lo coloca en desventaja respecto a otros estándares que utilizan la misma banda de frecuencia del servicio analógico para proporcionar ambos servicios (analógico y digital).

• El Ministerio de Comunicaciones de Colombia, para los servicios de radiodifusión sonora ha definido los planes técnicos de radiodifusión sonora en AM y FM, y las bandas de frecuencia de 535 KHz – 1605 KHz y 88 MHz – 108 MHz respectivamente para la utilización estos servicios, para el servicio de radiodifusión sonora digital terrestre no ha definido una banda de frecuencia a utilizar ni tampoco una regulación futura para este servicio. Lo anterior demuestra que la banda de frecuencia para este servicio y las normas que permitan regular este servicio dependerán del estándar de radiodifusión sonora digital que adopte Colombia.

• Para determinar la factibilidad técnica de la implementación del estándar de radiodifusión sonora digital terrestre ISDB-TSB en Unicauca Estéreo se considero la adaptación de este estándar a la infraestructura de radiodifusión, la cobertura que puede ser alcanzada con este servicio, la calidad en los servicios de audio y las necesidades de Unicauca Estéreo, esto con el fin de evaluar si ISDB-TSB logra adaptarse a la infraestructura de radiodifusión, superar la cobertura del servicio analógico y satisfacer las necesidades de esta estación. La evaluación de estas consideraciones permitió determinar que es factible técnicamente la implementación del estándar de radiodifusión sonora digital terrestre ISDB-TSB en Unicauca Estéreo.

• La viabilidad técnica de un proyecto implica la factibilidad técnica de su realización, pero es de resaltar que la factibilidad técnica de un proyecto no implica que este sea viable técnicamente, debido a esta razón, determinada la factibilidad técnica de la implementación del sistema de radiodifusión sonora digital terrestre basado en ISDB-TSB en Unicauca Estéreo, se definieron criterios de evaluación los cuales permitieron determinar la viabilidad técnica de la implementación del estándar ISDB-TSB en Unicauca Estéreo.

• Para la elección del esquema de modulación a utilizar en el servicio de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB primeramente se debe evaluar el compromiso entre robustez y tasa de transferencia en los bits de información. La modulación QPSK es el esquema más robusto frente al ruido pero de menor tasa de transferencia, a diferencia de 64QAM que presenta mayor tasa de transferencia pero es más susceptible al ruido, de acuerdo a lo anterior, el esquema de modulación 64QAM debe ser seleccionada cuando haya necesidad de una alta velocidad de transmisión en los bits de información, se ofrezca el servicio en una zona no muy amplia y poco ruidosa, por otro lado cuando se requiera una amplia zona de cobertura y haya condiciones de alta presencia de ruido se debe utilizar el esquema de modulación QPSK. La modulación 16-QAM es el caso intermedio entre 64QAM y QPSK para ofrecer medianos requerimientos de velocidad en ambientes no muy ruidosos o de amplia zona de difusión.

• La utilización de la simulación desarrollada en el trabajo de tesis Evaluación a Nivel Físico de los Estándares DVB-T e ISDB-T desarrollada en la Universidad del Cauca por las estudiantes Gineth Magaly Cerón y Erika Maribel Salazar permitió un acercamiento al funcionamiento del estándar de radiodifusión sonora digital terrestre ISDB-TSB, ya que ISDB-T e ISDB-TSB utilizan el mismo sistema de transmisión, el cual se diferencia en el número de segmentos utilizados, número de portadoras y niveles de jerarquía utilizados.

• La utilización del software ICS TELECOM, herramienta de planificación de redes de radio, facilitado para pruebas de cobertura por la empresa TEST AMERICA, a la cual agradecemos, permitió estimar la cobertura del servicio de radiodifusión sonora en FM de Unicauca Estéreo y comprobar cómo puede ser superada con la implementación de un sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB. Además de esto, también se logró comprobar que con la implementación de una red SFN se puede ampliar la cobertura de Unicauca Estéreo a todos los sitios de interés de la emisora.

• El desarrollo alcanzado con este trabajo de grado permitió contribuir con el estudio técnico de uno de los estándares actuales de radiodifusión sonora digital terrestre, que por ser prácticamente nuevo respecto a otros...
estándares, no se contaba con mucha información técnica que permitiera conocer su funcionamiento y forma de ser adaptado a un sistema de radiodifusión sonora analógica.

- El trabajo desarrollado permitió analizar el estándar de radiodifusión sonora digital terrestre ISDB-TSB, determinar la viabilidad técnica de su implementación en Unicauca Estéreo y generar lineamientos técnicos que posibiliten un despliegue adecuado del sistema de radiodifusión sonora digital terrestre basado en este estándar. Con los objetivos alcanzados no se pretende definir a ISDB-TSB como el estándar de radiodifusión sonora digital terrestre más favorable a ser adoptado, aunque las expectativas para que lo sea no son bajas.

- La culminación de este trabajo permitió dar respuestas a preguntas como: ¿Cuáles son las características principales del estándar ISDB-TSB?, ¿Cuáles son los requerimientos técnicos para la implementación de la radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB?, ¿Es viable técnicamente la implementación de un sistema de radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB en Unicauca Estéreo? ¿Cuáles son los lineamientos técnicos que posibilitan la implementación de la radiodifusión sonora digital terrestre basado en el estándar ISDB-TSB?

5.2 RECOMENDACIONES Y TRABAJOS FUTUROS

A continuación se presentan algunas recomendaciones importantes que deben ser tenidas en cuenta y se definen trabajos a futuro que pueden realizarse con el objetivo de complementar el estudio realizado:

- El presente trabajo se desarrolló de tal manera que pueda ser utilizado de base técnica para el estudio del estándar de radiodifusión sonora digital terrestre ISDB-TSB, debido a esta razón se recomienda su uso para conocer técnicamente el estándar ISDB-TSB, las consideraciones, requerimientos técnicos y métodos que posibilitan su implementación.

- Que el gobierno a través del Ministerio de Comunicaciones como organismo regulador del servicio de radiodifusión sonora en Colombia, defina un marco legal y regulatorio para el servicio de radiodifusión sonora digital terrestre, además de poner en marcha los estudios técnicos, políticos, sociales y económicos, entre otros, planteados por este ente oficial, con el fin de definir el estándar de radiodifusión sonora digital terrestre que va a adoptar Colombia.

- Luego de determinar el estándar de radiodifusión sonora digital terrestre más favorable para Colombia, es necesario que se defina un plan de transición de radiodifusión sonora analógica a digital donde se definan plazos para la conversión y sea puesto en ejecución. Para su elaboración se debe considerar la participación de todos los entes interesados en la radiodifusión sonora.

- La elección del modelo de transición a adoptar define quien debe liderar la coordinación e implementación del servicio de radiodifusión sonora digital terrestre, el modelo de Estados Unidos delega este proceso a los radiodifusores mientras que el modelo de Reino Unido define que sea el gobierno el encargado; de acuerdo a las ventajas y desventajas de estos modelos se recomienda la creación de un híbrido de estos por parte de Colombia, que permita llevar a cabo la coordinación e implementación del servicio de radiodifusión sonora digital terrestre de manera conjunta entre gobierno y radiodifusores, ya que en últimas son los radiodifusores los que tendrán que realizar las grandes inversiones que acarrea dicha implementación.

- Que los radiodifusores llegado el momento de implementación y transición al servicio de radiodifusión sonora digital terrestre independiente del estándar digital escogido, enfaticen sus inversiones en adquirir equipos de radiodifusión que le permitan realizar transmisiones totalmente digitales o que puedan ser fácilmente adaptados para este tipo de transmisiones debido a que el único servicio que prevalecerá después del apagón analógico será el servicio de radiodifusión sonora digital.

- Dado a que Unicauca Estéreo ha presupuestado a futuro cambiar el equipo transmisor, es recomendable que la adquisición de este cumpla con especificaciones técnicas para la transmisión digital.
• Independiente del estándar de radiodifusión sonora digital terrestre adoptado por Colombia, se recomienda la implementación de redes SFN para un mejor aprovechamiento del espectro radioeléctrico.

• La utilización de herramientas de simulación para el estudio, diseño y planificación de redes SFN que pueden ser implementadas con los estándares de radiodifusión sonora digital terrestre. Dada a la gran robustez de la herramienta ICS TELECOM para el estudio, diseño y planificación de redes se recomienda su utilización para el estudio de las redes SFN dada la eficiencia de estas redes en la utilización del espectro radioeléctrico.

• El servicio de radiodifusión sonora digital terrestre basado en ISDB-TSB, al igual que con otros estándares seguirá siendo unidireccional (solo transmisión), a menos que sea utilizado un canal de retorno para interactividad con el oyente, esto debido a que el canal de retorno es independiente de la tecnología utilizada por los actuales estándares de radiodifusión sonora digital terrestre; por tal razón, el trabajo que se deriva de este proyecto es el estudio técnico de las diferentes tecnologías que posibilitan la implementación del canal de retorno en un sistema de radiodifusión sonora digital terrestre, con el fin de determinar cuál puede ser la tecnología más propicia y la forma de ser implementada.

• Otro trabajo a futuro que se deriva de este proyecto de ser considerado el estándar ISDB-TSB para la implementación del servicio de radiodifusión sonora digital terrestre en Colombia, es un estudio técnico que permita el despliegue de una red SFN en el departamento del Cauca con el fin de aumentar la cobertura del servicio de radiodifusión brindado por Unicaua Estéreo, el cual complemente los estudios realizados con este trabajo de grado.
BIBLIOGRAFÍA

Última consulta: Enero 16 de 2009.

[21] Aplicación de la Transformada Discreta de Fourier. Pagina Web disponible en:
Última consulta 16 julio de 2009.

http://www.blogger.com/feeds/6557198433409213547/posts/default
Última consulta 1 agosto 2009

[31] IcKrom S.A de C.V, “Enlaces Digitales STL Moseley’. Pagina Web disponible en:
Última consulta 10 agosto de 2009.

Análisis del Estándar ISDB-TsB y la Viabilidad Técnica para su Implementación en Unicauca Estéreo
Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

[33] Enlaces STL. Pagina Web disponible en:
Última consulta 15 agosto 2009.

[38] Very High frequency, Pagina Web disponible en:
http://en.wikipedia.org/wiki/Very_high_frequency
Última consulta 20 de agosto de 2007.

[42] Margen Sobre la Interferencia (jamming marging). Pagina Web disponible en:
http://prof.usb.ve/tperz/docencia/3413/contenido/ss/SS.htm
Última consulta: 25 agosto de 2009.

[47] Geografía Colombiana. Pagina Web disponible en:
http://www.colombia.travel/es/turista-internacional/columbia/geografia
Última consulta 14 septiembre 2009

[50] El concepto del espectro radioeléctrico. Documento disponible en:
Última consulta 20 septiembre 2009

[51] Todo Sobre la Televisión digital terrestre. Pagina Web disponible en:
http://www.cntv.org.co/cntv_bop/tdt/
Ultima consulta 25 septiembre 2009

[53] LA Radio Digital Terrenal en España -Situación y tendencias

[54] ISDB (Japón y parte de América de Sur). Pagina Web disponible en:
http://es.wikitel.info/wiki/ISDB
Última consulta 18 noviembre 2009.

[55] DiBEG NEWS, Pagina Web disponible en:
http://www.dibeg.org/seminar/PressR.htm
Última Consulta 26 noviembre 2009.

Asociación de Radio Industrias y Negocios de Radiodifusión de Japón.

[57] Comunicado de Presa, “Comisión Nacional de Telecomunicaciones CNTV”.

Última Consulta 30 Noviembre 2009

[59] Biblioteca del Congreso Nacional de Chile, “Firman Acuerdo para Comenzar la Implementación de la Televisión Digital”. Pagina Web disponible en:
http://asiapacifico.bcn.cl/noticias/politica/acerdado-chile-japon-par-implementacion-de-television-digital
Última Consulta 4 diciembre de 2009.

ANEXOS

ANEXO A. RADIODIFUSIÓN SONORA EN FM Y SITUACIÓN ACTUAL DE UNICAUCA ESTÉREO.
ANEXO B. REDES DE FRECUENCIA ÚNICA (SFN).
ANEXO C. CODIFICACIÓN DE AUDIO, TRANSMISIÓN DE DATOS Y SISTEMA MPEG.
ANEXO D. SISTEMA DE RADIO DIFUSIÓN SONORA DIGITAL TERRESTRE ISDB-Tsb.
ANEXO E. INTERFAZ DE AUDIO DIGITAL AES/EBU (AES3).
ANEXO F. POTENCIA DEL SISTEMA DE RADIO DIFUSIÓN SONORA DIGITAL TERRESTRE ISDB-Tsb.
ANEXO G. SIMULACIÓN DE COBERTURA UTILIZANDO ICS TELECOM
GLOSARIO DE ACRÓNIMOS

<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>Advanced Audio Coding, Codificación de Audio Avanzado.</td>
</tr>
<tr>
<td>AES/EBU</td>
<td>Audio Engineering Society/European Broadcasting Union, Interfaz Interna de la Sociedad de Ingenieros de Audio/Unión Europea de Radiodifusión.</td>
</tr>
<tr>
<td>AC</td>
<td>Auxiliary Channel, Canal Auxiliar.</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric Digital Subscriber Line, Línea Suscrita Digital Asimétrica.</td>
</tr>
<tr>
<td>A/D</td>
<td>Analog/Digital, Analógico a Digital.</td>
</tr>
<tr>
<td>ARIB</td>
<td>Association of Radio Industries and Businesses, Asociación de Industrias y Negocios de Radiodifusión del Japón.</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate, Tasa de Error de Bit.</td>
</tr>
<tr>
<td>BRIC</td>
<td>Broadcast Reliable Internet Codec, Radiodifusión para Internet de Codificación Confiable.</td>
</tr>
<tr>
<td>BST-OFDM</td>
<td>Band Segmented Transmission OFDM, Transmisión de Banda Segmentada OFDM.</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disc, Disco Compacto.</td>
</tr>
<tr>
<td>CELP</td>
<td>Code Excited Linear Prediction, Predicción Lineal Excitada por Código.</td>
</tr>
<tr>
<td>C/N</td>
<td>Carrier/Noise, Razón Portadora a Ruido.</td>
</tr>
<tr>
<td>COFDM</td>
<td>Coded Orthogonal Frequency Division Multiplex, Multiplexación por División de Frecuencia Ortogonal Codificada.</td>
</tr>
<tr>
<td>CP</td>
<td>Continual Pilot, Piloto Continuo.</td>
</tr>
<tr>
<td>CRC</td>
<td>Comisión de Regulación de Comunicaciones.</td>
</tr>
<tr>
<td>DAB</td>
<td>Digital Audio Broadcasting, Radiodifusión de Audio Digital.</td>
</tr>
<tr>
<td>DQPSK</td>
<td>Differential Quadrature Phase Shift Keying.</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line, Línea Suscrita Digital.</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing, Procesamiento Digital de Señales.</td>
</tr>
<tr>
<td>ES</td>
<td>Elementary Stream, Flujos Elementales.</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute, Instituto Europeo de Estándares de Telecomunicaciones.</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction, Corrección Directa de Errores.</td>
</tr>
<tr>
<td>FI</td>
<td>Frequency Intermediate, Frecuencia Intermedia.</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Comission, Comisión Federal de Comunicaciones.</td>
</tr>
<tr>
<td>FM</td>
<td>Frequency Modulation, Modulación en Frecuencia.</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System, Sistema de Posicionamiento Global.</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communications, Sistema Global Comunicaciones.</td>
</tr>
<tr>
<td>HF</td>
<td>High Frequency, Alta Frecuencia.</td>
</tr>
<tr>
<td>HVXC</td>
<td>Harmonic Vector Excitation Coding, Excitación Armónica de Vectores de Codificación.</td>
</tr>
<tr>
<td>IBOC</td>
<td>In Band on Channel, Servicio de Transmisión en Banda o en Canal.</td>
</tr>
<tr>
<td>ICI</td>
<td>Inter-Carrier Interference, Interferencia entre Portadoras.</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse Fast Fourier Transform, Transformada Rápida de Furrier Inversa.</td>
</tr>
<tr>
<td>ISI</td>
<td>Inter Symbol Interference, Interferencia entre Símbolos.</td>
</tr>
<tr>
<td>ISDB-C</td>
<td>Integrated Services Digital Broadcasting –Cable, Radiodifusión Digital de Servicios Integrados por Cable.</td>
</tr>
<tr>
<td>ISDB-T</td>
<td>Integrated Services Digital Broadcasting –Terrestre, Radiodifusión Digital de Servicios Integrados Terrestres.</td>
</tr>
</tbody>
</table>
Análisis del Estándar ISDB-Ts y la Viabilidad Técnica para su Implementación en Unicauca Estéreo
Yohny Orlando Meneses - Diego Mauricio Solano Bohojorge

ISDN : Integrated Services Digital Network, Red Digital de Servicios Integrados.
ITU : International Telecommunication Union, Unión Internacional de Telecomunicaciones.
LMDS : Local Multipoint Distribution Service, Sistema de Distribución Local Multipunto.
LNA : Low Noise Amplifier, Amplificador de Bajo Ruido.
MF : Medium Frequency, Frecuencia Media.
MPEG : Moving Pictures Expert Group, Grupo de Expertos en Movimiento.
NTSC : National Television System Comite, Comisión Nacional de Sistemas de Televisión.
OFDM : Orthogonal Frequency Division Multiplex, Multiplexación por División de Frecuencia Ortogonal.
OSI : Open System Interconnection, Interconexión de Sistemas Abiertos.
PA : AltA Potencia.
PES : Packets Elementary Stream, Paquetes de Flujo Elementales.
PIRE : Potencia Isotrópica Radiada Equivalente.
P.R.A : Potencia Radiada Aparentemente.
PRBS : Pseudo Random Binary Sequence, Secuencia Binaria Seudoaleatoria.
PSTN : Public Switched Telephone Network, Red Telefónica Publica Conmutada.
QAM : Quadrature Amplitude Modulation, Modulación de Amplitud en Cuadratura.
QPSK : Quadrature Phase Shift Keying, Modulación por Desplazamiento en Fase.
RDS : Radio Data System, Sistema de Datos vía Radio.
SFN : Simple Frequency Network, Red de Frecuencia Única.
SP : Scattered Pilot, Piloto Disperso.
S/N : Signal/Noise, Relación Señal a Ruido.
STL : Study Transmission Link, Enlace Estudio Sitio de Transmisión.
TDT : Television Digital Terrestre.
TMCC : Transmission and Multiplexing Configuration Control, Transmisión de Control y Configuración de la Multiplexación
TS : Transport Streams, Flujo de Transporte.
TSP : Transport Stream Packets, Paquetes de Flujo de Transporte.
UHF : Ultra High Frequency, Ultra Alta Frecuencia.
UMTS : Universal Mobile Telecommunications System, Sistema Universal de Telecomunicaciones Móvil
VHF : Very High Frequency, Muy Alta Frecuencia.
WRC : World Radiocommunication Conference, Conferencia Mundial de Radiocomunicaciones.
Wi-Fi : Wireless Fidelity 2.4 GHz, Sistema de Envió de Datos Sobre Redes Inalámbricas.