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Doctorado en Ciencias Matemáticas
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Resumen

Un subconjunto A de un grupo abeliano Γ (escrito aditivamente) es un conjunto B2 en
Γ si todas las sumas a1 +a2, con a1 y a2 en A, son diferentes. En esta tesis consideramos
tres problemas de investigación que surgieron cuando estudiamos conjuntos B2 de tipo
Singer. En el primero, nos preguntamos sobre la existencia de conjuntos diferencia en
grupos de orden pm, cuando p es un número primo y m > 1 es un número entero.
En relación a esto, demostramos la inexistencia de conjuntos diferencia abelianos con
parámetros (pm, k, 1). En el segundo, nos interesamos en la construcción de nuevos
casi conjuntos diferencia, con respecto a esto, utilizamos conjuntos B2 de tipo Singer
para construir tres nuevas familias de casi conjuntos diferencia. Además, construimos
2-adiseños a partir de estos casi conjuntos diferencia. En el tercero, nos propusimos
usar el grafo suma de un conjunto B2 de tipo Singer para establecer pruebas aditivas
de algunas propiedades estructurales (conocidas y nuevas) del grafo polaridad ortogonal
Erdös-Rényi ERq. En particular, demostramos que el grafo suma de un conjunto B2 de
tipo Ruzsa es isomorfo a un subgrafo inducido de ERq. Las principales herramientas
utilizadas en esta investigación son propiedades aditivas de los conjuntos B2, el Primer
Teorema del Multiplicador, el cual garantiza la existencia de un multiplicador de un
conjunto diferencia. También utilizamos un método de construcción de casi conjuntos
diferencia de Ding. Además, empleamos un resultado de Luca y otros, el cual determina
todas las soluciones de una ecuación diofántica.

Palabras clave: Conjunto B2 de tipo Singer, conjunto diferencia, casi conjunto difer-
encia, 2-adiseño, grafo suma, grafo polaridad ortogonal Erdös-Rényi ERq, conjunto B2

de tipo Ruzsa, Primer Teorema del Multiplicador, multiplicador, ecuación diofántica.
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Abstract

A subset A of an abelian group Γ (written additively) is a B2 set in Γ if all the sums
a1 + a2, with a1 and a2 in A, are different. In this thesis we consider three research
problems that arose when we study Singer type B2 sets. In the first we wonder about
the existence of difference sets in groups of order pm, when p is a prime number and
m > 1 is an integer. In relation to this, we prove the non-existence of abelian difference
sets with parameters (pm, k, 1). In the second we have an interest in the construction
of new almost difference sets, regarding this, we use Singer type B2 sets to construct
three new families of almost difference sets. Additionally, we construct 2-adesigns from
these almost difference sets. In the third we use the sum graph of a Singer type B2

set to establish additive proofs of some structural properties (known and new) of the
Erdös-Rényi orthogonal polarity graph ERq. In particular, we prove that the sum graph
of a Ruzsa type B2 set is isomorphic to an induced subgraph of ERq. The primary tools
used in our investigation are additive properties of B2 sets, the First Multiplier Theorem
for Difference Sets. We also make use of Ding’s method of constructing almost difference
sets. Finally, we employ a result of Luca et al., which determines all the solutions of a
given Diophantine equation.

Keywords: Singer type B2 set, difference set, almost difference set, 2-adesign, sum
graph, Erdös-Rényi orthogonal polarity graph ERq, Ruzsa type B2 set, First Multiplier
Theorem, multiplier, Diophantine equation.
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retas, Zacatecas México, february 18, 2022.

− Conjuntos de Sidon y grafos C4-Saturados. Seminario en Ĺınea de Matemáticas
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México, online august 16 to septiembre 9, in-person septiembre 14 to November
26, 2021.



xv

Workshop
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Chapter 1
Introduction

A subset A of an abelian group Γ (written additively) is a B2 set or Sidon set in Γ
if all the sums a1 + a2, with a1 and a2 in A, are different (except when they coincide
because of commutativity, a1 + a2 = a2 + a1). According to Cilleruelo et al. [7], in 1932
the analyst Simon Sidon asked to a young Paul Erdös about the maximal cardinality of
a B2 set of integers in {1, . . . , n}. Sidon was interested in this problem in connection
with the study of the Lp norm of Fourier series with frequencies in these sets but Erdös
was captivated by the combinatorial and arithmetical flavour of this problem and it
was one of his favorite problems. Since that time, B2 sets have received the attention
of many researchers and they have been used in many fields, such as communications,
fault-tolerant distributed computing, and coding theory, see [3] and references therein.
Sidon sets also been used to study combinatorial problems such as product estimates,
solvability of some equations [8, 9], or in the field of extremal graph theory to study the
number ex(n,C4) [10, 11].

Since a + b = c + d implies that a − d = c − b, A is a B2 set if all non-zero differences
of elements of A are different. If Γ is finite then by counting the number of differences
a − b, we can see that |A| <

√
|Γ| + 1/2. The most interesting B2 sets are those with

large cardinality, that is, when |A| =
√
|Γ| ± δ for a small number δ. A well-known

construction of B2 sets with large cardinality is due to Singer [12]. In this thesis, we
focus on three problems that arose when we study Singer type B2 sets.

The first problem is related to difference sets which are a well-known class of mathe-
matical objects used in the construction of designs and other combinatorial structures.
If Γ is of order v then a k-subset D of Γ is called a (v, k, λ) difference set DS (in Γ) if

1



2 Chapter 1. Introduction

δD(x) = λ for every nonzero element of Γ, where δD(x) is the difference function defined
by

δD(x) := |(D + x) ∩D|

and D + x := {d+ x : d ∈ D}.

The order of the difference set D is defined as n = k − λ. Moreover, if Γ is abelian and
λ = 1, then D is called an abelian planar difference set (APDS). Singer’s construction
[12] guarantees the existence of APDS’s provided that n is a prime power. The Prime
Power Conjecture states that there are no APDS’s whose order is not a prime power.

The following question arises: which groups admit abelian planar difference sets? This
question has been studied by several researchers, who have obtained important results
on the existence and non-existence of difference sets in abelian and non-abelian groups.
For example, in [13] proved that there is no abelian difference set with parameters (261,
105, 42), and in [14] proved that there is no abelian difference set with parameters (220,
73, 24) and (231, 70, 21). For other non-existence results, see [15, 16, 17].

In [2], which is reproduced in Chapter 2, we prove the following.

Theorem (Chapter 2, Theorem 3). If p is a prime number and m ≥ 2 is an integer then,
there are no abelian planar difference sets with parameters (pm, k, 1).

The second problem is associated with the construction of new families of almost differ-
ence sets which are structures very close to DSs. If Γ is of order v then a k-subset D in Γ
is a (v, k, λ, t)-almost difference set ADS (in Γ) if δD(x) takes on the value λ altogether
t times and λ+ 1 altogether v − t− 1 times as x ranges over Γ \ {0}. That is,

δD(x) = |(D + x) ∩D| = λ or λ+ 1

for each x ∈ Γ \ {0}.

Number theoretic constraints can be applied to show that some groups cannot contain
ADSs with certain parameters [18]. One example is that (v − 1)λ+ t = k(k − 1) must
hold for any ADS. Other criteria can be discovered by examining the quotient groups
of the original group. Despite the effectiveness of these techniques, no general exis-
tence criterion is known to determine exactly which groups contain ADSs [19]. There
exist several construction methods of almost difference sets [20, 21, 22, 23, 24, 25, 18].
These constructions come from: difference sets, cyclotomic classes of finite fields, support
of some functions, binary sequences with three-level autocorrelation, or larger product
group. For a good survey of almost difference sets, the reader is referred to [26].
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In Chapter 4, which is based on the paper [1], we prove the following theorems.

Theorem (Chapter 3, Theorem 4). For all prime power, q ≡ 1 mod 3 greater than 4,
there is a (

q2 + q + 1

3
, q, 2, 2(q − 1)

)
-ADS.

Theorem (Chapter 3, Theorem 5). Let D be a (v, k, λ) difference set in Γ. If

1. g ∈ Γ \D;

2. (g −D) ∩ (D − g) = ∅,

then D ∪ {g} is a (v, k + 1, λ, v − 1− 2k) almost difference set in Γ.

Theorem (Chapter 3, Theorem 6). Let D be a (v, k, λ) difference set in Γ. If

1. d ∈ D;

2. (d−D) ∩ (D − d) = {0},

then D \ {d} is a (v, k − 1, λ− 1, 2(k − 1)) almost difference set in Γ.

And, as an application, using a result that relates almost difference set and 2-adesign
[27], we construct new 2-adesigns from these new almost difference sets.

Corollary (Chapter 3, Corollary 3). For all prime power q ≡ 1 mod 3 greater than 4,

there is a symmetric 2-
(
q2+q+1

3
, q, 2

)
adesign.

Corollary (Chapter 3, Corollary 4). For all power prime q, there is a symmetric 2-
(q2 + q + 1, q + 2, 1) adesign.

In graph theory, given a fixed graph H, a graph G that does not contain H as a subgraph
is called H-free, and an H-free graph that contains a copy of H after the addition of
any edge is called H-saturated. The Turán number of H, denoted by ex(n,H), is the
maximum number of edges in an n-vertex H-free graph. Determining Turán numbers for
different families of graphs is one of the most studied problems in extremal graph theory.
In particular, for H = C4, the cycle on four vertices, Reiman [28] showed a general upper
bound

ex(n,C4) ≤ n

4
(1 +

√
4n− 3). (1.1)



4 Chapter 1. Introduction

Brown [29] and Erdös-Rényi-Sós [30] independently constructed graphs that show that
(1.1) is asymptotically best possible. These graphs are called Erdös-Rényi orthogonal
polarity graphs or Brown graphs, and they are constructed using an orthogonal polarity
of the projective plane PG(2, q). The construction is as follows. Let q be a prime power.
The Erdös-Rényi graph, denoted ERq, is the graph whose vertices are the points of
PG(2, q), and two distinct vertices (x0, x1, x2) and (y0, y1, y2) are adjacent if and only
if x0y0 + x1y1 + x2y2 = 0. It is well known that this graph has q2 + q + 1 vertices, has
1
2
q(q + 1)2 edges, and is C4-free. So for any prime power q, we know that

1

2
q(q + 1)2 ≤ ex(q2 + q + 1, C4). (1.2)

Füredi [31] proved that (1.2) is best possible, and that, any C4-free graph with q2 + q+ 1
vertices and 1

2
q(q+ 1)2 edges is an orthogonal polarity graph of some projective plane of

order q, provided q ≥ 15. Although the best known application of ERq is in extremal
graph theory, these graphs have applications in hypergraph Turán theory, Ramsey theory,
and structural graph theory [32, 33, 34]. The adjacency relation in ERq is not the most
suitable for our algebraic manipulations, for this reason, we will use an isomorphic graph
to ERq. This graph was constructed by Mubayi and Williford in [35], and it is denoted
by ER∗q . Apparently, it is more convenient to work with ER∗q . For example, in [36]
and [11], the authors used B2 sets to construct graphs which are isomorphic to induced
subgraphs of ER∗q , and therefore isomorphic to ERq. The graph constructed in [36, 11]
is called sum graph and its construction is as follows: given a B2 set A of an additive
group Γ, the sum graph GΓ,A = (V,E) is formed by V = Γ and {x, y} ∈ E if x + y ∈ A
with x 6= y. Tait and Timmons [11] proved as their main result that the sum graph of a
Bose-Chowla type B2 set is an induced subgraph of ERq. In the same direction, Peng et
al. [36] proved that the sum graph of the Erdös-Turán type B2 set C = {(x, x2) : x ∈ Fq}
is isomorphic to an induced subgraph of ERq. Recently, Erskine, Fratric and Sirán [37]
proved that the sum graph of a Singer type B2 set is isomorphic to ERq.

In Chapter 4, based on [3], we use the sum graph of a Singer type B2 set to estab-
lish additive proofs of some structural properties (known and new) of the Erdös-Rényi
orthogonal polarity graph. Our main result is the following.

Theorem (Chapter 4, Theorem 10). Let R be a Ruzsa type B2 set in Γ = Zp2−p. Then
the sum graph GΓ,R is isomorphic to an induced subgraph of ERp.

The distribution of the content of this thesis is as follows: In Appendix (Preliminaries)
we present the notation used throughout this work, as well as some definitions and known
results that we consider necessary for the development of the chapters. In Chapter 3
(Difference Set) we introduce the concept of difference set, we present some necessary
conditions for its existence and we show the non-existence of (pm, k, 1)-DS. In Chapter
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4 (Almost Difference Set) we define the almost difference sets, we present three new
constructions of this type of sets and using these constructions we derive new 2-adesign.
In Chapter 5 (The Erdös-Rényi Orthogonal Polarity Graph: Additive Interpretation)
we present the additive interpretation of the Erdös-Rényi Orthogonal Polarity Graph
and we establish additive proofs of some structural properties of this graph. Finally, in
Chapter 6 (Conclusion And Future Work) we briefly summarize the results obtained in
this thesis and we propose some new research problems.





Chapter 2
Difference Set

Remark 2. This chapter is a version of the material appearing in the paper “Non-
existence of (pm, k, 1) difference sets”, Electronics Letters, 58 (2022), no. 4, 154-155.
Co-authored with C. Martos and C. Trujillo.

Difference sets play an important role in discrete mathematics, either for their mathe-
matical interest or for their applications to other areas. The history of these sets reaches
back to Singer’s paper [12]. Later, Hall [38] considered difference sets in cyclic groups
and introduced the concept of multipliers. Finally, Bruck [39] investigated these sets
in arbitrary groups. Difference sets have been studied extensively and they have many
interesting applications in computer science [40], interleaved linear arrays [41], etc. A
variety of real-world applications can be found in [42]. A k-subset D in an additive group
Γ of order v is called a (v, k, λ) difference set DS (in Γ) if δD(x) = λ for every nonzero
element of Γ, where δD(x) is the difference function defined in Preliminares.

The order of the difference set D is defined as n = k − λ. Moreover, if Γ is abelian and
λ = 1, then D is called an abelian planar difference set (APDS).

Singer’s construction [12] guarantees the existence of APDS’s provided that n is a prime
power. It is conjectured that there are no APDS’s whose order is not a prime power.
Evans and Mann [43] proved this for cyclic difference sets with n ≤ 1600, and Gordon
[44] extended this for n ≤ 2,000,000. This conjecture is known in the literature as the
Prime Power Conjecture.

In this chapter, we prove the non-existence of abelian difference sets with parameters

7
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(pm, k, 1), where m ≥ 2 is an integer and p is a prime.

2.1 Necessary conditions

If D is a (v, k, λ)-difference set in an additive group Γ, then by definition, the parameters
must satisfy the equality

k(k − 1) = λ(v − 1)

and therefore the cardinal of D must be equal to

k =
1 +

√
4λ(v − 1) + 1

2
.

In particular, if D is an APDS in Γ then

k =
1 +
√

4v − 3

2
,

and therefore

4v − 3 = x2 (2.1)

for some positive odd x.

Other two conditio ns necessary for the existence of an abelian planar difference set are
Theorem 1 and Theorem 2, see [44].

Theorem 1. Let n be a positive integer such that n ≡ 1, 2 (mod 4). If the squarefree
part of n is divisible by a prime p ≡ 3 (mod 4), then no APDS of order n exists.

Theorem 2. The order of an APDS cannot be divisible by 6, 10, 14, 15, 21, 22, 26, 33,
34, 35, 38, 39, 46, 51, 55, 57, 58, 62 or 65.

Remark 3. The condition in Equation (2.1) is necessary, but not sufficient. Indeed, if
v = q2 + q + 1 with q ∈ N, then

4(q2 + q + 1)− 3 = (2q + 1)2,

therefore, x = 2q + 1; hence, k = q + 1. However, if q = 6, then the order of an APDS
would be n = k − λ = 7− 1 = 6, which is not possible by Theorem 1. Nevertheless,
Singer [12] proved that there is always an APDS with parameters (q2 + q + 1, q + 1, 1)
when q is a prime power. For example, if q = 4 then D = {0, 1, 6, 8, 18} is an APDS in
Z21. The order in this case is n = 4 = 22 (prime power).
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2.2 Non-existence of (pm, k, 1) difference sets

The following question arises: which groups admit abelian planar difference sets? This
question has been studied by several researchers, who have obtained important results
on the existence and non-existence of difference sets in abelian and non-abelian groups.
For example, in [13] proved that there is no abelian difference set with parameters (261,
105, 42), and in [14] proved that there is no abelian difference set with parameters (220,
73, 24) and (231, 70, 21). For other non-existence results, see [17, 16, 15].

We study this problem in groups of order pm. For this value of v = |Γ| = pm, the cardinal
of an APDS in Γ must be equal to

k =
1 +
√

4pm − 3

2
(2.2)

and therefore we have the Diophantine equation

x2 + 3 = 4pm. (2.3)

Luca, Tengely, and Togbe studied the Diophantine equation

x2 + C = 4ym, (2.4)

and they obtained all its integer solutions when x ≥ 1, y ≥ 1, gcd(x, y) = 1, m ≥ 3,
C ≡ 3 (mod 4), and 1 ≤ C ≤ 100, see [45].

Remark 4. In particular, when C = 3, Luca, Tengely, and Togbe proved that the only
integer solutions (m,x, y) of Equation (2.4) are (m, 1, 1), and (3, 37, 7).

When p is prime, we obtain the following result.

Lemma 1. The only integer solution of Equation (2.3), with x ≥ 1, p ≥ 1 prime, and
m ≥ 3, is when m = 3, x = 37, and p = 7.

Proof.

Case 1. If p - x, then gcd(x, p) = 1. Then the result follows from Remark 4 because p
is prime.

Case 2. If p | x, then x = pr with r ∈ N, and Equation (2.3) implies that

p2r2 + 3 = 4pm,



10 Chapter 2. Difference Set

then p | 3, and so p = 3. Thus

32r2 + 3 = 4(3m)

and so 3r2 + 1 = 4(3m−1). This last equation has an integer solution only if m = 1 and
r = 1 (m > 1 implies that 1 ≡ 0 mod 3 which is not possible).

As a consequence of Lemma 1, we have the following result.

Theorem 3. If p is a prime number and m ≥ 2 is an integer then, there are no abelian
planar difference sets with parameters (pm, k, 1).

Proof. Case 1. p prime and m = 2.
In this case, the associated Diophantine equation is

x2 + 3 = 4p2 (see Equation (2.3)).

When p is prime, the above equation does not have an integer p solution, because
3 = (2p− x)(2p+ x) implies that p = ±1.

Case 2. p prime and m > 2.
By Lemma 1, an abelian planar difference set D can exist in a group Γ of order pm only
if its parameters are (73, 19, 1), that is, |Γ| = v = 73, and |D| = k = 19 (see Equation
(2.2)). In this situation, the order of D is n = 19 − 1 = 18, but this is not possible by
Theorem 2.



Chapter 3
Almost Difference Set

Remark 5. This chapter is a version of the material appearing in the paper “Almost
difference sets from Singer type Golomb rulers”, IEEE Access, 10 (2022), 1132-1137.
Co-authored with C. Martos and C. Trujillo.

Many groups do not have DSs for any parameters k and λ, but do have structures that
are very close to DSs, which motivates the following definition.

A k-subset D in an additive group Γ of order v is said to be a (v, k, λ, t)-almost difference
set ADS (in Γ) if δD(x) takes on the value λ altogether t times and λ + 1 altogether
v − t− 1 times as x ranges over Γ \ {0}. This is,

δD(x) = |(D + x) ∩D| = λ or λ+ 1,

for each x ∈ Γ \ {0}.

Note that almost difference sets are a generalization of difference sets (when t = 0
or t = v − 1). Moreover, for an almost difference set D with parameters (v, k, λ, t),
its complement Γ \ D is also an almost difference set with parameters (v, v − k, v −
2k + λ, t). An almost difference set D is called abelian or cyclic if the group Γ is
abelian or cyclic, respectively. Almost all difference sets are interesting combinatorial
objects that have several applications in many engineering areas. In coding theory,
they can be employed, to construct cyclic codes [46]. Additionally, in cryptography,
they can be used to construct functions with optimal nonlinearity [47, 48]. Finally, for
CDMA communications, some cyclic almost difference sets yield sequences with optimal
autocorrelation [20, 49, 23].

11
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In this chapter, we use Singer type B2 sets (which are difference sets with λ = 1, or almost
difference set with λ = 0 and t = 0) to construct new families of almost difference sets.
These constructions are new, as far as we are aware of. The first construction yields
(N/3, q, 2, 2(q − 1))-ADSs in cyclic groups of order N/3, where N = q2 + q + 1 and
q ≡ 1 mod 3 is a prime power greater than 4. This construction uses homomorphic
projection. The second construction is obtained by adding a new element to the B2 set
and yields (q2 + q + 1, q + 2, 1, (q − 2)(q + 1))-ADSs in cyclic groups of order q2 + q + 1
for all prime power q. The third construction is obtained by removing an element of the
B2 set and yields (q2 + q + 1, q, 0, 2q)-ADSs in cyclic groups of order q2 + q + 1 for all
prime power q. The latest constructions follow the idea proposed in [20].

Another contribution of this chapter is related to t-adesign, which was defined in [22].
Let D = (P ,B, I) be an incidence structure with v ≥ 1 points and b ≥ 1 blocks, where
every block has size k. If every subset of t points of P is incident with either λ or λ+ 1
blocks of B, then D is called a t-(v, k, λ) adesign, or simply t-adesign. A t-adesign is
symmetric if v = b. The set {D + g : g ∈ Γ} of translates of D, denoted by Dev(D), is
called the development of D. The following lemma was established in [27] and provides
a relationship between almost difference set and t-adesign.

Lemma 2. Let D be a (v, k, λ) almost difference set in an abelian group Γ. Then,
(Γ, Dev(D)) is a 2-(v, k, λ) adesign.

Using the above lemma and the almost difference sets constructed in this chapter, we
give constructions of 2-adesigns.

Next, we describe three new constructions of almost difference sets from Singer type B2

sets. These constructions can generate infinitely many almost difference sets in Zn for
appropriate values of n.

3.1 Construction 1

The following theorem shows how to construct an almost difference set from a Singer
type B2 set using homomorphic projection.

Theorem 4. For all prime power, q ≡ 1 mod 3 greater than 4, there is a(
q2 + q + 1

3
, q, 2, 2(q − 1)

)
-ADS.

Proof. According to Singer’s construction, for every prime power q, there is a B2 set S
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in Zq2+q+1, with q + 1 elements, particularly for q ≡ 1 mod 3.
Let ϕ : Zq2+q+1 → Z q2+q+1

3

be the homomorphism defined by

ϕ(a) ≡ a mod

(
q2 + q + 1

3

)
,

and D = ϕ(S).

Note that, |D| = q; indeed, as q2+q+1
3
∈ Zq2+q+1 \ {0} = S 	 S (see Lemma 5 (ii)), then

there are two different elements a and b in S such that a− b ≡ q2+q+1
3

mod (q2 + q+ 1),

hence, a ≡ b mod ( q
2+q+1

3
), that is, ϕ(a) = ϕ(b). Note that there is no other pair of

elements c, d ∈ S such that c ≡ d mod ( q
2+q+1

3
), because this contradicts the fact that

S is a B2 set. Therefore, |D| = q.

Let S = {s1, s2, . . . , sq+1} with s1 ≡ s2 mod q2+q+1
3

, and let D = {d1, d2, . . . , dq}, where
d1 = ϕ(s1) = ϕ(s2) and di−1 = ϕ(si), for 3 ≤ i ≤ q + 1.

Note that for each x ∈ Z q2+q+1
3

\ {0}, there are two distinct elements x1 = x + q2+q+1
3

and x2 = x+ 2
(
q2+q+1

3

)
in Zq2+q+1 for which

ϕ(x) = ϕ(x1) = ϕ(x2). (3.1)

On the other hand, by (see Lemma 5 (ii)) there are unique elements si, sj, sk, sl, st and
sr in S such that

x = si − sj, x1 = sk − sl, and x2 = st − sr,
so, by (3.1)

ϕ(x) = ϕ(si)− ϕ(sj) = ϕ(sk)− ϕ(sl) = ϕ(st)− ϕ(sr),

this is,
ϕ(x) = di − dj = dk − dl = dt − dr.

As ϕ(s1) = ϕ(s2) = d1 then for 3 ≤ j ≤ q + 1, the 4(q − 1) pairwise distinct elements

s1 − sj, s2 − sj, sj − s1, sj − s2

satisfy that

ϕ(s1)− ϕ(sj) = ϕ(s2)− ϕ(sj) = d1 − dj, and ϕ(sj)− ϕ(s1) = ϕ(sj)− ϕ(s2) = dj − d1,

therefore, there are 2(q − 1) distinct elements of Z q2+q+1
3

that have two different rep-

resentations as differences of elements in D. The other q2−5q+4
3

elements of Z q2+q+1
3

can be written in three different ways as differences of elements in D. Thus, D is a
( q

2+q+1
3

, q, 2, 2(q − 1))-ADS.
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Example 1. The set S = {0, 1, 6, 21, 28, 44, 46, 54} is a Singer type B2 set in Z57.
Reducing the elements of S modulo 57/3 = 19 gives the set

{0, 1, 2, 6, 8, 9, 16},

which is a (19, 7, 2, 12) almost difference set in Z19 by Theorem 4.

Example 2. The set S = {0, 1, 3, 24, 41, 52, 57, 66, 70, 96, 102, 149, 164, 176} is a Singer
type B2 set in Z183. Reducing the elements of S modulo 183/3=61 gives the set

{0, 1, 3, 5, 9, 24, 27, 35, 41, 42, 52, 54, 57},

which is a (61, 13, 2, 24) almost difference set in Z61 by Theorem 4.

3.2 Construction 2

The following proposition shows how to construct an almost difference from a difference
set by adding an element.

Proposition 1. LetD be a (v, v−1
4
, v−5

16
) difference set in Γ, and let d ∈ Γ\D. If 2d cannot

be written as the sum of two distinct elements of D, then D ∪ {d} is a (v, v+3
4
, v−5

16
, v−1

2
)

almost difference set in Γ, see [20].

Using the same idea of Proposition 1, we obtain the following result.

Theorem 5. Let D be a (v, k, λ) difference set in Γ. If

1. g ∈ Γ \D;

2. (g −D) ∩ (D − g) = ∅,

then D ∪ {g} is a (v, k + 1, λ, v − 1− 2k) almost difference set in Γ.

Proof. Let D = {d1, d2, . . . , dk}. If (g −D) ∩ (D − g) = ∅, then 2g cannot be written as
a sum of two distinct elements of D; therefore

g − d1, g − d2, . . . , g − dk
d1 − g, d2 − g, . . . , dk − g

are 2k pairwise distinct elements. Because D is a (v, k, λ) difference set, D ∪ {g} is a
(v, k + 1, λ, v − 1− 2k) almost difference set.



3.2. Construction 2 15

Corollary 1. There is a (q2 + q+ 1, q+ 2, 1, (q−2)(q+ 1))-ADS in Zq2+q+1, for all prime
power q.

Proof. According to Singer’s construction, for every prime power q, there is a Singer
type B2 set S in Zq2+q+1. In particular, S is a (q2 + q + 1, q + 1, 1)-DS. Then, the result
follows applying Theorem 5 with a suitable element in Zq2+q+1 \ S.

Example 3. The set S = {0, 1, 4, 6} is a Singer type B2 set in Z13. Since

1. 8 ∈ Z13 \ S;

2. 8− S = {2, 4, 7, 8};

3. S − 8 = {5, 6, 9, 11};

4. (8− S) ∩ (S − 8) = ∅.

Then, S ∪{8} = {0, 1, 4, 6, 8}, is a (13, 5, 1, 4) almost difference set in Z13 by Theorem 5.

Example 4. The set S = {0, 1, 11, 19, 26, 28} is a Singer type B2 set in Z31. Since

1. 17 ∈ Z31 \ S;

2. 17− S = {6, 16, 17, 20, 22, 29};

3. S − 17 = {2, 9, 11, 14, 15, 25};

4. (17− S) ∩ (S − 17) = ∅.

Then, S ∪ {17} = {0, 1, 11, 17, 19, 26, 28}, is a (31, 7, 1, 18) almost difference set in Z31

by Theorem 5.

Remark 6. Two elements cannot be added to a Singer type B2 set S in Theorem 5 to
obtain a (q2 +q+1, q+3, 1, t) almost difference set. Indeed, let x1 and x2 be two distinct
elements in Zq2+q+1 \ S and D = S ∪ {x1, x2}. As x1 6= x2, then x1 − x2 ∈ S 	 S (see
Lemma 5 (ii)), so

y := x1 − s1 = x2 − s2

for some s1, s2 ∈ S (s1 6= s2). As y 6= 0, then y ∈ S 	 S. Therefore, y can be written in
three different ways as differences of elements in D.
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Example 5. The set {0, 1, 11, 19, 26, 28} is a Singer type B2 set in Z31. By adding 9,
and 24, we obtain the set D = {0, 1, 9, 11, 19, 24, 26, 28}. Note that 9 and 24 cannot
be written as the sum of two distinct elements of D, but the element 29 in Z31 can be
written as 24 − 26 ≡ 9 − 11 ≡ 26 − 18. Other elements in Z31 can also be written in
three different ways as differences of elements in D; for example 8.

3.3 Construction 3

The following proposition shows how to construct an almost difference set from a differ-
ence set by removing an element.

Proposition 2. Let D be a (v, v+3
4
, n+3

16
) difference set in Γ, and let d ∈ D. If 2d cannot

be written as the sum of two distinct elements of D, then D \ {d} is a (v, v−1
4
, v−13

16
, v−1

2
)

almost difference set in Γ, see [20].

Using the same idea of Proposition 2, we obtain the following result.

Theorem 6. Let D be a (v, k, λ) difference set in Γ. If

1. d ∈ D;

2. (d−D) ∩ (D − d) = {0},

then D \ {d} is a (v, k − 1, λ− 1, 2(k − 1)) almost difference set in Γ.

Proof. Let D = {d, d2, . . . , dk}. If (d−D) ∩ (D − d) = {0}, then 2d cannot be written
as a sum of two distinct elements of D; therefore

d− d2, d− d3, . . . , d− dk
d2 − d, d3 − d, . . . , dk − d

are 2(k− 1) pairwise distinct elements. Because D is a (v, k, λ) difference set, D \ {d} is
a (v, k − 1, λ− 1, 2(k − 1)) almost difference.

Corollary 2. There is a (q2 + q + 1, q, 0, 2q)-ADS in Zq2+q+1, for all prime power q.

Proof. According to Singer’s construction, for every prime power q, there is a Singer
type B2 set S in Zq2+q+1. In particular, S is a (q2 + q + 1, q + 1, 1)-DS. Then, the result
follows applying Theorem 6 with a suitable element in Zq2+q+1 \ S.
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Example 6. The set S = {0, 1, 11, 19, 26, 28} is a Singer type B2 set in Z31. Since

1. 26 ∈ S;

2. 26− S = {0, 7, 15, 25, 26, 29};

3. S − 26 = {0, 2, 5, 6, 16, 24};

4. (26− S) ∩ (S − 26) = {0}.

Then, S \ {26} = {0, 1, 11, 17, 19, 28}, is a (31, 6, 0, 10) almost difference set in Z31 by
Theorem 6.

Example 7. The set S = {0, 1, 3, 24, 41, 52, 57, 66, 70, 96, 102, 149, 164, 176} is a Singer
type B2 set in Z183. Since

1. 70 ∈ S;

2. 70− S = {0, 4, 13, 18, 29, 46, 67, 69, 70, 77, 89, 104, 151, 157};

3. S − 70 = {0, 26, 32, 79, 94, 106, 113, 114, 116, 137, 154, 165, 170, 179};

4. (70− S) ∩ (S − 70) = {0}.

Then, S \ {70} = {0, 1, 3, 24, 41, 52, 57, 66, 96, 102, 149, 164, 176}, is a (183, 12, 0, 26) al-
most difference set in Z183 by Theorem 6.

Remark 7. The process in Theorem 6 can be continued recursively to obtain an almost
difference set with parameters (q2 + q + 1, q + 1 − i, 0, 2(iq −

(
i
2

)
)), where 1 ≤ i < q is

the number of elements that are removed.

Example 8. The set {0, 1, 6, 8, 18} is a Singer type B2 set in Z21. By removing 6, we
obtain {0, 1, 8, 18}, which is a (21, 4, 0, 8)-ADS. By removing 1 of this set, we obtain
{0, 8, 18}, which is a (21, 3, 0, 14)-ADS. By removing 18 of the above set, we obtain
{0, 8}, which is a (21, 2, 0, 18)-ADS.

3.4 Constructions of symmetric 2-adesigns

From Theorem 4, Theorem 5, and Lemma 2, we obtain corollaries 3 and 4, respectively.
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Corollary 3. For all prime power q ≡ 1 mod 3 greater than 4, there is a symmetric

2-
(
q2+q+1

3
, q, 2

)
adesign.

Example 9. The set D = {0, 1, 2, 6, 8, 9, 16} is a (19, 7, 2, 12) almost difference set in
Z19 (see Example 1). By Lemma 2, we obtain a symmetric 2-(19, 7, 2) adesign with the
following blocks of size 7:

{0, 1, 2, 6, 8, 9, 16} {10, 11, 12, 16, 18, 0, 7}
{1, 2, 3, 7, 9, 10, 17} {11, 12, 13, 17, 0, 1, 8}
{2, 3, 4, 8, 10, 11, 18} {12, 13, 14, 18, 1, 2, 9}
{3, 4, 5, 9, 11, 12, 0} {13, 14, 15, 0, 2, 3, 10}
{4, 5, 6, 10, 12, 13, 1} {14, 15, 16, 1, 3, 4, 11}
{5, 6, 7, 11, 13, 14, 2} {15, 16, 17, 2, 4, 5, 12}
{6, 7, 8, 12, 14, 15, 3} {16, 17, 18, 3, 5, 6, 13}
{7, 8, 9, 13, 15, 16, 4} {17, 18, 0, 4, 6, 7, 14}
{8, 9, 10, 14, 16, 17, 5} {18, 0, 1, 5, 7, 8, 15}
{9, 10, 11, 15, 17, 18, 6}

Corollary 4. For all power prime q, there is a symmetric 2-(q2 + q + 1, q+2, 1) adesign.

Example 10. The set D = {0, 1, 4, 6, 8} is a (13, 5, 1, 4) almost difference set in Z13 (see
Example 3). By Lemma 2, we obtain a symmetric 2-(13, 5, 1) adesign with the following
blocks of size 5:

{0, 1, 4, 6, 8} {5, 6, 9, 11, 0} {10, 11, 1, 3, 5}
{1, 2, 5, 7, 9} {6, 7, 10, 12, 1} {11, 12, 2, 4, 6}
{2, 3, 6, 8, 10} {7, 8, 11, 0, 2} {12, 0, 3, 5, 7}
{3, 4, 7, 9, 11} {8, 9, 12, 1, 3}
{4, 5, 8, 10, 12} {9, 10, 0, 2, 4}



Chapter 4
The Erdös-Rényi Orthogonal Polarity
Graph: Additive Interpretation

Remark 8. The following is part of the material appearing in the paper “Sidon sets
and subgraphs of the Erdös-Rényi orthogonal polarity graph”. Contributions to Discrete
Mathematics. Submitted for evaluation. Co-authored with M. Huicochea, C. Martos and
C. Trujillo.

In this chapter, let q be a prime power, S be a Singer type B2 set in Γ = Zq2+q+1 and
GΓ,S be the sum graph with respect to S. Grahame, Fratrič and Širáň proved in [37]
that GΓ,S is isomorphic to ERq, we reproduce the proof here for completeness.

First, they presented Lemma 3 (without proof), since S +m (for any integer m) and rS
(for any positive integer r with gcd(q2 + q+ 1, r) = 1) are also Singer type B2 sets in Γ1.

Lemma 3. Let S and S ′ be equivalent Singer type B2 sets for the cyclic group Γ. Then
the sum graphs GΓ,S and GΓ,S′ are isomorphic.

Proof. Let m and r be integers with gcd(q2 + q + 1, r) = 1, and S ′ = S +m := {s+m :
s ∈ S}. We define ϕ : Γ −→ Γ by ϕ(i) = i + m/2 (note that gcd(q2 + q + 1, 2) = 1).

1Two B2 sets which are related in this way are called equivalent.
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Chapter 4. The Erdös-Rényi Orthogonal Polarity Graph:

Additive Interpretation

Then,

i+ j = s ∈ S −→ ϕ(i) + ϕ(j) = i+m/2 + j +m/2

= i+ j +m

= s+m ∈ S ′.

Thus, if i is adjacent to j in GΓ,S , then ϕ(i) is adjacent to ϕ(j) in GΓ,S′ . Finally,
ϕ−1 : Γ −→ Γ is given by ϕ−1(i) = i−m/2.

On the other hand, if S ′ = rS := {rs : s ∈ S}, we define φ : Γ −→ Γ by φ(i) = ri. So,

i+ j = s ∈ S −→ φ(i) + φ(j) = ri+ rj

= r(i+ j)

= rs ∈ S ′.

Thus, if i is adjacent to j in GΓ,S , then φ(i) is adjacent to φ(j) in GΓ,S′ . Finally, since r
is invertible, φ−1 : Γ −→ Γ is given by φ−1(i) = i/r.

Halberstam and Laxton proved in [50] that all Singer type B2 sets for a given prime
power q are equivalent, so by Lemma 3 any sum graph obtained from a Singer type B2

set is isomorphic to ERq.

Proposition 3. GΓ,S ∼= ERq

Proof.

� Let q = 4, and F4 = {0, 1, θ, θ2} where θ is a primitive element of F∗4 with minimal
polynomial x2 + x+ 1 ∈ F4[x]. Then,

V (ER4) = PG(2, 4) = {(1, 0, 1), (1, θ2, 1), (1, 1, 0), (1, θ2, θ2), (0, 1, 0), (1, θ, θ),
(0, 1, θ), (1, θ, θ2), (1, θ2, θ), (1, θ2, 0), (1, 0, 0), (0, 1, 1), (0, 0, 1), (1, θ, 0), (1, 1, 1),
(0, 1, θ2), (1, θ, 1), (1, 0, θ2), (1, 0, θ), (1, 1, θ2), (1, 1, θ)}.

By Lemma 3 it is enough to show that the sum graph of the Singer type B2 set
S = {0, 1, 4, 14, 16} in Γ = Z21 is isomorphic to ER4. An explicit isomorphism is
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given by

0 (1, 0, 1) 1 (1, θ2, 1) 2 (1, 1, 0)

3 (1, θ2, θ2) 4 (0, 1, 0) 5 (1, θ, θ)

6 (0, 1, θ) 7 (1, θ, θ2) 8 (1, θ2, θ)

9 (1, θ2, 0) 10 (1, 0, 0) 11 (0, 1, 1)

12 (0, 0, 1) 13 (1, θ, 0) 14 (1, 1, 1)

15 (0, 1, θ2) 16 (1, θ, 1) 17 (1, 0, θ2)

18 (1, 0, θ) 19 (1, 1, θ2) 20 (1, 1, θ)

� Let q 6= 4. By [5], Fq3 has a primitive element θ with minimal polynomial

x3 − (αx+ β) ∈ Fq[x].

Note that β ∈ F∗q, since p is irreducible; and α ∈ F∗q since a cube root of an element
in Fq must have multiplicative order at most 3(q − 1) and so cannot be primitive
in Fq3 . The existence of this polynomial facilitates the calculations. Let S ′2 be
a Singer type B2 set in Γ constructed from θ, see Appendix A.3.1. By Lemma 3
GΓ,S′ ∼= GΓ,S . Thus, it is enough to prove GΓ,S′ ∼= ERq.

Let i and j be two distinct vertices in GΓ,S′ . Remember that these vertices are
adjacent if i + j = k ∈ S ′. Since Γ is isomorphic to F∗q3/F

∗
q by discrete logarithm

to base θ, then

i+ j = k ⇐⇒ θiθj = θk ∈ {a+ θ : a ∈ Fq} ∪ {1} (4.1)

Writing down θi and θj in terms of the basis {1, θ, θ2} of F∗q3 over F∗q, one has

θi = x0 + x1θ + x2θ
2 and θj = y0 + y1θ + y2θ

2

for some xi, yi ∈ F∗q, i ∈ {0, 1, 2}. Now, using

θ3 = αθ + β and θ4 = αθ2 + βθ,

we can rewrite (4.1) as:

i+ j = k ⇐⇒ γ + δθ + (x0y2 + x1y1 + x2y0 + x2y2α)θ2 ∈ {a+ θ : a ∈ Fq} ∪ {1}

where, γ = x0y0 + (x1y2 + x2y1)β and δ = (x0y1 + x1y0 + (x1y2 + x2y1)α + x2y2).
Thus,

2S ′ := {logθ(α+ u) : u ∈ Fq} ∪ {logθ(1)}, see Appendix A.3.1
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i+ j = k ⇐⇒ x0y2 + x1y1 + x2y0 + x2y2α = 0.

So, GΓ,S′ ∼= ER∗∗q (see Appendix A.6.2) and by Theorem 14 (ii) GΓ,S′ ∼= ERq.

4.1 Some properties

Let i be a vertex of GΓ,S . Notice that the neighborhood N(i) of i consists of the vertices
j ∈ Γ that satisfy i + j = a for some a ∈ S. This equation has a unique solution for
each a ∈ S, then there are |S| = q+ 1 solutions, which are different from i if and only if
2i 6= a. Since q2 + q + 1 is odd, for each a ∈ S the equation 2i ≡ a mod (q2 + q + 1) has
unique solution. Then, GΓ,S has q2 vertices of degree q + 1, and q + 1 absolute vertices.
Thus, the vertex set of GΓ,S is a disjoint union of the sets

V = {x ∈ V (GΓ,S) : deg(x) = q + 1} and P = {x ∈ V (GΓ,S) : deg(x) = q}.

This is, V (GΓ,S) = V ∪ P where |V | = q2, |P | = q + 1 , and V ∩ P = ∅.

Let V1 be the subset of V comprising all vertices adjacent to at least one absolute vertex
and let V2 = V \ V1. We show the following structural information of the GΓ,S graph.

Remark 9. Turán number ex(q2+q+1, C4) in Theorem 7 (iv) is defined in Appendix A.4.

Theorem 7. The graph GΓ,S has the following properties:

(i) The set P of absolute vertices is independent;

(ii) Each pair of vertices of V (adjacent or not) are connected by a unique path of
length 2, while no edge incident to an absolute vertex is contained in any triangle;
in particular, GΓ,S has diameter 2;

(iii) If q is even, then |V1| = q2 and V2 is empty; moreover, V1 contains a vertex v
adjacent to all absolute vertices and every vertex in V1 \ {v} is adjacent to exactly
one absolute vertex and the subgraph of GΓ,S induced by the set V1 \{v} is regular
of degree q;

(iv) For all prime powers q > 13, ex(q2 + q + 1, C4) = |E(GΓ,S)| = 1
2
q(q + 1)2.
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Proof. (i) Let i and j be two distinct vertices in P . Then, there are a and b in S
(a 6= b) such that 2i = a and 2j = b. If i is adjacent to j, then i + j = c for some
c ∈ S \ {a, b}. Therefore,

a+ b = 2i+ 2j

= 2(i+ j)

= 2c.

Since S is a B2 set in Γ, a = b = c which is not possible.

(ii) Let i and j be two vertices in GΓ,S . Since i − j ∈ Γ \ {0}, and dS(i − j) = 1 (see
Lemma 5 (ii)), there are a and b ∈ S such that i − j = a − b and so, the vertex
z = b − j = a − j is adjacent to i and j. This implies that GΓ,S has diameter
2. Note that the uniqueness of the path is followed because GΓ,S is C4-free (see
Proposition 10). Let i and j be two distinct vertices in GΓ,S such that i + j = a
and 2i = b for some a, b ∈ S with a 6= b. On the other hand, no edge incident to an
absolute vertex is contained in any triangle because if there is some k ∈ Γ \ {i, j}
that is adjacent to both i and j, then i+k = c and j+k = d for some c, d ∈ S\{a, b}
(c 6= d). Thus,

a+ c = (i+ j) + (i+ k)

= (2i) + (j + k)

= b+ d.

Since S is a B2 set in Γ, {a, c} = {b, d} which is not possible.

(iii) By First Multiplier Theorem (Theorem 12) with p = 2, there is a Singer type
set B2, S ′ in Γ such that S ′ = g + S for some g ∈ Γ, and 2S ′ = S ′. Note that
GΓ,S ∼= GΓ,S′ by Lemma 3. Let V ′1 be the subset of V (GΓ,S′) comprising all vertices
adjacent to at least one absolute vertex and let V ′2 = V (GΓ,S′) \ V ′1 . By Lemma 5
(ii), Γ \ {0} = S ′ 	 S ′ = 2S ′ 	 S ′ and therefore, for all h ∈ Γ \ {0} the equation

h = 2x− y (4.2)

with x, y ∈ S ′ always has a unique solution. The above implies that every vertex in
V ′1 \{0} is adjacent to exactly one absolute vertex; indeed, if there is a vertex w 6= 0
adjacent to two distinct absolute vertices u1 and u2, then w + u1 = a, w + u2 = b,
2u1 = c and 2u2 = d for some a, b, c, d ∈ S ′. Thus,

2a− c = 2a− 2u1

= 2w

= 2b− 2u2

= 2b− d
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which contradicts that Equation (4.2) has a unique solution. Note that the vertex
v = 0 is adjacent to all absolute vertices. Moreover, the subgraph of GΓ,S′ induced
by the set V ′1 \ {0} is regular of degree q. On the other hand, |V ′1 | = q2 because
Equation (4.2) has q+1 solutions when h = 0, then there are q2 = q2+q+1−(q+1)
elements in Γ that are adjacent to at least one absolute vertex. Finally, |V1| = |V ′1 |
by the isomorphism of graphs.

(iv) Since |Γ| = q2 + q + 1, |S| = q + 1 and |P | = q + 1, then Proposition 10 implies
that, GΓ,S = (V,E) is C4-free and also

|E| = 1

2
[(q2 + q + 1)(q + 1)− (q + 1)] =

1

2
(q + 1)(q2 + q) =

1

2
q(q + 1)2,

therefore,
1

2
q(q + 1)2 ≤ ex(q2 + q + 1, C4).

On the other hand, Füredi [31] proved that

ex(q2 + q + 1, C4) ≤ 1

2
q(q + 1)2,

for all prime powers q > 13.

Remark 10. Note that in Theorem 7 we can use First Multiplier Theorem with the
prime p = 2 because q is even and a Singer type B2 set is a (q2 +q+1, q+1, 1)-difference
set, see Chapter 2.

4.2 B2 sets and subgraphs of ERq

In [11] the authors proved as their main result that the sum graph of a Bose type B2

set is an induced subgraph of ERq. In the same direction, Peng et al. [36] proved that
the sum graph of the Erdös-Turán type B2 set C = {(x, x2) : x ∈ Fq} is isomorphic to
an induced subgraph of ERq. In Theorem 10, we prove that the sum graph of a Ruzsa
type B2 set is isomorphic to an induced subgraph of ERq.

Theorem 8. Let B be a Bose type B2 set in Γ = Zq2−1. Then the sum graph GΓ,B is
isomorphic to an induced subgraph of the Erdös-Rényi graph ERq.

Proof. See [[11], Thm.1.2].
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Theorem 9. Let C be a Erdös-Turán type B2 set in Γ = Fq × Fq. Then the sum graph
GΓ,C is isomorphic to an induced subgraph of the Erdös-Rényi graph ERq.

Proof. See [[36], Thm.1.5].

To prove Theorem 8 and Theorem 9, the authors add vertices and some edges to the
sum graph of the B2 set to obtain a graph H, that is C4-free, has q2 + q+ 1 vertices, and
has 1

2
q(q + 1)2 edges. Then, they give an isomorphism between H and ERq. It is very

likely that Theorem 10 below can be proved by following this method. However, we give
a direct proof of this result.

Before presenting our main result of this chapter, we show with an example the method
used in Theorem 8.

Example 11. B = {1, 6, 7} is a B2 set of type Bose-Chowla in Γ = Z8. Figure 4.1 shows
the sum graph of the set B.

Figure 4.1: GΓ,B

Figures 4.2, 4.3, 4.4, 4.5 and 4.6 illustrate the method used in Theorem 8, and Fig-
ure 4.7 show ER∗3. The explicit isomorphism between H and ER∗3 can be deduced from
Figures 4.6 and 4.7.

Figure 4.2: A graph H1 is obtained by
adding four new vertices to GΓ,B

Figure 4.3: A graph H2 is obtained by
adding eight new edges to H1
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Figure 4.4: A graph H3 is obtained by
adding the vertex y to H2

Figure 4.5: A graph H4 is obtained by
adding four new edges to H3

Figure 4.6: A graph H is obtained by adding
the edge z1z4 to H4

Figure 4.7: ER∗3

Theorem 10. Let R be a Ruzsa type B2 set in Γ = Zp2−p. Then the sum graph GΓ,R
is isomorphic to an induced subgraph of the Erdös-Rényi graph ERp.

Proof. Let S = {(1, x1, x2) ∈ V (ER∗p) : x1 6= 0}. Note that |S| = p2 − p = |V (GΓ,R)|.
The statement is that the subgraph H of ER∗p induced by S is isomorphic to GΓ,R.
Indeed, let θ be a primitive root modulo p, and consider φ : V (H) −→ V (GΓ,R) be
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defined by
φ(1, x1, x2) = ((logθ x1)p− x2(p− 1))(mod p2 − p),

where logθ is the isomorphism between Z∗p and Zp−1 defined by the discrete logarithm to
base θ.

Let x = (1, x1, x2) and y = (1, y1, y2) be two vertices in H. If φ(x) = φ(y), then

((logθ x1)p− x2(p− 1)) ≡ ((logθ y1)p− y2(p− 1))(mod p2 − p),

so logθ x1 ≡ logθ y1(mod p − 1) and −x2(p − 1) ≡ −y2(p − 1)(mod p), therefore x1 ≡
y1(mod p− 1) and x2 ≡ y2(mod p). Thus, φ is injective.

Now, by Equation (A.12), x and y are adjacent in ER∗p if and only if

0 = y2 − x1y1 + x2.

This is, x is adjacent to y if and only if logθ(x2 + y2) = logθ x1 + logθ y1.

On the other hand,

φ(x) = ((logθ x1)p− x2(p− 1))(mod p2 − p) and
φ(y) = ((logθ y1)p− y2(p− 1))(mod p2 − p)

are adjacent in GΓ,R if and only if

((logθ x1)p− x2(p− 1) + (logθ y1)p− y2(p− 1))(mod p2 − p) ∈ R.

Then, φ(x) is adjacent to φ(y) if and only if

((logθ x1 + logθ y1)p− (x2 + y2)(p− 1))(mod p2 − p) ∈ R.

The latter occurs if and only if logθ(x2 + y2) = logθ x1 + logθ y1.

We have proved that x is adjacent to y in ER∗p if and only if φ(x) is adjacent to φ(y) in
GΓ,R. Thus, φ is an isomorphism from H to GΓ,R and so GΓ,R is isomorphic to an induced
subgraph of ER∗p. Finally, the result follows from the fact that ER∗p is isomorphic to
ERp by Theorem 14 (i).

Example 12. Let p = 5. In this case, S = {(0, 0, 1), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 1, 3),
(1, 1, 4), (1, 2, 0), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 3, 0), (1, 3, 1), (1, 3, 2), (1, 3, 3),
(1, 3, 4), (1, 4, 0), (1, 4, 1), (1, 4, 2), (1, 4, 3), (1, 4, 4)}, and R = {3, 14, 16, 17} is a Ruzsa
type B2 set in Γ = Z20. Figure 4.8 highlights the subgraph H induced by S within the
ER5 graph, Figure 4.9 shows the H graph, and Figure 4.10 shows the GΓ,R graph. The
explicit isomorphism between H and GΓ,R can be deduced from Figures 4.9 and 4.10.
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{0, 0, 1}
{0, 1, 0}

{0, 1, 1}

{0, 1, 2}

{0, 1, 3}

{0, 1, 4}

{1, 0, 0}

{1, 0, 1}

{1, 0, 2}

{1, 0, 3}

{1, 0, 4}

{1, 1, 0}

{1, 1, 1}

{1, 1, 2}
{1, 1, 3} {1, 1, 4}

{1, 2, 0}

{1, 2, 1}

{1, 2, 2}

{1, 2, 3}

{1, 2, 4}

{1, 3, 0}

{1, 3, 1}

{1, 3, 2}

{1, 3, 3}

{1, 3, 4}

{1, 4, 0}

{1, 4, 1}

{1, 4, 2}
{1, 4, 3}{1, 4, 4}

Figure 4.8: H graph within the ER5 graph

{1, 1, 0}

{1, 1, 1}

{1, 1, 2}

{1, 1, 3}

{1, 1, 4}

{1, 2, 0}

{1, 2, 1}

{1, 2, 2}

{1, 2, 3}
{1, 2, 4}

{1, 3, 0}

{1, 3, 1}

{1, 3, 2}

{1, 3, 3}

{1, 3, 4}

{1, 4, 0}

{1, 4, 1}

{1, 4, 2}

{1, 4, 3}
{1, 4, 4}

Figure 4.9: H graph

Figure 4.10: GΓ,R



Chapter 5
Conclusion And Future Work

5.1 Problem 1

In Chapter 2, we investigate the existence of abelian planar difference sets in groups
of order pm. In Theorem 3 we show the non-existence of these sets if p is prime and
m ≥ 2 is an integer. When m = 1 and p = q2 + q + 1 with q prime power, Singer’s
construction guarantees the existence of an abelian planar difference set with parameters
(q2 + q + 1, q + 1, 1). In this regard, we propose the following conjecture.

Conjecture 1. There are no difference sets with parameters (p, k, 1) for all primes
p = t2 + t+ 1 with t not a prime power.

5.2 Problem 2

In Chapter 3, we prove that

1. For every prime power q ≡ 1 mod 3, there exists a (N/3, q, 2, 2(q − 1)) almost
difference set in ZN/3, where N = q2 + q + 1.

2. There exists a (q2 + q + 1, q + 2, 1, (q − 2)(q + 1)) almost difference set in Zq2+q+1,
for all prime power q.

3. There exists a (q2 + q + 1, q + 1− i, 0, 2(iq−
(
i
2

)
)) almost difference in Zq2+q+1, for

all prime powers q, and for all 1 ≤ i < q.

29
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Additionally, we construct 2-adesigns from these almost difference sets. At this point we
consider it interesting to approach the following problems:

1. To study the structure, properties, and applications of the almost difference sets
constructed in Chapter 3.

2. Let Zv be the residue class ring module v and t be a divisor of v. Moreover, let S
be a difference set in Zv, ϕ : Zv → Z v

t
be the homomorphism defined by

ϕ(a) ≡ a mod
(v
t

)
,

and D = ϕ(S). For which values of t do the set D form an almost difference set?

3. Is there some infinite family of almost difference sets with parameters (n, k, 2, t),
and different from Theorem 4? Is there some infinite family of almost difference
sets with parameters (n, k, 1, t)?

5.3 Problem 3

The sets B2 can be generalized in different ways (see [4, 51, 52, 53]). In [53] Ruiz
and Trujillo consider the following generalization: Let g and h denote positive in-
tegers with h ≥ 2. Let Γ be an additive group. The set A = {a1, . . . , ak} ⊆ Γ is a
Bh[g] set on Γ if every element of Γ can be written in at most g ways as sum of h
elements in A, that is, if given x ∈ Γ, the solutions of the equation x = a1 +· · ·+ah,
with a1, . . . , ah ∈ A, are at most g (up to rearrangement of summands) and they
present constructions of Bh[g] sets on the abelian groups (Fh,+), (Zd,+), and
(Zm1 × · · · × Zmd

,+), for d ≥ 2, h ≥ 2, g ≥ 1. In this direction, we propose to
study the sum graph of a Bh[g] set and its properties.

5.4 Problem 4

In Chapter 4 we prove that the sum graph of a Ruzsa type B2 set is isomorphic to an
induced subgraph of ERp. Another interesting problem is to obtain an analogous
result for a B2 set of type Hughes (see Appendix A.3.3).
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Preliminaries

A.1 Finite Field

A field is a set F on which two binary operations, called addition and multiplication,
are defined and which contains two distinguished elements 0 and 1, with 0 6= 1, such
that F is an abelian group with respect to addition having 0 as the identity element,
and the elements of F that are differente of 0 form an abelian group with respect to
multiplication having 1 as the identity element. The element 0 is called the zero element
and 1 is called the identity.

For a prime p, let Fp be the set {0, 1, . . . , p − 1} of integers and let ϕ : Zp → Fp be the
mapping defined by ϕ([a]) = a for a = 0, 1, . . . , p − 1. Then, Fp endowed with the field
structure induced by ϕ, is a finite field (that is, Fp contain only finitely many elements),
called the Galois field of order p. The finite field Fp has zero element 0, identity 1, and
its structure is exactly the structure of Zp. Computing with elements of Fp therefore
means ordinary arithmetic of integers with reduction modulo p.

Theorem 11 (Galois). A Finite Field has q elements, where q is the power of a prime.
The Field of order q is unique up to isomorphisms.

We denote the finite field of order q as Fq, although it is also denoted GF (q) by many. A
finite field has prime characteristic p, this is, the additive order of every nonzero element
b is p; i.e, pb = 0, and p is the least positive integer for which this holds. We will need the
following properties and definitions relating to finite fields. The details of the following
facts can be found in Lidl and Niederreiter [54].

31
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(i) The finite field Fq can be constructed in the following way. Let f ∈ Fq be a
polynomial of degree h, irreducible over Fq. The quotient ring Fq/ < f(x) > has
ph elements and with the multiplication and addition defined as in this quotient
ring, it is the field Fph .

(ii) For every finite field Fq, the multiplicative group F∗q of nonzero elements of Fq is
cyclic. A generator of the cyclic group F∗q is called a primitive element of Fq.

(iii) Fpr is a subfield of Fph if and only if r divides h.

(iv) Fph is a vector space of rank h over Fp.

(v) Let Fq be a subfield of Fr and θ ∈ Fr. If θ satisfies a nontrivial polynomial equation
with coefficients in Fq, that is, if anθ

n+ · · ·+a1θ+a0 = 0 with ai ∈ Fq not all being
0, then θ is said to be algebraic over Fq. An extension Fr of Fq is called algebraic
over Fq (or an algebraic extension of Fq) if every element of Fr is algebraic over Fq.

(vi) If θ ∈ Fr is algebraic over Fq, then the uniquely determined monic polynomial
g ∈ Fq[x] generating the ideal J = {f ∈ Fq[x] : f(θ) = 0} of Fq[x] is called the
minimal polynomial of θ over Fq. By the degree of θ over Fq we mean the degree
of g.

(vi) Let Fq be a finite field and Fr a finite field extension. Then Fr is a simple algebraic
extension of Fq and every primitive element of Fr can serve as a defining element
of Fr over Fq.

A.2 Additive Number Theory

In this chapter we present the notation that we will use throughout this thesis. Moreover,
we present some previous results that we will use in later chapters.

Let Γ be a group written additively. If A and B are subsets of Γ. Then,

� Sum set of A and B

A+B := {a+ b : a ∈ A, b ∈ B}.

� Restricted sum set of A and B

A⊕B := {a+ b : a ∈ A, b ∈ B, a 6= b}.
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� Difference set of A and B

A−B := {a− b : a ∈ A, b ∈ B}.

� Restricted Difference set of A and B

A	B := {a− b : a ∈ A, b ∈ B, a 6= b}.

We use |A| to denote the cardinal of a finite set A and
(
m
n

)
to denote the combinatorial

number that counts the number of subsets of size n taken from a set with m elements,
for m ≥ n.

An additive group is any abelian group written additively.

Definition 1. Let Γ be an additive group and D be a subset of Γ. The difference function
denoted by δD, has domain Γ, codomain the nonnegative integers, and is denifed by:

δD(x) = |{(di, dj) ∈ D ×D : di − dj = x}|,
= |(D + x) ∩D|.

The difference function counts the number of representations of x in the form di − dj
with di, dj ∈ D.

A k-subset D in an additive group Γ of order v is called a (v, k, λ) difference set DS (in
Γ) if δD(x) = λ for every nonzero element of Γ, where δD(x) is the difference function of
Definition 1. The order of the difference set D is defined as n = k− λ. Moreover, if Γ is
abelian and λ = 1 then D is called an abelian planar difference set.

The concept of the multiplier was established by Hall in 1947, while he was studying
difference sets in cyclic groups. In 1955, Bruck generalized the concept to an arbitrary
group.

Definition 2. Let D be a (v, k, λ) difference set in an additive group Γ. An automor-
phism α of Γ is a multiplier of D, if α(D) = D + g for some g ∈ G.

A multiplier α fixes the difference set D, if α(D) = D.

Theorem 12 guarantees under certain conditions, the existence of a multiplier of a dif-
ference set. The first result of this nature is due to Hall (1947). His result and proof
were generalized by Chowla and Ryser (1950). Years later, Lander presented a much
more transparent proof of this result (1980). This was further simplified by Pott (1988),
see [42].
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Theorem 12 (First Multiplier Theorem (FMT)). Let D be a (v, k, λ, n)-difference set
of an abelian group Γ (written multiplicatively), and p be a prime that divides n but
does not divide v. If p > λ, then α : Γ→ Γ defined by α(x) = xp is a multiplier of D.

A.3 B2 set

Let Γ be an additive group, a non-empty subset A ⊂ Γ is a B2 set (or Sidon set) in Γ if

a+ b = c+ d implies that {a, b} = {c, d}

for all a, b, c, d ∈ A.

Lemma 4 is a direct consequence of the definition of a B2 set and we will use it to embed
B2 sets in a cyclic group to the modular integers.

Lemma 4. Let (Γ1,+) and (Γ2, ∗) be abelian groups and ϕ : Γ1 −→ Γ2 be an injective
homomorphism. If A is a B2 set in Γ1, then ϕ(A) is a B2 set in Γ2.

Since a+ b = c+ d implies that a− d = c− b, a subset A ⊂ Γ is a B2 set if all non-zero
differences of elements of A are different. A set having distinct differences between any
two elements is called Ruler Golomb, this is, B2 sets and Golomb rulers have equivalent
definitions, see for example [4]. If Γ is finite, by counting the number of differences
a − b, we can see that |A| <

√
|Γ| + 1/2. The most interesting B2 sets are those with

large cardinality, that is, |A| =
√
|Γ| − δ where δ is a small number. The best-known

constructions of B2 sets with large cardinality are due to Singer [12], Erdös-Turán [55]
(see also Cilleruelo [8], Example 3), Hughes [56], Bose [57], Ganley [58], and Ruzsa [59].
For more on B2 sets, we recommend O’Bryant’s survey [60].

A.3.1 Singer’s Construction.

The proof of Proposition 4, 7, and 9 can be consulted in [61], we present it to make the
section self-contained.

Proposition 4. Let θ be a primitive element of Fq3 , α ∈ Fq3 be an element with cubic
minimal polynomial over Fq, {α + u : u ∈ Fq}∪{1} ⊆ F∗q3/F

∗
q be the set consisting of the

equivalence classes modulo F∗q, and logθ be the isomorphism between F∗q3/F
∗
q and Zq2+q+1

defined by the discrete logarithm to base θ . Then

S := {logθ(α + u) : u ∈ Fq} ∪ {logθ(1)},
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is a B2 set in Zq2+q+1 with q + 1 elements.

Proof. Note that F∗q is a subgroup of the group F∗q3 , and that the quotient group F∗q3/F
∗
q

is cyclic of order (q3 − 1)/(q − 1) = q2 + q + 1. Next, we will show that the equivalence
classes modulo F∗q

{α + u : u ∈ Fq} ∪ {1},

form a B2 set in F∗q3/F
∗
q.

Suppose that

12−r
r∏

k=1

(α + aik) ≡ 12−r
s∏

k=1

(α + ajk) (mod F∗q),

with

1 ≤ i1 ≤ ir ≤ q, 1 ≤ j1 ≤ js ≤ q,

r, s ≤ 2.

Then, for some b ∈ F∗q,
r∏

k=1

(α + aik) ≡ b
s∏

k=1

(α + ajk),

with

1 ≤ i1 ≤ ir ≤ q, 1 ≤ j1 ≤ js ≤ q,

r, s ≤ 2.

and therefore, α is a root of the polynomial of degree less than or equal to 2

P (X) = b
s∏

k=1

(X + ajk)−
r∏

k=1

(X + aik) ∈ Fq[X],

which is only possible if P (X) = 0. Thus, r = s, b = 1 and

{aik} = {ajk}.

Now, by Lemma 4
S := {logθ(α + u) : u ∈ Fq} ∪ {logθ(1)}

is a B2 set in Zq2+q+1.

Finally, |S| = q + 1, because |{α + u : u ∈ Fq} ∪ {1}| = q + 1 and the discrete logarithm
is injective.
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Example 13. Let q = 5. If θ is a root of the primitive polynomial x3 + 3x + 3 over F5

and α = θ. Then, the equivalence classes modulo F∗5

θ + 0 = {θ, 2θ, 3θ, 4θ};
θ + 1 = {θ + 1, 2θ + 2, 3θ + 3, 4θ + 4};
θ + 2 = {3θ + 1, θ + 2, 4θ + 3, 2θ + 4};
θ + 3 = {2θ + 1, 4θ + 2, θ + 3, 3θ + 4};
θ + 4 = {4θ + 1, 3θ + 2, 2θ + 3, θ + 4};

1 = {1, 2, 3, 4}.

form a B2 set in F∗125/F∗5.

Since

θ1 = θ + 0, θ3 = 2θ + 2, θ10 = 2θ + 3, θ14 = 4θ + 3, θ26 = 2θ + 1, θ0 = 1,

and logθ : F∗125/F∗5 −→ Z31 is the isomorphism defined by the discrete logarithm to base
θ, then by Lemma 4,

S = {logθ(θ + u) : u ∈ F5} ∪ {logθ(1)}
= {1, 3, 10, 14, 26} ∪ {0}

is a B2 set in Z31.

Remark 11. A reformulation of Singer’s construction that we will use in some situations
is as follows: Let θ be a primitive element of Fq3 , α ∈ Fq3 be an element with cubic
minimal polynomial over Fq, logθ : F∗q3 −→ Zq3−1 be the isomorphism defined by the
discrete logarithm to base θ, and A := {logθ(α + u) : u ∈ Fq}. The set

S = A (mod q2 + q + 1) ∪ {0},

is a Singer type B2 set in Zq2+q+1, with q + 1 elements.

Lemma 5. If S is a Singer type B2 set, then

(i) 0 ∈ S,

(ii) S 	 S=Zq2+q+1 \ {0},

Proof.
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1. It follows from the construction.

2. Since S 	 S ⊆ Zq2+q+1, 0 /∈ S 	 S and |S 	 S| = (q + 1)q = q2 + q (because S is a
B2 set), then

S 	 S = Zq2+q+1 \ {0}.

Example 14. Let q = 7. If θ is a root of the primitive polynomial x3 + 4x2 + 4x + 4
over F7 and α = θ. Then

B = {θ + u : u ∈ Fq} = {θ, θ + 1, θ + 2, θ + 3, θ + 4, θ + 5, θ + 6},
= {θ1, θ274, θ199, θ225, θ329, θ63, θ78}.

Taking the discrete logarithm of B in base θ yields the set

A = logθ B = {logθ(θ + u) : u ∈ Fq},
= {1, 274, 199, 225, 329, 63, 78}.

Reducing the elements of A modulo 57 gives the set

{1, 46, 28, 54, 44, 6, 21}.

Adding 0 to the above set and ordering its elements yields the Singer type B2 set in Z57

S = {0, 1, 6, 21, 28, 44, 46, 54}.

Note that 0 ∈ S and S 	 S = Z57 \ {0}.

A.3.2 Erdös-Turán’s Construction

The proof of Proposition 5, 6, and 8 can be consulted in [62], we present it to make the
section self-contained.

Proposition 5. If q is odd, then

C := {(a, a2) : a ∈ Fq}

is a B2 set in (Fq,+)× (Fq,+) with q elements.
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Proof. It is clear that |C| = q. We will prove that C is a B2 set (Fq,+)× (Fq,+).

Suppose that
(a, a2) + (b, b2) = (c, c2) + (d, d2)

with {a, a2}, {b, b2}, {c, c2}, {d, d2} ∈ C. Then

a+ b = c+ d, (A.1)

a2 + b2 = c2 + d2. (A.2)

By (A.1),
a2 + 2ab+ b2 = (a+ b)2 = (c+ d)2 = c2 + 2cd+ d2, (A.3)

and by (A.2), (A.3), and the fact that Fq has characteristic q 6= 2,

ab = cd. (A.4)

Now, (A.1) and (A.4) imply that the polynomial

P (X) = X2 − (a+ b)X + ab ∈ Fq[x]

is factored completely as

P (X) = (X − a)(X − b) = (X − c)(X − d).

Since Fq[x] is a unique factorization domain, and the roots of a polynomial are unique,

{a, b} = {c, d},

and therefore,
{(a, a2), (b, b2)} = {(c, c2), (d, d2)}.

Lemma 6. C 	 C = (Fq × Fq)\{(0, a) : a ∈ Fq}.

Proof. Suppose that C 	 C = (Fq × Fq)\A and consider the set B = {(0, z) : z ∈ Fq}.
Then B ⊆ A because of (C 	 C) ∩B = ∅. Now, |C 	 C| = q2 − q = q2 − |A| and |B| = q
implies that A = B.

Example 15. Let q = 5. Then,

C = {(0, 0), (1, 1), (2, 4), (3, 4), (4, 1)}

is a B2 set in (F5,+)× (F5,+) with 5 elements. Moreover,

C 	 C = (F5 × F5)\{(0, a) : a ∈ F5}.
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The proof of Proposition 6 and 8 is similar to that of Proposition 5, for this reason we
omit their proof.

A.3.3 Hughes’s Construction.

Proposition 6. If q is odd and α is an element in F∗q, then

Iα = {(a− α, a) : a ∈ F∗q, a 6= α}

is a B2 set in F∗q × F∗q with q − 2 elements.

Lemma 7. If A1 = {(1, z) : z ∈ F∗q}, A2 = {(z, 1) : z ∈ F∗q} and A3 = {(z, z) : z ∈ F∗q},
then

Iα 	 Iα = F∗q × F∗q\(A1 ∪ A2 ∪ A3).

Proof. Suppose that Iα 	 Iα = F∗q × F∗q\A. Then (1, z), (z, 1) ∈ A for all z ∈ Fq∗, since

Iα 	 Iα = {((a− α)(b− α)−1, ab−1) : a, b, α ∈ F∗q, a 6= b, b 6= α and α 6= a}.

Now suppose that there exists z ∈ F∗q such that (z, z) ∈ Iα 	 Iα. Then, z = (a− α)(b−
α)−1 = ab−1 for some a, b ∈ F∗q. Hence,

a− α = ab−1(b− α)

= a− ab−1α

and so (ab−1 − 1)α = 0, which is not possible. Therefore, A1 ∪ A2 ∪ A3 ⊆ A. Finally,

|Iα 	 Iα| = 2

(
q − 2

2

)
= q2 − 5q + 6 = q2 − 2q + 1− |A|

and |A1 ∪ A2 ∪ A3| = 3q − 5 implies that A1 ∪ A2 ∪ A3 = A.

Example 16. Let q = 7 and α = 1. Then

I1 = {(2, 1), (3, 2), (4, 3), (5, 4), (6, 5), (7, 6)}

is a B2 set in F∗7 × F∗7 with 5 elements. Moreover,

I1 	 I1 = F∗7 × F∗7\(A1 ∪ A2 ∪ A3).

where

A1 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)},
A2 = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)},
A3 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.
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A.3.4 Bose’s Construction.

Proposition 7. If α ∈ Fq2 is an algebraic element of degree 2 over Fq, θ is a primitive
element of Fq2 , and logθ is the isomorphism between F∗q2 and Zq2−1 defined by the discrete
logarithm to base θ, then

B := logθ(α + Fq) = {logθ(α + a) : a ∈ Fq}

is a B2 set in (Zq2−1,+) with q elements.

Proof. We will prove that the set

α + Fq = {α + a : a ∈ Fq},

is a B2 set in the group (F∗q2 , ·).

Suppose the opposite, this is,

(α + a1)(α + a2) = (α + a3)(α + a4),

where {a1, a2} 6= {a3, a4}.

Then, α is a root of the non-zero polynomial of degree less than 2,

P (X) = (X − a1)(X − a2)− (X − a3)(X − a4) ∈ Fq[X],

which is not possible because α has degree 2 over Fq.

Now, by Lemma 4

B := logθ(α + Fq) = {logθ(α + a) : a ∈ Fq}

is a B2 set in (Zq2−1,+).

Finally, |B| = q, because |A(α)| = |α+Fq| = q and the discrete logarithm is injective.

Lemma 8. If B is a Bose type B2 set in Zq2−1 and Mq+1 := {x ∈ Zq2−1 : x ≡ 0
(mod q + 1)}, then

(i) B ∩Mq+1 = ∅.

(ii) (B 	 B) ∩Mq+1 = ∅.
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(iii) B (mod q + 1) = {a (mod q + 1) : a ∈ B} = [1, q].

(iv) B 	 B = Zq2−1\Mq+1.

Proof.

(i) Suppose that B∩Mq+1 6= ∅, then there are a ∈ B and t ∈ Z such that a = t(q+ 1),
so θa = θt(q+1) = c for some c ∈ F∗q, since F∗q =

〈
θ(q+1)

〉
. On the other hand, as

a ∈ B, there is k ∈ Fq such that logθ(α + k) = a, therefore, α + k = θa = c and
thus α ∈ Fq, which is a contradiction.

(ii) Assume that (B 	 B) ∩Mq+1 6= ∅, then there are a, b ∈ B, a 6= b and t ∈ Z such
that a − b = t(q + 1). Then θa−b = θt(q+1) and as F∗q = 〈θq+1〉 then θa−b = c for
some c ∈ F∗q. On the other hand, there are k1 and k2 in Fq with k1 6= k2 such that
a = logθ(α + k1) and b = logθ(α + k2), because a, b ∈ B. The above implies that
θa = α+ k1 and θb = α+ k2; therefore c = θa−b = α+k1

α+k2
. Since k1 6= k2, c 6= 1, then

α+ k1 = c(α+ k2) and so (1− c)α = ck2 − k1. Thus, α = (ck2 − k1)(1− c)−1 ∈ F∗q
which is a contradiction.

(iii) It follows from (i) and (ii).

(iv) Note that |B 	 B| = 2
(
q
2

)
= q(q − 1) = q2 − q, because B is a B2 set and |B| = q.

From the above and the fact that (B 	 B) ∩Mq+1 = ∅, then |Zq2−1| − |Mq+1| =
q2 − 1− (q − 1) = q2 − q = |B 	 B|.

Example 17. Let q = 7. If θ is a root of the primitive polynomial x2 + x + 3 over F7

and α = θ. Then, the set

θ + F7 = {θ + a : a ∈ F7}
= {θ + 0, θ + 1, θ + 2, θ + 3, θ + 4, θ + 5, θ + 6}
= {θ1, θ31, θ11, θ26, θ12, θ14, θ5}.

is a B2 set in the group (F∗49, ·).

Now, since logθ : F∗49 −→ Z48 is the isomorphism defined by the discrete logarithm to
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base θ, then by Lemma 4

B := logθ(θ + F7)

= {logθ(θ + a) : a ∈ F7}
= {1, 31, 11, 26, 12, 14, 5}.

is a B2 set in (Z48,+).

Example 18. Let B = {1, 5, 11, 12, 14, 26, 31} be the Bose type B2 set in Z48 constructed
in Example 17. It can be verified that

� |B| = 7,

� M8 = {0, 8, 16, 24, 32, 40},

� B ∩M8 = ∅,

� B 	 B = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23,
25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47},

� (B 	 B) ∩M8 = ∅,

� B(mod8) = {1, 2, 3, 4, 5, 6, 7},

� B 	 B = Z48 \M8.

A.3.5 Ganley’s Construction.

Proposition 8. If q is odd, then

I = {(a, a) : a ∈ F∗q}

is a B2 set in Fq × F∗q with q − 1 elements.

Lemma 9. If A1 = {(0, z) : z ∈ F∗q} and A2 = {(z, 1) : z ∈ F∗q}, then

I 	 I = Fq × F∗q\(A1 ∪ A2).

Proof. Suppose that I 	 I = Fq × F∗q\A. Then,

I 	 I = {(a− b, ab−1) : a, b ∈ F∗q, a 6= b}
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implies that A1 ⊂ A and A2 ⊂ A. To conclude the proof, note that |A| = 2(q − 1) =
|A1|+ |A2| is a consequence of

|I 	 I| = 2

(
q − 1

2

)
= q2 − 3q + 2 = q(q − 1)− |A|.

Therefore, A = A1 ∪ A2.

Example 19. Let q = 5. Then

I = {(1, 1), (2, 2), (3, 3), (4, 4)}

is a B2 set in F7 × F∗7 with 6 elements. Moreover,

I 	 I = F7 × F∗7\(A1 ∪ A2),

where A1 = {(0, 1), (0, 2), (0, 3), (0, 4)} and A2 = {(1, 1), (2, 1), (3, 1), (4, 1)}.

A.3.6 Ruzsa’s Construction.

Proposition 9. If θ is a primitive root modulo a prime p, this is, 〈θ〉 = Z∗p, and
logθ : Z∗p −→ Zp−1 is the isomorphism defined by the discrete logarithm to base θ, and
Z∗p is considering as a subset of Zp2−p, then

R := {((logθ a)p− a(p− 1))(mod p2 − p) : a ∈ Z∗p},

is a B2 set in Zp2−p with p− 1 elements.

Proof. Suppose that in Zp2−p

((logθ a)p−a(p−1))+((logθ b)p−b(p−1)) ≡ ((logθ c)p−c(p−1))+((logθ d)p−d(p−1)),

with a, b, c, d ∈ Z∗p. Then,

(logθ a+ logθ b)p ≡ (logθ c+ logθ d)p (mod p− 1); (A.5)

(−a− b)(p− 1) ≡ (−c− d)(p− 1) (mod p). (A.6)

Since p and p− 1 are relatively prime, (A.5) implies that

ab ≡ cd (mod p), (A.7)

and (A.6) implies that
a+ b ≡ c+ d (mod p). (A.8)
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Now, (A.7) and (A.8) imply that the polynomial

P (X) = X2 − (a+ b)X + ab ∈ Zp[x]

is factored completely as

P (X) = (X − a)(X − b) = (X − c)(X − d).

Since Zp[x] is a unique factorization domain, and the roots of a polynomial are unique,

{a, b} = {c, d},

and therefore,

{((logθ a)p−a(p−1)), ((logθ b)p−b(p−1))} = {((logθ c)p−c(p−1)), ((logθ d)p−d(p−1))}.

The following lemma is an immediate consequence of the definition of R, see [1] and
references therein.

Lemma 10. If R is a Ruzsa type B2 set in Zp2−p and Mi := {x ∈ Zp2−p : x ≡ 0 mod i}
with i ∈ {p, p− 1}, then

R	R := {a− a′ : a, a′ ∈ R, a 6= a′} = Zp2−p\(Mp ∪Mp−1).

Proof.

(i). Note that |Mp| = p− 1, |Mp−1| = p and Mp ∩Mp−1 = {0}. Then,

|Mp ∪Mp−1| = |Mp|+ |Mp−1| − |Mp ∩Mp−1| = 2(p− 1).

On the other hand, (R	R)∩ (Mp∪Mp−1) = ∅ since (R	R)∩Mi = ∅. Therefore,

|R 	R| = 2

(
p− 1

2

)
= p2 − 3p+ 2 = p2 − p− 2(p− 1) = |Zp2−p\(Mp ∪Mp−1)|

completes the proof.
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Example 20. Let θ = 7. Then, the elements of Z∗7 are represented as:

70 = 1 71 = 7 72 = 4 73 = 6 74 = 2 75 = 3

Since logθ : Z∗7 −→ Z6 is the isomorphism defined by the discrete logarithm to base θ,
then

((logθ 1)7− 1(6))(mod 42) = 36 ((logθ 2)7− 2(6))(mod 42) = 16

((logθ 3)7− 3(6))(mod 42) = 17 ((logθ 4)7− 4(6))(mod 42) = 32

((logθ 5)7− 5(6))(mod 42) = 19 ((logθ 6)7− 6(6))(mod 42) = 27.

Thus,
R = {16, 17, 19, 27, 32, 36}

is a B2 set in Z42, with 6 elements. Moreover,

R	R = Z42 \ (M7 ∪M6),

where M7 = {0, 7, 14, 21, 28, 35} and M6 = {0, 6, 12, 18, 24, 30, 36}.

A.4 Graph Theory

An undirected graph G is an ordered pair of disjoint sets (V,E) such that E is a subset
of the set V × V of unordered pairs of V . The elements of V are called vertices and the
elements of E edges. The graphs studied in this thesis do not have edges with identical
ends (loops), nor two different edges joining the same pair of vertices (multiple edges).
To refer to a graph we will usually write G = (V,E). The number of vertices of G is
called the order of G and the number of edges in G is called the size of G. If {u, v}
is an edge, then u and v are adjacent or neighboring vertices in the graph. Moreover,
{u, v} is said incident with u and v. We will use the notation uv to indicate that u
and v are adjacent. The neighborhood of a vertex v, denoted by N(v), is the set of all
neighbors of v. The degree of a vertex v, denoted deg(v), is equal to the cardinality of the
neighborhood of v. A graph is called k-regular if all its vertices have degree equal to k,
where k is some non-negative integer. A graph H = (V ′, E ′) is a subgraph of the graph
G = (V,E), if V ′ ⊆ V and E ′ ⊆ E. A walk of length n is a list of vertices (v0, v1, . . . , vn)
such that vi ∼ vi+1 for all integers i, 0 ≤ i ≤ n− 1. A path is a walk in which all vertices
are distinct. An n-cycle is a walk in which all vertices are distinct with the exception of
v0 = vn. Frequently, 3-cycles are referred to as triangles, 4-cycles as quadrilaterals, etc.
We will also denote an n-cycle by Cn. The length of a path (v0, v1, . . . , vn) or a cycle
(v0, v1, . . . , vn−1, v0) is defined to be n− 1.
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Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is a bijection (a
one-to-one, onto map) ϕ from V1 to V2 such that

uv ∈ E1 ⇐⇒ ϕ(u)ϕ(v) ∈ E2.

In this case, we call ϕ an isomorphism from G1 to G2 and we write G1
∼= G2.

The Turán number of a graph G, denoted by ex(n,G), is the maximum number of edges
in a graph on n vertices not containing G as a subgraph. If a graph G does not contain
another graph F as a subgraph, we say that G is F -free. A graph G is F -saturated if G
is F -free and adding any new edge to G creates a copy of F . The graph G in Figure A.1
is C3-saturated, since it is C3-free and a copy of C3 is created by adding the edge kj or
il to it. However, the graph H in Figure A.1 is C3-free but is not C3-saturated, since we
can add to this the edge ij and no copy of C3 is created.

Figure A.1: The graphs G and H.

A.5 Sum graph of a finite B2 set

Let A be a finite B2 set of an additive group Γ. An elemenet i in Γ is called absolute
vertice if i+ i ∈ A. The sum graph GΓ,A = (V,E) is formed by V = Γ and {i, j} ∈ E if
and only if i+ j ∈ A with i 6= j.

Proposition 10. The sum graph GΓ,A = (V,E) is a C4-free graph and

2|E| = |Γ||A| − |P |,

where P := {x ∈ Γ : x+ x ∈ A}.

Proof. If (x0, x1, x2, x3) is a C4 in GΓ,A, then

x0 + x1 = a1, x1 + x2 = a2, x2 + x3 = a3 and x3 + x0 = a4,
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where a1, a2, a3, a4 ∈ A. Hence,

(x0 + x1) + (x2 + x3) = a1 + a3 = a2 + a4 = (x1 + x2) + (x3 + x0),

and thus {a1, a3} = {a2, a4} because A is a B2 set in Γ. If a1 = a2 or a1 = a4 then
x0 = x2 or x1 = x3, respectively, which is a contradiction.

On the other hand, if x is a vertex in GΓ,A, then deg(x)=|A| − 1 if x ∈ P , or deg(x)=|A|
in other case. Therefore,

2|E| =
∑
x∈P

deg(x) +
∑
x/∈P

deg(x) = (|A| − 1)|P |+ |A|(|Γ| − |P |) = |A||Γ| − |P |.

A.6 The Erdös-Rényi Orthogonal Polarity Graph:

Geometric and Algebraic Interpretation

In this section we present the Erdös-Rényi orthogonal polarity graph and describe its
structure from a geometric and algebraic approach.

First of all, we present some geometric concepts since the geometric definition of the
Erdös-Rényi orthogonal polarity graph is closely related to them. The first definition is
a detailed description of the projective plane PG(2, q) and the second is about polarities
of projective planes; we take both definitions from Williford’s doctoral thesis [63].

Definition 3. The projective plane PG(2, q) = (X,L) is formed by taking a vector space
W of dimension 3 over the finite field Fq, q a prime power, and taking X to be the set of
1-dimensional subspaces of W . As each such subspace contains a unique vector whose
leftmost non-zero entry is 1, we will use these vectors to represent these 1-dimensional
subspaces. These vectors are called left-normalized vectors. Elements of L are maximal
sets of one dimensional subspaces which lie together in a two dimensional subspace. As
any two dimensional subspace has a one dimensional orthogonal complement, we may
also represent elements of L with left normalized vectors, though we will use square
brackets instead of parentheses to distinguish them. For x = (x0, x1, x2) ∈ X,y =
[y0, y1, y2] ∈ L we then have that x ∈ y if and only if x0y0 + x1y1 + x2y2 = 0.
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Example 21. PG(2, 2) = (X,L)

where X = {P1, P2, P3, P4, P5, P6, P7} and L = {L1, L2, L3, L4, L5, L6, L7} with

P1 = {(0, 0, 0), (0, 0, 1)} L1 = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}
P2 = {(0, 0, 0), (0, 1, 0)} L2 = {(0, 0, 0), (1, 0, 1), (0, 0, 1), (1, 0, 0)}
P3 = {(0, 0, 0), (0, 1, 1)} L3 = {(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1)}
P4 = {(0, 0, 0), (1, 0, 1)} L4 = {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)}
P5 = {(0, 0, 0), (1, 1, 0)} L5 = {(0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0)}
P6 = {(0, 0, 0), (1, 1, 1)} L6 = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
P7 = {(0, 0, 0), (1, 0, 0)} L7 = {(0, 0, 0), (0, 1, 1), (1, 1, 1), (1, 0, 0)}

thus, the vectors representing the points and lines are

P1 : (0, 0, 1) L1 : [1, 0, 0]

P2 : (0, 1, 0) L2 : [0, 1, 0]

P3 : (0, 1, 1) L3 : [1, 1, 0]

P4 : (1, 0, 1) L4 : [1, 0, 1]

P5 : (1, 1, 0) L5 : [0, 0, 1]

P6 : (1, 1, 1) L6 : [1, 1, 1]

P7 : (1, 0, 0) L7 : [0, 1, 1].

The graphical representation of PG(2, 2) is known as the Fano plane, see Figure A.2.
It is the finite projective plane with the smallest possible number of points and lines: 7
points and 7 lines, with 3 points on every line and 3 lines through every point.

Figure A.2: Fano plane
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Definition 4. A polarity of a projective plane is a bijective map φ : X ∪ L −→ X ∪ L
that maps points to lines and lines to points with the property that p ∈ l if and only if
φ(l) ∈ φ(p), and φ2 is the identity map on X ∪L. A point x such that x ∈ φ(x) is called
an absolute point of the polarity φ.

The polarity graph of a projective plane π = (X,L) with respect to a polarity φ is the
graph G = (V,E) with vertex set V = X and edge set given by

E = {{x,y} ∈ V × V : x ∈ φ(y)}.

A trivial polarity of PG(2, q) is given by ρ : PG(2, q) −→ PG(2, q) such that ρ :
(x0, x1, x2) 7→ [x0, x1, x2], ρ : [x0, x1, x2] 7→ (x0, x1, x2). When π = PG(2, q) and the
polarity used is ρ, the resulting polarity graph is known as the Erdös-Rényi orthogonal
polarity graph. This graph was introduced in this form by Erdös-Rényi in 1962 [64] to give
constructive examples of graphs with small maximum degree, relatively few edges and
diameter 2. Example 2 illustrates the Erdös-Rényi orthogonal polarity graph obtained
from PG(2, 2) (see Example 21) and the polarity ρ defined above.

Example 22.

Bondy in [65] cites two earlier references to this type of graph, the first is a paper of
Artzy [66] who called it a reduced Levi graph; the second is a paper of Kempe [67] where
the notion of polarity graph appears.

This graph can also be defined without direct reference to polarities. This is more
common in graph theory literature, so we include this definition as well.

Definition 5. The Erdös-Rényi orthogonal polarity graph, denoted ERq, is the graph
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whose vertices are the left normalized vectors of PG(2, q), and two distinct vertices
(x0, x1, x2) and (y0, y1, y2) are adjacent if and only if x0y0 + x1y1 + x2y2 = 0.

Example 23. Let PG(2, 3) = {P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13} where

P1 = (0, 0, 1) P6 = (1, 0, 1) P11 = (1, 2, 0)

P2 = (0, 1, 0) P7 = (1, 0, 2) P12 = (1, 2, 1)

P3 = (0, 1, 1) P8 = (1, 1, 0) P13 = (1, 2, 2)

P4 = (0, 1, 2) P9 = (1, 1, 1)

P5 = (1, 0, 0) P10 = (1, 1, 2)

The ER3 graph is illustrated in Figure A.3.

Figure A.3: ER3

Remark 12. ERq is a simple graph. A point x = (x0, x1, x2) ∈ PG(2, q) that satisfies
the equation x2

0 + x2
1 + x2

2 = 0 is called an absolute vertex of the graph. In Example 23
the point P10 = (1, 1, 2) is an absolute vertex of ER3.

In 1966, Erdös, Rényi and Sós [30] and independently Brown [29] considered ERq in
connection with the Turán number ex(q2 + q+ 1, C4) of the four cycle C4 which consists
in determining the largest number of edges in a graph on q2 + q + 1 vértices without
cycles of length four. They independently proved that ERq has q2 + q + 1 vertices, has
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1
2
q(q + 1)2 edges, and is C4-free. Then, for any prime power q,

1

2
q(q + 1)2 ≤ ex(q2 + q + 1, C4).

To make this chapter self-contained, we reproduce the proof here. The number of dif-
ferent points of PG(2, q) is q2 + q + 1 because for each λ ∈ F∗q, the point (λa, λb, λc) ∈
PG(2, q) represents the same point as (a, b, c). Therefore, v(ERq) = q2+q+1. A straight
line in PG(2, q) is the set of all points (x, y, z) which satisfy the equation ax+by+cz = 0;
let us remember that this line is denoted by [a, b, c]. The point (a, b, c) and the line [a, b, c]
are clearly conjugate elements with respect to the conic x2 +y2 +z2 = 0. Then, there are
q + 1 points on each line, any two different lines have exactly one point in common and
through any two given points there is exactly one straight line. The polarity ρ defined
above maps the point A = (a, b, c) into the line ρ(A) = [a, b, c] and conversely. This
mapping has evidently the properties: if the point B lies on the line ρ(A) then the point
A lies on the line ρ(B); if C is the point of intersection of the lines ρ(A) and ρ(B) then
ρ(C) is identical with the line passing through the points A and B; A is on ρ(A) if and
only if a2 + b2 + c2 = 0, i.e. if A lies on the conic x2 + y2 + z2 = 0. Clearly a vertex A in
ERq has the degree q or q + 1 according to whether A is on the conic x2 + y2 + z2 = 0
or not. Thus,

1

2
(n3/2 − n) ≤ 1

2
q(q2 + q + 1) ≤ e(ERq)

and

e(ERq) ≤
1

2
(q + 1)(q2 + q + 1) ≤ 1

2
(n3/2 + n),

where n = q2 + q + 1.

Finally the diameter of ERq is equal to 2. As a matter of fact any two points A and B
can be joined by the path ABC where C is the point of intersection of the lines ρ(A)
and ρ(B). Moreover, A and B can be joined by a single edge if A lies on ρ(B). But the
point C such that the edges AC and BC both belong to ERq is in any case unique; thus
ERq does not contain any cycle of length 4.

A.6.1 Some properties of ERq

Let x = (x0, x1, x2) be a vertex of ERq. Notice that the neighborhood N(x) of x consists
of the vertices y = (y1, y2, y3) that satisfy the linear equation

x0y0 + x1y1 + x2y2 = 0.

This equation has q2 − 1 non-zero solutions that represent (q2 − 1)/(q − 1) = q + 1
distinct projective points, which are different from x if and only if x2

0 + x2
1 + x2

2 6= 0.
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Then, ERq has q2 vertices of degree q + 1, and q + 1 absolute vertices, lying on the
quadric x2

0 + x2
1 + x2

2 = 0. Thus, the vertex set of ERq is a disjoint union of the sets

V = {x ∈ V (ERq) : deg(x) = q + 1} and W = {x ∈ V (ERq) : deg(x) = q}.

This is, V (ERq) = V ∪W where |V | = q2, |W | = q + 1, and V ∩W = ∅.

Let V1 be the subset of V comprising all vertices adjacent to at least one absolute vertex
and let V2 = V \ V1. Bachratý and Širáň presented in [68] the following structural
information of the ERq graph.

Theorem 13. For every prime power q, the graph ERq has the following properties:

(i) The set W of absolute vertices is independent;

(ii) Each pair of vertices of V (adjacent or not) are connected by a unique path of
length 2, while no edge incident to an absolute vertex is contained in any triangle;
in particular, ERq has diameter 2;

(iii) If q is odd, then every vertex of V1 is adjacent to exactly two absolute vertices, and
|V1| = q(q + 1)/2, |V2| = q(q − 1)/2;

(iv) If q is odd, then the subgraphs of ERq induced by V1 and V2 are regular of degree
(q − 1)/2 and (q + 1)/2, respectively;

(v) If q is even, then |V1| = q2 and V2 is empty; moreover, V1 contains a vertex v
adjacent to all absolute vertices and every vertex in V1 \ {v} is adjacent to exactly
one absolute vertex and the subgraph of ERq induced by the set V1 \{v} is regular
of degree q.

Proof. (i) Let a = (a1, a2, a3) and b = (b1, b2, b3) be two distinct vertices of W . Then

a · a = a2
1 + a2

2 + a2
3 = 0,

b · b = b2
1 + b2

2 + b2
3 = 0.

If a is adjacent to b then

a1b1 + a2b2 + a3b3 = 0.

The above implies that a and b are solutions of the linear system

a · x = a1x1 + a2x2 + a3x3 = 0,

b · x = b1x1 + b2x2 + b3x3 = 0.
(A.9)
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Since the vectors a and b are linearly independent over Fq, the solution space of
the linear system (A.9) has dimension one. Therefore, a=b, which is not possi-
ble. It follows that no pair of absolute vertices can be adjacent, this is, W is an
independent set.

(ii) Let a = (a1, a2, a3) and b = (b1, b2, b3) be two distinct vertices of ERq (adjacent
or not). If c = (c1, c2, c3) and d = (d1, d2, d3) are two distinct vertices of ERq

adjacent to a and b, then

a · c = a1c1 + a2c2 + a3c3 = 0,

b · c = b1c1 + b2c2 + b3c3 = 0,

a · d = a1d1 + a2d2 + a3d3 = 0,

b · d = b1d1 + b2d2 + b3d3 = 0.

Since the solution space of the linear system (A.9) has dimension one, c = d, which
is a contradiction. Thus, every pair of distinct vertices are connected by exactly
one path of length two, this implies that ERq has diameter 2.

On the other hand, let a = (a1, a2, a3) and b = (b1, b2, b3) be two distinct adjacent
vertices of ERq. If a is an absolute vertex and the edge {a,b} is contained in a
triangle, then there is a vertex c = (c1, c2, c3) of ERq different from a and b such
that {a, c} and {b, c} are edges of ERq. Then,

a · a = a1a1 + a2a2 + a3a3 = 0,

b · a = b1a1 + b2a2 + b3a3 = 0,
(A.10)

a · c = a1c1 + a2c2 + a3c3 = 0,

b · c = c1c1 + c2c2 + b3c3 = 0.
(A.11)

By (A.10), (A.11) and the fact that the solution space of the linear system (A.9)
has dimension one, c = a, which is not possible.

(iii) Let q be odd. Invoking Chapters 7 and 8 of [69], the set W forms a conic and hence
an oval. By Corollary 8.2 of [69] applied to the oval W , every vertex of V1 and V2

corresponds to a line of PG(2, q) containing exactly two points of W (a bisecant)
or no point of W (an external line), respectively, and |V1| = q(q + 1)/2, |V2| =
q(q − 1)/2.

(iv) Table 8.1 of [69] shows that a bisecant contains (q − 1)/2 points each lying on
exactly two lines determined by projective coordinates corresponding to a vertex
in W , while an external line contains (q+ 1)/2 points each of which lies on no line
determined by projective coordinates corresponding to a vertex in W .
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Figure A.4: The four absolute vertices col-
ored in blue form an independent set

Figure A.5: The edges colored in red show
the only path of length 2 between the two
non-adjacent vertices P1 and P4 colored in
yellow

Figure A.6: The edges colored in red show
the only path of length 2 between the two
adjacent vertices P1 and P2 colored in yellow

Figure A.7: No red edge incident to an blue
absolute vertex is contained in any triangle
in ER3

Example 24. According to Example 3, W = {P9, P10, P12, P13} where P9 = (1, 1, 1),
P10 = (1, 1, 2), P12 = (1, 2, 1) and P13 = (1, 2, 2). Moreover, V = {P1, P2, . . . , P11},
V1 = {P3, P4, . . . , P11} and V2 = {P1, P2, P5}. By Theorem 13 (i), W is an independent
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set in ER3, see Figure A.4. Figure A.5, A.6 and A.7 illustrate Theorem 13 (ii) for some
vertices of ER3.

Figure A.8: The vertices de V1 are colored in yellow and the absolute vertices are colored
in blue. Every vertex of V1 is adjacent to exactly two absolute vertices

Figure A.9: Subgraph induced by V1 Figure A.10: Subgraph induced by V2
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By (iii) of Theorem 13, |V1| = q(q + 1)/2 = 3(4)/2 = 6, |V2| = q(q − 1)/2 = 3(2)/2,
and every vertex of V1 (yellow vertices) is adjacent to exactly two absolute vertices
(blue vertices), see Figure A.8. For example, P3 is adjacent to P10 and P12. Finally, by
(iv) of Theorem 13, the subgraphs of ER3 induced by V1 and V2 are regular of degree
(q − 1)/2 = (3 − 1)/2 = 1 and (q + 1)/2 = (3 + 1)/2 = 2, respectively, see Figures A.9
and A.10.

To illustrate Theorem 13 (v), let F4 = {0, 1, θ, θ2} with θ2 = θ + 1 and PG(2, 4) =
{P1, P2, . . . , P21} where

P1 = (1, 0, 1) P7 = (0, 1, θ) P12 = (0, 1, 1) P17 = (1, θ, 1)

P2 = (1, θ2, 1) P8 = (1, θ, θ2) P13 = (0, 0, 1) P18 = (1, 0, θ2)

P3 = (1, 1, 0) P9 = (1, θ2, θ) P14 = (1, θ, 0) P19 = (1, 0, θ)

P4 = (1, θ2, θ2) P10 = (1, θ2, 0), P15 = (1, 1, 1) P20 = (1, 1, θ2)

P5 = (0, 1, 0) P11 = (1, 0, 0) P16 = (0, 1, θ2) P21 = (1, 1, θ).

P6 = (1, θ, θ)

Figure A.11: The vertex P15 colored in yel-
low is adjacent to all absolute vertices col-
ored in blue

Figure A.12: Subgraph induced by V1\{P15}
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In this case, V1 = V = {P2, P4, P5, P6, P7, P10, P11, P13, P14, P15, P16, P17, P18, P19, P20, P21},
|V1| = q2 = 42 = 16 and V2 is empty. Note that P15 is adjacent to all absolute vertices
which are P1, P3, P8, P9 and P12; every vertex in V1 \ {P15} is adjacent to exactly one
absolute vertex, see Figure A.11. The subgraph of ER4 induced by V1 \ {P15} is regular
of degree 4, see Figure A.12.

A.6.2 Two subgraphs isomorphic to ERq

The adjacency relation in ERq is not the most suitable for algebraic manipulations, for
this reason, we present two graphs isomorphic to ERq. The first was constructed by
Mubayi and Williford in [35], and its definition is as follows:

Definition 6. For q an odd prime power, ER∗q is the graph whose vertex set is V (ERq)
in which two vertices (x0, x1, x2) and (y0, y1, y2) are adjacent if

x0y2 − x1y1 + x2y0 = 0.

The second was constructed by Erskine, Fratrič and Širáň in [37], and its definition is as
follows:

Definition 7. Let α ∈ F∗q. For q a prime power, ER∗∗q is the graph whose vertex set is
V (ERq) in which two vertices (x0, x1, x2) and (y0, y1, y2) are adjacent if

x0y2 + x1y1 + x2y0 + αx2y2 = 0.

Lemma 11. Let q be a prime power and let b be any element of Fq. Then there exist
c, d ∈ Fq such that c2 + d2 = b.

Theorem 14.

(i) ERq is isomorphic to ER∗q ;

(ii) ERq is isomorphic to ER∗∗q .

Proof.

1. The matrix associated with the bilinear form of ERq is the identity matrix

I =

1 0 0
0 1 0
0 0 1

 ,
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while the associated with the bilinear form of ER∗q is

M =

0 0 1
0 −1 0
1 0 0

 .

Mubayi and Williford showed that there is a basis change matrix A which trans-
forms M to I, up to a scalar multiple; more precisely, they found a matrix A such
that ATMA = λI, for some non-zero λ.

� If q is a power of 2, they use the following matrix:

A2 =

1 1 1
0 1 1
1 1 0

 .

� If q is odd, let a, b, c, d, i ∈ Fq be such that a2 = −2, b2 = 2, c2 + d2 = −1, i2 =
−1, when they exist. Mubayi et al. used the following change of variables for
q ≡ 1 mod 4 and q ≡ 3, 7 mod 8 which they labeled A1, A3, A7, respectively:

A1 =

 1+i
2

0 1−i
2

0 i 0

− (1−i)
2

0 − (1+i)
2

 , A3 =

 a
2

a a
2

−1 −1 −1
−a

2
0 a

2

 , A7 =

 1
b

a 1
b

−d
b

c d
b

c
b

d − c
d

 .

2. Again, the matrix associated with the bilinear form of ERq is the identity matrix
I, while the associated with the bilinear form of ER∗∗q is

B =

0 0 1
0 1 0
1 0 α

 .

Erskine, Fratrič and Širáň showed that there is a basis change matrix A such
that ATBA = γI, for some non-zero γ. By Lemma 11 there exist c, d ∈ Fq with
c2 + d2 = −1, for odd q it can be checked that the following matrix A satisfies
ATBA = −I: d− cα/2 −(c+ dα/2) −(1 + α/2)

c− d c+ d 1
c d 1

 .

If q is a power of 2, then the non-zero element α ∈ Fq has a unique square root√
α ∈ Fq, and then one can take √α 0 0

0 1 0√
α−1 0

√
α−1

 .
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