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Abstract

The growing demand for data storage, transmission, and processing has become
a challenge for network operators. Data centers suppose the core infrastructure to
meet these needs, providing the environment to deploy rising network services and
applications (e.g., big data, video streaming, and cloud computing). Multi-rooted
topologies (e.g., Fat-Tree) rise as Data Centers’ main architectures to mitigate the
impact of the demanding workloads. These topologies allow massive multipathing
to distribute the traffic workload. Moreover, Equal-Cost Multipathing (ECMP) is
used as a de-facto load-balancing routing solution to split traffic through multiple
paths evenly. Nevertheless, uniformly spreading the workload can degrade the net-
work performance since the traffic is balanced without awareness of the network
congestion, leading to bottleneck-specific links.

Novel P4-based congestion-aware and weighted load-balancing mechanisms such as
HULA, CONGA, and DASH have successfully addressed this situation. Still, exis-
ting solutions introduce certain limitations. First, Conga is implemented in custom
hardware. Second, HULA and CONGA easily bottleneck the best routing path sin-
ce they only select and record the less congested path. Third, existing data-plane
ECMP routing alternatives compromise the network performance since their con-
gestion estimation is limited to links-state information, disregarding the switches’
queue occupancy.

This Thesis introduces a P4-based load-balancing mechanism that overcomes pre-
vious limitations. In particular, the proposed mechanism computes multiple optimal
paths to avoid the single best path quickly congestion. Moreover, this solution fits
links and devices state information in the load-balancing algorithm to split arri-
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ving flows based on weighted probabilities. Using the device-state information (i.e.,
queue occupancy) allows the mechanism to accurately characterize the network’s
congestion and consequently improves the routing performance.

This solution has been extensively evaluated in typical Fat-Tree data center topology
using realistic workloads models from production data centers to generate traffic.
Experimental results show that the proposed solution outperforms ECMP regarding
the delay, throughput, and packet loss. Moreover, our solution reduces the packet
loss up to 1.33x compared to alternatives using solely the link-state information to
model the network congestion.



Resumen

La creciente demanda por almacenamiento, transmisión y procesamiento de datos se
ha convertido en un reto para los operadores de redes. Los centros de datos surgen
como la infraestructura central para satisfacer estas necesidades, proporcionando un
entorno para desplegar servicios y aplicaciones de red en crecimiento (por ejemplo,
big data, streaming de vídeo y computación en la nube). Las topologías multiraíz
(por ejemplo, Fat-Tree) suponen una de las principales arquitecturas de los centros
de datos para mitigar el impacto de las altas demandas en tráfico. Estas topologías
permiten múltiples caminos masivos para distribuir la carga de trabajo del tráfico.
Además, ECMP se ha posicionado como la solución de enrutamiento de equilibrio
de carga por defecto para dividir el tráfico a través de múltiples caminos de manera
uniforme.

Sin embargo, la distribución uniforme de la carga de trabajo puede degradar el
rendimiento de la red, ya que el tráfico se equilibra sin tener en cuenta la congestión
de la red, lo que lleva a cuellos de botella en enlaces particulares.

Los mecanismos de equilibrio de carga emergentes basados en P4, como HULA,
CONGA y DASH, han abordado con éxito esta situación. Sin embargo, las soluciones
existentes presentan ciertas limitaciones. En primer lugar, CONGA se implementa
en hardware personalizado. En segundo lugar, HULA y CONGA congestionan fá-
cilmente el camino de enrutamiento elegido, ya que sólo seleccionan y registran un
único camino (aquel que presenta menor congestión). En tercer lugar, las alterna-
tivas existentes de enrutamiento en el plano de datos comprometen el rendimiento
de la red, ya que estiman la congestión limitándose a parámetros del estado de los
enlaces, sin tener en cuenta la ocupación de las colas de los conmutadores.
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Esta tesis introduce un mecanismo de equilibrio de carga basado en P4 que supera
las limitaciones anteriores. En particular, el mecanismo propuesto computa múltiples
caminos óptimos para evitar cuellos de botella al emplear un único camino óptimo
de enrutamiento. Además, esta solución incorpora la información del estado de los
enlaces y dispositivos en el algoritmo de equilibrio de carga para dividir los flujos
en la red utilizando probabilidades ponderadas. El uso de la información el estado
de los dispositivos (como la ocupación de cola) permite al mecanismo caracterizar
con precisión la congestión de la red y, en consecuencia, mejorar el rendimiento del
enrutamiento.

Esta solución se evaluó ampliamente en una topología típica usada en los centros de
datos, llamada Fat-Tree, además se modeló el tráfico en la red empleado de cargas
de trabajo realistas, obtenidas de centros de datos de producción. Los resultados
conseguidos muestran que la solución propuesta supera a ECMP en cuanto al de-
lay, throughput y pérdida de paquetes. Además, nuestra solución reduce la pérdida
de paquetes hasta 1,33 veces en comparación con las alternativas que utilizan úni-
camente la información del estado de los enlaces para modelar la congestión en la
red.
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Chapter 1

Introduction

Nowadays, the growing demand for cloud computing and Internet-based services has
raised data centers as the core for providing a variety of cloud-based services such
as Web-Hosting, Video Streaming, Social Networking, etc. [1, 6]. Data centers are
facilities that house a wide number of computing and storage devices interconnected
by a network infrastructure [1, 7].

This network infrastructure handles communication across tens to hundreds and
even thousands of servers. Hence network architects have developed multi-rooted
topologies (e.g., Fat-Tree and Clos) to meet data centers’ communication needs.
Multi-rooted topologies provide a large bisection bandwidth by splitting the traffic
through multiple paths [8, 9]. Therefore, data centers use load-balancing schemes
to leverage the multi-path bandwidth. The main multipathing scheme for load-
balancing in data center networks is ECMP. ECMP evenly splits traffic flows among
all available next-hops using a hash function applied to the packet header to map
packets into the available paths. Nonetheless, the flows forming the network traffic
differ significantly, so evenly splitting the traffic results in non-optimal use of the
bisection bandwidth since the routing devices can forward multiple large flows across
the same path [10, 11]. Consequently, uniformly spreading the traffic compromises
the network performance. Motivated by ECMP’s shortcomings, network engineers
have developed various research efforts from diverse perspectives.
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Several research efforts address ECMP shortcomings from a centralized perspecti-
ve. In, [12–19] use a centralized controller to load balance the Data Center Net-
works (DCN) traffic, splitting packets through optimal paths computed using the
network traffic congestion or the traffic demands, instead of randomly distribute the
load. Hence, previous alternatives improve ECMP performance by exploiting the
links’ status information to use the multipath bisection bandwidth efficiently. Ne-
vertheless, centralized mechanisms do not fit bursty and unpredictable DCN traffic
as they require a high convergence time to update the congestion information [20].
Furthermore, they increase communication overhead, consequently deteriorating the
communication throughput. Moreover, new-arriving flows demand higher Central
Processing Unit (CPU) usage, overloading the controller process facilities as the
inter-arrival flow ratio increases [21]. Indeed, high inter-arrival rate scenarios, such
as Internet of Things networks, or Distributed Denial-of-Service attacks, introduce
a large controller load, compromising the scalability, availability, Quality of Servi-
ce (QoS) in end-to-end communications, and the security of the entire infrastructure
[22–24]. Additionally, most Software Defined Networking (SDN) centralized schemes
rely on OpenFlow [25] protocol. Nevertheless, OpenFlow-based networks match pac-
kets regarding a set of fixed protocols (e.g., Transmission Control Protocol (TCP),
Ethernet, and IPv4). Therefore, OpenFlow-based centralized routing solutions are
unsuitable for the novel routing techniques arising in DCN as it does not offer the
flexibility to add new and customized protocol headers [26].

Emerging data plane-based routing solutions [27, 28] address the SDN centralized
schemes issues leveraging distributed implementations. Moreover, distributed so-
lutions based on Programming Protocol-Independent Packet Processors (P4) [29–
32] surpass the OpenFlow inflexibility to adopt arising packet headers efficiently.
Nevertheless, existing distributed solutions adopt link-state metrics as parameters
to choose the best routing path, ignoring the forwarding devices’ status. However,
device-state parameters such as buffer occupancy or queue length are important
indicators since they reveal the switches’ capability to deal with arriving flows. Dis-
regarding this metric leads to overflowing the flow entries, causing packet loss and
traffic congestion.

In summary, to address load-balance routing mechanisms in SDN, researchers ha-
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ve focused on a centralized perspective. This perspective can degrade the overall
network performance and security. Moreover, a centralized perspective does not suit
traffic volatility in DCN and is constrained to a set of fixed header protocols. Further-
more, emerging SDN distributed load-balancing routing solutions compromise the
network performance as they disregard the forwarding devices’ status, causing packet
loss and deteriorating the switches’ capability to deal with arriving flows. Therefore,
this undergraduate proposal was guided by the following research question:

How to provide an efficient routing mechanism from a programmable
data plane?

1.1. Objectives

1.1.1. General Objective

Propose a routing mechanism based on data plane programmability, link-state,
and device status.

1.1.2. Specific Objectives

Design a routing mechanism based on data plane programmability, link-state,
and device status.

Implement the proposed routing mechanism using P4 to achieve in-band rou-
ting.

Evaluate the effectiveness of the mechanism regarding delay, packet loss, and
throughput.
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1.2. Contributions

This undergraduate work’s main contributions are mentioned below, which were
obtained from the previously mentioned objectives 1, 2, and 3.

A routing mechanism based on data plane programmability, link state, and
device state.

An implementation of the proposed mechanism using P4, as well as an ex-
tensive evaluation of its performance regarding the delay, packet loss, and
throughput.

A comparative evaluation among solutions modeling the network congestion
using solely link-state or both link-state and device-state information to esta-
blish the device-state impact on the routing performance.

To our knowledge, our mechanism is the first data-plane load-balance solution
splitting traffic through optimal paths computed using both link-state and
device-state information to estimate network congestion.
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1.3. Outline

This undergraduate research document is composed of five chapters which are des-
cribed below.

Chapter 1 presents the Introduction that includes the problem statement,
objectives, contributions, and this document outline.

Chapter 2 presents the State Of the Art, consisting of two subsections. First,
a Backgorund on main topics related to this undergraduate research (inclu-
ding Network Programmability, Data Center Networks, SDN, P4). Second, an
overview of the Related Works presents previous works within the study
area of this undergraduate research and identifies gaps around the research
problem.

Chapter 3 introduces the Probe-based weighted load-balancing mecha-
nism, presenting the Probe’s Header Formatting, the Probe-based con-
gestion information collection and the Weighted path selection algo-
rithm.

Chapter 4 introduce the proposed load-balancing mechanism Test Environ-
ment and the corresponding Results Analysis.

Chapter 5 presents the research Conclusions highlighting the main contribu-
tions. Furthermore, it also presents relevant recommendations for the develop-
ment of Future Work.



Chapter 2

State Of Art

This chapter illustrates background on the main topics related to this thesis. First,
we introduce the Data Centers Networks, its common network topologies, and rou-
ting mechanisms. Second, we explain the Network Programmability, its evolution,
and present. Third, we review Software Defined Networking and its development
regarding the network programmability. Finally, we introduce P4 language, its main
features, architecture, and ecosystem.

2.1. Background

2.1.1. Data Centers Networks

A Data Center is a set of physical facilities working together to store, share and
process large amounts of data. The DCN suppose the communication infrastructure
used in a data center. This infrastructure includes different routing devices connected
following specific network topology to communicate the entire infrastructure using
a variety of network protocols [1].

In DCN, the network topologies typically consist of either a two- or three-tier tree of
routing devices (e.g., switches and routers). Figure 2.1 shows the Fat-tree network

6
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topology, whose design is a hierarchical three-tier layer system: core, aggregation,
and edge. The k parameter defines the number of pods : a two-layer subsystem com-
posed of edge and aggregation switches. Each core switch connects the different k
pods to provide communication in the network infrastructure. Hence, the DCN to-
pologies supply bisection bandwidth using many equal-cost paths between each host
pair. Therefore, they use load-balancing routing schemes to leverage the multi-path
bandwidth [8, 9].

Core

Edge

Pod 1 Pod 2

Aggregation

 

   

Pod 3 Pod 4

Figure 2.1: Fat-tree topology, K = 4 - adapted from [1]

The best-known multipath routing technique is ECMP [33], a hash-based flow for-
warding technique that performs load balancing by equally distributing the traffic
along several paths. Practical experience shows that dealing with high network loads
ECMP operates well enough in mice flows (i.e., small flows) traffic scenarios num-
bers. Nevertheless, working with large flows (i.e., elephant flows) leads ECMP to
traffic imbalances, and consequently link congestion [34].



2.1. Background 8

2.1.2. Network Programmability

Network programmability is a set of tools and practices to deploy, manage and trou-
bleshoot network devices. The network programmability allows network engineers
to specify and control the network behavior by defining customized algorithms in
the control or data plane. Hence, network engineers deploy networks regarding the
user needs [35].

Traditionally, the hardware vendors’ specifications have constrained the development
of the control and data plane algorithms since providers did not allow customized
execution environments running directly in the routing devices’ hardware, preventing
hardware damage and security issues.

Leveraging the resource isolation provided by the virtualization, SDN rises as the
first wide-scale solution for network programmability accepted by academics and the
industry. Nowadays, SDN supports network programmability from centralized and
distributed perspectives.

The centralized network programmability perspective employs a centralized pro-
grammable control plane, which communicates with the data plane through well-
known protocols, such as OpenFlow [? ] and ForCES [? ]. Hence, network engineers
run custom-made algorithms in the control plane through an external agent. Next,
the control plane communicates the match-action rules to the data plane devices
using the above protocols[35].

The distributed network programmability perspective runs customized algorithms
directly in the different data plane devices. Thus, network operators can modify the
switches’ packet processing behavior using the data plane programmability without
incurring an external API. Data plane programming languages adapt to specific
models to express algorithms abstractly. The PISA model is the programmable data
plane model for P4 language [3], which will be discussed further in the following
sections.
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2.1.3. Software Defined Networking

SDN is an emerging paradigm that undoes vertical integration by separating network
intelligence (control plane) from routing devices (data plane). The traditional SDN
architecture consolidates a centralized controller to define the network operation.
In this centralized paradigm, the programmable control plane communicates the
routing devices’ policies through a southbound Application Programming Interface
(API).

The traditional SDN centralized architecture widely-extended southbound is well-
known protocol OpenFlow [36]. OpenFlow switches support different routing tables
to handle incoming packets. Thus, each arriving flow matching a predefined rule
follows the same routing policies [2, 37].

The SDN centralized network architecture offers the following advantages in the
routing process:

The centralized controller provides a global view of the network, enhancing
the routing path selection process.

The decoupling of intelligence from the routing devices enables network pro-
gramming and consequently adapts the behavior of the traditional routing
protocols or even offers new routing alternatives.
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Figure 2.2: SDN Architecture - adapted from [2]

Figure 2.2 shows the SDN centralized network architecture, which is constituted as
follows:

Data plane: It is composed of different interconnected forwarding devices.

Control Plane: It manages the network logic. In particular, it sets the network
policies communicated to the forwarding devices.

Application plane: It is a set of services communicating their desired network
behavior and requirements to the controller.

Management plane: It is a set of applications coordinating each plane indivi-
dually.
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Northern Border Interface: Defines an API that communicates between the
control and application planes. It typically abstracts the southern border in-
terface’s instructions to program routing devices.

Southern Border Interface: The southern border API defines the communica-
tion protocol between the data and control planes. This protocol gives access
to the forwarding devices from the centralized controller.

2.1.4. P4

P4 is an open-source language that provides network programmability directly on
the data plane forwarding devices. P4 allows network engineers to specify how the
forwarding devices process incoming packets. Although P4 does not interfere in the
control plane operation, it defines a general communication interface between the
control and data plane [38, 39]. The P4 main features are:

Flexibility: This allows reconfiguring the switch behavior through a P4 pro-
gram previously installed on it.

Protocol independence: Unlike OpenFlow, P4 switches are not tied to any pac-
ket formats. Instead, they allow custom-made packet encapsulation protocols
through a parsing packets mechanism to extract specific header fields and a
set of match-action tables to process these custom headers.

Target independence: P4 programs do not require any underlying hardware.
They only need a device capable of translating the P4 programs.

PISA arises as the base architecture model for P4 data plane network applications
(2.3).
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Figure 2.3: Protocol-Independent Switch Architecure (PISA) - adapted from [3]

PISA is a single pipeline forwarding architecture that offers custom programmable
packet parsing, packet processing using match-action pipelines, and general purpo-
se registers for stateful operations [3]. Thereby, PISA monitors and controls switch
queuing directly in the data plane. Additionally, PISA switches allow different si-
multaneous queries, reducing the amount of data sent to the stream processor.

Figure 2.3 shows the three main components of the architecture. It includes a pro-
grammable parser, a deparser, and a match-action pipeline. The parser describes the
network’s header sequences allowed, the process of identifying these header sequen-
ces, and the process of extracting the header fields from incoming packets. The parser
and deparser are reconfigurable to support user-defined packet header formats. The
deparser determines how packets are serialized. On the other hand, the input and
output pipelines process packages through match-action tables organized by stages.
The match-action tables perform the specific actions on the packets matching the
headers fields using predefined matching rules [3].

Incoming packets consist of both the payload and the packet metadata. Nevertheless,
PISA focuses on processing the packet metadata. PISA splits the packet metadata
into:
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Packet headers.

Intrinsic metadata.

User-defined metadata.

PISA use these metadata fields to incorporate into the header different helpful in-
formation for processing packets throughout the parser until reaching the deparser
[3].

On the other hand, P4 comprises two standards which are: P414 and P416.

P414 allowed network programmers to write data plane algorithms using a set of 70
reserved words. However, different limitations appeared over time, caused partly by
imperative programming constructs. Moreover, P414 weakly supported programs’
modularity. Hence, P416 was introduced to overcome these limitations, so P414 de-
velopment and support were interrupted.

P416 was established as the leading standard. Various architectures, such as V1model
and Portable Switch Architecture (PSA) support this standard. A P4 architecture
is a programming model that allows the implementation of the logic and processing
capabilities of a P4 switch [38].

V1model is one of the most extended P416 architectures used in P4 switches. Figure
2.4 shows the V1model. This architecture model is similar to PISA as it consists
of a programmable parser/deparser, and an input/output match-action pipeline.
Still, it aggregates a traffic manager responsible for packet buffering, queuing, and
scheduling. Moreover, V1model allows the developers to migrate P414 programs into
P416 [3].
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Figure 2.4: V1model Architecture - adapted from [3]

Software-based P4 targets are packet routing programs that run on a standard CPU.
The two most popular are:

P4c-behavioural.

behavioral model version 2 (bmv2).

P4c-behavioral was the first version of a P4 target. It consisted of a P4 compiler and
a P4 switch. P4c-behavioral translates P414 programs into a C program. It also relies
on a python module called P4 High-level Intermediate Representation (p4-hlir).

bmv2 was introduced to support P416 programs and to resolve the limitations of
P4c-behavioral switches. Eventually bmv2 switches replace P4c-behavioral switches
entirely. To run bmv2 programs it is required a P4 file (containing the P4 program)
and a JavaScript Object Notation (JSON) file to compile the P4. The P4 compiler
(p4c) is written in C++, and it is the responsible for generate the JSON file [40].
From this model, there have been deployed the following P4 switches:

simple_switch: Contains all the features of P414 and also supports the v1model
architecture of P416 using an API that improves the exchange of data plane
information. Hence, it uses the Thrift API to communicate the forwarding
devices and the control plane at the runtime.
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simple_switch_grpc: It has the same characteristics as simple_switch. Ne-
vertheless, it implements the P4RunTime API.

psa_switch: It is similar to simple_switch, but it supports the PSA architec-
ture instead of v1model

simple_router and L2_switch: They do not support P416. They are used to
experience different architecture implementations in bmv2.

The P4 APIs ease the runtime management of the P4 devices. Also, they enhance the
exchange of information among the data and control planes. One of the most common
APIs in the data plane is P4Runtime which was designed for the P416 version. Figure
2.5 shows how P4Runtime works. The p4runtime.proto file specifies the operating
API, it also describes how the controller accesses the P4 entities using the P4Info
metadata. The P4 devices have a google remote procedure calls (gRPC) server and
controllers have a gRPC client. The interaction between the controller and p4 devices
is as follows. First, a P4 compiler generates the P4Runtime configuration consisting
of the P4 device configuration and its P4Info metadata. Second, the controller uses
this information to establish a gRPC connection with the P4 device to access the
entities and configuration of the P4 device [3, 4].
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Figure 2.5: P4Runtime architecture - adapted from [4]

2.2. Related work

This section reviews research works in the context of SDN-based ECMP solutions.
Typically routing mechanisms developed in SDN networks implement centralized lo-
gic techniques to manage flows through networks. Still, rising SDN routing solutions
focus on a distributed architecture to overcome centralized scheme shortcomings
(e.g., controller overhead, security issues, etc.) and OpenFlow limitations.

2.2.1. Control Plane-based routing

[12] presents HEDERA, a dynamic flow scheduling system to overcome the multi-
pathing protocol’s non-efficient use of network resources. HEDERA collects incoming
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flow utilization information from all constituent switches and computes multiple op-
timal routing paths to maximize the bisection bandwidth utilization. Thus, HEDE-
RA dynamically schedules network flows, moving them from highly-utilized links
to the less utilized links (i.e., optimal paths). The scheduler mechanism allocates
flows by combining the path congestion information and the flow’s natural band-
width demands, achieving non-conflicting paths for each flow. HEDERA defines a
TCP flows natural bandwidth demands as the mean rate it would grow to in a fully
non-blocking network. Thus, HEDERA reallocates the flows using its scheduling me-
chanism whenever a flow persists over time and its bandwidth demands grow beyond
a defined limit. Moreover, HEDERA’s design aims to mitigate the impact of active
flows on the network, minimizing the overhead scheduler information. HEDERA im-
plementation fits on the data center’s multi-stage switch topologies. Experimental
results show that Hedera affords 4 x more bisection bandwidth than ECMP’s static
load-balancing methods.

[13] introduces B4, a private wide area network connecting multiple Google’s da-
ta centers worldwide. B4 is built upon an SDN centralized architecture to control
traffic splitting through multiple paths regarding the demands of the applications.
B4 supplies centralized traffic engineering services to allocate the network band-
width across diverse competing applications. B4’s services use an objective function
to compute the application bandwidth given the flow’s priority. The relative appli-
cation priority arises from administrator-specified static weights. B4 leverages the
available network capacity load balancing the traffic along multiple paths according
to application priority. Non-SDN standard wide area networks are limited to work
at moderate utilization (e.g., constrained at 30-40 % utilization for the busiest links)
to avoid packet loss and reserve backup capacity in case of link failures. Still, the
operational experience over the first three years of deployment shows that B4 enables
cost-effective bandwidth management, running most links at near 100 % utilization
over extended periods (i.e., achieving 2-3 x efficiency improvements compared to
most wide area networks).

[14] proposes SWAN, a highly efficient and flexible system to enhance the links
utilization in inter-data-center wide area networks. SWAN controls the traffic each
service sends based on the current service demands and the network utilization.
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Next, SWAN updates the switches’ tables to carry traffic according to these de-
mands. Maintaining high utilization involves frequent data plane updates to meet
current traffic demands consistently. Consequently, SWAN periodically re-configures
the switches’ tables to match the traffic demands. However, it leverages a small
amount of the link’s capacity to handle the updates without compromising latency-
sensitive traffic performance due to the transient congestion caused by the switches’
non-synchronized updates. Also, SWAN scales to large networks since it faces limited
forwarding table capacities by greedily selecting a small set of entries that can op-
timally match the current demands. The data-driven simulations of two production
networks show that SWAN can improve the utilization by around 60 % compared to
prevailing methods for inter-data-center wide area networks.

[15] presents CAMOR, a routing strategy that combines multipath routing and a
congestion-aware mechanism to obtain the optimal path for every new flow between
source and destination. CAMOR controller computes the optimal path regarding the
status of each participating link, using a congestion-aware mechanism that collects
the load of each available link. Moreover, CAMOR uses multipath routing to dis-
tribute the traffic on multiple optimal routes, preventing congestion due to routing
on a single best path. Experimental results show that CAMOR traffic splitting fa-
vors routing paths with higher available throughput, improving the overall network
performance.

[16] introduces a global multipath load-balanced routing algorithm based on ma-
chine learning. This algorithm leverages on SDN controller global view to collect
enough information on network traffic state (i.e., links and bandwidth utilization)
from all possible flows within the network to generate a global routing policy using
reinforcement learning. Then, a load balancing mechanism uses this policy to find
the best routing paths for each pair of source-destination nodes on the network.
The algorithm performance presents superior delay and network utilization results
compared to the shortest path and round-robin algorithms.

[17] proposes a load-balancing technique using the transport layer protocol multi-
path TCP [41] coupled with Internet Protocol (IP) aliasing [42] as a solution to the
links under-utilization issues from the load-balancing process. This technique reduces
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the maximum links load by splitting connections between different sub-flows and
multiple streams through diverse TCP sessions. IP aliasing enables the formation
of various sub-flows depending on the IP availability addresses and redirects traffic
in the sub-flows across all available paths. The proposed techniques implement the
multi-path TCP specifications to address the challenges of load-balancing different
sub-flows. Moreover, this technique enhances network utilization using Hamiltonian
paths to forward each subflow among the network. This technique improves the
congestion control in the available paths, the under-utilization of network links, and
the network’s overall throughput compared to regular TCP.

[18] presents a multipath routing mechanism to meet both multiobjective QoS de-
mands and provide efficient path optimization. This mechanism consists of a two-
phase procedure to achieve both requirements. The first phase uses an analytic
hierarchy process to capture the varying QoS requirements and reduce them to a
new cost function to designate different link weights. Hence, reducing the traffic pro-
cessing complexity and improving the network’s quality control. The second phase
uses a two-step algorithm to select the optimal routing path. At first, the controller
obtains a set of candidate paths between source and destination using a customi-
zed version of the Dijkstra algorithm. Then, the controller decides the optimal path
among the set of candidate paths using a greedy algorithm regarding the QoS cost
function computed in the first phase. Thereby, this two-phase procedure improves
the load balancing of the network core by dynamic path planning subject to multiple
QoS requirements. It is noteworthy that the mechanism authors did not present any
experimental evaluation of the mechanism in this proposal.

[19] introduces an SDN flexible and dynamic load balancer to improve network
performance reducing the response time. The load balancer computes the shortest
alternative routes for each incoming flow and dynamically balances traffic between
different paths calculated using the Dijkstra algorithm. Moreover, the load balancer
design provides network flexibility since its a non-customed solution. Hence, the
load balancer operation is not constrained to any network topology. The network
flexibility is tested by conducting performance evaluations in small and large SDN
networks. Experimental results show that the proposed load balancer improves the
network’s transfer rate and response time.
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2.2.2. Data Plane-based routing

[27] presents a data-plane multipath routing alternative that relies on Flowlet [43]
to manage the network flows division and monitoring. The solution exploits Flow-
let bursts elastic data size to distribute the traffic adequately according to link
conditions, achieving resilient load balancing. In particular, the endpoint switches
dynamically monitor latency to find the minimum interval that mitigates the packet
reordering. Hence, using the monitoring information, the endpoint switches alterna-
te bursts of packet flows within multiple available paths, avoiding packet reordering
and reducing link congestion. Additionally, this solution enhances the "Flowlet ti-
meout" estimation by applying in-band telemetry and monitoring to measure the
latency dynamically, enabling proper flow splitting. The overall traffic evaluation
shows that this alternative achieves similar Flow Completion Time (FCT) for diffe-
rent workloads than naive LetItFlow.

[28] proposes CONGA, a DCN congestion-aware enterprise solution to efficiently
balance actual TCP workload into Flowlets without requiring any TCP modifica-
tions. CONGA uses a congestion feedback mechanism based on periodical probes
carrying the link utilization of every path between leaf switches. Each probe updates
hop-by-hop path utilization as it travels through the entire path. Hence, each probe
information is stored at the destination leaf switch and fed back to the source leaf
switch in a reverse direction. Then, leaf switches use the per path congestion infor-
mation to compute the best routing path for each arriving flow. Leaf switches select
the optimal path on the first packet of each Flowlet. As long as the Flowlet remains
active, packets use the same recorded path. Testbed experiments show that CON-
GA outperforms 5 x the ECMP delay. Also, CONGA is more suitable for the DCN
bursty traffic conditions compared to centralized schemas (e.g., Hedera) as it impro-
ves several times the congestion information update frequency. Moreover, CONGA
is an enterprise solution that is permanently tested in real traffic conditions.

[29] introduces HULA, a DCN congestion-aware load-balancing algorithm that aims
to cover the switch’s memory limitation. HULA uses unique probes to gather global
link utilization information. These probes travel periodically throughout the network
and cover all desired paths for load balancing. Then, link utilization information is
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summarized and stored as a table at each switch, providing an optimal next-hop
to any destination. Each switch updates the HULA probe with its view of the best
next-hop to any destination and sends it to other upstream switches. Then, each
HULA switch tracks congestion using the downstream information to disseminate
the best path in the entire network, similar to a distance vector protocol. Compared
to CONGA, HULA fits switches’ memory limitations since switches only store the
best next-hop information to track the best path instead of maintaining a per-
path congestion state at the leaf switches. Besides, the authors designed HULA
to run on data-plane programmable chipsets without requiring custom hardware,
programming it on P4 thinking on emerging programmable switches. Experimental
results show that HULA outperforms ECMP and CONGA regarding the FCT for
different workloads.

[30] presents a Weighted ECMP routing alternative for DCN, implemented directly
in the data plane using P4. Like the well-known DCN solutions, CONGA and HU-
LA, this alternative collects link congestion information to solve the non-aware traffic
balance in DCN. Nonetheless, in HULA and CONGA, each switch only selects and
records the best routing path dynamically, easing this path quickly congestion. Un-
like them, the proposed solution uses weighted probabilities to choose a path among
different optimal routing solutions to overcome the single best path issues. Moreo-
ver, the proposed routing mechanism encapsulates path utilization data directly into
the regular traffic, reducing the bandwidth utilization and convergence time (i.e.,
increase the path weights update frequency). Hence, improving the FCT overall
performance compared to HULA at different probe frequencies.

[31] proposes DASH, a hash-based load-balancing mechanism implemented in P4.
DASH entirely balances the load on multiple paths in the data plane to react on
a small timescale to traffic dynamics. DASH’s adaptive weighted routing strategy
splits traffic at line rate as a service of the current path load (calculated using link
utilization and delay) using periodical probes to dynamically adjusts the load chan-
ges at data-plane speeds. Unlike HULA and Conga, DASH overcomes data-plane
dynamic adaptative multipath implementations challenges, routing across different
optimal paths instead of a single best path recording. Compared to ECMP and HU-
LA, DASH presents a desirable FCT value in symmetric and asymmetric topologies



2.2. Related work 22

achieving less time in user interaction with the network. It also reaches less conver-
gence time, generating faster routing decision-making as it takes fewer packets to
adjust new path weights.

[32] introduces CONTRA, a general, programmable, and novel system to perform
performance-aware routing at hardware speeds. Unlike other data-plane routing so-
lutions (e.g., CONGA, HULA, etc.), CONTRA is a general solution that fits any
network topology and a broad number of routing policies (e.g., shortest path, mini-
mum utilization, congestion-aware routing, weighted links, etc.). Thereby, CONTRA
supplies a configurable environment where the network administrator customizes
the network operation (i.e., topology and policy). Once the network is customized,
CONTRA sets up different distributed local P4 programs to run in the programma-
ble network switches. In particular, CONTRA’s routing strategy is a probe-based
specialized distance-vector protocol to forward traffic based on routing constraints.
This protocol uses periodical compact probes to collect performance metrics across
diverse network paths. Switches analyze the performance metrics to compute the
best policy-compliant next-hop to any destination. Experimental results show that
CONTRA’s is competitive with hand-crafted systems (i.e., HULA) regarding FCT
in DCN.

2.2.3. Gaps

Table 2.1 summarizes the works discussed through the related works section to
address efficient load balance in SDN. This table briefly describes each mechanism
and highlights its research gaps.

Control plane-based solutions [12–19] use a centralized controller to generate the
load balancing decisions. In centralized controller mechanisms, incoming flows that
do not match any switch flow entry produce extra communication among the switch
and the controller to define the rules matching the received flow. However, introdu-
cing extra communication between the forwarding and the control plane increases
the control information overhead, consequently deteriorating the communication th-
roughput and QoS in end-to-end communications. Furthermore, new-arriving flows
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increase the controller CPU usage overloading the controller process facilities as the
inter-arrival flow ratio increases ([21]). As a result, high inter-arrival rate scenarios,
such as Internet of Things networks or Distributed Denial-of-Service attacks, intro-
duce a large controller load due to continuous communication messages between pla-
nes, compromising the scalability, availability, QoS in end-to-end communications,
and the security of the entire SDN infrastructure [22–24]. Moreover, centralized me-
chanisms respond too slowly to the traffic volatility in DCN as they require a high
convergence time to update the congestion information [20].

CATEGORY WORK MECHANISM SHORTCOMING

Control Plane
Perspective

[12]
Uses a dynamic flow scheduling system to overcome the multipathing
protocol’s non-efficient use of network resources

[13]
Uses a SDN centralized architecture to control traffic splitting through
multiple paths regarding the demands of the applications.

They decrease the overall network
performance and security

They demand higher CPU usage

They do not fit bursty and unpredictable
DCN traffic

They do not offer the flexibility to add
new and customized protocol headers

[14]
Uses a highly efficient and flexible system to enhance the links
utilization in inter-data-center wide area networks

[15]
Uses multipath routing and congestion-aware mechanisms to compute
the optimal path for new flows between source and destination

[16]
Uses a global multipath load-balanced routing algorithm based on
Machine Learning to find the best routing paths

[17]
Uses a load-balancing technique using the transport layer protocol
multi-path TCP coupled with IP aliasing

[18]
Uses a multipath routing two-phase mechanism to meet both
multiobjective QoS demands and provide efficient path optimization

[19]
Uses a dynamic load balancer based on Dijsktra algorithm
to improve network performance reducing the reponse time

Data Plane
Perspective

[27]
Uses a multipath routing alternative that relies on Flowlet
to manage the network flows division and monitoring

[28]
Uses a DCN congestion-aware enterprise solution to efficiently
balance real TCP workload into Flowlets without requiring
any TCP modifications

Higher packet loss and traffic congestion
since they dismiss devices status metrics.

[29]
Uses unique probes to gather global link utilization information
to implement acDCN-aware routing

[30]
Uses a Weighted ECMP routing alternative for DCN implemented
directly in the data plane using P4

[31]
Uses a a hash-based routing mechanism to dynamically balance
traffic regarding paths load, improving the FCT and convergence
time of different Weighted ECMP algorithms.

[32]
Uses a novel programmable system to perform performance-aware
routing at hardware speeds

Table 2.1: Comparison of routing methods in software-defined networks

Additionally, previous works show another gap that makes them unsuitable for novel
load balance techniques emerging in production data-centers networks. In particular,
most SDN centralized schemes rely on OpenFlow [25] as the standard communication
protocol between SDN controllers and the data plane. The network programmability
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using OpenFlow allows network operators to program the flow forwarding given a
set of fixed protocol headers on which OpenFlow operates (e.g., TCP, Ethernet,
and IPv4). Nonetheless, data-centers network operators increasingly intend to apply
new forms of packet encapsulation (e.g., NVGRE [44], VXLAN [45], and STT [46])
fitting DCN rising challenges. Hence, network operators resort to deploying software
switches that are easier to extend with new functionalities rather than repeatedly
await until OpenFlow extends its specification to support new header fields [26].

Emerging data plane-based routing solutions [27, 28] address the SDN centralized
schemes issues leveraging distributed implementations. These solutions handle the
traffic variations in-band, applying network programmability directly in the Da-
ta Plane, and deploying low-memory algorithms in the forwarding devices. Thus,
they release the controller’s load by critically reducing the communication messa-
ges among the data and control planes since the controller adopts passive routing
tasks. Moreover, P4 language supports a programmable packet parser for extrac-
ting header fields with particular names and types, allowing the network operator
to define new and customized headers. Consequently, distributed solutions based
on P4 [29–32] surpass the OpenFlow inflexibility to efficiently adopt arising packet
headers. Nevertheless, existing distributed solutions adopt link-state metrics as pa-
rameters to choose the best routing path, ignoring the forwarding devices’ status.
However, device-state parameters such as buffer occupancy or queue length are im-
portant indicators since they reveal the switches’ capability to deal with arriving
flows. Disregarding this metric leads to overflowing the flow entries, causing packet
loss and traffic congestion. Thus, routing alternatives must consider link-state and
device-state metrics to identify the network’s real state and perform accurate routing
decisions.

The previous solutions externalize a research gap located at the intersection bet-
ween the SDN distributed routing mechanisms and the typical routing metrics they
exploit. This thesis meets this gap by proposing an innovator approach to carry out
a data-plane routing mechanism based on links-state and devices-state.



Chapter 3

Routing from the Programmable
Data plane

In this undergraduate work, we propose a probe-based mechanism for weighted load
balancing. The mechanism uses links’ and devices’ state information to estimate
the overall network congestion. We leverage the data-plane programmable features
offered by P4 to implement the proposed mechanism. So, in this chapter, we present
the mechanism’s functional operation. It is noteworthy that the entire mechanism
proposed in this section is our original work, except the paths mapping strategy to
binary numbers shown in Fig. 3.4 adapted from [30].

Figure 3.1 introduce a high-level view of the proposed mechanism. At its core, this
mechanism consists of the following subsystems working together to achieve a weigh-
ted load-balancing scheme:

A probe-based congestion information collection subsystem: This subsystem
relies on Algorithm 1 presented in section 3.2 to estimate the congestion of each
existing path among source and destination using the links and devices’ state
information. Also, this subsystem progressively computes each path’s weight
as the probes travel through the paths. It is noteworthy that this subsysmtem
runs until it probes each path among source and destination. Still, it restarts
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periodically to update the network congestion systematically. Moreover, it is
run by core, aggegation and edge switches.

A weighted path selection subsystem: This subsystem relies on on Algorithm 2
presented in section 3.3 to compute multiple optimal paths for arriving flows.
It sets a probabilistic interval of choosing each path using the path weights
computed in the forehead subsystem. It is noteworthy that this subsysmtem
runs once all paths have been already probed (i.e., once the previous subsystem
has finished). Moreover, it is run entirely on the edge switches.

Core

Edge

Aggregation
 

 

Probe-based congestion information collection subsystemWeighted path selection subsystem 

Figure 3.1: High-level view of the weighted load-balancing scheme - original work

The following sections extensively discuss each subsystem design.
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3.1. Probe’s Header Formatting

A P4 program design begins with the specification of header formats. Hence, be-
fore discussing the mechanism design, we need to set out the customized header
format used in the mechanism operation. Compared to centralized SDN protocols
(e.g., OpenFlow), P4 supports customized header fields to specify how to process
packets instead of rules matching existing header fields [26]. Hence, Fig. 3.2 shows
our customized probe’s header formatting. In this subsection, we explain in detail
each header field usage:

pod_dir (8bits): This field is set in the edge switches to identify the source
communication pod in the core switches.

selected_path_id (8bits): This field is set in the edge switches using the con-
gestion path information to indicate the selected path to arriving flows. Also,
both core and aggregation switches use this field to compute the next-hop port.

output_tag (8bits): This field is update in each switch once the next-hop is
computed. Its value (i.e., 0 or 1) indicates the upstream link followed at the
switch. It is used to track the path taken.

tag_pat_id (8bits): This field is built hop-by-hop in each switch among the
selected routing path to communicate this path in the destination edge switch.
Besides, this field, combined with output_tag allows tracking the path taken.

edge_flag (8bits): This field is set in the destination edge switch as 1. It is
used to distinguish returning probes at the source edge switch. Futhermore, it
helps to characterize probed paths.

weighted_congestion (32bits): This field is used to compute the weight of the
routing path taken by the probe, using the hop-by-hop congestion information
of each switch across the path. Moreover, edge switches compute the path for
arriving flows using the max_utilization of each path collected by the probes
traveling through the network.
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8 bits

pod_dir selected_path_id tag_path_id weighted_congestion

8 bits 8 bits 8 bits

output_tag

8 bits

edge_flag

32 bits

Figure 3.2: Probe’s Header Formatting - original work

3.2. Probe-based congestion information collection

In this section, we propose a probe-based congestion information collection subsys-
tem. We addressed this subsystem’s functioning from two complementary points of
view, one regarding the edge switches and the other regarding aggregation and core
switches. Fig. 3.3 introduces a small-scale model of the implemented topology. This
model is used to explain the mechanism in the following sections. It is noteworthy
that the model rearranges the topology switches providing a different perspective of
the same topology to ease the mechanism explanation. Despite using a scaled mo-
del, the following explication applies between each pair of source-destination edge
switches.

Edge Switches

 sTor A

sAgg1

sAgg2

sCore A

sCore B

sAgg3

sAgg4

sTor B

Aggregation Switches Core Switches

sTor C

Figure 3.3: Small-scale topology model - original work
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3.2.1. Probe-based congestion information collection - Edge

switches view

The congestion information collection starts in the edge switches. Essentially, edge
switches duties are to send probes along the different paths connecting source and
destination. Hence, these switches must orchestrate the following tasks:

First, they randomly select a routing path between source and destination to
probe its congestion.

Second, they select the probe’s next hop according to the routing path selected.

Third, they forward back the probe through the same path at the destination
pod.

Fourth, once a path is probed, they repeat the previous steps to probe the
congestion through all available paths. Therefore, edge switches require a me-
chanism to identify which paths have already been probed.

Finally, once all paths have been probed, the edge switches will know the
congestion of the entire network. Nevertheless, edge switches must re-update
the network congestion due to the changing traffic conditions. Hence, edge
switches will repeat the previous steps according to an established probe’s
frecuency.

The routing path selection is a simple process. Edge switches only need to randomly
select a path among the eight multiple paths connecting the source edge switch and
destination aggregation switch. This path is stored as a binary number in the probe’s
header field selected_path_id. Fig. 3.4 illustrates the strategy used to map a path
into a binary number. First, let’s assume that the path chosen is the red one. Second,
since every switch is connected to two different upstream links, we can differentiate
each link by a binary number (i.e., 0 and 1). Hence, links going upward are mapped
as 0, and links going downward are mapped as 1. Third, the previous process is
wielded in every switch among the source edge switch and the last aggregation switch
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in the destination pod. It is noteworthy that the link between the aggregation and
edge switches in the source pod is not mapped using the previous steps since it can
be easily discovered using the destination address (in this example, the destination
switch will be the sTor B). Furthermore, mapping this link as a binary number
would increase the number of entries maintained in the edge switches to store the
path’s congestion. Finally, each bit is concatenated from right to left to produce the
path’s binary number. This number is stored in the selected_path_id field (see Fig.
3.5).

selected_path_ id

0

 sTor A

sAgg1

sAgg2

sCore A

sCore B

sAgg3

sAgg4

sTor B

1

1

{0} {10} 110

sTor C

0

selected_path_ id selected_path_ id

Figure 3.4: Paths mapping strategy to binary numbers - original work

Next, the edge switch computes the next hop among the two possible upstream links,
using the previously selected path to send the probe through this path. Besides, the
switch sets the probe’s output_tag field (see Fig. 3.5) according to the upstream link
selected (i.e., 0 or 1). The next-hop computation process is explained in detail in
the section 3.2.2 since it is the same process handled by the aggregation and core
switches.

Fig. 3.5 depicts an overview of the probe process of any path. This process begins
by recording the selected path and the output port at the source edge switch, as
described in the previous steps. Then, each aggregation and core switch computes
the congestion into weights and records its value at the probe weighted_congestion
field. They also update the tag_path_id field to track the selected path. Finally, the
destination edge switch also updates the weighted_congestion field with its conges-
tion, sets the edge_flag field into 1, and forward back the probe to the source edge
switch using the same path.
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Probe
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Figure 3.5: Probe process overview - original work

Then, the source edge switches must repeat the previous processes to send collec-
tion probes along all available paths. Consequently, edge switches use a mechanism
to identify probed paths. Hence, as the probes packets return to the source edges
switches, they hash the fields tag_path_id and the edge_flag to record probed paths.
We used an eight-bit register called random_path_reg to store this information for
the different routing paths. Also, we create an 32-bit register called utilization_reg
to store the path weights hashing the incoming probe’s fields edge_flag and weigh-
ted_congestion.

Finally, once the network congestion is probed, the mechanism will route arriving
flows regarding the computed weights (see section 3.3). However, as time pass, net-
work congestion conditions will change. Thus, the mechanism must probe the path’s
congestion anew to recompute the weights. Therefore, the edge switches must pe-
riodically repeat the probe process explained in this section. This job is effectuated
using timers to restart the register random_path_reg, forcing the edge switches to
probe the network congestion again. We provide the mechanism with a called pro-
be’s frecuency used to establish the time interval to recalculate weights periodically.
Moreover, the network operator can customize probe’s frecuency according to the
traffic conditions.
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3.2.2. Probe-based congestion information collection - Aggre-

gation and Core switches view

Once the probes have been sent from the edge switches, we need to define the swit-
ching mechanism to transport the probes across the set path. This section describes
the core and aggregation switches mechanism to handle receiving probes.
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Figure 3.6: Switching mechanism - original work

First, each switch along the selected path needs to find the next-hop link regarding
this path. Hence, the switches read the selected_path_id field from the receiving
probe to compute the next hop. As shown in Fig 3.6, each switch operates the selected
path binary representation using the boolean AND operator. Thus, switches operate
the selected_path_id AND the binary number 1 to isolate the last bit of the selected
path. This bit represents the next hop in each switch since the selected_path_id was
built from right to left. Thereby, we leverage the path’s binary mapping strategy
used (see Fig. 3.4) to find the next hop along every switch in the path as each
selected_path_id bit represents the two possible upstream links in every switch.

Second, each switch must update the selected_path_id field since the following ups-
tream switches use the last bit from this field to find its next-hop link. Consequently,
each switch operates the selected_path_id value by an arithmetic 1-bit right shift.
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The result from this operation is updated in the selected_path_id probe’s field before
switch it to the next-hop (see Fig. 3.5).

The combination of the two previous steps allows switches to track the next hop
along the path using the last bit. As shown in Fig. 3.4, each switch finds the pro-
be’s next hop through this mechanism. Nevertheless, the last aggregation switch
from the destination pod computes the next-hop link using the edge switch destina-
tion address. Moreover, each switch can distinguish the upstream switches using the
edge_flag field and the destination address.
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Figure 3.7: Path tracking mechanism - original work

Third, switches need to track the selected path to communicate it in the destina-
tion edge switch, forward back the probe, and record probed paths at the source
edge switch. Nevertheless, switches rewrite the selected_path_id value hop-by-hop
to find the next hop. We provide core and aggregation switches with a system to
track the selected path. This mechanism is performed hop-by-hop overwriting the
probe’s tag_path_id and output_tag fields. Fig. 3.7 depicts this mechanism. Firstly
output_tag fields tracks the upstream link taken in the previous switch (i.e., the
next hop found in each switch). Then, each switch operates the output_tag with the
the tag_path_id field by using the boolean OR operator. This operation allows to
store this output_tag value in the tag_path_id last bit. Next, the switch operates
the tag_path_id value by an arithmetic 1-bit left shift to record from right to left
the output_tag taken by each switch. Later, the switch rewrite into the probe the
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updated tag_path_id value and the new output_tag computed corresponding to its
next-hop direction. The switch sends this probe to the upstream next-hop switch,
which repeats the previous process to rebuild hop-by-hop the path taken. Finally,
the destination edge switch reads backward the probe’s tag_path_id and stores it
in the selected_path_id field. Thus, the destination switch can forward the probes
to the source edge switch.

Algorithm 1: : Weight computing
Require:

MAX_QUEUE
MAX_LINK_UTILIZATION

Result:
weighted_congestion

Initialization:
queue_depth← read(queue_depth)
link_utilization← computes(link_utilization)

1 if queue_depth <= ((MAX_QUEUE/8) ∗ 1) then
2 queue_weight = 8;
3 else if queue_depth <= ((MAX_QUEUE/8) ∗ 2) then
4 queue_weight = 7;

...
5 else if queue_depth <= ((MAX_QUEUE/8) ∗ 8) then
6 queue_weight = 2;
7 else
8 queue_weight = 1;
9 end

10 if link_utilization <= ((MAX_LINK_UTILIZATION/8) ∗ 1) then
11 link_weight = 8;
12 else if link_utilization <= ((MAX_LINK_UTILIZATION/8) ∗ 2) then
13 link_weight = 7;

...
14 else if link_utilization <= ((MAX_LINK_UTILIZATION/8) ∗ 8) then
15 link_weight = 2;
16 else
17 link_weight = 1;
18 end

19 weighted_congestion + = (queue_weight+ link_weight)

Fourth, as each switch receives the probe, it will update the weighted_congestion
field. Algorithm 1 illustrates the weight computing process (regarding the link utili-
zation and the switch’s queue). First, the algorithm initializes two different variables
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called queue_depth and link_utilization, containing respectively the switch reads of
the queue depth and the link utilization when the packet was enqueued. To read
this queue and link utilization information, we leverage the switches’ intrinsic me-
tadata offered by P4 switches. Then, the edge switch assigns a weight from 8 to 1
for these queue readings (lines 1 to 9). We use a descending strategy to map the
queue reading to the weight. That is to say, if there were no queued packets, the
switch would map this reading as a weight of eight. On the contrary, if the queue
were full when the probe was processed, the switch would map this reading as a
weight of one. Notably, this descending strategy assigns higher weights to optimal
readings. We repeat this normalization previous process to map the link utilization
reading up to eight different weights (lines 10 to 18). Finally, the switch updates
the probe’s weighted_congestion field adding to its current value the sum of the link
utilization and queue weights (line 19). This entire process is wielded in every core
and aggregation switch until the destination edge source. Moreover, to characterize
the last link-device utilization, the destination edge source also calculates its weights
following this algorithm. The algorithm inputs are integer numbers containing the
maximum link utilization (i.e., MAX_LINK_UTILIZATION ) and the maximum
queue length (i.e., MAX_QUEUE ), and the algorithm output is the updated weigh-
ted congestion across the chosen path until the device running the algorithm (i.e.,
weighted_congestion).

It is to noteworthy that the swicthing (Fig. 3.6), path tracking (Fig. 3.7), and weight
calculation mechanisms runs parallel hop-by-hop along switches found at the selec-
ted path (Algorithm 1). Moreover, core switches use the pod_dir field to distin-
guish upstream switches in the communications arriving from the different pods in
the evaluated topology (see 4.1). Besides, the switches write their weights weigh-
ted_congestion just in the going path from the source to the destination. Therefore,
they use the edge_flag field to avoid rewriting the path weights once the probe is
forwarded back to the source.
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3.3. Weighted path selection

Our proposed load-balancing mechanism operations consist of two different subsys-
tems. The section 3.2 introduced the first subsystem, the probe-based congestion
information collection. This section will introduce the second subsystem, the weigh-
ted path selection.

Algorithm 2: : Path selection algorithm
Require:

random_path_reg
utilization_reg

Ensure:
random_path_reg ← 1 ,∀register_element

Result:
path_id

Initialize
weights_sum: weights_sum = 0
pahts : paths = [0, 1, 2, ..., 7]

1 foreach X ∈ path do
2 path_weight = utilization_reg[X]
3 weights_sum = weights_sum+ path_weight
4 path_weight_X = weights_sum

5 end

6 random_selection = random(1, weights_sum)

7 if random_selection <= path_weight_0 then
8 path_id = 0;
9 else if random_selection <= path_weight_1 then

10 path_id = 1;
...

11 else if random_selection <= path_weight_6 then
12 path_id = 6;
13 else
14 path_id = 7;
15 end

The Algorithm 2 presents the weighted path selection process. This process relies on
a probabilistic load balancing method to compute multiple optimal paths for arriving
flows. This algorithm runs entirely in the edge switches. The algorithm inputs are
the registers containing the probed paths (i.e., random_path_reg) and the paths
weights (i.e., utilization_reg). Moreover, it must ensure that every path has already
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been probed (i.e., this algorithm starts once each random_path_reg element have
been set as 1). The output from the algorithm is the chosen path (i.e., path_id).
Also, the algorithm initializes two different variables, one called weights_sum is
initialized as 0, and the other called paths is initialized as a vector whose elements
represent each path. After these previous considerations, the weighted path selection
process begins (line 1). First, performing the following steps, the edge switches sets
an interval of choosing for each path according to its weight (lines 1 to 5):

The edge switch reads the utilization_reg weight from the current path and
stores it in the temporal variable path_weight (line 2).

The edge switch adds to the weights_sum variable the current path weight
(lines 3 to 4).

The edge switch creates for each path a variable named path_weight_X, where
X represents the current path (line 4). Hence, this variable will store the
accumulated path weights until the X path. Thus, this variable will represent
the interval of choosing the X path.

Once the previous for-each loop has finished, the variables weights_sum and path_weight_X,
will respectively represent the sum of all paths weights and the probabilistic interval
of choice for each path. Then, the proposed algorithm performs the following steps
to select a routing path for each arriving flow (lines 6 to 14):

The edge switch generates a random number among 0 and weights_sum (i.e
the sum of all paths weights). They store this value in a variable named ran-
dom_selection (line 6).

The edge switch compares the random_selection value with each path_weight_X
variable, where X represents the possible paths (each if-elseif-else condition
from lines 7 to 14). Hence, if the random_selection value fits on the interval
of two consecutive paths, the edge switches will execute the statements from
the selected if, elseif or else condition.
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The edge switch choose the routing path corresponding to the path_weight_X
selected variable, where X represents the possible paths. The path_id variable
stores this value.

The edge switch will route the flow through this selected path using the previous al-
gorithm. This routing process is the same followed by the probing packets, explained
in section 3.2.2.

path_0 path_1 path_2 path_3 path_4 path_5 path_6 path_7
weight 64 24 24 50 27 8 0 30

Table 3.1: Sample path weights

path_
weight_0

path_
weight_1

path_
weight_2

path_
weight_3

path_
weight_4

path_
weight_5

path_
weight_6

path_
weight_7

value 64 88 112 162 189 197 197 227
interval_

path_weight
64 24 24 50 27 8 0 30

probability
64

227

24

227

24

227

50

227

27

227

8

227

0

227

30

227

Table 3.2: Accumulated path weights and probability of choicing for each path

To illustrate the algorithm functioning, let’s assume that each path presents the
Table 3.1 weights. As shown in Table 3.2, the edge switches will use these paths
weights to create eight different variable named path_weight_X (where X represents
the possible paths) to record the accumulated path weights until the X path. Hence,
the edge switches random_selection value will be compared to these path_weight_X
to select the routing path. The Table’s interval_path_weight row represents the
interval of choice for each path. Thus, we can calculate the probability of choosing
for each path, as shown in the Table’s probability row.

Futhermore, by analyzing Table 3.2, we can see that despite exists most probable
paths, the algorithm will not always choose them to avoid bottlenecks. Furthermore,
the paths with lower weights have fewer possibilities to be selected since they present
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high congestion levels. Moreover, completely congested paths (i.e., paths presenting
0 as weight) are not even choosable since they would drop incoming packets.

Several data-plane based load-balancing solutions [28–30], leverage the flowlet gra-
nularity to enhance the load-balancing process. Our mechanism performs the pre-
vious weighted path selection for the different flowlets into a flow to load-balance
the packets from arriving flows along multiple paths. Edge switches shape flowlets
from arriving packets comparing the inter-packet gap (i.e., elapsed time between
consecutive packets) and a pre-establish threshold. Then, if the inter-packet gap
is higher, incoming packets will shape a flowlet. Thereby, edge switches build new
flowlets as the inter-packet gap surpass the threshold. We set a high threshold to
avoid packet reordering since it ensures that the time interval between consecuti-
veflowlets is higher than the packet’s delay. We set the threshold regarding the order
of the network Round Trip Time (RTT). Then, the threshold value is a few hundred
microseconds for DCN.

3.4. Summary

This section summarizes the load-balancing mechanism functioning and illustrates
how its design meets the proposed contributions in section 1.2. The proposed load-
balancing mechanism consists of two subsystems working together to achieve the
weighted load-balancing scheme.

The section 3.2 introduced the first subsystem, the probe-based congestion informa-
tion collection. This subsystem estimates the congestion of each existing path among
source and destination using the links and devices’ state information. Hence, this
subsystem is decisive in building the proposed routing mechanism (i.e., to meet the
first and second contributions from section 1.2). Initially, we designed an algorithm
to compute the weights coefficients regarding the links and devices’ state informa-
tion. Still, we intended to characterize the impact of the device-state information
on the routing performance. Thus, we built the Algorithm 1 as a flexible algorithm
that allows two different configurations in the weights computing (i.e., using solely
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link-state or both link-state and device-state information). Consequently, this flexi-
ble design allows us to implement our proposed weighted load-balancing mechanism
in any of these configurations to meet the third contribution proposed in section
1.2. To adjust the Algorithm 1 to work in any of its two possible configurations
its just needed to modify its final line (line 19) and set the weighted_congestion
variable as the link_utilization or as the sum of the sum of the queue_depth and
link_utilization respectively.

The section 3.3 introduced the second subsystem, the weighted path selection. This
subsystem relies on the Algorithm 2 to set an interval of choosing for each path
among source and destination regarding the weights computing in the first subsys-
tem. Therefore, the interval of choosing maps the network congestion into the proba-
bility of choosing each path. We design the Algorithm 2 as an alternative to solutions
computing only the best routing path. Consequently, our algorithm surpasses the
shortcomings of these solutions (e.g., HULA and CONGA), which easily bottleneck
the best routing path since they only select and record the less congested path.



Chapter 4

Evaluation and Analysis

4.1. Test Environment

This section presents the probe-based mechanism test environment to evaluate its
performance regarding the delay, throughput, and packet loss. The section 4.1.1
introduce the evaluation topology, section 4.1.2 describes the mechanism design pa-
rameters, section 4.1.3 presents the performance metrics evaluated, section 4.1.4
describes the traffic generation procedure, and section 4.1.5 details the performance
monitoring tools and process.

Moreover, the test environment and its different processes described in this section
were built on a Ubuntu 16.04 virtual machine running on a laptop with a processor
Core i7-9750H. We set the virtual machine system settings as 11GB memory RAM
and 6 CPU threads.

4.1.1. Evaluation Topology

The mechanism evaluation was implemented in an emulated 3-tier Fat-Tree topo-
logy as shown in Figure 4.1. This topology consists of two pods connected by two
core switches. Each pod incorporates two aggregation switches connecting two edge

41
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switches. The links bandwidth was limited as a result of the P4 bmv2 switches’ inhe-
rent low performance [47] and computational constraints. Consequently, we scaled
the bandwidth of the links compared to a production data center. Thus, we set each
link connecting a pair of switches’ bandwidth as 2,5Mbps.

Due to computational limitations, each edge switch is connected to two servers, and
we also set the link bandwidth between every server and its corresponding edge
switch as 2.5Mbps. Thus, the network is not oversubscribed as the four servers per
pod can together use the 10Mbps bandwidth available across the pod.

It is noteworthy that we used the P4-Utils package to build and test our P4 solution.
P4-Utils is a Python package used to provide a testing and prototyping platform
based on P4 language [48]. This package allows the virtual network creation and
testing using Mininet. Hence, Mininet was the emulation tool adopted to emulate the
proposed topology. Additionally P4-Utils provides bmv2 P4 programmable targets.

We choose the P4-Utils since it uses bmv2 targets. TheP4 - Language Consortium
recommends these targets as the tool for developing, testing, and debugging P4
data planes [49]. Moreover, bmv2 targets supports the P416 ongoing standard and
the v1model architecture.

4.1.2. Design Parameters

As we depict in Chapter 3 our proposal relies on two important design parameters.
First, the probe frequency must be a few times the RTT to appropriately react to
the volatile traffic conditions without overwhelming the network [28, 29]. Thence,
we set the probe frequency as 200 (∼ µs) as the RTT was about 40 (∼ µs) in the
absence of load on the network. Second, the flowlet inter-packet gap must be on
the RTT order to avoid the packet reordering [28, 29]. Thereby, we also set the the
flowlet inter-packet gap as 200 (∼ µs).
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Figure 4.1: Evaluation topology - adapted from [1]

4.1.3. Performance Metrics

Defining the performance evaluation metrics is essential to accomplishing the propo-
sed objectives. Thus, we evaluated the proposed load balancing mechanism regarding
the delay, throughput, and packet loss against ECMP in various network scenarios,
varying the network’s load.

Furthermore, as depicted in section 3.4 we looked to establish the impact of modeling
the network congestion using the device-state information in the data-plane-based
routing solutions performance. Consequently, we also evaluated our proposed me-
chanism performance (regarding the delay, throughput, and packet loss) on its two
possible configurations.

It is noteworthy that these two configurations simply modify the network conges-
tion modeling. The first configuration models the network congestion by computing
the coefficient weights using solely link-state parameters. Furthermore, the second
configuration computes the coefficient weights using link-state and device-state pa-
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rameters.

Since we use the Distributed Internet Traffic Generator (D-ITG) [50] tool to measure
the solution’s performance, next, we define each of these metrics as this tool describes
them:

Delay: It defines the one-way delay, and D-ITG computes its value as the diffe-
rence between the transmitted and the received time of each packet. Therefore,
increasing the delay leads to higher network congestion.

Throughput: It defines the average communication bit rate measured in Kbit/sec.
D-ITG computes its value as the ratio between the number of bits received
and the sample time taken throughout the evaluation. Therefore, decreasing
the throughput indicates higher network congestion.

Packet Loss: It defines the percentage of packets lost on the round-trip path
(i.e., only on the one-way path). D-ITG computes its value by comparing
the number of packets received at the destination to the packets sent from the
source. Therefore, increasing the packet loss reveals higher network congestion.

4.1.4. Traffic Generation

We used the data-mining empirical workload [5] to generate the network traffic,
emulating realistic DCN traffic conditions. In particular, this workload is obtained
from a production data center composed of a 1,500-node cluster that supports data
mining tasks. Figure 4.2 shows the Cumulative Distribution Function used to model
the network traffic. This figure shows that the data-mining workload is heavy-tailed
since just a small slice of the whole number of flows (called large flows) carries most
of the total traffic data.

We replicated a client-server communication model running each server connected
to the edge switches as both client and server simultaneously. Next, each client
generated traffic (according to the workload in Figure 4.2) to a randomly selected
remote server located in a different pod. This ensures that each communication
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Figure 4.2: Traffic distribution used in the network’s traffic generation - source [5].

passes over the core switches, genuinely leveraging the bisection bandwidth offered
by the topology. It is noteworthy that we use iPerf3 [51] to generate the traffic at
each client. iPerf3 is a commonly used network testing tool to create TCP and User
Datagram Protocol data streams.

The number of persistent TCP connections to a remote server that each client runs
depends on the desired network load. Hence, we use the number of persistent con-
nections to model each network load evaluated.

We evaluated the proposed mechanism performance for nine equally-spaced network
loads, from 10 % to 90 % of the network’s load.

4.1.5. Performance Monitoring

We used the D-ITG [50] to measure the proposed load-balancing mechanism perfor-
mance for each value of the network’s load. D-ITG returns performance parameters
from the communication between an D-ITG client and server. The client and server
were located at different pods to exploit the network’s bisection bandwidth. Moreo-
ver, we sent from the client a 64512 Bytes D-ITG package to the server to monitor
the transmission performance. At the end of the communication D-ITG generated
a file containing the communication packet loss, the average delay, and the average
throughput.

We ran this experiment with forty-two random seeds for each possible network load
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defined in section 4.1.4. In brief, we measured the delay, throughput, and packet loss
forty-two times for each network load to calculate the average of the forty-two runs
for each particular load.

Additionally, we repeated this process for each of the three evaluated mechanisms:
i.e., ECMP, the proposed load balancing mechanism using solely link-state parame-
ters, and the proposed load balancing mechanism using both link-state and device-
state parameters simultaneously.

4.2. Results Analysis

In this section, we present the proposed probe-based mechanism experimental results
regarding the performance metrics proposed in the section 4.1.3.

As we have discussed in the section 4.1, we also evaluated the ECMP algorithm
to achieve a comparative evaluation of the proposed solution regarding the existing
DCN load-balancing schemes. Furthermore, we evaluated our proposed mechanism
in two different cases (i.e., using the link utilization solely and using both the link
utilization and the queue depth) to establish a comparative evaluation of the device-
state impact on the routing performance.

Hence, in the following sections, we will present the experimental results of the
following mechanisms:

ECMP.

links_state: Our proposed mechanism using weights coefficients calculated re-
garding the link utilization solely.

links-devices_state: Our proposed mechanism using weights coefficients calcu-
lated regarding the link utilization and the queue depth.
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4.2.1. Delay

Figure 4.3 shows the average delay results as the network load increases.

Figure 4.3: Delay evaluation

At small load percentages, the performance of all three different load-balancing me-
chanisms is almost identical since, in these cases, the network’s available bandwidth
is high enough to provide a greater tolerance compared to high-traffic load network
scenarios. Therefore, the network delay is not significantly affected by the flow rou-
ting mechanism chosen as the three mechanisms leverage the network’s bisection
bandwidth similarly.

Still, at higher load percentages, the overall network bandwidth is reduced, so the
flow routing mechanisms need to choose the routing path precisely to leverage the
bisection bandwidth properly (i.e., avoiding the forwarding over the most congested
paths). Hence, in this scenario ECMP presents the worst performance compared to
weighted mechanisms as it performs probabilistic load-balancing disregarding the
paths’ congestion conditions. Therefore, the weighted schemes reduce the network’s
delay as they recognize and adopt the network congestion to perform optimal rou-
ting.Thus, the links_state mechanism reduces the ECMP delay up to 1.2x, and the
links-devices_state mechanism reduces the ECMP delay up to 1.28x.
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Moreover, both weighted mechanisms’ performance is nearly similar at higher load
percentages. Nevertheless, the links-devices_state scheme achieved slightly better
results for every high load network scenario, as it improves the network congestion
characterization using both the link utilization and the queue depth. Thus, the links-
devices_state scheme reduces the links_state delay up to 1.07x.

4.2.2. Throughput

Figure 4.4 shows the average throughput results as the network load increases.

Figure 4.4: Throughput evaluation

The analysis of these results is similar to the one presented in the section 4.2.1 as the
evaluation conditions are the same. Therefore, the performance of all three different
load-balancing mechanisms was almost identical at small load percentages.

Furthermore, at higher load percentages, ECMP presented the worst performance
compared to weighted mechanisms as ECMP still forwarding packets through links
presenting higher link utilization indiscriminately. Thus, the links_state mechanism
increases the ECMP throughput up to 1.14x, and the links-devices_state mechanism
increases the ECMP throughput up to 1.17x.
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Moreover, both weighted mechanisms’ performance is nearly similar at higher load
percentages. Nevertheless, the links-devices_state scheme achieved slightly better re-
sults for every high load network scenario. Thus, the links-devices_state mechanism
increased the links_state throughput up to 1.03x.

4.2.3. Packet Loss

Figure 4.5 shows the average packet loss results as the network load increases.

Figure 4.5: Packet Loss evaluation

The analysis of these results is similar to the one presented in the section 4.2.1 as the
evaluation conditions are the same. Therefore, the performance of all three different
load-balancing mechanisms was almost identical at small load percentages.

Furthermore, at higher load percentages, ECMP presented the worst performance
compared to weighted mechanisms as ECMP still forwarding packets through links
presenting higher packet-loss indiscriminately. Thus, the links_state mechanism re-
duced the ECMP packet loss up to 1.56x, and the links-devices_state mechanism
reduced the ECMP packet loss up to 2.08x.
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Moreover, at higher load percentages, the links-devices_state scheme achieved better
results compared to links_state for every high load network scenario. Thus, the links-
devices_state mechanism reduced the links_state packet loss up to 1.33x.

It is noteworthy that among the three performance metrics evaluated, packet loss is
the parameter at which the weighted mechanisms present the more significant im-
provements compared to ECMP. Moreover, the links-devices_state mechanism also
presented the higher improvements compared to the links_state mechanism in the
packet loss evaluation. This happens because the links-devices_state scheme used
the queue depth as a routing parameter, so this algorithm optimized this metric.
Besides, optimizing the queue depth leads to forward packets through paths pre-
senting switches with a broad buffer availability. Then, these paths will perform
lower packet loss results as they provide less congested buffers. Consequently, the
links-devices_state scheme improved the links_state packet loss performance, as the
links_state scheme dismissed the switches buffers occupancy in the routing process.



Chapter 5

Conclusions and Future work

5.1. Conclusions

This thesis presents the answer to the question: How to provide an efficient
routing mechanism from a programmable data plane?.

A data plane weighed load-balancing mechanism using both links’ and devices’ state
information was designed to answer this question. It was evaluated in a 3-tier Fat-
Tree topology regarding the delay, throughput, and packet loss. The results show
the following:

The proposed weighted mechanism outperformed the ECMP results regarding
the delay, throughput, and packet loss for high network load scenarios.

As the proposed weighted mechanism runs at line rate leveraging the data
plane programmable switches; it adopts features to effectively respond to the
volatility of DCN traffic, operating a probe frequency set as 200 (∼ µs).

Experimental results showed that using the links’ and devices’ state infor-
mation to estimate congestion outperforms the overall network performance
compared to solutions solely using the link’s state information.

51



5.2. Future work 52

Consequently, we achieved an efficient data-plane weighted load-balancing solution,
outperforming the performance of classical solutions such as ECMP and maintaining
a low probe frequency to react accurately to the DCN traffic volatility. Moreover,
we characterize the impact of modeling the network congestion using device-state
information in the data-plane-based routing solutions performance.

5.2. Future work

Implement a P4-based load-balancing mechanism using regular traffic to collect
the network congestion information.

Characterize the impact of other congestion metrics different from the link
utilization and the queue depth in the routing performance.

Evaluate the P4-based routing mechanisms’ effectiveness in network scenarios
different from DCN (e.g., large networks).
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Annex A

Source Code

Annex A presents the Github repository link containing the entire project source
code.

https://github.com/NicoleVenachi/p4_probebased_loadbalancing
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Annex B

Publications

Annex B presents the scientific paper written during the undergraduate work deve-
lopment:

Ludwing Nicole Venachi, Jorge Manuel Castillo Camargo, Oscar Mau-
ricio Caicedo Rendon, Cristhian Nicolás Figueroa Martínez. Weighted Load-
balancing Using Queue Occupancy From Programmable Data Planes
Elsevier - Journal of Network and Computer Applications.

• Status: Writtend and ready to be sent

• Classification: A1.

• Impact Factor: 7.574.

• H-index: 115 Scimago.
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