MONITOREO DE LA CALIDAD Y CANTIDAD DEL AGUA CAPTADA DE LA CUENCA DEL RIO PIEDRAS PARA POTABILIZACIÓN POR PARTE DEL ACUEDUCTO Y ALCANTARILLADO DE POPAYÁN S.A. E.S.P. COMPORTAMIENTO HIDROLÓGICO DE LA CUENCA EN LA ÚLTIMA DÉCADA.

INFORME DE PASANTÍA PARA OPTAR EL TÍTULO DE INGENIERO AMBIENTAL

VICTOR VLADIMIR IDROBO MUÑOZ

UNIVERSIDAD DEL CAUCA FACULTAD DE INGENIERÍA CIVIL PROGRAMA DE INGENIERÍA AMBIENTAL POPAYÁN 2010 MONITOREO DE LA CALIDAD Y CANTIDAD DEL AGUA CAPTADA DE LA CUENCA DEL RIO PIEDRAS PARA POTABILIZACIÓN POR PARTE DEL ACUEDUCTO Y ALCANTARILLADO DE POPAYÁN S.A. E.S.P. COMPORTAMIENTO HIDROLÓGICO DE LA CUENCA EN LA ÚLTIMA DÉCADA.

Director de Pasantía Ingeniero LUIS JORGE GONZÁLEZ Departamento de Hidráulica

UNIVERSIDAD DEL CAUCA FACULTAD DE INGENIERÍA CIVIL PROGRAMA DE INGENIERÍA AMBIENTAL POPAYÁN 2010

RESUMEN

El presente estudio entrega los resultados obtenidos durante el desarrollo del monitoreo de la calidad y cantidad del agua captada de la cuenca del río Las Piedras y el comportamiento hidrológico de la cuenca en el período de 1999 a 2005.

El presente trabajo se planteó inicialmente para la década comprendida entre los años 1996 y 2005, pero debido a la falta de información, el análisis de la calidad del agua se realizó solamente para el período comprendido desde los años 2001 a 2008. Dentro del análisis de la calidad del agua receptada se tuvieron en cuenta los siguientes parámetros (con sus valores máximos y mínimos encontrados): conductividad (188 μS/cm; 40.08 μS/cm), turbiedad (97 NTU; 0.3 NTU), color aparente (139 U/Pt-Co; 2.4 U/Pt-Co), pH (8.4; 6.5), alcalinidad total (72 mg CaCO₃/L; 22 mg CaCO₃/L), dureza total (64 mg CaCO₃/L; 0.3 mg CaCO₃/L), hierro total (0.3 mg/L; 0.1 mg/L), sólidos disueltos totales (46.1 mg/L; 20.4 mg/L), nitritos (0.6 NO₂; 0.005 NO₂), oxígeno disuelto (9.3 mg/L; 5.3 mg/L), coliformes totales (10.000 UFC/100 mL; 0 UFC/100 mL), coliformes fecales (123 UFC/100 mL; 0 UFC/100 mL). Todas estas variables presentaron variaciones considerables debido al caudal del río, éste a su vez, afectado por la época o estado del tiempo.

Se compararon los valores del caudal que ingresó a la línea de conducción, con los valores de caudal registrados a la entrada de la planta de tratamiento de El Tablazo, encontrándose pérdidas que van desde 3.05% (36.255 L/s) hasta 27.79% (253.205 L/s), con un promedio de 133.148 L/s; sin embargo se determinó que estas supuestas pérdidas se debieron a que se han estado usando simultáneamente los 3 tanques desarenadores de Florida II, y la curva de calibración del vertedero se realizó para 2 tanques en funcionamiento y 1 en

reposo. De ahí que se optó por patronar el vertedero con los 3 tanques en funcionamiento, encontrándose la siguiente ecuación para la curva de calibración: $Q = (31.978*H^{-1.1449})*1000$, donde Q es el caudal promedio expresado en (L/s) y H es la Altura de Carga, en cm, registrada en la regleta.

Se recopiló y procesó la información existente de las estaciones pluviométricas en el período de 1999 a 2008, que muestra el impacto y las variaciones en el estado del tiempo.

De la misma manera, se analizó la variación del Caudal del río Las Piedras entre los períodos de 1965 a 2005 comparado con el período comprendido entre 1999 a 2005.

DEDICATORIA

A Díos, quíen me dió la maravillosa oportunidad de nacer; por ser el cimiento firme donde levanté cada una de las columnas (áreas) de mi vida y ser ese Padre, Amigo y Guardián constante que siempre ha estado ahi para corregir en los momentos en que me he equivocado, para guíar cuando he tenido que tomar decisiones, para aconsejar cuando no he sabido que hacer, para proteger cuando me han querido hacer daño y por su paciencia con todos mis errores.

A mís Padres por su apoyo, amor, respeto y constancía durante todo este proceso. A mís hermanos por todo su apoyo tanto moral como económico.

A mí abuela, tíos, primos y amigos por la confianza y los buenos deseos que siempre me expresaron.

A mí querída novía Edna, quíen ha estado durante el desarrollo de este trabajo "halándome las orejas" para que al fín lo culmínara.

Al Ingeniero Luís Jorge por el acompañamiento y la infinita paciencia durante este proceso.

AGRADECIMIENTOS

A mis compañeros de la Fundación Pro Cuenca Río Las piedras (Gemma, Luzma, Sandra, Las Lily´s, Olga, Laura, Libardo y Los libre-pensadores) por aportar con sus valiosos conocimientos y manifestarme esos buenos deseos. A la Jefe Liliana Recaman por su amabilidad, paciencia e incondicionalidad. A Liliana Bravo por sus valiosos aportes y acompañamientos en las salidas de campo y las de "sano esparcimiento"...

A mi primo Darwin Hoyos, por asesorarme en los últimos detalles del presente informe.

Y por último, a los docentes por la excelente formación académica, a las secretarias y compañeros de facultad que me brindaron su amistad. Ahh y no podía faltar... ... "Doña Naty".

FIRMA DEL PRESIDENTE DEL JURADO FIRMA DEL JURADO FIRMA DEL JURADO

TABLA DE CONTENIDO

1.	INTRODUCCIÓN
2.	OBJETIVOS
	2.1 OBJETIVO GENERAL
	2.2 OBJETIVOS ESPECIFICOS
3.	MARCO TEÓRICO
	3.1 CONTAMINACIÓN DEL AGUA
	3.1.1 Efectos de la contaminación del agua
	3.2 PRECIPITACIÓN
	3.2.1 Medida de la precipitación
	3.3 HIDROMETRÍA
	3.3.1 Caudales Máximos
	3.3.2 Caudales Medios
	3.3.3 Caudales Mínimos
	3.4 MEDICIÓN DE CAUDAL
	3.4.1 Medidor de corriente (molinete)
	3.5 TIPO DE MUESTRAS Y FRECUENCIA DE MUESTREO
	3.6 PARÁMETROS PARA MEDIR LA CALIDAD DE LAS AGUAS
	3.6.1 Parámetros Físicos
	3.6.2 Parámetros Químicos
	3.6.3 Parámetros Biológicos
	3.7 PRESERVACIÓN, ENVÍO Y/O ENTREGA AL LABORATORIO.
	3.8 MUESTRAS PARA ANÁLISIS FÍSICO QUÍMICO
	3.9 MUESTRAS PARA ANÁLISIS BACTERIOLÓGICO
4.	METODOLOGÍA PARA LA DETERMINACIÓN DE PARÁMETROS
	4.1 CRITERIOS
	12 ASPECTOS LEGALES

	4.2.1 Normas de calidad	29
5.	DESCRIPCIÓN DE LA EMPRESA RECEPTORA	31
6.	PLAN DE AFORO Y MUESTREO	32
	6.1 SELECCIÓN DEL SITIO DE MUESTREO	32
	6.2 TIPOS DE MUESTREO	35
	6.3 PARÁMETROS A ANALIZAR	36
	6.4 FRECUENCIA DE MUESTREO	36
	6.5 EQUIPOS Y RECIPIENTES A UTILIZAR	36
	6.6 PUNTOS DE AFORO	37
	6.7 MÉTODOS DE AFORO DE CAUDALES	38
7.	CALIDAD DEL AGUA RECEPTADA EN EL RÍO LAS PIEDRAS	40
	7.1 UBICACIÓN GEOGRÁFICA DE LA CUENCA DEL RÍO LAS	40
	PIEDRAS	
	7.2. HIDROGRAFÍA DEL RÍO LAS PIEDRAS	42
	7.3 CALIDAD DEL AGUA DEL RÍO LAS PIEDRAS. SITIO	43
	BOCATOMA	
8.	REGISTRO LIMNIMÉTRICO DEL RÍO LAS PIEDRAS EN EL SITIO	63
Pι	JENTE CARRETERA	
9.	REGIMEN DE PRECIPITACIONES	68
	9.1 ANÁLISIS DE DATOS DE LLUVIAS	71
	9.2 ESTIMATIVO DE DATOS FALTANTES	72
	9.3 CONSISTENCIA DE DATOS	72
	9.3.1 Método de la curva de doble masa	72
	9.3.2 Análisis de la consistencia de datos para la estaciones	75
	Arrayanales, San Pedro, El Diviso y El Lago	
	9.3.3 Método racional	85
	9.4 PRECIPITACIÓN MENSUAL, MEDIA MENSUAL, ANUAL Y MEDIA	93
	ANUAL	00
10	. ESTIMACIÓN DE PÉRDIDAS EN LA LÍNEA DE CONDUCCIÓN	102
. •	10.1 DETERMINACIÓN DE LAS POSIBLES PÉRDIDAS QUE SE	102
	PUEDEN PRESENTAR A LO LARGO DE LA LÍNEA DE	. 02
	CONDUCCIÓN	
11	. CONCLUSIONES	111

12.	RECOMENDACIONES	112
13.	REFERENCIAS BIBLIOGRAFICAS	114
14.	ANEXOS	117

LISTA DE CUADROS

	Pág.
Cuadro 1. Clasificación de los niveles de calidad de las Fuentes de	16
Abastecimiento.	10
Cuadro 2. Valores Admisibles de Parámetros Fisicoquímicos. Decreto	16
475/03-98.	10
Cuadro 3. Escala de valores de pH.	20
Cuadro 4. Caracterización de calidad de las aguas. Red Hídrica Río Las	42
Piedras.	
Cuadro 5. Valores Admisibles de Parámetros Fisicoquímicos. Decreto	43
475 / 03 - 98	
Cuadro 6. Relación de parámetros evaluados para el Agua Segura y	44
Calidad de la Fuente.	
Cuadro 7. Clasificación de los cuerpos de agua según su Alcalinidad	54
Total.	
Cuadro 8. Valores Medios Mensuales de caudales, estación Puente	64
Carretera. Fuente IDEAM	
Cuadro 9. Valores Máximos Mensuales de caudales, estación Puente	64
Carretera. Fuente IDEAM	
Cuadro 10. Valores Mínimos Mensuales de caudales, estación Puente	64
Carretera. Fuente IDEAM	
Cuadro 11. Valores Medios Mensuales de caudales, estación Puente	65
Carretera. Fuente IDEAM.	
Cuadro 12: Cuadro de Cálculo del Análisis de Doble Masa.	74
Cuadro 13. Precipitación mensual encontrada. Estación Arrayanales	81
Cuadro 14. Precipitación mensual encontrada. Estación El Diviso	81
Cuadro 15. Precipitación mensual encontrada. Estación El Lago	82
Cuadro 16. Precipitación mensual encontrada. Estación San Pedro	82

Cuadro 17. Precipitación mensual Estación Arrayanales. Con Datos	83
hallados mediante Regresión Lineal	
Cuadro 18. Precipitación Mensual Estación El Diviso. Con Datos	83
hallados mediante Regresión Lineal	
Cuadro 19. Precipitación Mensual Estación El Lago. Con Datos hallados	84
mediante Regresión Lineal.	
Cuadro 20. Precipitación Mensual Estación San Pedro. Con Datos	84
hallados mediante Regresión Lineal.	
Cuadro 21. Registro de Precipitación (mm). Estación Arrayanales	86
Cuadro 22. Porcentajes (%) y Promedios de los Porcentajes de Iluvia en	86
meses con datos faltantes. Estación Arrayanales.	
Cuadro 23. Registro de Precipitación Completa. Estación Arrayanales	88
Cuadro 24. Registro de Precipitación (mm). Estación El Diviso.	89
Cuadro 25. Porcentajes (%) y Promedios de los Porcentajes de Iluvia en	89
meses con datos faltantes. Estación El Diviso	
Cuadro 26. Registro de Precipitación Completa. Estación El Diviso.	90
Cuadro 27. Registro de Precipitación (mm). Estación El Lago	90
Cuadro 28. Porcentajes (%) y Promedios de los Porcentajes de Iluvia en	91
meses con datos faltantes. Estación El Lago.	
Cuadro 29. Registro de Precipitación Completa. Estación El Lago.	91
Cuadro 30. Registro de Precipitación (mm). Estación San Pedro	92
Cuadro 31. Porcentajes (%) y Promedios de los Porcentajes de Iluvia en	92
meses con datos faltantes. Estación San Pedro	
Cuadro 32. Registro de Precipitación Completa. Estación San Pedro	93
Cuadro 33. Precipitación mensual, media mensual, anual y media anual.	94
Estación Arrayanales. La unidad está dada en milímetros (mm).	
Cuadro 34. Precipitación mensual, media mensual, anual y media anual.	96
Estación El Diviso. La unidad está dada en milímetros (mm).	
Cuadro 35. Precipitación mensual, media mensual, anual y media anual.	98
Estación El Lago. La unidad está dada en milímetros (mm).	
Cuadro 36. Precipitación mensual, media mensual, anual y media anual.	100
Estación San Pedro I a unidad está dada en milímetros (mm)	

Cuadro 37. Comparación de Caudales operando 2 y 3 desarenadores. 105 Regleta de Desarenadores de Florida II.

LISTA DE FIGURAS

	Pág.
Figura 1. Pluviómetro	9
Figura 2. Sección de aforo	13
Figura 3. Sitio de muestreo. Puente Alto.	33
Figura 4. Sitio de muestreo. Bocatoma Piscifactoría El Diviso	33
Figura 5. Sitio de muestreo. Descarga Piscifactoría El Diviso	34
Figura 6. Sitio de Muestreo. Puente Carretera	34
Figura 7. Sitio de Muestreo. Bocatoma Río Las Piedras	35
Figura 8. Punto de Aforo. Tanques desarenadores Florida II.	37
Figura 9. Punto de Aforo. Válvula de purga.	37
Figura 10. Punto de Aforo. Vertedero de Excesos. Desarenador Río Cauca.	38
Figura 11. Punto de Aforo. Canal de entrada a la Planta de	38
Tratamiento El Tablazo	4.4
Figura 12. Mapa de ubicación de la Cuenca del río Las Piedras	41
Figura 13. Mapa de Balance Hídrico. Río Las Piedras	41
Figura 14. Registro de Conductividad. Período 2001 - 2008	45

Figura 15. Registro de Sólidos Disueltos. Período 2001 - 2008	46
Figura 16. Registro de Turbiedad. Período 2001 - 2008	47
Figura 17. Registro de Color Aparente. Período 2001 - 2008	49
Figura 18. Registro de pH. Período 2001 - 2008	51
Figura 19. Registro de Alcalinidad Total. Período 2001 - 2008	53
Figura 20. Registro de Dureza total. Período 2001 - 2008	55
Figura 21. Registro de Hierro Total. Período 2001 - 2008	56
Figura 22. Registro de Nitritos. Período 2001 - 2008	57
Figura 23. Registro de Coliformes totales. Período 2001 - 2008	58
Figura 24. Registro de Coli Fecal. Período 2001 - 2008	60
Figura 25. Registro de Oxígeno Disuelto. Período 2001 - 2008	61
Figura 26. Estación limnimétrica Puente Carretera	63
Figura 27. Mapa de Balance Hídrico. Río Las Piedras	64
Figura 28. Comportamiento del Caudal. Río Las Piedras. Período 1965 - 2005	66
Figura 29. Comportamiento del Caudal. Río Las Piedras. Período 1999 - 2005	66
Figura 30. Estación Pluviométrica Arrayanales	68
Figura 31. Estación pluviométrica El Diviso	69
Figura 32. Estación pluviométrica El Lago	69
Figura 33. Mapa de Isoyetas. Cuenca Río Las Piedras	70
Figura 34. Análisis de Doble Masa	74
Figura 35. Precipitación Acumulada mensual de las estaciones estudiadas. En mm	75
Figura 36. Comparación entre la Regla Pluviométrica y la Regla	76

Métrica	
Figura 37. Curva de Dobles Masas. Estación Dudosa vs Media Patrón	77
Figura 38. Curva de Dobles Masas. Estación Dudosa vs Media Patrón.	79
Corregida.	
Figura 39. Precipitación Mensual Acumulada de las 4 Estaciones	80
Puviométricas. Corregida	
Figura 40. Precipitación media mensual (mm). Estación Arrayanales.	95
Período 1999 - 2008	
Figura 41. Precipitación anual (mm). Estación Arrayanales. Período	95
1999 - 2008	
Figura 42. Precipitación media mensual (mm). Estación El Diviso.	97
Período 1999 - 2008	
Figura 43. Precipitación anual (mm). Estación El Diviso. Período 1999 - 2008	97
Figura 44. Precipitación media mensual (mm). Estación El Lago.	99
Período 1999 - 2008	
Figura 45. Precipitación anual (mm). Estación El Lago. Período 1999 -	99
2008	
Figura 46. Precipitación media mensual (mm). Estación San Pedro.	100
Período 1999 - 2008	
Figura 47. Precipitación anual (mm). Estación San Pedro. Período 1999 - 2008	101
Figura 48. Vertedero en tanques desarenadores de Florida II. Entrada	103
a la línea de conducción	
Figura 49. Tanques Desarenadores. Florida II	104
Figura 50. Daño en conducción	106
Figura 51. Medición Volumétrica de Caudal Purgado	106
Figura 52. Desarenador Bocatoma Río Cauca	107
Figura 53. Vertedero de Excesos.	107
Figura 54. Vivero CRC. Fotografía Satelital.	108
Figura 55. Curvas de Aforo del Vertedero de Florida II	109

LISTA DE ANEXOS

	Pág.
Anexo A. Calidad de la Fuente	124
Anexo B. Calidad del Agua del Río Las Piedras. Año 2001	125
Anexo C. Calidad del Agua del Río Las Piedras. Año 2002	126
Anexo D. Calidad del Agua del Río Las Piedras. Año 2003	127
Anexo E. Calidad del Agua del Río Las Piedras. Año 2004	128
Anexo F. Calidad del Agua del Río Las Piedras. Año 2005	129
Anexo G. Calidad del Agua del Río Las Piedras. Año 2006	130
Anexo H. Calidad del Agua del Río Las Piedras. Año 2007	131
Anexo I. Calidad del Agua del Río Las Piedras. Año 2008	132
Anexo J. Consolidado de Análisis Fisicoquímicos y Microbiológicos. Río	133
Las Piedras. Período 2001 – 2008	
Anexo K. Valores Medios Mensuales de Caudales (m³/seg). Estación	137
Puente Carretera. Fuente IDEAM	
Anexo L. Valores Máximos Mensuales de Caudales (m³/seg). Estación	138
Puente Carretera. Fuente IDEAM	
Anexo M. Valores Mínimos Mensuales de Caudales (m³/seg). Estación	139
Puente Carretera. Fuente IDEAM	
Anexo N. Registros Mensuales encontrados por Estaciones	140
Pluviométricas. Cuenca Río Las Piedras	
Anexo O. Precipitación Mensual Acumulada. Estaciones Pluviométricas.	141
Cuenca Río Las Piedras	
Anexo P. Datos de Precipitación Acumulada Mensual de la Estación	142
dudosa versus La Media Patrón de las 4 Estaciones	

1 INTRODUCCIÓN

El presente trabajo se desarrolló con base en la información suministrada por la oficina de la División Ambiental de la empresa de Acueducto y Alcantarillado de Popayán y las visitas realizadas a la cuenca del río Las Piedras.

Inicialmente se procedió con salidas de reconocimiento a la zona de trabajo que comprendieron visitas a: estaciones pluviométricas, puntos de muestreo de agua, bocatoma del río Las Piedras y la línea de conducción que inicia en la bocatoma hasta la planta de tratamiento de El Tablazo.

Una vez recopilada la mayoría de información posible, se procedió a sistematizar y a analizar mediante el uso de gráficos, el comportamiento en los períodos registrados. Se debió calcular los datos faltantes de algunos registros pluviométricos y corregir los que eran dudosos.

La calidad del agua receptada en la bocatoma se comparó con los valores aceptables para agua segura del Decreto 475 de 1998 y con los de calidad de la fuente de la tabla C.2.1 de la Norma RAS 2000 Título C, que presenta la clasificación de los niveles de calidad de las fuentes de abastecimiento, encontrando que varios de los parámetros analizados corroboran la buena calidad del recurso hídrico.

A parte de ésto, mediante recorridos de inspección a la línea de conducción, se buscó la razón del por qué se estimaba que la cantidad de agua que llegaba hasta la planta de potabilización, no era la misma cantidad que la que entraba al sistema.

2. OBJETIVOS

2.1 OBJETIVO GENERAL

Apoyar a la División Ambiental del Acueducto y Alcantarillado de Popayán en el estudio de la calidad y cantidad del agua que está receptando del río Las Piedras, para ser potabilizada en la planta de tratamiento de El Tablazo.

2.2 OBJETIVOS ESPECÍFICOS

Realizar el seguimiento y estudio a los informes de los resultados del laboratorio en cuanto a análisis Fisicoquímicos y Microbiológicos del agua receptada de Río Las Piedras que llega a la planta de El Tablazo para analizar su comportamiento desde al año 2001 hasta el año 2008.

Determinar cómo ha variado el caudal del río Piedras durante las estaciones de invierno y verano en el período comprendido desde 1999 a 2005; esto se hará comparando la información obtenida de la estación hidrométrica del IDEAM, correspondiente al período 1965 - 2005.

Realizar un estudio comparativo de la cantidad de agua que entra a la conducción y la cantidad del agua que llega a la planta de tratamiento de El Tablazo para hacer un estimativo de posibles pérdidas por daños en la tubería, conexiones informales u otras tomas.

3. MARCO TEÓRICO

Cambios en la naturaleza y actividades del hombre pueden causar deterioro de las fuentes de agua, haciendo que el agua que producen no sea adecuada para los seres humanos. Las principales causas del deterioro de las fuentes de agua son la tala y quema de los bosques, la contaminación por basuras, tierra, abonos, pesticidas y materia fecal animal y humana.¹

3.1 CONTAMINACIÓN DEL AGUA.

La contaminación del agua se debe a la incorporación de materias extrañas como microorganismos, productos químicos, residuos industriales, cloacales, y residuos arrojados por particulares. Estas materias deterioran la calidad del agua y la hacen inútil para los usos pretendidos (consumo e higiene), también afecta al medio y podrá ser causante de males menores o llegar a ser perjudiciales para la salud humana.

La contaminación puede afectar de dos formas al hombre: consumo directo del agua o indirecto, a través de productos ya contaminados como la fauna ictícola que habita en el medio.

4

_

¹ Universidad del Valle. Operación y mantenimiento de plantas de tratamiento por filtración en múltiples etapas. Págs 1-1 y 1-2

Los principales contaminantes del agua son los siguientes:

- * Aguas residuales y otros residuos que demandan oxígeno (en su mayor parte materia orgánica, cuya descomposición produce la desoxigenación del agua).
- * Agentes infecciosos.
- * Nutrientes vegetales que pueden estimular el crecimiento de las plantas acuáticas. Éstas, a su vez, interfieren con los usos a los que se destina el agua y, al descomponerse, agotan el oxígeno disuelto y producen olores desagradables.
- * Productos químicos, incluyendo los pesticidas, diversos productos industriales, las sustancias tensoactivas contenidas en los detergentes; y los productos de la descomposición de otros compuestos orgánicos.
- * Petróleo, especialmente el procedente de los vertidos accidentales. (Para nuestro caso de estudio, este ítem no existe).
- * Minerales inorgánicos y compuestos químicos.

- * Sedimentos formados por partículas del suelo y minerales arrastrados por la escorrentía desde las tierras de cultivo, los suelos sin protección, las explotaciones mineras, las carreteras y pequeños derrumbes.
- * Sustancias radiactivas procedentes de los residuos producidos por la minería y el refinado del uranio y el torio, las centrales nucleares y el uso industrial, médico y científico de materiales radiactivos. (Para nuestro caso de estudio, este ítem no existe).
- * El calor también puede ser considerado un contaminante cuando el vertido del agua empleada para la refrigeración de las fábricas y las centrales energéticas hace subir la temperatura del agua de la que se abastecen.

3.1.1 Efectos de la contaminación del agua.

Los efectos de la contaminación del agua incluyen los que afectan a la salud humana. La presencia de nitratos (sales del ácido nítrico) en el agua potable puede producir una enfermedad infantil que en ocasiones es mortal. El cadmio presente en los fertilizantes derivados del cieno o lodo puede ser absorbido por las cosechas; de ser ingerido en cantidad suficiente, el metal puede producir un trastorno diarreico agudo, así como lesiones en el hígado y los riñones. Hace tiempo que se conoce o se sospecha de la peligrosidad de sustancias inorgánicas, como el mercurio, el arsénico y el plomo.

Las plantas potabilizadoras pueden verse forzadas a reducir o hasta cortar el suministro de agua cuando existe una excesiva cantidad de contaminantes

que se reflejan en los resultados periódicos de las muestras de agua extraídas del río. Como estos superan los niveles que las plantas pueden depurar, deben frenar el suministro para no proveer de agua contaminada a los consumidores. Cuando se realiza este proceso se paraliza la captación superficial.

3.2 PRECIPITACION

Se tomó de GONZALEZ MUÑOZ, Luis Jorge. Conferencias de Hidrología. Universidad del Cauca. 2008

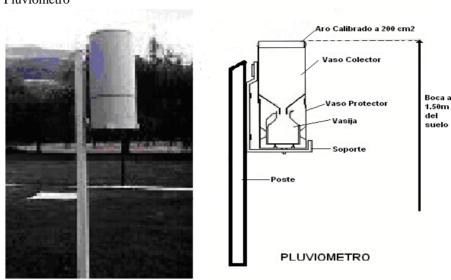
"La precipitación es la caída del agua en forma de lluvia, nieve o granizo y rocío. La lluvia se manifiesta de dos formas: lluvia ligera y prolongada y lluvia intensa y de corta duración. En hidrología solamente interesa conocer la lluvia cuando llega al suelo, constituyéndose en el elemento básico para los diferentes estudios de ingeniería y determinante de los recursos hídricos de un área determinada.

Existen unas condiciones necesarias para que se produzca la lluvia:

Que la condición y el estado físico de una nube sean conveniente: alta consistencia de sobrefusión, partículas de hielo en ejercicio o gotas salinas higroscópicas y de agua, dentro de los mecanismos de crecimiento de las partículas y además de la condensación del vapor de agua.

Que la temperatura ambiente (Ta), sea menor a la temperatura de punto de rocío (Td).

Que exista turbulencia o una corriente ascendente de aire, lo cual hace que esta condición meteorológica sea indispensable para la autopropagación de la lluvia y tenga una duración determinada.


Con las condiciones para que se produzca la precipitación se va a llevar a cabo el proceso de formación de las mismas: el aire húmedo mediante diferentes mecanismos físicos asciende adiabáticamente, luego el aire cargado de humedad al disminuir la presión se expande y se enfría dependiente del gradiente adiabático húmedo (menos de 1°C/100m), hasta saturarse y llegar a su nivel de condensación; en ese nivel de condensación y con la presencia de los núcleos higroscópicos, se forman minúsculas gotas alrededor de dichos núcleos y posteriormente, las gotas formadas se mantienen en suspensión, hasta que por un proceso de crecimiento alcanzan un tamaño y peso para precipitar. Este proceso de crecimiento de las gotas se hace por coalescencia y por difusión de vapor.

3.2.1 Medida de la precipitación

Para determinar la cantidad de agua caída en una zona debido a la precipitación, se utilizan los pluviómetros o pluviógrafos y la relación siguiente; un milímetro de lluvia es igual a un litro caído en un m² de área, suponiendo que no se infiltra.

Las características del pluviómetro se dan en la Figura 1.

Figura 1. Pluviómetro

El pluviómetro mide la lámina de agua caída en mm durante un día, para lo cual hay que medirla por medio de una regla a una hora determinada.

El pluviógrafo registra en un papel graduado, milímetros contra tiempo, una gráfica que nos representa la lámina de agua caída en cualquier intervalo de tiempo y el comportamiento de la lluvia.

Precipitación media. Se refiere a la variación de la precipitación con el tiempo.

Precipitación media diaria. Es el acumulado de la lámina de agua caída en un día.

Precipitación media mensual se define como el promedio aritmético de la serie que corresponde a los volúmenes caídos mes por mes. Para un año cualquiera se promedian doce (12) valores correspondientes al mismo.

Precipitación media mensual multianual. Se promedian cada uno de los meses, durante suficientes años de registro, o sea todos los eneros, febreros, etc. Y se dividen por los años que se tengan.

Precipitación media anual multianual. Es el promedio aritmético de los volúmenes de lluvia caídos anualmente en un período de n años.

Para obtener el valor medio "Normal" se debe tener un registro mínimo de 30 años.

Como existe un ciclo de lluvia, para fines prácticos, las medidas de la lluvia se consideran anuales, para lo cual es necesario registrar la lluviosidad de una zona continuamente. Además, el ciclo anual de lluvias, no es el mismo de un año a otro y los registros de un año no sirven para el siguiente, lo cual hace que sea necesario disponer de registros para el mayor número de años, con el fin de sacar valores representativos de las lluvias²."

10

² GONZALEZ MUÑOZ, Luis Jorge. Conferencias de Hidrología. Universidad del Cauca. 2008

3.3 HIDROMETRÍA

Se considera que el régimen fluvial es el comportamiento del caudal de agua en promedio que lleva un río en cada mes a lo largo del año. Depende, pues, del régimen de precipitaciones, pero también de la temperatura de la cuenca (que determina la mayor o menor evaporación), del relieve, la geología, la vegetación y la acción humana. El caudal de un río es la cantidad, o volumen, de agua que pasa por una sección determinada en un tiempo dado. El caudal, pues, está en función de la sección (metros cuadrados) a atravesar por la velocidad a la que atraviese la sección (metros/segundo). Se expresa en litros o metros cúbicos por segundo (L/s o m³/s).

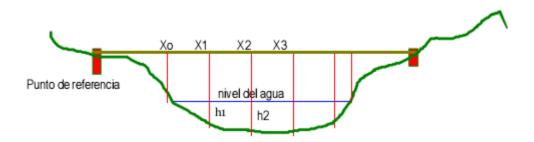
- 3.3.1 Caudales máximos: es el mayor valor de caudal registrado en una sección de un curso de agua durante un periodo de tiempo determinado; pudiendo ser este periodo una semana, un mes, un año, o la totalidad del periodo registrado.
- 3.3.2 Caudales Medios: es el valor promedio de todos los caudales registrados de una fuente hídrica durante un período determinado.
- 3.3.3 Caudales Mínimos: son los valores mínimos de caudal que registra un curso de agua en un tiempo determinado.

3.4 MEDICIÓN DE CAUDAL.

El proceso de medición de caudal a lo largo de la línea de conducción, se hará con el fin de establecer las diferencias entre el caudal que entra a la conducción y el que llega hasta la planta de tratamiento, que según el Titulo B de la norma RAS debe ser inferior al 5%³.

3.4.1 Medidor de corriente (molinete)

El medidor de hélice o molinete es un dispositivo constituido por una serie de paletas las cuales giran al estar en contacto con una corriente de agua, siendo el número de revoluciones proporcional a la velocidad de la corriente.


Las mediciones de velocidad se hacen generalmente a una profundidad de 0.6h por debajo del agua o también a profundidades de 0.2 y 0.8 h, siendo h la profundidad total de la lámina de agua. Cabe anotar que este es un método entre otros. A continuación presentamos la figura 2. correspondiente a la sección de aforos.

12

_

³ REGLAMENTO TÉCNICO DEL SECTOR DE AGUA POTABLE Y SANEAMIENTO BASICO. Norma RAS 2000. Título B. Sistemas de Acueducto. República de Colombia.

Figura 2. Sección de aforo.

A partir del punto de referencia y con una longitud fija de incremento (10 cm, 20 cm, etc.) dependiendo de las características de la sección, (entre mas corta sea esta longitud, más exacto será el valor del caudal aforado), se efectúa el abscisado de la sección del río; para cada vertical establecida se mide la profundidad total y el número de revoluciones del rotor.

3.5 TIPO DE MUESTRAS Y FRECUENCIA DE MUESTREO

Existen tres tipos de muestra: puntual, compuesta e integrada.

Muestra puntual: Es la muestra tomada en un lugar representativo, en un determinado momento.

Muestra compuesta: Es la mezcla de varias muestras puntuales de una misma fuente, tomadas a intervalos programados y por periodos

determinados, las cuales pueden tener volúmenes iguales o ser proporcionales al caudal durante el periodo de muestras.

Muestra integrada: es aquella que se forma por la mezcla de muestras puntuales tomadas de diferentes puntos simultáneamente, o lo más cerca posible. Un ejemplo de este tipo de muestra ocurre en un río o corriente que varía en composición de acuerdo con el ancho y la profundidad.

La frecuencia de muestreo va a depender del tipo de cuerpo de agua que se pretenda monitorear así como de los objetivos que se persigan.

3.6 PARÁMETROS PARA MEDIR LA CALIDAD DE LAS AGUAS

El término calidad del agua es relativo, referido a la composición del agua en la medida en que esta es afectada por la concentración de sustancias producidas por procesos naturales y actividades humanas.

Como tal, es un término neutral que no puede ser clasificado como bueno o malo sin hacer referencia al uso para el cual el agua es destinada.

De acuerdo con lo anterior, tanto los criterios como los estándares y objetivos de calidad de agua variarán dependiendo de si se trata de agua para consumo humano (agua potable), para uso agrícola o industrial, para recreación, para mantener la calidad ambiental, etc.

Los límites tolerables de las diversas sustancias contenidas en el agua son normadas por la Organización Mundial de la Salud (O.M.S.), la Organización Panamericana de la Salud (O.P.S.), y por los gobiernos nacionales, pudiendo variar ligeramente de uno a otro.

Agua segura: es aquella que sin cumplir algunas de las normas de potabilidad definidas en el Decreto 475 de 1998, puede ser consumida sin riesgo para la salud humana, en la eventualidad de un desastre o emergencia, que afecte el normal suministro de agua potable a la población.

En Colombia, el nivel de Calidad del Agua en la Fuente de acuerdo al grado de Polución se presenta en la tabla C.2.1 de la Norma RAS, Título C2, (Cuadro 1 y Anexo A), y los límites permisibles para el agua segura se encuentran contemplados en el Decreto 475 de 1998, (Cuadro 2).

Cuadro 1. Clasificación de los niveles de Calidad de las Fuentes de Abastecimiento.

	Análisis según		Nivel de Calidad de acuerdo al grado de Polución			
Parámetros	Norma Técnica NTC	Standard Method ASTM	1. Fuente Aceptable	2. Fuente Regular	3. Fuente Deficiente	4. Fuente muy deficiente
DBO 5 días	3630					
Promedio mensual mg/L			≤ 1.5	1.5 - 2.5	2.5 - 4	> 4
Máximo diario mg/L			1.0 - 3.0	3.0 - 4.0	4.0 - 6.0	> 6
Coliformes totales (NMP/100 mL)						
Promedio mensual		D - 3870	0 - 50	50 - 500	500 - 5000	> 5000
Oxígeno disuelto mg/L	4705	D - 888	≥ 4	≥ 4	≥ 4	< 4
pH promedio	3651	D - 1293	6.0 - 8.5	5.0 - 9.0	3.8 - 10.5	
Turbiedad (UNT)	4707	D - 1889	< 2	2.0 - 40	40 - 150	≥ 150
Color verdadero (UPC)			< 10	10.0 - 20	20 - 40	≥ 40
Gusto y Olor		D - 1292	Inofensivo	Inofensivo	Inofensivo	Inaceptable
Cloruros (mg/L - Cl)		D - 512	< 50	50 - 150	150 - 200	300
Fluoruros (mg/L - F)		D - 1179	< 1.2	< 1.2	< 1.2	> 1.7

Fuente: Tabla C.2.1 Norma RAS. Título C. Calidad de la fuente y grado de tratamiento.

Cuadro 2. Límites permisibles para el agua segura en Colombia.

Decreto 475 de Marzo de 1998 (Agua Segura)					
Análisis	Datos expresados en	H ₂ O Segura			
Conductividad	μS/cm	≤1500			
Turbiedad	N.T.U.	≤ 5			
Color Aparente	U/Pt. Co.	≤ 25			
pН	Unidades	6.5 - 9.0			
Alcalinidad total	mg/L CaCO₃	120			
Dureza Total	mg/L CaCO₃	180			
Hierro Total	mg/L Fe	0.5			
Sólidos Disueltos Totales.	mg/L	< 1000			
Nitritos	NO_2	1			
Coliformes totales	NMP/100 cm ³	0			
Coliformes fecales	NMP/100 cm ³	0			

Los parámetros de calidad del agua se clasifican como Parámetros Físicos, Químicos y Biológicos. Entre los más utilizados para determinar la calidad de un agua para su potabilización están los siguientes.

3.6.1 Parámetros físicos.

Se denominan físicos porque pueden ser detectados por medio de los sentidos, lo cual implica que tienen incidencia directa sobre las condiciones estéticas del agua, es decir, en su buena presentación.

Los más representativos son:

Temperatura

La temperatura del agua está determinada por múltiples factores:

La temperatura afecta la velocidad de las reacciones químicas, amplifica olores y sabores.

La temperatura del agua tiene incidencia en la presentación. Se dice que el agua es fresca cuando está a unos 5°C por debajo de la temperatura del lugar.

Es importante tenerla en cuenta porque de ella dependen el tipo de organismos que puedan desarrollarse en el agua.

En igual forma, de ella dependen: la cantidad de gases disueltos, la desinfección con cloro y las condiciones de tratamiento.

Color

Es en importancia, la segunda característica física del agua, puede estar íntimamente ligado a la turbiedad, pero se presenta como una característica independiente de ella.

El color se debe a diferentes componentes de la materia mineral y vegetal en descomposición; cuando se encuentran disueltos, reciben el nombre de color verdadero.

Si además hay presencia de arcillas o arenas que enturbien el agua, se le denomina color aparente.

Olor y Sabor

El olor y sabor del agua son producidos, fundamentalmente por algas, materia orgánica en descomposición, desechos industriales y sales de diferentes orígenes.

Turbiedad

La turbiedad es el fenómeno óptico que puede medirse por la mayor o menor resistencia del agua al paso de la luz.

Se debe a partículas que estando en suspensión, como los coloides, le dan al líquido la capacidad de dispersar la luz. Por ejemplo, tierras finamente divididas.

La turbiedad debe tenerse en cuenta para la presentación del agua, pero además es importante la desinfección, ya que en esas partículas en

suspensión se esconden pequeños organismos que se protegen del desinfectante.

Sólidos. Pueden ser de tipo orgánico e inorgánico. Comúnmente se conocen diferentes tipos de sólidos: Sólidos totales (ST); Sólidos Volátiles (SV); Sólidos Fijos (SF); Sólidos Suspendidos (SS); Sólidos Disueltos (SD); Sólidos Sedimentables (SSd).

3.6.2 Parámetros químicos.

Para el efecto del presente análisis se tienen en cuenta los siguientes parámetros:

Demanda Química de Oxígeno DQO

La Demanda Química de Oxígeno (DQO) es una medida del oxígeno requerido para oxidar todos los compuestos presentes en el agua, tanto orgánicos como inorgánicos, por la acción de agentes fuertemente oxidantes en medio ácido y se expresa en miligramos de oxígeno por litro (mg O₂/L). La materia orgánica se oxida hasta dióxido de carbono y agua, mientras el nitrógeno orgánico se convierte en amoniaco.

La DQO permite hacer estimaciones de la Demanda Bioquímica de Oxígeno (DBO), que a su vez es una medida de la cantidad de oxígeno consumido en el proceso biológico de degradación de la materia orgánica en el agua; el término degradable puede interpretarse como expresión de la materia

orgánica que puede servir de alimento a las bacterias; a mayor DBO, mayor grado de contaminación.

La DQO es una medida de la susceptibilidad a la oxidación de los materiales orgánicos e inorgánicos presentes en los cuerpos de agua y en los efluentes de aguas domésticas y plantas industriales, pero no es un indicador del carbono orgánico total presente en el cuerpo de agua, puesto que algunos compuestos orgánicos no son oxidados por el dicromato de potasio, mientras que algunos compuestos inorgánicos sí lo son.

рΗ

Es la intensidad de acidez y/o alcalinidad de una muestra de agua y se evalúa por una escala de valores consignada en el Cuadro 3.

Cuadro 3. Escala de valores de pH.

pH = 7:		neutras,			ni	
	alcalina					
pH > 7:	Aguas alcalinas o básicas					
pH < 7:	Aguas ácidas					
pH >9:	Muy	alcalinas	0	fuerteme	nte	
	alcalinas					
pH < 5:	Muy ácidas					

Si el pH del agua se encuentra entre 6.5 y 9.0 se considera aceptable para los procesos de tratamiento.

La mayoría de las aguas superficiales que se encuentran dentro de este rango, dan una buena desinfección y reducción de los problemas de corrosión. Se entiende entonces, que el factor pH no es tan importante desde el punto de vista de salud, como lo es desde el económico.

Es importante considerar el pH del agua, porque tiene efecto sobre los procesos de tratamiento y se relación con la obstrucción y deterioro de las redes de acueducto.

Además el pH determina las reacciones químicas afectando, por ejemplo, el proceso de desinfección con cloro.

Las actividades biológicas se desarrollan en un intervalo de pH entre 6 y 8

La Acidez

La acidez del agua es una medida de la cantidad total de sustancias ácidas presentes en ella, expresadas como carbonato de calcio equivalente.

La Alcalinidad

La alcalinidad del agua se mide por su capacidad para neutralizar ácidos. En aguas naturales la alcalinidad se debe principalmente a la disolución de rocas calizas.

La alcalinidad es importante en el tratamiento del agua porque reacciona con coagulantes para favorecer la floculación.

Tiene incidencia sobre el carácter incrustante que pueda tener en el agua y si está presente en altas cantidades tiene efecto sobre el sabor y la turbiedad.

Un alto valor de la alcalinidad hace que el agua produzca efectos destructivos en las tuberías de acueducto, como el fenómeno de incrustación, lo que además disminuye la capacidad de transporte de las tuberías.

La Dureza

Aguas duras son las que no permiten que se disuelva el jabón, es decir, no dejan hacer espuma. La dureza afecta procesos industriales y en algunos casos puede dar sabor al agua. Cuando las aguas son muy suaves o blandas disuelven rápidamente el jabón.

Oxígeno disuelto

Las aguas limpias están saturadas de oxígeno disuelto; si a estas aguas se les descargan residuos orgánicos se les agota el oxígeno disuelto. El oxígeno en el agua permite la existencia de peces y plantas, y da sabor agradable al agua.

3.6.3 Parámetros biológicos.

Las aguas naturales tienen asociados una serie de organismos que son habitantes normales en ella; tal es el caso de peces, moluscos, plancton, protozoos, bacterias, virus, entre otros.

Debido a la contaminación producida por el hombre, las aguas pueden contener algunos microorganismos perjudiciales para la salud, tales como: virus, bacterias y protozoos.

La determinación de la presencia de estos organismos en el agua es difícil y poco práctica para realizarla como actividad de rutina.

A través de los análisis bacteriológicos se determina el riesgo que involucra consumir el agua. El parámetro mas comúnmente utilizado para medir la calidad biológica del agua son los coliformes (totales y fecales) utilizando el método del recuento de colonias conocido como número más probable (NMP).

Las bacterias coliformes no son nocivas para la salud, son habitantes normales del tracto intestinal del hombre y de los animales y en cada deposición se encuentran en grandes cantidades. Estas características hacen que se les considere como indicadores de la calidad bacteriológica del agua.

"Si al analizar en el laboratorio una muestra de agua se descubre la presencia de bacterias coliformes, es una señal de contaminación con materias fecales, aunque no se detecten bacterias patógenas. Se presume entonces que hay contaminación y la posible presencia de bacterias malignas, provenientes de los intestinos de los animales. El número de esas bacterias que se encuentre en la muestra es una medida de la contaminación. Si hay un gran número, la contaminación será intensa y el consumo de esa agua es muy inseguro. Si no hay ninguna o hay muy poca

de estas bacterias, no representan riesgo a la salud y el agua se puede considerar segura.⁴"

En conclusión, el agua que tiene coliformes no es apta para el consumo humano.

La calidad bacteriológica se expresa como número más probable (NMP) en 100 mL de agua o en unidades formadoras de colonias (UFC/100mL)⁵.

3.7 PRESERVACIÓN, ENVÍO Y/O ENTREGA AL LABORATORIO

La preservación de una muestra es necesaria cuando transcurre mucho tiempo entre la hora de toma de ésta y el análisis posterior en el laboratorio. Algunos análisis se ven afectados por los tiempos de retención tales como la DBO y el NMP de coliformes. Para preservar una muestra antes de ser llevada al laboratorio, se usan algunas medidas preventivas tales como el uso del hielo, soluciones ácidas, etc. Los tiempos de retención de una muestra son variables según los análisis a realizar, existiendo algo de flexibilidad y variación en estos tiempos según el criterio de la persona encargada de un programa de muestreo.

⁴ LESUR, Luis. Manual de purificación del agua. México. Editorial Trillas. 1998. ISBN: 968-24-3495-596 página 24.

⁵ SENA VIRTUAL. Operación y mantenimiento de plantas potabilizadoras de agua. 2009

Los cambios que puedan ocurrir en una muestra son, o bien químicos o biológicos. En el primer caso, ocurren ciertos cambios en la estructura química de los constituyentes que son una función de las condiciones físicas. Los cationes metálicos pueden precipitarse como hidróxidos o formar complejos con otros constituyentes. Los cationes y/o aniones pueden cambiar sus estados de valencia bajo ciertas condiciones de reducción u oxidación; otros constituyentes pueden disolverse o volatilizarse con el transcurso del tiempo. Los cationes metálicos, tales como hierro y plomo, pueden ser absorbidos en superficies (vidrio, plástico, cuarzo, etc.). Los constituyentes solubles. pueden convertirse en materiales ligados orgánicamente en estructuras celulares, o la destrucción de células por lisis (ruptura de la membrana celular) puede resultar en la descarga de materia celular en una solución. Los muy conocidos ciclos de nitrógeno y fósforo, son ejemplos de influencia biológica en la composición de muestras.

Los métodos de preservación son relativamente limitados y se hallan dirigidos en general a: - Retardar la acción biológica; - Retardar la hidrólisis de compuestos y complejos químicos; - Reducir la volatilidad de los constituyentes.

Los métodos de preservación se limitan usualmente al control de pH, adición química, refrigeración y congelación.

3.8 MUESTRAS PARA ANÁLISIS FÍSICO QUÍMICO

Para análisis físico químico se necesitan por lo menos 3 litros de agua. Los recipientes en los que se tomen las muestras deben ser frascos de vidrio o de plástico. Los cuales deben estar completamente limpios antes de su uso, es necesario enjuagar el frasco unas tres o cuatro veces con el agua a analizar. Las muestras se deben tomar en sentido contrario a la corriente a diferentes profundidades y en un sitio representativo del cauce.

3.9 MUESTRAS PARA ANÁLISIS BACTERIOLÓGICO

Se debe utilizar botellas de vidrio neutro o plástico no tóxico, esterilizables, de boca ancha, con tapa protectora y cierre hermético para evitar escapes de agua. Las botellas de vidrio deben ser de borosilicato u otro vidrio neutro, de preferencia provistas de tapa de rosca hecha de metal o plástico. Las tapas de metal se deben forrar con un protector no tóxico que evita el contacto directo entre el metal y la muestra.

Las botellas de plástico ofrecen la ventaja de ser livianas y resistentes, se recomienda que estas sean de polipropileno o policarbonato.

La capacidad de las botellas debe ser, por lo menos de 120 ml, con el objeto de poder tomar una muestra de 100 ml y dejar un espacio vacío que facilite la agitación del agua antes del examen.

Aunque la recolección de una muestra de agua parezca sencilla, pueden producirse errores y, por lo tanto, esta actividad necesita de un especial cuidado.

Para tomar la muestra, una vez ubicado el punto de muestreo, se afloja la tapa del frasco esterilizado, se sumerge el frasco hasta una profundidad aproximada de 20 cm con la boca orientada en sentido de la corriente, se quita la tapa y se recolecta la muestra, se retira del agua y se deja un pequeño espacio de aire para facilitar la agitación antes del análisis, inmediatamente se coloca la tapa.

4 METODOLOGÍA PARA LA DETERMINACIÓN DE PARÁMETROS.

4.1 CRITERIOS

En el desarrollo del estudio de la calidad del agua que entra al sistema de acueducto se adopta la norma RAS Título C, CALIDAD DE LA FUENTE Y GRADO DE TRATAMIENTO; donde aclara que la calidad de la fuente debe caracterizarse de la manera más completa posible para poder identificar el tipo de tratamiento que necesita y los parámetros principales de interés en periodo seco y de lluvia⁶. Además, la fuente debe cumplir con las normas de calidad organolépticas, físicas, químicas y microbiológicas del agua segura exigidas en el Decreto 475 de 1998, en sus artículos 35, 36, 37, 38, 39 y 40, o en su ausencia el que los reemplace. Los análisis de laboratorio deben realizarse de acuerdo con métodos estándar reconocidos nacional e internacionalmente y los muestreos de acuerdo con las Normas NTC-ISO 5667. En el Anexo A se presenta la clasificación de los niveles de calidad de las fuentes de abastecimiento en función de unos parámetros mínimos de análisis físico - químicos y microbiológicos, y el grado de tratamiento asociado.

Los procedimientos para la determinación de parámetros fisicoquímicos se encuentran estipulados en el libro "Standard Methods for the examination of

⁶ REGLAMENTO TECNICO DEL SECTOR DE AGUA POTABLE Y SANEAMIENTO BASICO. Norma RAS. 2000. Título C. Calidad de la fuente y grado de tratamiento.

water and wastewater"⁷, y los de análisis microbiológicos se encuentran en el libro Biología de los microorganismos⁸.

Otra guía de apoyo se encuentra en http://www.ellaboratorio.8k.com/ para la realización de los análisis de laboratorio.

El estudio hidrométrico de la cuenca se realizará recopilando los datos obtenidos de las estaciones hidrométricas que se encuentran en la cuenca y su interpretación y análisis será de acuerdo con las recomendaciones del IDEAM; y además se apoyará en la información contenida en el plan de ordenación y manejo de la cuenca del río piedras 2006.

4.2 ASPECTOS LEGALES

4.2.1 Normas de calidad.

Las normas de calidad establecen los lineamientos y límites permisibles para controlar la calidad del recurso hídrico. En Colombia la Norma RAS 2000, en el Título C, Capítulo C.2 indica la clasificación de los niveles de calidad de las

⁷ Greenberg, Arnold E. Standard methods for the examination of water and wastewater: centenal edition. Estados Unidos. 2005.

⁸ MADIGAN, Michael T, MARTINKO, Jhon M. Brock, Biología de los Microorganismos. Pearson Educación. 2004.

fuentes de abastecimiento en función de unos parámetros mínimos de análisis físico – químicos y microbiológicos.

El Decreto 475 de 1998 es de cumplimiento nacional y en sus artículos 35, 36, 37, 38, 39 y 40 (Cuadro 2).

Además es importante resaltar que el Artículo 3º del Decreto 475 de 1998 dice: "El agua suministrada por la persona que presta el servicio público de acueducto, deberá ser apta para consumo humano, independientemente de las características del agua cruda y de su procedencia".

5. DESCRIPCION DE LA EMPRESA RECEPTORA

El desarrollo de este trabajo se hará con el apoyo de la División Ambiental del Acueducto y Alcantarillado de Popayán, a través de la Fundación Río Piedras quien es la entidad de coordinación interinstitucional, de enlace y articulación de esta empresa con la comunidad para el emprendimiento de acciones conjuntas en proyectos destinados a la conservación y desarrollo socioeconómico de los sistemas culturales y naturales, que propicien la conservación de las cuencas hidrográficas ya sea de manera directa o como organismo de gestión, en el contexto del desarrollo humano sostenible.

La empresa de Acueducto y Alcantarillado de Popayán S.A. E.S.P. es una entidad pública que se encarga de la administración, prestación del servicio y manejo del recurso hídrico para el Municipio de Popayán.

6. PLAN DE AFORO Y MUESTREO.

Se hizo el recorrido total del sistema de abastecimiento desde la bocatoma del río Piedras, pasando por los tanques desarenadores, la línea de conducción hasta la planta de tratamiento de El Tablazo, esto con el objeto de buscar a simple vista posibles inconsistencias y a su vez, los puntos mas factibles para realizar aforos al sistema de conducción. También se visitaron los lugares en donde se hacen los muestreos de calidad del agua.

6.1 SELECCIÓN DEL SITIO DE MUESTREO

Los sitios de muestreo para los análisis fisicoquímicos y microbiológicos ya han sido determinados por la Empresa, siendo los más representativos de acuerdo a lo siguiente: población, afluencia de quebradas, piscifactoría y bocatomas. Estos sitios son: Puente Alto, Figura 3; Bocatoma (Piscifactoría El Diviso), Figura 4; Descarga (Piscifactoría El Diviso), Figura 5; Puente Carretera, Figura 6 y Bocatoma Río Las Piedras, Figura 7.

Figura 3. Sitio de muestreo. Puente Alto.

Ubicación: Coordenadas **N** 02º 26' 02.6" **W** 76º 27' 06.3"

Altura 2456 m.s.n.m.

Figura 4. Sitio de muestreo. Bocatoma Piscifactoría El Diviso.

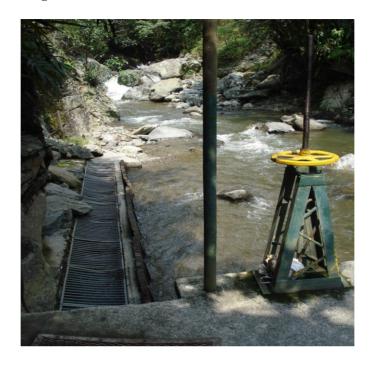
Ubicación: Coordenadas **N** 02º 26' 36.7" **W** 76º 28' 50.7"

Altura 2310 m.s.n.m.

Figura 5. Sitio de muestreo. Descarga Piscifactoría El Diviso.

Ubicación: Coordenadas **N** 02º 26' 18.8" **W** 76º 28' 49.4"

Altura 2218 m.s.n.m.


Figura 6. Sitio de Muestreo. Puente Carretera.

Ubicación: Coordenadas **N** 02º 27' 02.1" **W** 76º 31' 02.1"

Altura 1998 m.s.n.m.

Figura 7. Sitio de Muestreo. Bocatoma Río Las Piedras.

Ubicación: Coordenadas **N** 02º 26' 56.5" **W** 76º 31' 33.0"

Altura 1820 m.s.n.m.

6.2 TIPOS DE MUESTREO

Muestreo manual: para sitios de fácil acceso o en aquellos que puede ser posible mediante adaptaciones tomar la muestra.

Muestreo automático: para sitios de difícil acceso o cuando se tenga la facilidad. Es muy complejo para montar y calibrar. La División Ambiental no realiza este tipo de muestreos.

6.3 PARÁMETROS A ANALIZAR

Antes del muestreo, se debe definir que parámetros físicos, químicos y/o biológicos se van a analizar. En campo deben medirse el pH y la temperatura.

6.4 FRECUENCIA DE MUESTREO

Por la disponibilidad y costo de los reactivos necesarios para realizar las pruebas de calidad del agua muestreada, se ha establecido que los muestreos se realicen una vez al mes, los días Lunes o Martes de la última semana.

6.5 EQUIPOS Y RECIPIENTES A UTILIZAR

Equipo electrónico que mide Temperatura, pH y Turbiedad. Frascos esterilizados, tarros plásticos, botas, balde.

6.6 PUNTOS DE AFORO

Estos se definen con una inspección previa del sitio, se debe identificar las diferentes cajas de inspección en la tubería en las cuales se pueda realizar el muestreo y también en las descargas de los diferentes procesos productivos. Se estima que los puntos de aforo mas convenientes serían los siguientes: Tanques desarenadores de Florida II, Figura 8, Válvula de Purga aledaña a la Bocatoma del Río Cauca, Figura 9, Línea de conducción después de la Bocatoma del Río Cauca, Vertedero de Excesos de la Bocatoma del Río Cauca, Figura 10, Canal de entrada a la Planta de Tratamiento de El Tablazo, Figura 11.

Figura 8. Punto de Aforo. Tanques desarenadores Florida II.

Figura 10. Punto de Aforo. Vertedero de Excesos. Desarenador Río Cauca.

Figura 11. Punto de Aforo. Canal de entrada a la Planta de Tratamiento El Tablazo

6.7 MÉTODOS DE AFORO DE CAUDALES

El método usado en este trabajo fue el de Medidor de corriente o Molinete y se explicó en el punto 3.4 *Medición de Caudal*.

La Empresa de Acueducto cuenta con un Molinete electrónico que se encuentra en buen estado y calibrado, por lo que se descarta el uso de otros métodos para la medición de caudales.

Las ecuaciones de patronamiento de los vertederos son las siguientes:

Sitio: Desarenadores de Florida II, (entrada a la línea de conducción):

$$Q = (9.8163*H^{1.5})*1000$$
 L/s

Sitio: Entrada a Planta de El Tablazo, (salida de la línea de conducción):

$$Q = (6.527*H^{1.6337})*1000$$
 L/s

Donde Q es el caudal en L/s y H es la altura de carga en cm.

7. CALIDAD DEL AGUA RECEPTADA EN EL RIO LAS PIEDRAS

El agua captada del río Las Piedras es de buena calidad y óptima para su potabilización, de ahí que La Empresa de Acueducto y Alcantarillado de Popayán a través de la Fundación Pro Cuenca Río Las Piedras, se preocupe por desarrollar planes y programas que mejoren el estado de la Cuenca.

7.1 UBICACIÓN GEOGRÁFICA DE LA CUENCA DEL RÍO LAS PIEDRAS

Esta cuenca se ubica entre los Municipios de Popayán y Totoró en el Departamento del Cauca. El Río Las Piedras nace en el punto de coordenadas 76° 31' 10" de Longitud y 2° 21' 45" de Latitud, y desemboca al río Cauca en el punto de coordenadas 76° 23' 45" de Longitud y 2° 25' 40" de Latitud.

A continuación se muestran los mapas de ubicación de la cuenca Río Las Piedras y el Mapa de la Red Hídrica de la misma. Figuras 12 y 13, respectivamente.


The company of the control of the co

Figura 12. Mapa de ubicación de la Cuenca del río Las Piedras.

Fuente: POMCH. Río Las Piedras. 2006

\one{1}

Figura 13. Mapa de Balance Hídrico. Río Las Piedras.

Fuente: POMCH Río Las Piedras. 2006

7.2. HIDROGRAFÍA DEL RÍO LAS PIEDRAS

La subcuenca del río Las Piedras pertenece a la cuenca Cauca, y a su vez, su red de drenaje está conformada por dos subcuencas: Aguas Claras y Peñas Blancas; a la corriente principal llegan 14 microcuencas de orden 3 con topología, así Quebradas Agua Colorada, Carniceria, El Vado, Pichagua, El Cedro, Las Juntas, La Costa, La Chorrera, Arrayanes, El Arado, El Limonar y Santa Teresa y 4 cuencas de 4^{rto} orden: Robles, LA Josefina, San Pedro y Caño El Muerto. ⁹

Los valores medios de la caracterización de las aguas de las corrientes que conforman la Red Hídrica se presentan en el Cuadro 4, y los valores admisibles de parámetros Fisicoquímicos permisibles para el agua segura según el Decreto 475 de 1998 se presentan en el cuadro 5 (Cuadro 2).

Cuadro 4. Caracterización de calidad de las aguas. Red Hídrica Rio Las Piedras.

Estación o Corriente	Temperatura T/ °C	Turbiedad NTU	Sólidos Disueltos Totales mg/L	Color Apte U/Pt- Co	Oxigeno mg/l	% de Saturación de Oxigeno disuelto	Hd	Alcalinidad Total mgCaCO ₃ /L	Dureza total mgCaCO₃/L	Conductividad µS/cm	NO2 mg/L
Peñas Blancas	13.6	8.0	30	10	7.0	70	7.5	47	52	61	0.025
Aguas claras	13.4	0.8	37	13	6.9	65	7.4	45	52	74	0.025
Palmichal	14.0	0.6	40	10	7.3	70	7.2	47	51	79	0.02
La chorrera	14.0	0.4	26	10	6.3	62	7.0	45	50	69	0.01
Arrayanales	14.0	0.6	32	13	6.4	62	7.6	45	52	66	0.025
Pichagua	14.4	0.4	42	10	6.5	63	7.5	45	50	69	0.10
El vaho	15.0	0.4	40	10	6.2	61	7.7	46	57	79	0.10
Carniceria	15.0	0.9	46	13	6.5	64	7.3	38	32	80	0.10
Limonar	15.0	0.6	40	10	7.3	72	7.2	45	51	79	0.03
Santa teresa	13.5	0.5	28	15	6.7	62	7.1	45	50	73	0.08
Piedras	15.8	0.7	42	18	6.9	70	7.5	38	57	84	0.05
Los Robles	15.8	0.4	34	20	7.0	76	7.5	45	50	68	0.05

Fuente: POMCH. Río Las Piedras. 2006

⁹ POMCH. Río Las Piedras. Corporación Autónoma Regional del Cauca. 2006

Cuadro 5. (Cuadro 2) Valores Admisibles de Parámetros Fisicoquímicos para Agua Segura. Decreto 475/03 - 98

Decreto 475 de Marzo de 1998 (Agua Segura) **Análisis** Datos expresados en H₂O Segura Conductividad µS/cm ≤1500 N.T.U. Turbiedad ≤ 5 U/Pt. Co. Color Aparente ≤ 25 6.5 - 9.0рΗ Unidades Alcalinidad total mg/L CaCO₃ 120 **Dureza Total** mg/L CaCO₃ 180 Hierro Total mg/L Fe 0.5 Sólidos Disueltos Totales. mg/L < 1000 **Nitritos** NO_2 1 NMP/100 cm³ 0 Coliformes totales Coliformes fecales NMP/100 cm³ 0

Por lo anterior, se puede concluir que el agua receptada en la corriente del río Las piedras, es un agua segura, por que los valores registrados de cada uno de los parámetros fisicoquímicos se encuentran por debajo de los valores máximos permitidos para el agua segura, según Decreto 475/03 – 98.

7.3 CALIDAD DEL AGUA DEL RÍO LAS PIEDRAS. SITIO BOCATOMA.

Para el caso de estudio del presente trabajo, el punto general y representativo de la calidad del agua cruda que se capta del río Las Piedras está en la Bocatoma del mismo río. Los resultados de los análisis de calidad del agua en el laboratorio, muestran la variación de algunos parámetros en

diferentes épocas del año como se puede ver en cada uno de los reportes obtenidos, desde el año 2001 hasta el año 2008, Anexos B, C, D, E, F, G, H, I, y el reporte consolidado de los 8 años, Anexo J; dicho comportamiento se puede observar en las Figuras 14 a 25, que muestran la variación de los diferentes parámetros cada mes durante el período 2001 – 2008; aunque se puede apreciar que son muchos los datos faltantes, que no se tomaron debido en su mayoría de veces, a la falta de insumos y reactivos necesarios para los respectivos análisis en el laboratorio.

Cuadro 6. Relación de parámetros evaluados para el Agua Segura y Calidad de la Fuente.

Análisis	Agua Segura	Calidad de la Fuente		
Conductividad	Х			
Turbiedad	X	X		
Color Aparente	X	X		
рН	X	X		
Alcalinidad total	X			
Dureza Total	X			
Hierro Total	X			
Sólidos Disueltos Totales.	X			
Nitritos	X			
Oxígeno Disuelto		X		
Coliformes Totales	X	X		
Coliformes Fecales	X			

A continuación se presenta el análisis de resultados obtenidos a partir de la información de cada parámetro comparado con los valores permisibles para el agua segura y calidad de la fuente, en los casos en que estén contemplados según el cuadro 6.

CONDUCTIVIDAD

Figura 14. Registro de Conductividad. Período 2001 - 2008

Agua Segura

Valor permisible: ≤ 1500 µS/cm

Valor medio: 72,02 µS/cm

Valor Mínimo: 40.08 µS/cm

Valor Máximo: 188 µS/cm

La totalidad de datos de Conductividad se encuentran por debajo del valor permisible del Decreto 475/98 para agua segura. Sólo se presentó un pico en el mes de Noviembre de 2008, debido a un aumento en las precipitaciones, tal como se observa en los Cuadros 33, 34, 35 y 36, que a su vez generaron crecientes en el río que arrastraron una mayor cantidad de sólidos.

SÓLIDOS DISUELTOS

SOLIDOS DISUELTOS

SOLIDOS DISUE

Figura 15. Registro de Sólidos Disueltos. Período 2001 - 2008

Agua Segura

Valor permisible: < 1000 mg/L

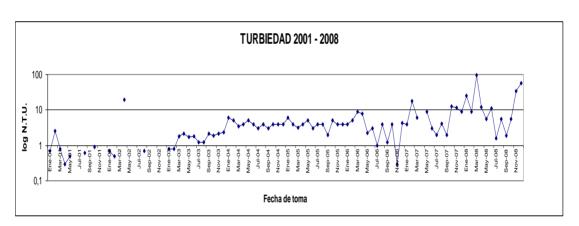
Valor medio: 34.44 mg/L

Valor Mínimo: 20.4 mg/L

Valor Máximo: 46.1 mg/L

El valor promedio es bajo comparado con el valor máximo admisible por el Decreto 475/98 para aguas seguras, esto indica que existe un bajo arrastre de sedimentos.

Los valores de Sólidos Disueltos Totales son directamente proporcionales a la Conductividad. Se puede observar en las Figuras 14 y 15 la relación entre


los Sólidos Disueltos y la Conductividad, de acuerdo a la siguiente ecuación:

$$S\'{o}lidos Disueltos = \frac{1}{2} Conductividad$$

Para el caso de Noviembre de 2008 el valor de la conductividad aumentó debido a un aumento en la precipitación, pero no se aumentó la Conductividad; esta relación es aceptable.

TURBIEDAD

Figura 16. Registro de Turbiedad. Período 2001 - 2008

Agua Segura

Valor permisible: ≤ 5 NTU

Valor medio: 6.55 NTU

Valor Mínimo: 0.3 NTU

Valor Máximo: 97.0 NTU

El valor promedio es de 6.55 NTU, que no está dentro del valor permitido en el Decreto 475/98 para el agua segura. Entonces se puede inferir que aunque la corriente del río Las Piedras presenta un bajo transporte de sedimentos en suspensión en períodos secos, esta situación puede cambiar en períodos de lluvias debido a las fuertes crecientes que ocasionalmente se presentan y que traen consigo gran cantidad de sedimentos por la erosión laminar y el arrastre de sólidos.

Calidad de la Fuente

26.5% de las muestras son < 2 NTU: Fuente Aceptable.

69.9% de las muestras están entre 2 – 40 NTU: Fuente Regular.

3.6% de las muestras están entre 40 – 150 NTU: Fuente Deficiente.

0% de las muestras ≥ 150 NTU: Fuente Muy Deficiente.

En cuanto a la calidad de la fuente, se observa que el 69.9% de las muestras están en el rango de una fuente regular, mientras que el 26.5% de las muestras indicaron una fuente aceptable.

COLOR APARENTE

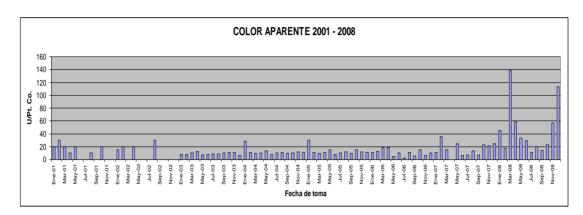


Figura 17. Registro de Color Aparente. Período 2001 - 2008

Agua Segura

Valor permisible: ≤ 25 U/Pt-Co

Valor medio: 18.08 U/Pt-Co

Valor Mínimo: 2.4 U/Pt-Co

Valor Máximo: 139 U/Pt-Co

El valor permitido en el Decreto 475/98 está por encima del valor medio encontrado, por lo que sí cumple la norma para el agua segura. En la mayor parte del tiempo la fuente presenta valores permisibles de Color aparente, salvo en unos casos en que los valores variaron considerablemente, debido posiblemente al cambio brusco en las precipitaciones. Entonces se concluye en general, que las aguas del Río Las Piedras no se ven afectadas con el aporte de sustancias químicas u orgánicas que puedan alterar su coloración.

En los casos en que se presentan unos incrementos notables en el color, estos están ligados al aumento de las precipitaciones, que conllevan al arrastre de materia orgánica que posteriormente se descompone en el río.

Calidad de la Fuente

25.3% de las muestras son < 10 U/Pt-Co: Fuente Aceptable.

55.4% de las muestras están entre 10 – 20 U/Pt-Co: Fuente Regular.

14.5% de las muestras están entre 20 – 40 U/Pt-Co: Fuente Deficiente.

4.8% de las muestras son ≥40 U/Pt-Co: Fuente muy Deficiente.

El 55.4% de las muestras indican que la calidad de la Fuente es Regular, seguidas por el 25.3% de las muestras que dan como resultado una Fuente Aceptable.

рΗ

Figura 18. Registro de pH. Período 2001 - 2008

Agua Segura

Rango permisible: 6.5 – 9.0

Valor medio: 7.45

Valor Mínimo: 6.5

Valor Máximo: 8.4

En general la vida se desarrolla a valores de pH próximos a la neutralidad. Los organismos vivos no soportan variaciones fuertes del pH, aunque tan solo se trate de unas décimas de unidad. Con estos resultados, ubicados dentro del rango permitido del Decreto 475/98, se puede decir que esta agua es neutra y que las variaciones de este valor obedecen a procesos naturales. Por ejemplo, *cuando el agua circule por zonas con rocas silicatadas suele*

dar aguas ácidas; mientras que en zonas carbonatadas, la tendencia es inversa, pero dependiente de que el CO₂ pueda o no escapar a la atmósfera, lo cual, a su vez, es función de las concentraciones parciales relativas del CO₂ en el agua y en la atmósfera, que también dependen de la temperatura, pudiéndose dar la ley muy general, que en zonas frías, las aguas que circulan por zonas calcáreas serán ácidas, mientras que en zonas cálidas tenderán a ser básicas.

Si se añade que los lixiviados de compuestos húmicos del suelo, que pasan a ácidos orgánicos, con lo que el pH disminuye, o los gases atmosféricos disueltos, que pueden hacer cualquier cosa, se puede llegar a la conclusión de que el pH depende de muchos factores.¹⁰

Calidad de la Fuente

El 100% de los resultados se encuentran entre 6.0 y 8.5, lo que indican que en lo que respecta a este parámetro, la Fuente es Aceptable.

Los suelos del departamento del Cauca son ácidos por ser de origen volcánico, si se presentan desprendimientos de terreno (erosión) que afecten el agua, se espera que el pH disminuya; pero la Alcalinidad ayuda a evitar que esto suceda.

¹⁰ VARIACION DEL pH. http://ingenieriageologica.mforos.com/265926/4992778-variacion-del-ph/

ALCALINIDAD TOTAL

Figura 19. Registro de Alcalinidad Total. Período 2001 - 2008

Agua Segura

Valor permisible: hasta 120 mg/lt CaCO₃

Valor medio: 38.72 mg/L CaCO₃

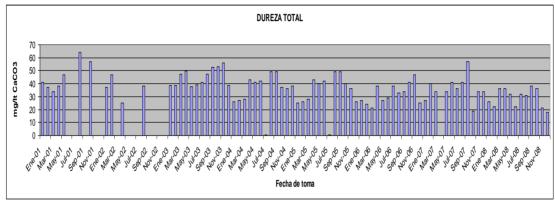
Valor Mínimo: 22 mg/L CaCO₃

Valor Máximo: 72.0 mg/L CaCO₃

Este parámetro también se encuentra dentro del rango de valores admisibles. Internacionalmente es aceptada una alcalinidad mínima de 20 mg de CaCO₃/L para mantener la vida acuática, Cuadro 7. Cuando las aguas tienen alcalinidades inferiores se vuelven muy sensibles a la contaminación, ya que no tienen capacidad para oponerse a las modificaciones que generen disminuciones del pH (acidificación)¹¹. Al registrar valores < 75 mg/L CaCO₃ es bueno porque el agua tiene capacidad de reacción ante fenómenos naturales, permitiendo cambios necesarios que no se darían a valores > 75 mg/L CaCO₃.

Cuadro 7. Clasificación de los cuerpos de agua según su Alcalinidad Total.

Descriptor	Alcalinidad (mg/L)
Mínimo aceptable	20
Pobremente amortiguadas	< 25
Moderadamente amortiguadas	25 - 75
Muy amortiguadas	> 75


Fuente: DETERMINACION DE LA ALCALINIDAD TOTAL

Cuando en el agua se tienen valores de Alcalinidad menores a 25 mg/L CaCO₃, el agua se acidifica muy fácilmente; cuando los valores son mayores a 75 mg/L CaCO₃, no se permiten los cambios de pH requeridos para los procesos. Lo óptimo son valores comprendidos entre 25 y 75 mg/L CaCO₃.

¹¹ DETERMINACION DE LA ALCALINIDAD TOTAL. http://imasd.fcien.edu.uy/difusion/educamb/propuestas/red/curso_2007/cartillas/tematicas/ alcalinidad.pdf

DUREZA TOTAL

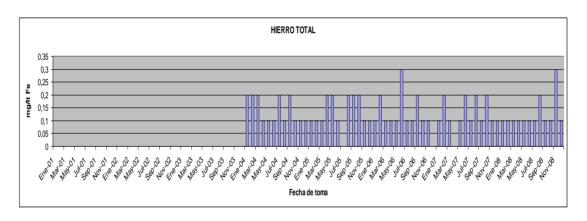
Figura 20. Registro de Dureza total. Período 2001 - 2008

Agua Segura

Valor permisible: hasta 180 mg/L CaCO₃

Valor medio: 36 mg/L CaCO₃

Valor Mínimo: 0.3 mg/L CaCO₃


Valor Máximo: 64 mg/L CaCO3

El valor promedio se encuentra por debajo del máximo permitido en el Decreto 475/98 para el agua segura. Es bueno tener valores menores a 180 mg/L CaCO₃ porque posee los minerales requeridos en la ingesta (Fuente de minerales).

El exceso de Calcio y Magnesio en el agua, se relaciona con problemas de cálculos renales en las personas, además de los problemas de obstrucción de tuberías y filtros en los sistemas de conducción y en los hogares, así como también el daño de maquinaria.

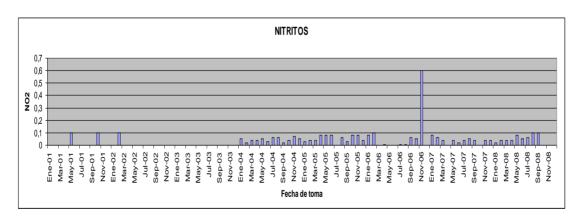
HIERRO TOTAL

Figura 21. Registro de Hierro Total. Período 2001 - 2008

Agua Segura

Rango permisible: < 0.5 mg/L Fe

Valor medio: 0.11 mg/L Fe


Valor Mínimo: 0.1 mg/L Fe

Valor Máximo: 0.3 mg/L Fe

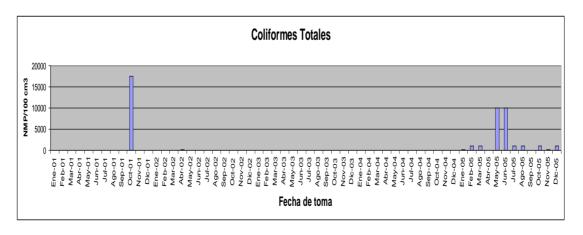
La presencia de Hierro en el agua no sobrepasa el límite permitido por la norma, por lo tanto es un agua apta para el consumo. Aunque el límite establecido no se basa en su acción fisiológica, ya que el uso de aguas que contienen varios miligramos de este elemento es corriente e incluso aconsejado por los médicos, sino en su sabor desagradable, en su aspecto, en las manchas que produce en la ropa y artefactos sanitarios, así como también causa obstrucción en las tuberías, accesorios y bombas.

NITRITOS

Agua Segura

Valor permisible: 1 mg/L NO₂

Valor medio: 0.05 mg/L NO₂


Valor Mínimo: 0.005 mg/L NO₂

Valor Máximo: 0.6 mg/L NO₂

Los valores registrados no superan el máximo permitido según la norma. Aunque valores de Nitritos mayores a 0.5 mg/L NO₂ en exceso son dañinos, por estar asociados a problemas de cáncer y otras enfermedades, se tiene que el 100% de los resultados obtenidos cumplen el límite permitido.

COLIFORMES TOTALES

Figura 23. Registro de Coliformes totales. Período 2001 - 2008

Agua Segura

Valor permisible: 0 U.F.C/100 mL ó NMP/100 mL

Valor medio: 710.13 U.F.C/100 mL ó NMP/100 mL

Valor Mínimo: 0 U.F.C/100 mL ó NMP/100 mL

Valor Máximo: 10000 U.F.C/100 mL ó NMP/100 mL

El 100% de las muestras contiene coliformes, lo que indica que estas aguas

deben pasar por un tratamiento bacteriológico para eliminar la concentración

de Coliformes presentes en ellas. Se puede observar al comparar la Figura

24 vs la Figura 25 que los valores de Coliformes Totales >>> Coliformes

Fecales.

Calidad de la Fuente

27.6% de las muestras son < 50 NTU: Fuente Aceptable.

26.3% de las muestras están entre 50 – 500 NTU: Fuente Regular.

30.3% de las muestras están entre 500 – 5000 NTU: Fuente Deficiente.

13.2% de las muestras > 5000 NTU: Fuente Muy Deficiente.

2.6 % de las muestras aparecen como positivas, sin registrar un valor exacto

para las mismas.

59

COLIFORMES FECALES

Coliformes Fecales

Figure 140

Figura 24. Registro de Coliformes Fecales. Período 2001 - 2008

Agua Segura

Valor permisible: 0 U.F.C/100 mL ó NMP/100 mL

Valor medio: 15.50 U.F.C/100 mL ó NMP/100 mL

Valor Mínimo: 0 U.F.C/100 mL ó NMP/100 mL

Valor Máximo: 123 U.F.C/100 mL ó NMP/100 mL

El valor medio indica que esta agua no debe ser usada para el consumo directo de la población, sin antes pasar por el tratamiento bacteriológico respectivo.

OXIGENO DISUELTO

Figura 25. Registro de Oxígeno Disuelto. Período 2001 - 2008

Valor medio: 7.09 mg/L O₂

Valor Mínimo: 5.3 mg/L O₂

Valor Máximo: 9.3 mg/L O₂

Calidad de la Fuente

97.1% de las muestras son > 4 mg/L O_2 : Fuente Aceptable.

2.9% de las muestras ≥ 4 mg/L O₂: Fuente Muy Deficiente.

La concentración de Oxígeno refleja la calidad de la fuente; a mayor concentración de Oxígeno se tiene una mayor calidad. Cuando se tienen

valores bajos de concentración de oxígeno, eso indica que se presentan procesos anaerobios, lo que es malo para la fauna acuática.

Se registran valores promedio por encima de 4.0 mg/L O₂ lo que es bueno. El promedio de valores encontrados de Oxígeno Disuelto indica que son aguas con buena oxigenación, poco contaminadas, capaces de recuperarse rapidamente y con buenas opciones de ser usadas para potabilización.

8 REGISTRO LIMNIMETRICO DEL RIO LAS PIEDRAS EN EL SITIO PUENTE CARRETERA.

El sitio Puente Carretera, Figura 26, es el lugar en donde confluyen casi la totalidad de afluentes del río Las Piedras, Figura 27, y en el se encuentra instalado un limnímetro que registra las alturas del nivel de agua, con las cuales se obtiene el caudal transportado en ese punto por la fuente hídrica. El registro de niveles se hace a diario, y estos valores son procesados por el IDEAM para obtener valores mínimos de caudales mensuales; valores medios de caudales mensuales y valores máximos de caudales mensuales, que se citan a continuación en los Cuadros 8, 9 y 10, y que están reportados desde el año 1965 hasta el año 2005, según el Anexo K. La fecha de proceso para los últimos datos reportados hasta el año 2005, fue el 24 de septiembre de 2009, este retraso es debido a la cantidad de información que recibe y debe procesar el IDEAM.

Figura 26. Estación limnimétrica Puente Carretera

Subcuenca del Rio Palace

RIO CAUCA

Subcuenca del Rio Las Piedras

Subcuenca del Rio Pisoje

Subcuenca del Rio Vinagre

WARA 20

Figura 27. Mapa de Balance Hídrico. Río Las Piedras.

Fuente: POMCH. Río Las Piedras. 2006.

Cuadro 8. Valores Medios Mensuales de caudales, estación Puente Carretera. Fuente IDEAM.

	VAL	ORES	MED	IOS N	1ENSL	JALES	DE C	CAUDA	ALES	(m³/se	g). Pe	ríodo 1	965 - 2005
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	VIr Anual
	3.2	3.0	2.8										
Medio	8	2	2	2.95	2.51	1.67	1.37	1.17	1.11	1.80	3.35	4.09	2.43
Máxim	9.0	8.1	6.1										
0	2	0	3	6.42	5.85	2.74	2.35	2.35	2.01	4.90	7.35	17.80	17.80
	1.1	1.0	0.9										
Mínimo	5	6	8	1.01	1.29	1.05	0.86	0.60	0.69	0.71	1.42	1.70	0.60

Cuadro 9. Valores Máximos Mensuales de caudales, estación Puente Carretera. Fuente IDEAM.

	VALO	RES M	IAXIMO	S ME	NSUA	LES D	E CA	JDAL	ES(m	³/seg).	. Perío	odo 19	65 - 2005
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	VIr Anual
Medio	16.53	19.16	14.18	14.70	12.21	4.50	2.35	4.23	2.14	8.67	15.35	16.75	10.90
Máximo	120.00	132.00	103.00	59.02	120.00	23.50	11.00	63.33	6.10	57.00	57.00	94.00	132.00
Mínimo	1.55	1.29	1.35	1.37	2.35	1.15	1.02	0.82	0.82	1.02	2.65	3.10	0.82

Cuadro 10. Valores Mínimos Mensuales de caudales, estación Puente Carretera. Fuente IDEAM.

	VAL	ORES	MININ	MOS N	1ENSL	JALES	DE C	CAUDA	ALES	(m³/se	g). Pe	ríodo	1965 - 2005
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	VIr Anual
Medio	1.90	1.88	1.74	1.89	1.67	1.37	1.17	1.05	0.98	1.04	1.56	2.12	1.53

Máximo	4.20	4.18	3.76	3.76	3.33	2.39	2.13	1.89	1.77	1.79	3.84	5.94	5.94
Mínimo	0.65	0.74	0.77	0.80	0.88	0.90	0.68	0.63	0.53	0.60	0.69	1.05	0.53

En el cuadro 11 se muestran los valores máximos, medios y mínimos de los caudales medios mensuales registrados en la estación Limnimétrica para el período objeto de estudio de 1999 a 2005; para los años 2006, 2007 y 2008 la información fue recolectada por el IDEAM en el sitio, pero aún no ha sido procesada. Estos valores se presentan en el Cuadro 11.

Cuadro 11. Valores Medios Mensuales de caudales, estación Puente Carretera. Fuente IDEAM.

	VAL	ORES	MED	IOS M	ENSL	JALES	DE C	AUDA	ALES (m³/se	g). Pe	ríodo ´	1999 - 2005
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	VIr Anual
1999	5.91	6.40	5.27	4.96	4.33	2.74	1.90	2.35	2.01	2.81	7.35	8.67	4.56
2000	9.02	6.33	4.45	3.77	2.08	1.48	1.57	1.39	1.27	1.40	4.39	2.40	3.30
2001	2.20	1.66	1.64	1.39	1.38	1.25	1.17	1.06	1.16	1.32	1.79	2.70	1.56
2002	2.35	1.64	1.76	3.20	2.04	2.21	1.45	1.31	1.20	1.55	1.48	3.05	1.94
2003	1.49	1.47	6.13	6.42	1.85	1.62	1.29	1.18	1.06	1.64	2.27	2.99	2.45
2004	3.47	1.74	1.37	3.60	1.87	1.36	1.18	0.90	0.90	1.29	5.37	3.08	2.18
2005	3.51	3.43	2.25	1.92	2.11	1.28	1.09	0.98	0.99	1.67	2.81	4.95	2.25
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	
Medio	3.99	3.24	3.27	3.61	2.24	1.71	1.38	1.31	1.23	1.67	3.64	3.98	2.60
Máximo	9.02	6.40	6.13	6.42	4.33	2.74	1.90	2.35	2.01	2.81	7.35	8.67	9.02
Mínimo	1.49	1.47	1.37	1.39	1.38	1.25	1.09	0.90	0.90	1.29	1.48	2.40	0.90

El comportamiento del caudal medio, máximo y mínimo del río Las Piedras en el período de estudio, se observa en la Figura 28 para el período de 1965 a 2005, obtenida de los valores consignados en el Cuadro 8; y la Figura 29 que resulta de los valores consignados en el Cuadro 11, correspondiente al período de 1999 a 2005.

Figura 28. Comportamiento del Caudal. Río Las Piedras. Período 1965 - 2005.

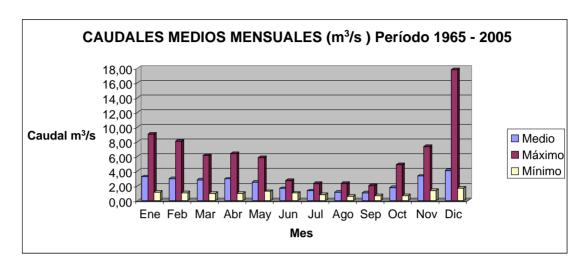
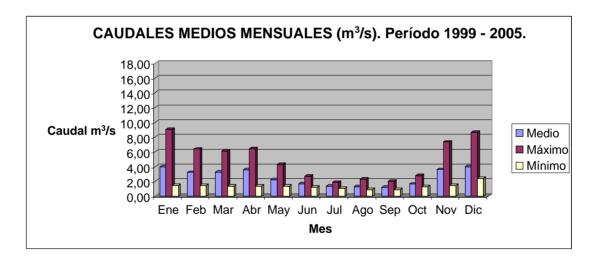



Figura 29. Comportamiento del Caudal. Río Las Piedras. Período 1999 - 2005.

El comportamiento de los valores analizados determina que el cambio entre los valores de caudales medios mensuales y caudales mínimos mensuales de los períodos 1965 – 2005 y 1999 – 2005 no varían considerablemente; pero, los valores de caudales máximos mensuales entre los mismos períodos, muestran un cambio considerable en el mes de Diciembre, con un descenso de 17.8 m³/s a 8.67 m³/s, y unos descensos menores en los

meses de Febrero y Octubre, de 8.10 m³/s a 6.4 m³/s y 4.90 m³/s a 2.81 m³/s, respectivamente. Esta variación de los caudales es debida probablemente al cambio en las condiciones climáticas a nivel mundial y fenómenos naturales como El Niño.

9 REGIMEN DE PRECIPITACIONES

La empresa de Acueducto y Alcantarillado de Popayán S.A. E.S.P. cuenta con 5 estaciones pluviométricas en la cuenca del río Las Piedras, de las cuales se usó la información de 4 de ellas en el presente informe, omitiendo la estación que se ubica en el cerro Puzná, debido a que se volvió a instalar esta estación en meses pasados. Las 4 estaciones de las que se obtuvo información son: Arrayanales, Figura 30; San Pedro; El Diviso, Figura 31 y El Lago, Figura 32.

Figura 30. Estación Pluviométrica Arrayanales

Figura 31. Estación pluviométrica El Diviso.

Figura 32. Estación pluviométrica El Lago

La ubicación de las estaciones y sus respectivas precipitaciones anuales se observan en el Mapa de Isoyetas Anuales, Figura 33, donde se indica que la precipitación media anual para la Estación El Lago (Punto 1) está entre 1800 mm y 1900 mm y las estaciones El Diviso (Punto 2), Arrayanales (Punto 3) y San Pedro (Punto 4) están entre 1700 mm y 1800 mm.

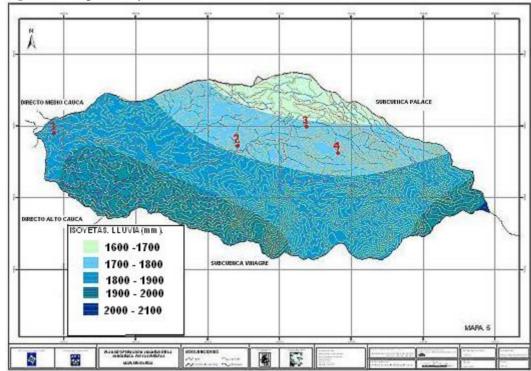


Figura 33. Mapa de Isoyetas Anuales. Cuenca Río Las Piedras.

Fuente: POMCH. Río Las Piedras. 2006

9.1 ANALISIS DE DATOS DE LLUVIAS

Antes de utilizar los registros y proceder a su análisis hay que considerar los siguientes aspectos:

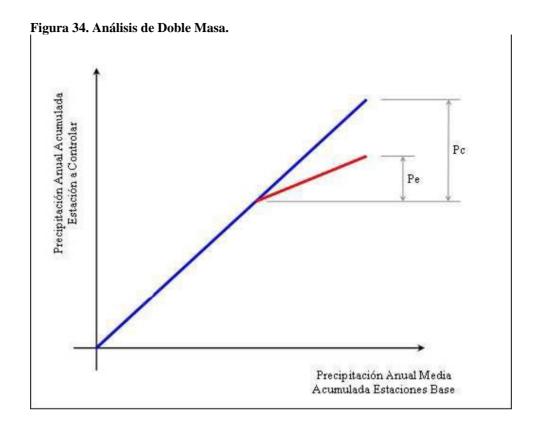
- La longitud del tiempo de registro. Se recomienda que el número de años no debe ser inferior a 20, lo cual determina mayor confiabilidad en los cálculos a realizar y menor riesgo al diseñar un proyecto de ingeniería.
- 2. Estimativo de datos faltantes. Por diferentes circunstancias, las series de datos de lluvias, se encuentran incompletas, se perdió el registro o porque no se tomó para un período determinado, diario, mensual o anual. Existen diferentes métodos para estimar datos, para lo cual se recurre a los registros de estaciones cercanas o vecinas con registros completos para el mismo período faltante.

Mediante una correlación se establece una asociación estadística o gráfica, entre los datos de dos estaciones, una de las cuales carece de la información pluviométrica para un período determinado. Los valores parciales de las dos estaciones se llevan a unas coordenadas cartesianas ajustando los puntos a una línea recta, cuya ecuación permitirá determinar la cantidad de precipitación en la estación faltante, conocido el valor correspondiente de la otra estación para el mismo período.

9.2 ESTIMATIVO DE DATOS FALTANTES

Luego de sistematizar toda la información encontrada en las planillas de registro de precipitaciones, Anexo N, se observa que faltan registros; por lo que se procede a calcular los valores de aquellos meses en los que no se obtuvo valor alguno de precipitación.

Una vez obtenidos la mayor cantidad de registros mensuales, Anexo N, se aplica el método de La Curva de Doble Masa para observar si las 4 estaciones mantienen un comportamiento similar; lo que aseguraría que sí habría consistencia en los datos.


9.3 CONSISTENCIA DE DATOS

9.3.1 Método de la curva de doble masa

Cuando se quiere comprobar si los registros de una estación pluviométrica, anuales o estacionales, no han sufrido variaciones que conduzcan a valores erróneos, se utiliza la técnica de Doble Masa. Esas variaciones pueden ser por un cambio en la ubicación del instrumental, una variación en las

condiciones periféricas del lugar de medición o un cambio del observador que efectúa las lecturas.

El método de doble masa considera que en una zona meteorológica homogénea, los valores de precipitación que ocurren en diferentes puntos de esa zona en períodos anuales o estacionales, quardan una relación de proporcionalidad que puede representarse gráficamente. Esa representación consiste en identificar la estación que se quiere controlar, tomando los valores anuales de precipitación. Luego debe contarse por lo menos con tres (3) estaciones vecinas cuyos registros anuales sean confiables y que se llaman estaciones base, cuya serie de datos anuales debe coincidir con el de la estación a controlar. En cada año, a partir del primero con registro, se promedian los valores de las estaciones base y se acumulan por años sucesivos, obteniéndose una precipitación media anual acumulada. Luego, en un sistema de ejes ortogonales, se grafica en las ordenadas los valores de precipitación anual acumulada de la estación a controlar y en las abscisas los de precipitación media anual acumulada de las estaciones base. Si los registros no han sufrido variaciones, los puntos se alinean en una recta de pendiente única, por lo tanto no será necesario efectuar correcciones. Si por el contrario hay variaciones en la pendiente de la recta, pudiéndose trazar las pendientes Pc y Pe, significa que parte de la serie contiene valores erróneos por lo cual el registro de datos debe ser corregido a partir del año en el que cambia la pendiente de la recta. Se obtiene en ese caso un Factor de Corrección que es proporcional a la variación de la pendiente de la recta, Figura 34. El factor de corrección se obtiene haciendo Pc/Pe, debido a que los registros anuales medidos han sido menores a los reales y deben corregirse a partir del año del error, tomando los valores anuales sin acumular y afectándolos a cada uno por el factor de corrección.

Para graficar la recta de Doble Masa se construye el Cuadro 12:

Cuadro 12: Cuadro de Cálculo del análisis de Doble Masa.

1	2	3	4	5	6	7	8	9
Años		Es	staciones B	ase		Est	ación a con	trolar
	Α	В	С	Promedio	Acum.	Anual	Acum.	Corregida
1948	914	857	1426	1065	1065	1168	1168	
1949	888	532	741	720	1785	755	1923	
•••								
					:			
•••								

Se grafican los datos de la columna (6) en abscisas contra los datos de la columna (8) en ordenadas y se verifica la necesidad o no de efectuar una corrección. En caso afirmativo, deben corregirse los valores erróneos de la columna (7) y presentarse en la columna (9) del Cuadro 12.

9.3.2 Análisis de la consistencia de Datos para la estaciones Arrayanales, San Pedro, El Diviso y El Lago.

Los datos de precipitaciones mensuales de las 4 estaciones se presentan en el Anexo N.

A continuación, en la Figura 35, construida con los datos del Anexo O, se tienen las precipitaciones acumuladas mensuales de cada estación en donde se puede observar un cambio notorio en la tendencia de la serie de la estación Arrayanales, además de un faltante de datos par el período comprendido entre Julio de 2003 a Noviembre de 2004, del cual no se encontraron registros.

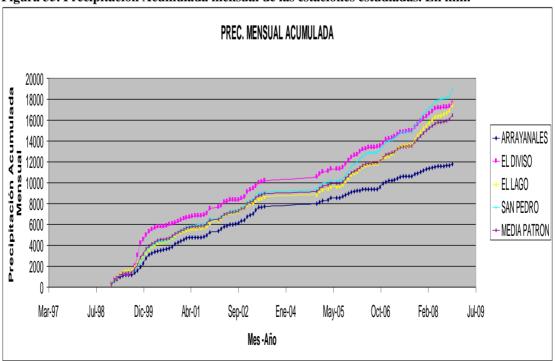


Figura 35. Precipitación Acumulada mensual de las estaciones estudiadas. En mm.

Al indagar sobre las posibles causas que causaron este cambio abrupto de la información recolectada, se pudo constatar que el error consistía en el tipo de instrumento usado durante la medición de la precipitación; en vez de usar la regleta del pluviómetro, se estaba realizando esta medición con una regla métrica. La diferencia entre la regla del pluviómetro y la regla métrica es notable como se puede apreciar en la Figura 36, debido a que un milímetro en la regla del pluviómetro indica que en un área de 1 m² ha precipitado 1 L de agua, mientras que la regla convencional mide milímetros de distancia.

La Figura 35 muestra que los datos de la estación Arrayanales comienzan a variar en el mes de Diciembre de 2004 por lo tanto se le aplica el método de Doble Masa para verificar la consistencia de la información registrada.

Para hacer un análisis de la curva de Doble Masa se compara la precipitación acumulada promedio de todas las estaciones, versus la precipitación acumulada de la estación dudosa. Los datos en cuestión se muestran en el Anexo P.

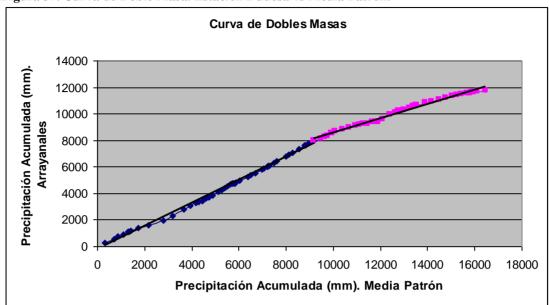


Figura 37. Curva de Doble Masa. Estación Dudosa vs Media Patrón.

En la curva obtenida con los datos de precipitación mensual acumulada de la estación dudosa versus los datos de precipitación acumulada promedio de todas las estaciones, se observan dos pendientes; Figura 37, una que va desde Enero de 1999 (307;268) hasta Diciembre de 2004 (9190.375;7968) y la otra desde Diciembre de 2004 hasta Noviembre de 2008 (16472.425;11784.833), de ahí que se hace necesario calcular el valor de las dos pendientes obtenidas y correlacionarlas para obtener una sola pendiente.

Las coordenadas que se tomaron para calcular las 2 pendientes son:

	Punto inicial	Punto final	Pendiente
Pendiente 1	Enero – 1999	Diciembre – 2004	0.867
1 chalente 1	(307; 268)	(9190.375 ; 7968)	0.007
Pendiente 2	Diciembre – 2004 (9190.375; 7968)	Noviembre – 2008 (16472.425; 11784.833	0.524

Para calcular el valor de las pendientes se aplica la siguiente fórmula:

$$m = \frac{Y2 - Y1}{X2 - X1}$$

El factor de corrección entre las dos pendientes está dado por la relación del valor de la pendiente 1 sobre el valor de la pendiente 2

Factor de corrección =
$$\frac{m1}{m2} = \frac{0.867}{0.524} = 1.654$$

El valor de cada mes a partir de Diciembre de 2004 se multiplicará por el factor de corrección obtenido para que de esta manera se obtengan los nuevos valores que se ajusten a una sola pendiente. De esta manera se obtiene la Figura 38 en la cual se aprecia una mejor distribución de los datos de la estación Arrayanales.

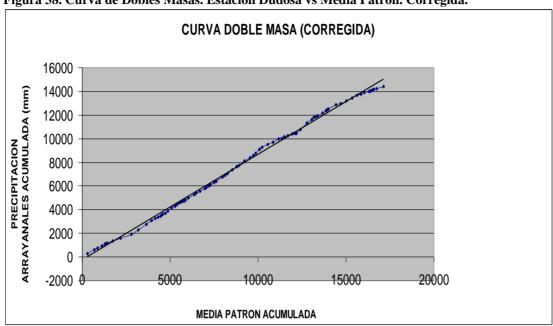


Figura 38. Curva de Dobles Masas. Estación Dudosa vs Media Patrón. Corregida.

Y los datos obtenidos acumulados de las 4 estaciones están representados en la Figura 39, en donde se observa una mejor tendencia de la estación Arrayanales, respecto de las otras 3 estaciones.

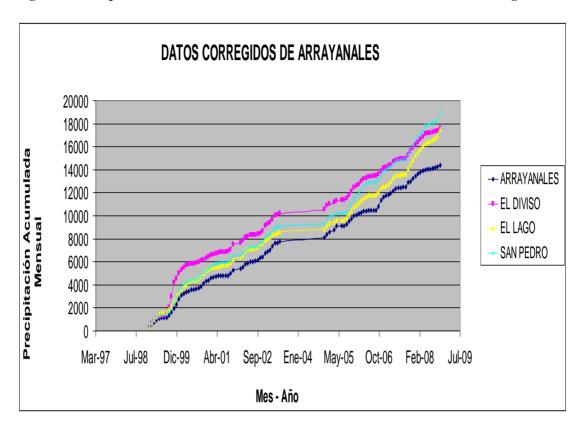


Figura 39. Precipitación Mensual Acumulada de las 4 Estaciones Puviométricas. Corregida.

Ya con una mejoría en los datos de la estación dudosa, se procede a calcular el resto de datos faltantes de todas las estaciones. Debido a la complejidad del problema, se inicia calculando los valores faltantes mediante regresión lineal entre el mismo año de 2 estaciones cercanas, y por último se aplica el método racional para los que no se pudieron hallar usando el método anterior.

Los datos de precipitación mensual acumulada por cada estación, suministrados por las planillas se recopilan a continuación en los Cuadros 13, 14, 15 y 16.

Cuadro 13. Precipitación mensual encontrada (mm). Estación Arrayanales.

Añ	10 10 1			iisuai ei		Me			<u>uj unure</u>			
0	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
199	268.0	324.0	155.0	189.0	161.0			34.0	192.0	236.0	335.0	356.0
9	0	0	0	0	0	43.00	3.00	0	0	0	0	0
200	478.0	304.0	181.0	103.0	103.0		64.0			169.0	270.0	146.0
0	0	0	0	0	0	83.00	0	9.00	88.00	0	0	0
200	127.0	143.0	122.0							160.0	269.0	246.0
1	0	0	0	40.00	54.00	0.00	0.00	0.00	50.00	0	0	0
200		133.0	167.0	222.0		129.0	10.0	59.0		200.0		
2		0	0	0	92.00	0	0	0	51.00	0	84.00	
200	116.0	143.0	311.0	274.0		106.0						334.0
3	0	0	0	0	16.00	0						0
200												357.2
4												6
200	286.1	206.7	175.3	155.4	344.0				163.7	234.8	218.3	251.4
5	4	5	2	8	3	47.97	0.00	0.00	5	7	3	1
200		117.4		147.2								299.3
6	82.70	3	82.70	1	28.12	36.39	0.00	0.00	0.00			7
200				241.4	191.8		18.1	49.6		375.4		229.0
7		67.81	97.59	8	6	54.58	9	2	0.00	6	99.24	8
200	238.1	196.0	126.5	124.0	105.8		22.3	74.4			181.9	
8	8	0	3	5	6	38.87	3	3	29.77	72.78	4	

En el cuadro 13 los datos ya han sido corregidos con el factor de corrección hallado por el método de doble masa.

Cuadro 14. Precipitación mensual encontrada (mm). Estación El Diviso.

Cuau	110 17.1	o 14. Frecipitación mensual encontrada (mm). Estación El Diviso.										
						М	es					
Año	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
199	284.0		169.0	228.0	165.0			116.0	647.0	974.0	1186.0	343.0
9	0		0	0	0	34.00	0.00	0	0	0	0	0
200					115.0		25.0		120.0	122.0		105.0
0					0	40.00	0	28.00	0	0	74.00	0
200										159.0		
1									60.00	0	463.00	
200				315.0		137.0				120.0		484.0
2				0	50.00	0	0.00	0.00	16.00	0	171.00	0
200	168.0	131.0	270.0	329.0								
3	0	0	0	0	52.00							
200	204.0			343.0	122.0		74.0			356.0		383.0
4	0	57.00	55.00	0	0	0.00	0	0.00	40.00	0	581.00	0
200											367.00	

5												
200	177.0	123.0	228.0	221.0	102.0	104.0	37.0			133.0		294.0
6	0	0	0	0	0	0	0	2.00	5.00	0	268.00	0
200		101.5		255.0	155.0		45.0			338.5		314.0
7	91.00	0	85.00	0	0	54.00	0	48.00	8.00	0	289.50	0
200	282.0	180.0	243.0	212.0	268.0		28.0					
8	0	0	0	0	0	65.00	0	61.00	30.00	72.00	263.00	

Cuadro 15. Precipitación mensual encontrada (mm). Estación El Lago.

Cuad	lro 15. Precipitación mensual encontrada (mm). Estación El Lago.											
						Me	es					
Año	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC
199	347.0	428.0	221.0	312.0	181.0	103.0			251.0	273.0	465.0	396.0
9	0	0	0	0	0	0	5.00	53.00	0	0	0	0
200	310.0	292.0	269.0	141.0	205.0	110.0	67.0		135.0	155.0	251.0	243.0
0	0	0	0	0	0	0	0	41.00	0	0	0	0
200		109.0					62.0			171.0	271.0	264.0
1	80.00	0	67.00	46.00	77.00	38.00	0	0.00		0	0	0
200	119.0	169.0	245.0	352.0			28.0			271.0		265.0
2	0	0	0	0	93.00	81.00	0	44.00	80.00	0	62.00	0
200		109.0	198.0	120.0		141.0						
3		0	0	0	51.00	0						
200												206.0
4												0
200	344.0	152.0	118.0		197.0		28.0		158.0	372.0	284.0	295.0
5	0	0	0	90.90	0	50.00	0	3.00	0	0	0	0
200	158.0	168.0	238.0	219.0	130.0		51.0			257.0	344.0	107.0
6	0	0	0	0	0		0			0	0	0
200		148.0	188.0	338.0	194.0		22.0			463.0	392.0	353.0
7	77.00	0	0	0	0		0	60.00	26.00	0	0	0
200	364.0	302.0	256.0	246.0	264.0	132.0	66.0	120.0	122.0	232.0	532.0	357.0
8	0	0	0	0	0	0	0	0	0	0	0	0

Cuadro 16. Precipitación mensual encontrada (mm). Estación San Pedro.

AÑO	Mes
-----	-----

S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
	329.0	415.5	180.0	215.0	161.0		39.0		216.0	252.0	536.0	467.5
1999	0	0	0	0	0	55.00	0	41.00	0	0	0	0
	563.0	278.0	227.0	184.0	161.0		50.0		119.0	173.0	344.0	184.0
2000	0	0	0	0	0	56.00	0	22.00	0	0	0	0
	170.0	131.0	188.0				18.0			158.0	350.0	
2001	0	0	0	63.00	59.00	70.00	0	7.00	39.00	0	0	
	227.0		161.5	238.0	119.0	166.0	11.0			231.0	107.0	391.0
2002	0	65.00	0	0	0	0	0	37.00	69.00	0	0	0
	127.0	146.0	342.0	269.0								
2003	0	0	0	0	24.00	97.00						
												228.0
2004												0
	355.0	236.0		139.0	117.0		31.0		124.0	379.0	331.0	432.0
2005	0	0		0	0		0	7.00	0	0	0	0
	269.0	210.0	281.0	323.0	160.0	149.0	34.0			211.0	340.0	381.0
2006	0	0	0	0	0	0	0	0.00	8.00	0	0	0
	134.0	163.0	123.0	230.0	220.0		37.0			475.0	351.0	427.0
2007	0	0	0	0	0	66.00	0	33.00	0.00	0	0	0
	411.0	367.0	288.0	206.0	428.0		71.0	106.0		247.0	616.0	
2008	0	0	0	0	0	72.00	0	0	49.00	0	0	

Aplicando Regresión Lineal en aquellos casos en que sí se tienen los datos de precipitación mensual en otra estación cercana y para el mismo año, se obtienen algunos de los datos faltantes en cada estación. Cuadros 17, 18, 19 y 20.

Cuadro 17. Precipitación Mensual Estación Arrayanales (mm). Con Datos hallados mediante Regresión Lineal.

AÑO						ME	S					
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
	268.0	324.0	155.0	189.0	161.0			34.0	192.0	236.0	335.0	356.0
1999	0	0	0	0	0	43.00	3.00	0	0	0	0	0
	478.0	304.0	181.0	103.0	103.0		64.0			169.0	270.0	146.0
2000	0	0	0	0	0	83.00	0	9.00	88.00	0	0	0
	127.0	143.0	122.0							160.0	269.0	246.0
2001	0	0	0	40.00	54.00	0.00	0.00	0.00	50.00	0	0	0
	212.4	133.0	167.0	222.0		129.0	10.0	59.0		200.0		380.0
2002	8	0	0	0	92.00	0	0	0	51.00	0	84.00	0
2003	116.0	143.0	311.0	274.0	16.00	106.0						334.0

	0	0	0	0		0						0
												357.2
2004												6
	286.1	206.7	175.3	155.4	344.0				163.7	234.8	218.3	251.4
2005	4	5	2	8	3	47.97	0.00	0.00	5	7	3	1
		117.4		147.2						331.3	524.8	299.3
2006	82.70	3	82.70	1	28.12	36.39	0.00	0.00	0.00	5	7	7
	166.5			241.4	191.8		18.1	49.6		375.4		229.0
2007	0	67.81	97.59	8	6	54.58	9	2	0.00	6	99.24	8
	238.1	196.0	126.5	124.0	105.8		22.3	74.4			181.9	163.1
2008	8	0	3	5	6	38.87	3	3	29.77	72.78	4	6

Cuadro 18. Precipitación Mensual Estación El Diviso (mm). Con Datos hallados mediante Regresión Lineal.

AÑO	51011 1211					М	ES					
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
	284.0	389.1	169.0	228.0	165.0			116.0	647.0	974.0	1186.0	343.0
1999	0	7	0	0	0	34.00	0.00	0	0	0	0	0
	450.3	291.3	225.6	142.6	115.0		25.0		120.0	122.0		105.0
2000	3	3	7	7	0	40.00	0	28.00	0	0	74.00	0
	125.6	127.6	125.6				26.6			159.0		331.4
2001	7	7	7	49.67	63.33	36.00	7	2.33	60.00	0	463.00	6
	112.7	122.3	191.1	315.0		137.0				120.0		484.0
2002	2	3	7	0	50.00	0	0.00	0.00	16.00	0	171.00	0
	168.0	131.0	270.0	329.0		114.6						
2003	0	0	0	0	52.00	7						
	204.0			343.0	122.0		74.0			356.0		383.0
2004	0	57.00	55.00	0	0	0.00	0	0.00	40.00	0	581.00	0
	290.6	171.0	117.8	107.9	174.0		19.6		127.0	297.6		293.0
2005	7	0	1	7	0	56.27	7	3.33	0	7	367.00	0
	177.0	123.0	228.0	221.0	102.0	104.0	37.0			133.0		294.0
2006	0	0	0	0	0	0	0	2.00	5.00	0	268.00	0
		101.5		255.0	155.0		45.0			338.5		314.0
2007	91.00	0	85.00	0	0	54.00	0	48.00	8.00	0	289.50	0
	282.0	180.0	243.0	212.0	268.0		28.0					219.0
2008	0	0	0	0	0	65.00	0	61.00	30.00	72.00	263.00	3

Cuadro 19. Precipitación Mensual Estación El Lago (mm). Con Datos hallados mediante Regresión Lineal.

AÑO						MI	ES					
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
	347.0	428.0	221.0	312.0	181.0	103.0			251.0	273.0	465.0	396.0
1999	0	0	0	0	0	0	5.00	53.00	0	0	0	0
	310.0	292.0	269.0	141.0	205.0	110.0	67.0		135.0	155.0	251.0	243.0
2000	0	0	0	0	0	0	0	41.00	0	0	0	0
		109.0					62.0			171.0	271.0	264.0
2001	80.00	0	67.00	46.00	77.00	38.00	0	0.00	49.67	0	0	0
	119.0	169.0	245.0	352.0			28.0			271.0		265.0
2002	0	0	0	0	93.00	81.00	0	44.00	80.00	0	62.00	0
	137.0	109.0	198.0	120.0		141.0						
2003	0	0	0	0	51.00	0						
												206.0
2004												0
	344.0	152.0	118.0		197.0		28.0		158.0	372.0	284.0	295.0
2005	0	0	0	90.90	0	50.00	0	3.00	0	0	0	0
	158.0	168.0	238.0	219.0	130.0		51.0			257.0	344.0	107.0
2006	0	0	0	0	0	91.67	0	0.67	4.33	0	0	0
		148.0	188.0	338.0	194.0		22.0			463.0	392.0	353.0
2007	77.00	0	0	0	0	51.00	0	60.00	26.00	0	0	0
	364.0	302.0	256.0	246.0	264.0	132.0	66.0	120.0	122.0	232.0	532.0	357.0
2008	0	0	0	0	0	0	0	0	0	0	0	0

Cuadro 20. Precipitación Mensual Estación San Pedro (mm). Con Datos hallados mediante Regresión Lineal.

AÑO						М	S					
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC
	329.0	415.5	180.0	215.0	161.0		39.0		216.0	252.0	536.0	467.5
1999	0	0	0	0	0	55.00	0	41.00	0	0	0	0
	563.0	278.0	227.0	184.0	161.0		50.0		119.0	173.0	344.0	184.0
2000	0	0	0	0	0	56.00	0	22.00	0	0	0	0
	170.0	131.0	188.0				18.0			158.0	350.0	291.2
2001	0	0	0	63.00	59.00	70.00	0	7.00	39.00	0	0	4
	227.0		161.5	238.0	119.0	166.0	11.0			231.0	107.0	391.0
2002	0	65.00	0	0	0	0	0	37.00	69.00	0	0	0
	127.0	146.0	342.0	269.0								
2003	0	0	0	0	24.00	97.00						
												228.0
2004												0
	355.0	236.0	205.4	139.0	117.0		31.0		124.0	379.0	331.0	432.0
2005	0	0	4	0	0	91.05	0	7.00	0	0	0	0
	269.0	210.0	281.0	323.0	160.0	149.0	34.0			211.0	340.0	381.0
2006	0	0	0	0	0	0	0	0.00	8.00	0	0	0
	134.0	163.0	123.0	230.0	220.0		37.0			475.0	351.0	427.0
2007	0	0	0	0	0	66.00	0	33.00	0.00	0	0	0

	411.0	367.0	288.0	206.0	428.0		71.0	106.0		247.0	616.0	369.7
2008	0	0	0	0	0	72.00	0	0	49.00	0	0	7

En este punto del problema, ya no se puede seguir aplicando el método de Regresión Lineal porque no se cuenta con información para los mismos años en las 4 estaciones; entonces se procede a encontrar el resto de datos faltantes usando el Método Racional, que se explica para la estación Arrayanales y de igual manera se aplica en las otras 3 estaciones.

9.3.3 Método racional

Entre los diferentes métodos aplicados para determinar datos faltantes de lluvia en los registros pluviométricos, se puede mencionar el Método Racional, el cual es propuesto por José Manuel Guevara en el trabajo titulado: Métodos de estimación y ajuste de datos climáticos¹². Con los datos mensuales de lluvia de la estación Arrayanales, se ejemplifica la aplicación del método racional, al calcular el mes de enero de 2004.

Estación Arrayanales

Cálculo de los porcentajes de lluvia en meses con datos faltantes: se observa que en el Cuadro 21, para el mes de Enero de 2004 no hay dato de lluvia, por lo tanto se calcula el porcentaje de lluvia para el mes de Enero en los años 1999, 2000, 2001, 2002, 2003, 2005, 2006, 2007 y 2008, asumiendo que el 100% es el total anual de cada año (en el caso de 2003 a pesar de

¹² GUEVARA, JOSE MANUEL. Métodos de estimación de datos climáticos. Universidad Central de Venezuela. Consejo de Desarrollo Científico y Humanístico. 1987

que enero cuenta con dato de lluvia, no se puede determinar el porcentaje, ya que los meses de Julio, Agosto, Septiembre, Octubre y Noviembre no cuentan con datos de lluvia y por lo tanto se desconoce el total anual para 2003).

Cuadro 21. Registro de Precipitación (mm). Estación Arrayanales.

Cu	auro 21.	regist	o uc i i	ccipitat	ion (iiii	11). L3ta	CIOII 71	IIayai	iaics.				
						ME	S						
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
1999	268.00	324.00	155.00	189.00	161.00	43.00	3.00	34.00	192.00	236.00	335.00	356.00	2296.00
2000	478.00	304.00	181.00	103.00	103.00	83.00	64.00	9.00	88.00	169.00	270.00	146.00	1998.00
2001	127.00	143.00	122.00	40.00	54.00	0.00	0.00	0.00	50.00	160.00	269.00	246.00	1211.00
2002	212.48	133.00	167.00	222.00	92.00	129.00	10.00	59.00	51.00	200.00	84.00	380.00	1739.48
2003	116.00	143.00	311.00	274.00	16.00	106.00						334.00	
2004												357.26	
2005	286.14	206.75	175.32	155.48	344.03	47.97	0.00	0.00	163.75	234.87	218.33	251.41	2084.04
2006	82.70	117.43	82.70	147.21	28.12	36.39	0.00	0.00	0.00	331.35	524.87	299.37	1650.14
2007	166.50	67.81	97.59	241.48	191.86	54.58	18.19	49.62	0.00	375.46	99.24	229.08	1591.42
2008	238.18	196.00	126.53	124.05	105.86	38.87	22.33	74.43	29.77	72.78	181.94	163.16	1373.89

A modo de ejemplo se muestra el cálculo del porcentaje de lluvia de Enero de 1999.

% de Enero (1999) = (268mm*100%) / 2296 mm = 11.67%

De esta manera se calculan los porcentajes para el resto de los años y para los demás meses en los que hay datos faltantes y se obtienen los resultados plasmados en el Cuadro 22.

Cuadro 22. Porcentajes (%) y Promedios de los Porcentajes de lluvia en meses con datos faltantes. Estación Arrayanales.

1411411	tobi Ebta	CIOII II.	i i u j u i i	uico.									
						М	ES						
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
1999	11.67	14.11	6.75	8.23	7.01	1.87	0.13	1.48	8.36	10.28	14.59		100.00

2000	23.92	15.22	9.06	5.15	5.15	4.15	3.20	0.45	4.40	8.46	13.51	100.00
2001	10.49	11.81	10.07	3.30	4.46	0.00	0.00	0.00	4.13	13.21	22.21	100.00
2002	12.22	7.65	9.60	12.76	5.29	7.42	0.57	3.39	2.93	11.50	4.83	100.00
2003												100.00
2004												100.00
2005	13.73	9.92	8.41	7.46	16.51	2.30	0.00	0.00	7.86	11.27	10.48	100.00
2006	5.01	7.12	5.01	8.92	1.70	2.21	0.00	0.00	0.00	20.08	31.81	100.00
2007	10.46	4.26	6.13	15.17	12.06	3.43	1.14	3.12	0.00	23.59	6.24	100.00
2008	17.34	14.27	9.21	9.03	7.70	2.83	1.63	5.42	2.17	5.30	13.24	100.00
Σ	104.83	84.35	64.25	70.03	59.88	24.20	6.67	13.86	29.84	103.69	116.90	100.00
Prom	13.10	10.54	8.03	8.75	7.49	3.03	0.83	1.73	3.73	12.96	14.61	100.00

Promedio mensual de los porcentajes: una vez calculados los porcentajes mensuales en los años con los datos completos, se calcula un promedio mensual, tal como se muestra en el Cuadro 22; y se asume ese promedio como el porcentaje de lluvia caída en el mes con dato faltante; por ejemplo, se asume que 13.10 corresponde con el porcentaje de lluvia del mes de Enero del año 2004.

Cálculo de datos faltantes: una vez que se asume como porcentaje de lluvia mensual el promedio estimado, es posible estimar los datos faltantes, para ello solo basta sumar los datos mensuales de lluvia existentes para el año en que se estimará un dato faltantes y se calcula el porcentaje de esos meses, para posteriormente aplicar una simple regla de tres. A modo de ejemplo se muestra el cálculo para el mes de Enero de 2004:

- Porcentaje de Iluvia asumido para Enero de 2004 = 13.10%
- ∑ de las precipitaciones mensuales existentes del año 2004 = 357.26mm

- \sum de los porcentajes promedios de los meses con datos faltantes en 2004 = 13.10% + 10.54 + 8.03% + 8.75% + 7.49% + 3.03% + 0.83% + 1.73% + 3.73% + 12.96% + 14.61% = 84.81%
- Porcentaje de lluvia de los meses con datos del año 2004 = 100% -84.81% = 15.19%
- El valor de Enero se calcula como: (13.10%*357.26mm)/15.19% = 308.10mm

Para el cálculo del resto de meses del año 2004 se procede de la misma manera.

En el caso del mes de Julio de 2003 se procede de la misma manera, sin embargo los valores cambiarán por tratarse de un año diferente.

En el Cuadro 23 se muestran tanto los datos suministrados por la División Ambiental como los valores estimados por el método racional, observándose que el estimar los datos mensuales es posible determinar los valores anuales, en este caso de los años 2003 y 2004.

Cuadro 23. Registro de Precipitación Completa (mm). Estación Arrayanales.

AÑO						ME	S						
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
	268.0	324.0	155.0	189.0	161.0			34.0	192.0	236.0	335.0	356.0	2296.0
1999	0	0	0	0	0	43.00	3.00	0	0	0	0	0	0
	478.0	304.0	181.0	103.0	103.0		64.0			169.0	270.0	146.0	1998.0
2000	0	0	0	0	0	83.00	0	9.00	88.00	0	0	0	0
	127.0	143.0	122.0							160.0	269.0	246.0	1211.0
2001	0	0	0	40.00	54.00	0.00	0.00	0.00	50.00	0	0	0	0
	212.4	133.0	167.0	222.0		129.0	10.0	59.0		200.0		380.0	1739.4
2002	8	0	0	0	92.00	0	0	0	51.00	0	84.00	0	8

	116.0	143.0	311.0	274.0		106.0	16.3	34.0		254.7	287.2	334.0	1965.6
2003	0	0	0	0	16.00	0	1	5	73.33	6	2	0	6
	308.1	247.9	188.8	205.8	176.0		19.6	40.7		304.8	343.6	357.2	2351.9
2004	0	8	9	8	5	71.15	2	4	87.74	4	9	6	5
	286.1	206.7	175.3	155.4	344.0				163.7	234.8	218.3	251.4	2084.0
2005	4	5	2	8	3	47.97	0.00	0.00	5	7	3	1	4
		117.4		147.2						331.3	524.8	299.3	1650.1
2006	82.70	3	82.70	1	28.12	36.39	0.00	0.00	0.00	5	7	7	4
	166.5			241.4	191.8		18.1	49.6		375.4		229.0	1591.4
2007	0	67.81	97.59	8	6	54.58	9	2	0.00	6	99.24	8	2
	238.1	196.0	126.5	124.0	105.8		22.3	74.4			181.9	163.1	1373.8
2008	8	0	3	5	6	38.87	3	3	29.77	72.78	4	6	9

El mismo proceso se aplica a las Estaciones El Diviso, Cuadros 24, 25 y 26; Estación El Lago, Cuadros 27, 28 y 29; Y Estación San Pedro, Cuadros 30, 31 y 32.

Estación El Diviso

Cuadro 24. Registro de Precipitación (mm). Estación El Diviso.

AÑO		Ü	o de I I	•	,		ES						
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
	284.0	389.1	169.0	228.0	165.0			116.0	647.0	974.0	1186.0	343.0	4535.1
1999	0	7	0	0	0	34.00	0.00	0	0	0	0	0	7
	450.3	291.3	225.6	142.6	115.0		25.0		120.0	122.0		105.0	1739.0
2000	3	3	7	7	0	40.00	0	28.00	0	0	74.00	0	0
	125.6	127.6	125.6				26.6			159.0		331.4	1570.4
2001	7	7	7	49.67	63.33	36.00	7	2.33	60.00	0	463.00	6	6
	112.7	122.3	191.1	315.0		137.0				120.0		484.0	1719.2
2002	2	3	7	0	50.00	0	0.00	0.00	16.00	0	171.00	0	2
	168.0	131.0	270.0	329.0		114.6							
2003	0	0	0	0	52.00	7							
	204.0			343.0	122.0		74.0			356.0		383.0	2215.0
2004	0	57.00	55.00	0	0	0.00	0	0.00	40.00	0	581.00	0	0
	290.6	171.0	117.8	107.9	174.0		19.6		127.0	297.6		293.0	2025.3
2005	7	0	1	7	0	56.27	7	3.33	0	7	367.00	0	8
	177.0	123.0	228.0	221.0	102.0	104.0	37.0			133.0		294.0	1694.0
2006	0	0	0	0	0	0	0	2.00	5.00	0	268.00	0	0
		101.5		255.0	155.0		45.0			338.5		314.0	1784.5
2007	91.00	0	85.00	0	0	54.00	0	48.00	8.00	0	289.50	0	0
	282.0	180.0	243.0	212.0	268.0		28.0					219.0	1923.0
2008	0	0	0	0	0	65.00	0	61.00	30.00	72.00	263.00	3	3

Cuadro 25. Porcentajes (%) y Promedios de los Porcentajes de lluvia en meses con datos faltantes. Estación El Diviso.

Tartarit	artantes. Estacion El Diviso.												
	MES												
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
1999							0.00	2.56	14.27	21.48	26.15	7.56	100.00
2000							1.44	1.61	6.90	7.02	4.26	6.04	100.00
2001							1.70	0.15	3.82	10.12	29.48	21.11	100.00
2002							0.00	0.00	0.93	6.98	9.95	28.15	100.00
2003													100.00
2004							3.34	0.00	1.81	16.07	26.23	17.29	100.00
2005							0.97	0.16	6.27	14.70	18.12	14.47	100.00
2006							2.18	0.12	0.30	7.85	15.82	17.36	100.00
2007							2.52	2.69	0.45	18.97	16.22	17.60	100.00
2008							1.46	3.17	1.56	3.74	13.68	11.39	100.00
Σ							13.61	10.46	36.30	106.93	159.90	140.96	
Prom							1.51	1.16	4.03	11.88	17.77	15.66	

Cuadro 26. Registro de Precipitación Completa (mm). Estación El Diviso.

AÑO	MES												
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
	284.0	389.1	169.0	228.0	165.0			116.0	647.0	974.0	1186.0	343.0	4535.1
1999	0	7	0	0	0	34.00	0.00	0	0	0	0	0	7
	450.3	291.3	225.6	142.6	115.0		25.0		120.0	122.0		105.0	1739.0
2000	3	3	7	7	0	40.00	0	28.00	0	0	74.00	0	0
	125.6	127.6	125.6				26.6			159.0		331.4	1570.4
2001	7	7	7	49.67	63.33	36.00	7	2.33	60.00	0	463.00	6	6
	112.7	122.3	191.1	315.0		137.0				120.0		484.0	1719.2
2002	2	3	7	0	50.00	0	0.00	0.00	16.00	0	171.00	0	2
	168.0	131.0	270.0	329.0		114.6	33.5			263.6		347.5	2218.9
2003	0	0	0	0	52.00	7	5	25.79	89.49	4	394.25	4	4
	204.0			343.0	122.0		74.0			356.0		383.0	2215.0
2004	0	57.00	55.00	0	0	0.00	0	0.00	40.00	0	581.00	0	0
	290.6	171.0	117.8	107.9	174.0		19.6		127.0	297.6		293.0	2025.3
2005	7	0	1	7	0	56.27	7	3.33	0	7	367.00	0	8
	177.0	123.0	228.0	221.0	102.0	104.0	37.0			133.0		294.0	1694.0
2006	0	0	0	0	0	0	0	2.00	5.00	0	268.00	0	0
		101.5		255.0	155.0		45.0			338.5		314.0	1784.5
2007	91.00	0	85.00	0	0	54.00	0	48.00	8.00	0	289.50	0	0
	282.0	180.0	243.0	212.0	268.0		28.0					219.0	1923.0
2008	0	0	0	0	0	65.00	0	61.00	30.00	72.00	263.00	3	3

Estación El Lago

Cuad	ro 27. i	kegistro	ae Pre	ecipitac	ión (mı	n). Esta	acion I	u Lago	•				
AÑO						M	S						
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
	347.0	428.0	221.0	312.0	181.0	103.0			251.0	273.0	465.0	396.0	3035.0
1999	0	0	0	0	0	0	5.00	53.00	0	0	0	0	0
	310.0	292.0	269.0	141.0	205.0	110.0	67.0		135.0	155.0	251.0	243.0	2219.0
2000	0	0	0	0	0	0	0	41.00	0	0	0	0	0
		109.0					62.0			171.0	271.0	264.0	1234.6
2001	80.00	0	67.00	46.00	77.00	38.00	0	0.00	49.67	0	0	0	7
	119.0	169.0	245.0	352.0			28.0			271.0		265.0	1809.0
2002	0	0	0	0	93.00	81.00	0	44.00	80.00	0	62.00	0	0
	137.0	109.0	198.0	120.0		141.0							
2003	0	0	0	0	51.00	0							
												206.0	
2004												0	
	344.0	152.0	118.0		197.0		28.0		158.0	372.0	284.0	295.0	2091.9
2005	0	0	0	90.90	0	50.00	0	3.00	0	0	0	0	0
	158.0	168.0	238.0	219.0	130.0		51.0			257.0	344.0	107.0	1768.6
2006	0	0	0	0	0	91.67	0	0.67	4.33	0	0	0	7
		148.0	188.0	338.0	194.0		22.0			463.0	392.0	353.0	2312.0
2007	77.00	0	0	0	0	51.00	0	60.00	26.00	0	0	0	0
	364.0	302.0	256.0	246.0	264.0	132.0	66.0	120.0	122.0	232.0	532.0	357.0	2993.0
2008	0	0	0	0	0	0	0	0	0	0	0	0	0

Cuadro 28. Porcentajes (%) y Promedios de los Porcentajes de lluvia en meses con datos faltantes. Estación El Lago.

	ics. Est												
							MES						
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
1999	11.43	14.10	7.28	10.28	5.96	3.39	0.16	1.75	8.27	9.00	15.32	13.05	100.00
2000	13.97	13.16	12.12	6.35	9.24	4.96	3.02	1.85	6.08	6.99	11.31	10.95	100.00
2001	6.48	8.83	5.43	3.73	6.24	3.08	5.02	0.00	4.02	13.85	21.95	21.38	100.00
2002	6.58	9.34	13.54	19.46	5.14	4.48	1.55	2.43	4.42	14.98	3.43	14.65	100.00
2003													

2004													
2005	16.44	7.27	5.64	4.35	9.42	2.39	1.34	0.14	7.55	17.78	13.58	14.10	100.00
2006	8.93	9.50	13.46	12.38	7.35	5.18	2.88	0.04	0.25	14.53	19.45	6.05	100.00
2007	3.33	6.40	8.13	14.62	8.39	2.21	0.95	2.60	1.12	20.03	16.96	15.27	100.00
2008	12.16	10.09	8.55	8.22	8.82	4.41	2.21	4.01	4.08	7.75	17.77	11.93	100.00
Σ	79.33	78.69	74.16	79.38	60.56	30.10	17.13	12.81	35.80	104.90	119.76	107.38	
Prom	9.92	9.84	9.27	9.92	7.57	3.76	2.14	1.60	4.47	13.11	14.97	13.42	

Cuadro 29. Registro de Precipitación Completa (mm). Estación El Lago.

Cuau	10 27. 1	xegisti (ueire	cipitac	ion Coi	пріста	(111111).	Estacio)II IEI I	agu.			
AÑO						М	S						
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	Total
	347.0	428.0	221.0	312.0	181.0	103.0			251.0	273.0	465.0	396.0	3035.0
1999	0	0	0	0	0	0	5.00	53.00	0	0	0	0	0
	310.0	292.0	269.0	141.0	205.0	110.0	67.0		135.0	155.0	251.0	243.0	2219.0
2000	0	0	0	0	0	0	0	41.00	0	0	0	0	0
		109.0					62.0			171.0	271.0	264.0	1234.6
2001	80.00	0	67.00	46.00	77.00	38.00	0	0.00	49.67	0	0	0	7
	119.0	169.0	245.0	352.0			28.0			271.0		265.0	1809.0
2002	0	0	0	0	93.00	81.00	0	44.00	80.00	0	62.00	0	0
	137.0	109.0	198.0	120.0		141.0	32.2			197.1	225.0	201.8	1503.6
2003	0	0	0	0	51.00	0	0	24.08	67.28	6	9	1	3
	152.2	150.9	142.2	152.3	116.2		32.8			201.2	229.8	206.0	1534.9
2004	2	8	9	2	0	57.75	7	24.58	68.69	8	0	0	9
	344.0	152.0	118.0		197.0		28.0		158.0	372.0	284.0	295.0	2091.9
2005	0	0	0	90.90	0	50.00	0	3.00	0	0	0	0	0
	158.0	168.0	238.0	219.0	130.0		51.0			257.0	344.0	107.0	1768.6
2006	0	0	0	0	0	91.67	0	0.67	4.33	0	0	0	7
		148.0	188.0	338.0	194.0		22.0			463.0	392.0	353.0	2312.0
2007	77.00	0	0	0	0	51.00	0	60.00	26.00	0	0	0	0
	364.0	302.0	256.0	246.0	264.0	132.0	66.0	120.0	122.0	232.0	532.0	357.0	2993.0
2008	0	0	0	0	0	0	0	0	0	0	0	0	0

Estación San Pedro

Cuadro 30. Registro de Precipitación (mm). Estación San Pedro.

AÑO		J		•	Ì	M	ES						
S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
	329.0	415.5	180.0	215.0	161.0		39.0		216.0	252.0	536.0	467.5	2907.0
1999	0	0	0	0	0	55.00	0	41.00	0	0	0	0	0
	563.0	278.0	227.0	184.0	161.0		50.0		119.0	173.0	344.0	184.0	2361.0
2000	0	0	0	0	0	56.00	0	22.00	0	0	0	0	0
	170.0	131.0	188.0				18.0			158.0	350.0	291.2	1544.2
2001	0	0	0	63.00	59.00	70.00	0	7.00	39.00	0	0	4	4
	227.0		161.5	238.0	119.0	166.0	11.0			231.0	107.0	391.0	1822.5
2002	0	65.00	0	0	0	0	0	37.00	69.00	0	0	0	0
	127.0	146.0	342.0	269.0									
2003	0	0	0	0	24.00	97.00							
												228.0	
2004												0	
	355.0	236.0	205.4	139.0	117.0		31.0		124.0	379.0	331.0	432.0	2447.4
2005	0	0	4	0	0	91.05	0	7.00	0	0	0	0	9
	269.0	210.0	281.0	323.0	160.0	149.0	34.0			211.0	340.0	381.0	2366.0
2006	0	0	0	0	0	0	0	0.00	8.00	0	0	0	0
	134.0	163.0	123.0	230.0	220.0		37.0			475.0	351.0	427.0	2259.0
2007	0	0	0	0	0	66.00	0	33.00	0.00	0	0	0	0
	411.0	367.0	288.0	206.0	428.0		71.0	106.0		247.0	616.0	369.7	3230.7
2008	0	0	0	0	0	72.00	0	0	49.00	0	0	7	7

Cuadro 31. Porcentajes (%) y Promedios de los Porcentajes de lluvia en meses con datos faltantes. Estación San Pedro.

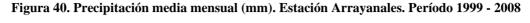
						M	ES						
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	Total
1999	11.32	14.29	6.19	7.40	5.54	1.89	1.34	1.41	7.43	8.67	18.44	16.08	100.00
2000	23.85	11.77	9.61	7.79	6.82	2.37	2.12	0.93	5.04	7.33	14.57	7.79	100.00
2001	11.01	8.48	12.17	4.08	3.82	4.53	1.17	0.45	2.53	10.23	22.66	18.86	100.00
2002	12.46	3.57	8.86	13.06	6.53	9.11	0.60	2.03	3.79	12.67	5.87	21.45	100.00
2003													
2004													
2005	14.50	9.64	8.39	5.68	4.78	3.72	1.27	0.29	5.07	15.49	13.52	17.65	100.00
2006	11.37	8.88	11.88	13.65	6.76	6.30	1.44	0.00	0.34	8.92	14.37	16.10	100.00
2007	5.93	7.22	5.44	10.18	9.74	2.92	1.64	1.46	0.00	21.03	15.54	18.90	100.00
2008	12.72	11.36	8.91	6.38	13.25	2.23	2.20	3.28	1.52	7.65	19.07	11.45	100.00
Σ	103.15	75.21	71.47	68.22	57.24	33.07	11.77	9.85	25.70	91.98	124.04	128.29	
Prom	12.89	9.40	8.93	8.53	7.15	4.13	1.47	1.23	3.21	11.50	15.51	16.04	

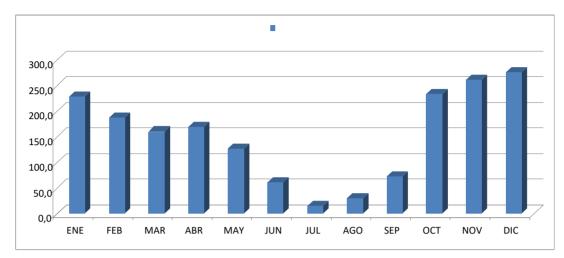
Cuadro 32. Registro de Precipitación Completa (mm). Estación San Pedro.

	1002.1	xegisii (, 40 110	<i>с</i> трище	1011 001	Mi		Listaer	JII DUII	- caror			
AÑO S	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ост	NOV	DIC	Total
	329.0	415.5	180.0	215.0	161.0		39.0		216.0	252.0	536.0	467.5	2907.0
1999	0	0	0	0	0	55.00	0	41.00	0	0	0	0	0
	563.0	278.0	227.0	184.0	161.0		50.0		119.0	173.0	344.0	184.0	2361.0
2000	0	0	0	0	0	56.00	0	22.00	0	0	0	0	0
	170.0	131.0	188.0				18.0			158.0	350.0	291.2	1544.2
2001	0	0	0	63.00	59.00	70.00	0	7.00	39.00	0	0	4	4
	227.0		161.5	238.0	119.0	166.0	11.0			231.0	107.0	391.0	1822.5
2002	0	65.00	0	0	0	0	0	37.00	69.00	0	0	0	0
	127.0	146.0	342.0	269.0			28.9			226.3	305.2	315.7	1968.7
2003	0	0	0	0	24.00	97.00	6	24.25	63.25	4	5	0	5
	183.2	133.6	126.9	121.2	101.7		20.9			163.4	220.4	228.0	1421.5
2004	9	4	9	1	0	58.76	1	17.51	45.67	3	0	0	0
	355.0	236.0	205.4	139.0	117.0		31.0		124.0	379.0	331.0	432.0	2447.4
2005	0	0	4	0	0	91.05	0	7.00	0	0	0	0	9
	269.0	210.0	281.0	323.0	160.0	149.0	34.0			211.0	340.0	381.0	2366.0
2006	0	0	0	0	0	0	0	0.00	8.00	0	0	0	0
	134.0	163.0	123.0	230.0	220.0		37.0			475.0	351.0	427.0	2259.0
2007	0	0	0	0	0	66.00	0	33.00	0.00	0	0	0	0
	411.0	367.0	288.0	206.0	428.0		71.0	106.0		247.0	616.0	369.7	3230.7
2008	0	0	0	0	0	72.00	0	0	49.00	0	0	7	7

9.4 PRECIPITACIÓN MENSUAL, MEDIA MENSUAL, ANUAL Y MEDIA ANUAL.

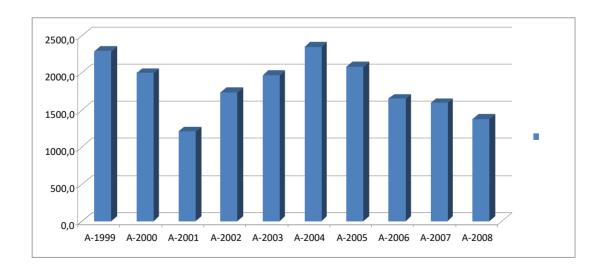
Una vez obtenidos todos los datos mensuales de cada estación para el período comprendido entre los años 1999 – 2008, se pueden calcular los valores de precipitaciones: media mensual PMM, anual PA y media anual PMA para cada Estación, y que se presentan a continuación, en los Cuadros 33 a 36.


Estación Arrayanales.


Cuadro 33. Precipitación mensual, media mensual, anual y media anual (mm). Estación

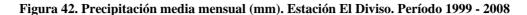
Arrayanales.

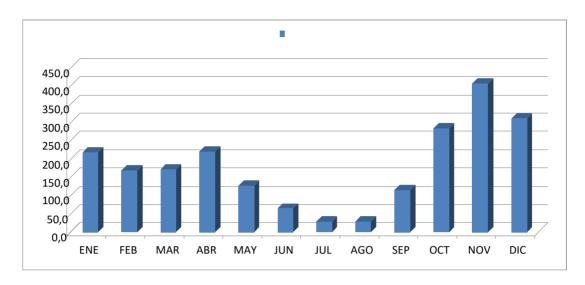
Arraya	indics.												
		1	1	P	RECIPIT	ACION I	MENSU	AL (PN	1)		1	1	
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	PA
1999	268.0	324.0	155.0	189.0	161.0	43.0	3.0	34.0	192.0	236.0	335.0	356.0	2296.0
2000	478.0	304.0	181.0	103.0	103.0	83.0	64.0	9.0	88.0	169.0	270.0	146.0	1998.0
2001	127.0	143.0	122.0	40.0	54.0	0.0	0.0	0.0	50.0	160.0	269.0	246.0	1211.0
2002	212.5	133.0	167.0	222.0	92.0	129.0	10.0	59.0	51.0	200.0	84.0	380.0	1739.5
2003	116.0	143.0	311.0	274.0	16.0	106.0	16.3	34.0	73.3	254.8	287.2	334.0	1965.7
2004	308.1	248.0	188.9	205.9	176.0	71.2	19.6	40.7	87.7	304.8	343.7	357.3	2351.9
2005	286.1	206.8	175.3	155.5	344.0	48.0	0.0	0.0	163.7	234.9	218.3	251.4	2084.0
2006	82.7	117.4	82.7	147.2	28.1	36.4	0.0	0.0	0.0	331.4	524.9	299.4	1650.1
2007	166.5	67.8	97.6	241.5	191.9	54.6	18.2	49.6	0.0	375.5	99.2	229.1	1591.4
2008	238.2	196.0	126.5	124.1	105.9	38.9	22.3	74.4	29.8	72.8	181.9	163.2	1373.9
													PMA
РММ	228.3	188.3	160.7	170.2	127.2	61.0	15.3	30.1	73.6	233.9	261.3	276.2	1826.2


Con el Cuadro 33 se obtienen las Figuras 40 y 41, que muestran el comportamiento de la precipitación media mensual y la precipitación anual de la Estación Arrayanales en el período comprendido entre los años 1999 y 2008.

En la Figura 40 se observa una PMM máxima igual a 276.20 mm que corresponde al mes de Diciembre y una PMM mínima de 15.30 mm que corresponde al mes de Julio.

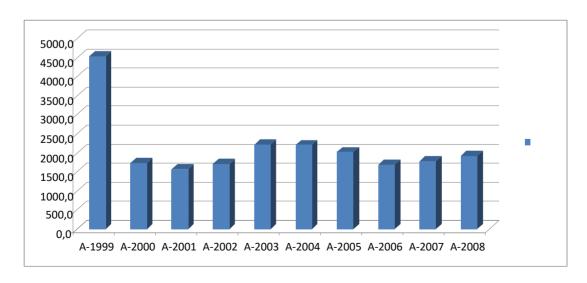
Figura 41. Precipitación anual (mm). Estación Arrayanales. Período 1999 - 2008


En la Figura 41 se observa una PA máximo de 2351.95 mm correspondiente al año 2004 y una PA mínima de 1211 mm que corresponde al año 2001.


Del mismo modo se procede para las estaciones El Diviso, El Lago y San Pedro, cuyos procesos y resultados se muestran a continuación.

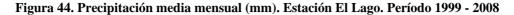
Estación El Diviso.

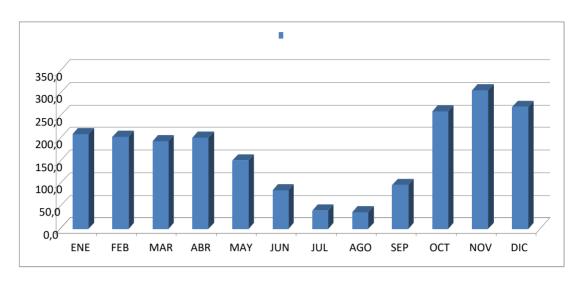
Cuadro 34. Precipitación mensual, media mensual, anual y media anual (mm). Estación El Diviso.


Diviso	•												
					PRECIPI	TACION	MENS	UAL (PN	1)				
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	PA
1999	284.0	389.2	169.0	228.0	165.0	34.0	0.0	116.0	647.0	974.0	1186.0	343.0	4535.2
2000	450.3	291.3	225.7	142.7	115.0	40.0	25.0	28.0	120.0	122.0	74.0	105.0	1739.0
2001	125.7	127.7	125.7	49.7	63.3	36.0	26.7	2.3	60.0	159.0	463.0	331.5	1570.5
2002	112.7	122.3	191.2	315.0	50.0	137.0	0.0	0.0	16.0	120.0	171.0	484.0	1719.2
2003	168.0	131.0	270.0	329.0	52.0	114.7	33.6	25.8	89.5	263.6	394.3	347.5	2218.9
2004	204.0	57.0	55.0	343.0	122.0	0.0	74.0	0.0	40.0	356.0	581.0	383.0	2215.0
2005	290.7	171.0	117.8	108.0	174.0	56.3	19.7	3.3	127.0	297.7	367.0	293.0	2025.4
2006	177.0	123.0	228.0	221.0	102.0	104.0	37.0	2.0	5.0	133.0	268.0	294.0	1694.0
2007	91.0	101.5	85.0	255.0	155.0	54.0	45.0	48.0	8.0	338.5	289.5	314.0	1784.5
2008	282.0	180.0	243.0	212.0	268.0	65.0	28.0	61.0	30.0	72.0	263.0	219.0	1923.0
													PMA
PMM	218.5	169.4	171.0	220.3	126.6	64.1	28.9	28.6	114.2	283.6	405.7	311.4	2142.5

En la Figura 42 se observa una PMM máxima igual a 405.7 mm que corresponde al mes de Noviembre y una PMM mínima de 28.6 mm que corresponde al mes de Agosto.

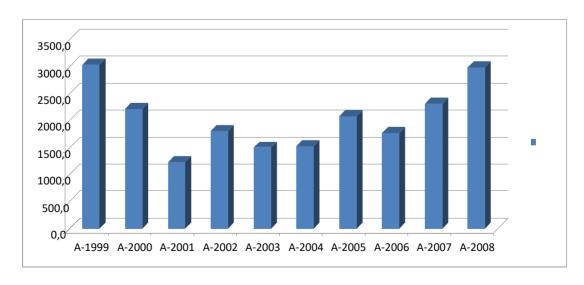
Figura 43. Precipitación anual (mm). Estación El Diviso. Período 1999 - 2008




En la Figura 43 se observa una PA máxima de 4535.2 mm correspondiente al año 1999 y una PA mínima de 1570.5 mm que corresponde al año 2001.

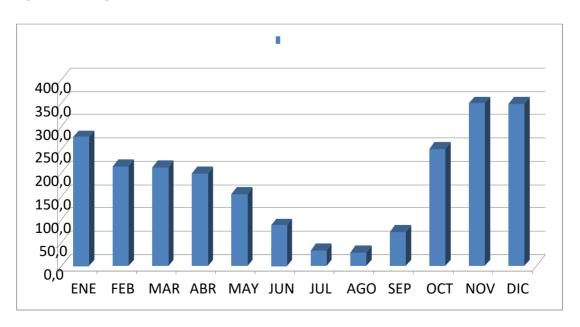
Estación El Lago.

Cuadro 35. Precipitación mensual, media mensual, anual y media anual (mm). Estación El Lago.


				ļ	PRECIPIT	ACION	MENSL	JAL (PM)				
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	PA
1999	347.0	428.0	221.0	312.0	181.0	103.0	5.0	53.0	251.0	273.0	465.0	396.0	3035.0
2000	310.0	292.0	269.0	141.0	205.0	110.0	67.0	41.0	135.0	155.0	251.0	243.0	2219.0
2001	80.0	109.0	67.0	46.0	77.0	38.0	62.0	0.0	49.7	171.0	271.0	264.0	1234.7
2002	119.0	169.0	245.0	352.0	93.0	81.0	28.0	44.0	80.0	271.0	62.0	265.0	1809.0
2003	137.0	109.0	198.0	120.0	51.0	141.0	32.2	24.1	67.3	197.2	225.1	201.8	1503.6
2004	152.2	151.0	142.3	152.3	116.2	57.7	32.9	24.6	68.7	201.3	229.8	206.0	1535.0
2005	344.0	152.0	118.0	90.9	197.0	50.0	28.0	3.0	158.0	372.0	284.0	295.0	2091.9
2006	158.0	168.0	238.0	219.0	130.0	91.7	51.0	0.7	4.3	257.0	344.0	107.0	1768.7
2007	77.0	148.0	188.0	338.0	194.0	51.0	22.0	60.0	26.0	463.0	392.0	353.0	2312.0
2008	364.0	302.0	256.0	246.0	264.0	132.0	66.0	120.0	122.0	232.0	532.0	357.0	2993.0
													PMA
PMM	208.8	202.8	194.2	201.7	150.8	85.5	39.4	37.0	96.2	259.2	305.6	268.8	2050.2

En la Figura 44 se observa una PMM máxima igual a 305.6 mm que corresponde al mes de Noviembre y una PMM mínima de 37 que corresponde al mes de Agosto.

Figura 45. Precipitación anual (mm). Estación El Lago. Período 1999 - 2008



En la Figura 45 se observa una PA máxima de 3035 mm correspondiente al año 1999 y una PA mínima de 1234.7 mm que corresponde al año 2001.

Cuadro 36. Precipitación mensual, media mensual, anual y media anual (mm). Estación San Pedro.

				Р	RECIPIT	ACION	MENSI	JAL (PN	1)				
AÑOS	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SEP	ОСТ	NOV	DIC	PA
1999	329.0	415.5	180.0	215.0	161.0	55.0	39.0	41.0	216.0	252.0	536.0	467.5	2907.0
2000	563.0	278.0	227.0	184.0	161.0	56.0	50.0	22.0	119.0	173.0	344.0	184.0	2361.0
2001	170.0	131.0	188.0	63.0	59.0	70.0	18.0	7.0	39.0	158.0	350.0	291.2	1544.2
2002	227.0	65.0	161.5	238.0	119.0	166.0	11.0	37.0	69.0	231.0	107.0	391.0	1822.5
2003	127.0	146.0	342.0	269.0	24.0	97.0	29.0	24.2	63.3	226.3	305.2	315.7	1968.7
2004	183.3	133.6	127.0	121.2	101.7	58.8	20.9	17.5	45.7	163.4	220.4	228.0	1421.5
2005	355.0	236.0	205.4	139.0	117.0	91.1	31.0	7.0	124.0	379.0	331.0	432.0	2447.5
2006	269.0	210.0	281.0	323.0	160.0	149.0	34.0	0.0	8.0	211.0	340.0	381.0	2366.0
2007	134.0	163.0	123.0	230.0	220.0	66.0	37.0	33.0	0.0	475.0	351.0	427.0	2259.0
2008	411.0	367.0	288.0	206.0	428.0	72.0	71.0	106.0	49.0	247.0	616.0	369.8	3230.8
													PMA
PMM	276.8	214.5	212.3	198.8	155.1	88.1	34.1	29.5	73.3	251.6	350.1	348.7	2232.8

Figura 46. Precipitación media mensual (mm). Estación San Pedro. Período 1999 - 2008

En la Figura 46 se observa una PMM máxima igual a 350.1 mm que corresponde al mes de Noviembre y una PMM mínima de 29.5 mm que corresponde al mes de Agosto.

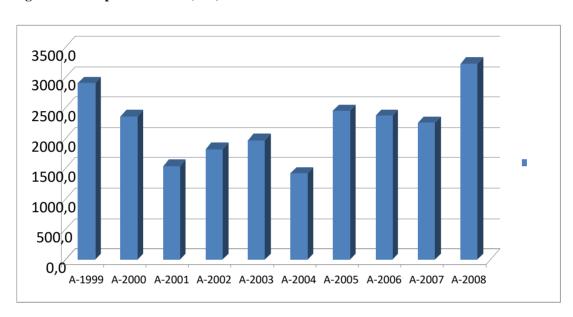


Figura 47. Precipitación anual (mm). Estación San Pedro. Período 1999 - 2008

En la Figura 47 se observa una PA máxima de 3230.8 mm correspondiente al año 2008 y una PA mínima de 1421.5 mm que corresponde al año 2004.

10 ESTIMACIÓN DE PÉRDIDAS EN LA LÍNEA DE CONDUCCIÓN

10.1 DETERMINACIÓN DE LAS POSIBLES PÉRDIDAS QUE SE PUEDEN PRESENTAR A LO LARGO DE LA LÍNEA DE CONDUCCIÓN

Desde hace un tiempo, personal de la Empresa que monitorea la cantidad de agua que entra al sistema de conducción Florida II - El Tablazo, ha notado que existe una diferencia de caudal entre la entrada y la salida de aproximadamente 150 L/s. Para calcular las posibles pérdidas de agua que entran al sistema de conducción, inicialmente se comparó el caudal de agua que entra a la tubería (en los desarenadores de Florida II, Figura 48) y el caudal que sale de la misma (en la planta de tratamiento de El Tablazo). Debido a las diferencias de Caudales que se han registrado, se procedió a buscar las posibles causas que generaron estas variaciones. notándose que la lectura que se hace en la regleta del vertedero no es la apropiada para la curva de calibración establecida inicialmente, dado que el aforo del vertedero se realizó con 2 tanques funcionando y uno en reposo, y no 3 tanques como se está haciendo actualmente.

A lo anterior se suman otras situaciones que hacen que el Caudal que entra a la conducción no sea el mismo que llega a la planta de tratamiento. En el cuadro 37 se puede observar que la diferencia promedio de caudales, cuando entran en funcionamiento 2 ó 3 tanques desarenadores, registrados en el inicio de la línea de conducción es de 133.148 l/s.

Figura 48. Vertedero en tanques desarenadores de Florida II. Entrada a la línea de conducción

Para cumplir con el propósito de establecer las razones que causan la diferencias de caudal entre el inicio y el final de la línea de conducción, se procedió inicialmente a realizar un recorrido por toda la línea de conducción, que permitiera verificar el estado de la misma. En el desarrollo de esta actividad se buscaban posibles daños físicos y conexiones fraudulentas.

Durante el recorrido se pudo establecer que la pérdida de aproximadamente 150 L/s podría ser generada por 5 diferentes causas que se analizan a continuación:

Lectura de la regleta de los desarenadores: un detalle que se pudo apreciar y constatar con el Ingeniero Luis Jorge González, quien aforó el vertedero de los tanques desarenadores de Florida II, es que la curva de calibración se obtuvo con 2 tanques desarenadores funcionando y el tercero cerrado, pero al momento de la inspección se pudo observar que se encuentran en funcionamiento los 3 tanques al mismo tiempo, Figura 49, situación que es constante hace muchos meses y por la cual se ha generado un error en el cálculo del caudal que entra a la conducción. Para verificar que efectivamente la lectura de la regleta con 2 tanques en funcionamiento era diferente a la lectura que se registra cuando se tienen 3 tanques en funcionamiento, se procedió a tomar lecturas en las dos situaciones descritas; de lo anterior se observaron diferencias en el caudal que van desde 36.255 L/s hasta 253.205 L/s, y el promedio de las 24 lecturas que se realizaron es de 133.148 L/s. Cuadro 35; demostrando que la diferencia de caudales obedece a un error humano.

Figura 49. Tanques Desarenadores. Florida II.

Cuadro 37. Comparación de Caudales operando 2 y 3 desarenadores. Regleta de Desarenadotes de Florida II.

L1.				,	
EMPRE	SA DE ACUEI			ADO DE POPAYÁN	I S.A. E.S.P.
			RO DE CAUD	ALES	
	CTO EL TABL				
	TURA HIDRÁU		TEDERO DES	ARENADORES FL	ORIDA II
MES:		AÑO:			
					•
	3 TANQ			ANQUES	DIFERENCIA
Medición	ALTURA DE	CAUDAL	ALTURA DE	CAUDAL	DE CAUDAL
	CARGA cm	l/s	CARGA cm	l/s	l/s
1	24	1154.156	25	1227.038	72.881
2	23.5	1118.278	25	1227.038	108.76
3	24	1154.156	24.5	1190.411	36.255
4	24	1154.156	24.5	1190.411	36.255
5	24.5	1190.411	25.5	1264.032	73.621
6	20	877.997	22	1012.936	134.939
7	20	877.997	22	1012.936	134.939
8	20	877.997	21.5	978.601	100.604
9	19	812.977	21.5	978.601	165.624
10	19	812.977	21	944.663	131.686
11	19	812.977	20.5	911.126	98.149
12	19	812.977	21	944.663	131.686
13	18.5	781.098	21	944.663	163.565
14	19	812.977	21.5	978.601	165.624
15	19	812.977	21.5	978601	165.624
16	16.5	657.921	18.5	781.098	123.177
17	16	628.243	18.5	781.098	152.855
18	16.5	657.921	19	812.977	155.056
19	16	628.243	18.5	781.098	152.855
20	16.5	657.921	19	812.977	155.056
21	19	812.977	20.5	911.126	98.149
22	16.5	657.921	20.5	911.126	253.205
23	17.5	718.629	20.5	911.126	192.497
24	17.5	718.629	20.5	911.126	192.497
				CAUDAL MEDIO	133.148

La ecuación de la curva de calibración del vertedero cuando se tienen 2 tanques en funcionamiento es:

 $\mathbf{Q}=(9.8163*H^{1.5})*1000,$ donde \mathbf{Q} es el Caudal en L/s y H es la Altura de Carga en cm.

Daño en la línea de conducción: a 300 metros aguas abajo del paso sobre el río Cauca se puede observar una fuga de agua debido a un daño en el

canal de conducción, Figura 50. Aunque la fuga no es de consideración, se suma al posible faltante de agua en la planta de El Tablazo.

Figura 50. Daño en conducción.

Válvula de purga: ubicada a 35 metros aguas arriba de la bocatoma del río Cauca, se encuentra abierta de manera continua. Figura 51. Derrama 20 L/s de agua aproximadamente.

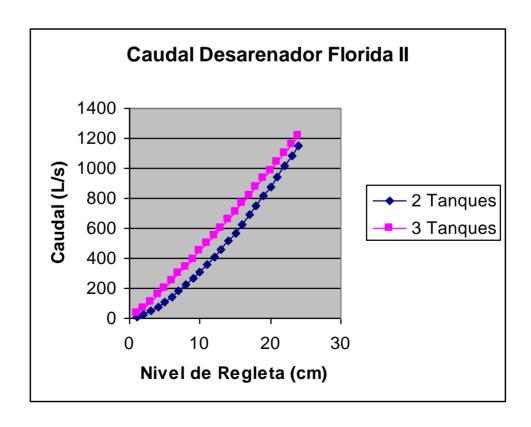
Figura 51. Medición Volumétrica de Caudal Purgado.

Vertedero de excesos en desarenador del río Cauca: ubicado a 400 metros aguas abajo de la bocatoma del río Cauca, Figuras 52 y 53. En este punto se pierden 32 L/s aproximadamente.

Figura 53. Vertedero de Excesos.

Acometida del vivero de la CRC: aunque no se pudo ubicar el punto exacto donde se encuentra esta conexión, se sabe que el agua de ésta se usa en el riego de las plantas del vivero de la Corporación Autónoma regional del Cauca. Figura 54.

Figura 54. Vivero CRC. Fotografía Satelital.


Fuente: Google. maps.com

Debido a todo lo anterior, con la suma de todas estas situaciones se puede inferir que en realidad no existe una fuga de agua que no es percibida a simple vista; la diferencia de caudales en la entrada y salida de la línea de conducción obedece en gran manera al uso de 3 tanques desarenadores simultáneamente y no a 2 tanques como se realizó el aforo de los mismos.

Por lo anterior se procedió a realizar la curva de calibración del vertedero de los tanques desarenadores de Florida II, usando los 3 tanques a la vez. Para esto se usó la información del Cuadro 37, en donde se sabe que el Caudal que entra a los desarenadores de Florida II, siempre y cuando no exista rebose, es independiente del número de tanques que estén en funcionamiento; la variación se presenta en el nivel de la regleta; por esto, los valores de la regleta con 3 tanques en funcionamiento se relacionan con los caudales obtenidos para las mismas mediciones pero con 2 tanques funcionando.

Los curvas de calibración obtenidas para las 2 situaciones se muestran en la Figura 55.

Figura 55. Curvas de Aforo del Vertedero de Florida II.

La ecuación de aforo del vertedero para el funcionamiento de 2 tangues es:

$$Q = (9.8163*H^{1.5})*1000 \text{ L/s, con R}^2 = 1.$$

Y la ecuación de aforo del vertedero para 3 tanques en funcionamiento es:

$$Q = (31.978*H^{1.1449})*1000 \text{ L/s, con } R^2 = 0.991$$

Donde Q es el caudal en L/s y H es la altura de carga en cm.

Claramente se observa que se debe cambiar la ecuación usada para calcular el Caudal que ingresa a la línea de conducción, debido a que se presentan diferencias considerables al usar la ecuación de aforo para 2 tanques, si al momento de realizar la lectura se está operando con 3 tanques a la vez.

Para que se pueda hacer una comparación confiable de los caudales de entrada y salida de la conducción, el daño en la misma, Figura 50, debe ser reparado cuanto antes; la válvula de purga, Figura 51, debe estar cerrada en ese momento; el vertedero de excesos, Figura 53, debe ser aforado; y la acometida del vivero de la CRC, debe ser cuantificada mediante el uso de un contador.

11. CONCLUSIONES

- Los resultados del laboratorio muestran que la calidad del agua receptada en la Bocatoma del río Las Piedras está dentro de los rangos permisibles del Decreto 475 de 1998 para agua segura, a excepción de los valores registrados para la Turbiedad. En cuanto a parámetros Microbiológicos se observó que los resultados obtenidos para Coliformes Totales y Coli Fecal, indican que estas aguas no son aptas para el consumo directo de la población, por lo tanto necesitan tratamiento bacteriológico.
- De acuerdo a la información analizada se observa que el caudal medio anual y el caudal mínimo anual han tenido incrementos de 7% y 50% respectivamente, para el período 1999 – 2005 con respecto al período 1965 – 2005; mientras que el caudal máximo anual presentó una disminución de 49.3%.
- Se comprobó que no existe un daño considerable en la línea de conducción entre los tanques desarenadores de Florida II y la Planta de tratamiento de Tablazo. La supuesta diferencia de caudales se debió a que la curva de calibración se hizo para 2 tanques en funcionamiento y 1 en reposo, situación que no corresponde con la actualidad, generando un error promedio de 133.148 L/s. en el cálculo de caudales. A lo anterior se le suman 52 L/s que se pierden en la válvula de purga y en el desarenador del río Cauca

12. RECOMENDACIONES

- 1. Se recomienda que se lleve un archivo independiente y ordenado del Registro de Precipitación para cada Estación Pluviométrica, procesando y sistematizando la información más importante. Así mismo, recoger las planillas de registros pluviométricos cada mes para evitar la pérdida de las mismas.
- 2. Para llevar un mejor control del caudal que entra al sistema y el que llega a la planta de tratamiento, la empresa de Acueducto acordó instalar con el apoyo del Grupo de Estudios Ambientales GEA de la Universidad del Cauca, un sensor para registrar los niveles en el vertedero de los desarenadores de Florida II antes de finalizar el mes de Marzo de 2010; y la Empresa de Acueducto instalará un Macromedidor a la entrada de la Planta de Tratamiento El Tablazo antes de finalizar el mes de Mayo de 2010; por lo que se recomienda que el sensor de caudal sea programado de una vez con la ecuación de aforo obtenida para los 3 tanques funcionando. A su vez, se recomienda al Funcionario de Florida II que haga las respectivas anotaciones de los días y horas en que suspenda alguno de los tanques para realizar labores de aseo de los mismos, esto con el objeto de corregir los datos que registra el sensor.

3. Se recomienda a las personas que registran los datos diarios de Precipitación en cada una de las estaciones, que realicen el mantenimiento de las mismas, y que comuniquen de manera inmediata al funcionario encargado de la División Ambiental sobre daños o inconvenientes que se puedan presentar.

13. REFERENCIAS BIBLIOGRAFICAS

- ARBOLEDA VALENCIA, Jorge. Teoría y práctica de la purificación del agua. Tomo 1. tercera edición. Acodal. Mc Graw Hill. Santa fé de Bogotá, D:C: Colombia. ISBN: 958-41-0013-0 362 págs.
- Biblioteca de Consulta Microsoft ® Encarta ® 2005. © 1993-2004
 Microsoft Corporación. Reservados todos los derechos.
- CEPIS (2000). Aporte de diferentes mecanismos de remoción de sustancias orgánicas en aguas residuales industriales. En: http://www.cepis.ops-oms.org/bvsaidis/aresidua/i-168.pdf, visitada en Junio, 2004.
- Decreto 1594 del 26 de junio de 1984, en sus artículos 37 y 38,
- Decreto 1594/84. Ministerio de Desarrollo económico. Límites permisibles de contaminación para aguas superficiales de acuerdo con su uso y las condiciones de descarga de los vertimientos líquidos.
- Decreto 475/1998. Legislación Ambiental Colombiana. Capítulo XVIII:
 Normas Técnicas de Calidad de Agua Potable.
- Departamento de sanidad del estado de Nueva York. Manual de tratamiento de aguas. Limusa, Noriega Editores. México, D.F. 2000 ISBN: 968-18-0463-5. 202 págs.
- Documentos relacionados con tratamiento de aguas.
 www.phillywater.orgwqrwqr04-swqr04_spanish.htm.htm
- GUEVARA, JOSE MANUEL. Métodos de estimación de datos climáticos.
 Universidad Central de Venezuela. Consejo de Desarrollo Científico y Humanístico. 1987. ISBN: 13: 9789800001134

- http://www.ellaboratorio.8k.com. Guías de laboratorio. Análisis fisicoquímicos.
- IDEAM .GUIA PARA EL MONITOREO DE VERTIMIENTOS, AGUAS SUPERFICIALES Y SUBTERRANEAS. EN: http://www.ideam.gov.co/biblio/paginaabierta/guia.pdf.
- IDEAM. Guía para el monitoreo y seguimiento del agua. Bogotá, Julio de 2004. www.ideam.gov.co
- Internet Explorer. CONTAMINACION AMBIENTAL URBANA POR VERTIMIENTOS LIQUIDOS. http://www.ellaboratorio.8k.com/
- LESUR, Luís. Manual de purificación del agua. México. Editorial Trillas.
 1998. ISBN: 968-24-3495-5 96 págs.
- LÓPEZ GALÁN, Jorge Enrique (2004) Guía practica para tratamiento de desechos de los análisis de DQO. Universidad del Valle. Santiago de Cali. Páginas 1-3
- MADIGAN, Michael T, MARTINKO, Jhon M. BROCK, Biología de los Microorganismos. Pearson Educación. 2004.
- Ministerio de Desarrollo Económico, Dirección de Agua Potable y Saneamiento Básico. NORMA RAS. Titulo B. SISTEMAS DE ACUEDUCTO. BOGOTA D.C., NOVIEMBRE DE 2.000 República de Colombia
- Ministerio de Desarrollo Económico, Dirección de Agua Potable y Saneamiento Básico. NORMA RAS. Titulo C. SISTEMAS DE POTABILIZACIÓN. BOGOTA D.C., NOVIEMBRE DE 2.000 República de Colombia
- Ministerio de Desarrollo Económico. Reglamento técnico del sector agua potable y Saneamiento Básico. Definición del nivel de complejidad y

evaluación de la población, la dotación y la demanda del agua. Guía RAS-001. ISBN: 958-8137-16-0

- Normas NTC-ISO 5667.
- Organización Panamericana de la Salud. Agua; fugas y medidores.
 OPS/HEP/99/35 24 págs.
- Plan de ordenación y manejo de la cuenca del río Piedras 2006.
 Corporación Autónoma regional del Cauca. CRC. Oficina asesora de planeación Equipo de cuencas.
- RIGOLA LAPEÑA, Miguel. Tratamiento de aguas industriales. Alfaomega
 Marcombo. Barcelona _ España.1999. 157 págs. ISBN: 84-267-0740-8.
- SAWYER, C.; Mc CARTY, P. Chemistry for Environmental Engineering.
 McGraw Hill, New York, 1996.
- GREENBERG, Arnold E. Standard methods for the examination of water and wastewater: centenal edition. Estados Unidos. 2005.
- TEBBUTT, T.H.Y. Fundamentos de control de la calidad del agua.
 Editorial Limusa. Noriega Editores. México 1999. 239 Págs. ISBN: 968-18-3317-1
- UNDA OPAZO, Francisco. Ingeniería sanitaria aplicada a saneamiento y salud pública. Limusa, Noriega Editores. México, D.F. 2002. 968 págs. ISBN: 968-18-4751-2
- Universidad del Valle. Cinara. Operación y mantenimiento de plantas de tratamiento por filtración en múltiples etapas. Manual para operadores.
 Cali – Colombia. ISBN: 958-8030-19-6
- WINKLER, Michael A. tratamiento biológico de aguas de desecho. México. Editorial Limusa. Noriega Editores. 1999. 338 págs. ISBN: 968-18-1926-8

14. ANEXOS

Anexo A. Calidad de la Fuente.

			Nivel de Co		uordo al grada	do Dolución
Parámatas	Norma Técnic a NTC	s según Estánd ar Method	Fuente Aceptable	2. Fuente Regular	uerdo al grado d 3. Fuente Deficiente	4. Fuente muy deficiente
Parámetros DBO 5 días	3630	ASTM		<u> </u>		
Promedio mensual mg/L	3030		≤ 1.5	1.5 - 2.5	2.5 - 4	> 4
Máximo diario mg/L			1.0 - 3.0	3.0 - 4.0	4.0 - 6.0	> 6
Coliformes totales (NMP/100 mL)						
Promedio mensual		D - 3870	0 - 50	50 - 500	500 - 5000	> 5000
Oxígeno disuelto mg/L	4705	D - 888	≥ 4	≥ 4	≥ 4	< 4
pH promedio	3651	D - 1293	6.0 - 8.5	5.0 - 9.0	3.8 - 10.5	
Turbiedad (UNT)	4707	D - 1889	< 2	2.0 - 40	40 - 150	≥ 150
Color verdadero (UPC)			< 10	10.0 - 20	20 - 40	≥ 40
Gusto y Olor		D - 1292	Inofensivo	Inofensiv o	Inofensivo	Inaceptable
Cloruros (mg/L - Cl)		D - 512	< 50	50 - 150	150 - 200	300
Fluoruros (mg/L - F)		D - 1179	< 1.2	< 1.2	< 1.2	> 1.7
GRADO DE TRATAI	MIENTO					
Necesita un tratamiento o	convencio	onal	NO	NO	Sí, hay veces (ver requisitos para uso FLDE: literal C.7.4.3.3)	ØI
Necesita unos tratamiento	s específ	icos	NO	NO	NO	SI
Procesos de tratamient			(1) = Desinfecció n + Estabilizació n	(2) = Filtración Lenta o Filtración Directa + (1)	(3) = Pretratamient 0 + [Coagulación + Sedimentaci ón + Filtración Rápida] o [Filtración Lenta Diversas Etapas] + (1)	(4) = (3) + Tratamient os Específicos

Fuente: RAS 2000. Título C. Calidad de la Fuente.

Anexo B. Calidad del Agua del Río Las Piedras. Año 2001

THICKO D.	CONTROL CALIDAD DEL AGUA POCATOMA PIO LAS PIEDRAS 2001																	
	CONTROL CALIDAD DEL AGUA. BOCATOMA RIO LAS PIEDRAS 2001 NOMBRE DE LA EMPRESA: ACUEDUCTO Y ALCANTARILLADO DE POPAYAN S.A.E.S.P.																	
			NON	IBRE	DE LA	EMPR					ANIAR	ILLADO DE	: POPA	YAN S	.A.E.S			
ANALISIS			1		1	1	FIS	SICO C	UIMI	cos	1						ROBIOLOGI	cos
PARAMETRO	Conductividad	Turbiedad	Color aparente	Ħ	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	D.Q.0 ₅	D.B.Os	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	ms/sn	N.T.U.	U/Pt. Co.	Unds	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	mg/L	mg/L	mg/L	mg/L	mg/L	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
ENE	73.2	0.7	20.0	7.0	36.0	41.0		36.5		6.4								
FEB	69.8	2.6	30.0	7.5	32.0	37.0		34.9	0.0	6.8	10.0	Incontable	0.0			10.0	Incontable	0.0
MAR	77.5	8.0	20.0	7.0	38.0	34.0		38.7		6.3	6.0	Incontable				6.0	Incontable	
ABR	90.8	0.3	10.0	7.5	30.0	38.0		45.4		7.1								
MAY	82.6	0.5	20.0	7.7	37.0	47.0		41.2	0.1	7.2	16.0	2200.0	2.0			16.0	2200.0	2.0
JUN																		
JUL																		
AGO	78.4	0.6	10.0	7.5	49.0	64.0		39.2	0.0	6.7	49.0	>100.0				49.0	>100.0	
SEP																		
ОСТ	93.0	0.9	20.0	7.5	50.0	57.0		46.5	0.1	6.2	520.0	9600.0	123.0			520.0	9600.0	123.0
NOV																		
DIC																		

Anexo C. Calidad del Agua del Río Las Piedras. Año 2002

CONTROL CALIDAD DEL AGUA. BOCATOMA RIO LAS PIEDRAS 2002																		
												ADO DE						
ANALISIS			INCIVII	DIXE D		IVIFICE		CO QU			MINILLA	ADO DE	FOFAT	AN 3.7	1.L.J.F		OBIOLOG	icos
	ad		ē															
PARAMETRO	Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	D.Q.05	D.B.O ₅	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	mS/cm																U.F.C/10 0 cm ³	
ENE	56.4	0.7	15.0	7.5	39.0	37.0	0.0	0.0	0.0	0.0	37.0	>100.0	34.0			37.0	>100.0	34.0
FEB	82.6	0.5	20.0	7.7	37.0	47.0	0.0	41.2	0.1	7.2		0.0	0.0				0.0	0.0
MAR												0.0	0.0				0.0	0.0
ABR	50.6	19.6	20.0	7.5	28.0	25.0	0.0	25.3	0.0	7.9	98.0	980.0	0.0			98.0	980.0	0.0
MAY																		
JUN																		
JUL												0.0	0.0				0.0	0.0
AGO	81.0	0.7	30.0	7.0	35.0	38.0		40.5			49.0	>100.0	0.0			49.0	>100.0	0.0
SEP												0.0	0.0				0.0	0.0
ОСТ												0.0	0.0				0.0	0.0
NOV		93.0	0.9	20.0	7.5	50.0	57.0		46.5	0.1	520.0	9600.0	123.0			520.0	9600.0	123.0
DIC												0.0	0.0				0.0	0.0

Anexo D. Calidad del Agua del Río Las Piedras. Año 2003

CONTROL CALIDAD DEL AGUA. BOCATOMA RIO LAS PIEDRAS 2003 NOMBRE DE LA EMPRESA: ACUEDUCTO Y ALCANTARILLADO DE POPAYAN S.A.E.S.P.																		
ANALISIS							FISIC	O QUI	MICO	S						MICR	OBIOLOG	icos
PARAMETRO	Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	₀.0.0	D.B.O ₅	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	mS/cm	N.T.U.	U/Pt. Co.	Unds	mg/L CaCo ₃	mg/L CaCo₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	mg/L	mg/L	mg/L	mg/L	mg/L	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
ENE		0.8	7.8	7.0	50.1	38.8	0.0		0.0		0.0		0.0			0.0		0.0
FEB		8.0	7.8	7.0	32.8	38.8	0.0		0.0		0.0		0.0			0.0		0.0
MAR		1.8	10.1	7.1	38.5	47.5	0.0		0.0		0.0		0.0			0.0		0.0
ABR		2.1	12.3	6.9	42.1	49.5	0.0		0.0		0.0		0.0			0.0		0.0
MAY		1.7	7.2	7.0	34.2	37.6	0.0		0.0		0.0		0.0			0.0		0.0
JUN		1.8	8.2	7.3	36.8	39.2	0.0		0.0		0.0		0.0			0.0		0.0
JUL		1.2	9.1	7.0	42.0	41	0.0		0.0		0.0		0.0			0.0		0.0
AGO		1.2	8.5	7.0	43.2	47.1	0.0		0.0		0.0		0.0			0.0		0.0
SEP		2.1	10.3	6.9	47.2	52.6	0.0		0.0		0.0		0.0			0.0		0.0
ОСТ		1.9	11.0	7.0	48.5	53.1	0.0		0.0		0.0		0.0			0.0		0.0
NOV		2.1	10.8	6.9	49.2	56.2	0.0		0.0		0.0		0.0			0.0		0.0
DIC		2.3	6.4	6.9	28.9	38.6	0.0		0.0		0.0		0.0			0.0		0.0

Anexo E. Calidad del Agua del Río Las Piedras. Año 2004

CONTROL CALIDAD DEL AGUA. BOCATOMA RIO LAS PIEDRAS 2004

NOMBRE DE LA EMPRESA: ACUEDUCTO Y ALCANTARILLADO DE POPAYAN S.A.E.S.P.

ANALISIS	FISICO QUIMICOS															OBIOLOGIC	os	
PARAMETRO	Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	D.Q.O ₅	D.B.O ₅	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	m2/srl	N.T.U.	U/Pt. Co.	Nuds	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	mg/L	mg/L	mg/L	mg/L	mg/L	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
ENE	45.8	6.0	28.8	7.0	35.0	26.0	0.2	21.9	0.05	5.5			0.0			>100.0	>10000.0	31.0
FEB	46.7	5.0	11.0	7.5	62.0	27.0	0.2	29.1	0.02	6.4						>1000.0	>1000.0	>100.0
MAR	75.4	3.5	9.5	7.5	72.0	28.0	0.2	37.5	0.04	7.9						>1000.0	>100000.0	68.0
ABR	85.4	4.0	10.0	7.5	42.0	43.0	0.1	41.5	0.04	8.5								
MAY	65.6	5.0	13.8	8.0	47.0	41.0	0.1	32.5	0.05	5.6			0.0			>10000.0	Pos	Pos
JUN	78.2	4.0	8.0	8.4	38.0	42.0	0.1	38.1	0.03	8.6						>10000.0	>100.0	43.0
JUL	72.2	3.0	10.2	7.5	45.0	0.3	0.2	41.1	0.06	5.4						>1000.0	>100.0	20.0
AGO	82.5	4.0	11.0	7.5	43.0	49.0	0.1	42.5	0.06	5.6	27.0	18.0	4.0	0.2	20.0	>1000.0	Pos	Pos
SEP	86.5	3.0	9.4	7.5	48.0	49.0	0.2	43.2	0.02	7.5			8.0	1.8	0.0	Pos	>10000.0	Pos
ОСТ	65.1	4.0	10.5	7.5	38.0	37.0	0.1	34.5	0.04	8.2			8.0	1.1		Pos	>10000.0	Pos
NOV	57.5	4.0	11.8	7.5	30.0	36.0	0.1	32.5	0.07	8.3						>100.0	>10000.0	>100.0
DIC	54.3	4.0	11.1	7.5	30.0	38.0	0.1	28.5	0.05	7.1						>101.0	>10001.0	>100.0

Anexo F. Calidad del Agua del Río Las Piedras. Año 2005

CONTROL CALIDAD DEL AGUA. BOCATOMA RIO LAS PIEDRAS 2005																		
	NOMBRE DE LA EMPRESA: ACUEDUCTO Y ALCANTARILLADO DE POPAYAN S.A.E.S.P.																	
ANALISIS							QUIM						_				OBIOLOGIC	cos
PARAMETRO	Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	D.Q.O ₅	D.B.O ₅	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	mɔ/srl	N.T.U.	U/Pt. Co.	Unds	mg/L CaCo ₃	mg/L CaCo₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	mg/L	mg/L	mg/L	mg/L	mg/L	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
ENE	45.8	6.0	29.8	7.0	24.0	25.0	0.1	22.9	0.03	5.7			0.0			>100.0	>10000.0	31.0
FEB	57.6	4.0	11.1	7.5	57.0	26.0	0.1	28.8	0.04	6.2						>1000.0	>1000.0	>100.0
MAR	75.4	3.2	9.3	7.5	72.0	28.0	0.1	37.7	0.04	7.9						>1000.0	>100000.0	68.0
ABR	82.8	4.0	10.7	7.5	38.0	43.0	0.2	41.4	0.08	8.8								
MAY	65.6	5.0	14.8	8.0	45.0	40.0	0.2	32.8	0.08	5.8			0.0			>10000.0	Pos	Pos
JUN	76.0	3.0	8.1	8.4	36.0	42.0	0.1	38.0	0.08	8.6						>1000.0	>100.0	43.0
JUL	72.2	4.0	10.3	7.5	45.0	0.3	36.1	0.0	8.90							>1000.0	>100.0	20.0
AGO	81.0	4.0	11.7	7.5	41.0	49.0	0.2	40.5	0.06	5.6	27.0	18.0	4.0	0.2	20.0	>1000.0	Pos	Pos
SEP	90.4	2.0	9.9	7.5	48.0	49.0	0.2	45.2	0.03	6.9			8.0	1.1			>10000.0	
ОСТ	65.6	5.0	14.8	8.0	45.0	40.0	0.2	41.4	0.08	8.8						>1000.0	Pos	Pos
NOV	59.2	4.0	11.6	7.5	28.0	36.0	0.1	29.6	0.08	8.6						>100.0	>10000.0	>100.0
DIC	57.6	4.0	11.1	7.5	57.0	26.0	0.1	28.8	0.04	6.2						>1000.0	>1000.0	>100.0

Anexo G. Calidad del Agua del Río Las Piedras. Año 2006

CONTROL CALIDAD DEL AGUA. BOCATOMA RIO LAS PIEDRAS 2006 NOMBRE DE LA EMPRESA: ACUEDUCTO Y ALCANTARILLADO DE POPAYAN S.A.E.S.P.																		
		NC	MBRE	DE L	A EMPI	RESA:	ACUE	DUCT	O Y ALC	ANTAI	RILLAI	DO DE	POP	AYAN	S.A.E	.S.P.		
ANALISIS						F	ISIC	O QUI	MICOS							MICR	OBIOLOGI	cos
PARAMETRO	Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	D.Q.O ₅	D.B.O ₅	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	mS/cm	N.T.U.	U/Pt. Co.	Unds	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	mg/L	mg/L	mg/L	mg/L	mg/L	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
ENE	64.2	4.0	11.1	7.8	37.7	27.0	0.1	32.1	0.08	7.8	2.0	3.0				6600.0	9100.0	600.0
FEB	63.0	5.0	12.6	7.7	30.0	24.0	0.2	31.5	0.1	7.7	48.0	32.0				>100.0	>10000.0	>100.0
MAR	82.0	9.0	19.2	7.2	27.0	21.0	0.1	41.0	0.0	6.9	30.0	20.0	0.0			>100.0	>10000.0	15.0
ABR	83.4	8.0	18.8	7.6	25.0	38.0	0.1	41.7	0.005	7.3	87.0	58.0		0.3	6.0	>1000.0	>10000.0	>100.0
MAY	62.8	2.2	4.8	7.4	39.0	27.0	0.1	31.4	0.0	6.8						>100.0	>1000.0	>100.0
JUN	60.4	3.0	10.6	7.6	34.0	29.0	0.3	30.2	0.0	7.8						>1000.0	>1000.0	70.0
JUL	85.2	1.0	2.4	7.5	46.0	38.0	0.1	42.6	0.005	8.5						89.0	>1000.0	29.0
AGO	80.4	4.0	10.8	7.9	44.0	33.0	0.1	40.2	0.005	8.2	0.5	0.3				6100.0	>10000.0	450.0
SEP	84.2	1.2	5.4	7.8	27.0	34.0	0.2	42.1	0.06	7.1	3.8	2.5				>100.0	>100.0	6.0
ОСТ	85.2	4.0	14.7	7.5	43.0	41.0	0.1	42.6	0.05	6.4						>100.0	>10000.0	30.0
NOV	63.6	0.3	6.3	7.6	35.0	47.0	0.1	31.8	0.6	7.4	0.5	0.3				>100.0	>1000.0	10.0
DIC		4.2	10	7.5	22.0	25.0				8.0								

Anexo H. Calidad del Agua del Río Las Piedras. Año 2007

CONTROL CALIDAD DEL AGUA. BOCATOMA RIO LAS PIEDRAS 2007

NOMBRE DE LA EMPRESA: ACUEDUCTO Y ALCANTARILLADO DE POPAYAN S.A.E.S.P.

ANAL 1010	FISICO QUIMICOS MICROBIOLOGICOS														20			
ANALISIS	- 5	ı	1	1	ı	FIS		QUIIVI	1003			1	1			MIC		OS
PARAMETRO	Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	D.Q.O ₅	D.B.O ₅	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	m2/srl	N.T.U.	U/Pt. Co.	Spun	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	^z ON	mg/L O ₂	J/gm	J/Bш	mg/L	mg/L	mg/L	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
ENE	64.2	4.0	11.1	7.8	37.7	27.0	0.1	32.1	0.08	7.8	2.0	3.0				6600.0	9100.0	600.0
FEB	60.6	18.0	35.5	7.6	35.0	40.0	0.2	30.3	0.06	6.8	0.4	0.6				910.0	>1000.0	680.0
MAR	76.4	6.0	14.8	7.5	39.0	34.0	0.1	38.2	0.04	8.4						>100.0	Incontables	>100.0
ABR									Falt	a de re	eactive	s						
MAY	61.0	9.0	24.8	7.9	31.0	34.0	0.1	30.5	0.04	6.7	0.6	0.4				>1000.0	Incontables	210.0
JUN	85.2	3.0	6.1	7.9	38.0	41.0	0.2	42.6	0.02	6.1	0.5	0.3				>100.0	>100.0	48.0
JUL	76.2	2.0	7.5	7.9	39.0	36.0	0.1	38.1	0.04	6.0	0.5	0.3				>100.0	>1000.0	98.0
AGO	81.4	4.1	13.4	7.7	41.0	41.0	0.2	40.7	0.05	7.4	0.4	0.6	2.0			>100.0	Incontables	74.0
SEP	88.4	2.0	7.4	7.9	47.0	57.0	0.1	44.2	0.04	7.9	2.4	1.6				2800.0	incontables	300.0
ОСТ	73.8	12.4	22.6	7.3	37.0	19.0	0.2	36.9	0.0	6.1	0.5	0.3				1400.0	2600.0	1200.0
NOV	72.0	11.5	21.5	7.5	38.0	34.0	0.1	38.0	0.04	6.7	0.6	0.4				2400.0	3600.0	20.0
DIC	61.0	9.0	24.6	7.5	31.0	34.0	0.1	30.5	0.04	6.7	0.6	0.4				>1000.0	Incontables	210.0

Anexo I. Calidad del Agua del Río Las Piedras. Año 2008

			ITROI						BOC	ATO	MA R	IO L	AS I	PIEC	RA	S 2008		
		N	OMBRE	DE LA	EMPR	ESA:	ACUE	DUCTO	Y ALC	ANTA	RILLAD	O DE	POPA	YAN	S.A.E	.S.P.		
					AN	ALISI	S FIS	ICO Q	UIMIC	os						MICR	OBIOLOGI	icos
PARAMETRO	Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	D.Q.O ₅	D.B.O ₅	Cloruros	Fosfatos	Sulfatos	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
	աշ/Տվ	N.T.U.	U/Pt. Co.	Unds	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	^z ON	mg/L O ₂	mg/L	mg/L	mg/L	mg/L	mg/L	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
ENE	40.8	25.0	45.0	8.2	32.0	26.0	0.1	20.4	0.02	7.3	13.1	1.9	8.0			>100.0	>1000.0	29.0
FEB	48.0	9.0	17.6	7.4	29.0	22.0	0.1	24.0	0.04	7.9	NA	NA	NA			1769.0	>1000.0	89.0
MAR	49.6	97.0	139.0	7.0	28.0	36.0	0.1	24.8	0.04	6.6	NA	NA	6			>100.0	738.0	>100.0
ABR	68.0	12.0	58.7	6.5	30.0	36.0	0.1	34.0	0.04	9.3	NA	NA	8			5400.0	10000.0	96.0
MAY	70.6	5.6	33.3	7.5	30.0	32.0	0.1	35.3	0.08	8.4	NA	NA	NA			2900.0	10000.0	100.0
JUN	60.4	11.0	29.5	7.6	32.0	22.0	0.1	30.2	0.05	7.9	NA	NA	NA			>1000.0	>100.0	>100.0
JUL	69.4	1.6	11.2	6.8	34.0	32.0	0.1	34.7	0.06	7.7	NA	NA	NA			>100.0	>100.0	30.0
AGO	75.8	5.6	19.5	7.7	37.0	31.0	0.2	37.9	0.10	7.9	1.5	1.0	NA			47.0	9600.0	90.0
SEP	77.20	1.9	14.1	7.7	38.0	38.0	0.1	38.6	>0.10	5.3	NA	NA	NA			9400.0	>10000.0	69.0
ОСТ	76.20	5.6	22.9	7.7	38.0	36.0	0.1	38.9		7.4	NA	NA	NA			17500.0	19300.0	133.0
NOV	188.0	33.4	57.1	7.40	30.0	21.0	0.3	24.7	NA	6.9	NA	NA	NA			29.0	23000.0	203.5
DIC	47.80	57.0	113.6	6.5	23.0	18.0	0.1	23.9	NA	7.5	NA	NA	NA			29.8	17600.0	172.3

Anexo J. Consolidado de Análisis Fisicoquímicos y Microbiológicos. Río Las Piedras. Período 2001 – 2008.

THERE	J. Consc	ilada ac	2 THAILS			•						2001 – 2008	•	
	_	70	1		ORMACIO		QUMICA I	BOCATON	IA RIO PIE	DRAS 2001	- 2008			1
		Conductividad	Turbiedad	Color aparente	Нd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
AÑO	MES	րՏ/cm	N.T.U.	U/Pt. Co.	Spun	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	NO2	mg/L O ₂	U.F.C/10 0 cm³	U.F.C/10 0 cm³	U.F.C/10 0 cm³
	ENE	73.2	0.7	20	7	36	41		36.5		6.4			
	FEB	69.8	2.6	30	7.5	32	37		34.9	0	6.8	10	Incontable	0
Α	MAR	77.5	0.8	20	7	38	34		38.7		6.3	6	Incontable	
Ñ	ABR	90.8	0.3	10	7.5	30	38		45.4		7.1			
0	MAY	82.6	0.5	20	7.7	37	47		41.2	0.1	7.2	16	2200	2
	JUN													
2	JUL													
0	AGO	78.4	0.6	10	7.5	49	64		39.2	0	6.7	49	>100	
0	SEP													
1	OCT	93	0.9	20	7.5	50	57		46.5	0.1	6.2	520	9600	123
	NOV													
	DIC													
	ENE	56.4	0.7	15	7.5	39	37	0.0	0	0	0	37	>100	34
	FEB	82.6	0.5	20	7.7	37	47	0.0	41.2	0.1	7.2		0	0
Α	MAR												0	0
Ñ	ABR	50.6	19.6	20	7.5	28	25	0.0	25.3	0	7.9	98	980	0
0	MAY													
	JUN													
2	JUL	_		_									0	0
0	AGO	81	0.7	30	7	35	38		40.5			49	>100	0
0	SEP												0	0
2	OCT												0	0
	NOV		93	0.9	20	7.5	50	57.0		46.5	0.1	520	9600	123
	DIC												0	0
	ENE		0.8	7.8	7	50.1	38.8	0		0		0		0
	FEB		0.8	7.8	7	32.8	38.8	0		0	-	0		0
A	MAR		1.8	10.1	7.1	38.5	47.5	0		0	-	0		0
Ñ	ABR		2.1	12.3	6.9	42.1	49.5	0		0	-	0		0
0	MAY		1.7	7.2	7	34.2	37.6	0		0		0		0

		Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
AÑO	MES	mS/cm	N.T.U.	U/Pt. Co.	Onds	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	U.F.C/100 cm³	U.F.C/100	U.F.C/100
	JUN		1.8	8.2	7.3	36.8	39.2	0		0		0		0
2	JUL		1.2	9.1	7	42.0	41	0		0		0		0
0	AGO		1.2	8.5	7	43.2	47.1	0		0		0		0
0	SEP		2.1	10.3	6.9	47.2	52.6	0		0		0		0
3	OCT		1.9	11	7	48.5	53.1	0		0		0		0
	NOV		2.1	10.8	6.9	49.2	56.2	0		0		0		0
	DIC		2.3	6.4	6.9	28.9	38.6	0		0		0		0
	ENE	45.8	6	28.8	7	35	26	0.2	21.9	0.05	5.5	>100	>10000	31
	FEB	46.7	5	11	7.5	62	27	0.2	29.1	0.02	6.4	>1000	>1000	>100
A	MAR	75.4	3.5	9.5	7.5	72	28	0.2	37.5	0.04	7.9	>1000	>100000	68
Ñ	ABR	85.4	4	10	7.5	42	43	0.1	41.5	0.04	8.5			
0	MAY	65.6	5	13.8	8	47	41	0.1	32.5	0.05	5.6	>10000	Pos	Pos
	JUN	78.2	4	8	8.4	38	42	0.1	38.1	0.03	8.6	>10000	>100	43
2	JUL	72.2	3	10.2	7.5	45	0.3	0.2	41.1	0.06	5.4	>1000	>100	20
0	AGO	82.5	4	11	7.5	43	49	0.1	42.5	0.06	5.6	>1000	Pos	Pos
0	SEP	86.5	3	9.4	7.5	48	49	0.2	43.2	0.02	7.5	Pos	>10000	Pos
4	OCT	65.1	4	10.5	7.5	38	37	0.1	34.5	0.04	8.2	Pos	>10000	Pos
	NOV	57.5	4	11.8	7.5	30	36	0.1	32.5	0.07	8.3	>100	>10000	>100
	DIC	54.3	4	11.1	7.5	30	38	0.1	28.5	0.05	7.1	>101	>10001	>100
	ENE	45.8	6	29.8	7	24	25	0.1	22.9	0.03	5.7	>100	>10000	31
1	FEB	57.6	4	11.1	7.5	57	26	0.1	28.8	0.04	6.2	>1000	>1000	>100
A	MAR	75.4	3.2	9.3	7.5	72	28	0.1	37.7	0.04	7.9	>1000	>100000	68
Ñ	ABR	82.8	4	10.7	7.5	38	43	0.2	41.4	0.08	8.8			
0	MAY	65.6	5	14.8	8	45	40	0.2	32.8	0.08	5.8	>10000	Positivo	Positivo
	JUN	76	3	8.1	8.4	36	42	0.1	38	0.08	8.6	>10000	>100	43
2	JUL	72.2	4	10.3	7.5	45	0.3	36.1	0	8.9		>1000	>100	20
0	AGO	81	4	11.7	7.5	41	49	0.2	40.5	0.06	5.6	>1000	Positivo	Positivo
0	SEP	90.4	2	9.9	7.5	48	49	0.2	45.2	0.03	6.9		>10000	
5	OCT	65.6	5	14.8	8	45	40	0.2	41.4	0.08	8.8	>1000	Positivo	Positivo
	NOV	59.2	4	11.6	7.5	28	36	0.1	29.6	0.08	8.6	>100	>10000	>100
	DIC	57.6	4	11.1	7.5	57	26	0.1	28.8	0.04	6.2	>1000	>1000	>100
	ENE	64.2	4	11.1	7.8	37.7	27	0.1	32.1	0.08	7.8	6600	9100	600

		Conductividad	Turbiedad	Color aparente	Hd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
AÑO	MES	mS/cm	N.T.U.	U/Pt. Co.	Unds	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	U.F.C/100 cm³	U.F.C/100	U.F.C/100 cm³
	FEB	63	5	12.6	7.7	30	24	0.2	31.5	0.1	7.7	>100	>10000	>100
Α	MAR	82	9	19.2	7.2	27	21	0.1	41	0	6.9	>100	>10000	15
Ñ	ABR	83.4	8	18.8	7.6	25	38	0.1	41.7	0.005	7.3	>1000	>10000	>100
0	MAY	62.8	2.2	4.8	7.4	39	27	0.1	31.4	0	6.8	>100	>1000	>100
	JUN	60.4	3	10.6	7.6	34	29	0.3	30.2	0	7.8	>1000	>1000	70
2	JUL	84.2	1	2.4	7.5	46	38	0.1	42.6	0.005	8.5	89	>1000	29
0	AGO	84.2	4	10.8	7.9	44	33	0.1	40.2	0.005	8.2	6100	>10000	450
0	SEP	84.2	1.2	5.4	7.8	27	34	0.2	42.1	0.06	7.1	>100	>100	6
6	OCT	85.2	4	14.7	7.5	43	41	0.1	42.6	0.05	6.4	>100	>10000	30
	NOV	63.6	0.3	6.3	7.6	35	47	0.1	31.8	0.6	7.4	>100	>1000	10
	DIC		4.2	10	7.5	22	25				8			
	ENE	64.2	4	11.1	7.8	37.7	27	0.1	32.1	0.08	7.8	6600	9100	600
	FEB	60.6	18	35.5	7.6	35	40	0.2	30.3	0.06	6.8	910	>1000	680
Α	MAR	76.4	6	14.8	7.5	39	34	0.1	38.2	0.04	8.4	>100	Incontables	>100
Ñ	ABR													
0	MAY	61	9	24.8	7.9	31	34	0.1	30.5	0.04	6.7	>1000	Incontables	210
	JUN	85.2	3	6.1	7.9	38	41	0.2	42.6	0.02	6.1	>100	>100	48
2	JUL	76.2	2	7.5	7.9	39	36	0.1	38.1	0.04	6	>100	>1000	98
0	AGO	81.4	4.1	13.4	7.7	41	41	0.2	40.7	0.05	7.4	>100	Incontables	74
0	SEP	88.4	2	7.4	7.9	47	57	0.1	44.2	0.04	7.9	2800	incontables	300
7	OCT	73.8	12.4	22.6	7.3	37	19	0.2	36.9	0	6.1	1400	2600	1200
	NOV	72	11.5	21.5	7.5	38	34	0.1	38	0.04	6.7	2400	3600	20
	DIC	61	9	24.6	7.5	31	34	0.1	30.5	0.04	6.7	>1000	Incontables	210
	ENE	40.8	25	45	8.2	32	26	0.1	20.4	0.02	7.3	>100	>1000	29
	FEB	48	9	17.6	7.4	29	22	0.1	24	0.04	7.9	1769	>1000	89
Α	MAR	49.6	97	139	7	28	36	0.1	24.8	0.04	6.6	>100	738	>100
Ñ	ABR	68	12	58.7	6.5	30	36	0.1	34	0.04	9.3	5400	10000	96
0	MAY	70.6	5.6	33.3	7.5	30	32	0.1	35.3	0.08	8.4	2900	10000	100
	JUN	60.4	11	29.5	7.6	32	22	0.1	30.2	0.05	7.9	>1000	>100	>100
2	JUL	69.4	1.6	11.2	6.8	34	32	0.1	34.7	0.06	7.7	>100	>100	30
0	AGO	75.8	5.6	19.5	7.7	37	31	0.2	37.9	0.1	7.9	47	9600	90
0	SEP	77.20	1.9	14.1	7.7	38.0	38	0.1	38.6	>0.1	5.3	9400	>10000	69

		Conductividad	Turbiedad	Color aparente	Нd	Alcalinidad total	Dureza total	Hierro Total	Solidos disueltos totales	Nitritos	Oxigeno disuelto	COLIFORMES TOTALES	RECUENTO TOTAL DE MESOFILOS	COLI FECAL /100ML
AÑO	MES	mS/cm	N.T.U.	U/Pt. Co.	Unds	mg/L CaCo ₃	mg/L CaCo ₃	mg/L Fe	mg/L	NO ₂	mg/L O ₂	U.F.C/100 cm³	U.F.C/100 cm³	U.F.C/100 cm³
8	OCT	76.20	5.6	22.9	7.7	38	36	0.1	38.9		7.4	17500	19300	133
	NOV	188	33.4	57.1	7.40	30.0	21	0.30	24.7	NA	6.9	29	23000	203.5
	DIC	47.80	57	113.6	6.5	23	18	0.1	23.9	NA	7.5	29.8	17600	172.3

Anexo K. Valores Medios Mensuales de Caudales (m³/s). Estación Puente Carretera. Fuente IDEAM

		OGIA, METEREOLOGIA Y			auua	ics (III /s).	Estacion		arretera. Fuent		ZAIVI.			
		OGIA, METEREOLOGIA Y	ESTUDIOS A						ACION NACIONAL AMBIENTAL				1	
CORRIENTE: RIO I				MUNICIPIO: POPAYAN			DEPARTAMENTO: CAL	JCA						
FECHA DE PROCE	50 : 2009/09/	24												
VALORES MEDIO	S MENSIIALES	DE CAUDALES (m3/seg)												
AÑO	ENERO	FEBRE		MARZO ABRIL		MAYO	JUNIO	JULIO	AGOST SEPTI		OCTUB	NOVIE	DICIE	/R ANUAL *
	1965	2	2.2	1.6	2.5			1		0.9	1.3			2.1
	1966	2.5	1.5	1.7	1.8		1.1	1.5		0.9	1.3			3.23
	1967	3.6	4.5	3.9	2.6					0.9	1.7	4.2		2.54
	1968	2.3	3.4	2.8	3.4					1	2.4			2.31
	1969	2.396	1.786	1.139	3.521		1.586	0.948		0.954	2.711			2.2
	1970	1.242	2.876	2.319	1.008		1.331	1.071	1.033	1.072	1.974		3.339	2.01
	1971	4.835	4.462	3.301	2.721	2.866	1.9	1.483	1.242	1.144	2.221	4.045	3.135	2.78
	1972	4.219	4.859	3.871	4.203		2.18	1.535	1.265	1.13	1.116	1.98		2.61
	1973	1.374	1.211	1.468	2.153		1.43	1.261	1.377	1.633	4.897	3.383	4.758	2.2
	1974	6.048	8.104	4.2	3.83		1.645	1.39		1.167	1.545	2.89		3.5
	1975	3.53	3.795	3.826	2.536		1.775	2.302		1.431	2.351			3.69
	1976	3.934	6.311	4.751	4.174		1.44	1.213	0.861	0.875	1.553	2.617	2.556	2.69
	1977	1.452	1.095	1.009	1.405		1.119	0.902	0.743	0.823	1.206	2.855	1.801	1.35
	1978	3.115	1.317	1.341	2.243		1.243	1.103	0.997	1.031	1.387	2.086	3.35	1.74
	1979	1.924	1.381	3.76	1.791	1.66	1.917	1.065	0.988	1.054	1.598	4.058	2.454	1.97
	1980	2.609	4.742	2.713	1.811		1.228	0.977	0.904	0.883	1.136	1.421	1.798	1.81
	1981	1.69	1.96	2.043	3.277	4.595	2.057	1.059	0.858	0.686	0.711	2.513	2.242	1.97
	1982	4.396	4.105	4.383	4.821	3.462	2.103	1.612	1.282	1.248	1.576	2.442	4.3	2.98
:	1983	2.129	2.288	2.515	3.308	3.622	1.714	1.236	1.041	0.988	1.257	1.565	2.688	2.03
:	1984	3.747	2.483	2.334	3.755	3.39	2.403	1.558	1.389	1.457	3.03	5.314	4.353	2.93
:	1985	3.191	2.215	1.635	2.202	2.592	1.559	1.332	1.17	1.135	3.781	2.882	3.194	2.24
1	1986	3.299	2.709	3.178	1.86	1.519	1.362	0.862	0.703	0.689	1.207	2.131	1.923	1.79
	1987	1.341	1.063	0.98	1.403	1.82	1.102	0.917	0.891	0.825	1.648	2.195	1.791	1.33
:	1988	1.15	1.11	1.28	1.38	1.37	1.43	1.42	0.97	1.06	1.58	7.06	4.82	2.05
1	1989	4.044	3.172	4.323	2.248	2.267	1.429	1.24	0.958	0.967	1.495	1.903	2.337	2.2
1	1990	2.54	2.09	1.76	2.4	1.94	1.15	0.91	1.44	0.74	1.13	2.17	2.51	1.73
1	1991	3.06	2.19	3.61	2.82	2.24	1.68	1.41	1.3	1.2	1.13	2.78	4.77	2.35
	1992	3.357	3.483	1.718	1.499	1.288	1.047	1.052	0.897	1	0.87	2.595	3.662	1.87
1	1993	3.263	2.593	3.576	4.201	3.788	2.311	1.752	1.485	1.395	1.568	2.845	4.979	2.81
1	1994	5.16	3.79	4.75	5.22		2.7	2.35	2	1.92	3.03	4.77	5.4	3.68
	1995	3.53	3.07	4.31	4.71		2.37	2	1.88	1.55	2.39	3.85	6.31	3.33
	1996	3.8	4	1.8	4.1					0.7	2.3			2.94 3
	1997	7.6	3.8	3.6	2.9			1.5		1.1	1.4			2.57
	1998	1.2	1.3	1.25	1.84			1.34		1.05	1.81			2.13
	1999	5.91	6.4	5.27	4.96		2.74	1.9		2.01	2.81	7.35	8.67	4.56
	2000	9.02	6.33	4.45	3.77		1.48	1.57		1.27	1.4	4.39	2.4	3.3
	2001	2.2	1.66	1.64	1.39		1.25	1.17		1.16	1.32			1.56
	2002	2.35	1.64	1.76	3.2		2.21	1.45		1.2	1.55	1.48	3.05	1.94
	2003	1.49	1.47	6.13	6.42		1.62	1.29		1.06	1.64		2.99	2.45
	2004	3.47	1.74	1.37	3.6		1.36	1.18		0.9	1.29		3.08	2.18
2	2005	3.51	3.43	2.25	1.92	2.11	1.28	1.09	0.98	0.99	1.67	2.81	4.95	2.25
MEDIOS		3.281	3.015	2.82	2.949	2.513	1.674	1.371	1.165	1.105	1,797	3.347	4.087	2.43
MAXIMOS		9.02	8.104	6.13	6.42		2.74	2.35		2.01	4.897	7.35		17.8
MINIMOS		1.15	1.063	0.98	1.008		1.047	0.862	0.6	0.686	0.711			0.6

Anexo L. Valores Máximos Mensuales de Caudales (m³/s). Estación Puente Carretera. Fuente IDEAM.

IDEAM - INSTITUTO DE HIDROLOGIA, METEREOLOGIA Y ESTUDIOS AMBIENTALES

SISTEMA DE INFORMACION NACIONAL AMBIENTAL

CORRIENTE: RIO LAS PIEDRAS

MINIMOS

MUNICIPIO: POPAYAN

DEPARTAMENTO: CAUCA

ÑO	ENERO	FEBRE	MARZO	AE	BRIL	MAYO	JUNIO	JULIO	AGOST	SEPTI	OCTUB	NOVIE	DICIE		VR ANUAL *
	1969	7.02	9.25	1.35	9.6	7.	35	7.85	1.26	2.92	2.64	15.88	11	15.5	15.
	1970	5.1	32	9.25	1.37	10.	06	4.53	1.23	1.23	3.02	6.94	14	7.9	
	1971	22	23	24.8	13.32		.5	2.36	2.08	1.44	2.08	19.5	57	7.5	
	1972	32	32	19.5	25		.5	19.5	3.1	1.8	1.6	1.8	5.1	19.5	
	1973	1.8	1.8	3.6	12.4	4.		11	6.5	11	6.1	57	11	19.5	
	1974	120	81	17.28	19.5		20	3.2	1.8	1.3	1.3	2.9	5.6	15.01	1
	1975	11	19.5	11.06	11		.1	4.15	11	2.36	1.8	11	16.79	94	
	1976	7.5	132	39	8.6	3.		1.68	2.48	1.04	2.86	4.42	6.46	4.42	1
	1977	1.892	1.292	2.768	4.42	4.		1.676	1.46	0.818	2.768	2.672	5.42	9.65	9.
	1978	27.92	1.93	4.27	5.01	2.3		1.75	1.15	1.114	3.381	6.49	4.27	6.49	27.
	1979	5.95	5.95	27	6.9		.1	6.9	1.3	2.3	1.71	6.9	9.5	5.95	
	1980	6.9	70	5.61	5.1	5.5		3.1	1.02	0.95	1.546	2.3	3.1	3.1	
	1981	3.1	23.5	4.05	26	13.		23.5	1.95	1.55	0.85	1.02	18.3	8.95	
	1982	18.3	18.3	18.3	13.65	18		3.1	2.3	1.46	1.55	5.1	5.1	18.3	18
	1983	3.93	13.65	3.772	24.4	6.8		2.732	1.38	1.13	1.05	2.46	3.298	7.842	24
	1984	7.84	3.46	7.84	41.5	8.		3.3	1.79	1.89	3.14	23.5	22.6	25.75	4
	1985	17.2	3.93	2.87	13.58	16		3.61	2.73	2.12	2	18.55	17.2	41.5	4
	1986	30.25	23.5	12.2	4.46	8.		3.14	1.21	1.38	1.13	3.93	12.2	5.06	30
	1987	2.45	1.67	5.45	3.5	12.		1.5	1.05	1.78	1.05	5.45	6.85	3.67	12
	1988	1.85	1.4	3.65	4.5		.8	2.61	2.04	1.1	2.42	7	45.25	28.86	45
	1989	28.86	17.15	28.86	7		10	1.7	2.8	1.01	2.8	9.4	8.5	15	28
	1990	15	4.35	4.35	21.84	4.		2.2	1.25	22.78	0.82	3.5	15	7.42	22
	1991	10.18	12.8	51.2	20.55	5.		2.39	2.13	2.25	1.77	2.25	13.2	23	5
	1992	6.1	20.55	2.25	3.14	2.		1.15	1.55	1.07	3.33	1.55	11.2	16.14	20
	1993	9.5	13.2	11.2	13.2	7.		2.95	2.01	1.65	1.77	3.9	6.72	9.5	1
	1994	18.1	9.5	23	12.4		.9	3.52	5.35	2.25	2.95	13.2	23	13.2	
	1995	6.1	10.52	18.1	52	32.		3.9	3.9	7.03	1.55	9.5	16.14	44	
	1996	25.26	20.22	1.98	6.85	54.					2.7	11.07	6.55	11.07	54.2
	1997	55.85	6.85	10.77	4.7	2.		2.65	2.3	1.26	1.62	4.18	7.45	3.5	55
	1998	1.55	2.82	5.04	4.7	15.		3.67	1.55	1.4	1.12	15.64	25.26	20.22	25
	1999	14.73	35.4	10.77	25.26	20.		4.53	2.47	63.33	4.87	9.56	35.4	25.26	63
	2000	21.73	30.3	9.86	4.53	5.		1.96	3.5	1.48	1.55	6.55	32.85	6.85	32
	2001	8.36	3.33	2.13	1.48		.5	1.4	1.26	1.12	1.26	3.5	23.75	13.81	23
	2002	4.01	2.82	4.36	8.96		.5	4.87	1.79	1.62	1.55	8.36	2.65	25.26	2
	2003	2.1	2	103	33.9		.8	10.8	1.4	1.4	1.2	5.6	3.7	5.6	
	2004	14.73	2.65	2.65	59.02	6.		1.48	1.26	1.04	1.79	3.33	45.53	6.25	5
	2005	35.4	15.36	11.47	10.5	4.	38	1.56	1.19	1.03	2.55	4.88	10.99	25.26	
1EDIOS		16.53	19.16	14.18	14.7	12.)1	4.498	2.348	4.233	2.14	8.67	15.35	16.75	
1AXIMOS		120	132	103	59.02	1		23.5	11	63.33	6.1	57	57	94	

Anexo M. Valores Mínimos Mensuales de Caudales (m³/s). Estación Puente Carretera. Fuente IDEAM. IDEAM- INSTITUTO DE HIDROLOGIA, METEREOLOGIA Y ESTUDIOS AMBIENTALES SISTEMA DE INFORMACION NACIONAL AMBIENTALES

ORRIENTE: RIO LAS PIEDRAS FECHA DE PROCESO : 2009/09/24 MUNICIPIO: POPAYAN

DEPARTAMENTO: CAUCA

VALORES MINIMOS MENSUALES DE CAUDALES (m3/seg)

AÑO	ENERO	FEBRE	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOST	SEPTI	OCTUB	NOVIE	DICIE	VR ANUAL *
1969	0.9	0.79	0.9	0.99	0.99	0.9	0.79	0.67	0.53	1.47	2.92	2.64	0.53
1970	0.65	0.74	0.88	0.81	0.88	1.16	0.95	1.02	0.84	1.05	2.15	2.2	0.65
1971	2.15	2.82	1.81	1.23	1.19	1.62	1.26	1.12	0.99	1.03	1.62	1.8	0.99
1972	2.1	2.8	2.1	2.1	1.8	1.5	1.3	1.1	1.1	1	1.2	1.6	1
1973	1.2	1.1	1.1	0.8	1.1	1.1	1	1	1	1.3	2	3.1	0.8
1974	2.4	3.2	2.18	2.5	1.8	1.4	1.2	1.1	1.1	1.1	1.5		1.10 3
1975	1.8	1.94	2.36	1.8	1.8	1.62	1.62	1.53	1.35	1.3		3.96	1.30 3
1976	2.78	2.92	2.36	2.91	1.57	1.25	0.97	0.82	0.67	0.86	1.68	1.78	0.67
1977	1.208	0.966	0.818	1.04	1.124	0.966	0.818	0.67	0.62	0.892	1.418	1.334	0.62
1978	1.57	1.15	1.114	1.525	1.348	1.114	1.042	0.97	0.932	0.932	1.15	1.66	0.93
1979	1.546	1.16	1.265	1.16	1.3	1.3	0.95	0.85	0.875	0.785	1.505	1.546	0.79
1980	1.628	2.7	1.628	1.546	1.23	1.02	0.95	0.85	0.85	0.85	0.95	1.16	0.85
1981	1.3	1.23	1.546	1.71	2.78	1.09	0.85	0.785	0.6	0.6	0.685	1.628	0.6
1982	2.01	2.3	3.02	2.86	2.06	1.67	1.46	1.23	1.16	1.23	1.3	2.01	1.16
1983	1.431	0.97	1.584	1.947	2.232	1.38	1.13	0.97	0.913	0.913	1.13	1.635	0.91
1984	2.4	2.06	1.74	2	2.4	1.69	1.38	1.24	1.21	1.38	2.66	1.79	1.21
1985	1.79	1.58	1.38	1.38	1.84	1.3	1.21	1.05	0.97	1.01	1.86	1.74	0.97
1986	1.3	1.48	1.95	1.34	0.97	0.97	0.68	0.63	0.59	0.68	1.17	1.21	0.59
1987	1.096	0.92	0.77	1.052	1.151	0.92	0.87	0.82	0.77	0.87	1.184	1.052	0.77
1988	1.1	0.93	0.93	0.93	1.1	1.14	1.06	0.93	0.93	0.93	1.63	2.37	0.93
1989	2.09	2.09	1.9	1.7	1.55	1.32	1.1	0.93	0.79	0.84	1.4	1.32	0.79
1990	1.42	1.33	1.33	1.18	1.42	0.92	0.8	0.77	0.72	0.72	1.05	1.18	0.72
1991	2.13	1.77	1.95	1.71	1.65	1.45	1.25	1.15	1.15	0.86	0.99	1.83	0.86
1992	1.83	2.39	1.35	1.35	1.11	0.99	0.78	0.83	0.83	0.75	0.91	2.25	0.75
1993	2.19	2.13	1.64	3.33	2.81	1.89	1.55	1.35	1	1.15	2.2	3.52	1
1994	3.03	2.81	3.33	3.14	2.46	2.39	2.13	1.89	1.77	1.71	2.46	3.24	1.71
1995	2.67	2.25	2.81	2.81	2.46	2.07	1.89	1.4	1.55	1.55	2.07	3.24	1.4
1996	1.6	1.8	1.8	3.2	2.4				0.7	0.7	1.4	1.6	0.70 3
1997	4.2	2.5	2	2.3	1.5	1.5	1.3	1.1	1	1	1	1.3	1
1998	1.04	1.04	1.12	1.55	1.55	1.55	1.19	1.12	0.97	0.97	1.55	3.93	0.97
1999	3.76	4.18	3.76	3.67	3.33	2.22	1.62	1.48	1.48	1.79	3.84	5.94	1.48
2000	4.18	3.5	3.07	3.16	1.4	1.33	1.26	1.33	1.19	1.19	1.37	1.62	1.19
2001	1.62	1.48	1.48	1.26	1.26	1.12	1.12	1.04	1.04	1.19	1.19	1.62	1.04
2002	1.55	1.33	1.37	1.62	1.48	1.62	1.33	1.19	1.12	1.04	1.19	1.19	1.04
2003	1.33	1.33	1.33	3.76	1.48	1.33	1.19	1.04	1.04	1.04	1.44	1.62	1.04
2004	1.62	1.48	1.19	1.33	1.51	1.26	1.04	0.83	0.83	0.83	1.26	2.13	0.83
2005	1.63	2.34	1.42	1.19	1.56	1.11	1.03	0.96	0.88	0.96	1.19	2.69	0.88
MEDIOS	1.899	1.879	1.737	1.889	1.665	1.366	1.169	1.049	0.975	1.04	1.562	2.123	1.53
MAXIMOS	4.2	4.18	3.76	3.76	3.33	2.39	2.13	1.89	1.77	1.79	3.84	5.94	5.94
MINIMOS	0.65	0.74	0.77	0.8	0.88	0.9	0.68	0.63	0.53	0.6	0.685	1.052	0.53

Anexo N. Registros Mensuales encontrados por Estaciones Pluviométricas. Cuenca Río Las Piedras.

	ARRAYANALES	EL DIVISO	EL LAGO	SAN PEDRO
Ene-99	268	284	347	329
Feb-99	324		428	415,5
Mar-99	155	169	221	180
Abr-99	189	228	312	215
May-99	161	165	181	161
Jun-99	43	34	103	55
Jul-99	3	0	5	39
Ago-99	34	116	53	41
Sep-99	192	647	251	216
Oct-99	236	974	273	252
Nov-99	335	1186	465	536
Dic-99	356	343	396	467,5
Ene-00	478		310	563
Feb-00	304		292	278
Mar-00	181		269	227
Abr-00	103		141	184
May-00	103	115	205	161
Jun-00	83	40	110	56
Jul-00	64	25	67	50
Ago-00	9	28	41	22
Sep-00	88	120	135	119
Oct-00	169	122	155	173
Nov-00	270	74	251	344
Dic-00	146	105	243	184
Ene-01	127		80	170
Feb-01	143		109	131
Mar-01	122		67	188
Abr-01	40		46	63
May-01	54		77	59
Jun-01	0		38	70
Jul-01	0		62	18
Ago-01	0		0	7
Sep-01	50	60		39
Oct-01	160	159	171	158
Nov-01	269	463	271	350
Dic-01	246		264	
Ene-02			119	227
Feb-02	133		169	65
Mar-02	167		245	161,5
Abr-02	222	315	352	238

	ARRAYANALES	EL DIVISO	EL LAGO	SAN PEDRO
May-02	92	50	93	119
Jun-02	129	137	81	166
Jul-02	10	0	28	11
Ago-02	59	0	44	37
Sep-02	51	16	80	69
Oct-02	200	120	271	231
Nov-02	84	171	62	107
Dic-02		484	265	391
Ene-03	116	168		127
Feb-03	143	131	109	146
Mar-03	311	270	198	342
Abr-03	274	329	120	269
May-03	16	52	51	24
Jun-03	106		141	97
Jul-03				
Ago-03				
Sep-03				
Oct-03				
Nov-03				
Dic-03	334			
Ene-04		204		
Feb-04		57		
Mar-04		55		
Abr-04		343		
May-04		122		
Jun-04		0		
Jul-04		74		
Ago-04		0		
Sep-04		40		
Oct-04		356		
Nov-04		581		
Dic-04	216	383	206	228
Ene-05	173		344	355
Feb-05	125		152	236
Mar-05	106		118	
Abr-05	94		90,9	139
May-05	208		197	117
Jun-05	29		50	
Jul-05	0		28	31
Ago-05	0		3	7

<u> </u>	i ioarao.			
	ARRAYANALES	EL DIVISO	EL LAGO	SAN PEDRO
Sep-05	99		158	124
Oct-05	142		372	379
Nov-05	132	367	284	331
Dic-05	152		295	432
Ene-06	50	177	158	269
Feb-06	71	123	168	210
Mar-06	50	228	238	281
Abr-06	89	221	219	323
May-06	17	102	130	160
Jun-06	22	104		149
Jul-06	0	37	51	34
Ago-06	0	2		0
Sep-06	0	5		8
Oct-06		133	257	211
Nov-06		268	344	340
Dic-06	181	294	107	381
Ene-07		91	77	134
Feb-07	41	101,5	148	163
Mar-07	59	85	188	123
Abr-07	146	255	338	230
May-07	116	155	194	220
Jun-07	33	54		66
Jul-07	11	45	22	37
Ago-07	30	48	60	33
Sep-07	0	8	26	0
Oct-07	227	338,5	463	475
Nov-07	60	289,5	392	351
Dic-07	138,5	314	353	427
Ene-08	144	282	364	411
Feb-08	118,5	180	302	367
Mar-08	76,5	243	256	288
Abr-08	75	212	246	206
May-08	64	268	264	428
Jun-08	23,5	65	132	72
Jul-08	13,5	28	66	71
Ago-08	45	61	120	106
Sep-08	18	30	122	49
Oct-08	44	72	232	247
Nov-08	110	263	532	616
Dic-08			357	

Anexo O. Precipitación Mensual Acumulada. Estaciones Pluviométricas. Cuenca Río Las Piedras.

_	ARRAYANALES	EL DIVISO	EL LAGO	SAN PEDRO
Ene-99	268.00	284.00	347.00	329.00
Feb-99	592.00	673.17	775.00	744.50
Mar-99	747.00	842.17	996.00	924.50
Abr-99	936.00	1070.17	1308.00	1139.50
May-99	1097.00	1235.17	1489.00	1300.50
Jun-99	1140.00	1269.17	1592.00	1355.50
Jul-99	1143.00	1269.17	1597.00	1394.50
Ago-99	1177.00	1385.17	1650.00	1435.50
Sep-99	1369.00	2032.17	1901.00	1651.50
Oct-99	1605.00	3006.17	2174.00	1903.50
Nov-99	1940.00	4192.17	2639.00	2439.50
Dic-99	2296.00	4535.17	3035.00	2907.00
Ene-00	2774.00	4985.50	3345.00	3470.00
Feb-00	3078.00	5276.83	3637.00	3748.00
Mar-00	3259.00	5502.50	3906.00	3975.00
Abr-00	3362.00	5645.17	4047.00	4159.00
May-00	3465.00	5760.17	4252.00	4320.00
Jun-00	3548.00	5800.17	4362.00	4376.00
Jul-00	3612.00	5825.17	4429.00	4426.00
Ago-00	3621.00	5853.17	4470.00	4448.00
Sep-00	3709.00	5973.17	4605.00	4567.00
Oct-00	3878.00	6095.17	4760.00	4740.00
Nov-00	4148.00	6169.17	5011.00	5084.00
Dic-00	4294.00	6274.17	5254.00	5268.00
Ene-01	4421.00	6399.83	5334.00	5438.00
Feb-01	4564.00	6527.50	5443.00	5569.00
Mar-01	4686.00	6653.17	5510.00	5757.00
Abr-01	4726.00	6702.83	5556.00	5820.00
May-01	4780.00	6766.17	5633.00	5879.00
Jun-01	4780.00	6802.17	5671.00	5949.00
Jul-01	4780.00	6828.83	5733.00	5967.00
Ago-01	4780.00	6831.17	5733.00	5974.00
Sep-01	4830.00	6891.17	5782.67	6013.00

ua. ⊏s	iaciones r	IUVIOIII	enicas.	Cuenca
	ARRAYANALES	EL DIVISO	EL LAGO	SAN PEDRO
Oct-01	4990.00	7050.17	5953.67	6171.00
Nov-01	5259.00	7513.17	6224.67	6521.00
Feb-02	5392.00	7635.50	6393.67	6586.00
Mar-02	5559.00	7826.67	6638.67	6747.50
Abr-02	5781.00	8141.67	6990.67	6985.50
May-02	5873.00	8191.67	7083.67	7104.50
Jun-02	6002.00	8328.67	7164.67	7270.50
Jul-02	6012.00	8328.67	7192.67	7281.50
Ago-02	6071.00	8328.67	7236.67	7318.50
Sep-02	6122.00	8344.67	7316.67	7387.50
Oct-02	6322.00	8464.67	7587.67	7618.50
Nov-02	6406.00	8635.67	7649.67	7725.50
Dic-02	6786.00	9119.67	7914.67	8116.50
Ene-03	6902.00	9287.67	8051.67	8243.50
Feb-03	7045.00	9418.67	8160.67	8389.50
Mar-03	7356.00	9688.67	8358.67	8731.50
Abr-03	7630.00	10017.67	8478.67	9000.50
May-03	7646.00	10069.67	8529.67	9024.50
Jun-03	7752.00	10184.33	8670.67	9121.50
Dic-04	7968.00	10567.33	8876.67	9349.50
Ene-05	8141.00	10858.00	9220.67	9704.50
Feb-05	8266.00	11029.00	9372.67	9940.50
Abr-05	8360.00	11136.97	9463.57	10079.50
May-05	8568.00	11310.97	9660.57	10196.50
Jul-05	8568.00	11330.63	9688.57	10227.50
Ago-05	8568.00	11333.97	9691.57	10234.50
Sep-05	8667.00	11460.97	9849.57	10358.50
Oct-05	8809.00	11758.63	10221.57	10737.50
Nov-05	8941.00	12125.63	10505.57	11068.50
Dic-05	9093.00	12418.63	10800.57	11500.50
Ene-06	9143.00	12595.63	10958.57	11769.50
Feb-06	9214.00	12718.63	11126.57	11979.50
Mar-06	9264.00	12946.63	11364.57	12260.50

Lasi	rieulas.			
	ARRAYANALES	EL DIVISO	EL LAGO	SAN PEDRO
Abr-06	9353.00	13167.63	11583.57	12583.50
May-06	9370.00	13269.63	11713.57	12743.50
Jun-06	9392.00	13373.63	11805.23	12892.50
Jul-06	9392.00	13410.63	11856.23	12926.50
Ago-06	9392.00	13412.63	11856.90	12926.50
Sep-06	9392.00	13417.63	11861.23	12934.50
Oct-06	9592.33	13550.63	12118.23	13145.50
Nov-06	9909.67	13818.63	12462.23	13485.50
Dic-06	10090.67	14112.63	12569.23	13866.50
Ene-07	10191.33	14203.63	12646.23	14000.50
Feb-07	10232.33	14305.13	12794.23	14163.50
Mar-07	10291.33	14390.13	12982.23	14286.50
Abr-07	10437.33	14645.13	13320.23	14516.50
May-07	10553.33	14800.13	13514.23	14736.50
Jun-07	10586.33	14854.13	13565.23	14802.50
Jul-07	10597.33	14899.13	13587.23	14839.50
Ago-07	10627.33	14947.13	13647.23	14872.50
Sep-07	10627.33	14955.13	13673.23	14872.50
Oct-07	10854.33	15293.63	14136.23	15347.50
Nov-07	10914.33	15583.13	14528.23	15698.50
Dic-07	11052.83	15897.13	14881.23	16125.50
Ene-08	11196.83	16179.13	15245.23	16536.50
Feb-08	11315.33	16359.13	15547.23	16903.50
Mar-08	11391.83	16602.13	15803.23	17191.50
Abr-08	11466.83	16814.13	16049.23	17397.50
May-08	11530.83	17082.13	16313.23	17825.50
Jun-08	11554.33	17147.13	16445.23	17897.50
Jul-08	11567.83	17175.13	16511.23	17968.50
Ago-08	11612.83	17236.13	16631.23	18074.50
Sep-08	11630.83	17266.13	16753.23	18123.50
Oct-08	11674.83	17338.13	16985.23	18370.50
Nov-08	11784.83	17601.13	17517.23	18986.50

Anexo P. Datos de Precipitación Acumulada Mensual de la Estación dudosa versus La Media Patrón de las 4 Estaciones.

	MEDIA PATRON	ARRAYANALES
Ene-99	307.00	268.00
Feb-99	696.17	592.00
Mar-99	877.42	747.00
Abr-99	1113.42	936.00
May-99	1280.42	1097.00
Jun-99	1339.17	1140.00
Jul-99	1350.92	1143.00
Ago-99	1411.92	1177.00
Sep-99	1738.42	1369.00
Oct-99	2172.17	1605.00
Nov-99	2802.67	1940.00
Dic-99	3193.29	2296.00
Ene-00	3643.63	2774.00
Feb-00	3934.96	3078.00
Mar-00	4160.63	3259.00
Abr-00	4303.29	3362.00
May-00	4449.29	3465.00
Jun-00	4521.54	3548.00
Jul-00	4573.04	3612.00
Ago-00	4598.04	3621.00
Sep-00	4713.54	3709.00
Oct-00	4868.29	3878.00
Nov-00	5103.04	4148.00
Dic-00	5272.54	4294.00
Ene-01	5398.21	4421.00
Feb-01	5525.88	4564.00
Mar-01	5651.54	4686.00
Abr-01	5701.21	4726.00
May-01	5764.54	4780.00
Jun-01	5800.54	4780.00
Jul-01	5827.21	4780.00
Ago-01	5829.54	4780.00
Sep-01	5879.21	4830.00

iviensuai	de la Estaci	<u>on audosa ve</u>
	MEDIA PATRON	ARRAYANALES
Oct-01	6041.21	4990.00
Nov-01	6379.46	5259.00
Feb-02	6501.79	5392.00
Mar-02	6692.96	5559.00
Abr-02	6974.71	5781.00
May-02	7063.21	5873.00
Jun-02	7191.46	6002.00
Jul-02	7203.71	6012.00
Ago-02	7238.71	6071.00
Sep-02	7292.71	6122.00
Oct-02	7498.21	6322.00
Nov-02	7604.21	6406.00
Dic-02	7984.21	6786.00
Ene-03	8121.21	6902.00
Feb-03	8253.46	7045.00
Mar-03	8533.71	7356.00
Abr-03	8781.71	7630.00
May-03	8817.46	7646.00
Jun-03	8932.13	7752.00
Dic-04	9190.38	7968.00
Ene-05	9481.04	8141.00
Feb-05	9652.04	8266.00
Abr-05	9760.01	8360.00
May-05	9934.01	8568.00
Jul-05	9953.68	8568.00
Ago-05	9957.01	8568.00
Sep-05	10084.01	8667.00
Oct-05	10381.68	8809.00
Nov-05	10660.18	8941.00
Dic-05	10953.18	9093.00
Ene-06	11116.68	9143.00
Feb-06	11259.68	9214.00
Mar-06	11458.93	9264.00

cuia i	atioi	i uc ius T	L3taciones.
· <u></u>	ME	DIA PATRON	ARRAYANALES
Abr	-06	11671.93	9353.00
May	-06	11774.18	9370.00
Jun	-06	11865.84	9392.00
Jul	-06	11896.34	9392.00
Ago	-06	11897.01	9392.00
Sep	-06	11901.34	9392.00
Oct	-06	12101.68	9592.33
Nov	-06	12419.01	9909.67
Dic	-06	12659.76	10090.67
Ene	-07	12760.43	10191.33
Feb	-07	12873.80	10232.33
Mar	-07	12987.55	10291.33
Abr	-07	13229.80	10437.33
May	-07	13401.05	10553.33
Jun	-07	13452.05	10586.33
Jul	-07	13480.80	10597.33
Ago	-07	13523.55	10627.33
Sep	-07	13532.05	10627.33
Oct	-07	13907.93	10854.33
Nov	-07	14181.05	10914.33
Dic	-07	14489.18	11052.83
Ene	-08	14789.43	11196.83
Feb	-08	15031.30	11315.33
Mar	-08	15247.18	11391.83
Abr	-08	15431.93	11466.83
May	-08	15687.93	11530.83
Jun	-08	15761.05	11554.33
	-08	15805.68	11567.83
Ago	-08	15888.68	11612.83
Sep		15943.43	11630.83
Oct	-08	16092.18	11674.83
Nov	-08	16472.43	11784.83