ANATOMÍA FOLIAR Y PALINOLOGÍA DE LAS ESPECIES DE Carica Y Vasconcellea (CARICACEAE) DE LA ZONA CAFETERA DE COLOMBIA

CLAUDIA LORENA SANDOVAL SIERRA

UNIVERSIDAD DEL CAUCA
FACULTAD DE CIENCIAS NATURALES, EXACTAS Y DE LA EDUCACIÓN
PROGRAMA DE BIOLOGIA
POPAYAN
2005

ANATOMÍA FOLIAR Y PALINOLOGÍA DE LAS ESPECIES DE Carica Y Vasconcellea (CARICACEAE) DE LA ZONA CAFETERA DE COLOMBIA

CLAUDIA LORENA SANDOVAL SIERRA

Trabajo de grado presentado como requisito parcial para optar el título de Bióloga

Director CREUCI MARÍA CAETANO Ph. D.

Asesor DIEGO JESÚS MACÍAS PINTO M.Sc.

UNIVERSIDAD DEL CAUCA FACULTAD DE CIENCIAS NATURALES, EXACTAS Y DE LA EDUCACIÓN PROGRAMA DE BIOLOGIA POPAYAN 2005

AGRADECIMIENTOS ESPECIALES

Mis papas Noris y José y mis hermanos Vladi, Vivi y Eli, por todo el apoyo y todo lo que he recibido de ustedes.

A Creucí Maria Caetano, por su apoyo, enseñanza, por la preparación y desarrollo de este trabajo, como también por haber creído en mí.

A Catalina Vélez, por su enseñanza y consejos.

A Juan Carlos Tafur, su cariño, el creer y confiar en mí y sus palabras de "ánimo Lore" me ayudaron mucho a llegar hasta aquí.

A todo el personal del IPGRI, por la colaboración que me prestaron en la realización de este trabajo.

Al Centro Internacional de Agricultura Tropical (CIAT)

A Cristian Olaya, de la Unidad de Virología, por enseñarme algunas cosas, por la toma de algunas fotos y la preparación del material de polen, no pudiendo olvidar ni pasar de desapercibido... sus "chocheras" haciendo los días más agradables.

A don José Arroyave de la Unidad de Virología del CIAT que, junto con Creucí, tomaron las fotos del polen en microscopia de barrido. Gracias por su colaboración.

Al Dr Geo Coppens por permitirme ser parte del proyecto.

Al Dr Ramón Lastra, director del IPGRI Américas, por el apoyo continuo y por creer en nuestro trabajo.

A John Ocampo, por su recomendación, ayudándome a ser parte de este proyecto. Muchas gracias!!

Al profesor Diego, por su colaboración y revisión del trabajo.

A Tulio César Lagos quien enseñó algunos "truquitos" y me explicó algunas cosas.

A José Luis Chávez-Servia, por la colaboración en la parte estadística del proyecto.

A Mónica y a Liviston, mis compañeros de tesis de trabajo. La compañía de los dos aunque peleadas con Liviston, eran agradables.

A mis amigos de la Universidad del Cauca y demás personas cercanas a quien aprecio mucho, que han creído en mí y me han ayudado a llegar hasta aquí. Ustedes saben quienes son...

A todos aquellos que ahora se escapan de mi memoria pero que fueron determinantes en alguna etapa, mi gratitud para todos!!

Y un agradecimiento muy especial a la naturaleza.

RESUMEN

De los seis géneros de la familia Caricaceae, Vasconcellea y Carica son los mejor representados en Colombia. El primer género incluye las papayuelas o papayas de montaña, que cuenta con 21 especies y un híbrido registrados, mientras el último sólo incluye C. papaya, la especie económicamente más importante. Estas se encuentran en el rango altitudinal de la zona cafetera. El objetivo del presente trabajo es completar los pocos datos disponibles sobre su anatomía foliar y palinología como aporte a la taxonomía de Caricaceae y al conocimiento de su diversidad. Los sitios de colecta se ubicaron en los departamentos de Antioquia, Caldas, Cauca, Cundinamarca, Nariño, Quindío y Valle del Cauca. Para la anatomía, las técnicas comprendieron cortes histológicos a mano alzada en material fresco del mesófilo (longitudinales y transversales, sin tinción), del nervio principal y pecíolo, teñidos con safranina, y de la epidermis abaxial y adaxial bajo impresión con esmalte incoloro. Por su gran variabilidad intraespecífica, para V. cundinamarcensis se tomó mayor número de accesiones. Para palinología se empleó la técnica de acetólisis de Erdtman (microscopía óptica), y el procedimiento de fijación con glutaraldehído, deshidratación e ionización con oro paladio, para microscopía electrónica de barrido. Los registros de anatomía se describieron, y se ilustraron mediante diagramas y fotos a color. Como parámetro principal se tomó la distribución y estructuración de los diferentes tejidos, presencia o ausencia de cristales, tricomas y glándulas, número, tipo y localización de estomas e índice estomático. Para palinología se caracterizó por medio de descriptores derivados de criterios utilizados por Erdtman y Straka, constituidos por los caracteres de valor taxonómico para identificación del polen, genéticamente determinados. Los más importantes son el número, posición y carácter de la abertura, y la ornamentación y estratificación de la exina. Se hizo el registro de las mediciones y se tomaron fotos. Las especies evaluadas fueron C. papaya., V. cauliflora, V. crassipetala, V. cundinamarcensis, V. goudotiana, V. longiflora, V. microcarpa, V. sphaerocarpa, además de accesiones de V.x heilbornii var. chrysopetala y V. x heilbornii cv. 'babaco'. Los caracteres anatómicos generales comprenden hoja dorsiventral con epidermis uniseriada hipostomática, a excepción de V. cauliflora, que es anfistomática. Las células epidérmicas son ligeramente onduladas a poligonales. Estomas de tipo anomocítico, con cuatro a cinco células acompañantes. El índice estomático varía con mas frecuencia en C. papaya y con menor frecuencia en V. microcarpa. El polen es mediano, tricolporado, zonoaperturado, prolatoesferoidal a subprolato, de simetría radial isopolar, tectado, cavado, foveolado, con columelas. Los caracteres de polen y la anatomía foliar se han mostrado como un gran aporte a la taxonomía de Caricaceae. En el análisis de agrupamiento, el polen permite diferenciar bien a los dos géneros, sin embargo la anatomía foliar no muestra una diversidad suficiente entre las especies para estructurar el género Vasconcellea, ni aún para diferenciarlo claramente de Carica.

Palabras-clave: Caricaceae, caracteres anatómicos, papayuelas, polen.

CONTENIDO

		Pag.
	INTRODUCCCIÓN	16
2	OBJETIVOS	17
2.1	OBJETIVO GENERAL	17
2.2	OBJETIVOS ESPECIFÍCOS	17
3	MARCO CONCEPTUAL	18
3.1	GENERALIDADES DE LA FAMILIA CARICACEAE	18
3.2	ANATOMÍA FOLIAR	20
3.3	PALINOLOGÍA	22
4	METODOLOGÍA	25
4.1	ÁREA DE ESTUDIO	25
4.2	MUESTREO Y DETERMINACIÓN DEL MATERIAL VEGETAL	25
4.2.1	Herborización	25
4.2.2	Identificación de los especimenes	26
4.3	ESTUDIOS DE ANATOMÍA FOLIAR Y PALINOLOGÍA	26
4.3.1	Estudios de anatomía foliar	26
	Cortes a mano alzada (microtecnia), coloración y montaje	26
	Corte transversal y longitudinal	26
	Coloración y montaje	27
	Registro de datos	27

		Pag.
4.3.2	Estudios palinológicos	27
	Procedimiento para el análisis en microscopía de luz	28
	Procedimiento para el análisis en microscopía de barrido (MEB)	29
	Medición de los granos de polen	29
	Descripción de los granos de polen	29
4.4	DIVERSIDAD DE CARICACEAE	30
5	RESULTADOS	32
5.1	ANATOMÍA FOLIAR	32
5.1.1	Epidermis de la lámina foliar	32
5.1.2	Mesófilo	36
5.1.3	Pecíolo	38
5.1.4	Nervio Principal	48
5.1.5	Clave dicotómica para anatomía foliar de Carica y Vasconcellea	52
5.2	PALINOLOGÍA	54
5.3	DIVERSIDAD DE CARICACEAE	56
5.3.1	Selección de variables para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i> según caracteres cuantitativos de anatomía foliar	56
5.3.2	Selección de variables para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i> según caracteres cualitativos de anatomía foliar	58
5.3.3	Selección de variables para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i> según caracteres cuantitativos de palinología	61
5.3.4	Selección de variables para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i> según caracteres cualitativos de palinología	61

		Pág
5.3.5	Diferenciación de especies de Carica y Vasconcellea según caracteres anatómicos foliares	62
5.3.6	Diferenciación de especies de Carica y Vasconcellea según caracteres palinológicos	63
6	DISCUSIÓN	65
6.1	ANATOMÍA FOLIAR	65
6.1.1	Epidermis de la Lámina Foliar	65
6.1.2	Mesófilo	66
6.1.3	Pecíolo	67
6.1.4	Nervio Principal	68
6.2	PALINOLOGÍA	68
6.3	DIVERSIDAD DE CARICACEAE	69
7	CONCLUSIONES	71
	BIBLIOGRAFÍA	73
	ANEXOS	76

LISTA DE TABLAS

		Pág.
Tabla 1	Accesiones colectadas de <i>Vasconcellea</i> y <i>Carica</i> para anatomía y palinología	25
Tabla 2	Descriptores palinológicos cuantitativos y cualitativos más discriminantes para Caricaceae	30
Tabla 3	Porcentaje de variabilidad de los caracteres cuantitativos de anatomía foliar en ocho de los grupos (CP) hallados por medio de análisis de componentes principales (ACP) para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i>	56
Tabla 4	Valores de las variables de los tres grupos (CP) más representativos para la diferenciación de las especies según la anatomía foliar, hallados por medio del análisis de componentes principales	57
Tabla 5	Variabilidad de los caracteres cualitativos de anatomía foliar en cada una de las dimensiones (grupos de variables) halladas por análisis de correspondencia múltiple (ACM) para la diferenciación de especies de <i>Carica y Vasconcellea</i>	58
Tabla 6	Valores de las variables en los tres grupos (dimensiones) más representativos para la diferenciación de las especies según la anatomía foliar, hallados por medio del análisis de correspondencia múltiple	60
Tabla 7	Valores propios derivados del ACP para los caracteres palinológicos de <i>C. papaya</i> y las especies de <i>Vasconcellea</i>	61
Tabla 8	Componenetes principales (CP) sobre los caracteres palinológicos retenidos	61
Tabla 9	Variabilidad de los caracteres cualitativos de palinología en cada una de las dimensiones (grupos de variables) halladas por análisis de correspondencia múltiple (ACM) para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i>	62
Tabla 10	Valores de las variables en los grupos (dimensiones) más representativos para la diferenciación de las especies según palinología, hallados por medio del análisis de correspondencia múltiple	62

Tabla 11	Descripción de los grupos formados en el análisis de conglomerados con base en ocho variables anatómicas de las especies de <i>Vasconcellea</i> y <i>Carica</i>	63
Tabla 12	Descripción de los grupos formados en el dendrograma previo con base en el promedio de las mediciones de las cuatro variables palinológicas de cada una de las especies dentro de cada grupo	64

Pág.

LISTA DE FIGURAS

		Pág.
Figura 1	Especies de Carica y Vasconcellea presentes en la zona cafetera	19
Figura 2	Nomenclatura dada para los gráficos de anatomía	28
Figura 3	Forma de las células epidérmicas de <i>V. crassipetala</i> . Células de tamaño y forma variada en la epidermis inferior	33
Figura 4	Tricomas unicelulares a pluricelulares presentes en V. cundinamarcensis	33
Figura 5	Granulaciones presentes en las células epidérmicas	34
Figura 6	Tipos de epidermis presentes en Vasconcellea y Carica	34
Figura 7	Epidermis anfiestomática de V. cauliflora	35
Figura 8	Posición del estoma respecto a las demás células epidérmicas	36
Figura 9	Epidermis inferior de <i>C. papaya</i>	36
Figura 10	Diagrama de sección transversal del mesófilo	37
Figura 11	Diferenciación del mesófilo dorsiventral en parénquima en empalizada (pem) y parénquima esponjoso (pes)	38
Figura 12	Cristales de oxalato de calcio presentes en el parénquima esponjoso	38
Figura 13	Patrón de estructuras del pecíolo presente en <i>Carica</i> y en todas las especies de <i>Vasconcellea</i>	39
Figura 14	Diagrama del modelo de sección transversal del pecíolo de V. gouditiana masculina, C. papaya, V. cauliflora, V. longiflora	40
Figura 15	Diagrama del modelo de sección transversal del pecíolo de <i>V. cundinamarcensis</i> femenina de Nariño, <i>V. cundinamarcensis</i> del Caldas, y <i>V. cundinamarcensis</i> masculina de Nariño	41

		Pág.
Figura 16	Epidermis multiestratificada presente en las accesiones de <i>V. cundinamarcensis</i>	42
Figura 17	Forma de las células epidérmicas del pecíolo	42
Figura 18	Presencia de estratificación en el parénquima subepidérmico	43
Figura 19	Cristales de oxalato de calcio presentes en las estructuras internas del pecíolo y nervio	44
Figura 20	Tipos de colénquima (flecha) presente en las especies de <i>Carica</i> y <i>Vasconcellea</i>	44
Figura 21	Entrada leve del parénquima cortical (pc) hacia el colénquima en C. papaya	45
Figura 22	Fibras del floema de naturaleza lignificada presentes en las especies de <i>Carica</i> y <i>Vasconcellea</i>	46
Figura 23	Floema blando (fl) con diferenciación del metafloema en V. longiflora	46
Figura 24	Parénquima perimedular rodeando a los vasos del protoxilema (px)	47
Figura 25	Presencia de protoxilema no desarrollado en cada haz vascular floemático	47
Figura 26	Contenido esférico del protoxilema que presenta V. cundinamarcensis	48
Figura 27	Médula lignificada presente en V. cundinamarcensis	48
Figura 28	Sección transversal del nervio principal de V. cundinamarcensis masculina	49
Figura 29	Diagrama del modelo de sección transversal del nervio principal de <i>V. cundinamarcensis</i> de Caldas, <i>V. longiflora</i> , <i>V. cundinamarcensis</i> femenina de Nariño y <i>V. cundinamarcensis</i> masculina de Nariño	50
Figura 30	Diagrama del modelo de sección transversal del nervio principal de V . $cundinamarcensis$ polígamo-monoica	51
Figura 31	Fibras de floema (fi) presentes en menor cantidad en el nervio principal en la parte abaxial	52
Figura 32	Abertura germinal en polen de V. cauliflora	54

		Pág.
Figura 33	Patrones de polen de los géneros <i>Carica</i> y <i>Vasconcellea</i> en vistas polar y ecuatorial, en microscopía electrónica de barrido	55
Figura 34	Vista polar y ecuatorial de grano de polen de Caricaceae	56
Figura 35	Variabilidad de los caracteres cuantitativos de anatomía foliar en ocho de los grupos (CP) hallados por medio de análisis de componentes principales (ACP) para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i>	57
Figura 36	de variabilidad de los caracteres cualitativos de anatomía foliar representadas en 14 dimensiones (grupos de variables) hallados por medio de análisis de correspondencia múltipe (ACM) para la diferenciación de especies de <i>Carica</i> y <i>Vasconcellea</i>	59
Figura 37	Dendrograma de acuerdo a ocho caracteres cuantitativos y cualitativos de anatomía foliar en los géneros <i>Carica</i> y <i>Vasconcellea</i> y sus distancias de similitud (distancia de Manhattan)	63
Figura 38	Dendrograma generado según los caracteres palinológicos en los géneros Carica y Vasconcellea (distancia de Manhattan)	64

LISTA DE ANEXOS

		Pág.
Anexo A	Descriptores cuantitativos anatómicos para los géneros C <i>arica</i> y <i>Vasconcellea</i> (Caricaceae)	76
Anexo B	Descriptores cualitativos anatómicos para los géneros <i>Carica</i> y <i>Vasconcellea</i> (Caricaceae)	78
Anexo C	Descriptores de polen para para las especies de los géneros <i>Carica</i> y <i>Vasconcellea</i> (Caricaceae)	82
Anexo D	Caracteres anatómicos de la epidermis foliar de las especies de <i>Carica</i> y <i>Vasconcellea</i>	84
Anexo E	Caracteres anatómicos del mesófilo de las especies de <i>Carica</i> y <i>Vasconcellea</i>	87
Anexo F	Caracteres anatómico del pecíolo de las especies de Carica y Vasconcellea	89
Anexo G	Caracteres anatómicos del nervio principal de las especies de <i>Carica</i> y <i>Vasconcellea</i>	102
Anexo H	Caracteres del polen de <i>c. Papaya</i> (Cpap) y especies de <i>Vasconcellea</i> (v) en granos acetolisados en microscopía de luz	115
Anexo I	Caracteres del grano de polen de <i>C. papaya</i> (Cpap) y especies de <i>Vasconcellea</i> (V) en microscopia electrónica de barrido (MEB)	117
Anexo J	Variables que se tuvieron en cuenta para la separación de especies en anatomía foliar. Datos cuantitativos	120
Anexo K	Variables que se tuvieron en cuenta para la separación de especies en anatomía foliar. Datos cualitativos	121
Anexo L	Caracteres palinológicos de acetólisis para la diferenciación de <i>Carica</i> y especies de <i>Vasconcellea</i>	124
Anexo M	Caracteres anatómicos de las especies de Carica y Vasconcellea	125
Anexo N	Caracteres palinológicos de acetólisis de <i>Carica</i> y especies de <i>Vasconcellea</i>	125

INTRODUCCIÓN

Caricaceae es una familia pequeña. Comprende seis géneros (*Carica* L, *Vasconcellea* A. Saint – Hilaire, *Jarilla* Rusby, *Jacaratia* Endlicher, *Horovitzia* Badillo y *Cylicomorpha* Urban) y cerca de 35 especies. *Carica* y *Vasconcellea* son los mejores representados en Colombia.

Recientemente, 21 especies y un supuesto híbrido con dos variedades y una cultivar, antes clasificados dentro del género *Carica*, fueron ubicados en el género *Vasconcellea* (Badillo, 2001). Estos son conocidos como papayuelas o papayas de montaña, por su distribución esencialmente andina, desde 300 a 3.000 m (Badillo, 2000).

En comparación con la papaya común, los frutos de las papayuelas tienden a ser más pequeños, menos suculentos, con sabor distinto, y mayor contenido de papaína. Estas especies tienen un importante potencial, sea para explotación directa o como recurso genético para el mejoramiento de la papaya. En especial, son fuentes de genes de resistencia a las enfermedades y plagas más severas de esta especie (Caetano et al., 2003).

Al ser Colombia el segundo país más rico en Caricaceae (después de Ecuador), se propone conocer la diversidad de los géneros *Carica* y *Vasconcellea* a través de sus aspectos anatómicos foliares y palinológicos. Debido a que los estudios de anatomía y palinología en papayuelas son escasos, esto sería un complemento para la separación o caracterización de las diferentes categorías taxonómicas, estableciendo las diferencias interespecíficas.

La aplicación de esta metodología de identificación (sin dejar atrás las descripciones taxonómicas) nos permite conocer aun más la diversidad existente y así poder formular, en un futuro muy cercano, estrategias de conservación y también desarrollar catálogos que nos permitan conocer el pasado y el presente de la diversidad.

El presente trabajo se enmarcó dentro del proyecto "Estudio de la diversidad de Passifloraceae y Caricaceae en la zona cafetera de Colombia", financiado por el Ministerio del Medio Ambiente y ejecutado por la Federación Nacional de Cafeteros a través de CENICAFÉ, y por el Instituto Internacional de Recursos Fitogenéticos (IPGRI), oficina para las Américas, en colaboración con el Centro de Cooperación Internacional en Recursos Agronómicos para el Desarrollo (CIRAD) de Francia.

2. OBJETIVOS

2.1 OBJETIVO GENERAL

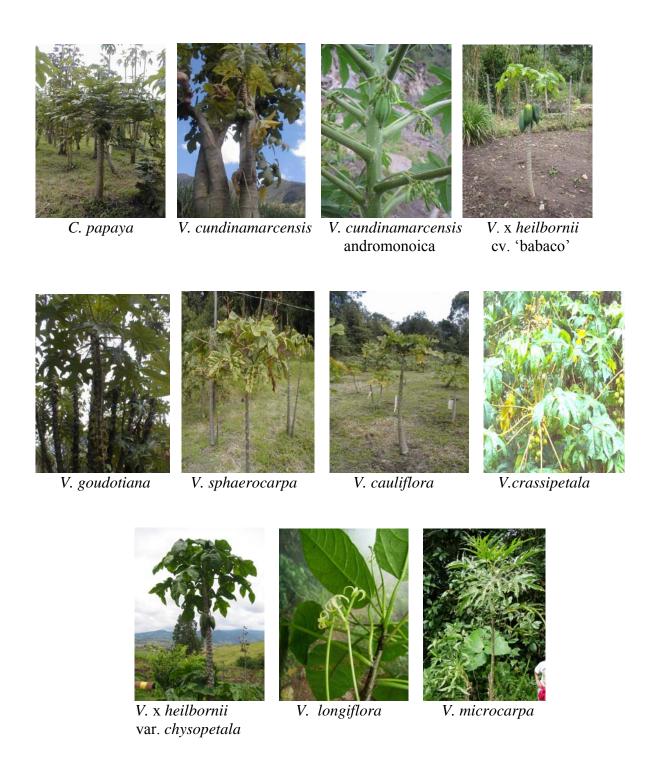
Estudiar la anatomía foliar y la palinología de las especies de *Carica* y *Vasconcellea* encontradas en la zona cafetera colombiana.

2.2 OBJETIVOS ESPECIFICOS

Caracterizar al nivel de anatomía foliar y palinología los géneros Carica y Vasconcellea.

Identificar caracteres que aporten a la taxonomía de Caricaceae.

3. MARCO CONCEPTUAL


3.1 GENERALIDADES DE LA FAMILIA CARICACEAE

Son seis los géneros de la familia Caricaceae: *Carica* L., *Jacaratia* A. DC.; *Cylicomorpha* Urban., *Jarilla* Rusby, *Horovitzia* Badillo y *Vasconcellea* A. Saint-Hilaire. Todos son nativos de América tropical, a excepción de *Cylicomorpha*, originario de África ecuatorial (Badillo, 1971). Muchas de sus especies son utilizadas tradicionalmente por su fruto, consumido en fresco, dulce o jugo, o por sus propiedades terapéuticas. *Vasconcellea* y *Carica* son los géneros mejor representados en Colombia.

La mayoría de las especies (Figura 1) son nativas de la zona neotropical desde 300 hasta 3500 msnm (Badillo, 2000), aunque sus límites se extienden más allá en latitud. Tal es el caso de *Vasconcellea chilensis* (Planch.ex A. DC.) A. DC o el de *Jarilla heterophylla* (Cerv. Ex. La Llave) Rusby ssp. *heterophylla*, la primera en Chile, aproximadamente entre los 30° y 37° de latitud sur y la última en México, hasta los 27.5° de latitud norte. La distribución de las especies de *Carica* y *Vasconcellea* se hace ver que la gran mayoría se concentra en la vertiente oriental de los Andes (Badillo, 1971). Sólo *C. papaya* en estado silvestre es exclusiva de Centro América (Badillo, 2000).

Las especies de *Carica y Vasconcellea* pueden ser masculinas, femeninas, hermafroditas, andromonoicas, ginomonoicas o monoicas. *V. monoica* (Desf.). A. DC. es la única que presenta estrictamente esta última condición (Badillo, 1971). La flor masculina se encuentra en ramilletes de pedúnculos largos, tiene diez estambres y ovario vestigial, pistilo rudimentario, raramente funcional, y normalmente no produce frutos. La flor femenina es solitaria o en pequeños racimos cortos, tiene pedúnculo corto, ovario grande, estilo con cinco estigmas, y produce frutos redondeados. La flor perfecta es solitaria o en pequeños racimos de 1 a 6 flores con pedúnculo corto, con ovario cilíndrico y alargado y cinco pétalos unidos hasta la mitad.

La papaya tiene flores que florecen en la noche, las cuales liberan un fuerte aroma dulce especialmente en la tarde. Las flores masculinas, muy abundantes, son tubulares y producen néctar alrededor de un pistilo rudimentario (usualmente puede ocurrir en flores hermafroditas), que está fuera del alcance de las abejas debido a que tiene un tubo largo. Las flores femeninas carecen de tubo y de néctar. Los lóbulos del estilo son grandes y se dice que mimetizan los lóbulos de la corola de las flores masculinas. Los polinizadores son mariposas nocturnas (*Sphingidae*) que también visitan las flores femeninas sin néctar.

Figura 1. Especies de *Carica* y *Vasconcellea* presentes en la zona cafetera (Fotos: CM Caetano, L Barrios; *V. longiflora* y *V. microcarpa*, José P Motoche).

Se reporta que ocurre partenocarpia (Baker, 1976; Bawua, 1983, citado por Westerkamp, 2000). Se deben asegurar buenas condiciones para las mariposas nocturnas para que haya una polinización exitosa (Westerkamp, 2000).

Los estudios de la diversidad de Caricaceae son relativamente pocos. Durante mucho tiempo, se han limitado a descripciones taxonómicas tradicionales (Badillo, 1971, 2000, 2001). De todas las Caricaceae, *C. papaya* L. es la especie más conocida botánica y agronómicamente y al nivel de citogenética. Los estudios del cariotipo sólo hacen referencia al número cromosómico 2n = 18 (Chandler, 1958, citado por Mehetre y Dahat, 2000), con muy pocos los estudios sobre la microsporogénesis y viabilidad de polen de algunas especies y sus respectivos híbridos (Khumar *et al.*, 1945).

Algunos estudios demostraron que la baja fertilidad de polen en los híbridos interespecíficos de *Vasconcellea cundinamarcensis* V. Badillo x *V. stipulata* (V. Badillo) V. Badillo (Zerpa, 1980), *C. papaya* x *V. cauliflora* (Jacq.) A. DC. (Magdalita *et al.*, 1997; Siar *et al.*, 1998) y *C. papaya* x *V. quercifolia* St.-Hill.(Villegas *et al.*, 1998), resultó de anormalidades en la meiosis, especialmente la formación de univalentes y la eliminación cromosómica. La meiosis en los parentales fue normal, con alta frecuencia de polen viable, pero en los híbridos se verificó una escasa o ausencia de homología entre los cromosomas de los parentales. Estudios citogenéticos, palinológicos y de viabilidad polínica fueron realizados con varias especies de *Vasconcellea* y con *C. papaya*, esta tomada por comparación (Caetano et al., 2003).

3.2 ANATOMÍA FOLIAR

Morfológica y anatómicamente la hoja es el órgano más variable de la planta. Es un apéndice lateral del tallo, que se inserta en un nudo del mismo, y cuya función principal es la fotosíntesis. Las hojas de Caricaceae son completas y constan de tres partes: el pecíolo, la base y la lámina foliar. El pecíolo es un pequeño tallito que une la base foliar con la lámina y sirve para la conducción de la savia. La base foliar une la hoja al tallo y generalmente es una parte ensanchada que puede modificarse en mayor o menor grado. La lámina o limbo es la parte expandida y aplanada de la hoja y adquiere formas, tamaños y consistencias muy variables. La lámina está constituida por una epidermis superior e inferior (adaxial e abaxial), el mesófilo (tejido fundamental) y por un sistema vascular formado por los nervios.

El mesófilo (*meso*, en el medio; *phyllon*, hoja) es un tejido fundamental entre dos estratos epidérmicos que proporciona algunas diferencias anatómicas entre especies. Es altalmente especializado como tejido fotosintético, por lo tanto contiene cloroplastos y un gran volumen de espacios intercelulares (parénquima vivo).

Según la descripción de Metcalfe y Chalk (1965) para la morfología interna de las hojas de Caricaceae, estas son dorsiventrales, con espacios intercelulares bien desarrollados en el tejido

esponjoso, pelos glandulares largos y con forma de clavo y punta multicelular, presentes en los pecíolos y a lo largo de la vena principal, y estomas confinados a la superficie baja y ranunculados.

La epidermis (*epi*, encima; *derma*, piel) es la capa más externa del cuerpo primario de la planta. Sus funciones están en la limitación de la transpiración, protección mecánica, intercambio gaseoso a través de los estomas y almacenaje de agua y productos metabólicos.

De acuerdo con Benítez de Rojas (1968), la epidermis de las especies de los géneros *Carica* y *Vasconcellea* (teniendo en cuenta que *Vasconcellea* estaba antes ubicado dentro del género *Carica*) es uniseriada. Así mismo, siempre están presentes emergidas epinervias o pelos masivos en mayor o menor grado, cuya frecuencia está influenciada por el ambiente. Por otra parte los estomas son de tipo anomocítico. Una variante, por la diferenciación de las células acompañantes, la constituyen *V. microcarpa* Jacq. y *V. sprucei* V. Badillo, donde estas células casi siempre son buliformes o papilosas. En la primera es carácter valioso para la distinción de las subespecies. De este modo las subespecies de *V. microcarpa* subsp. *microcarpa*, *V. microcarpa* subsp. *pilifera* V. Badillo y *V. microcarpa* subsp. *australis* V. Badillo presentan cuatro a cinco células acompañantes buliformes. En cuanto a *V. microcarpa* subsp. *heterophylla* (Poepp. et Endl.) V. Badillo, puede presentar igual número de células rodeando al estoma, con o sin diferencia con las del resto por poseer estomas con casi siempre siete a nueve células acompañantes papilosas.

Las características al nivel de especie se encuentran en el envés o epidermis abaxial. En *V. cauliflora* se encuentran estomas en la epidermis adaxial o haz, cosa que no se encuentra en las restantes especies del género, donde los estomas están limitados a la epidermis abaxial o envés.

En V. augusti Harms. V. candicans A.Gray., V. glandulosa Pav. ex A.DC. (no siempre), V. pulchra Badillo., V. quercifolia, V. sprucei, V. stipulata y V. weberbaueri Harms, células papilosas mas bien buliformes son frecuentes solamente en el envés. En V. cauliflora, V. chilensis, V. crassipetala Badillo, V. goudotiana (Tr. et Planch.) Solms, V. horovitziana Badillo, V. longiflora Badillo. V. monoica, C. papaya, V. parviflora (A. DC.) Solms, V. sphaerocarpa Garcia et Hernandez las células acompañantes del estoma no se diferencian de las del resto de la epidermis, las cuales, por otra parte, son buliformes.

Pelos uniseriados o simples, uni a pluricelulares aparecen en *V. candicans*, *V. microcarpa* subsp. *pilifera*, *V. cundinamarcensis* y *V. sprucei* (casi siempre) y a veces en *V. glandulosa*.

La densidad de los estomas varía apreciablemente. En *V. chilensis* son 90/mm², en *V. parviflora* 102/mm², en *V. glandulosa* 435/ mm² y en *C. papaya*, 485/ mm², la máxima densidad observada.

El pecíolo sirve de enlace entre el limbo foliar y el tallo. A veces puede faltar, en cuyo caso la hoja se llama sésil. Los tejidos de este órgano son comparables a los del tallo.

Según Badillo (1971), el pecíolo en corte transversal en sitio cercano a la lámina, presenta de afuera hacia adentro lo siguiente: 1. la epidermis, 2. capa adyacente de células sin clorofila, 3. dos a tres capas de parénquima clorofiliano, 4. colénquima bien desarrollado mas de 12 capas, 5. parénquima clorofiliano constituido por dos o tres capas de células más grandes que en la zona de parénquima también profundamente en radios; la capa interna es amilifera, 6. grupos colenquimáticos abrazados por los anteriores radios parenquimáticos, 7. floema, 8. vasos leñosos rodeados de parénquima incoloro, el protoxilema endarco, 9. médula.

El pecíolo en secciones transversales a lo largo del extremo distal, exhibe un círculo de numerosos haces vasculares colaterales espaciados ampliamente, circundando una médula parenquimatosa muy grande. Otros filamentos formados completamente por floema también aparecen en el anillo vascular dispersos entre los haces colaterales. Canales articulados laticíferos acompañan los haces vasculares de las venas y se extienden en el mesófilo circundante. Todo el tejido parenquimatoso contiene cristales refractivos de naturaleza aldehídica. Son abundantes los racimos de cristales de oxalato de calcio (Metcalfe y Clark, 1965).

El nervio principal sostiene una serie de nervios laterales (secundarios) que forman una red vascular reticulada cerrada.

3.3 PALINOLOGÍA

El estudio del polen recibe el nombre de palinología (*palynein* en griego significa dispersar). Este término fue establecido por Hyde y Williams (1945, citado por Uribe y Fonnegra, 1979). Erdtman (1952) define el término palinología como ciencia que estudia las paredes de esporas y granos de polen sin tener en cuenta su interior vivo, gracias a la gran variedad de formas, tipos de aperturas, riqueza de caracteres estructurales y esculturales de la exina de los granos de polen.

El grano del polen es un elemento reproductivo masculino microscópico que mantiene la continuidad genética en las plantas superiores de una generación a otra (Uribe y Fonnegra, 1979). En la naturaleza se encuentra una gran diversidad en formas y tamaño del polen. Se ha interpretado que esta diversidad es una adaptación para asegurar que el polen pueda llegar hasta el estigma de la flor de la misma especie por varios portadores, tales como la gravedad, viento, agua, insectos, entre otros.

En su condición viva, el grano del polen está formado por dos componentes: la parte viviente o citotoplasma y una parte inerte o pared celular llamada esporodermis, siendo esta mas gruesa y además constituida por dos capas: una capa interna o intina y otra externa o exina. La exina permanece intacta en caso de muerte del grano del polen y es muy resistente tanto a las temperaturas altas (250 a 300 °C) como a las sustancias corrosivas. La intina se destruye por temperaturas altas y sustancias corrosivas. De esta manera, la forma y el tamaño del polen y la estructura de la exina, no se alteran aun cuando el citoplasma del mismo haya muerto, por millones de años (Uribe y Fonnegra, 1979).

Las características del polen tienen alto valor taxonómico, por estar determinadas genéticamente. Son, por lo tanto, muy constantes y propias de cada especie. Las más importantes son el número, posición y carácter de las aberturas, y la ornamentación y estratificación de la exina. La unidad polínica, la polaridad, la simetría, la forma y el tamaño del polen son también consideradas. Pueden ocurrir variaciones por factores citológicos y alteraciones en el número cromosómico pueden ocurrir.

Erdtman (1952) describe los granos de polen de la familia Caricaceae como tricolporados y subprolados, con exina tan gruesa como la nexina o más delgada, baculada, y poro germinal, alargado transversalmente. Las especies que investigó son *C. papaya*, *V. microcarpa* y *Jacaratia mexicana* A. DC. Indicó que los granos de polen son similares a los encontrados en las familias Passifloraceae, Achariaceae y Cucurbitaceae. van der Hammen (1952, citado por Badillo, 1971), cita a *C. papaya*, mediante la siguiente fórmula palinológica C3P3 ret (-fosfov) es decir polen tricolporado y ectexina reticulada con variaciones desde fosulada hasta foveolada.

Ferrari (citado por Badillo, 1971) describió el polen para el género *Carica*, aunque a la fecha, las especies de *Vasconcellea* no eran tratadas como un género aparte:

V. cauliflora. Tricolporado, poro germinal alargado transversalmente, prolato esferoidal (34 x 28 μm), P:E= 1,07, foveolado, tectado. Columelas densas. Exina 2.5 μm. Endexina igual que ectexina.

V. microcarpa subsp. microcarpa. Tricolporado, prolato esferoidal (35 x 31 μm), P:E = 1,12, areolado, tectado. Columelas regularmente distribuidas. Distancia 0.5 – 1 μm. Exina 2.5 μm. Endexina igual que ectexina.

 $V.\ horovitziana$. Tricolporado: poro germinal alargado transversalmente; prolato esferoidal (24 x 23 µm), P:E = 1; foveolado; tectado. Columelas densas. Exina 3.5 µm. Endexina menor o igual que ectexina; superfície de esta última ondulada.

4. METODOLOGÍA

4.1. ÁREA DE ESTUDIO

Los sitios de colecta se concentraron en los departamentos de Antioquia, Caldas, Quindío, Cundinamarca, Valle del Cauca, Cauca y Nariño, en la zona cafetera nacional. Dado el tiempo y recursos asignados al proyecto, no se pudo trabajar con cada especimen recolectado, sino que se escogió al azar un representante de cada especie sin considerar el sexo y lugar de recolección con excepción a *V. cundinamarcensis*, puesto que por estudios previos (Leal, et al., 2003, Romeijn-Peeters, 2004) se ha encontrado variabilidad intraespecífica, seleccionando muestras de esta especie de distintos sitios (accesiones) (Tabla 1)

Tabla 1. Accesiones colectadas de *Vasconcellea* y *Carica* para anatomía y palinología.

Accesión	Sexo	Departamento	Localidad	Abreviatura
C. papaya	Masculina	Valle	Palmira	CpapVAm
V. cauliflora	Masculina	Valle	Jamundí	VcauVAm
V.crassipetala.	Femenina	Caldas	Papayal	VcraCDf
V.crassipetala.	Masculina	Caldas	Papayal	VcraCDm
V. cundinamarcensis	Femenina	Nariño	Contadero	VcunNNf
V. cundinamarcensis	Masculina	Nariño	La Cocha	VcunNNm
V. cundinamarcensis	Polígamo-monoica	Nariño	La Cocha	VcunNNh
V. cundinamarcensis	Masculina	Valle	Tenerife	VcunVAm
V.cundinamarcensis	Masculina	Caldas	Villamaría	VcunCDm
V. cundinamarcensis	Femenina	Cundinamarca	S. A. deTequendama	VcunCUf
V. cundinamarcensis	Andromonoica	Nariño	Consacá	VcunNNa
V. cundinamarcensis	Masculina	Antioquia	Rionegro	VcundANm
V. cundinamarcensis	Masculina	Quindío	Buenavista	VcundQUm
V. goudotiana	Femenina	Cauca	Popayán	VgouCAf
V. goudotiana	Masculina	Valle	Cerrito	VgouVAm
V. heilbornii cv. 'babaco'	Femenina	Nariño	Consacá	VhpenNN
V. heilbornii var. chysopetala	Femenina	Nariño	Pasto	VhchrNN
$V. longiflor a. \$	Masculina	Quindío	Paraguaycito	VlonQUm
V. microcarpa	Masculina	Quindío	Filandia	VmicCAm
V. sphaerocarpa.	Masculina	Cauca	Mondomo	VsphCAm

4.2 MUESTREO Y DETERMINACIÓN DE MATERIAL VEGETAL

4.2.1 Herborización: por cada especie, y en lo posible para cada sexo, se colectaron tres muestras preferiblemente fértiles. Para cada ejemplar se tomaron datos de sexo, color de flores y/o frutos, exudado, altura de la planta, frecuencia de aparición, ubicación geográfica (GPS) y altitud. Cada muestra ha sido montada en hojas de papel periódico y fijada en alcohol para evitar la contaminación por hongos. La desecación de los ejemplares se hizo colocando las

muestras entre pliegos de cartón y dos láminas de aluminio corrugadas, posteriormente se sujetaron con una rejilla prensil y se llevaron al horno de la Unidad de Recursos Genéticos del CIAT (Centro Internacional de Agricultura Tropical) a una temperatura de 90°C, durante 36 horas o más dependiendo del material. Finalmente las muestras se montaron en cartulina blanca, y tanto el original como los duplicados fueron debidamente etiquetados. Este trabajo fue ejecutado en la dependencias del IPGRI (Instituto Internacional de Recursos Fitogenéticos, oficina para las Américas).

4.2.2 Identificación de los especímenes: para la determinación de los especimenes se emplearon claves taxonómicas (Badillo, 1971, 2000, 2001). El material vegetal que se colectó se depositó en el herbario del Museo de Historia Natural de la Universidad del Cauca (CAUP).

4.3 ESTUDIOS DE ANATOMÍA FOLIAR Y PALINOLOGÍA

Los estudios anatómicos y palinológicos se llevaron a cabo en el IPGRI/CIAT, donde se dispuso de laboratorios de Microscopía de Luz y Electrónica.

4.3.1 Estudios de anatomía foliar: para los estudios de anatomía foliar se colectaron dos hojas, seleccionándose las maduras (que no sean ni muy jóvenes ni viejas debido a que unas pueden tener poco desarrolladas las estructuras internas, y otras tenerlas ya deterioradas), y se conservaron en fresco en papel periódico húmedo y en la nevera hasta máximo 15 días. El material se trabajó en fresco y no se preservó en alcohol debido a que esta sustancia altera los cristales presentes (que son elementos necesarios para la caracterización) y puede alterar, por deshidratación, las estructuras internas de la hoja.

Se realizaron diversos cortes a mano alzada y se seleccionaron aquellos que permitieron observar las estructuras internas claramente como son la epidermis, corteza, floema, xilema, cristales, pelos o tricomas, mesófilo, nervio principal, número (índice estomático), tamaño y localización de estomas. Los cortes no se realizaron con micrótomo ya que el protocolo requiere fijación y tratamiento con alcohol a diferentes concentraciones y esto puede ocasionar los daños mencionados anteriormente.

Cortes a mano alzada (microtecnia), coloración y montaje.

Corte transversal y longitudinal: se obtuvo un fragmento de 1cm o más de pecíolo o nervio principal, se humedeció, cuidando que la superficie horizontal (para corte transversal) esté perfectamente horizontal. Para cortar se deslizó la cuchilla de derecha a izquierda

utilizando todo el filo, con movimiento uniforme, sin sacudir ni cambiar de dirección. Los cortes se colocaron con un pincel en un vidrio reloj o en una caja Petri con agua destilada. Para los cortes de mesófilo se tomó un fragmento de lámina foliar que no contenga nervaduras primarias ni secundarias y se colocó entre pedacitos de corcho fino o icopor, lo que permitió coger con comodidad y obtener un fácil deslizamiento de la cuchilla, sin oprimirlo con mucha fuerza ni estrujarlo (Barriga, 1964). Una vez hecho el corte y montado en agua destilada, se procedió a tomar fotografía, puesto que el tejido se dehidrata rápido y se deteriora.

Coloración y montaje: la coloración de los tejidos se efectuó con la safranina, un colorante artificial habitualmente usado y que permite ver en color rojo las paredes leñosas, cutinizadas. Para esto se realizaron los siguientes pasos:

- 1. Se tomó el material de pecíolo y nervio principal en fresco o conservado en papel periódico húmedo.
- 2. Se lavó en agua destilada.
- 3. Se hicieron los cortes con el material húmedo.
- 5. Se colocaron los cortes en una caja de Petri con agua destilada.
- 6. Se hizo la coloración con safranina al 0.5% durante dos minutos.
- 7. Se lavaron los cortes en agua destilada una o dos veces.
- 8. Se montaron en gelatina glicerinada 16.66%, para mejor conservación de las placas.
- 9. Finalmente, se cubrieron los cortes con el cubre-objeto.

Preparación de la gelatina glicerinada (Barriga, 1964): diluir en 200 ml de agua caliente 60 gramos de gelatina. Dejar 1 hora a calor y agitando, agregar 2 ml de ácido fenico o fenol. Agregar 100 ml de glicerina o gelatina sin sabor, dejar calentar por una hora y filtrar en caliente.

Registro de datos: se hicieron observaciones con las cuales se generaron tablas. Luego se seleccionaron los caracteres más relevantes en anatomía, los que no estuvieran tan influenciados por el ambiente ni por el desarrollo de la planta, para elaboración de una lista de descriptores (Anexo A) y una clave dicotómica de especies (ver clave dicotómica para anatomía) de estas especies. Se hicieron gráficos de pecíolo, nervio principal y mesófilo, para los cuales se siguió la nomenclatura para anatomía dada por Metcalfe y Chalk (1965; Figura 2) Además se tomaron fotografías a color.

4.3.2 Estudios palinológicos: para este estudio se colectaron flores masculinas. Estas flores se guardaron en una bolsa con sílica gel, se le identificó con el nombre de la especie y luego se llevó al laboratorio para procesarlas.

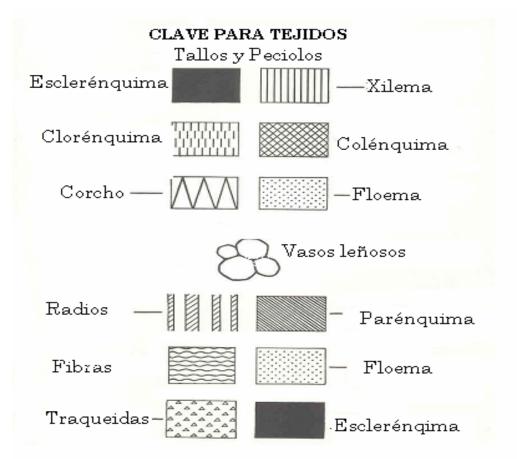


Figura 2. Nomenclatura dada para los gráficos de anatomía. (Fuente: Metcalfe & Chalk, 1965).

Procedimiento para el análisis en microscopía de luz: las muestras de polen se prepararon de acuerdo a la técnica de acetólisis de Erdtman (1986, citado por Fonnegra, 1989). Esta consiste en una hidrólisis ácida del material polínico, para degradar la intina y el protoplasma del grano del polen, permaneciendo la pared externa de esporopolenina (exina). Con la acetólisis, la pared se vuelve transparente, permitiendo la observación al microscopio. Los pasos fueron los siguientes:

- 1. Se extrajo las anteras de las flores sobre un papel filtro.
- 2. Las anteras se colocaron en tubos de centrífuga previamente rotulados, se maceraron con una varilla de vidrio, pudiendo así dejar que los granos de polen se liberen.
- 3. El material polínico se fijó agregando a cada tubo acético glacial, con lo cual el protoplasma comenzó a ser destruido por corrosión. Se conservó en fijación durante 24 horas, lo cual evita deformaciones del grano de polen en etapas posteriores de preparación. Las anteras se conservaron en ácido acético en frascos pequeños indefinidamente.
- 4. Luego se centrifugó durante 5 minutos a 2000 r.p.m., y posteriormente se descartó el sobrenadante.

- 5. Al tubo de centrifuga, se le adicionó solución acetolítica (ácido sulfúrico concentrado y anhídrido acético en la proporción 1:9), siendo preparada al momento de su uso. Para poder acelerar la degradación del protoplasma se colocó la mezcla al baño maría a 100°C, agitando continuamente hasta que se tomó color oscuro.
- 6. Las placas montadas se observaron con el microscopio de luz y se les tomaron fotografías.

Procedimiento para el análisis en microscopía de barrido (MEB): se utilizó el protocolo de deshidratación de muestras del laboratorio de la Unidad de Virología del CIAT.

- 1. Fijación en glutaraldehido 24 horas (el glutaraldehido se prepara al 2.5%. Para alcanzar esta concentración se añade buffer fosfato 0.1M pH 7.2.).
- 2. Deshidratación con alcohol al 25% durante 15 minutos.
- 3. Deshidratación con alcohol al 50% durante 15 minutos.
- 4. Deshidratación con alcohol al 75% durante 15 minutos.
- 5. Deshidratación con alcohol al 90% durante 15 minutos.
- 6. Deshidratación con alcohol al 100% durante 15 minutos.
- 7. Deshidratación con alcohol al 100% durante 15 minutos.
- 8. Deshidratación con alcohol al 100% durante 15 minutos.
- 9. Secado de punto crítico.
- 10. Montaje de las muestras en el porta-muestras.
- 11. Ionización con oro paladio.

Medición de los granos de polen: se tomaron al azar 30 granos distribuidos por lo menos en tres placas para así poder lograr uniformidad de la muestra (Salgado-Labouriau *et al.*, 1965, citado por Fonnegra, 1989), con ayuda de un micrómetro ocular previamente calibrado. Todas las mediciones se las tomaron en μm. En vista ecuatorial, se midieron el diámetro ecuatorial (E) y el eje polar (P). En vista polar, se midieron el diámetro ecuatorial (DEP) y lado de apocolpo/apoporo (LA). Con el índice polar (P/E) se obtuvo la forma del polen. Con el LA y el DEP se obtuvo el índice del área polar (IAP). A su vez, el eje polar define el tamaño del grano. Se observó también la estructura de la exina. Para todas las medidas (con algunas excepciones), se da la media aritmética y la desviación estándar.

Descripción del polen: se elaboraron descriptores palinológicos con los caracteres más representativos de las especies (Anexo C). Con estos, se hizo una descripción general para géneros *Carica* y *Vasconcellea*. Los caracteres palinológicos a resaltar se muestran en la Tabla 2.

Tabla 2. Descriptores palinológicos cuantitativos y cualitativos más discriminantes para Caricaceae.

Descriptores	
Cuantitativos	
	Eje Polar (P)
	Diámetro ecuatorial (E)
	Lado de apocolpo/apoporo (LA)
	Diámetro ecuatorial en vista polar (DEP)
Cualitativos	
	Forma polínica según el índice P/E (F)
	Tamaño (T)
	Contorno en vista ecuatorial (CE)
	Contorno en vista polar (CP)
	Tipo del área polar (TAP) según el índice del área polar IAP
	Tipo de abertura (TA) según el IAP

4.4 DIVERSIDAD DE CARICACEAE

A partir de las matrices de datos cualitativos y cuantitativos más importantes, (que no están influenciadas por el ambiente) (Esau, 1972; Espinosa et al, 2002; Franceschi y Horner, 1980; Metcalfe y Chalk, 1965; Romeijin, 2004; Roth, 1997; Vélez, 2003) (anexos J, K, L) y que fueron resultado de las observaciones de anatomía foliar y palinología, se aplicaron dos métodos estadísticos para poder conocer las variables más discriminantes entre las especies de *Carica* y *Vasconcellea* y se elaboró un dendrograma que muestra la relación entre ellas.

Las pruebas aplicadas fueron el análisis de componentes principales (ACP), el cual permite seleccionar las variables cuantitativas que permitan discriminar o que su contribución es insignificante para diferenciar las especies (Jolliffe, 1972 y 1973; McCabe, 1984; citado por Chavez, 2001). En cada componente principal (CP) o grupo se seleccionaron las variables cuyo peso superaba el valor de 0.20.

En el caso de las variables cualitativas se aplicó el análisis de correspondencias múltiples (ACM) cuyo propósito es la representación de la disimilaridad entre un grupo de variables o accesiones mediante *n* puntos en un espacio multidimensional, usualmente dos a tres, cuyas dimensiones representan aquellas variables que están correlacionadas (Chavez, 2001).

Estas dos pruebas se realizaron mediante el programa SAS versión 6.10 (SAS, 1996).

Finalmente, las variables seleccionadas mediante las pruebas anteriores se sometieron a un análisis de conglomerados o de formación de grupos (método de Ward) para conocer la

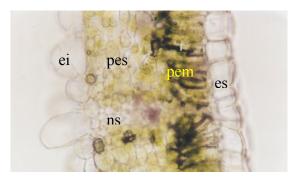
relación existente entre los géneros y las especies estudiadas, la cual se visualiza mediante un dendrograma. El dendrograma fue basado en los caracteres de anatomía foliar y palinología.

Este método permite agrupar de manera jerárquica a las especies tratando de minimizar la variación intragrupal (a partir de las variables seleccionadas) de la estructura formada. La separación entre grupos se estima mediante una distancia relativa (distancia Manhattan) que indica la mayor o menor similaridad o afinidad entre los grupos y entre sus elementos (especies). Así, a mayor distancia menor similitud. Estos análisis se realizaron con el programa STATISTICA 98e.

5. RESULTADOS

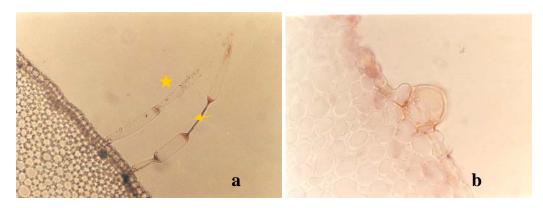
Dentro del género *Vasconcellea* se colectaron nueve especies (Tabla 1). Por su variabilidad morfológica, se evaluó mayor número de accesiones de *V. cundinamarcensis*, siguiéndole *V. goudotiana*. Estas dos especies son las más representativas en Colombia. Para el análisis de polen se agregaron dos accesiones más de *V. cundinamarcensis*, de distintos departamentos (Antioquia y Quindío). *C. papaya* fue tomada como referencia.

5.1 ANATOMÍA FOLJAR

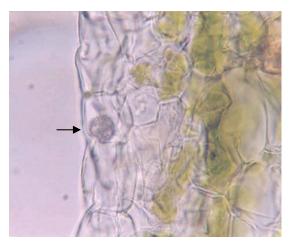

Las tablas de descriptores de los caracteres anatómicos se encuentran organizadas de la siguiente manera en la sección de Anexos:

- Caracteres anatómicos de la epidermis foliar de las especies de *Carica* y *Vasconcellea* (Anexo D, p.83-86).
- Caracteres anatómicos del mesófilo de las especies de *Carica* y *Vasconcellea* (Anexo E, p. 87-88).
- Caracteres anatómico del pecíolo de las especies de *Carica* y *Vasconcellea* (Anexo F, p. 89-101).
- Caracteres anatómicos del nervio principal de las especies de *Carica* y *Vasconcellea* (Anexo G, p. 102-114).

5.1.1 Epidermis de la lámina foliar


En corte transversal de la hoja de las especies de *Carica* y *Vasconcellea*, la epidermis superior es mayor dos a tres veces que la epidermis inferior. Se encuentran diferentes grados de cutinización expresados en las tablas (Anexo D, p. 84-86) como cutinizado, levemente cutinizado, y no cutinizado, con un mayor grosor de la cutícula en la epidermis superior que en la inferior.

Las especies evaluadas presentan células epidérmicas de forma cuadrada y tamaño similar. *V. crassipetala* presenta células epidérmicas de tamaño y forma variados (Figura 3). Estas duplican en tamaño a las demás células, encontrándose a lo largo de todo el tejido.


Figura 3. Forma de las células epidérmicas de *V. crassipetala*. Células de tamaño y forma variada en la epidermis inferior (ei), encontradas especialmente en los nervios. Epidermis superior (es), parénquima en empalizada (pem), parénquima esponjoso (pes), nervio secundario (ns). (Aristoplan 25x).

Las accesiones de *V. cundinamarcensis*, presentan pubescencia. Por lo general, el tricoma es de pared delgada, de una a seis células, y ápice acuminado. Sin embargo, en las accesiones de *V. cundinamarcensis* del Valle y del Caldas algunos tricomas presentan forma glandular (Figura 4). Estos tricomas se encuentran en la epidermis inferior ligada a los nervios y suelen ser efimeros (pierden el protoplasma y quedan secos, Figura 4, a), se encuentran rodeados por ocho a doce células epidérmicas de contorno poligonal y alargadas, diferenciables de las demás células epidérmicas.

Figura 4. Tricomas unicelulares a pluricelulares (estrella) presentes en *V. cundinamarcensis*. Tricoma que ha perdido su protoplasma y se ha secado (efimero, flecha) (a). Tricoma glandular (b). (Aristoplan 10 y 25x).

Las especies de *Carica* y *Vasconcellea* presentan granulaciones en las células epidérmicas, (Figura 5).

Figura 5. Granulaciones presentes en las células epidérmicas (flecha) para la mayoría de las especies. Estas granulaciones también están presentes en la epidermis del pecíolo y nervio principal. *V. cauliflora*. (Aristoplan 100x).

En vista frontal de la epidermis foliar, las células tanto superiores como inferiores presentan forma poligonal, de paredes rectas a profundamente sinuosas (Figura 6).

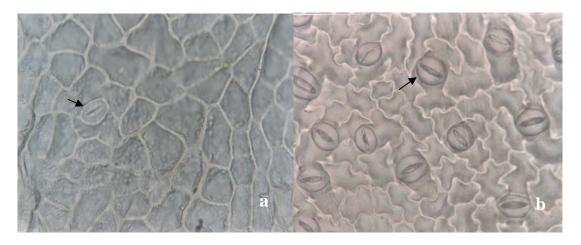
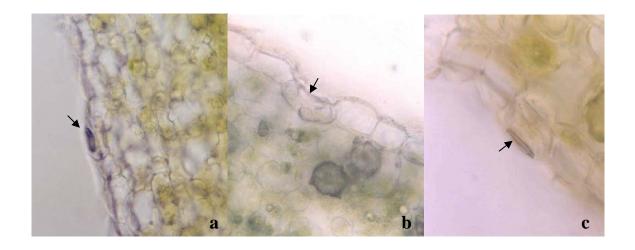


Figura 6. Tipos de epidermis presentes en *Vasconcellea* y *Carica*, en la haz (a, c) y envés (b, d). Epidermis poligonal de paredes rectas a sinuosas (a, b), en *V.* x *heilbornii* cv. 'babaco'. Epidermis poligonal de paredes ligeramente a profundamente sinuosas (c,d) en *V. goudotiana*. (Aristoplan, 40x).


Un carácter que permite diferenciar a *V. cauliflora* de las demás especies de *Vasconcellea* y *Carica* es la presencia de epidermis anfiestomática en ésta (Figura 7), ya que las demás especies presentan epidermis hipostomática.

Los estomas para todas las especies evaluadas son de tipo anomocítico. La posición del estoma con respecto a las demás células epidérmicas se presenta desde ligeramente hundido, igual a la superficie a sobresaliente (Figura 8, Anexo D).

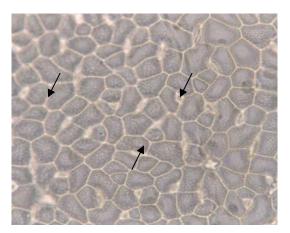
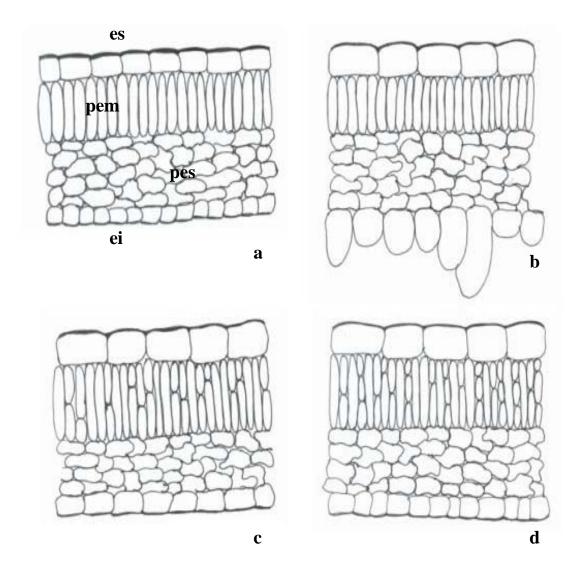

El índice estomático para las especies de *Carica* y *Vasconcellea* (Anexo D, p. 84-86) es variable inclusive dentro de las mismas accesiones de *V. cundinamarcensis. C. papaya* fue la especie que presentó el mayor índice estomático con 28.56 (Figura 9), y *V. microcarpa* fue la de menor índice, 9.02.

Figura 7. Epidermis anfiestomática de *V. cauliflora*. Se observan los estomas (flecha) en la epidermis superior (a) y en la inferior (b). (Aristoplan 40x).

Figura 8. Posición del estoma respecto a las demás células epidérmicas. Estoma sobresaliente (a), estoma ligeramente hundido (b), y estoma igual a la superficie (c). *V. crasssipetala* (40x) *V. cundinamarcensis* (40x) y *V. cauliflora* (100x), respectivamente. (Aristoplan).


Figura 9. Epidermis inferior de *C. papaya*. Estomas (flechas) de tamaño pequeño comparado a las especies de *Vasconcellea*. (Aristoplan 40x).

5.1.2 Mesófilo

En corte transversal de la lámina foliar el mesófilo se presenta dorsiventral (hoja dorsal y ventral distintos), constituído por el paréquima en empalizada y el esponjoso (Figura 10).

En las accesiones estudiadas, el parénquima en empalizada está restringido al lado adaxial de la hoja, formado por uno, dos o tres estratos de células (Figura 11, Anexo E, p. 87-88). Las células son compactas, de pared delgada, forma rectangular y algunas elípticas.

El parénquima esponjoso está constituido por células de paredes delgadas, elípticas y circulares, con espacios intercelulares reducidos, pero mayores a los del parénquima en empalizada. Presenta igual o menor proporción al parénquima en empalizada.

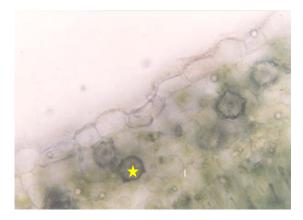


Figura 10. Diagrama de sección transversal del mesófilo de **a**. *V. cauliflora*, **b**. *V. microcarpa*, **c**. *V. sphaerocarpa*, y **d**. *V. cundinamarcensis* masculina de Nariño. Se encuentran diferentes estratos dentro del parénquima en empalizada y los tamaños de las células espidérmicas superior a la inferior. (es) epidermis superior, (ei) epidermis inferior, (pem) parénquima en empalizado, (pes) parénquima esponjoso.

Figura 11. Diferenciación del mesófilo dorsiventral en parénquima en empalizada (pem) y parénquima esponjoso (pes). El parénquima en empalizada está constituido por uno (a), o dos a tres estratos (b). Epidermis superior (es), epidermis inferior (ei). Mesófilo de *C. papaya* (40x) y *V. goudotiana* (25x). (Aristoplan).

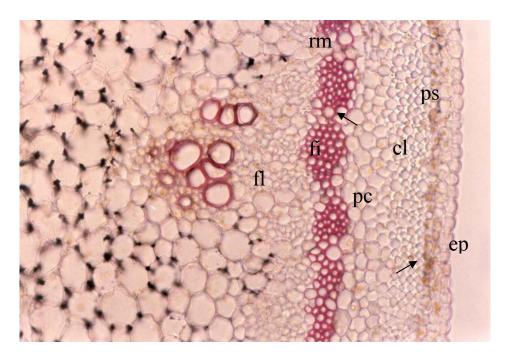

Los cristales de Oxalato de Calcio (Figura 12) están presentes en el parénquima esponjoso en forma de drusa, ya sea ocupándolo todo, o cerca de la epidermis inferior (Anexo E, p. 87-88).

Figura 12. Cristales de oxalato de calcio presentes en el parénquima esponjoso (estrella), cerca de la epidermis inferior del mesófilo de *V. cundinamarcensis*. (Aristoplan 40x).

5.1.3 Pecíolo

Dentro de las especies de *Vasconcellea* y *Carica* se encuentra un patrón de estructuras del pecíolo similar para estos dos géneros (Figura 13).

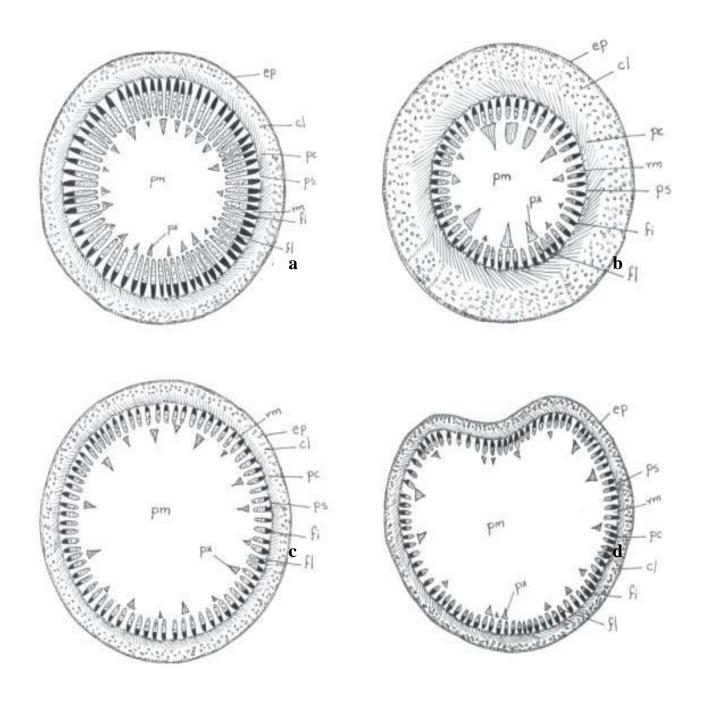
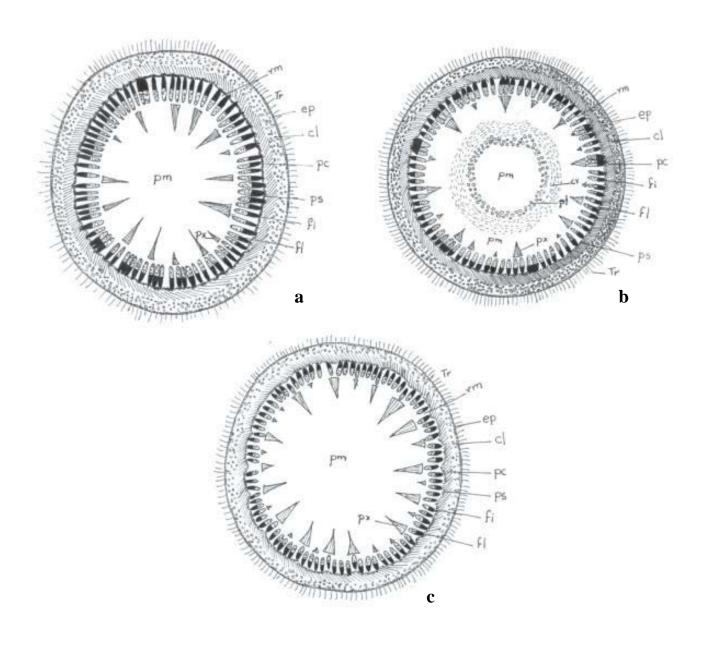


Figura 13. Patrón de estructura del pecíolo presente en *Carica* y en todas las especies de *Vasconcellea*. De afuera hacia adentro, epidermis (ep), parénquima subepidérmico (ps), colénquima (cl), parénquima cortical (pc), fibras del floema (fi), floema blando (fl), radio medular primario (rm), seguido de protoxilema y parénquima medular. Las flechas muestran una línea de cloroplastos dentro del parénquima subepidérmico y cortical. En *V.longiflora*. (Aristoplan 10x).


En el corte transversal de la región basal, el pecíolo (Figura 14,15) presenta contorno elíptico, circular, y en algunas especies elíptico con dos aristas (Anexo F, p. 89, 91, 94, 96 y 99). Sólo una accesión de *V. cundinamarcensis*, la de Cundinamarca, presenta borde ondulado.

La epidermis es uniestratificada para todas las especies, excepto para las accesiones de V. cundinamarcensis \bigcirc de Nariño y de Cundinamarca. En éstas, la epidermis es multiestratificada cuando pasa por un grupo grande de vasos de protoxilema.

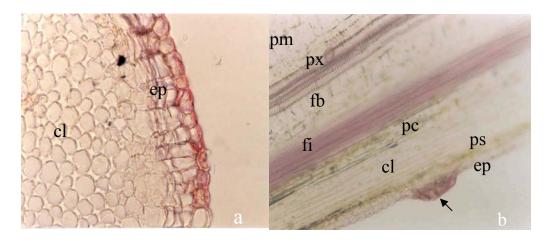

En *V. cauliflora* se presentaron lenticelas en el pecíolo, observándose como un segmento de epidermis multiestratificada lignificada que no corresponde a la epidermis multiestratificada mencionada anteriormente (Figura 16).

Figura 14. Diagrama del modelo de sección transversal del pecíolo de **a**. *V. gouditiana* masculina, **b**. *C. papaya*, **c**. *V. cauliflora*, **d.** *V. longiflora*. Se nota la proporción entre colénquima (cl) y parénquima cortical (pc), como también la proporción entre floema blando (fl) y fibras del floema (fi). (ep) epidermis, (ps) parénquima con cloroplastos, (rm) radio medular primario, (pm) parénquima medular, (px) protoxilema, (cv) cambium vascular, (pl) parénquima medular lignificado y (Tr) tricoma.

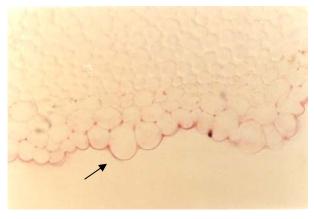

Figura 15. Diagrama del modelo de sección transversal del pecíolo de **a**. *V. cundinamarcensis* femenina de Nariño, **b.** *V. cundinamarcensis* del Caldas, y **c**. *V. cundinamarcensis* masculina de Nariño. Se nota la proporción entre colénquima (cl) y parénquima cortical (pc), como también la proporción entre floema blando (fl) y fibras del floema (fi). (ep) epidermis, (ps) parénquima con cloroplastos, (rm) radio medular primario, (pm) parénquima medular, (px) protoxilema, (cv) cambium vascular, (pl) parénquima medular lignificado y (Tr) tricoma.

Figura 16. Epidermis multiestratificada presente en las accesiones de *V. cundinamarcensis* (a), difiere de las lentécelas presentes en *V. cauliflora* (b, flecha), epidermis (ep), parénquima subepidérmico (ps) colénquima (cl), parénquima cortical (pc), fibras del floema (fl), floema (fl), protoxilema (px), parénquima medular (pm). (a. corte transversal del pecíolo. (Aristoplan 25x) (b, corte longitudinal del pecíolo. Aristoplan 10x).

Las células de la epidermis son elípticas en *V. x heilbornii* var. *chrysopetala* y cuadradas en las otras especies. *V. crassipetala* presenta células elípticas y circulares, que aumentan de tamaño duplicando a las demás. Esto mismo se observó en la epidermis foliar (Figura 17, Anexo F).

La cutícula de la epidermis del pecíolo varía en grosor dependiendo de la especie.

Figura 17. Forma de las células epidérmicas del pecíolo. Células elípticas y de tamaño variado (b). (V. x heilbornii var. chrysopetala, Aristoplan 25x).

Algunas especies presentan granulaciones en las células epidérmicas peciolares, igual a lo descrito para la epidermis foliar.

C. papaya y V. x heilbornii var. chrysopetala presentan estomas en el pecíolo.

El parénquima subepidérmico (Figura 18) tiene de uno a cuatro estratos (*C. papaya*), con células de forma elíptica y circular, dependiendo de la especie y accesión. El estrato más interno contiene cloroplastos pudiendo ser llamado clorénquima. Igualmente se observan cloroplastos rodeando al floema, dentro del parénquima medular de *V. cundinamarcencis* de Cundinamarca, y alrededor del protoxilema de *V. cauliflora*.

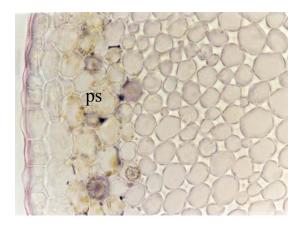
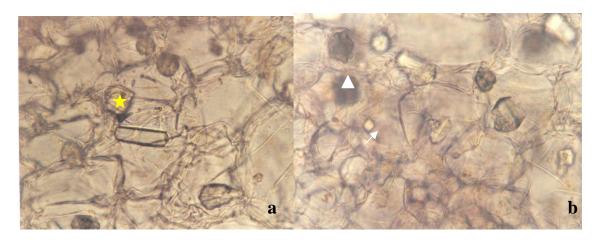
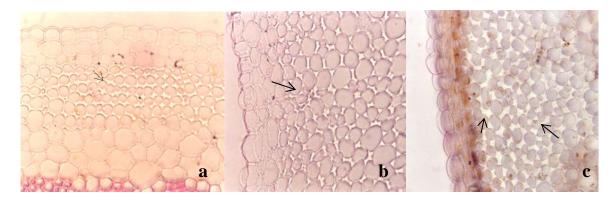



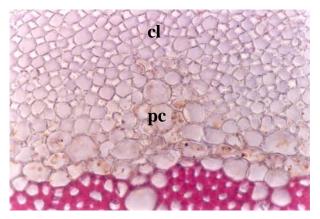
Figura 18. Presencia de estratificación en el parénquima subepidérmico (ps) en *C. papaya*. (Aristoplan 25x).


Se presentan cristales en forma de drusa (Figura 19), en mayor o menor cantidad, en el parénquima subepidérmico, colénquima, parénquima cortical, radio medular primario y parénquima medular. También aparecen cristales de forma rectangular y arenosos, distribuidos a lo largo de todo el tejido.

La corteza es ancha; la proporción entre colénquima y parénquima cortical varía dependiendo de la especie.

El colénquima de las especies estudiadas presenta engrosamientos angular, lagunar o angularlagunar (Figura 20), este último observado en *V. goudotiana* y *V. cauliflora*, en diferentes proporciones. Presenta células circulares, elípticas y poliédricas que, en algunas especies, aumentan de tamaño a medida que se acercan a la médula.

Figura 19. Cristales de oxalato de calcio presentes en las estructuras internas del pecíolo y nervio. Tienen forma de drusas (triángulo), figuras poliédricas (estrella) y arenosos (flecha). *V. cundinamarcensis*. (Aristoplan 40x).

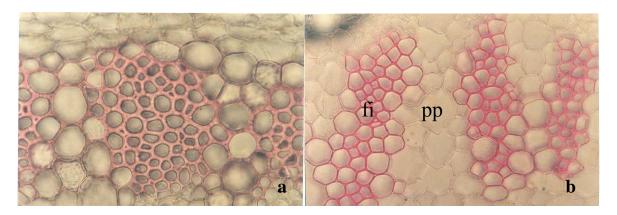

Figura 20. Tipos de colénquima (flecha) presente en las especies de *Carica* y *Vasconcellea*. a, colénquima angular (*V. longiflora*); b, colénquima lagunar (*V. cundinamarcensis* de Caldas); c, colénquima angular y lagunar (*V. cauliflora*). (Aristoplan 10x, 25x y 10x).

El número de estratos del colénquima varía de acuerdo a las especies y a la ubicación dentro del tejido (abaxial o adaxial) o si está con un grupo grande de protoxilema el cual forma arcos como en las accesiones de *V. cundinamarcensis* masculina, femenina y polígamo-monoica de Nariño, y la del Valle, *V cauliflora* y *V. heilbornii* var. *chrysopetala*, o cuando pasa por un radio medular primario como en *V. goudotiana* y la accesión de *V. cundinamarcensis* andromonoica de Nariño. El colénquima presenta células elípticas y circulares, con un engrosamiento de sus paredes homogéneo o de forma poliédrica (Anexo F).

El parénquima cortical es contínuo. En algunas especies, cuando este parénquima pasa por un radio medular aumenta el número de estratos (Figura 21). En *C. papaya* el parénquima cortical

se une con el parénquima subepidérmico, interrumpiendo la continuidad del colénquima por dos a tres estratos longitudinales.

El último estrato de parénquima contiene cloroplastos. Éstos son de gran tamaño con relación a los encontrados en el parénquima subepidérmico. A su vez, una vaina perivascular rodeando al cilindro vascular sólo fue observada en *V. cundinamarcensis* femenina de Nariño.


Figura 21. Entrada leve del parénquima cortical (pc) hacia el colénquima (cl), en *C. papaya*, esta entrada se encuentra muv pronunciada uniéndose con el parénquima subepidérmico. *V. cauliflora* (Aristoplan 25x).

Predomina el haz vascular de tipo colateral ectofloemático abierto rodeado de parénquima, formando una línea contínua a lo largo de todo el pecíolo, interrumpida por radio medular primario, con protoxilema discontínuo.

El protoxilema se presenta cada dos a siete haces vasculares floemáticos. En algunos casos hay intercalación de grupos de vasos de protoxilema grande y pequeño. En otros sólo hay intercalación dependiendo de la parte del pecíolo en que se encuentre (adaxial o abaxial).

El floema se halla en la periferia del pecíolo y el protoxilema hacia el interior, limitando con la médula de este mismo órgano.

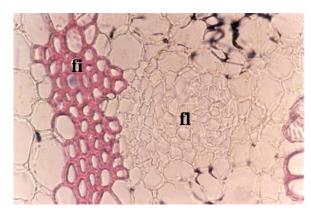
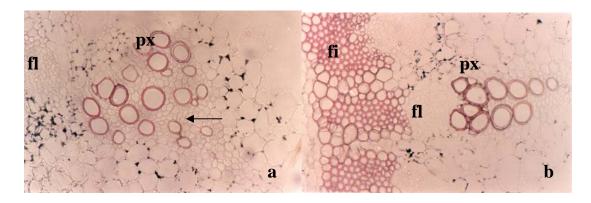

Se observa la formación de un anillo contínuo de fibras de floema (Figura 22) en torno al floema de naturaleza lignificada, interrumpido por tres a cinco estratos de células parenquimáticas, de paredes delgadas y en algunos casos lignificadas. Las células son circulares, elípticas y poliédricas, de igual y menor tamaño a las células parenquimáticas lignificadas.

Figura 22. Fibras del floema de naturaleza lignificada (fi en rojo) presentes en las especies de *Carica* y *Vasconcellea*. Estas fibras se encuentran rodeadas de parénquima perimedular (pp), su proporción varía con el floema de acuerdo a la especie y en algunos casos del estadio de desarrollo en que esta misma se encuentre. En a, las fibras de floema se encuentran de menor estratificación que en b, en donde las fibras se encuentran de forma alargada. (a, *V. cundinamarcensis* polígamo-monoica; b, *V. goudotiana* femenina. Aristoplan 25x).


El floema blando posee forma circular, elíptico o botelliforme, con o sin diferenciación del metafloema (Figura 23). Este tejido presenta células de mayor o de menor tamaño que las del floema externo, reticuladas, poliédricas, elípticas o cuadradas. Las fibras del floema varían en proporción dependiendo de la especie. El parénquima floemático presenta de tres a cinco estratos, mientras el cambium vascular en algunas especies, hace visible de tres a nueve estratos,

El protoxilema es el elemento xilemático dominante; éste forma una pirámide gruesa, delgada o sin forma. Para algunas especies, esta pirámide se presenta profunda dentro de la médula, debido a que no sufre presión y reducción por las demás células (Vélez, 2003). Los vasos se pueden encontrar de forma ordenada (vasos del protoxilema agrupados de menor a mayor tamaño o viceversa) o en forma desordenada. El grupo de vasos del protoxilema mayor lo conforman de 16 a 40 vasos, y el menor de tres a 20 vasos aproximadamente.


Figura 23. Floema blando (fl) con diferenciación del metafloema en *V. longiflora* (Aristoplan 25x). (fi) fibras de floema

El lumen del protoxilema en general es homogéneo, principalmente de forma circular pero también elíptica y poliédrica. La mayoría de las especies presentan vasos con paredes gruesas, acompañados por células parenquimáticas muy pequeñas llamadas parénquima perimedular (Figura 24). En algunos casos, estos vasos se presentan muy cercanos.

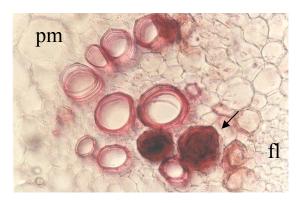


Figura 24. Parénquima perimedular (flecha) rodeando a los vasos del protoxilema (px), este se encuentra en gran cantidad en a y en menor cantidad en b. (fl) floema blando, (fi) fibras del floema, (pm) parénquima medular. Sección transversal de *V. cundinamarcensis* en a V. *cundinamarcensis* femenina de Nariño y *V. cundinamarcensis* Andromonoica en b. (Aristoplan 25 y 10x).

El protoxilema, con mayor número de vasos, lo conforman de dos a siete haces vasculares floemáticos, mientras el menor, uno a dos haces vasculares floemáticos. *V. cauliflora* y *V. cundinamarcensis* femenina de Nariño presentan protoxilema no desarrollado en cada haz vascular floemático (Figura 25). En esta última, los vasos del protoxilema presentan contenido esférico, y se tiñen de rojo con safranina (Figura 26).

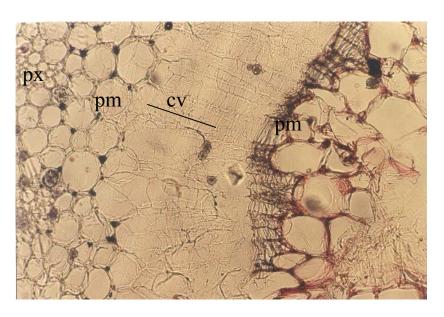

Figura 25. Presencia de protoxilema no desarrollado en cada haz vascular floemático (flecha). (*V. cauliflora*. Aristoplan, 25x).

Figura 26. Contenido esférico del protoxilema (flecha) que presenta *V. cundinamarcensis*. Floema (fl), parénquima medular (pm). (Aristoplan 25x).

La proporción del parénquima medular varía. Sus células son circulares y de gran tamaño comparadas con las del parénquima cortical.

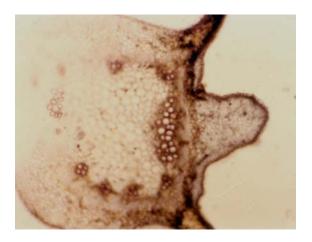
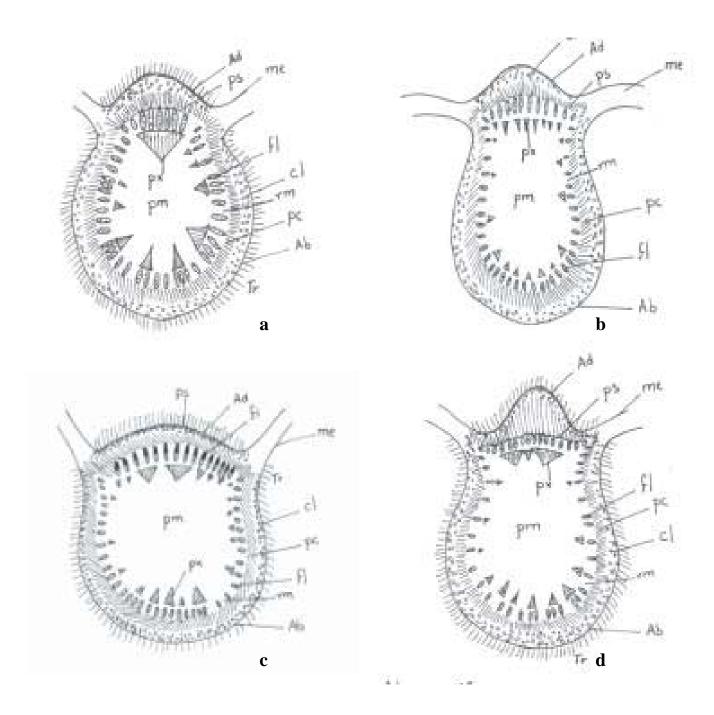

V. cundinamarcencis del Caldas, presenta una médula algo lignificada con un cilindro vascular interno, y un cambium vascular muy amplio (diez estratos aproximadamente) (Figura 27).

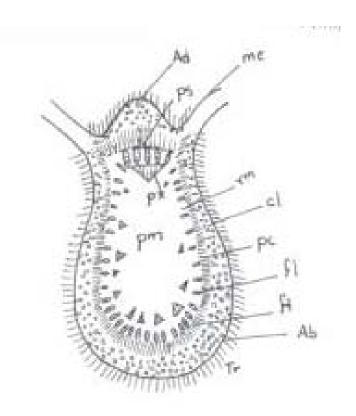
Figura 27. Médula lignificada presente en *V. cundinamarcensis*. Esta médula presenta un cilidro vascular interno. Protoxilema (px), parénquima medular (pm), cambium vascular (cv). (Aristoplan 16x).

5.1.3 Nervio principal

En la sección transversal del nervio principal, la lámina foliar se encuentra separada por una arista adaxial de colénquima y parénquima que, según la especie, es más o menos prominente (Figuras 28, 29 y 30), de inserción vertical, horizontal u oblicuo adaxial, de contorno circular, oval o elíptico, de borde liso (Anexo G, p. 101-114).


Figura 28. Sección transversal del nervio principal de *V. cundinamarcensis* masculina. Obsérvese una arista prominente de parénquima cortical (pc) y colénquima (cl). (Aristoplan 4x).

La epidermis es uniestratificada, con células cuadradas o circulares. *V. cauliflora*, *V. sphaerocarpa* y *V. crassipetala* contienen células epidérmicas que superan en tamaño dos a tres veces a las células de las demás especies, ubicándose en la parte abaxial o adaxial del nervio. Dentro de las células epidérmicas, en algunas especies, existen granulaciones.


La epidermis del nervio de *V. cauliflora* carece de cutícula; para las demás especies se encuentra de levemente cutinizada a cutinizada, y muy cutinizada para *V. sphaerocarpa*. *V. cundinamarcensis* del Valle presenta cutícula tangencial.

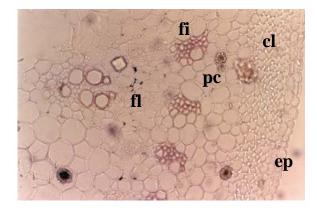
Los tricomas que están presentes en el nervio principal son iguales a los descritos para el pecíolo y la epidermis de la lámina foliar.

En la mayoría de las especies el parénquima subepidérmico, cuyas células son elípticas o circulares, está constituido por un estrato. En *C. papaya* y *V. microcarpa* tal estrato está localizado en la superficie adaxial. En *V. crassipetala* y *V. cundinamarcesis* del Valle, hay un estrato inferior y dos superiores. Cuando la especie presenta más de un estrato, el último muestra cloroplastos.

Figura 29. Diagrama del modelo de sección transversal del nervio principal de **a**. *V. cundinamarcensis* de Caldas, **b**. *V. longiflora*, **c**. *V. cundinamarcensis* femenina de Nariño y **d**. *V. cundinamarcensis* masculina de Nariño. Se nota las diferentes inserciones de la lámina foliar, siendo esta vertical (c,e), horizontal (b) u oblicuo adaxial (a,d), de contorno circular (a,c), oval (b,d) o elíptico (e).(cl) colénquima, (pc) parénquima cortical, (fl) floema blando, (fi) fibras del floema, (ep) epidermis, (ps) parénquima con cloroplastos, (rm) radio medular primario, (pm) parénquima medular, (px) protoxilema, (Tr) tricoma y (me) lámina foliar.

Figura 30. Diagrama del modelo de sección transversal del nervio principal de *V. cundinamarcensis* polígamomonoica. Se nota las diferentes inserciones de la lámina foliar, siendo esta vertical (c,e), horizontal (b) u oblicuo adaxial (a,d), de contorno circular (a,c), oval (b,d) o elíptico (e).(cl) colénquima, (pc) parénquima cortical, (fl) floema blando, (fi) fibras del floema, (ep) epidermis, (ps) parénquima con cloroplastos, (rm) radio medular primario, (pm) parénquima medular, (px) protoxilema, (Tr) tricoma y (me) lámina foliar.

Se observan cristales en forma de drusas, en mayor o menor cantidad en el parénquima subepidérmico, en el parénquima cortical, colénquima, radio medular primario y médula, dependiendo de las especies.


Solamente en *V. heilbornii* var. *chrysopetala* y *C. papaya*, se observaron estomas en el envés del nervio, como a los descritos para el pecíolo.

La corteza es ancha. La proporción entre colénquima y parénquima varía dependiendo de la ubicación en el nervio (abaxial, adaxial o laterales) de las especies.

Los haces vasculares son de tipo colateral ectofloemático abierto, similares a los del pecíolo. Están rodeados de paréquima, formando una línea contínua a lo largo de todo el nervio primario, interrumpida por radio medular primario. El protoxilema se presenta en mayor

agrupación principalmente en la parte abaxial, y en menor grado en la adaxial, reduciendo el número de agrupación de vasos en los laterales hasta quedar a un solo vaso en un haz vascular floemático; se encuentra muy introducido hacia la médula, sin sufrir presión por las demás células.

Las fibras del floema encontradas en algunas especies (Figura 31) presentan posición periférica con respecto al floema y al protoxilema, igual a lo descrito para el pecíolo; forman un anillo discontínuo de naturaleza lignificada o no, de paredes delgadas y células circulares, presentándose en diferentes partes del nervio primario.

Figura 31. Fibras de floema (fi) presentes en menor cantidad en el nervio principal en la parte abaxial. (px) protoxilema, (fl) floema blando, (pc) parénquima cortical, (cl) colénquima y (ep) epidermis de *V. cundinamarcensis* femenina de Nariño (Aristoplan 10x).

El parénquima medular varía en su proporción de acuerdo con las especies. Similarmente al pecíolo, presenta células circulares, de gran tamaño comparando con las células del parénquima cortical.

5.1.1 Clave dicotómica para anatomía foliar de las especies de Carica y Vasconcellea.

A partir de algunas de las variables de anatomía foliar para la descripción anatómica, se elaboró la siguiente clave:

2. Estomas hundidos en la epidermis inferior del mesófilo con respecto a las demás células epidérmicas
2'. Estomas igual o superficial es en la epidermis inferior con respecto a las demás células epidérmicas
3. Parénquima en empalizada constituido por un estrato de células alargadas, de pared delgada
3'. Parénquima en empalizada constituido por dos a tres estratos de células alargadas circulares, de pared delgada
4. Epidermis del pecíolo uniestratificada
4'. Epidermis del pecíolo uniestratificada y multiestratificada
5. Floema blando en proporción mayor a fibras floemáticas del pecíoloV. goudotiana
5'. Floema blando en proporción menor a fibras floemáticas del pecíoloV. goudotiana 3
6. Células epidérmicas del pecíolo de forma cuadrada y elíptica
6'. Células epidérmicas del pecíolo cuadradas con uno de sus lados circula (convexo)
7. Estomas presentes en las células epidérmicas del pecíolo
7'. Estomas ausentes en las células epidérmicas del pecíolo
8. Colénquima en mayor proporción que el parénquima en el pecíoloV. x cv. 'babaco'
8'. Colénquima en igual proporción que el parénquima en el pecíolo9
9. Colénquima arqueado cuando pasa por un radio medular primario V. x chrysopetala
9'.Colénquima parejo en todo el pecíolo
10. Células epidérmicas superiores, en corte transversal, de forma cuadrada11
10'. Células epidérmicas superiores, en corte transversal, de forma elípticaV. microcarpa
11. Epidermis foliar hipostomática
11'. Epidermis foliar anfiestomática

5.2 PALINOLOGÍA

Mediante los descriptores para polen definidos en el Anexo C (p.82-83) se realizó la caracterización del polen de *C. papaya* y accesiones de *V. cauliflora*, *V. cundinamarcensis*, *V. crassipetala*, *V. goudotiana*, *V. x heilbornii* var. *chrysopetala*, *V. longiflora* y *V. sphaerocarpa*, cuyos resultados se presentan en los Anexos H (p. 115-117) e I (p.118-119).

Las especies de los géneros *Vasconcellea* y *Carica* presentan granos de polen muy similares en cuanto el tipo mónade, de simetría radial isopolar, de tamaño mediano en microscopía electrónica de barrido (MEB), y en acetólisis, grande para *C. papaya*, tricolporado, zonoaperturado, tectado, cavado foveolado, granulado (interfoveolas) con columelas presentes. Poro germinal alargado transversalmente (Figura 32). En vista polar, de contorno no angular circular elíptico en MEB, y no angular circular a angular rectangular obtuso convexo en acetólisis. El contorno en vista polar, varía desde no angular circular hasta angular triangular obtuso convexo. En vista ecuatorial, desde no angular circular eliptico hasta angular rectangular obtuso convexo.

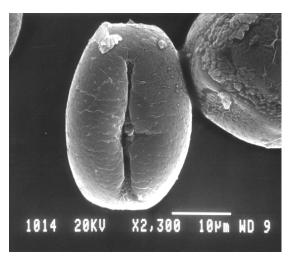


Figura 32. Abertura germinal en polen de V. cauliflora. (Fotos: J.A. Arroyave y C.M.Caetano).

Su forma en MEB varía de oblato esferoidal a perprolato, excepto esferoidal (Figura 33), según la clasificación de Salgado-Laboriau (1966; citado por Fonnegra, 1989). Así, es oblato esferoidal en *V. crassipetala*, prolato esferoidal en *V. cundinamarcensis* polígamo-monoica, subprolato en *V. cundinamarcensis* de Antioquia, *V. longiflora* y *C. papaya*, prolato en *V. cauliflora*, *V. goudotiana* y *V. sphaerocarpa*, y perprolato en *V. x heilbornii* var. chrysopetala. A pesar de ser considerado un híbrido entre *V. cundinamarcensis* con *V. stipulata*, *V. x heilbornii* se aleja de *V. cundinamarcensis*, acercandose más a *V. sphaerocarpa*, *V. goudotiana* y *V. cauliflora*.

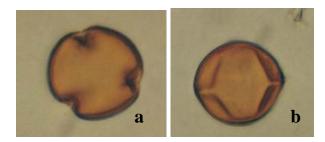


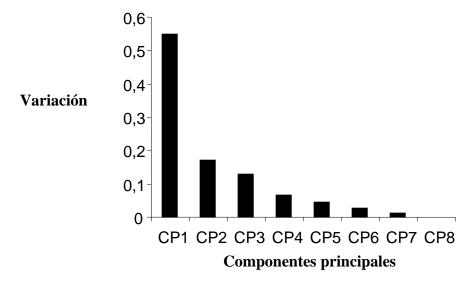
Figura 33. Patrones de polen de los géneros *Carica* y *Vasconcellea* en vistas polar y ecuatorial, en microscopía electrónica de barrido. *C. papaya* (a, b), *V. cauliflora* (c,d), *V. cundinamarcensis* polígamomonoica (e, f) y masculina (g, h), *V. crassipetala* (j, i), *V. goudotiana* (k, l), *V. x heilbornii* var. *chrysopetala* (m, n), *V. longiflora* (o, p) y. *V.sphaerocarpa* (q, r). (Fotos: J.A. Arroyave y C.M.Caetano).

El eje polar P, varía dependiendo de la especie; y va desde 33,75 μm (*V. longiflora*) a 52,73 μ m (*C. papaya*). El diámetro ecuatorial va desde 16,53μm (*V. cundinamarcensis* del Quindío) a 50,63μm (*C. papaya*) (Figura 34).

El area polar es mediana según MEB (0.37 a 0.44) para las especies de *Vasconcellea* y grande para *C. papaya* (0.68). El diámetro ecuatorial en vista polar desde 18,44μm a 28,26μm en MEB y con acetólisis de 21,48μm a 31,30μm.

En este estudio se observaron los granos de polen de subprolato en acetólisis y de prolato en MEB; el índice P/E de 1.41 en MEB y 1.20 en acetólisis; y tanto foveolado, tectado, columnelas densas, cavado y granulado para las dos técnicas.

Figura 34. Vista polar (a) y ecuatorial (b) de grano de polen de Caricaceae: *C. papaya*, bajo la técnica de acétolis, microscopía de luz (Aristoplan 40x).


5.3 DIVERSIDAD DE CARICACEAE

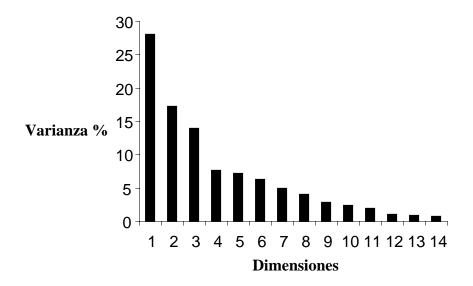
5.3.1 Selección de variables para la diferenciación de especies de *Carica y Vasconcellea* **según caracteres cuantitativos de anatomía foliar:** de los 17 caracteres de anatomía foliar seleccionados (variables cuantitativas) se obtuvieron tres grupos representativos para diferenciar las especies (Análisis de Componentes Principales ACP), los que explican el 84,75% de la variabilidad total de las accesiones estudiadas (Tabla 3, Figura 35).

Tabla 3. Porcentaje de variabilidad de los caracteres cuantitativos de anatomía foliar en ocho de los grupos (CP) hallados por medio de análisis de componentes principales (ACP) para la diferenciación de especies de *Carica* y *Vasconcellea*. A mayor variabilidad mayor peso de las variables del grupo para diferenciar las especies.

СР	Porcentaje de variación	Nariación acumulada
1	54.86%	54.86%
2	17.05%	71.91%
3	12.84%	84.75%
4	6.57%	91.32%
5	4.55%	95.87%
6	2.79%	98.66%
7	1.28%	99.94%
8	0.06%	100%

La proporción de la médula en el corte transversal en el pecíolo (PPME) es la variable que en el primer grupo (CP1) es la más representativa para la diferenciación de las especies de los géneros *Carica* y *Vasconcellea*, y las otras variables tienen un peso muy poco significativo. En el caso de los siguientes dos grupos (CP2 y CP3) 4 y 3 variables respectivamente tienen un peso significativo para la diferenciación de las especies (Tabla 4). Estas son, en el caso del CP2: pecíolo con número máximo de estratos del colénquima (PEMC), el nervio con el número de estratos del colénquima lateral (NECL), número de estratos en el colénquima inferior (NECI) y la epidermis con el índice estomático (IE); y en el CP3: número de estratos del colénquima abaxial (NECS) y proporción de la médula en corte transversal (NPMC), en nervio, y en epidermis el número de células epidérmicas que rodean al estoma (ENCT) (valores en negrilla, tabla 4).

Figura 35. Variabilidad de los caracteres cuantitativos de anatomía foliar en ocho de los grupos (CP) hallados por medio de análisis de componentes principales (ACP) para la diferenciación de especies de *Carica* y *Vasconcellea*. A mayor variabilidad mayor peso de las variables del grupo para diferenciar las especies.


Tabla 4. Valores de las variables de los tres grupos (CP) más representativos para la diferenciación de las especies según la anatomía foliar, hallados por medio del análisis de componentes principales.

Variables	CP1	CP2	CP3
PEMC	0.016126	0.52485	0.140497
PPME	0.917478	-0.00077	-0.31803
NECL	0.033707	0.557115	-0.1148
NECI	0.027214	0.551271	-0.07825
NECS	0.038991	-0.02492	0.421583
NPMC	0.38874	-0.0718	0.760533
IE	-0.00458	0.257226	0.177318
ENCT	-0.05863	0.195741	0.268759

5.3.2 Selección de variables para la diferenciación de especies de *Carica y Vasconcellea* según caracteres cualitativos de anatomía foliar: se seleccionaron 95 caracteres de anatomía foliar (variables cualitativas)(Anexo K, p.115-117), los cuales permitieron identificar tres dimensiones (Análisis de Correspondencia Múltiple ACM), las cuales agrupan variables altamente relacionadas, que explican el 59,3% de la variabilidad total de las accesiones estudiadas (Tabla 5, Figura 36).

Tabla 5. Variabilidad de los caracteres cualitativos de anatomía foliar en cada una de las dimensiones (grupos de variables) halladas por análisis de correspondencia múltiple (ACM) para la diferenciación de especies de *Carica* y *Vasconcellea*. A mayor variabilidad mayor peso de las variables del grupo para diferenciar las especies.

Dimensiones	Variación (%)	Variación acumulada (%)
1	28.07	28.07
2	17.28	45.35
3	13.95	59.3
4	7.64	66.95
5	7.27	74.22
6	6.27	80.49
7	5	85.49
8	4.08	89.57
9	2.8	92.38
10	2.37	94.75
11	2	96.75
12	1.08	97.83
13	0.86	98.69
14	0.8	99.49
	100	

Figura 36. Porcentaje de variabilidad de los caracteres cualitativos de anatomía foliar representadas en 14 dimensiones (grupos de variables) hallados por medio de análisis de correspondencia múltipe (ACM) para la diferenciación de especies de *Carica* y *Vasconcellea*. A mayor variabilidad mayor peso de las variables del grupo para diferenciar las especies.

Los caracteres cualitativos de la anatomía foliar se asociaron en 3 grupos principales (dimensiones) como relevantes para la distinción de especies de *Carica* y *Vasconcellea*. Dentro de cada grupo diferentes características de la anatomía foliar fueron las más relevantes para hacer dicha distinción (Tabla 6), así:

Primera dimensión: las relacionadas a la epidermis (posición del tricoma (EUTR) y presencia de tricomas en las células epidérmicas (EFRT)), al pecíolo (presencia de colénquima arqueado (PAEC), ubicación de las células de colénquima de mayor tamaño (PACM), la forma del floema blando (PFFB), la ubicación de la alternancia de los vasos del protoxilema (PUVX) y la agrupación del protoxilema adaxial (PVPX)) y al nervio (presencia de tricomas (NTRI), la forma del ápice del tricoma (NFAT), tipo de colénquima (NTCO), la ubicación de las células colenquimáticas de mayor tamaño (NCAM), continuación del parénquima cortical arqueado (NAPR), una mayor agrupación del protoxilema en alguno de los lados del nervio (NAPX) y la abundancia del parénquima perimedular alrededor del protoxilema (NAPP)).

Segunda dimensión: las relacionadas a la epidermis (forma de las células epidérmicas foliares (EFCS) y el tipo de pared celular (EFCI)); al pecíolo (forma de éste en el corte transversal (PFCT), presencia de estomas (PESE) y la concavidad del parénquima cortical (PAPM)) y para el nervio (forma de inserción de la lamina foliar (NILF), la ubicación de las células epidérmicas de tamaño variado (NEAC), ubicación de los estomas (NPCP), forma del floema

blando (NFFB), la presencia de cambium vascular (NVCV) y abundancia de parénquima en el interior del floema blando).

Tercera dimensión: las relacionadas al tipo de epidermis (EESS), la posición del estoma en la epidermis superior (EHES), el tipo de colénquima para pecíolo (PTCO), y para nervio principal el engrosamiento de la pared de las células colenquimáticas (NEPC) (Tabla 6)

Tabla 6. Valores de las variables en los tres grupos (dimensiones) más representativos para la diferenciación de las especies según la anatomía foliar, hallados por medio del análisis de correspondencia múltiple.

Variables	Dim1	Dim2	Dim3
EFCS	0.0613	0.4132	0.1262
EFCI	0.0613	0.4132	0.1262
EUTR	0.4399	0.0944	0.1699
EFRT	0.6679	0.0012	0.0872
EESS	0.0025	0.0831	0.5009
EHES	0.0025	0.0831	0.5009
PFCT	0.1804	0.3074	0.002
PESE	0.1621	0.2329	0.0105
PTCO	0.0096	0.1639	0.6444
PAEC	0.3122	0.0031	0.0475
PACM	0.2402	0.0496	0.003
PAPM	0.0372	0.2662	0.1118
PFFB	0.7643	0.0451	0.0647
PUVX	0.3612	0.0947	0.127
PVPX	0.2615	0.0008	0.1611
PGVX	0.017	0.0545	0.2545
NILF	0.2376	0.4786	0.0083
NEAC	0.1954	0.321	0.1653
NTRI	0.5052	0.0404	0.3029
NFAT	0.4014	0.0003	0.0758
NPCP	0.1557	0.3387	0.0245
NTCO	0.2425	0.0494	0.0001
NCAM	0.2763	0.1574	0.0519
NEPC	0.0839	0.0609	0.5842
NAPR	0.3537	0.1485	0.0024
NFFB	0.001	0.3398	0.02
NAPX	0.2965	0.1982	0.0111
NAPP	0.6037	0.0051	0.0153
NVCV	0.1621	0.2329	0.0105
NEPF	0.0412	0.4679	0.0039

5.3.3 Selección de variables para la diferenciación de especies de *Carica y Vasconcellea* **según caracteres cuantitativos de palinología:** para los caracteres palinológicos, el ACP permitió identificar dos grupos, los cuales explican el 90% de la variabilidad total de las accesiones estudiadas (Tabla 7).

Tabla 7. Valores propios derivados del ACP para los caracteres palinológicos de *C. papaya* y las especies de *Vasconcellea*.

СР	Valores	Diferencia	Proporción variación explicada	Proporción variación acumulada
1	47.25092	37.13974	0.7477	0.7477
2	10.11118	6.174039	0.16	0.9077
3	3.937142	2.041413	0.0623	0.97
4	1.895729		0.03	1

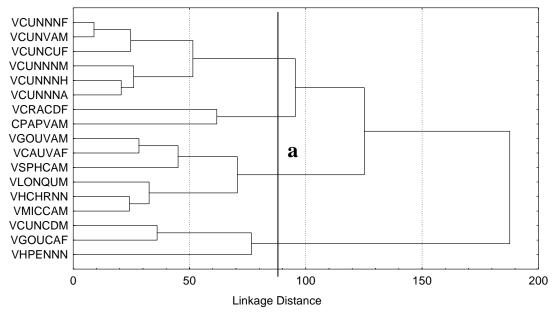
En el primer componente o grupo tres de las cuatro variables son las más representativas para la diferenciación de las especies: eje polar (EP), diámetro ecuatorial (DE) y el lado del apocolpo/apoporo (LA), y para el segundo componente se encuentra el diámetro ecuatorial en vista polar (DEP) (Tabla 8).

Tabla 8. Componentes principales (CP) sobre los caracteres palinológicos retenidos.

Variables	CP1	CP2
v at lables	CII	C12
EP	0.726092	0.235747
DE	0.652379	-0.16423
LA	-0.21499	0.160877
DEP	-0.03119	0.94423

5.3.4 Selección de variables para la diferenciación de especies de *Carica y Vasconcellea* **según caracteres cualitativos de palinología:** de las siete variables palinológicas estudiadas se obtuvieron dos dimensiones o grupos de variables que permiten identificar el 100% la varibilidad de las especies de *Carica* y *Vasconcellea* (Tabla 9) (Anexo L, p.118).

Tabla 9. Variabilidad de los caracteres cualitativos de palinología en cada una de las dimensiones (grupos de variables) halladas por análisis de correspondencia múltiple (ACM) para la diferenciación de especies de *Carica* y *Vasconcellea*. A mayor variabilidad mayor peso de las variables del grupo para diferenciar las especies.

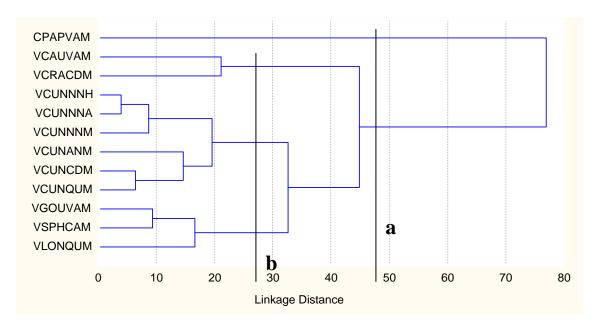

Dimensiones	Porcentaje	Porcentaje acumulado
1	77.49	77.49
2	22.51	100
Total:	100	

A la primera dimensión tienen mayor relevancia, para la diferenciación de especies, las variables: contorno en vista polar (CP) y contorno en vista ecuatorial (CE) y en la segunda dimensión se encuentra la forma del grano del polen (F) (Tabla 10).

Tabla 10. Valores de las variables en los grupos (dimensiones) más representativos para la diferenciación de las especies según palinología, hallados por medio del análisis de correspondencia múltiple.

Variable	Dim1	Dim2
${f F}$	0.0086	0.9914
CP	0.9623	0.0377
CE	0.8722	0.1278

5.3.5 Diferenciación de especies de *Carica y Vasconcellea* **según caracteres anatómicos foliares.** A una distancia de 90 unidades se distinguen 4 grupos (método de Ward), que ordenados de mayor a menor número de especies quedan: grupo 1 (6 accesiones de *V. cundinamarcensis*), grupo 2 (*V. cauliflora*, *V. microcarpa*, *V. goudotiana* (masculina), *V. longiflora*, *V. sphaerocarpa*, y una variedad de *V. heilbornii* var. *Crhysopetala*), grupo 3 (*V. cundinamarcensis* (Caldas), *V. goudotiana* (Femenina) y *V. x heilbornii* cv. 'babaco') y grupo 4 (*V. crassipetala* y *C. papaya*). (figura 37)


Figura 37. Dendrograma de acuerdo a ocho caracteres cuantitativos y cualitativos de anatomía foliar en los géneros *Carica* y *Vasconcellea* y sus distancias de similitud (distancia de Manhattan).

En la tabla 11 se muestran los 4 grupos con el aporte promedio de las variales a las especies respectivas:

Tabla 11. Descripción de los grupos formados en el análisis de conglomerados con base en ocho variables anatómicas de las especies de *Vasconcellea* y *Carica*.

Grupo	PEMC	PPME	NECL	NECI	NECS	NPMC	IE	ENCT
1	16.66	65	9.5	10.5	15.83	37.16	21	8.66
2	8.5	70	7.5	8	15	40	15	0
3	11.66	36.66	10.33	11	12	21.66	19	12
4	19	70	21	21.5	17	37.5	22.5	0

5.3.6 Diferenciación de especies de *Carica* y *Vasconcellea* según caracteres palinológicos. El dendrograma realizado a partir de los caracteres estudiados en la palinología en acetólisis (método de Ward) permitió establecer una marcada diferencia entre *C. papaya* y las especies de *Vasconcellea* (Figura 38, Anexo N), pues la distancia de similitud es notoria (a mayor distancia menor similitud).

Figura 38. Dendrograma generado según los caracteres palinológicos en los géneros *Carica* y *Vasconcellea* (distancia de Manhattan).

Mediante la caracterización palinológica, al subdividir el grupo de las accesiones de *Vasconcellea* (b), estos forman tres nuevos grupos. El primer grupo, que representa el 54,54% de las accesiones evaluadas, está conformado solamente por *V. cundinamarcensis*. Sus seis accesiones comparten el LA (27.03 μm) y diámetro ecuatorial en vista polar DEP (26.79 μm). En el segundo grupo se encuentran *V. goudotiana, V. sphaerocarpa* y *V. longiflora*, con el 27,27%, compartiendo el E con un promedio de 33.49 μm. El tercer grupo, con el 18,18%, lo conforman *V. cauliflora* y *V. crassipetala*, compartiendo un P de 43.24 μm (Tabla 12).

Tabla 12. Descripción de los grupos formados en el dendrograma previo (Figura 38) con base en el promedio de las mediciones de las cuatro variables palinológicas de cada una de las especies dentro de cada grupo.

Accesiones	Grupo	Ep	De	La	Dep
C. papaya	1	52,73	50,63	21,60	22,64
Vasconcellea	1	38.27	35.89	27.025	26.79
	2	35.84	33.94	26.28	20.20
	3	43.24	36.04	27.96	28.61

6. DISCUSIÓN

6.1 ANATOMÍA FOLIAR

6.1.1 Epidermis de la lámina foliar: las diferencias que se pueden encontrar en la epidermis superior e inferior en las especies de *Carica* y *Vasconcellea* respecto al grosor, concuerda con lo expuesto por Roth (1997) quien señala que la mayoría de las especies de magnoliópsidas o dicotiledóneas presentan la epidermis superior mayor en grosor a la inferior. Igualmente las variaciones de espesor en la cutícula encontradas se deben a las condiciones ambientales (Esaú, 1972) y el estadio del desarrollo en que se encuentre la misma. La cutícula constituye una barrera mecánica que impide, o por lo menos dificulta la penetración de patógenos y el ataque de plagas. El grosor de la cutícula aumenta con la vida media de la hoja, obteniéndo así las hojas más protección contra cualquier daño mecánico (Heredia, 1998, citado por Vélez, 2003).

En un estudio previo de Benitez de Rojas (1968) no se nombran el tipo de células epidérmicas encontradas en este estudio para *V. crassipetala*; esto puede indicar la posible existencia de subespecies igual a lo ocurrido con *V. microcarpa*, para la cual la autora describe células similares a las encontradas, y que sirvieron para la distinción de subespecies en ésta última.

Metcalfe y Chalk (1965) describen pubescencia para dos especies de *Carica*, ahora *Carica* y *Vasconcellea*. En este estudio esta pubescencia se encontró sólo para *V. cundinamarcensis*, igualmente la descripción de los tricomas esta dada por Benitez de Rojas (1968) quien reporta tricomas tanto unicelulares como pluricelulares en *V. cundinamarcensis* sin describir la forma del ápice del mismo ya que en algunas accesiones de *V. cundinamarcensis* se encontró tricomas con ápice glandular. Según el mismo autor, las otras especies de *Vasconcellea* presentan emergencias epinervias o pelos masivos en mayor o menor grado. Sin embargo, esto no se observó en la epidermis de las demás especies aquí evaluadas.

En las estructuras alargadas como el pecíolo, tallo, entre otras, las células epidérmicas se encuentran alargadas (Esau, 1972), igual como pasa con las que rodean al tricoma de las especies de *V. cundinamarcensis*, ya que los tricomas se encuentran confinados a la red de nervios.

Las granulaciones presentes en las células epidérmicas pueden ser acumulaciones de cristales de Oxalato de Calcio, como medio de defensa ante depredadores o ambientales.

Benitez de Rojas (1968) y Metcalfe y Chalk (1965), describen a los estomas de tipo anomocitico, llamándolos ranunculados como anteriormente se les llamaba a este tipo de estomas. Igualmente Metcalfe y Chalk (1965) señalan que los estomas solo están confinados a la superficie baja de la epidermis, pero su estudio se limitó a *C. papaya* ya que no nombra el tipo de epidermis anfiestomática presente en *V. cauliflora* y que Benitez de Rojas (1968) si la nombra.

La posición de los estomas con respecto a las demás células epidérmicas es según Colin (1986, citado por Roth, 1997) los que ayudan a contribuir a aumentar o disminuir la pérdida de agua por la transpiración.

Las diferencias de índices estomáticos entre las especies de Carica y Vasconcellea e inclusive dentro de las mismas accesiones de Vasconcellea, pueden ocurrir según Weywrs y Meidner (1990, citado por Espinosa 2002), cuando los individuos se desarrollan en ambientes diferentes. Explicando las variaciones encontradas en las accesiones aquí evaluadas, ya que provienen de distintos ambientes. Al comparar el tamaño de los estomas de C. papaya con las demás especies, se observan que estos son de tamaño pequeño comparado con las otras especies, por lo tanto esto puede hacer que la frecuencia sea mayor.

6.1.2 Mesófilo: Metcalfe y Chalk (1965) describe el mesófilo para Caricaceae como dorsiventral, igual como se describe para este estudio y como ocurre en la mayoría de las magnoliópsidas de plantas mesomórficas de regiones templadas (Esaú, 1972; Roth, 1997). Igualmente el grado de diferenciación del mesófilo con respecto a la proporción del tejido esponjoso y en empalizada varían según las especies y el hábitat (Esaú, 1972).

Al encontrarse el parénquima en empalizada al lado adaxial de la hoja, la disposición, forma y número de células, nos muestra que son necesarias para la ubicación de los cloroplastos ya que se presentan en posición más favorable con respecto a la luz, siendo este parénquima el más especializado como tejido fotosintético (Meyer, 1962 citado por Esaú, 1972). La presencia de más de una capa de células en el parénquima en empalizada se explicaría según Roth (1997) por la iluminación fuerte que llega a la hoja.

La ubicación de los cristales de Oxalato de Calcio en las especies evaluadas, tienen una amplia distribución en plantas (McNair, 1932, citado por Franceschi y Horner, 1980). Se presentan como drusas, poliedros y las llamadas arenas. Estas formas variadas pueden deberse a la unión de una a tres moléculas de agua al oxalato de calcio. Su forma y localización dentro de cada taxón es específico y algunos investigadores usan esto en la clasificación (Chartschenku, 1932, Franceschi y Horner, 1980, citado por Franceschi y Horner, 1980).

6.1.3 Pecíolo: Metcalfe y Chalk (1965) y Badillo (1971) señalan un patrón de estructuras presentes en el pecíolo para *Vasconcellea* y *Carica* (sin incluír las diferencias encontradas). Este estudio coincide con lo expuesto por estos autores.

Al encontrarse diferencias en el borde del pecíolo, entre liso para la mayoría de las especies y ondulado para *V. cundinamarcensis* de Cundinamarca, se puede considerar ese borde como una deshidratación del tejido debido a factores externos ambientales o al manejo de la muestra en el laboratorio. La distancia y la protuberancia de las aristas puede estar relacionada con una función mecánica estabilizadora, con el soporte, el ancho y/o área foliar y el mejor aprovechamiento de la luz (Vélez, 2003).

La epidermis multiestratificada presente en las accesiones de *V. cundinamarcensis* $\ \bigcirc$ de Nariño y de Cundinamarca, puede deberse a un mecanismo de protección de la planta al medio, igualmente las diferencias de grosor en la cutícula de la epidermis del pecíolo, se presentan como una protección y un mecanismo de interacción que requiere más esta parte de la planta.

Metcalfe y Chalk (1965) reportan estomas en la superficie del pecíolo, refiriéndose sólo al estudio de *C. papaya* y generalizando para las *Vasconcellea* (que antes estaban dentro del género *Carica*). En este estudio se encontró que sólo en *V. x heilbornii* var. *chrysopetala* se presentaba este tipo de estomas, además de *C. papaya*.

Las especies de *Carica* y *Vasconcellea* presentan una ubicación de los cloroplastos en forma similar dentro del parénquima (entre el parénquima subepidérmico y el último estrato del parénquima cortical); esto puede deberse a un mayor requerimento de la planta en la absorción de energía solar para el desarrollo de sus funciones vitales.

La presencia de una corteza gruesa en las especies de estudio, nos indican una mayor protección y soporte de las plantas, ya que el colénquima y el parénquima son tejidos de soporte, intercambio de gases, de alimentación y de regeneramiento.

La disposición de los haces vasculares depende generalmente de la forma exterior de la hoja y de las necesidades fisiológicas de las mismas especies. Los órganos cilíndricos muestran una disposición de los haces en forma de círculos (Roth, 1966, citado por Velez, 2003).

En *V. cundinamarcensis* femenina de Nariño los vasos del protoxilema presentan contenido esférico. Este contenido esférico puede ser acumulación de alcaloides que la planta requiere para sus funciones vitales.

La diferencia encontrada en la médula que no presenta las demás especies y de la que no hay registro alguno para otras especies, es la presencia de un cilindro vascular interno y una médula algo lignificada en *V.cundinamarcencis* del Caldas, esto puede ser el residuo o parte externa de algún haz que traía el tallo y se terminó en este sitio.

6.1.4 Nervio principal: las estructuras que presenta el nervio principal de las especies evaluadas, es similar a las estrucuras descritas para el pecíolo ya que es un órgano contínuo a éste. Algunas variaciones presentes en estos dos tejidos como por ejemplo el grosor de la cutícula en la parte adaxial de la epidermis se debe a la exposición a la luz solar y a otros factores ambientales más que en los del pecíolo; la línea de cloroplastos presentes en el parénquima subepidérmico del lado adaxial y poco frecuente en el abaxial, es debido a que este lado recibe la mayor cantidad de luz; la proporción del colénquima y parénquima depende del hábitat y la ubicación de éstos dentro del tejido; igualmente es clara la función de soporte del colénquima en el nervio principal debido al porcentaje de estratificación que éste presenta con respecto al parénquima cortical.

6. 2 PALINOLOGÍA

Al interior de cada género, se encontró que los caracteres morfométricos en acetólisis son los caracteres palinológicos que nos permiten ver una mejor diferenciación de los grupos de especies, particularmente el eje polar P, en donde se encuentra variación dentro de cada especie el diámetro ecuatorial E y el area polar.

Los granos de polen encontrados para Caricaceae son similares a los descritos por Erdtman (1952) y Van der Hammen (1952, citado por Badillo, 1971). Sin embargo hay diferencias en la descripción dada para *V. cauliflora* (Ferrari, citado por Badillo, 1971). En donde describe polen tricolporado, con poro germinal alargado transversalmente, prolato esferoidal, índice P/E de 1,07, foveolado, tectado, columelas densas. En este estudio se lo observó subprolato en acetólisis y prolato en MEB, P/E 1,41 en MEB y 1,20 en acetólisis, también foveolado, tectado, colmuelas densas, cavado, granulado.

Con relación a *V. cundinamarcensis*, se encontró que los granos de polen provenientes de sitios distintos, presentan mediciones diferentes. Es posible pensar que dentro de las poblaciones de ciertas especies de *Vasconcellea* como *V. cundinamarcensis*, los rangos de variación en el tamaño del polen son amplios y deben ser analizados siempre en repeticiones para precisar un rango morfométrico.

En los Anexos H (p. 115-117) e I (p.118-119) se observan los valores promedios de las variables cuantitativas y cualitativas utilizadas en este estudio. En general, se puede notar que los tamaños de los eje ecuatorial (E) y eje polar (P) de acetólisis son diferentes a los obtenidos por MEB, lo cual puede deberse probablemente a la técnica de acetólisis, que hace que los granos de polen se expandan un poco al perder el protoplasma.

6.3 DIVERSIDAD DE CARICACEAE

Al comparar los dendrogramas basados en los caracteres de anatomía foliar (Figura 37) y de palinología (Figura 38) llama la atención que en el primero no aparece diferenciado como grupo aparte al representante del género Carica, C. papaya, pues no solo aparece agrupado con V. crassipetala, sino también, a una distancia de similitud de 100 con V. cundinamarcensis. El análisis de agrupamiento se basa en formar grupos con aquellos elementos que presenten la mínima variación intragrupal, por tanto los caracteres foliares de Carica, de acuerdo al análisis, comparten un grado de similitud con los representantes del género Vasconcellea, y no son determinantes para hacer una separación de géneros a partir de similitudes (aunque si se puede realizar una separación a partir de discriminantes, como lo muestra la clave para anatomía foliar de la página 52). Sin embargo la separación entre géneros si es clara para el análisis de agrupamiento en base a caracteres palinológicos. Esta diferencia se debe principalmente a los mayores valores para diámetro ecuatorial E, eje polar P y tamaño de polen y a su vez al menor lado del apocolpo/apoporo LA en C. papaya. Esto sugiere que a nivel de polen las diferencias de género están demarcadas reflejándose en una mayor disimilitud en el dendrograma y confirmando la separación de estos 2 generos hecha por la taxonomía floral.

En el dendrograma de anatomía foliar, el grupo 1 está formado por 6 accesiones de *V. cundinamarcensis*; la última accesión hace parte del grupo 3. Si las accesiones son individuos de la misma especie, se espera que estén reunidas dentro del mismo grupo. Al comparar la descripción de los caracteres anatómicos de las *V. cundinamarcensis* (Anexo F, p. 89) se observa que los de VcunCDm presentan mayor variabilidad respecto a los de las otras accesiones, debido a lo cual el análisis de agrupamiento la colocó con otra especie con la cual la variación intraespecífica era mínima. En el dendrograma palinológico todas las *V. cundinamarcensis* se ubican en un mismo grupo, lo que indica que los caracteres intraespecíficos no eran muy variables permitiendo una agrupación acertada a partir de similitudes

La ubicación de *V. goudotiana* en grupos diferentes en el dendrograma foliar se debe a las diferencias marcadas entre plantas masculina y femenina. Las diferencias pueden ser debido a los requerimientos vitales de la planta hembra en el desarrollo de sus órganos.

Lo anterior sugiere que los caracteres anatómicos foliares, si bien son útiles para el complemento de la descripción de las especies estudiadas, no son determinantes como herramienta taxonómica pues comparten entre si muchas similitudes entre estas especies tan cercanas dificultando su delimitación. Lo caracteres palinológicos demuestran tener claras diferencias interespecíficas y similitudes intraespecíficas que los hacen útiles como herramienta taxonómica. Según Iwanaimi y Yoshio (1988), dentro de la caracterización morfológica, el estudio y el análisis de los descriptores relacionados con el polen son vitales para diferenciar y relacionar especies, debido a que la forma, el número de aberturas, la posición y tipo de aberturas, y la ornamentación de la exina, son características genéticamente determinadas, y por lo tanto, muy conservadas. Esto explicaría la separación de *C. papaya* y *Vasconcellea*, y la mayor claridad en el dendrograma de la relación entre estas dos respecto al dendrograma de anatomía foliar, así como la relación entre las accesiones de *Vasconcellea*.

7. CONCLUSIONES

Dentro de los dos géneros evaluados, los caracteres de anatomía foliar y polen muestran una composición en cuanto a estructura bastante homogénea. Sin embargo, cada especie presenta algunas características estructurales que dan un gran aporte a la taxonomía de Caricaceae.

Comparado con los estudios del polen, los cuales permiten diferenciar bien a los dos géneros, los de anatomía foliar no muestran una diversidad suficiente entre las especies para estructurar el género *Vasconcellea*, ni aún para diferenciarlo claramente de *Carica*.

Los caracteres anatómicos que más contribuyen a la distinción de las especies son: la forma de las células epidérmicas, posición del estoma en relación a las demás células, estratificación del parénquima en empalizada, estratificación de la epidermis en el pecíolo, proporción de fibras de floema con floema blando, forma de las células epidérmicas y tipo de colénquima.

Al interior de cada género, se encontró que los caracteres morfométricos en acetólisis son los caracteres palinológicos que nos permiten ver una mejor diferenciación de los grupos de especies, particularmente el eje polar P, en donde se encuentra variación dentro de cada especie el diámetro ecuatorial E y el area polar.

V. cundinamarcensis muestra en sus accesiones variación tanto en nivel de estructuras anatómicas como palinológicas, indicando la gran diversidad de esta especie en Colombia, ya comprobada por otros estudios (morfológicos, isoenzimáticos, citogenéticos). Sin embargo, en los análisis de agrupamiento todas las accesiones conforman un solo grupo (exceptuando VcunCDm para anatomía que se separa del grupo), lo que muestra que esta variabilidad intraespecífica es mínima.

De todas las especies evaluadas, la que más se acerca a *V. cundinamarcensis* es *V. goudotiana*. Estas son las más comunes en Colombia. *V. x heilbornii* (*V. x heilbornii* var. *chrysopetala* y *V. x heilbornii* cv. 'babaco'), considerado un híbrido natural entre *V. cundinamarcensis* y *V. stipulata*, se aparta del supuesto parental.

El análisis de agrupamiento es una herramienta estadística confiable cuando los descriptores escogidos no están sujetos a variación debida al ambiente; por ejemplo, los descriptores palinológicos, al estar determinados genéticamente, arrojan resultados confiables al aplicar el análisis de agrupamiento, mientras que muchos de los descriptores anatómicos foliares están

sujetos a variación debida al ambiente (altura, estado fenológico, condiciones climáticas, etc), lo que limita la separación confiable de las especies estudiadas.

Los caracteres anatómicos foliares dentro del análisis de agrupamiento de *Carica*, comparten un grado de similitud con los representantes del género *Vasconcellea*, y no son determinantes para hacer una separación de géneros a partir de similitudes (aunque si se puede realizar una separación a partir de discriminantes). Sin embargo la separación entre géneros si es clara para el análisis de agrupamiento en base a caracteres palinológicos.

BIBLIOGRAFÍA

BADILLO V.M. Monografía de la familia Caricaceae. Maracay, Venezuela, Asociación de Profesores, Universidad Central de Venezuela. 1971. p. 10-20

-----. *Carica* L. vs. *Vasconcella* St.-Hil. (Caricaceae) con la rehabilitación de este último. <u>En</u>: Ernstia. Vol. 10. 2000. p. 74-79.

-----. Nota correctiva *Vasconcellea* St. Hill., y no (Caricaceae) *Vasconcella*. <u>En</u>: Ernstia. Vol. 11. 2001. p. 75-76.

BARRIGA, H. Técnica microscópica vegetal: fitomicroscopía. Universidad Nacional.1964. p. 29-30.

BENITEZ de ROJAS, C. E. Carácteres microscópicos de la epidermis foliar en Caricaceae: Género *Carica*. En: Rev. Facult. Agron. (Maracay). Vol. 7. No. 3. 1968. p. 195 - 274.

CAETANO C.M., OLAYA C.A., ARROYAVE J.A., VEGA J., JIMENEZ D.R., TRIANA A.L. Aprovechamiento de los recursos genéticos de las papayas para su mejoramiento y promoción: estudios citogenéticos y palinológicos en Caricaceae para su utilización en programas de mejoramiento. En: Informe Final Proyecto Aprovechamiento de los Recursos Genéticos de las Papayas para su Mejoramiento y Promoción, FONTAGRO/IPGRI. Cali, Colombia. 2003.

CHAVEZ S., J. L. La caraterización morfológica como una estrategia para medir la variabilidad de una colección de germoplasma. Just a Draf, 2001. 30p.

ERDTMAN G. Pollen morphology and plant taxonomy. Angiosperms: an introduction to palynology. Leiden: Netherlands, E.J. Brill. 1952.

ESAU, K. Anatomy of seed plants. New York: John Wiley and Sons. 2e. 1972. 550p.

ESPINOSA O., G., VARGAS S., G. y ENGLEMAN, M. Contribución a la anatomía de Icaco (*Chrysobalanus icaco L.*) En: Bioagro Vol.14. No. 1. 2002. p. 29 – 36.

FONNEGRA, R. Introducción a la palinologia. Medellín: Universidad de Antioquia. 1989.

FRANCESCHI, V. y HORNER, H. Calcium oxalate crystals in plants. <u>En</u>: The Botanical Review. Vol. 46. No. 4. 1980. p. 361-427.

IWUANAMI Y., S. y YOSHIO, Y. Pollen: Illustrations and scanning of electronmicro graphs. Tokio, Kodans and Springer-Verlag. 1988. 198p

KHUMAR L.S.S., ABRAHAM A., SRINIVASAN V.K. The cytology of *Carica papaya* L. <u>En</u>: Ind. J. Agr. Sci. Vol. 15. 1945. p. 222-253.

LEAL, F. y COPPENS d'EECKENBRUGGE, G. Taller internacional sobre Caricaceae. Memorias. Maracay 19 al 21 de Octubre de 1999. Cali: Impresora Feriva. 2003

MAGDALITA P.M, DREW R.A, ADKINS S.W, GODWIN I.D. Morphological, molecular and cytological analyses of *Carica papaya* x *C. cauliflora* interspecific hybrids. <u>En</u>: Theor. Applied Genet. Vol. 95. 1997. p. 224-229.

MEHETRE S.S., DAHAT D.V. Cytogenetics of some important fruit crops: a review. <u>En</u>: J Maharashtra Agric. Univ. Vol. 25. 2000. p. 139-148.

METCALFE, C.R y CHALK, L. Anatomy of the dicotyledons. London: Oxford University. Vol 1. 1965. p. 681 - 683.

ROMEIJIN-PEETERS, E. Biodiversity of the genus *Vasconcellea* (Caricaceae) in Ecuador: A morphological approach. Academiejaar. 2004. Trabajo de grado (Doctor in de Wetenschappen, Groep Biologie). Universiteit Gent. Faculteit Wetenschappen.

ROTH, I. Anatomía y textura foliar de plantas de la Guayana Venezolana. <u>En</u>: Acta Botánica Venezuelica. Vol. 12. No. 1-4. 1997. p.79 – 146.

SAS. SAS/STAT user's guide, release 6.10. SAS Institute, Inc. N.C. USA. 1996.

SIAR S.V., GERÓNIMO S.B., SIERRA, Z., VILLEGAS, V.N. Cytology of *Carica papaya*, *Carica cauliflora* and their F1 interespecific hybrids. Philippine J. <u>En</u>: Crop Sci. Vol. 23. 1998. p. 91-96.

URIBE, F. y FONNEGRA, R. Importancia de la forma, estructura y tamaño del polen en la determinación de la familia Melastomastaceae. <u>En</u>: Actual. Biol.. Vol. 8. No. 27- 28. 1979. p. 3-9.

VELEZ, C. Aspectos morfológicos y anatómicos de cincos especies del género *Canavalia* (*Fabaceae- Faboideae*) para Colombia y su relación filogenética. Cali. 2003. Trabajo de grado (Maestría en Ciencias Biológicas). Universidad del Valle. Facultad de Ciencias.

VILLEGAS V.N., SIAR S.V., NAS T.M.S. Meiotic behavior and pollen fertility in *Carica papaya* x *Carica quercifolia* interespecific hybrid. Philippine J. <u>En</u>: Crop Sci. Vol. 23. No. 1. 1998. p. 12.

WESTERKAMP, C. Diversity pays in crop pollination. <u>En</u>: Crop Sci. Vol. 40. No. 5. 2000. p. 1216

ZERPA M. D. Comportamiento meiótico de la descendencia hibrida producida al transferir el caracter bisexual de *Carica pubescens* a *Carica stipulata*. En: Rev. Fac. Agron. (Maracay). Vol. 11. 1980. p. 5-47.

ANEXOS

Anexo A

DESCRIPTORES CUANTITATIVOS ANATÓMICOS PARA LOS GÉNEROS Carica Y Vasconcellea (CARICACEAE)

Estos descriptores se hacen para determinar la diversidad fenotípica o genética de un conjunto de poblaciones a través de su variabilidad de formas, estructuras, órganos y respuestas fisiológicas (Chávez, 2001)

PECÍOLO

1.	1
2.	2
3.	3
4.	4
2. Núm	ero máximo de estratos de colénquima (PEMC)
1.	6 a 12
2.	13 a 21
3.	>21
3. Núm	ero máximo de estratos del parénquima cortical (PEPD)
	2 a 5
2.	\geq 6

- 4. Visibilidad del cambium y número de estratos que lo conforman (PVCV)
 - 1. 0 a 3
 - 2. 5 a 12
- 5. Número máximo de haces que conforma el protoxilema mayor (PHFX)
 - 1. 1 a 2
 - 2. 3 a 4
 - 3. > 4
- 6. Número máximo de haces floemáticos solitarios (PHFS)

1. Número de estrato de parénquima subepidérmico (PEEP)

- 1. 1
- 2. 3 a 5
- 3. 6 a 8
- 7. Proporción de médula en el corte transversal (PPME)

 - 1. $\leq 30\%$ 2. $\geq 30\%$ a 60%
 - 3. > 60% a 80%

NERVIO

1. 4 a 8 2. 9 a 16 3. ≥ 26

1. 8 a 12 2. 13 a 18 3. ≥ 19

8. Número de estratos de colénquima lateral (NECL)

9. Número de estratos de colénquima superior (NECS)

1. 2.	nero máximo de estratos del parénquima cortical inferior (NEPI) 4 a 6 7 a 8
1. 2.	nero máximo de estratos del parénquima cortical superior (NEPS) 3 a 6 7 a 8 > 8
1.	porción de médula en el corte transversal % (NPMC) 10 a 30 > 30
MESÓ	FILO
13. Núr 1. 2.	
EPIDE	RMIS
1.	nero máximo de células acompañantes que rodea el estoma (ENCE) 5 a 7 > 8
. , .	ce estomático (IE)

Anexo B

DESCRIPTORES CUALITATIVOS ANATÓMICOS PARA PARA LAS ESPECIES DE LOS GÉNEROS Carica Y Vasconcellea (CARICACEAE)

PECÍOLO

- 1. Forma del contorno en el corte transversal (PFCT)
 - 1. elíptico
 - 2. circular
 - 3. elíptico con aristas
- 2. Número de estratos epidérmicos (PESB)
 - 1. uniestratificado
 - 2. uniestratificado y pluriestratificado
- 3. Forma de célula de la epidermis (PFCE)
 - 1. cuadrada
 - 2. elíptica
- 4. Células epidérmicas de diferentes tamaños (PCAT)
 - 1. ausente
 - 2. presente
- 5. Estomas (PESE)
 - 1. ausente
 - 2. presente
- 6. Presencia de tricomas (tric)
 - 1. 0
 - 2. 4
 - 3. 6
 - 4. 5
- 7. Proporción colénquima (C) y parénquima cortical (P) (PPCP)
 - 1. C = P2. C > P
- 8. Tipo de colénquima (PTCO)
 - 1. angular
 - 2. lagunar
 - 3. angular y lagunar
- 9. Continuidad del colénquima (PCCO)
 - 1. ausente
 - 2. presente
- 10. Colénquima arqueado (PAEC)
 - 1. ausente
 - 2. presente

- 11. Engrosamiento de paredes de células colenquimáticas (PEPC)
 1. homogéneo
 2. figuras poliédricas
- 12. Proporción del ancho del floema blando con fibras (PFBF)
 - 1. fb < fi
 - 2. fb = fi
 - 3. fb > fi
- 13. Diferenciación del metafloema (PEFB)
 - 1. ausente
 - 2. presente
- 14. Forma del floema blando (PFFB)
 - 1. elíptico
 - 2. circular
 - 3. botelliforme
- 15. Forma del protoxilema (PFVX)
 - 1. no forma
 - 2. pirámide delgada
 - 3. pirámide gruesa
- 16. Ubicación de la alternancia de los vasos del protoxilema (PUVX)
 - 1. ausente
 - 2. superior
 - 3. todo el pecíolo
- 17. Abundancia del parénquima perimedular alrededor del protoxilema (PPVX)
 - 1. poca
 - 2. media
 - 3. alta
- 18. Protoxilema residual (PVXH)
 - 1. ausente
 - 2. presente

NERVIO

- 19. Forma del contorno en corte transversal (NFCT)
 - 1. elíptica
 - 2. circular
 - 3. oval
- 20. Inserción de la lámina foliar (NILF)
 - 1. vertical
 - 2. horizontal
 - 3. oblicuo adaxial
- 21. Forma de célula epidérmica (NFCE)
 - 1. cuadrada

- 2. circulares
- 22. Ubicación de célula epidérmica de tamaño variado (NEAC)
 - 1. ausente
 - 2. abaxial
 - 3. abaxial y adaxial
- 23. Número de estratos de parénquima subepidérmico (NEPC)

 - 2. 1 inferior 2 superior
 - 3. superior
- 24. Ubicación de estomas (NPCP)
 - 1. ausente
 - 2. envés
- 25. Tipo de colénquima (NTCO)
 - 1. angular
 - 2. lagunar
- 26. Mayor agrupación del protoxilema (NAPX)
 - 1. adaxial
 - 2. abaxial
 - 3. abaxial y adaxial
- 27. Número de estratos del cambium vascular (NVCV)
 - 1. 0
 - 2. 7

MESÓFILO

- 28. Forma de las células del parénquima esponjoso (MFPE)
 - 1. elíptica
 - 2. variada
- 29. Cristales en el parénquima esponjoso (MCPE)
 - 1. cerca a la epidermis inferior
 - 2. todo parénquima esponjoso

EPIDERMIS

- 30. Forma de las células epidérmicas foliares (EFCS)
 - 1. poligonal
 - 2. ondulada
- 31. Forma de las células epidérmicas superiores en corte transversal (EFST)
 - 1. elíptica
 - 2. cuadrada

- 32. Ubicación del tricoma en la epidermis (EUTR)
 - 1. ausente
 - 2. inferior solo a nervios
- 33. Tipo de epidermis (EESS)
 - 1. hipostomático
 - 2. anfiestomático
- 34. Posición del estoma en la epidermis inferior (EHEI)
 - hundido
 igual

 - 3. ligeramente hundido

Anexo C

DESCRIPTORES DE POLEN PARA PARA LAS ESPECIES DE LOS GÉNEROS Carica Y Vasconcellea (CARICACEAE)

CUALITATIVOS:

- 1. Unidad polínica (UP)
 - 1. Mónada
 - 2. Otra
- 2. Forma (F)
 - 1. Oblato-esferoidal
 - 2. Prolato-esferoidal
 - 3. Subprolato
 - 4. Prolato
 - 5. Perprolato
- 3. Contorno en vista polar (CP)
 - 1. No angular circular
 - 2. No angular circular lobado
 - 3. No angular circular medianamente lobado
 - 4. Angular triangular obtuso convexo
- 4. Contorno en vista ecuatorial (CE)
 - 1. No angular circular-elíptico
 - 2. No angular elíptico truncado
 - 3. No angular elíptico emarginado
 - 4. No angular elíptico emarginado-truncado
 - 5. No angular elíptico acuminado obtuso
 - 6. Angular rectangular obtuso convexo
- 5. Tamaño (T)
 - 1. Mediano
 - 2. Grande
 - 3. Otra
- 6. Estructura y escultura de la esporodermis (EE)
 - 1. Tectado, cavado, foveolado, granulado (interfoveolas), columela presente
 - 2. Otra
- 7. Tipo de área polar según LA/DEP (TAP)
 - 1. Mediana
 - 2. Grande
 - 3. Otra
- 8. Tipo de abertura según LA/DEP (TA)
 - 1. Larga
 - 2. Corta
 - 3. Otra

- 9. Carácter de la abertura (C)
 - 1. Colporo
 - 2. Otra
- 10. Posición de la abertura (PA)
 - 1. Zonoaperturado
 - 2. Otra
- 11. Polaridad (PO)
 - 1. Isopolar
 - 2. Otra
- 12. Simetría (S)
 - 1. Radial
 - 2. Otra

CUANTITATIVOS:

- 13. Eje polar (EP; en µm)
- 14. Diámetro ecuatorial (DE; en µm)
- 15. Índice P/E (P/E, en μm)
- 16. Lado del apocolpo/apoporo (LA, en μm)
- 17. Diámetro ecuatorial en vista polar (DEP, en μm)
- 18. Índice del área polar (IAP; LA/DEP, en μm)

Anexo DCARACTERES ANATÓMICOS DE LA EPIDERMIS FOLIAR PARA PARA LAS ESPECIES DE LOS GÉNEROS *Carica* Y *Vasconcellea* (CARICACEAE)

			ESPEC	IE ¹	
CARÁCTER	Abreviatura	VcunNNf	VcunNNm	VcunNNh	VgouCAf
Forma de la célula epidérmicas foliares	EFCS	Poligonal	Poligonal	poligonal	poligonal
Pared celular	EFCI	Sinuoso	Sinuoso	sinuoso	sinuoso
Forma de las células epidérmicas superior en corte transversal	EFST	Cuadrada	Cuadrada	cuadrada	cuadrada
Cuticularización de la epidermis superior	ECES	No	Cutinizada	cutinizada	cutinizada
Cuticularización de la epidermis inferior	ECSI	Poca	Poca	poca	cutinizada
Número máximo de células en el tejido epidérmico secretor	EFRT	8	10	10	0
Tipo de epidermis	EESS	Hipostomática	Hipostomática	hipostomática	hipostomática
Posición del estoma de la epidermis superior	EHES	0	0	0	0
Posición del estoma de la epidermis inferior	EHEI	ligeramente hundido	ligeramente hundido	igual	ligeramente hundidos
Número máximo de células epidérmicas alrededor del estoma	ENCE	5	7	8	8
Índice estomático	IE	19.765	21.09	18.702	19.45

¹ Las abreviaturas de las especies se encuentran el la tabla 1 de la página 25.

			ESPECIE	\mathbb{E}^1	
CARÁCTER	Abreviatura	VgouVAm	VcauVAf	VlonQUm	VcunVAm
Forma de la célula epidérmicas foliares	EFCS	poligonal	ondulado	poligonal	Poligonal
Pared celular	EFCI	sinuoso	ligeramente sinuoso	sinuoso	Sinuoso
Forma de las células epidérmicas superior en corte transversal	EFST	cuadrada	cuadrada	cuadrada	Cuadrada
Cuticularización de la epidermis superior	ECES	cutinizada	cutinizada	cutinizada	Cutinizada
Cuticularización de la epidermis inferior	ECSI	Poca	cutinizada	poca	Poca
Número máximo de células en el tejido epidérmico secretor	EFRT	0	0	0	8
Tipo de epidermis	EESS	hipostomática	anfiestomática	hipostomática	Hipostomática
Posición del estoma de la epidermis superior	EHES	0	ligeramente hundido	0	0
Posición del estoma de la epidermis inferior	EHEI	ligeramente hundido	igual	igual	ligeramente hundido
Número máximo de células epidérmicas alrededor del estoma	ENCE	8	7	6	7
Índice estomático	IE	19.52	17.97	13.739	19.753

			ESPECIE	E ¹	
CARÁCTER	Abreviatura	VcunCUf	VsphCAm	VcraCDf	VhchrNN
Forma de la célula epidérmicas foliares	EFCS	poligonal	ondulado	poligonal	Poligonal
Pared celular	EFCI	sinuoso	ligeramente sinuoso	sinuoso	Sinuoso
Forma de las células epidérmicas superior en corte transversal	EFST	cuadrada	cuadrada	cuadrada	Cuadrada
Cuticularización de la epidermis superior	ECES	cutinizada	cutinizada	cutinizada	Cutinizada
Cuticularización de la epidermis inferior	ECSI	cutinizada	no	poca	Cutinizada
Número máximo de células en el tejido epidérmico secretor	EFRT	8	0	0	0
Tipo de epidermis	EESS	hipostomática	hipostomática	hipostomática	Hipostomática
Posición del estoma de la epidermis superior	EHES	0	0	0	0
Posición del estoma de la epidermis inferior	EHEI	ligeramente hundido	ligeramente hundido	superficial	Igual
Número máximo de células epidérmicas alrededor del estoma	ENCE	7	7	7	7
² Índice estomático	IE	22.51	16.328	16.212	13.934

_

¹La abreviatura de las especies se encuentran en la tabla 1 página 25.

			ESPECIE ¹		
CARÁCTER	Abreviatura	VhpenNN	VmicCAm	CpapVAm	VcunNNa
Forma de la célula epidérmicas foliares	EFCS	Poligonal	Ondulado ³	poligonal	poligonal
Pared celular	EFCI	Sinuoso	ligeramente sinuoso	sinuoso	sinuoso
Forma de las células epidérmicas superior en corte transversal	EFST	Cuadrada	Elíptica	cuadrada	cuadrada
Cuticularización de la epidermis superior	ECES	Cutinizada	Cutinizada	cutinizada	cutinizada
Cuticularización de la epidermis inferior	ECSI	Cutinizada	Cutinizada	cutinizada	cutinizada
Número máximo de células en el tejido epidérmico secretor	EFRT	0	0	0	8
Tipo de epidermis	EESS	hipostomática	Hipostomática	hipostomática	hipostomática
Posición del estoma de la epidermis superior	EHES	0	0	0	0
Posición del estoma de la epidermis inferior	EHEI	Igual	Igual	igual	igual
Número máximo de células epidérmicas alrededor del estoma	ENCE	7	7	8	7
Índice estomático	IE	15.71	9.016	28.57	20.41

_

La abreviatura de las especies se encuentran en la tabla 1, página 25.

Anexo ECARACTERES ANATÓMICOS DEL MESÓFILO PARA PARA LAS ESPECIES DE LOS GÉNEROS *Carica* Y *Vasconcellea* (CARICACEAE)

			ESPECIE ¹	
CARÁCTER	⁴ Abreviatura	VeunNNf	VcunNNm	VcunNNh
Número de estratos de parénquima en empalizada (PE)	MEPE	1	1 a 3	2
Forma de las células del parénquima esponjoso	MFPE	Elíptica	Elíptica	elíptica
				cerca a la epidermis
Cristales en el parénquima esponjoso	MCPE	cerca a la epidermis inferior	cerca a la epidermis inferior	inferior

			ESPECIE ¹	
CARÁCTER	Abreviatura	VeunCDm	VgouCAf	VgouVAm
Número de estratos de parénquima en empalizada (PE)	MEPE	3	2	2
Forma de las células del parénquima esponjoso	MFPE	Elíptica	Elíptica	elíptica
Cristales en el parénquima esponjoso	МСРЕ	cerca a la epidermis inferior		cerca a la epidermis inferior

			ESPECIE ¹	
CARÁCTER	Abreviatura	VcauVAf	VlonQUm	VcunVAm
Número de estratos de parénquima en empalizada (PE)	MEPE	1	1	1
Forma de las células del parénquima esponjoso	MFPE	Elíptica	Elíptica	elíptica
Cristales en el parénquima esponjoso	МСРЕ	cerca a la epidermis inferior		cerca a la epidermis inferior

87

¹ La abreviatura de las especies se encuentran en la tabla 1, página 25.

			ESPECIE ¹	
CARÁCTER	Abreviatura	VcunCUf	VsphCAm	VcraCDf
Número de estratos de parénquima en empalizada (PE)	MEPE	1	1 a 2	1
Forma de las células del parénquima esponjoso	MFPE	Elíptica	Elíptica	elíptica
Cristales en el parénquima esponjoso	МСРЕ	cerca a la epidermis inferior		cerca a la epidermis inferior

			ESPECIE ¹	
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm
Número de estratos de parénquima en empalizada (PE)	MEPE	1	1	1
Forma de las células del parénquima esponjoso	MFPE	Elíptica	elíptica	variada
Cristales en el parénquima esponjoso	МСРЕ	cerca a la epidermis inferior		cerca a la epidermis inferior

	5		ESPECIE ¹
CARÁCTER	Abreviatura	CpapVAm	VcunNNa
Número de estratos de parénquima en empalizada (PE)	MEPE	1	1
Forma de las células del parénquima esponjoso	MFPE	Variada	elípticas
Cristales en el parénquima esponjoso	MCPE	cerca a la epidermis inferior	cerca a la epidermis inferior

88

La abreviatura de las epecies se encuentran en la tabla 1, página 25.

Anexo FCARACTERES ANATÓMICOS DE LA SECCIÓN TRANSVERSAL DEL PECÍOLO DE LAS ESPECIES DE LOS GÉNEROS *Carica* Y *Vasconcellea* (CARICACEAE)

			ESPE	CIE ¹	
CARÁCTER	Abreviatura	VeunNNf	VcunNNm		VeunCDm
Forma del contorno en corte transversal	PFCT	Eliptico	eliptico	eliptico	eliptico
Borde del contorno	PBCO	Liso	liso	liso	Liso
Número de estratos epidérmicos	PESB	uni y pluriestratificada	uniestratificada	uniestratificada	uniestratificada
Forma de la célula epidérmica	PFCE	Cuadrada	cuadrada	cuadrada	cuadrada
Célula epidérmica de diferente tamaño	PCAT	No	no	no	No
Grosor de cutícula	PGRC	Cutinizada		ligeramente cutinizada	gruesa
Engrosamiento de la cutícula en la pared tangencial	PCTG	No	no	no	Sí
Granulaciones en la célula epidermica	PGRE	Sí	sí	sí	Sí
Estomas	PESE	No	no	no	No
Número de células del tricoma	PRTI	unicelular a 4 cél	unicelular a 6 cél	unicelular a 5 cél	unicelular a 6 cél
Forma del ápice del tricoma	PFTR	Acuminado	acuminado	acuminado	acuminado y papiloso
Número de estrato de parénquima subepidérmico (p. sub)	PEEP	2	2	2 y 3	1
Forma de células en en p. sub	PFCP	Elíptica	elíptica	ovalada	ovalada
Ubicación del los cristales en el p. sub	PUCP	0	todos	todos	todos
Proporción colénquima (C) y parénquima cortical (P)	PPCP	C>P	C>P	C>P	C>P
Ubicación predominante de cristales en la corteza	PUCC	Parénquima	parénquima	0	0
Continuidad del colénquima	PCCO	Sí	sí	sí	Sí
Tipo de colénquima	PTCO	Angular	angular	angular	lagunar
Colénquima arqueado	PAEC	Sí	sí	sí	No

_

¹ La abreviatura de las especies se encuentran en la tabla 1, página 25.

		ESPECIE ¹				
CARÁCTER	Abreviatura	VcunNNf	VcunNNm	VcunNNh	VcunCDm	
Forma de la célula colenquimática	PFLC	Circular	Circular	circular	circular	
Ubicación de célula colenquimática de mayor tamaño	PACM	Médula	Médula	homogéneo	médula	
Engrosamiento de paredes de células colenquimáticas	PEPC	homogéneo	figuras poliédricas	homogéneo	homogéneo	
Número máximo de estratos de colénquima	PEMC	18	25	13	16	
Número máximo de estratos del parénquima cortical	PEPC	7	7	5	7	
Forma de la célula del parénquima cortical	PFLP	Elíptica	Elíptica	elíptica	elíptica	
Vaina perivascular alrededor del cilindro central (CC)	PVPC	Sí	No	no	no	
Concavidad del P arqueado	PAPM	Bajo	Bajo	bajo	bajo	
Proporción ancho del floema blando con fibras	PFBF	fb = fi	fb = fi	fb = fi	fb>fi	
Anillo de casquetes de fibras floemáticas	PAFI	contínuo	Contínuo	contínuo	contínuo	
Engrosamiento de la pared de las fibras floemáticas	PPFI	Grueso	Grueso	grueso	delgada	
Forma predominante del lumen de las fibras floemáticas	PLFI	circular	Circular	circular	circular	
Número máximo de estratos de parénquima en el radio medular (RM)	PLRM	3	3	3	3	
Forma del floema blando	PFFB	Eliptico	Eliptico	eliptico	eliptico	
Diferenciación del metafloema	PEFB	Sí	No	sí	no	
Célula de mayor tamaño en el floema blando	PCMF	Igual	Igual	protofloema	igual	
Forma de célula del protofloema	PFBP	reticulado	Reticulado	poligonal	reticulado	
Forma de célula del metafloema	PFFI	rectangulares	0	reticulado	0	
Cloroplastos alrededor del floema blando	PCLF	No	No	no	no	
Número de estratos del cambium vascular (CV)	PVCV	7	9	0	0	
Ubicación de la alternancia de los vasos del protoxilema	PUVX	todo el pecíolo	todo el pecíolo	todo el pecíolo	0	
A grupación del protoxilema adaxial	PVPX	No	No	sí	no	

_

La abreviatura de las epecies se encuentran en la tabla 1, página 25.

			ESPECIE ¹				
CARÁCTER	Abreviatura	VcunNNf	VcunNNm	VcunNNh	VcunCDm		
Contenido esferico en el protoxilema	PCEP	No	No	si	no		
Agrupación del protoxilema abaxial	PVIX	no	No	no	no		
Abundancia de parénquima en el interior del floema blando	PEPF	3	3	3	3		
Forma del protoxilema	PFVX	pirámide gruesa	pirámide delgada	pirámide delgada	pirámide gruesa		
Número máximo de vasos del protoxilema en un hv de mayor							
tamaño	PAXM	26	27	20	40		
Número máximo de hv sin xilema entre hv con xilema	PHFS	4	6	4	1		
Número máximo de vasos del protoxilema en un hv de menor	•						
tamaño	PAXP	4	10	15	20		
Forma del lumen predominante de los vasos del protoxilema	PLVX	Circular	Circular	circular	circular		
Número de hv que se unifican a un solo protoxilema mayor	PHFX	2	1	2	4		
Número de hv que se unifican a un protoxilema menor	PHXM	1	1	1	2		
Abundancia del parénquima perimedular alrededor del protoxilema	PPVX	Media	Media	alta	alta		
Organización del protoxilema	PVXO	No	No	sí	sí		
Protoxilema residual	PVXH	No	No	no	no		
Proporción de médula en el corte transversal	PPME	60%	70%	70%	30%		
Cristales en la médula	PCRM	Poca	No	no	no		
Ubicación de los cloroplastos en la médula	PMCL	No	No	no	no		
Presencia de más de un CC	PMCC	No	No	no	si		

	ESPECIE ¹				
CARÁCTER	Abreviatura	VgouCAf	VgouVAm	VcauVAf	VlonQUm
Forma del contorno en corte transversal	PFCT	Eliptico	eliptico	circular	eliptico con aristas
Borde del contorno	PBCO	Liso	liso	liso	liso

La abreviaturas de las especies se encuentran en la tabla 1, página 25.

	I				SPECIE ¹		
CARÁCTER	Abreviatura	VgouCAf	VgouVAm	VcauVAf	VlonQUm		
Número de estratos epidérmicos	PESB	uniestratificada	uniestratificada	uniestratificada	uniestratificada		
Forma de la célula epidérmica	PFCE	Cuadrada	cuadrada	cuadrada	cuadrada		
Grosor de cutícula	PGRC	cutinizada	cutinizada	cutinizada	poco cutinizada		
Engrosamiento de la cutícula en la pared tangencial	PCTG	No	no	no	no		
Granulaciones en la célula epidermica	PGRE	Sí	sí	sí	SÍ		
Célula epidérmica de diferente tamaño	PCAT	No	no	no	no		
Estomas	PESE	No	no	no	no		
Número de células del tricoma	PRTI	0	0	0	0		
Forma del ápice del tricoma	PFTR	0	0	0	0		
Número de estrato de parénquima subepidérmico (p. sub)	PEEP	2	2 y 3	2	2		
Forma de células en en p. sub	PFCP	Elíptica	elíptica	elíptica	elíptica		
Ubicación del los cristales en el p. sub	PUCP	0	todos	todos	todos		
Proporción colénquima (C) y parénquima cortical (P)	PPCP	C>P	C>P	C>P	C = P		
Ubicación predominante de cristales en la corteza	PUCC	0	0	parénquima	parénquima		
Tipo de colénquima	PTCO	angular y laguna	r angular y lagunar	angular y lagunar	/ lagunar		
Continuidad del colénquima	PCCO	Sí	sí	sí	sí		
Colénquima arqueado	PAEC	Sí	sí	sí	no		
Forma de la célula colenquimática	PFLC	Circular	circular	circular	circular		
Ubicación de célula colenquimática de mayor tamaño	PACM	Médula	médula	homogéneo	homogéneo		
Engrosamiento de paredes de células colenquimáticas	PEPC	Homogéneo	homogéneo	homogéneo	figuras poliédricas		
Número máximo de estratos de colénquima	PEMC	8	8	8	6		
Número máximo de estratos del parénquima cortical	PEPC	7	7	3	3		
Forma de la célula del parénquima cortical	PFLP	Elíptica	elíptica	circular	elíptico		

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

			ESP	ECIE ¹	
CARÁCTER	Abreviatura	VgouCAf	VgouVAm	VcauVAf	VlonQUm
Vaina perivascular alrededor del cilindro central (CC)	PVPC	No	No	no	no
Concavidad del p. arqueado	PAPM	Medio	Medio	bajo	bajo
Proporción ancho del floema blando con fibras	PFBF	fb <fi< td=""><td>fb>fi</td><td>fb>fi</td><td>fb=fi</td></fi<>	fb>fi	fb>fi	fb=fi
Anillo de casquetes de fibras floemáticas	PAFI	Contínuo	Contínuo	contínuo	discontinuo
Engrosamiento de la pared de las fibras floemáticas	PPFI	Delgada	Gruesa	grueso	delgada
Número máximo de estratos de parénquima en el radio medular (RM)	PLRM	3	3	3	3
Forma del floema blando	PFFB	Elíptico	Elíptico	elíptico	botella
Diferenciación del metafloema	PEFB	No	No	no	sí
Célula de mayor tamaño en el floema blando	PCMF	Igual	Igual	igual	igual
Forma de célula del protofloema	PFBP	Elíptico	Elíptico	elíptico	elíptico
Contenido esférico en el protoxilema	PCEP	No	No	no	no
Número máximo de vasos del protoxilema en un hv de mayor tamaño	PAXM	26	26	14	14
Número máximo de vasos del protoxilema en un hv de menor tamaño	PAXP	4	4	4	5
Forma del lumen predominante de los vasos del protoxilema	PLVX	Circular	circular	circular	pentagonal
Número de hv que se unifican a un solo protoxilema mayor	PHFX	2	2	3	4
Número de hv que se unifican a un protoxilema menor	PHXM	1	1	1	1
Número máximo de hv sin xilema entre hv con xilema	PHFS	4	4	7	8
Abundancia del parénquima perimedular alrededor del protoxilema	PPVX	Alta	media	poca	poca
Organización del protoxilema	PVXO	Sí	sí	no	no
Protoxilema residual	PVXH	No	no	sí	no
Proporción de médula en el corte transversal	PPME	30%	80%	80%	60%
Cristales en la médula	PCRM	No	no	mucho	mucho
Ubicación de los cloroplastos en la médula	PMCL	No	no	periferia	no
Presencia de más de un CC	PMCC	No	no	no	no

_

 $^{^{1}}$ La abreviatura de las especies se encuentran en la tabla 1, página 25.

		ESPECIE ¹				
CARACTER	Abreviatura	VcunVAm	VcunCUf	VsphCAm	VcraCDf	
Forma del contorno en corte transversal	PFCT	Elíptico	circular	elíptico	elíptico	
Borde del contorno	PBCO	Liso	ondulado	liso	liso	
Número de estratos epidérmicos	PESB	Uniestratificada	uni y pluriestratificada	uniestratificada	uniestratificada	
Forma de la célula epidérmica	PFCE	Cuadrada	cuadrada	cuadrada	cóncava	
Célula epidérmica de diferente tamaño	PCAT	No	No	no	si	
Grosor de la cutícula	PGRC	poco cutinizada	cutinizada	cutinizada	cutinizada	
Engrosamiento de la cutícula en la pared tangencial	PCTG	No	No	no	no	
Granulaciones en la célula epidermica	PGRE	Sí	Sí	sí	sí	
Estomas	PESE	No	No	no	no	
Número de células del tricoma	PRTI	unicelular a 5 cél	unicelular a 5 cél	0	0	
Forma del ápice del tricoma	PFTR	acuminado y papiloso	acuminado	0	0	
Número de estrato de parénquima subepidérmico (p. sub)	PEEP	3	2	2	2 a 3	
Forma de células en en p. sub	PFCP	Elíptica	elíptica	circular	circular	
Ubicación del los cristales en el p. sub	PUCP	0	0	segundo estrato	0	
Proporción de colénquima (C) y parénquima cortical (P)	PPCP	C>P	C=P	C > P	C > P	
Ubicación predominante de cdrstales en la corteza	PUCC	Parenquima	0	parénquima	parénquima	
Tipo de colénquima	PTCO	Lagunar	lagunar	angular	angular	
Continuidad del colénquima	PCCO	Sí	Sí	sí	sí	
Colénquima arqueado	PAEC	Sí	No	no	no	
Forma de la célula colenquimática	PFLC	Circular	circular	circular	elíptico	
Ubicación de célula colenquimática de mayor tamaño	PACM	Médula	médula	médula	homogéneo	
Engrosamiento de paredes de células colenquimáticas	PEPC	figuras poliédricas	homogéneo	homogéneo	homogéneo	

_

La abreviatura de las especies se encuentran en la tabla 1, página 25.

		ESPECIE ¹				
CARACTER	Abreviatura	VcunVAm	VcunCUf	VsphCAm	VcraCDf	
Número máximo de estratos de colénquima	PEMC	16	14	10	23	
Número máximo de estratos del parénquima cortical	PEPC	6	9	3	5	
Forma de la célula del parénquima cortical	PFLP	Circular	circular	elíptico	elíptico	
Vaina perivascular alrededor del cilindro central (CC)	PVPC	No	No	no	no	

			ES	SPECIE ¹	
CARACTER	Abreviatura	VcunVAm	VcunCUf	VsphCAm	VcraCDf
Concavidad del p. arqueado	PAPM	Medio	Medio	bajo	medio
Proporción ancho del floema blando con fibras	PFBF	Fb>fi	fb>fi	fb = bi	fb>fi
Anillo de casquetes de fibras floemáticas	PAFI	Contínuo	Contínuo	contínuo	contínuo
Engrosamiento de la pared de las fibras floemáticas	PPFI	Delgada	Grueso	delgada	delgada
Forma predominante del lumen de las fibras floemáticas	PLFI	Circular	Circular	pentagonal	circular
Número máximo de estratos de parénquima en el radio medular (RM)	PLRM	4	5	3	3
Forma del floema blando	PFFB	elíptico	Elíptico	circular	botella
Diferenciación del metafloema	PEFB	Sí	Sí	no	si
Forma de célula del protofloema	PFBP	elíptico	Elíptico	cuadrado	elíptico
Forma de célula del metafloema	PFFI	reticulado	Reticulado	0	circular
Cloroplastos alrededor del floema blando	PCLF	No	Sí	no	no
Número de estratos del cambium vascular (CV)	PVCV	7	8	0	3
Ubicación de la alternancia de los vasos del protoxilema	PUVX	abaxial	todo el pecíolo	0	abaxial
Agrupación del protoxilema adaxial	PVPX	No	Sí	no	no
Agrupación del protoxilema abaxial	PVIX	Sí	No	no	si

_

La abreviatura de las especies se encuentran en la tabla 1, página 25.

		ESPECIE ¹			
CARÁCTER / ESPECIE	Abreviatura	VcunVAm	VcunCUf	VsphCAm	VcraCDf
Abundancia de parénquima en el interior del floema blando	PEPF	5	3	3	3
Forma del protoxilema	PFVX	No forma	pirámide delgada	pirámide gruesa	pirámide gruesa
Contenido esferico en el protoxilema	PCEP	No	No	no	no
Número máximo de vasos del protoxilema en un hv de mayor tamaño	PAXM	20	15	26	26
Número máximo de vasos del protoxilema en un hv de menor tamaño	PAXP	3	5	10	7
Forma del lumen predominante de los vasos del protoxilema	PLVX	circular	circular	circular	circular
Número de hv que se unifican a un solo protoxilema mayor	PHFX	3	4	2	2
Número de hv que se unifican a un protoxilema menor	PHXM	1	1	1	1
Número máximo de hv sin xilema entre hv con xilema	PHFS	6	1	3	4
Abundancia del parénquima perimedular alrededor del protoxilema	PPVX	poca	media	poca	alta
Organización del protoxilema	PVXO	No	no	no	si
Protoxilema residual	PVXH	No	no	no	no
Proporción de médula en el corte transversal	PPME	60%	60%	70%	70%
Cristales en la médula	PCRM	Si	no	no	no
Ubicación de los cloroplastos en la médula	PMCL	No	homogéneo	no	no
Presencia de más de un CC	PMCC	No	no	no	no

		ESPECIE ¹				
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm	
Forma del contorno en corte transversal	PFCT	Circular	elíptico con dos aristas	elíptico	elíptico con dos aristas	
Borde del contorno	PBCO	Liso	liso	liso	liso	

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

			ESPI	ECIE ¹	
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm
Número de estratos epidérmicos	PESB	uniestratificada	uniestratificada	uniestratificada	uniestratificada
Forma de la célula epidérmica	PFCE	Cuadrada	elípticas	cuadrada	cuadrada
Célula epidérmica de diferente tamaño	PCAT	No	No	No	no
Número de células del tricoma	PRTI	0	0	0	0
Forma del ápice del tricoma	PFTR	0	0	0	0
Número de estrato de parénquima subepidérmico (p. sub)	PEEP	2	2	2	4
Forma de células en en p. sub	PFCP	Circular	elíptica	elíptica	circulares
Ubicación del los cristales en el p. sub	PUCP	0	0	Todo	0
Proporción colénquima (C) y parénquima cortical (P)	PPCP	C = P	C > P	C = P	C > P
Ubicación predominante de cristales en la corteza	PUCC	0	0	0	0
Tipo de colénquima	PTCO	Lagunar	angular	angular	lagunar
Continuidad del colénquima	PCCO	Sí	Sí	Sí	no
Colénquima arqueado	PAEC	Sí	No	No	no
Forma de la célula colenquimática	PFLC	Elíptico	elíptico	circular	circulares

			ESPECIE ¹				
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm		
Ubicación de célula colenquimática de mayor tamaño	PACM	médula	médula	homogéneo	homogéneo		
Engrosamiento de paredes de células colenquimáticas	PEPC	homogéneo	homogéneo	homogéneo	homogéneo		
Número máximo de estratos de colénquima	PEMC	12	11	7	15		
Número máximo de estratos del parénquima cortical	PEPC	3	7	4	2		

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹			
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm
Proporción ancho del floema blando con fibras	PFBF	fb>fi	fb = fb	fb>fi	0
Forma de la célula del parénquima cortical	PFLP	circular	elíptico	circular	circular
Vaina perivascular alrededor del cilindro central (CC)	PVPC	No	no	No	no
Concavidad del P arqueado	PAPM	Bajo	bajo	Bajo	alto
Forma predominante del lumen de las fibras floemáticas	PLFI	circular	circular	circular	circular
Número máximo de estratos de parénquima en el radio medular (RM)	PLRM	3	2	3	5
Forma del floema blando	PFFB	circular	elíptico	elíptico	botella
Diferenciación del metafloema	PEFB	No	no	No	si
Célula de mayor tamaño en el floema blando	PCMF	Igual	igual	igual	metafloema
Forma de célula del protofloema	PFBP	reticulado	reticulado	reticulado	reticulado
Forma de célula del metafloema	PFFI	circular	0	0	circulares
Cloroplastos alrededor del floema blando	PCLF	No	sí	No	no
Número de estratos del cambium vascular (CV)	PVCV	7	3	0	0
Ubicación de la alternancia de los vasos del protoxilema	PUVX	0	0	Todo pecíolo	el 0
Agrupación del protoxilema adaxial	PVPX	No	no	No	no
Agrupación del protoxilema abaxial	PVIX	No	no	No	no
Contenido esferico en el protoxilema	PCEP	No	no	no	no
Número máximo de vasos del protoxilema en un hv de mayor tamaño	PAXM	16	26	13	8
Número máximo de vasos del protoxilema en un hv de menor tamaño	PAXP	16	10	3	4
Forma del lumen predominante de los vasos del protoxilema	PLVX	circular	circular	circular	circular

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹			
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm
Número de hv que se unifican a un solo protoxilema mayor	PHFX	7	2	2	3
Número de hv que se unifican a un protoxilema menor	PHXM	2	1	1	1
Número máximo de hv sin xilema entre hv con xilema	PHFS	6	4	6	5
Abundancia del parénquima perimedular alrededor del protoxilema	PPVX	media	Poca	poco	poco
Organización del protoxilema	PVXO	no	No	no	no
Protoxilema residual	PVXH	si	No	no	no
Proporción de médula en el corte transversal	PPME	60%	50%	70%	70%
Cristales en la médula	PCRM	no	No	no	no
Ubicación de los cloroplastos en la médula	PMCL	no	No	no	no
Presencia de más de un CC	PMCC	no	No	no	no

		ESPECIE ¹
CARÁCTER	Abreviatura	VcunNNa
Forma del contorno en corte transversal	PFCT	Elíptico
Borde del contorno	PBCO	Liso
Número de estratos epidérmicos	PESB	uniestratificada
Forma de la célula epidérmica	PFCE	Cuadrada
Célula epidérmica de diferente tamaño	PCAT	No
Grosor de cutícula	PGRC	poco cutinizada
Engrosamiento de la cutícula en la pared tangencial	PCTG	No
Granulaciones en la célula epidermica	PGRE	No
Estomas	PESE	No

La abreviatura de las especies se encuentran en la tabla 1, página 25.

		ESPECIE ¹
CARÁCTER	Abreviatura	VcunNNa
Número de células del tricoma	PRTI	unicelular a cuatro células
Forma del ápice del tricoma	PFTR	Acuminado
Número de estrato de Parénquima subepidérmico (P. sub)	PEEP	2
CARÁCTER / ESPECIE	Abreviatura	VcunNNa
Proporción Colénquima (C) y parénquima cortical (P)	PPCP	C > P
Ubicación predominante de cristales en la corteza	PUCC	0
Tipo de colénquima	PTCO	Angular
Continuidad del colénquima	PCCO	Si
Forma de la célula colenquimática	PFLC	Circulares
Número máximo de estratos de colénquima	PEMC	14
Número máximo de estratos del parénquima cortical	PEPC	4
Forma de la célula del parénquima cortical	PFLP	Circulares
Vaina perivascular alrededor del cilindro central (CC)	PVPC	No
Concavidad del p. arqueado	PAPM	No
Proporción ancho del floema blando con fibras	PFBF	fb = fb
Anillo de casquetes de fibras floemáticas	PAFI	Contínuo
Engrosamiento de la pared de las fibras floemáticas	PPFI	Delgada
Forma predominante del lumen de las fibras floemáticas	PLFI	Circular
Número máximo de estratos de parénquima en el radio medular (RM)	PLRM	4
Forma del floema blando	PFFB	Elíptico
Diferenciación del metafloema	PEFB	No

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹
CARÁCTER	Abreviatura	VcunNNa
Célula de mayor tamaño en el floema blando	PCMF	Igual
Forma de célula del protofloema	PFBP	Cuadrado
Forma de célula del metafloema	PFFI	0
Ubicación de la alternancia de los vasos del protoxilema	PUVX	0
Agrupación del protoxilema adaxial	PVPX	Sí
Agrupación del protoxilema abaxial	PVIX	No
Abundancia de parénquima en el interior del floema blando	PEPF	1
Forma del protoxilema	PFVX	Pirámide gruesa
Contenido esferico en el protoxilema	PCEP	No
Número máximo de vasos del protoxilema en un hv de mayor tamaño	PAXM	18
Número máximo de vasos del protoxilema en un hy de menor tamaño	PAXP	7
Forma del lumen predominante de los vasos del protoxilema	PLVX	Circular
Número de hv que se unifican a un solo protoxilema mayor	PHFX	3
Número de hv que se unifican a un protoxilema menor	PHXM	2
Número máximo de hv sin xilema entre hv con xilema	PHFS	7
Abundancia del parénquima perimedular alrededor del protoxilema	PPVX	Poco
Organización del protoxilema	PVXO	Sí
Protoxilema residual	PVXH	No
Proporción de médula en el corte transversal	PPME	70%
Cristales en la médula	PCRM	No
Ubicación de los cloroplastos en la médula	PMCL	No
Presencia de más de un CC	PMCC	No

_

¹ La abreviatura de las especies se encuentran en la tabla 1, página 25.

CARACTERES ANATÓMICOS DE LA SECCIÓN TRANSVERSAL DEL NERVIO DE LAS ESPECIES DE LOS GÉNEROS Carica Y Vasconcellea (CARICACEAE)

		ESPECIE ¹				
CARÁCTER	Abreviatura	VcunNNf	VcunNNm	VeunNNh	VeunCDm	
Forma del contorno en corte transversal	NFCT	Circular	Oval	elíptica	circular	
Borde del contorno	NBCO	Liso	Ondulado	Liso	liso	
Incersión de la lámina foliar	NILF	Vertical	oblicuo adaxial	vertical	oblicuo adaxial	
Forma de célula epidérmica	NFCE	Cuadrada	Cuadrada	cuadrada	cuadrada	
Ubicación de célula epidérmica de tamaño variado	NEAC	No	No	No	no	
Grosor de cutícula	NCAC	Cutinizada	Cutinizada	cutinizada	poco cutinizada	
Engrosamiento de la cuticula en la pared tangencial	NCTG	No	No	No	no	
Granulaciones en la célula epidérmica	NGRE	Sí	No	Sí	no	
Tricomas	NTRI	Sí	Sí	Sí	sí	
Forma del apice tricomal	NFAT	Acuminado	Acuminado	acuminado	acuminado	
Número de estrato de P.sub	NEPS	1	1	1	1	
Forma celular de P. Sub	NFCP	Elíptica	Elíptica	circular	circular	
Abundancia de cristales en el P. sub.	NCCP	Mucho	Mucho	mucho	mucho	
Ubicación de estomas	NPCP	No	No	No	no	
Ubicación predominante de cristales en toda la corteza	NUPC	Parénquima	No	No	col y par	
Tipo de colénquima	NTCO	Angular	Angular	angular	lagunar	
Continuidad del colénquima	NCCO	Sí	Sí	Sí	sí	
Forma de célula colenquimática	NFCC	Circular	Circular	circular	circular	
Ubicación de célula colenquimática de mayor tamaño	NCAM	Interior	Interior	interior	Interior	

Anexo G

¹La abreviatura de las especies se encuentra en la página 25, tabla 1.

		ESPECIE ¹				
CARÁCTER	Abreviatura	VcunNNf	VcunNNm	VcunNNh	VcunCDm	
Engrosamiento de paredes de células colenquimáticas	NEPC	figuras poliédricas	figuras poliédricas	figuras poliédricas	homogéneo	
Número de estratos de colénquima lateral	NECL	8	11	10	14	
Número de estratos de colénquima abaxial	NECI	10	11	12	14	
Número de estratos de colénquima adaxial	NECS	18	11	12	14	
Número máximo de estratos del parénquima cortical lateral	NEPL	5	8	8	6	
Número máximo de estratos del parénquima cortical abaxial	NEPI	8	8	8	6	
Número máximo de estratos del parénquima cortical adaxial	NEPS	6	16	8	6	
Número máximo de estratos del parénquima cortical adaxial	NEPS	6	16	8	6	
Forma de célula del P.C	NFPC	elípticas	elípticas	elípticas	circular	
Colénquima arqueado	NACR	no	no	No	no	
Concavidad del parénquima cortical arqueado	NAPR	no	no	No	no	
ubicación de las fibras floemáticas en anillo discontinuo	NUFI	arista y lateral	0	0	0	
Engrosamiento de la pared de las fibras floemáticas	NEFI	delgada	0	0	0	
Forma predominante de las células de las fibras floemáticas	NFLI	circular	0	0	0	
Número máximo de estratos del radio medular primario	NERM	3 a 4	1 a 2	1 a 3	4 a 6	
continuac en el radio medular	NCRM	Sí	no	No	no	
Continuación del metafloema	NEFB	Sí	sí	No	no	
Forma del floema blando	NFFB	botella	elíptica	elíptica	elíptica	
Célula de mayor tamaño en el floema blando	NCMF	igual	igual	igual	igual	
Forma de célula del protofloema	NFFB	poligonal	poligonal	poligonal	reticulado	
Forma de célula del metafloema	NFFL	reticulado	poligonal	0	0	
Número de estratos del CV	NVCV	0	0	0	0	

¹La abreviatura de las especies se encuentra en la página 25, tabla 1.

		ESPECIE ¹			
CARÁCTER	Abreviatura	VcunNNf	VcunNNm	VeunNNh	VcunCDm
Abundancia de parénquima en el interior del floema blando	NEPF	3	3	3	3
Forma del protoxilema	NFVX	sin forma	pirámide gruesa	pirámide gruesa	pirámide gruesa
Alternancia del protoxilema mayor y menor tamaño en CC	NAXM	No	No	No	no
Número máximo de vasos del protoxilema en un hv de mayor tamaño	NAXL	10	16	10	30
Número máximo de vasos del protoxilema en un hv de menor tamaño	NAXP	4	4	4	1
Número máximo de hv sin xilema entre hv con xilema	NHFS	1	1	1	1
Cloroplastos en el medio del floema	NCMZ	No	No	No	no
Abundancia del parénquima perimedular alrededor del protoxilema	NAPX	Alta	alta	Alta	alta
Número máximo de hv sin xilema entre hv con xilema	NHFS	1	1	1	1
Cloroplastos en el medio del floema	NCMZ	No	No	No	no
Proporción de médula en el corte transversal	NPMC	40%	40%	35%	25%
Cristales en la médula	NCRH	Sí	No	No	sí

		ESPECIE ¹				
CARÁCTER	Abreviatura	VgouCAf	VgouVAm	VcauVAf	VlonQUm	
Forma del contorno en corte transversal	NFCT	elíptica	elíptica	circular	oval	
Borde del contorno	NBCO	liso	liso	Liso	liso	
Incersión de la lámina foliar	NILF	vertical	vertical	horizontal	horizontal	
Forma de célula epidérmica	NFCE	cuadrada	cuadrada	cuadrada	esferica	
Ubicación de célula epidérmica de tamaño variado	NEAC	No	no	abaxial y adaxial	no	

 $^{^{1}}$ La abreviatura de las especies se encuentra en la página 25, tabla 1.

		ESPECIE ¹				
CARÁCTER	Abreviatura	VgouCAf	VgouVAm	VcauVAf	VlonQUm	
Grosor de cutícula	NCAC	cutinizada	Cutinizada	No	cutinizada	
Engrosamiento de la cuticula en la pared tangencial	NCTG	No	No	No	no	
Granulaciones en la célula epidérmica	NGRE	No	No	no	no	
Tricomas	NTRI	No	No	no	no	
Forma del apice tricomal	NFAT	0	0	0	0	
Número de estrato de P.sub	NEPS	1	1	1	1	
Forma celular de P. Sub	NFCP	circular	Elíptica	elíptica	circular	
Abundancia de cristales en el P. sub.	NCCP	no	No	mucho	mucho	
Jbicación de estomas	NPCP	no	No	no	no	
Ubicación predominante de cristales en toda la corteza	NUPC	no	p y col	no	colenquima	
Tipo de colénquima	NTCO	angular	Angular	lagunar	lagunar	
Continuidad del colénquima	NCCO	sí	Sí	sí	sí	
Forma de célula colenquimática	NFCC	circular	Circular	poligonal	circular	
Ubicación de célula colenquimática de mayor tamaño	NCAM	interior	Interior	homogéneo	homogéneo	
Engrosamiento de paredes de células colenquimáticas	NEPC	homogéneo	Homogéneo	homogéneo	figuras poliédricas	
Número de estratos de colénquima lateral	NECL	9	14	8	4	
Número de estratos de colénquima abaxial	NECI	11	14	8	4	
Número de estratos de colénquima adaxial	NECS	14	16	8	14	
Número máximo de estratos del parénquima cortical lateral	NEPL	3	5	8	5	
Número máximo de estratos del parénquima cortical abaxial	NEPI	8	5	8	5	
Número máximo de estratos del parénquima cortical adaxial	NEPS	3	5	8	5	

_

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹				
CARÁCTER	Abreviatura	VgouCAf	VgouVAm	VcauVAf	VlonQUm	
Forma de célula del P.C	NFPC	circular	Elíptica	elíptica	elíptica	
Colénquima arqueado	NACR	no	no	No	no	
Concavidad del parénquima cortical arqueado	NAPR	no	poco	No	no	
Ubicación de las fibras floemáticas en anillo discontinuo	NUFI	0	0	arista y inferior	0	
Engrosamiento de la pared de las fibras floemáticas	NEFI	0	0	delgada	0	
Forma predominante de las células de las fibras floemáticas	NFFI	0	0	circular	0	
Número máximo de estratos del radio medular primario	NERM	4	1 a 4	1 a 5	1 a 3	
Cristales en el radio medular	NCRM	no	no	No	no	
Diferenciación del metafloema	NEFB	sí	no	No	sí	
Forma del floema blando	NFFB	botella	elíptica	elíptica	botella	
Célula de mayor tamaño en el floema blando	NCMF	igual	igual	igual	protofloema	
Forma de célula del protofloema	NFFB	poliédrica	reticulado	reticulado	elíptica	
Forma de célula del metafloema	NFFL	reticulado	0	0	reticulado	
Número de estratos del CV	NVCV	0	0	0	0	
Abundancia de parénquima en el interior del floema blando	NEPF	3	3	3	3	
Forma del protoxilema	NFVX	no forma	pirámide gruesa	sin forma	sin froma	
Alternancia del protoxilema mayor y menor tamaño en CC	NAXM	no	no	No	no	
Mayor agrupación del protoxilema	NAPX	adaxial	adaxial	adaxial y abaxial	adaxial y abaxial	
Número máximo de vasos del protoxilema en un hv de mayor tamaño	· NAXL	12	16	16	7	
Número máximo de vasos del protoxilema en un hv de menor tamaño	NAXP	1	4	4	4	

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹				
CARÁCTER	Abreviatura	VgouCAf	VgouVAm	VcauVAf	VlonQUm	
Número máximo de hv sin xilema entre hv con xilema	NHFS	4	4	4	4	
Cloroplastos en el medio del floema	NCMZ	no	no	No	no	
Abundancia del parénquima perimedular alrededor del						
protoxilema	NAPX	alta	alta	Alta	poca	

		ESPECIE ¹				
CARÁCTER	Abreviatura	VcunVAm	VcunCUf	VsphCAm	VcraCDf	
Forma del contorno en corte transversal	NFCT	oval	elíptica	elíptica	Elíptica	
Borde del contorno	NBCO	Liso	liso	Liso	Liso	
Incersión de la lámina foliar	NILF	vertical	vertical	oblicuo adaxial	oblicuo adaxial	
Forma de célula epidérmica	NFCE	cuadrada	cuadrada	cuadrada	Cuadrada	
Ubicación de célula epidérmica de tamaño variado	NEAC	No	no	abaxial y adaxila	Abaxial	
contin de cutícula	NCAC	cutinizada	cutinizada	mucha cutinizada	poco cutinizada	
Engrosamiento de la cuticula en la pared tangencial	NCTG	Sí	no	No	No	
Granulaciones en la célula epidérmica	NGRE	No	no	Sí	No	
Tricomas	NTRI	Sí	sí	No	No	
Forma del apice tricomal	NFAT	acuminado	acuminado glandular	y 0	0	
Número de estrato de P.sub	NEPS	1inf 2 super	1	1	1inf 2 super	
Forma celular de P. Sub	NFCP	circular	circular	elíptica	Elíptica	
Abundancia de cristales en el P. sub.	NCCP	росо	no	росо	poco	
Ubicación de estomas	NPCP	No	no	No	No	

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹				
CARÁCTER	Abreviatura	VcunVAm	VcunCUf	VsphCAm	VcraCDf	
Ubicación predominante de cristales en toda la corteza	NUPC	No	no	No	No	
Tipo de colénquima	NTCO	lagunar	angular	angular	Lagunar	
Continuidad del colénquima	NCCO	Sí	sí	Sí	Sí	
Engrosamiento de paredes de células colenquimáticas	NEPC	homogéneo	circular	poliédrica	Poliédrica	
Número de estratos de colénquima lateral	NECL	11	5	6	26	
Número de estratos de colénquima abaxial	NECI	11	7	8	27	
Número de estratos de colénquima adaxial	NECS	20	13	8	10	
Número máximo de estratos del parénquima cortical lateral	NEPL	6	5	4	4	
Número máximo de estratos del parénquima cortical abaxial	NEPI	6	5	4	4	
Número máximo de estratos del parénquima cortical adaxial	NEPS	6	5	7	6	
Forma de célula del P.C	NFPC	circular	circular	circular	circular	
Colénquima arqueado	NACR	No	no	No	no	
Continuación del parénquima cortical arqueado	NAPR	росо	no	росо	росо	
Ubicación de las fibras floemáticas en anillo discontinuo	NUFI	0	0	0	0	
Engrosamiento de la pared de las fibras floemáticas	NEFI	0	0	0	0	
Forma predominante de las células de las fibras floemáticas	NFFI	0	0	0	0	
Número máximo de estratos del radio medular primario	NERM	1 a 4	1 a 3	2 a 3	2 a 3	
Continuación en el radio medular	NCRM	No	no	No	no	
Continuación del metafloema	NEFB	No	sí	Sí	sí	
Forma del floema blando	NFFB	botella	ocho	elíptica	Botella	
Célula de mayor tamaño en el floema blando	NCMF	protofloema	igual		Igual	
Forma de célula del protofloema	NFFB	elípticas	reticulado	Reticulado	Reticulado	

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹				
CARÁCTER	Abreviatura	VcunVAm	VcunCUf	VsphCAm	VcraCDf	
Forma de célula del metafloema	NFFL	0	Reticulado	Reticulado	Reticulado	
Número de estratos del CV	NVCV	0	0	0	0	
Abundancia de parénquima en el interior del floema blando	NEPF	3	3	3	3	
Mayor agrupación del protoxilema	NAPX	adaxial y abaxial		adaxial abaxial	yadaxial y abaxial	
Número máximo de vasos del protoxilema en un hv de mayor tamaño	NAXL	13	17	10	16	
Número máximo de vasos del protoxilema en un hv de menor tamaño	NAXP	5	4	1	4	
Número máximo de hv sín xilema entre hv con xilema	NHFS	1	1	1	1	
Cloroplastos en el medio del floema	NCMZ	no	sí	No	no	
Abundancia del parénquima perimedular alrededor del protoxilema	NAPX	baja	alta	baja	baja	
Proporción de médula en el corte transversal	NPMC	40%	40%	50%	35%	
Cristales en la médula	NCRH	no	no	No	no	

		ESPECIE ¹			
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm
Forma del contorno en corte transversal	NFCT	oval	elíptica	circular	circular
Borde del contorno	NBCO	liso	liso	liso	liso
Incersión de la lámina foliar	NILF	vertical	vertical	oblicuo adaxia	lhorizontal

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

			ESPECIE ¹				
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm		
Forma de célula epidérmica	NFCE	cuadrada	cuadrada	circulares	cuadrada		
Ubicación de célula epidérmica de tamaño variado	NEAC	no	no	No	no		
Grosor de cutícula	NCAC	poco cutinizada	cutinizada	poco cutinizada	poco cutinizada		
Tricomas	NTRI	no	no	No	no		
Forma del apice tricomal	NFAT	0	0	0	0		
Número de estrato de p.sub	NEPS	1	1	1 superior	superior		
Forma celular de p. Sub	NFCP	elíptica	circular	circular	circular		
Abundancia de cristales en el p. sub.	NCCP	росо	no	No	росо		
Ubicación de estomas	NPCP	envez	no	No	envez		
Ubicación predominante de cristales en toda la corteza	NUPC	no	no	No	0		
Tipo de colénquima	NTCO	lagunar	angular	angular	lagunar		
Continuidad del colénquima	NCCO	sí	sí	Sí	no		
Forma de célula colenquimática	NFCC	circular	circular	circular	poliédrico		
Ubicación de célula colenquimática de mayor tamaño	NCAM	interior	interior	No	sí		
Engrosamiento de paredes de células colenquimáticas	NEPC	poliédricas	homogéneo	poliédrico	poliédrico		
Número de estratos de colénquima lateral	NECL	7	8	6	16		
Número de estratos de colénquima abaxial	NECI	8	8	6	16		
Número de estratos de colénquima adaxial	NECS	22	8	22	24		
Número máximo de estratos del parénquima cortical lateral	NEPL	6	8	7	5		
Número máximo de estratos del parénquima cortical abaxial	NEPI	6	8	7	6		
Número máximo de estratos del parénquima cortical adaxial	NEPS	6	8	3	4		
Forma de célula del P.C	NFPC	circular	circular	circular	circular		

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

			ESPECIE ¹						
CARÁCTER	Abreviatura	VhchrNN	VhpenNN	VmicCAm	CpapVAm				
Colénquima arqueado	NACR	no	no	No	no				
Concavidad del parénquima cortical arqueado	NAPR	росо	no	No	alto				
ubicación de las fibras floemáticas en anillo discontinuo	NUFI	0	0	0	0				
Número máximo de estratos del radio medular primario	NERM	4	3	5	7				
Cristales en el radio medular	NCRM	no	no	No	no				
Diferenciación del metafloema	NEFB	no	no	No	sí				
Forma del floema blando	NFFB	botella	elíptico	elíptico	botella				
Célula de mayor tamaño en el floema blando	NCMF	igual	igual	igual	igual				
Forma de célula del protofloema	NFFB	reticulado	reticulado	reticulado	cuadrada				
Forma de célula del metafloema	NFFL	0	0	0	reticulado				
Número de estratos del CV	NVCV	0	0	0	7				
Abundancia de parénquima en el interior del floema blando	NEPF	3	3	2	7				
Forma del protoxilema	NFVX	pirámide gruesa	Pirámide gruesa	No forman	no forma				
Alternancia del protoxilema mayor y menor tamaño en CC	NAXM	no	no	No	no				
Mayor agrupación del protoxilema	NAPX								
Número máximo de vasos del protoxilema en un hv de mayor tamaño	NAXL	10	16	14	14				
Número máximo de vasos del protoxilema en un hy de menor tamaño	NAXP	4	4	3	4				
Número máximo de hy sín xilema entre hy con xilema	NHFS	1	1	4	1				
Cloroplastos en el medio del floema	NCMZ	No	no	no	no				
Abundancia del parénquima perimedular alrededor del protoxilema	NAPX	Baja	poco	росо	росо				
Proporción de médula en el corte transversal	NPMC	40%	10%	40%	40%				
Cristales en la médula	NCRH	No	no	No	no				

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹
CARÁCTER	Abreviatura	VcunNNa
Forma del contorno en corte transversal	NFCT	Elíptica
Borde del contorno	NBCO	liso
Incersión de la lámina foliar	NILF	vertical
Forma de célula epidérmica	NFCE	cuadrada
Ubicación de célula epidérmica de tamaño variado	NEAC	no
Grosor de cutícula	NCAC	poco cutinizada
Engrosamiento de la cuticula en la pared tangencial	NCTG	no
Granulaciones en la célula epidérmica	NGRE	no
Tricomas	NTRI	sí
Forma del apice tricomal	NFAT	0
Número de estrato de p. sub	NEPS	1
Forma celular de p. Sub	NFCP	circular
Abundancia de cristales en el p. sub.	NCCP	no
Ubicación de estomas	NPCP	no
Ubicación predominante de cristales en toda la corteza	NUPC	no
Tipo de colénquima	NTCO	lagunar
Continuidad del colénquima	NCCO	sí
Forma de célula colenquimática	NFCC	circular
Ubicación de célula colenquimática de mayor tamaño	NCAM	sí
Engrosamiento de paredes de células colenquimáticas	NEPC	poliédrico
Número de estratos de colénquima lateral	NECL	12
Número de estratos de colénquima abaxial	NECI	12

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹
CARÁCTER	Abreviatura	VcunNNa
Número de estratos de colénquima adaxial	NECS	21
Número máximo de estratos del parénquima cortical lateral	NEPL	7
Número máximo de estratos del parénquima cortical abaxial	NEPI	7
Colénquima arqueado	NACR	sí
continuaci del parénquima cortical arqueado	NAPR	no
ubicación de las fibras floemáticas en anillo discontinuo	NUFI	0
Engrosamiento de la pared de las fibras floemáticas	NEFI	0
Forma predominante de las células de las fibras floemáticas	NFFI	0
Número máximo de estratos del radio medular primario	NERM	4
Cristales en el radio medular	NCRM	no
Diferenciación del metafloema	NEFB	no
Forma del floema blando	NFFB	elíptico
Célula de mayor tamaño en el floema blando	NCMF	igual
Forma de célula del protofloema	NFFB	reticulado
Forma de célula del metafloema	NFFL	0
Número de estratos del CV	NVCV	0
Abundancia de parénquima en el interior del floema blando	NEPF	3
Forma del protoxilema	NFVX	pirámide gruesa
Alternancia del protoxilema mayor y menor tamaño en CC	NAXM	no
Mayor agrupación del protoxilema	NAPX	
Número máximo de vasos del protoxilema en un hv de mayor tamaño	NAXL	18

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

		ESPECIE ¹
CARÁCTER	Abreviatura	VcunNNa
Número máximo de vasos del protoxilema en un hy de menor tamaño	NAXP	2
Número máximo de hv sín xilema entre hv con xilema	NHFS	4
Cloroplastos en el medio del floema	NCMZ	no
Cristales en la médula	NCRH	no

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

Anexo H

CARACTERES DEL POLEN DE *C. papaya* (Cpap) Y ESPECIES DE *Vasconcellea* (V--) EN GRANOS ACETOLISADOS (ERDTMAN, 1952), EN MICROSCOPÍA DE LUZ

Género	Especie ¹	Reproducción	Abreviatura	Forma (F)	Tamaño (T)
Carica	С. рарауа	Masculina	CpapVAm	prolato-esferoidal	grande
Vasconcellea	cauliflora	Masculina	VcauVAm	subprolato	mediano
Vasconcellea	crassípetala	Masculina	VcraCDm	subprolato	mediano
Vasconcellea	V. cundinamarcensís	Polígamo-monóica	VcunNNh	prolato-esferoidal	mediano
Vasconcellea	V. cundinamarcensís	Andro-monóica	VcunNNa	prolato-esferoidal	mediano
Vasconcellea	V. cundinamarcensís	Masculina	VeunNNm	prolato-esferoidal	mediano
Vasconcellea	V. cundinamarcensís	Masculina	VcunANm	subprolato	mediano
Vasconcellea	V. cundinamarcensís	Masculina	VeunCDm	prolato-esferoidal	mediano
Vasconcellea	V. cundinamarcensís	Masculina	VcunQUm	oblato-esferoidal	mediano
Vasconcellea	V. goudotiana	Masculina	VgouVAm	prolato-esferoidal	mediano
Vasconcellea	V. longiflora	Masculina	VlonQUm	prolato-esferoidal	mediano
Vasconcellea	V. sphaerocarpa	Masculina	VsphCAm	prolato-esferoidal	mediano

⁻

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Especie ¹	Contorno en vista polar (CP)	Contorno en vista ecuatorial (CE)	Eje polar (EP)	Diámetro ecuatorial (DE)	Índice P/E
Especie	(CI)	no angular elíptico acuminado –	Lje polar (Li)	(DE)	marce 1712
CpapVAm	no angular circular	truncado	52,73	50,63	1,04
VcauVAm	no angular circular lobado	no angular elíptico - emarginado	41,19	34,25	1,20
VcraCDm	angular triangular obtuso convexo	no angular circular - elíptico	45,29	37,82	1,20
VcunNNh	angular triangular obtuso convexo	no angular elíptico - emarginado	37,4	35,1	1,07
VcunNNa	angular triangular obtuso convexo	no angular elíptico emarginado – truncado	38,34	34,7	1,10
VcunNNm	no angular circular	no angular elíptico acuminado – obtuso	37,5375	35,625	1,05
VcunANm	no angular circular	no angular elíptico acuminado obtuso	43,04	36,25	1,19
VcunCDm	no angular circular lobado	no angular elíptico - emarginado	36,9	35,5	1,04
VcunQUm	no angular circular lobado	no angular elíptico emarginado	36,4	38,2	0,95
VgouVAm	no angular circular lobado	no angular elíptico emarginado	36,88	34,96	1,05
VlonQUm	no angular circular	no angular elíptico - emarginado	33,75	32,24	1,05
VsphCAm	no angular circular	no angular elíptico acuminado obtuso	42,31	35,44	1,19

_

La abreviatura de las especies se encuentra en la tabla 1, página 25.

Especie ¹	Lado de apocolpo LA	Diámetro ecuatorial en vista polar (DEP)	Índice del área polar (IAP)	Tipo de área polar según IAP (TAP)	Tipo de abertura según IAP (TA)
CpapVAm	21,60	22,64	0,95	3	3
VcauVAm	31,00	25,92	1,20	3	3
VeraCDm	24,93	31,30	0,80	3	3
VcunNNh	27,00	27,00	1,00	3	3
VcunNNa	26,70	26,70	1,00	3	3
VcunNNm	28,50	28,50	1,00	3	3
VcunANm	26,55	25,18	1,05	3	3
VcunCDm	26,40	26,40	1,00	3	3
VcunQUm	27,00	27,00	1,00	3	3
VgouVAm	27,60	21,48	1,28	3	3
VlonQUm	25,13	25,13	1,00	3	3
VsphCAm	26,10	24,81	1,05	3	3

Para todas las especies/accesíones evaluadas la unidad polínica es el tipo mónada, el polen tricolporado, y en cuanto a la estructura y escultura de la esporodermis (EE) es tectado, cavado, foveolado, granulado (interfoveolas), columela presente.

_

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Anexo ICARACTERES DEL GRANO DE POLEN DE *C. papaya* (Cpap) Y ESPECIES DE *Vasconcellea* (V--) EN MICROSCOPIA ELECTRÓNICA DE BARRIDO (MEB).

	Forma (F)		Contorno en vista	Diámetro ecuatorial		
Especie ¹		Contorno en vista polar (CP)	ecuatorial (CE)	(DE)	Eje polar (EP)	Índice P/E
C MA	1 1 .	no angular circular	no angular elíptico	22.05	26.52	1.0
CpapVAm	subprolato	medianamente lobado	emarginado-truncado	22.05	26.53	1.2
VcauVAf	prolato	no angular circular lobado	no angular elíptico emarginado-truncado	22.96	32.28	1.41
VeraCDf	oblato-esferoidal	angular triangular obtuso convexo	no angular circular-elíptico	30.43	30.00	0.99
VcunNNm*	prolato-esferoidal	angular triangular obtuso convexo	no angular circular-elíptico	24.62	25.38	1.03
VeunAN	subprolato	no angular circular	no angular elíptico acuminado obtuso	23.50	29.59	1.26
VgouVAm	prolato	no angular circular lobado	no angular elíptico acuminado obtuso	21.22	31.02	1.46
VhchrNN	perprolato	no angular circular lobado	angular rectangular obtuso convexo	16.74	37.75	2.26
VlonQUm	subprolato	no angular circular	angular rectangular obtuso convexo	22.38	29.05	1.3
VsphCAm	prolato	no angular circular lobado	no angular elíptico emarginado	20.54	32.53	1.59

^{*}Planta polígamo-monoica. Las demás son exclusívamente masculinas.

_

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Especie ¹	Diámetro ecuatorial en VP (DEP)	Lado de apocolpo LA	Índice del área polar (IAP)	Tipo de abertura según IAP (TA)	Tipo de área polar según IAP (TAP)
CpapVAm	22.64	15.34	0.68	corta	grande
VcauVAf	23.33	10.37	0.44	larga	mediana
VcraCDf	28.26	12.17	0.43	larga	mediana
VcunNNm	23.08	7.69	0.33	larga	mediana
VcunAN	25.28	8.81	0.35	larga	mediana
VgouVAm	21.85	8.26	0.38	larga	mediana
VhchrNN	18.44	7.92	0.43	larga	mediana
VlonQUm	21.25	9.11	0.43	larga	mediana
VsphCAm	20.43	7.57	0.37	larga	mediana

^{**}VP= vista polar.

Para todas las especies/accesíones evaluadas la unidad polínica es el tipo mónada, el polen de tamaño mediano, tricolporado, y en cuanto a la estructura y escultura de la esporodermis (EE) es tectado, cavado, foveolado, granulado (interfoveolas), columela presente.

_

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Anexo J

VARIABLES QUE SE TUVIERON EN CUENTA PARA LA SEPARACIÓN DE ESPECIES EN ANATOMÍA FOLIAR. DATOS CUANTITATIVOS.

Especie ¹	PEEP	PEMC	PEPD	PLRM	PHFS	PPME	NECL	NECI	NECS	NEPL	NEPI	NEPS	NPMC	ΙE	ENCE	ENCT	MEPE
VcunNNf	2	18	7	3	4	60	8	10	18	5	8	6	40	19,77	5	8	1
VcunNNm	2	25	7	3	6	70	11	11	11	8	8	16	40	21,09	7	10	3
VcunNNh	3	13	5	3	4	70	10	12	12	8	8	8	35	18,7	8	10	2
VcunCDm	1	16	7	3	1	30	14	14	14	6	6	6	25	20,65	8	12	3
VgouCAf	2	8	7	3	4	30	9	11	14	3	8	3	30	19,45	8	0	2
VgouVAm	3	8	7	3	4	80	14	14	16	5	5	5	40	19,52	8	0	2
VcauVAf	2	8	3	3	7	80	8	8	8	8	8	8	35	17,97	7	0	1
VlonQUm	2	6	3	3	8	60	4	4	14	5	5	5	35	13,74	6	0	1
VcunVAm	3	16	6	4	6	60	11	11	20	6	6	6	40	19,75	7	8	1
VcunCUf	2	14	9	5	1	60	5	7	13	5	5	5	40	22,51	7	8	2
VsphCAm	2	10	3	3	3	70	6	8	8	4	4	7	50	16,33	7	0	2
VcraCDf	3	23	5	3	4	70	26	27	10	4	4	6	35	16,21	7	0	1
VhchrNN	2	12	3	3	6	60	7	8	22	6	6	6	40	13,93	7	0	1
VhpenNN	2	11	7	2	4	50	8	8	8	8	8	8	10	15,71	7	0	1
VmicCAm	2	7	4	3	6	70	6	6	22	7	7	3	40	9,016	7	0	1
CpapVAm	4	15	2	5	5	70	16	16	24	5	6	4	40	28,57	8	0	1
VcunNNa	2	14	4	4	7	70	12	12	21	7	7	4	40	20,41	8	8	1

Variables seleccionadas que tenían mayor porcentaje en componentes principales son: PEMC, PPME, NECL, NECI, NECS, NPMC, ENCT y IE.

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Anexo K

VARIABLES QUE SE TUVIERON EN CUENTA PARA LA SEPARACIÓN DE ESPECIES EN ANATOMÍA FOLIAR. DATOS CUALITATIVOS.

Especie ¹	EFCS	EFCI	EFST	EUTR	EFRT	EESS	EHES	EHEI	MFPE	МСРЕ	PFCE	PFCT	PCAT	PESE	PFTR	PPCP	PTCO
VcunNNf	1	1	2	2	2	1	1	3	1	2	1	1	1	1	1	2	1
VcunNNm	1	1	2	2	2	1	1	3	1	2	1	1	1	1	1	2	1
VcunNNh	1	1	2	2	2	1	1	2	1	2	1	1	1	1	1	2	1
VcunCDm	1	1	2	2	2	1	1	1	1	2	1	1	1	1	2	2	2
VgouCAf	1	1	2	2	2	1	1	3	1	2	1	1	1	1	1	2	3
VgouVAm	1	1	2	1	1	1	1	3	1	2	1	1	1	1	1	2	3
VcauVAf	2	2	2	1	1	2	2	2	1	2	1	2	1	1	1	2	3
VlonQUm	1	1	2	1	1	1	1	2	1	1	1	3	1	1	1	1	2
VcunVAm	1	1	2	1	2	1	1	3	1	2	1	1	1	1	2	2	2
VcunCUf	1	1	2	2	2	1	1	3	1	2	1	2	1	1	1	1	2
VsphCAm	2	2	2	2	1	1	1	3	1	2	1	1	1	1	1	2	1
VcraCDf	1	1	2	1	1	1	1	2	1	2	2	1	2	1	1	2	1
VhchrNN	1	1	2	1	1	1	1	2	1	2	1	2	1	1	1	1	2
VhpenNN	1	1	2	1	1	1	1	2	1	2	2	3	1	1	1	2	1
VmicCAm	2	2	1	1	1	1	1	2	2	2	1	1	1	1	1	1	1
CpapVAm	1	1	2	1	1	1	1	2	2	2	1	3	1	2	1	2	2
VcunNNa	1	1	2	2	2	1	1	2	1	2	1	1	1	1	1	2	1

_

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Especie ¹	PCCO	PAEC	PACM	PEPC	PAPM	PEFB	PFFB	PCLF	PUVX	PCEP	PFVX	PVPX	PVIX	PGVX	PPVX	PVXO	PVXH
VcunNNf	2	2	2	1	2	2	1	1	3	1	3	1	1	2	2	1	2
VcunNNm	2	2	2	2	2	1	1	1	3	1	2	1	1	2	2	1	1
VcunNNh	2	2	1	1	2	2	1	1	3	2	2	2	1	2	1	2	1
VcunCDm	2	1	2	1	2	1	1	1	1	1	3	1	1	2	1	2	1
VgouCAf	2	2	2	1	3	1	1	1	3	1	3	1	1	2	1	2	1
VgouVAm	2	2	2	1	3	1	1	1	3	1	3	1	1	2	2	2	1
VcauVAf	2	2	1	1	2	1	1	1	3	1	1	1	1	1	1	1	2
VlonQUm	2	1	1	2	2	2	3	1	1	1	3	1	1	2	1	1	1
VcunVAm	2	2	2	2	3	2	1	1	2	1	1	1	2	2	1	1	1
VcunCUf	2	1	2	1	3	2	1	2	3	1	2	2	1	2	2	1	1
VsphCAm	2	1	2	1	2	1	2	1	1	1	3	1	1	2	1	1	1
VcraCDf	2	1	1	1	3	2	3	1	2	1	3	1	2	2	1	2	1
VhchrNN	2	2	2	1	2	1	2	1	1	1	1	1	1	2	2	1	2
VhpenNN	2	1	2	1	2	1	1	2	1	1	1	1	1	2	1	1	1
VmicCAm	2	1	1	1	2	1	1	1	3	1	1	1	1	2	1	1	1
CpapVAm	1	1	1	1	4	2	3	1	1	1	1	1	1	2	1	1	1
VcunNNa	2	2	2	1	1	1	1	1	1	1	3	2	1	2	1	2	1

Abreviatura ¹	PMCC	PMCL	NFCT	NILF	NFCE	NTRI	NFAT	NEAC	NPCP	NTCO	NCCO	NCAM	NEPC	NACR	NAPR	NEFB	NFFB
VcunNNf	1	1	2	1	1	2	2	1	1	1	2	2	3	1	1	2	2
VcunNNm	1	1	3	3	1	2	2	1	1	1	2	2	3	1	1	2	1
VcunNNh	1	1	1	1	1	2	2	1	1	1	2	2	3	1	1	1	1
VcunCDm	2	1	2	3	1	2	2	1	1	2	2	2	1	1	1	1	1
VgouCAf	1	1	1	1	1	1	1	1	1	1	2	2	1	1	1	2	2

La abreviatura de las especies se encuentra en la tabla 1, página 25.

Especie ¹	PMCC	PMCL	NFCT	NILF	NFCE	NTRI	NFAT	NEAC	NPCP	NTCO	NCCO	NCAM	NEPC	NACR	NAPR	NEFB	NFFB
VgouVAm	1	2	1	1	1	1	1	1	1	1	2	2	1	1	2	1	1
VcauVAf	1	1	2	2	1	1	1	3	1	2	2	1	1	1	1	1	1
VlonQUm	1	1	3	2	2	1	1	1	1	2	2	1	3	1	1	2	2
VsphCAm	1	1	1	3	1	1	1	3	1	1	2	2	3	1	2	2	1
VcraCDf	1	1	1	3	1	1	1	2	1	2	2	1	3	1	2	2	2
VhchrNN	1	1	3	1	1	1	1	1	2	2	2	2	3	1	2	1	2
VhpenNN	1	1	1	1	1	1	1	1	1	1	2	2	1	1	1	1	1
VmicCAm	1	1	2	3	2	1	1	1	1	1	2	1	3	1	1	1	1
CpapVAm	1	1	2	2	1	1	1	1	2	2	1	2	3	1	3	2	2
VcunNNa	1	1	1	1	1	2	1	1	1	2	2	2	3	2	1	1	1

Las variables que mostraron mayor varianza son: EFCS, EFCI, EUTR, EFRT, PFCT, PTCO, PAEC, PACM, PAPM, PFFB, PUVX, PESE, PVPX, NILF, NEAC, NTRI, NFAT, NTCO, NAPR, NFFB, NAPX, NAPP, NPCP, NCAM, NVCV, EESS y EHES.

123

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Anexo L

CARACTERES PALINOLÓGICOS DE ACETÓLISIS PARA LA DIFERENCIACIÓN DE Carica Y ESPECIES DE Vasconcellea.

Especie ¹	F	СР	CE	EP	DE	LA	DEP
CpapVAm	2	1	4	4	3	1	2
VcauVAm	3	2	3	3	2	3	3
VcraCDm	3	4	1	3	2	1	4
VeunNNh	2	4	3	2	2	2	3
VcunNNa	2	4	4	2	2	2	3
VcunNNm	2	1	5	2	2	2	4
VcunANm	3	1	5	3	2	2	3
VeunCDm	2	2	3	2	2	2	3
VcunQUm	1	2	3	2	2	2	3
VgouVAm	2	2	3	2	2	2	2
VlonQUm	2	1	3	2	2	1	3

Las variables que presentaron mayor varianza fueron: F, CP y CE.

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

Anexo MCARACTERES ANATÓMICOS DE LAS ESPECIES DE *Carica* Y *Vasconcellea*.

Especie ¹	PEMC	PPME	NECL	NECI	NECS	NPMC	ΙE	ENCT
VcunNNf	18	60	8	10	18	40	20	8
VcunNNm	25	70	11	11	11	40	21	10
VcunNNh	13	70	10	12	12	35	19	10
VcunCDm	16	30	14	14	14	25	21	12
VcunNNa	14	70	12	12	21	40	20	8
VcunVAm	16	60	11	11	20	40	20	8
VcunCUf	14	60	5	7	13	40	23	8
VgouCAf	8	30	9	11	14	30	19	0
VgouVAm	8	80	14	14	16	40	20	0
VcauVAf	8	80	8	8	8	35	18	0
VlonQUm	6	60	4	4	14	35	14	0
VsphCAm	10	70	6	8	8	50	16	0
VcraCDf	23	70	26	27	10	35	16	0
VhchrNN	12	60	7	8	22	40	14	0
VhpenNN	11	50	8	8	8	10	16	0
VmicCAm	7	70	6	6	22	40	9	0
CpapVAm	15	70	16	16	24	40	29	0

Especie ¹		Di	mensiones d	e las variabl	es cualitativ	as	
VcunNNf	0.23195	-0.01060	-0.11417	-0.03560	0.06659	0.01216	-0.03936
VcunNNm	0.11671	-0.18455	-0.09881	-0.04904	-0.04623	-0.04340	0.02903
VcunNNh	0.20687	-0.07867	-0.11629	-0.01167	0.04236	-0.03104	-0.10111
VcunCDm	0.08507	-0.06708	-0.01921	0.05726	-0.20732	-0.04994	0.14910
VcunNNa	0.16008	-0.00824	-0.18566	0.17386	-0.04599	0.10443	-0.10857
VcunVAm	0.01379	0.09137	0.08835	-0.16587	-0.18227	0.02699	-0.05451
VcunCUf	0.22524	0.10860	-0.04504	-0.04890	0.04037	-0.13756	0.04549
VgouCAf	0.21168	0.10093	0.16178	-0.06447	0.02081	0.03189	0.02067
VgouVAm	0.13567	0.11323	0.22103	-0.06320	0.05587	0.11029	0.03864
VcauVAf	-0.06619	-0.16722	0.35309	0.12500	0.00543	-0.06835	-0.11027
VlonQUm	-0.27362	0.07698	-0.05858	0.06462	0.00508	-0.19024	-0.06857
VsphCAm	-0.24412	-0.23871	-0.03373	0.01854	-0.06946	0.15276	0.05273
VcraCDf	-0.30693	-0.09595	-0.05959	-0.16879	-0.00533	-0.03495	-0.03933
VhchrNN	-0.13394	0.20889	-0.06224	0.02864	0.03332	0.13969	-0.08229
VhpenNN	-0.01609	0.17127	0.02154	0.22108	-0.00441	-0.01151	0.12096
VmicCAm	-0.03570	-0.24209	-0.00300	-0.01219	0.25213	0.02129	0.10569
CpapVAm	-0.27968	0.22796	-0.04711	-0.02055	0.05687	-0.00052	0.06229

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.

125

Anexo NCARACTERES PALINOLÓGICOS DE ACETÓLISIS DE *Carica* Y ESPECIES DE *Vasconcellea*.

Especie ¹	Grupo	Ер	De	La	Dep	Dimensión de las variables cualitativas		
CpapVAm	1	52,73	50,63	21,60	22,64	-0.34274	0.01635	
VcauVAm	2	41,19	34,25	31,00	25,92	-0.01173	0.23411	
VcraCDm	2	45,29	37,82	24,93	31,30	0.58514	0.26402	
VcunNNh	3	37,4	35,1	27,00	27,00	0.32380	-0.09330	
VcunNNa	3	38,34	34,7	26,70	26,70	0.19897	-0.14962	
VcunNNm	3	37,5375	35,625	28,50	28,50	-0.41546	-0.06776	
VcunANm	3	43,04	36,25	26,55	25,18	-0.37842	0.12186	
VcunCDm	3	36,9	35,5	26,40	26,40	-0.00168	0.03344	
VcunQUm	3	36,4	38,2	27,00	27,00	0.01173	-0.23411	
VgouVAm	4	36,88	34,96	27,60	21,48	-0.00168	0.03344	
VlonQUm	4	33,75	32,24	25,13	25,13	-0.24578	0.12850	
VsphCAm	4	36,89	34,61	26,10	20,00	0.09684	-0.19571	

¹ La abreviatura de las especies se encuentra en la tabla 1, página 25.