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CHAPTER 1. INTRODUCTION. 
 

1.1. PROBLEM STATEMENT. 

1.1.1. Definition. 
 
An arrhythmia can be defined as an increment or decrement of the regular heart electrical 
impulses sequence, forcing the organ to beat faster, slower or erratically. This irregularity 
affects other essential organs of the body, such as the lungs or brain, due to poor blood 
perfusion. There are several types of arrhythmias which can damage different regions of the 
heart, either auricular or ventricular. These can cause premature contractions, or make the 
heart works faster or slower than it usually does [1]. 
According to the World Health Organization (WHO), heart diseases have been the leading 
cause of death all over the world, prevailing in this ranking from 2000 to 2015. An increase in 
their incidence has been reported, from 6.8 to 8.5 millions of affected people in a period of one 
year. The consequences of asymptomatic arrhythmias and non-clinically recognized are 
arising, especially in the elderly population [2]. 
Ischemic heart disease and stroke added up to 15 million deaths, approximately 26% of the 
total deaths worldwide (56.4 million). The following leading cause of death are obstructive 
respiratory chronic diseases, lung cancer, diabetes, and dementia. Through advances in the 
pharmaceutical handling of the disease, a 30% reduction of these numbers is expected 
between 2010 and 2020. However, in low-median income countries there are limitations to the 
availability and accessibility to proper medication (aspirin, statins, and blood pressure reducing 
agents) [2]. 
Usually, an arrhythmia does not lead to an immediate change in health or lifestyle of the patient, 
but it produces a high increment in morbidity and consequently in mortality. In addition, the risk 
of other illnesses like thromboembolism or strokes is increased in older adults, who are more 
likely to suffer from arrhythmias. Furthermore, the disease is linked to other diagnostics, such 
as diabetes, hypertension, chronic fatigue, among others [3]. 
The incidence rate1 has increased in the last decade, in nearly 2.000 cases per 100.000 
inhabitants, both men and women. The worldwide estimate of the prevalence rate2, which 
increases with age, has been noted to be 0.4%, reaching up to 2.5% in people over 60 years 
[4]. At least 2.7 million of U. S. citizens have manifested not being told of having some of these 
arrhythmias until finally going to a specialized medical check-up. This specially because some 
of them are asymptomatic and the person does not expect to have it.  Therefore, it is essential 
that these disorders are correctly identified, as they can cause significant damage when left 
unnoticed and uncorrected, thus requiring numerous and expensive treatments [2, 5]. In 

 
1 Prevalence rate is defined as the proportion of persons in a population who suffer a particular disease 
or attribute over a specified period of time. This measure contains all the cases, both new and pre-
existing. 
2 Incidence rate is defined as the occurrence of new cases of diseases in a population over a specified 
period of time. 
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Colombia, around the decade of 2000-2010, the cases of a particular type of arrhythmia, atrial 
fibrillation, increased by 10.4%, ascribing 1.995 deceases. The costs of this arrhythmia are 
distributed along the treatment, between hospital care and emergency visits, due to chronic 
decompensations. Continuous acquisition of anticoagulants like warfarin and other oral 
anticoagulants as dabigatran are required. This last anticoagulant demonstrates an increasing 
record of 0.37 years of life gained for the 150 mg dose and an incremental cost-effectivity rate 
(ICER) of $23.078.506 COP per year of life adjusted to quality (QALY) [6]. 
The primarily used method for arrhythmia detection is the electrocardiogram (ECG). Other 
diagnostic methods are heart palpation or pulse examination, yet their detection criteria are 
purely subjective, and thus less effective [3]. This kind of cardiac monitoring has been made 
through methods that include ECG, using specific instruments for this labor (e.g., the Omron 
HCG-801 and Merlin ECG event recorder), or adapting devices for this task (blood pressure 
monitors e.g., WatchBP). These two methods showed similar results regarding the accuracy of 
the measurements and the correct diagnosis for people who suffered from a particular kind of 
arrhythmia. Specifically, the sensitivity of both ECG meters and the adapted blood pressure 
monitor is 94.5%, 93.5%, and 94.9%, respectively [3]. 
Therefore, numerous detection methods with ECG signals and studies have been proposed. 
These methods allow early detection of arrhythmias and thus, the development of applications 
that grant a classification of this arrhythmias by type [7]. In some cases, the creation and later 
training of algorithms is decided using datasets extracted from open databases such as 
Physionet or MIT-BIH arrhythmia database. Nevertheless, in practice, the continuous use of 
electrocardiography monitors or holters3 is too expensive and uncomfortable as the patient 
needs to remain as still as possible to avoid damaging the electrodes. The use of 
electrocardiography is also time consuming as the electrodes are placed strategically by 
cardiovascular health professionals. Therefore, the use of new techniques becomes necessary 
as they allow continuous monitoring of the patient with equivalent, or even enhanced accuracy 
of execution [8].  
One of these new techniques is photoplethysmography (PPG). PPG is a non-invasive, electro-
optic method that enables sensing of peripheral zones of the body. This technique generates 
a time signal, which represents the changes of blood volume flowing through the veins. This 
signal is obtained by illuminating specific areas of the body: earlobes, fingertips or the forehead, 
with a LED emitted light on a given wavelength. There are two possible modes of sensing in 
PPG: transmission or reflection. The obtained signal is the wave reflected by all of the tissue 
within the measuring zone, therefore it carries both DC and AC components. The direct current 
or DC component reflects all of the solid tissue like skin, muscle, and bone, which remain 
unaltered. The alternating current or AC component corresponds to the volumetric changes of 
blood [9]. 
The arrhythmia detection could be possible through PPG. The process of detection is 
commonly made through a comparison of the results of the R peaks detection algorithms for 
an ECG signal, and the M peaks detection of PPG signals. As it will be seen later in subsection 
2.1.4., the M peak is the peak value of a PPG signal, and it is related to the ejecting moment 

 
3 A Holter is a device used for cardiologic diagnose tests, which consist of ambulatory monitoring of the 
electrocardiographic record during a long time, generally twenty-four hours in a moving person. 
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during systole. Intervals between M peaks are highly correlated to those between R peaks in 
the ECG signal [9]. The R peak is the peak value that the ECG wave reaches along the QRS 
complex. These intervals between R peaks are called R-R intervals, and refers to the time 
elapsed during a heartbeat.  
These results have shown that the algorithms for the detection of specific arrhythmia through 
ECG monitoring are less efficient than those developed with PPG algorithms either in terms of 
sensitivity, precision, or specificity [8]. The PPG signals algorithms have improved over time. 
Currently, several advances are being developed in many abnormalities’ detection. This is 
because PPG provides large sets of information not only at a cardiac level but also at a 
breathing, blood pressure and oxygen saturation level. The main PPG algorithms found in state 
of the art reviews were: ASM Algorithm (Adaptive Segmentation Method), the IBI algorithm 
(Inter-Beat-Intervals), and the peak detection algorithm [9,10,11].  
One of the main limitations for the arrhythmia detection with PPG signals, is the lack of 
identification, classification, and handling of data with real patients, leaving as the only dataset 
option the one found in Physionet, which implements Atrial Fibrillation (AF). This limitation is 
stated clearly in Solosenko’s work. He uses this challenging situation as the reason for the 
modeling of the PPG signal from an ECG signal sequence, taking as the main feature, the R-
R intervals [12,13]. 
Additionally, the PPG signals are not immune to noise, they might even be more prone to be 
affected by it due to the places in the body where the measurements take place. The type of 
conditions that create a distorted or unclear signal are called artifacts, and its removal is 
troublesome since its high-frequency components often overlap with those of the PPG signal 
[14]. Other types of artifacts are: Environmental artifacts (electromagnetic interference, light 
interference, thermic noise, shot noise, etc.); Experimental error artifacts (those which are not 
controllable, such as the patient movement or the friction of the sensor with the finger), and 
physiological artifacts (eye movement or small signals caused by muscle tension or brain 
signals) [15]. 
This work focuses on experimental artifacts, more specifically the movement artifacts of the 
patient. These artifacts are the most challenging to extract from the signal since these cannot 
be found in a narrow band as the artifacts’ spectrum overlaps with the signal’s spectrum [15]. 
As a consequence, we have found in the literature many algorithms that allow cleaning the 
signal. However, it has not been set a specific distinction about the context where the person 
encounters in most of the cases. Therefore, an accurate movement description cannot be made 
about a specific artifact or corrupted signal. The main algorithms present in the literature are 
the Notch Filtered Ensemble Empirical Mode Decomposition (NFEEMD), filter banks, adaptive 
filters, neural networks for attribute selection, and the transformations in the frequency 
spectrum with wavelet processing [16,17,18,19,20,21]. 
In the same way, it is also challenging to process and manipulate corrupted signals with noise 
movement due to lack of public databases that can be used to do this. Just one database that 
meets the most basic conditions has been found, because we sought to delimitate the noise 
caused by specific kinds of movements. 
In Chapter 2, the works focused on the detection of motion artifacts in PPG signals [17, 21, 29], 
varying in their intensity depending on the activity or movement that was made. Most of these 
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studies do not focus on the detection of arrhythmias of any type but are dedicated to determine 
the heart rate from the corrupted signal. The heart rate determination has been performed in 
two ways. The first is removing some intervals of the signal that exceed the threshold of noise 
allowed by them. The second is manipulating and processing the signal mathematically, 
achieving a new one that has a clear form and can be readable to future algorithms. 
The definition of the word arrhythmia is very wide. We will put a particular focus on two 
cardiopathies which have a relationship with the heart rate, a feature that can be easily 
identified in the middle of the Inter Beat Intervals (IBI) in ECG or the Inter Pulse Intervals (IPI) 
in PPG (Further definitions for IPI and IBI will be given in Chapter 2). Bradycardia and 
tachycardia are heart rate disorders. In either case, the heart rate slows down too much, or it 
increases unexpectedly and reaches an abnormally fast rhythm [32, 33]. There are three types 
of tachycardia, the difference lies on the location of the cardiac cavity, or the way the cardiac 
frequency is affected [35]. Therefore, the proper diagnostic of these two conditions, bradycardia 
and tachycardia, is needed. This is made so that a broader range of heart diseases can be 
localized.  
A single study has been found where the aim is to detect episodes of bradycardia or tachycardia 
over movement conditions (free-living conditions) [19]. However, its performance its 
comparatively low, reaching a sensitivity of 85% for bradycardia and 89% for tachycardia 
compared to [26] using a fuzzy entropy approach. According to Bonomi, low-intensity 
movements generate readings that can be masked as pulses, generating a misinterpretation 
of the increase of the heart rate. As a consequence, these misinterpretations are classified as 
tachycardia, increasing the number of false positive diagnosis. In the case of bradycardia, when 
the patient is at rest, it is possible that several beats are lost, converging to an overestimation 
of episodes of bradycardia.  

1.1.2. Research question. 

Considering the current state of the art of the arrhythmia diagnosis, our research question is 
defined as: "¿How to improve the sensitivity in the bradycardia and tachycardia detection with 
PPG signals in the presence of low-intensity movements?" 
 
As a hypothesis, it is set that the sensitivity of bradycardia and tachycardia detection in PPG 
signals can be improved, through the construction of a mechanism for the description and 
subsequent artifact removal of corrupted signals due to low-intensity movement artifacts in 
PPG signals. 

 
1.1.3. Justification. 

 
Due to the asymptomatic nature of arrhythmias, it is necessary to make an opportune 
diagnostic of them. In this way, we avoid the existence of more severe consequences. 
Although there are various techniques for diagnosing, such as the ones exposed in subsection 
1.1.1., these generate an elevated cost for the patient, given that the devices used for ECG 
measurements are usually fragile and the acquisition costs for them are high. As an example, 
we can name holters or multi-derivation ECG measurement devices. 
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1.2. OBJECTIVES  
 
1.2.1. General Objective 

 
Propose a mechanism for the characterization and elimination of artifacts due to low-intensity 
movements in PPG signals to support the tachycardia and bradycardia detection. 
 
1.2.2. Specific Objectives  
 
1. Construct a simulated dataset of bradycardia and tachycardia, with artifact annotations due 
to low-intensity movements. 
2. Create an assembled mechanism through the selection and evaluation of different 
algorithms, for the removal of low-intensity noise and the detection of bradycardia and 
tachycardia events in the constructed dataset.  
3.  Evaluate the sensitivity of the proposed mechanism in the detection of tachycardia and 
bradycardia with PPG signals in the presence of low-intensity movements experimentally. 

 
1.4. METHODOLOGY 
 
Phase 1: We used CRISP-DM as methodology for the specific objectives 1 and 2 [27]. The 
following steps are taken: 

 
1. Business understanding: In this stage are included the objectives of the investigation, the 
success criteria, restrictions and costs. This stage is required as a proper outline of the problem 
is needed. In this way, a structure for the preliminary plan for the project is made.  

 
2. Data understanding: This stage is focused on collecting the data, analyzing it, and finding 
preliminary ideas of the possible associations (dimensions, fields, or columns). In the same 
way, it seeks to make a description and verify the quality of the minable data. 

 
3. Data preparation: In this stage, the data for the dataset generation is cleaned and prepared. 
Here, the attribute selection is made, where a connection between different attributes can be 
found, or interesting subsets can be identified. 

 
4. Modeling: During this stage, the modeling techniques are selected, and the design of the 
model to implement is made. In this case, various algorithms are modeled in order to process 
and manipulate a dataset using different perspectives or techniques. 

 
5. Evaluation: After having built the models which seem to reach high quality from a data 
analysis, it must be evaluated and review if it achieves the objectives. Then, the convenient 
tests are made, and the better alternative is chosen. 
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6. Implementation: during this phase is intended to implement the system/mechanism/ model; 
in its entirety as the solution to the business problem initially stated. This system/mechanism/ 
model will count with the steps before mentioned. Thus, the data can be treated using the 
selected process and obtain the best possible results. 
 
1.5. STRUCTURE OF THE MONOGRAPH 
The present monograph has been structured in the following chapters: 

 
Chapter 1: Introduction. Here, the statement of the problem is presented, the justification, the 
objectives of this work, and the methodology. 

 
Chapter 2: State of the art. Here, the essential concepts for the understanding of this work are 
described. Then it’s exposed the state of the art about the methods for artifact noise reduction 
over PPG signals and the scenarios of the measurements.  

 
Chapter 3: Characterization of Movement artifacts. Here, the state of the art about current 
methods for movement artifact noise characterization on PPG signals and another type of PPG-
resembled biomedical signals is presented. Then, our methods for noise characterization are 
proposed and evaluated. 

 
Chapter 4: Tachycardia and bradycardia detection mechanism. Here we present the state of 
the art about the most used techniques in the denoising of PPG signals and a review of the 
methods for tachycardia and bradycardia detection from the Physionet/CinC 2015 Challenge. 
Then, the most prominent denoising techniques are retrieved to be used over the chosen 
tachycardia and bradycardia detection algorithms under the induced noise conditions. 
A comparison of the performance of the mechanisms with and without noise conditions is made, 
using the denoising techniques studied. The best results for each mechanism are chosen. 
Finally, the analysis of the general improvements for tachycardia and bradycardia detection is 
made. 

 
Chapter 5: Conclusions and outlook. Here, we present the conclusions and contributions of 
our study, and give an outlook for future research. 
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CHAPTER 2. STATE OF ART 
 
This chapter presents an analysis of related works about methods for movement artifact noise 
reduction and the scenarios where the measurements were taken. This review is done through 
a systematic review of articles in bibliographic databases. We seek to define the gaps of the 
conducted studies, taking into account elements such as the conditions and the devices used 
in the measurement taken. We also look to define the type of artifacts considered in these 
studies, as well as the techniques they use to remove them or evade the negative effect of 
them over each work’s purpose. First, medical concepts about PPG signals are exposed. These 
are important for the development of the proposed mechanism in this thesis. Then, we explain 
the selection criteria for the articles, the methodology of the review and the data analysis. 
 
2.1. THEORETICAL FRAMEWORK 

This section explains briefly the most relevant clinical concepts for the development of this 
thesis work. This will ease the comprehension of subsequent chapters and sections. 
  
2.1.1. Circulatory system and cardiovascular system 
 
Circulatory system is one of the main systems of the human body. It’s conformed by the 
cardiovascular system and the lymphatic system. The first one conducts and irrigates the blood 
through all the body, and the second one conducts the lymph unidirectionally towards the heart 
[36]. 
The cardiovascular system is conformed by a central propulsion organ: the heart, and a closed-
circuit of tubes. This closed-circuit is formed by the arteries (which conduct the blood from the 
heart to the organs); the capillaries and sinusoids (where the interchange of water, solutes, and 
gases is made between the system and the tissues); and the veins (that return the blood 
towards the heart) [37]. 
The main functions of the cardiovascular system are [38]:  
 

● The fast transport of the nutrients and waste products. 
● Hormonal control through the transport of hormones. 
● Body’s defense through the transportation of immune cells, antigens, and other 

mediators. 
● Regulation of body temperature by blood irrigation between the center of the organism 

and the skin. 
 

Figure 2.1 exposes a schematic view of the primary and secondary circulatory system. The 
primary or arterial system (in red) transports oxygen-rich blood and the secondary or venous 
(in blue) transports oxygen-poor blood. 
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Figure 2.1. Primary and secondary cardiovascular system. 

 
2.1.2. The heart 
 
The heart is a muscular organ, the most important in the cardiovascular system. It’s located in 
the interior of the thorax, above the diaphragm and slightly at the left of the sternum. It’s a 
hollow, self-controlled muscle and has the shape of a cone resting on its side. It functions as a 
double bomb, an aspirant one and an ejecting one. It’s made up of four cavities: two superiors 
and two inferiors. Superior ones are called atriums (or auricles), and inferior ones are called 
ventricles. [39] 
The heart impulses and returns the blood through the systole and diastole movements. Systole 
is a contraction movement either from the auricles or the ventricles, and it’s the one that ejects 
blood to the body. Diastole is a relaxation movement of the heart for receiving the blood coming 
from the rest of the body. [40] 
The structure of the heart is composed of three layers: epicardium (exterior and thin layer), 
myocardium (central and thick layer) and endocardium (interior and thin layer) [41]. There are 
four valves that control the blood flow through the heart [42]:  
 

● The tricuspid valve controls the blood flux between the right auricle and the right 
ventricle. 

● The pulmonary valve controls the blood flux from the right ventricle to the pulmonary 
arteries. These pulmonary arteries transport blood to the lungs for their oxygenation. 

● The mitral valve allows the rich oxygen blood coming from the lungs to pass from the 
left auricle to the left ventricle 

● The aortic valve allows the rich oxygen blood to pass from the left ventricle to the aorta 
(the biggest artery in the body). This artery transports blood to the rest of the body. 
 

The locations of these valves and mentioned cavities are exposed in Figure 2.2. 



 

 9   

 
 

 
Figure 2.2. The internal structure of the heart [42]. 

  
2.1.3. Cardiac cycle 
 
The cardiac cycle is the series of all electrical and mechanical events that occur during each 
heartbeat. This includes the contraction and relaxation of the auricles and ventricles, the open 
and close actions of the valves and other minor actions [39]. 
The term systole refers to the contraction phase and the term diastole refers to the relaxation 
phase. Each cardiac cycle consists of auricular systole and diastole, and ventricular systole 
and diastole. In each cycle the auricles and ventricles contract and relax alternatively, making 
the blood flow from areas of lower pressure to areas of higher pressure [39]. The phenomena 
that occur during each cardiac cycle can be scheduled as follows [43]: 
Systole period includes: 

● Atrial contraction.  
● Isovolumic contraction.  
● Ejection. 

Diastole period includes: 
● Isovolumic relaxation. 
● Rapid ventricular filling. 
● Slow ventricular filling (diastasis).  

A most detailed explanation of each one of the phases of the cardiac cycle can be seen in [44]. 
 
2.1.4. Photoplethysmography (PPG) 
2.1.4.1. Introduction 
 
Photoplethysmography is a technique described for the first time by Alrick Hertzman from the 
Department of Physiology at St. Louis University School of Medicine, on 1937 [45]. PPG 
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waveform is the base technology for the pulsioximeter and thus, the ABP signals. This wave is 
shown and used in the monitors throughout the critical care areas of a hospital (operating room 
(OR), emergency room (ER), post anesthesia care unit (PACU), intensive care unit (ICU), etc.) 
[47]. However, it is rarely recorded or analyzed in comparison with other signals such as ECG. 
Along the years, it has been studied and analyzed, concluding in various useful applications. 
Some of these applications are: venous assessment, evaluation of aging and vascular disease, 
assessment of orthostasis and more lately, diagnosis of several cardiac arrhythmias [46]. 
 
2.1.4.2. Photoplethysmogram 
 
Photoplethysmogram is the graphic representation of the photoplethysmography 
measurements. Photoplethysmography is a simple optical technique used for discovering 
volumetric changes of the blood in the peripheral circulation. It has a low cost and it’s a non-
invasive method because it makes measures in the skin surface [48]. A coupled photodiode 
and phototransistor are used for the signal acquisition from the capillaries of the patient. [52] 
When the heart beats, capillaries expand and contract based on blood volume changes. Light 
is emitted from PPG sensor photodiode and it is reflected onto the skin to accurately and 
continuously measure weak blood flow signals [49]. 
PPG technique uses low intensity infrared green light. When light travels through biological 
tissues it is absorbed by bones, skin pigments and both venous and arterial blood. Given that 
light is more strongly absorbed by blood than the surrounding tissues, the changes in blood 
flow can be detected as changes in the intensity of light by PPG sensor phototransistor [52]. 
There are various forms of taking the measurements of the PPG signal as shown in Figure 2.3., 
these are transmission mode and reflection mode.  
In the transmission mode, light goes through all tissue, and this is received with several 
changes in a photoreceptor at the other side of the area. The reflection mode has both the 
transmitter and photoreceptor on the same side; thus it receives the reflected wave by the 
tissue [47]. The first one of these modes is the most used currently. An extra mode called 
optical fiber mode is also named [52] but never referred in the reviewed studies. 

 

 
Figure 2.3. Transmission and reflection mode for PPG signal measurements 

[52]. 
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Figure 2.4 shows the AC and DC component from PPG signal. AC component corresponds to 
variations in blood volume due to heartbeats and DC component refers to the steady light 
absorption of the tissue [47]. DC component may show minor changes with respiration, and the 
AC component is superimposed over the DC steady part [48]. 

 

 
Figure 2.4. AC and DC components of the PPG signal [150]. 

 
The voltage from PPG is proportional to the quantity of blood flowing through the blood vessels. 
Even small changes in blood volume can be detected using PPG [49]. Despite the apparent 
simplicity of the waveform, several body responses can be found. For example, heart rate, 
respiration, oxygen saturation, blood viscosity, arterial blood pressure or even posture changes 
[53]. 
It has been stated that this signal is very sensitive to artifacts and that many factors can affect 
the reproducibility of these measures, an important characteristic for PPG since it gives 
confidence in different measure environments. These factors include the method of probe 
attachment to tissue, probe-tissue interface pressure, pulse amplifier bandwidth, subject 
posture and relaxation, breathing, wakefulness, room temperature and acclimatization [45]. 

 
2.1.4.2. Parts of the photoplethysmogram 
  
Figure 2.5 shows a typical PPG signal with its parts. In the horizontal axis, we have the time 
and in the vertical axis, we have the voltage of the signal. It should be annotated that the shown 
waveform in Figure 2.4 is inverted on the vertical axis (in other words, it's backward). The one 
obtained below is the result of this inversion. 
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Figure 2.5. Parts of a typical PPG waveform [151]. 

 
PPG waveform morphology has two main characteristics described by Hertzman and 
Spealman in [45]: 

 
Anacrotic (systolic) phase: refers to the rising edge of the pulse, this phase is concerned with 
systole.  

 
Catacrotic (diastolic) phase: refers to the falling edge of the pulse and is concerned with the 
diastole and wave reflections from the periphery. In this phase, a dicrotic notch can be 
sometimes identified. Dicrotic notch is related to vascular tone, according to [50]. A high arterial 
vascular tone is associated with the notch occurring early and high up on the downward 
diastolic curve. This notch is usually seen in subjects with healthy compliant arteries. The 
presence of this notch depends greatly on the person whose measures are being taken, and 
it’s for this reason that sometimes this notch isn’t noticed. 

 
Peaks in PPG waveform are named different than in ECG signals. According to [9], peaks are 
named S, M, P, and Q. 

 
Figure 2.6. Peaks of a typical PPG waveform [9]. 



 

 13   

Then, the correspondence of peaks is: 
 

● S peak: corresponds to the pulse wave beginning. 
● M peak: corresponds to the systolic peak. 
● P peak: corresponds to the dicrotic notch location. 
● Q peak: corresponds to the diastolic peak. 

  
The S-M segment corresponds to the anacrotic phase and the segment after M peak until the 
end of the pulse wave corresponds to catacrotic phase. Other important segments or intervals 
in PPG waveform are described as follows: 

 
Systolic amplitude: is the maximum volume level detected over the area that is being 
measured. Figure 2.5 calls it as pulse wave amplitude. It can also be seen as the amplitude 
difference between S-M peaks in Figure 2.6. It corresponds to the systolic phase or anacrotic 
phase, where the blood is ejected [53]. 

 
Diastolic amplitude: is the amplitude difference between the Q peak and the end of the pulse 
wave. This is related to the diastolic or catacrotic phase where the ventricles fill with blood. 
After the M peak, blood volume starts to decrease. However, sometimes Q peak is not 
noticeable [53]. PPG waveform can also display venous pressure characteristics, which are 
often first detected by the presence of large peaks during diastole [51]. 

 
Pulse width: is the time elapsed since the signal level surpasses 50% of the M peak level until 
the signal level decreases lower than it. This value is related to the cardiovascular system 
resistance [53]. 

 
Inter beat interval: is the time elapsed between two successive M peaks. This value is 
correlated with the RR time interval taken from ECG signal. It can be measured between the S 
peaks too, because this interval value is usually identical to IBI. However, its use is only 
preferred when M peaks are too difficult to recognize [53]. It’s also called inter pulse interval 
(IPI). 
 
The part of the body where the measures are being taken is an important consideration. 
Sensitivity to changes in the sympathetic system is greater with measures from the fingertip, 
compared to other areas such as the earlobe [47] 
The PPG blood volume pulse has similar changes with the blood pressure pulse occurring in 
vascular diseases, such as damping or loss of pulsatility [46]. 

 
2.1.5. Cardiovascular risk and cardiovascular diseases 
 
Cardiovascular diseases can refer to a number of conditions that affect primarily the heart 
arteries and blood vessels and therefore, the rest of the body. The main organs affected by 
cardiovascular diseases are the brain, the kidneys, the eyes and lower limbs [54] [55]. There 
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are more than 70 types of cardiovascular diseases [56], but the main and the more important 
are the myocardial infarction and cerebrovascular accident [54]. 
Cardiovascular risk can be defined as the probability that a subject has to suffer a 
cardiovascular disease during a certain period of time. This depends mainly on a number of 
risk factors presented by the subject [54]. A risk factor is a characteristic or condition of a subject 
or population that is present early in life and it’s associated with a greater risk of developing a 
future illness [57]. It can be a behavior or a habit like smoking or sedentarism; a hereditary trait 
or family history; or a paraclinical variable like high cholesterol level [59]. They are divided into 
non-modifiable risk factors such as sex, age, race or family background; and modifiable factors 
like arterial hypertension, increase in cholesterol level, overweight and obesity. A detailed list 
of the main risk factors can be found in [58] and [60]. 

 
2.1.5.1. Arrhythmias 
 
Arrhythmia refers to any change from the normal sequence of the heart electrical impulses. 
These impulses may happen too fast, too slow or erratically, causing the heart to beat 
irregularly. If the heart doesn’t pump blood effectively, other main organs may be severely 
compromised [1]. 
 
2.1.5.1.1. Bradycardia 
  
Bradycardia is a type of arrhythmia characterized by a slower heart rate than normal. “Too 
slow” or “slower” is relative for each subject and depends on the age and physical condition. 
Usually, older people are more prone to suffer from bradycardia, and for adults, a resting heart 
rate of fewer than 60 beats per minute qualifies as bradycardia [33].  
There are some exceptions when the subject is at deep sleep, heart rate may fall below 60 
beats per minute, as it also happens for physically active adults (and athletes), who have a 
resting heart rate slower than 60 beats per minute [33]. 

 
2.1.5.1.2. Tachycardia 
 
Tachycardia is another type of arrhythmia characterized by a faster heart rate than normal. 
Once again, how “too fast” is defined may depend on the subject’s age and physical condition. 
For adults, a heart rate higher than 100 beats per minute is considered “too fast” [61]. 
There are various types of tachycardia, namely: atrial or supraventricular tachycardia, sinus 
tachycardia and ventricular tachycardia [61]. 
  
2.1.5.2. Prevention of cardiovascular diseases 
 
According to the World Health Organization [59], there are many behavior changes regarding 
lifestyle that could help to lower the risk of cardiovascular diseases. Reduction of tobacco 
intake, body weight, blood pressure, blood glucose and blood cholesterol all have a beneficial 
impact on major biological cardiovascular risk factors. Some of the most important reductions 
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or modifications are over tobacco, diet, alcohol, physical activity and therefore body weight. 
There are also some psychosocial factors that might affect the subject who suffers from 
cardiovascular diseases.  Depression, anxiety, lack of social support, social isolation and 
stressful conditions at work are some of them [59]. 
Prevention of cardiovascular diseases is focused on the reduction of these factors from the 
beginning. It’s much better to avoid these detrimental conducts, rather than drug treatments, 
which are usually more expensive to the health care system and might end up in adverse 
effects [59]. 
 
2.2. REVIEW OF MOVEMENT ARTIFACTS IN DIFFERENT MEASUREMENT 
SCENARIOS 

2.2.1. Review methodology 
2.2.1.1. Databases 
  
This state of art research was made in order to identify the scenarios and the noise artifacts for 
PPG signal-based applications, that use mainly as a reference the ECG signals. The above 
was made taking into account that these applications are made under different activities that 
induce movement artifacts. Several techniques of pre-processing and filtering are also 
analyzed and exposed. 
State of the art in this occasion was outlined by 13 different articles having in account databases 
from EBSCO, Science Direct, Google Scholar and Scopus. 

 
2.2.1.2. Selection criteria 
  
The following search strings were used to provide the information compiled in Table 2.1.  

 
(holter) AND ((tachycardia OR arrhythmia OR AFM OR atrial) AND fibrillation) AND (ppg OR 
photoplethysmographic OR photoplethysmography) AND (movement OR artifacts OR noise) 

 
(holter) AND (tachycardia OR arrhythmia OR atrial OR Fibrillation) AND (ppg OR 
Photoplethysmography OR photoplethysmographic) AND (movement OR artifacts OR noise) 
 
2.2.1.3. Data analysis 
 
Inclusion and exclusion criteria were applied to the results of these strings. The main subject 
was the use of methods for decreasing artifacts as well as the distinction of the scenario where 
the measures were taken. It was possible to identify 22 articles through this process. These 
last articles were evaluated in a more rigorous way. The factors chosen were the arrhythmia 
desired for analysis, the population used for each one or the database type that was used (if it 
was created by themselves or it was taken from another site). Consequently, we declare the 
12 articles found in Table 2.1., and the gaps corresponding to each one of them. 
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ARTICLE NAME DEVICES USED 

FOR 
MEASUREMENT 

ARTIFACTS REFERENCE 
SIGNAL/ GOLD 
STANDARD 

PATIENTS PERFORMANCE 
PARAMETERS 

GAPS YEAR 

Automated Atrial 
Fibrillation Detection 
Algorithm using 
SmartWatch 
Technology [22]. 

-AliveCor ECG. -
Apple Watch. 

None. ECG-Holter. 100 patients from 
57-79 years. 17% 
of the subjects 
were women. 
-Measurements 
are made in the 
waiting room at 
rest. 
They use their 
own dataset 

-Sensitivity: 93% 
-Specificity: 84% 
-K coefficient: 0.77 

- The algorithm isn’t 
applicable to PPG 
signals, but to ECG 
signals.  
- PPG signals aren’t 
used in the study. Low 
specificity results are 
shown.  
- It doesn’t make any 
focus on noise 
remotion or artifact 
identification. 

2018. 

Classification of the 
quality of WristBand-
Based 
Photoplethysmography 
signals 
[23]. 

Wearable: 
Empatica E4 
wristband 
 
Holter: General 
Electric Seer Light 
Extend Holter. 
This article 
focuses on 
eliminating 
movement 
artifacts 

Movement 
artifacts in daily 
life activities. 

PPG without 
noise. 

15 healthy 
participants for 24 
hours with 
wearable. They 
use their own 
dataset. 

-PPG sensitivity: 
98.3% 
-PPG specificity: 
98.3% 

- Data retrieved from 
Holter isn’t used in this 
study to generate a 
comparison. 
- It isn’t made 
processing on PPG 
signal, they take 
windows of short 
duration where 
artifacts don’t exist. 
- They don’t consider 
any type of 
arrhythmias. 

2017. 

Detecting Episodes of 
Brady- and 
Tachycardia Using 
Photoplethysmography 
at the Wrist in Free-
living Conditions [19]. 

-Wrist wearable 
PPG: CM3 
Generation 3 
Philips (Optical 
PPG sensor and 
accelerometer 
sensors). 
 
-Holter: (H12+, 
Mortara). 

Movement 
artifacts present 
in free-living 
conditions. 

ECG-Holter. 20 healthy 
subjects, where 
Male=55%, 
between 52-80 
years.  
BMI= 28.1 ∓20% 
 
- ECG and PPG 
recordings for 24 
hours. 
 
They use their 
own dataset. 

-Tachycardia 
prediction: (Sensitivity: 
89%, Specificity: 99%) 
-Bradycardia 
prediction: (Sensitivity: 
85%, Specificity: 99%) 
-Detection on normal 
sinus rhythm 
(Sensitivity: 99%, 
Specificity: 85%). 

- Scenarios that 
conform to daily 
activities aren’t 
specified. It’s desired a 
better specification of 
what could generate 
certain artifacts. 
- Low sensitivity on 
tachycardia detection 
due to low intensity 
movements. 
- Low sensitivity on 
bradycardia prediction 
due to premature beats 
at rest. 
- They use their own 
dataset and it isn’t 
public. 

2017. 

Validating Features for 
Atrial Fibrillation 
Detection from 
Photoplethysmogram 
under Hospital and 
Free-living Conditions 
[24]. 
 

-Wrist wearable 
PPG: CM3 
Generation-3, 
Wearable Sensing 
Technologies, 
Philips, 
Eindhoven). 
 
-Holter: Actiwave 
Cardio 
(CamNtech Ltd., 
Cambridge, 
United Kingdom). 

For testing 
dataset: no 
motion artifacts. 
For testing 
dataset: 
movement 
artifacts under 
free-living 
conditions. 

ECG-Holter. PPG 
measurements for 
18 patients before 
and after 
cardioversion, and 
for 16 patients (4 
with AF) during 24 
hours. ECG and 
Holter measures 
were also taken as 
reference.  
They use their 
own dataset. 

-Sensitivity: at hospital 
92.3%; under daily life 
conditions 71.6% 
-Specificity: at hospital 
60.7%, under daily life 
conditions 84.9% 
-Accuracy: at hospital 
78% 

- The movements 
made by each patient 
during measurements 
are not identified.  

2017. 

Gyroscope vs. 
accelerometer 
measurements of 
motion from wrist PPG  
during physical 
exercise  
[25]. 

Shimmer 3 
Sensor. 

Movement 
artifacts: in the 
wrist.  
Activities: Riding 
bicycle, treadmill. 

ECG-Holter. 8 subjects. 
They use their 
own dataset. 

- Performance 
parameters are not 
mentioned. 

- Arrhythmia prediction 
isn’t made, but it’s 
developed a heart rate 
estimation algorithm. 
- Performance 
parameters are not 
mentioned. They just 
focus on proving that 
gyroscopes are more 

2016. 
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effective than 
accelerometers, by 
reducing noise with 
each one of them. 
- It doesn’t focus on 
arrhythmias either. 

Fuzzy Entropy based 
Detection of 
Tachycardia and 
Estimation of Pulse 
Rate through Fingertip 
Photoplethysmography 
[26]. 

- They make their 
own device for the 
cardiac pulse 
measurement in 
the fingertip. 
 

Power line 
interference, 
baseline 
wandering. 

PPG -15 healthy 
people. 
- Also analyzed 
the technique 
using the 
Capnobase 
database. 
 
They use their 
own dataset. 

- Accuracy for taken 
measurements: 
0.9949. 
- Accuracy for the 
database (noise + no 
noise): 0.993. 

- A wearable use isn’t 
made, the 
measurements are 
taken with a 
pulsioximeter. 
- PPG isn’t 
contaminated with 
movement artifacts. 
They consider another 
type of noise. 

2015 

Optimized PPG-based 
wearable acquisition 
unit for massive 
analysis of heart 
rhythms [20]. 

-MEMs sensors. Movement 
artifacts, the 
capture of various 
movement 
patterns. 

PPG -Tested by 4 
persons for 24 
hours. 
They use their 
own dataset. 

-Maximum accuracy at 
night hours while they 
sleep, with 97.5% of 
valid data. 
- Specificity or 
sensitivity are not 
determined. 

- Arrhythmia prediction 
isn’t made. 
- Movements are not 
specified. 
- A commercial 
wearable isn’t used. 
They propose a new 
one with HW and SW 
modifications. 

2017 

Photoplethysmography
-Based Method for 
Automatic 
Detection of Premature 
Ventricular 
Contractions 
[21]. 

- Not used. -None. PPG - MIMIC and 
MIMIC II 
databases. 

The obtained 
sensitivity and 
specificity values 
for both 
considered PVC 
types were 
92.4 / 99.9% and 
93.2 / 99.9%. 
  

- Detection of the 
artifacts is not very 
wise, since the used 
databases (MIMIC and 
MIMIC II) are 
measured from 
patients in ICU. For 
this reason, movement 
artifacts couldn’t be 
appreciated. 

2015 

Heart rate estimation 
using wrist-acquired 
photoplethysmography 
under different types of 
daily life motion artifact 
[29]. 

Pulse Sensor. Movement 
artifacts. 

PPG - From 16 
subjects, they 
choose 5 for 
information 
retrieval. 
- They use their 
own dataset. 

-Errors located within 
the range of 95%, 
between -7.6 and 6.6 
bpm. 

- Performance 
parameter analysis 
isn’t made. However, 
they mention error 
ranges in bpm (beats 
per minute). 
- Arrhythmia detection 
isn’t made. 

- 

Description of a 
Database Containing 
Wrist PPG Signals 
Recorded during 
Physical Exercise with 
Both Accelerometer 
and Gyroscope 
Measures of Motion 
[30]. 

Shimmer 3 GSR+ 
unit. 

Movement 
artifacts on 4 
different kinds of 
activities: 
walking, running, 
riding a bicycle 
with low 
resistance and 
bicycle with high 
resistance. 

ECG - 26 subjects. 
 

- Not specified. - Arrhythmia detection 
isn’t made. 
 

2016 

A Robust Dynamic 
Heart-Rate Detection 
Algorithm Framework 
During Intense 
Physical Activities 
Using 
Photoplethysmographi
c Signals [17]. 

Wrist wearable 
that implements 2 
pulsioximeters in 
the wrist and 1 
accelerometer. 
ECG signal is 
measured with 
sensors 
connected to the 
chest. 

Movement 
artifacts: 
-Training dataset: 
low and medium 
intensity activities 
(resting with wrist 
movements- 
walking- running) 
-Testing dataset: 
high intensity 
activities such as 
(boxing, intense 
arm movements, 
running). 

ECG -23 datasets: 12 
for training and 11 
for testing. 
(2015 IEEE Signal 
Processing Cup 
Competition). 

- Parameters aren’t 
mentioned, although it 
compares with 
previously made 
algorithms regarding 
the absolute error and 
the mean absolute 
error. 

-The developed 
algorithm allows to 
eliminate artifacts 
during high intensity 
exercise, but it doesn’t 
focus on arrhythmia 
detection. 
- Wearables are not 
used, but a 
pulsioximeter. 
 

2017 
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Motion and Noise 
Artifact Detection and 
Vital Signal 
Reconstruction in 
ECG/PPG based 
Wearable Devices [31] 

- It depends on the 
study 

Movement 
artifacts 
depending on the 
activity: (walking, 
running, boxing, 
arbitrary 
movement) 

ECG -23 datasets 
(2015 IEEE Signal 
Processing Cup) 
-10 datasets from 
Chon Lab. 

-It depends on the 
study. 
- Parameters are not 
mentioned, although it 
compares with other 
algorithms (TROIKA, 
JOSS) 

- The algorithm allows 
to depurate PPG signal 
with movement 
artifacts and posterior 
heart rate estimation.  
- It doesn’t make 
arrhythmia detection. 

2015 

Table 2.1. Summary of analyzed works identifying scenarios where motion artifacts are 
induced. 

 
2.2.2. Results and analysis of the gaps 
 
The main gaps found in the previously mentioned works are summarized below: 

 
A. The majority of the studies oriented towards noise detection caused by movement 

artifacts are solely focused on the heart rate estimation [17][23][29][31], the data 
acquisition from PPG corrupted signals [20][30] or just the comparison of other 
accompanying signals besides from PPG [25]. From those which make arrhythmia 
detection, there are two works [26][19] that analyze possible bradycardia or tachycardia 
and also determines performance parameters, obtaining sensitivity and specificity 
measures. However, the first [26] is made with their own created device and don’t 
consider movement artifacts but powerline interference. The second [19] obtains lower 
sensitivity results than [26] due to low intensity movement artifacts. The author of [19] 
states the increment of false positives in tachycardia cases along with the missed 
bradycardia events. 

B. Better sensitivity results in [19] are expected by having a greater rigor at the time of the 
movement characterization made by the subject. In this case, the low movement 
artifacts stated as the limitation in this study, could be annotated in the used dataset. 
This with the purpose of eliminating this kind of artifacts more efficiently. 

C. None of the works shown in the table seeks to characterize a specific arrhythmia using 
different attributes or additional to the PPG wave nature, the mathematical treatment of 
the PPG signal, sex or age of the subjects. Neither has been made a correlation of the 
arrhythmia detection taking into account a population that suffers from a secondary 
illness or common within this population, such as diabetes, hypertension, metabolic 
disorders, etc. 

 
2.2.3. Conclusions 
 
A state of the art review was made for the specific conditions mentioned above in subsection 
2.2.1.3. As a result, three gaps could be identified and summarized in the research question 
stated in chapter 1. This work intends to improve sensitivity as a performance parameter and 
then, avoid the false arrhythmia detection. The first focus is the characterization of low intensity 
movements, so the clean signal can be distinguished from the one generated because of low 
intensity movement artifacts. Then, the second focus will be centered on the improvement of 
the detection of true arrhythmia events under the characterized low movement artifacts.  
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As a conclusion, these two gaps complement each other and give as a result one problem. 
This can be resolved using signal processing and the appropriate classification techniques over 
PPG signals. 
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CHAPTER 3. APPROACH TO A MOVEMENT 
ARTIFACT NOISE CHARACTERIZATION. 
 
3.1. INTRODUCTION 
As it was stated in Chapter 2, some of the developed arrhythmia detection algorithms don't 
consider motion artifacts [21][26]. Others make it, but the collected datasets by them are not 
publicly available, because they were acquired from patients who gave an informed consent 
[22][24]. Given that the focused arrhythmias are tachycardia and bradycardia, it is sought to 
obtain a dataset that contains both arrhythmias and movement artifact noise. The closest 
approximation to a realistic arrhythmia scenario with movement artifact noise is given by 
Bonomi [19]. The authors try to detect episodes of bradycardia and tachycardia on PPG signals 
under free-living conditions. However, their dataset is protected under informed consent, which 
makes it unavailable to the public. This clearly evidences a limitation for the arrhythmia 
detection with PPG signals, leaving as the only option the use of datasets retrieved from 
Physionet or another kind of repositories. 
Although, these repositories containing arrhythmias do not reflect the real conditions of the 
movement freedom in wearable devices. For example, when a person is moving, walking or 
moving the most common measurement area, such as wrists or fingers. Solosenko states this 
limitation in his paper, using this challenging situation for adjusting the modeling and simulation 
of the PPG signal. He achieves this PPG model from an ECG signal sequence, taking as the 
main feature, the R-R intervals [12]. 
Bonomi uses a threshold coming from the accelerometer to discard the portion of the PPG that 
contains a considerable amount of movement and therefore, movement artifacts. Bonomi et. 
al. state that this procedure could lead to the loss of valuable information for the posterior 
arrhythmia detection. Even so, they expect to have a better classification, because they don’t 
use any preprocessing method over the PPG signal (which they presume was motion artifact 
free) [19]. An advantage was stated by this signal cropping process, exposing that this helped 
to embetter sensitivity in the tachycardia detection. Nevertheless, a pitfall was also outlined by 
expressing that even the low intensity wrist movements distorted the PPG signal, increasing 
the HR estimation and therefore leading to a wrong diagnosis (increased tachycardia 
estimations and missed bradycardia episodes). We suspect this could be occurring because of 
a scarce identification of the activities carried out by the patients. Because of the optical nature 
of the signal and the peripheral areas of the body where this is acquired, it is more likely to be 
affected or distorted by several kinds of noises. Since the dataset used by Bonomi is 
unavailable, we hope to recreate this scenario. First, characterizing the motion artifacts from 
another database found. This database contains noise due to low and medium intensity 
activities, well defined in time intervals. Zhang’s webpage [74] provides this database, which 
has been used for the IEEE Signal Processing Cup (IEEE SPC) and within other studies to 
assess various algorithms for movement artifact reduction [17,31,74].  
The first procedure to simulate a scenario like Bonomi's (and then try to improve the sensitivity 
over tachycardia and bradycardia detection) is the creation of a simulated PPG signals dataset 
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with annotations of noise artifacts due to low-intensity movements. In this way, an 
approximation to this noise (caused by specific low-intensity activities) is developed. Then, it 
will be attached to a new dataset that includes the chosen arrhythmias for investigation. 
This chapter exposes first a brief theoretical framework, where the noise types that affect PPG 
signal are specified. In the second part, a review of some algorithms or techniques for 
movement artifacts noise modeling is made. In the third part, the proposed methods for the 
characterization approaches are explained. Tests are done over these noise characterizations, 
computing their performance parameters for a classification task. Lastly, the structure of the 
chosen noise summed to the new dataset is shown. 

 
3.2. THEORETICAL FRAMEWORK: NOISE IN THE PPG SIGNAL 
3.2.1. Introduction 

 
Any measure of phenomena consists of two parts. One is the interest data or the valuable 
content of the signal, which allows making further analysis. The other part is the noise, which 
usually seems as random information that is overlying over the interest data [62]. 
It is impossible to find noise-free data in real-life experiments because of different events that 
generate noise during measurement. These events can be either thermodynamic, electric, or 
quantum. Not to mention the experimentally induced errors that are interpreted as noise in the 
signal as well [62]. 
PPG signal is also affected by noise because the measurements are taken from peripheral 
body parts which generate greater movement quantity, such as the wrist or fingers. The 
conditions that avoid a correct understanding of the signal can be denominated as artifacts. 
It is possible to classify these artifacts in different types [15]. The detection, characterization, 
and subsequent removal of these artifacts make the biomedical signal understandable and 
manageable for any diagnostic that is desired. 
 
3.2.2. Types of artifacts 

 
According to [15], three types of artifacts can be identified: 

 
● Environmental artifacts: these artifacts are caused by environmental conditions, such 

as electromagnetic interference, light interference, thermal noise, or shot noise. In the 
specific case of the PPG signal, because it is an electro-optical sensing method, it is 
primarily affected by light interference [15]. For example, it is not the same to make 
measurements under the sun's light, in the night or under lamplight. However, wearable 
devices which make this type of measurements, generally suppress this kind of noises 
during measurement. That is the reason why there is no big focus on these types of 
artifacts. 

 
● Experimental error artifacts: these artifacts are not manageable during the data 

acquisition and are caused because of the patient's movement. The movement 
generates a friction effect between the skin and the sensor, translating it into noise [15]. 
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The removal of these artifacts is difficult, since they cannot be found in a narrow 
frequency band. Oppositely, their frequency bands often overlap with the ones of the 
signal. A greater focus is made on this type of artifacts. It has been encountered in the 
literature, that they are the focus objective for removal using machine learning 
techniques or filtering algorithms. 

 
● Physiological artifacts: these artifacts are produced by variables of the human body 

itself, such as eye movement, little signals caused by muscle tensions or brain signals. 
This kind of artifacts generate a noise which can be considered as unnoticeable [15], 
and for this reason, it is not made a high focus on them.  

 
3.2.3. Movement artifact noise 
 
Motion artifacts are the focus of most of the studies and papers, according to the review later 
in Chapter 4. These are the most harmful for the signals and the most influent when the 
information from the signal is extracted. 
These movement artifacts are especially hard to remove because of the overlapping of their 
bandwidth with the signal’s valuable information. Table 4.1 exposes some of the proposed 
methods, such as adaptive filtering or filter banks, wavelet decomposition, smoothing filters, or 
enhanced versions of already developed algorithms. 
The PPG signal concentrates its information widely on the 1-7 Hz frequency band, but we could 
even consider that the real concentration of the information is between 1-4 Hz (a very narrow 
band). The above can be seen from the frequency analysis in Appendix A. The information 
signal overlaps with the noise frequency component inside this interval, making difficult the 
noise extraction [23]. The main consequence of these so mentioned artifacts over the signal is 
the baseline drift, introduced principally because of the skin friction with the sensor. The 
movement of the extremities causes this low-frequency noise. Another effect of these artifacts 
is the high-frequency noise. It can be witnessed as very slight and frequent peaks, sometimes 
imperceptible, which follows the curve of the signal. 
With this in mind, we tried to recreate these artifacts, dividing them into the frequency 
components mentioned above (high frequency and low frequency). State of the art will give us 
an idea of already used techniques for this noise characterization and modeling. 
 

3.3. STATE OF ART: REVIEW OF ALGORITHMS FOR PPG SIGNAL NOISE 
CHARACTERIZATION 
3.3.1. Review methodology 
3.3.1.1 Databases 

 
Three different articles outlined the state of the art for noise modeling, extracted from searches 
in the following databases: EBSCO, Google Scholar, and Scopus. This search was made in 
order to identify the scenarios and the movement artifact noise induced on PPG signals 



 

 23   

datasets. Also, we expect to find some noise characterization methods or techniques that allow 
modeling movement artifact noise either using mathematical models or statistical approaches. 

 
3.3.1.2. Selection criteria  

 
The following terminology is used in the search strings to find articles that could contain 
techniques for artifact extraction and noise modeling over PPG signals: 

 
(artifacts OR noise OR movement) AND (characterization OR model OR modeling) AND (ppg 
OR photoplethysmography)  

 
Applying exclusion criteria to this search strings, where the central theme was the extraction or 
characterization of the noise caused by movement artifacts on the PPG signal; it was possible 
to identify the articles [63, 64, 12]  
 
Table 3.1. Shows an identification of the techniques and gaps found in the articles above that 
were useful to our approximation.  

 

Article Techniques used that could be 
valuable for our work 

Main gaps encountered Study 
date 

Noise cleaning and 
gaussian modeling of 
smartphone 
photoplethysmogram to 
improve blood pressure 
estimation [63] 
 

In this article, a way of modeling the 
PPG signal starting from a Gaussian 
model is proposed. Here, the author 
refers to the PPG as the sum of two 
Gaussian functions, arguing that a 
mathematical model can ensure a 
better signal realization. 
This technique gives us the idea of 
modeling a clean PPG signal, thus 
subtracting this clean signal from the 
contaminated signal of the dataset, 
and therefore, obtaining a form of 
motion artifact. 

The central gap that was found in the 
application of this technique as an artifact 
collecting idea was that due to the uncertain 
form of the PPG pulses, a mathematical 
model does not give a particular idea for all 
of the possible types of PPG waveform. 
In other words, one of the PPG cycles could 
differ from another in terms of its 
morphology. Amplitude, width, peak height, 
or peak distance are considered as 
morphology features. 
If only one general model is created, it 
would not fit all the possible morphologies 
for all PPG cycles. Instead of cleaning the 
signal, this could distort it. 

2015 

Modeling of Motion 
Artifacts in Contactless 
Heart Rate 
Measurements [64] 

In this article, it has implemented a 
statistical approach over the signal. 
The author argues that the ECG 
signal could be understood as the 
sum of valuable data, Gaussian 
noise, and artifact noise (both 
superimposed over the signal). 
Employing histogram analysis, it has 
established the most probable 
distribution for this movement 
artifacts and then a spectral density 
analysis. This last analysis gives a 

This idea has been considered as a good 
one in terms of practical use, given that it is 
much easier to create noise from a 
probabilistic model, that also generalizes 
the behavior of the artifacts. 
However, the creation of artifacts has been 
analyzed for ECG signals instead of PPG 
signals. An in-depth analysis of this paper 
allows us to see that the obtention of the 
probabilistic distribution of the artifacts 
basing on amplitude histograms could be 
incomplete. Even when the simulated 

2013 
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piece of information that allows 
"creating" a probability mass function 
of the named artifacts. 

results are similar to the real artifacts of the 
capacitive ECG signal, this idea could not 
work for small sets of data as ours. 
Additionally, the author mentions that the 
extracted intervals are not perfectly fitted to 
real data because they may also contain 
QRS complexes and other not modeled 
noise sources which might influence the 
spectrum accordingly. 

Modeling of the 
Photoplethysmogram 
During Atrial Fibrillation 
[12] 
 

In this article, it has noticed the need 
for a model of the PPG signal for 
further arrhythmia diagnosis, given 
the lack of free online datasets that 
contain this type of information. 
Two kinds of information are given 
here: first, a model of the PPG signal 
based on two Gaussian and one log-
normal waveform; second, it has 
mentioned a generation of motion 
artifacts employing filtering white 
noise according to spectral properties 
of these artifacts. 

A similar case to the first article is seen in 
the first suggestion; the gap can be justified 
in the same way and, moreover, the 
mathematical expressions and procedures 
for the obtention of the model are 
complicated and require a more in-depth 
analysis on other parameters and 
expressions. 
About the other suggestion, it could be 
taken until this point, but the spectral 
properties were not specified, thus making 
it impossible to recreate. 

2016 

Table 3.1. Summary of analyzed works for noise characterization in specific PPG 
signals. 

 
The literature review allows to conclude that very few studies have been focused towards noise 
recognition and posterior characterization in PPG signals. Modeling of the noise over these 
signals would allow to train and validate algorithms for noise reduction, which is an important 
part of their development process. Additionally, it should be considered that the real-data 
acquiring is a time-consuming task and generally involves the signing of an informed consent, 
for ethical reasons. 
Another search string was made, without being limited by the specific signal we are working 
on. We considered that these other signals, such as EEG or ECG, must have a resemblance 
to PPG signals in terms of quasi-periodicity, correlation, statistical, and temporal features. 
Thus, we expect to obtain articles that could contain some technique of movement artifact 
characterization over another kind of signals. 
The primary purpose of this new search is to analyze and compare techniques that would allow 
us to extract the main noise features from contaminated PPG-resembled signals. 
Taking into account the beforehand mentioned, we limited the search as follows: 

 
(artifacts OR noise OR "movement artifacts" OR "motion artifacts" OR "motion noise" OR 
"Gaussian additive noise") AND (characterization OR model OR modeling) AND (ECG OR EEG 
OR "periodic signal" OR "non-stationary") 

 
The resulting range was limited by year of publication, subject area, and document type. The 
results are contained in Table 3.2. were eight works were found, shown as follows:  
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Article Techniques used that could 
be valuable for our work 

Main gaps encountered Year 

Motion artifacts 
reduction from PPG 
using 
cyclic moving average 
filter [65] 

A cycling moving average 
method is proposed, which 
averages the values of each 
sample by separating the 
cycle of the PPG signal. If 
there are some motion 
artifacts in continuous PPG 
signal, disjoin the signal 
based on a cycle. Moreover, 
then, these signals are fitted 
to have the same cycle by 
coordinating the number of 
samples. 

An overlapping problem is presented. 
Also, it filters only the high-frequency 
component, leaving the low-frequency 
component unchanged. Therefore, the 
efficiency of the filter is limited by the 
noise amplitude and the order of the 
moving average filter. Finally, this 
article gives an idea of how to filter a 
signal by smoothing it, but also suggest 
a way of obtaining the high-frequency 
noise component through MAF. 

2014 
 

Improved EEG 
Segmentation Using 
Non-linear Volterra 
Model in Bayesian 
Method [66] 

In this paper, the cascade of 
linear predictive coding 
(LPC) and non-linear 
Volterra filter is employed for 
modeling of noise in EEG 
signal, and this methodology 
is applied to the procedure of 
change-point detection. LPC 
filter is initially used as an 
estimator of the noise 
(correlated and uncorrelated 
noise). Then, a Volterra filter 
is used to find the non-linear 
relation between the noisy 
signal and noise. In this way, 
they extract the existing 
noise in the signal. 

The technique for an LPC filtering is 
taken because this can help us in the 
same estimation of noise. Regarding 
Volterra nonlinear filter, it is argued by 
the author that this technique could be 
computationally expensive. The more 
the Volterra coefficients are, the 
longer is the computation time. 
 

2018 

Single channel EEG 
artifact identification 
using two-dimensional 
multi-resolution 
analysis [67] 

A multi-resolution time-
frequency analysis is 
proposed, using techniques 
such as 2-dimensional 
wavelets and curvelets, then, 
extracting statistical features 
from the signal — this entire 
process to classify several 
activities which induce 
different motion artifacts 
during EEG measurement. 
 

It is known that wavelets allow a better 
signal analysis, giving spectral 
information as well as energy 
concentration over time. The author 
argues that spectral analysis by itself 
may help, but they do not provide 
temporal information about a specific 
event. 
It is for this reason that it is considered 
the wavelet as an information 
extraction technique. Also, the 
recommendation for using not only 
frequency features but time features is 
taken. 

2017 

Detection and 
separation of EEG 
artifacts using wavelet 
transform [68] 

Once again, the wavelet 
transform is used as a 
technique for denoising EEG 
signal. Thus, the author 

A similar approach as [67] is made. 
Even though the wavelet importance 
is recognized, this study does not 
provide a noise characterization 

2018 
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exposes wavelets as a 
decomposition of the signal. 
Results are evaluated in 
terms of time, power, and 
number of cells utilization for 
DWT denoising. 

technique, but a noise removal one. In 
addition to this, the study seemed to 
have more focus on computational 
requirements for processing than 
noise removal itself. 

Real-Time EEG 
Signal Enhancement 
Using Canonical 
Correlation Analysis 
and Gaussian Mixture 
Clustering [69] 

A real-time removal artifact 
algorithm in EEG signal is 
proposed. Based on three 
main techniques, Canonical 
Correlation Analysis (CCA), 
the feature extraction, and 
Gaussian Mixture Model 
(GMM). 
CCA method exploits the fact 
that the autocorrelation of 
muscle activity is weaker 
than that of brain activity. 
This approach solves the 
problem by forcing the 
sources to be maximally 
auto-correlated and mutually 
uncorrelated. 
GMM is used for 
unsupervised learning, 
assuming that all data points 
are generated from a mixture 
of a finite number of 
Gaussian distributions with 
unknown parameters. 

The same case as [68] is encountered, 
given the fact that it is a noise removal 
algorithm, but not a noise 
characterization one. Despite this, it is 
observed that the GMM exposed may 
be an applicable approximation, analog 
to PPG signals. 
Feature extraction cannot be afforded 
because of the features difference 
between the signals. Also, because it 
requires labeled data (it is a supervised 
learning method), which we do not 
own. 
However, the CCA method also 
exposes a good approximation jointly 
with GMM.  
 
 

2018 

Two-stage wavelet 
shrinkage and EEG-
EOG signal 
contamination model 
to realize quantitative 
validations for the 
artifact removal from 
multi-resource bio 
signals [70] 

An EEG-EOG signal 
contamination model is 
designed to remove artifacts 
from EEG using a two-stage 
shrinkage wavelet method 
with the decomposition of 
the undecimated wavelet 
transform (UDWT) method. 
For this, a semi-artificial 
EEG-EOG contamination 
dataset is created using real 
data and white noise, in 
order to model and to 
quantitatively validate artifact 
removal from EEG and thus, 
enabling to compare this 
study with others, since it is 
tested numerically and 
systematically by 
reconstructing the EEG 
signal. 

The proposed reconstruction method 
was validated using a numerical 
method, which demonstrated that the 
first stage pursued abrupt changes 
with high amplitudes provided by 
assumed EOGs, and the second 
stage provided the EEG frequency 
spectrum as observed in the original 
signal. This result explains why when 
there are higher amplitudes; the 
conventional shrinkage parameters 
must be personalized to real values, in 
order to obtain the correct outcomes. 
 

2019 
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Noise estimation in 
the 
electroencephalogram 
signal by using 
Volterra series 
coefficients [71] 
 

Here, the author employed 
the Volterra model to find the 
nonlinearity relation between 
electroencephalogram (EEG) 
signal and the noise. It is 
exposed as a novel approach 
to estimate noise in the EEG 
signal. 
Although it is found as a 
complex method 
computationally, the author 
proposes a new 
approximation that could help 
to reduce this. 

An important issue in implementing 
the Volterra model is its computation 
complexity, especially when the 
degree of nonlinearity is increased. 
The author suggests that in many 
applications, it is urgent to reduce the 
complexity of computation. 
 

2015 

Table 3.2. Summary of analyzed works of noise characterization on PPG-resembled 
signals. 

 
3.3.1.3. Summary of the state of the art analysis 

 
It can be seen from Table 3.1 that [63] proposes a PPG mathematical model for each S-S peak 
interval. The model gives an idea for noise extraction by creating clean models of the PPG 
signal and later join them, hoping that the subtraction of the clean signal over the noisy signal 
could give an estimation of the noise. However, since a constant morphology is assumed for 
all the intervals, this PPG signal model might not meet the entirety of possible morphologies 
that a noisy PPG signal has in each S-S interval. Therefore, the extracted noise by subtraction 
would not resemble the real motion artifact signal, and might even contain other information. 
In [12], Solosenko models the PPG signal from the R-R interval series of ECG. He considers 
five possible templates for PPG signal, but at the same time states that this morphology varies 
considerably depending on age and medical condition. PPG signal modeled for this study is 
intended to model different arrhythmia cases (atrial fibrillation, atrial premature beats, and 
ventricular bigeminy), which is not the case for us, since what is needed is a clean signal model 
to subtract it from the noisy signal. Lastly, the mathematical modeling of this paper goes beyond 
the best of our knowledge, making it difficult to understand and exceeding the time scope for 
this project too. Even though it has used a set of five PPG template pulses, this selection biasing 
might not represent the totality of the possible noisy PPG waveforms. Besides, the ones in 
IEEE dataset vary significantly given that the heart rate increases and decreases as time 
passes. Because of this limitation, it cannot be used for noise extraction in this occasion. 
Although, one aspect to be rescued from this study is the use of a bandpass filtering method 
of white noise to simulate noise in these PPG signals. The author uses the spectral 
characteristics of the PPG signal. However, these are not mentioned, and therefore, a spectral 
analysis should be made in Appendix A to use this approach as a tool. 
Wartzek proposes a good approximation through amplitude histograms [64]. This approach 
can be made when the number of realizations measured is much bigger than the ones we own. 
Also, it can be seen that the modeled artifacts belong to a capacitive ECG signal, which differs 
from our PPG signal. He suggests that even considering a probabilistic distribution, the 
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modeling of the artifacts is not perfect and will not be because it could contain many other 
sources of noise. 

 
The second review suggests more techniques regarding motion artifact reduction or 
characterization, which means there might be a chance to adopt these techniques focused on 
PPG-resembled signals for making them useful in our approach. 
Some of the found algorithms are more suitable for noise removal following the classification 
of another kind of phenomenon, as shown in [68,69]. Supervised learning methods or feature 
extraction methods exposed in [69] are majorly used in the context of classifying "artifact 
affected" or "non-affected" signal. In our case, we already know the signal is affected. 
Volterra methods [66,71] are considered as a good suggestion. However, it has been 
recommended by the authors to consider the computational complexity they involve. 
LPC exposed in [66] can be seen as an alternative for noise modeling, under the supposition 
that a linear predictive model can be implemented if it is fed with the high-frequency noise. 
EEG-EOG signal contamination model [70] is proposed by adding white Gaussian noise with 
real patient’s information data. This exposes gaussian noise as a common method for inducing 
noise over biomedical signals. 
It can be seen in [72] that the PMAF method stacks quasi-periodic segments of the PPG signal, 
containing peak information within the segment. This analysis suggests a way for acquiring a 
more general high-frequency noise component that simulates having much more realizations 
than twelve. This procedure can be performed using moving average filtering over the signal, 
generating a higher correlation between adjacent samples. 
These approaches give an idea on how to extract the high-frequency noise components from 
the overall motion artifacts, starting from a subtraction procedure and then manipulating the 
high-frequency noise signal as we consider. 
[73] states imperatively to carry data analysis algorithmically rather than by visual analysis. 
Here, some high and low pass filter techniques are remarked, giving us an idea of dividing 
noise from its frequency components. If noise cannot be seen concentrated in a unique 
frequency band, it can be divided into low and high-frequency noise. 
 
3.3.2. Motion artifacts modeling 

 
Most studies centered on noise detection by movement artifacts are focused only on the 
estimation of the heart rate or the analysis of the quality of the PPG signal before and after the 
denoising process. Of the few studies focused on arrhythmia detection, only one [19] analyzes 
possible bradycardia or tachycardia events and also determines the performance parameters, 
obtaining the sensitivity and specificity. Sensitivity measure from this work is said to be affected 
by the presence of low-intensity movements. For this reason, tachycardia and bradycardia 
events must be studied under specific activities to describe the motion artifacts that are 
distorting the signal, focusing on low-intensity movements. 
However, none of the works from Table 2.1 is looking to characterize the specific arrhythmias 
we are working with under specific movement artifacts. The purpose of this chapter is to provide 
a simulated dataset, which allows recreating the specific movement artifact scenario for the 
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detection of bradycardias and tachycardias. The specific movement artifacts considered for the 
Bonomi’s simulation scenario include hand, arms or wrists movements (low-intensity 
movements). 
In order to reach these simulated conditions, noise from specific time-located activities and 
movements must be characterized. In this case, the external database which will be used for 
movement artifact extraction is the IEEE 2015 Signal Processing Cup (IEEE 2015 SPC) 
database [74]. Later, we expose five different approaches for noise modeling, capable of 
describing movement artifacts under the six different types of activities. The focus is made on 
the low-intensity activities, were two of them are within the six activities in the description of the 
IEEE SPC database. 
 
3.3.3. Challenges and Contributions 

 
The biggest challenge is to prove that our artificial noise is correctly characterizing the 
movement artifacts present on the six activities. To do so, we made tests under the supposition 
that after the subtraction of the modeled noise signal from the original PPG signal (or the noisy 
signal), the peak detection should improve. Then, the accurate extraction of the signal’s peaks 
is needed. This will allow to make comparisons of the correct location of the peaks before and 
after the noise subtraction. ECG channel will be used as the gold standard to compare the 
accuracy of the peak detection in the PPG corrupted signal and the subsequent noise-
subtracted PPG signal. Then, the artificial noise model with the best results in the tests in 
subsection 3.4.3 is selected and added to the dataset, which contains tachycardia and 
bradycardia events. Lastly in Chapter 4, the aim is to clean the signals from the new dataset 
and try to increase the sensitivity in the detection of the focused arrhythmias. 
 
Our contributions to artificial noise modeling are shown in the next points: 

● Design five different noise approaches under various types of motion artifacts. 
Particularly, due to low-intensity movements which are within the six activities described 
in subsection 3.4.1. 

● Experimental results for the noise models and the correct choice of the most suitable, 
according to tests. 
 

3.4. METHODS FOR NOISE CHARACTERIZATION 
3.4.1. Data collection methodology. 

 
This section describes the main features of the wristband-obtained PPG signal that serves as 
the provider of information for the later noise modeling. The data was obtained from the IEEE 
2015 SPC database, available at Zhang's [74] webpage and used in his paper for noise 
reduction and posterior heart rate estimation. 
The IEEE 2015 Signal Processing Cup implements 23 public datasets. Twelve training datasets 
were measured from people between 18 and 35 years old. They were asked to develop 
different kinds of activities, where can be found the low-intensity ones. Also, 11 testing datasets 
were measured from people between 19 and 58 years old. They developed a mix of low, 
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medium and high-intensity activities. Each dataset was obtained with a sampling frequency of 
125 Hz and was measured simultaneously with the ground-truth of heart rate from the ECG 
signal. The BPM is taken from 8 seconds of windows size and overlaps every 6 seconds. 
However, this information was not taken in the tests in subsection 3.4.3 because they barely 
corresponded with ECG gold standard signal information. 
The first 12 training datasets were chosen for the noise characterization, because the testing 
ones did not have the same movement's structure or defined time intervals. Also because high-
intensity activities were induced (such as boxing, jumping), which are not inside our scope. 
Each of the 12 training datasets have two channels of PPG signal, three channels of 3-axis 
acceleration and one channel of ECG signals. Activities were classified into two types: 

 
● Type 1: It includes 5 minutes of exercise with 6 types of activities along the entire time: 

30 seconds at rest, 1 minute running at 8 km/h, 1 minute running at 15 km/h, 1 minute 
running at 8 km/h, 1 minute running at 15 km/h and resting the last 30 seconds. At rest 
activities, the subjects were asked to purposely move the hand with the wristband 
randomly to generate motion artifacts. 

 
● Type 2: It includes 5 minutes of exercise with 6 types of activities along the entire time: 

30 seconds at rest, 1 minute running at 6 km/h, 1 minute running at 12 km/h, 1 minute 
running at 6 km/h, 1 minute running at 12 km/h and resting the last 30 seconds. Apart 
from the above, other low-intensity movements were also mentioned: forearm and 
upper arm movements such as clapping, closing hands, pushing, shaking hands and 
stretching, so the resting activities are also artifact induced. 

 
Due to similarities in the spectrum analysis of type 1 and type 2 activities, which differ only on 
the treadmill speed in activities type 2 (which are about 6 and 12 km/h), both types of activities 
are taken as equal. The main frequency components do not show big differences, and this 
mixture would allow a broader dataset to get a more general noise with a greater number of 
samples. Then, the final dataset considers the activities below: 

 
1. Rest with hand movements (30 seconds). 
2. Running 8 km/h (1 min) corresponds to 6 km/h in activity type 2. 
3. Running 15 km/h (1 min) corresponds to 12 km/h in activity type 2. 

4. Running 8 km/h (1 min) corresponds to 6 km/h in activity type 2. 
5. Running 15 km/h (1 min) corresponds to 12 km/h in activity type 2. 
6. Rest with hand movements (30 seconds). 

 
The 12 signals disposed each with roughly 37500 corrupted samples, equivalent to five-minute 
recording time. Preliminary tests conducted in Appendix A allow us to see the spectral 
differences between a motion distorted PPG signal and a cleaned PPG signal (by our means). 
This allowed to estimate which components in the spectrum reflect the behavior of noise 
artifacts. The bandwidth where the largest amount of information is roughly estimated. Thus, 
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we expect to obtain a model which accomplishes with the conditions in the tests, because a 
perfect noise modeling is quite improbable. 
 
3.4.2. Approximations to noise characterization 
3.4.2.1. The Savitzky-Golay noise model 

 
The Savitzky-Golay smoothing filter is a type of digital filtering technique. The process fits 
successive segments of adjacent data with an adjustable degree polynomial regression, using 
the linear least squares criteria [75].  
The main advantage of this filter is the preservation of the main characteristics of the original 
distribution of the signal, such as local maxima and minima. It also preserves the width of the 
peaks, which generally disappear with other averaging techniques. 
For this reason, and in our case, it can accurately reduce the level of noise without biasing the 
morphology of the PPG signal. This filter allows to discriminate high-frequency noise, 
smoothing the signal and keeping low-frequency features such as baseline drift. 
 
Let the high-frequency motion artifacts be denoted as 𝑛(𝑡), which is obtained from the 
subtraction of the Savitzky-Golay filtered signal4 𝑠(𝑡) from the original signal 𝑥(𝑡): 

 
𝑛(𝑡) 	= 𝑥(𝑡) 	− 	𝑠(𝑡)                                           (1) 

 
Now, once we have the high-frequency noise components, we have to obtain the low-frequency 
noise component. Let the baseline drift noise component be denoted as 𝑚(𝑡), and 𝑜(𝑡) be the 
entire noise motion artifacts:  

 
𝑜(𝑡) 	= 	𝑛(𝑡) 	+ 	𝑚(𝑡)                                         (2) 

 
As the low-frequency component 𝑚(𝑡) is difficult to track in the frequency domain (represented 
by an impulse near to zero), it is suggested to track it from the time domain. Following this 
reasoning, the baseline drift noise component (low-frequency noise) is characterizing the DC 
component generated primarily due to the patient movement. Because of the visible changes 
in each activity DC level, it is necessary to determine the baseline drift corresponding for each 
activity performed by the patient. Thus, two methods for obtaining the low-frequency noise 
component are described as follows:  

 
A. Mean Values: this method finds the six most significant mean changes in the specific 

activity section of the original signal 𝑥(𝑡). Then, the six means are linked as a step 

 
4 A similar approach was intended using sym4 wavelet. This procedure allowed to extract high frequency 
noise using thresholding. This wavelet thresholding procedure removes noise by thresholding the 
wavelet coefficients of the detail sub bands while keeping the low-resolution coefficients unaltered [76]. 
The high-frequency noise component was extracted following the same procedure in equation (1). 
However, this approach was not used because the subtraction produced a really little amplitude noise. 
This noise did not resemble the desired features from high frequency noise artifacts [Appendix A]. 
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function. The output is a signal containing the estimate of the baseline drift over the 
entire length of the signal. 

B. Detrend Signal: this method finds the trend of the original signal, using the number of 
desired breakpoints over the length of 𝑥(𝑡). These breakpoints are evenly spaced, and 
then they are linked by linear functions. The output is a signal containing an estimate of 
the baseline drift over the entire length of the signal. 
 

Mean values function fits in a better way the error analysis in Savitzky-Golay noise model, and 
for this reason we decided to obtain 𝑚(𝑡) component through method A. Meanwhile, method 
B will be used for the obtention of 𝑚(𝑡) in both of the next models (linear predictor noise model 
and moving average noise model).  
The Savitzky artificial noise model 𝑜(𝑡)is then obtained using the equation (2) 
 
3.4.2.2. Linear predictor noise model 

 
The linear prediction filter allows estimating future values of a discrete-time signal as a linear 
function of previous samples. For this, it determines the coefficients of a forward linear predictor 
by minimizing the prediction error in the least squares sense [77].  
The linear prediction filter coefficients are computed for the high-frequency noise extracted from 
the approximation in (1).  
A FIR filter based on these configurable order coefficients is used to estimate the value of the 
predicted 𝑛(𝑡) signal, based on past samples of each point of the input signal. This generates 
a correlation between its samples. With this process over the Savitzky high-frequency noise, 
we expect to have a more general noise, simulating the case of having more than 12 
realizations. 
The estimated high-frequency component found by LPC is denoted as	𝑛012(𝑡).  
 

𝑛012(𝑡)  =	𝐿𝑃𝐶{𝑛(𝑡)}	 	 	 	 	 (3) 
 

Next step is obtaining the low-frequency component, following the guideline in (2). For this 
purpose, method B from subsection 3.4.2.1. was used. By detrending the mean values of the 
corrupted signal, it is possible to obtain a DC level that is similar to the one obtained with the 
method A. So, if we name 𝑑(𝑡) to this low-frequency component, the equation(2) can be 
rewritten for this specific noise approximation as 

 
𝑜(𝑡) 	= 	𝑛012(𝑡) 	+ 	𝑑(𝑡)     (4) 

 
3.4.2.3. Moving average noise model 

 
In this model, our aim remains in generalizing the Savitzky noise model in order to simulate 
more realizations from which this noise model was obtained. For this, the high-frequency noise 
component from Savitzky is used as an input signal to the moving average filter.  
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The moving average approximation uses the moving average filters (MAF). These compute a 
low pass filter FIR, commonly used for determining the average values of a signal within a 
period T. As the length of the filter increases, so does the smoothing of the signal and the sharp 
modulations become blunter. The moving average filter can also be understood as a 
convolution that averages peaks or outliers on many symmetric neighboring points concerning 
a reference point on the input signal [72]. Appendix A provides more detailed information about 
this technique.  
 
The high-frequency noise from Savitzky is seen as a plain averaging, where extrema points 
may bias the total outcome of the noise. This approach will simulate the case where more 
realizations were considered by setting the proper window sizes. Thus, a more general noise 
model can be designed, hoping that it accurately describes motion artifacts for the activities 
explained previously.  
 
We noticed that when the heart rate is slow, more waveform features are visible, whereas when 
the heart rate is fast, only the main peaks of the waveform remains due to the fast increase on 
each waveform slope. This is the main reason why it is expected to have a smaller window size 
for the MA filter when the heart rate is slow because it will produce a smaller smoothing action. 
This smaller window simulates the case where the averaging is made between much more 
components, without biasing or reducing in a considerable measure the high-frequency noise. 
On the other hand, in running activities when the heart-rate is fast, there is less distortion over 
the signal due to the high slope at each PPG waveform onset. This high slope fades high-
frequency motion artifacts and consequently, they end up with a lower amplitude. This explains 
why in the case of jogging or running, the size of the window should be wider. The softness will 
be greater and then the steep peaks that do not characterize high-frequency noise in this case 
will be cut. 

 
To obtain window sizes, we take into account the length of an M-M interval for a particular 
activity. The window size can be chosen between zero and the result of dividing the length of 
the signal in that activity by the number of peaks found in that section. This will set the 
denominator coefficients in the transference function of the filter. Since the number of beats 
changes for each activity and each realization, outcomes showed an interval for the window 
sizes. 
Therefore, the optimal window sizes were computed empirically using an iterative script which 
loops over steps of length 5 for both windows (one for resting activities and another for running 
activities). The iterative algorithm found that the window size has an optimal value of 45 for rest 
activities and 70 for major intensity activities. This makes sense because in resting physical 
activities, heart rate is slow and as explained before, the window's size should be smaller in 
order to remove outliers without biasing the signal features. In the opposite case, for running 
activities, a greater window size sample will consider a larger number of neighboring samples. 
Therefore, it will decrease outliers greatly, presenting a slow adaptation over significative 
fluctuations during short periods. 
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This process will average every sample within the selected window, creating our high-
frequency noise component.  
The moving average filter is fed with the Savitzky high-frequency noise, which is extracted from 
the approximation in (1).  

𝑛0:;(𝑡) = 	𝑀𝐴{𝑛(𝑡)}	 	 	 	 	 (5)	
 

Adding the low frequency noise 𝑑(𝑡), the expression (2) for this specific noise approximation 
can be rewritten as: 

 
𝑜(𝑡) 	= 	𝑛0:;(𝑡) 		+ 	𝑑(𝑡)          (6) 

 
 
3.4.2.4. The dynamic variance moving average noise model 

 
This model is fed with the high-frequency noise component from the moving average model 
𝑛0:;(𝑡) described in (5). A dynamic character is desired in the noise, that is, a major number of 
artificial noise models simulating new realizations. Therefore, a change in the noise variance 
was proposed to simulate this artificial noise. This can be done by multiplying the sample 
standard deviation by a real value, as shown in the following equation. In this way, sample 
variance is indirectly changed. 

 
𝑛0@ABC(𝑡) 	= 𝐸[𝑋G(𝑡)] + I𝑉[𝑋G(𝑡)]. 𝐹    (7) 

 
Where 𝑋G(𝑡) represents all of the high-frequency noise components from the 12 realizations of 
the dataset, stored as a collection. Then 𝐸[𝑋G(𝑡)] would correspond to an average of all high-
frequency noise components. This term can be seen as a sample mean, and therefore, the 
unbiased sample variance can be computed from the moving average noise model and saved 
in 𝑉[𝑋G(𝑡)].  
Factor 𝐹 changes the variance and creates a new artificial noise model for each iteration. This 
factor can take any desired value, but we considered values from (-3, 3) since broader factor 
values may result in extreme values that would not characterize the noise of the low intensity 
activities. Higher factor values may represent artificial noise models which represent motion 
artifacts with higher intensity levels of movement, which are out of our scope. 
The resulting high-frequency noise component with the new variance is then filtered with a 
passband filter. This is made to emphasize the high-frequency components from 2 to 26 Hz 
following Solosenko suggestion [12]. The analysis of these spectral noise components can be 
found in Appendix A.  

 
𝑛0MN:;(𝑡) = 𝑃𝐵𝐹{𝑛0@ABC(𝑡)}    (8) 

 
Finally, the low-frequency noise component is added to the high-frequency noise, producing 
the entire DVMA noise model. 
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𝑜(𝑡) 	= 	𝑛0MN:;(𝑡) 		+ 	𝑑(𝑡)    (9) 
 

3.4.2.5. Band-limited gaussian noise model 
 
This model is fed with the high-frequency noise component from the moving average model 
𝑛0:;(𝑡) , described in (5). The low-frequency components will be treated separately and will be 
added to set the total artifact noise model.  

 
We considered each one of the signals of this dataset as a realization of a stochastic process. 
A stochastic process or a random process is a mathematical tool that joins a collection of 
random variables that model a system in time or space following probabilistic laws. [78].  
Due to digital quantization during the digital conversion, it is said to be a discrete-time stochastic 
process. However, it will be treated mathematically as a continuous-time stochastic process, 
given that cardiac and blood volume signals are continuous over time. 
This model will assume that every one of the samples of each high-frequency noise signal is a 
random variable 𝑋(𝑡). The collection of these 𝑇 random variables will conform to a random 
vector. Then, each realization can be seen as a random vector {𝑋G	(𝑡)}, 𝑡	 ∈ 	𝑇; where 𝑘 
represents the specific realization, and 𝑇 = {1,2,3, . . . , 𝑁}. 𝑁 is the final sample for each 
realization (in other words, 𝑇 refers to the length of the high-frequency noise realizations).  
 
It will be assumed a normal distribution to model every random variable 𝑋(𝑡)	in all the 
realizations{𝑋G(𝑡)},because this probability distribution relates almost every noise process 
known in nature. As far as our knowledge goes, it's also the most used process for every noise 
approximation in the literature [79].  
Thus, for the estimated high-frequency noise, each random variable 𝑋(𝑡), will create a noise 
value for each	𝑡	 ∈ 	𝑇. These random variables will be affected by the unbiased sample mean 
and variance computed from the base noise. The result is a high-frequency noise estimate 
which obeys in a certain way the behavior of the 12 realizations of the base noise. This base 
noise is the moving average high-frequency noise 𝑛0:;(𝑡). and would be the primary root for 
our Gaussian basic noise model.  

 
High-frequency noise was found to be non-stationary, because of the variation of the sample 
mean and sample standard deviation over time. These results can be seen in Appendix A.  
It is also shown that every one of the {𝑋G	(𝑡)}, are autocorrelated. Given that the autocorrelation 
is denoted as: 

 
𝑅YY(𝑡Z, 𝑡[) = 𝐸[𝑋(𝑡Z) ∗ 𝑋(𝑡[)]; 	𝑡Z ∈ 	𝑇, 𝑡[ 	∈ 	𝑇     (10) 

 
Correlation matrix was computed for the 12 realizations of the process. Appendix A provides 
this matrix, where the results showed that every 𝑋(𝑡) that composes the random vectors are 
correlated with the rest of themselves. Then we know that the random variables are not 
independent of each other. Therefore, we assume that every{𝑋G(𝑡)}must have a memory 
feature. 
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The Gaussian Noise model is obtained from a normal distribution random seed generated for 
each sample along the entire noise signal length. There will be a different model each time it is 
retrieved from the function. Appendix A shows the generation of the random variable for each 
sample. 

 
𝑛0_@ABC	(𝑡) 	= 𝐸[𝑋G(𝑡)] + I𝑉[𝑋G(𝑡)]. 𝑆a	; 	𝑡	 ∈ 	𝑇, 𝑖	 ∈ 	𝑇	  (11) 

 
Where 𝑆a is the random variable acquired in the i-th loop iteration and will vary according to the 
range of values obtained in a standard normal distribution. About 95% of the obtained values 
are located within two standard deviations of the mean and has more probability of being 
chosen [80]. However, by generating the samples in this way, it does not assure that the 
samples are correlated. For this reason, passband filtering is proposed after this process.  

 
In Solosenko research, noise estimation for distorting PPG signals is made by filtering out white 
noise [12]. Here, it was stated to filter this white noise according to the spectral features of the 
PPG signal, which were not mentioned. The design of a simple passband filter with cut 
frequencies 𝑓dZ = 2.5𝐻𝑧 and 𝑓d[ = 26	𝐻𝑧 was made.  
 

𝑛0g(𝑡) = 𝑃𝐵𝐹{𝑛0_@ABC(𝑡)	}    (13) 
 

After passband filtering these models, the low-frequency noise was added, obtaining a rewritten 
expression for (2) 

 
𝑜(𝑡) 	= 	𝑛0g(𝑡) + 	𝑑(𝑡)     (14) 

  
3.4.3. General statistics of characterization approximations 

 
The following tests will be executed based on a peak detection assessment. It is expected that 
the artificial noise models allow a better peak detection after subtracting them from each one 
of the signals used to create them. In this way, we prove the viability of the resemblance with 
the well-defined activities named before. Then, the following procedure was performed with the 
same training signals in the IEEE Processing Cup 2015 database for each one of the models: 

 
1. Extract 𝑜(𝑡) for each activity in each realization.  
2. Calculate the number of peaks in 𝑥(𝑡) and in 𝑦(𝑡)for each activity, where: 

 
𝑦(𝑡) = 𝑥(𝑡) − 𝑜(𝑡)	

 
3. Extract the number of peaks in the ECG channel for each activity in each realization. 

Given that the ECG signal was affected by motion artifacts too, these were removed 
using the denoising described in a more detailed way in Appendix A. 
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4. Calculate two experimental errors having as real values the peaks found in the ECG 
signal and as experimental values, the peaks in 𝑦(𝑡) and 𝑥(𝑡). Then compare if the 
experimental error from 𝑦(𝑡) has improved about the one obtained with 𝑥(𝑡), resulting 
in a logical value which was defined as BOW (better or worse) index. 

5. Compute regression type errors like MSE (mean squared error), RMSE (root of the 
mean squared error), and MAD (mean absolute deviation), using the number of peaks 
from the reference signal ECG, 𝑦(𝑡) and 𝑥(𝑡). 

6. Obtain classification errors by synchronizing both ECG and PPG signals. If the 
performance parameters obtained with the noise-subtracted signal 𝑦(𝑡) improve 
concerning the ones obtained with the original signal 𝑥(𝑡), this indicates a better model. 

 
The results of this process are exposed in the summarized tables in Appendix B. Here we have 
the number of peaks found in 𝑥(𝑡), the number of peaks found in 𝑦(𝑡), the number of peaks 
found in ECG and the BOW index. Classification and regression errors computing are 
contained as well. 
For the first tests, the relative experimental error is calculated following the next equation: 
 

𝑒jCk =
lmn	lo	
lo

     (15) 

 
These two experimental errors will allow us to obtain an index which estimates numerically if 
the model improves the peak detection in several peaks. This index is called the BOW (Better 
or worse) index, and it is calculated with the coefficients below. These coefficients are given by 
the distance between two points in one dimension:  
 

 𝑐𝑜𝑒𝑓𝑓Z = |	𝑝𝑒𝑎𝑘𝑠	𝑖𝑛	𝐸𝐶𝐺 − 𝑝𝑒𝑎𝑘𝑠	𝑖𝑛	𝑦(𝑡)	| 
 

 𝑐𝑜𝑒𝑓𝑓[ = |	𝑝𝑒𝑎𝑘𝑠	𝑖𝑛	𝐸𝐶𝐺 − 𝑝𝑒𝑎𝑘𝑠	𝑖𝑛	𝑥(𝑡)	| 
 
As both experimental errors are made with respect to ECG signal, the comparison can be made 
only with the distance between the points. The 𝑓jvalue in the denominator of the equation (15) 
will always be the same for both experimental errors. Then, the BOW index is given by a logic 
comparator which outputs 1 if the value of 𝑐𝑜𝑒𝑓𝑓[	is higher than the value of 𝑐𝑜𝑒𝑓𝑓Z, and 0 in 
the opposite case. 
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Noise models BOW index values 

Class 1: the model ensures a 
better peak detection 

Class 0: the model does not 
ensure a better peak detection 

Savitzky Golay 79.17 20.83 

Linear Predictor 70.83 29.17 

Moving Average 72.22 27.78 

Dynamic Variance5 79.17 20.83 
Table 3.4. Comparison of BOW index values for each noise model 

 
Table 3.4 allows to see that apparently, Savitzky Golay along with the Dynamic Variance noise 
approach are the ones that reduce the distance between real and estimated values after the 
denoising of the signal, followed by Moving Average and LPC model. With this in mind, 
regression errors were computed from the number of peaks detected in each signal. 

 

Signals Regression error values 

MSE MAD RMSE 

Original Signal (PPG 
w/noise) 

40.25 3.72 6.34 

Savitzky Golay 19.82 2.62 4.45 

Linear Predictor 21.27 3.02 4.61 

Moving Average 38.25 3.72 6.18 

Dynamic Variance 33.75 3.33 5.81 
Table 3.5. Comparison of regression errors for each noise model. 

 
Savitzky Golay stands in the first place, while the Dynamic Variance and Moving Average 
methods stand third and fourth. 
This seems to favor Savitzky Golay model, but the regular results for Dynamic Variance model 
can be explained by the fact that errors like MSE and RMSE emphasize the magnitude of the 
errors, from the estimated value towards the real value. We noticed that the Dynamic Variance 

 
5 For this test purposes and given that the dynamic variance model varies according to the factor that is 
provided, the best possible factor was computed for the sensitivity and specificity tests, throwing an 
optimal F value of -0.53 (Appendix A). The regression tests were made with this value, but we understand 
these values could change depending on the factor that's used. In this occasion, we show the results 
obtained with the best of the possible values. 
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method obtains a higher number of instances where there were better peak estimations than 
Linear Predictor and even Savitzky Golay. However, in the failed estimations, its error 
magnitude value reaches higher values. In other words, the number of PPG peaks differ in a 
higher quantity from ECG peaks, but the times this occurs are minimal. Although, the number 
of times it gets errors is the lowest amongst all the other methods. We take into account a 
tolerance of 1 beat, because these signals haven't been synchronized yet. Then we make a 
simple count of how many times this squared error is greater than the tolerance. Dynamic 
Variance method obtains the lowest percentage (43,06%), while Savitzky Golay, Moving 
Average and Linear Predictor show a greater number of errors (47,22%; 50%; 54,17%, 
respectively), but with a lower magnitude. The above can be seen in the tables in Appendix B. 
 
Now, we cannot decide by just having in account previous results. The number of peaks 
counted before and after denoising the signal is not enough to measure the performance of the 
noise model. In order to set an evaluation under the same conditions, these PPG peaks must 
be detected in the same locations or nearly enough from the peak locations of the ECG after 
subtracting the characterized noise. If the number of PPG peaks is closer to the number of 
peaks in ECG, but the position of these two does not match, it means that those are fake PPG 
peaks. These could be either fake positives (additional peak) or fake negatives (missing peak). 
This could, in turn, imply that the noise subtracting process would be introducing more errors 
than the ones in the original signal. In other words, the noise would not characterize in a right 
way the features of the signal. 
For this third and last analysis, performance parameters such as sensitivity, specificity, and 
accuracy were measured before and after the noise subtraction. A more detailed view to the 
classification consideration can be seen in Appendix A. ECG and PPG signals were aligned, 
since these signals share a correspondence but their main peaks occur at different times. The 
lag occurs because of the delay of the blood pump from the central part to the distal part of the 
body. If the performance parameters improve after denoising the signal, it means that this 
model fits the requirements and features of the twelve set of realizations. These tests were also 
made with the original signal, because this would allow us to see which model is really 
improving the peak detection from the noisy conditions. 
 

Signals Classification performance parameters 

Sensitivity Specificity Accuracy 

Original Signal (PPG w/noise) 70.01 71.39 70.70 

Savitzky Golay 69.00 69.54 69.27 

Linear Predictor 68.93 69.36 69.15 

Moving Averages 71.56 72.74 72.15 

Dynamic Variance 71.98 72.76 72.37 
Table 3.6. Comparison of performance parameters for each noise model. 



 

 40   

Table 3.6 shows that not every model improves the results from the original signal. Just two of 
them overcome the results from the original PPG signal. This can be explained by the number 
of false positives obtained in the other models, which decreases the classification quality. It 
might suggest that even when the number of peaks was nearer to the real value, they were not 
M peaks. The morphology of the PPG signal makes it more prone to commit mistakes in the 
peak detection, given that the Q peak might sometimes mask the valuable M peak, acting like 
one when actually, it is not. 
 
However, it appears that some of the noise models could work better for noise characterization 
in certain activities. We computed these performance parameters for each activity in all models 
and compared them to the ones obtained in the original PPG. This would give us greater 
certainty of the chosen noise. For future work considerations, we propose the attempt to 
recreate a hybrid kind of noise with the better results obtained. 
 

Signals Classification performance parameters for activity 1 

Sensitivity Specificity Accuracy 

Original Signal (PPG 
w/noise) 

81.58 83.87 82.72 

Savitzky Golay 71.77 73.1 72.44 

Linear Predictor 69.61 72.33 70.98 

Moving Average  79.60 82.65 81.13 

Dynamic Variance 83.11 82.32 82.72 
Table 3.7. Comparison of performance parameters for each noise model in activity 1. 

 

Signals Classification performance parameters for activity 2 

Sensitivity Specificity Accuracy 

Original Signal (PPG 
w/noise) 

64.19 63.1 63.65 

Savitzky Golay 64.71 63.27 64 

Linear Predictor 65.18 62.47 63.82 

Moving Average  71.79 70.32 71.07 

Dynamic Variance 71.39 70.66 71.03 
Table 3.8. Comparison of performance parameters for each noise model in activity 2. 
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Signals Classification performance parameters for activity 3 

Sensitivity Specificity Accuracy 

Original Signal (PPG 
w/noise) 

65.04 66.58 65.81 

Savitzky Golay 64.64 64.47 64.56 

Linear Predictor 65.13 64.65 64.89 

Moving Average  65.47 66.85 66.16 

Dynamic Variance 65.47 66.13 65.80 
Table 3.9. Comparison of performance parameters for each noise model in activity 3. 

 

Signals Classification performance parameters for activity 4 

Sensitivity Specificity Accuracy 

Original Signal (PPG 
w/noise) 

73.5 76.53 75.01 

Savitzky Golay 72 73.65 72.82 

Linear Predictor 70.71 72.46 71.58 

Moving Average  74.12 76.69 75.41 

Dynamic Variance 75.08 77.51 76.30 
Table 3.10. Comparison of performance parameters for each noise model in activity 4. 

 

Signals Classification performance parameters for activity 5 

Sensitivity Specificity Accuracy 

Original Signal (PPG 
w/noise) 

70.12 71.58 70.85 

Savitzky Golay 69.9 71.3 70.6 

Linear Predictor 70.31 71.92 71.11 

Moving Average  70.11 71.67 70.89 

Dynamic Variance 70.22 71.77 71.00 
Table 3.11. Comparison of performance parameters for each noise model in activity 5. 

 



 

 42   

Signals Classification performance parameters for activity 6 

Sensitivity Specificity Accuracy 

Original Signal (PPG 
w/noise) 

79.28 80.2 79.74 

Savitzky Golay 80.12 80.06 80.09 

Linear Predictor 81.22 81 81.12 

Moving Average  81.02 81.42 81.23 

Dynamic Variance 82.25 81.22 81.75 
Table 3.12. Comparison of performance parameters for each noise model in activity 6. 

 
From the results obtained in the previous tables, it seems that none of the noise models makes 
a perfect characterization of the noise. Even the Dynamic Variance which was the only one 
with the best results in Table 3.6. However, we noticed that in over half of the activities, this 
model improves peaks detection. This model obtains a better close up to the desired results, 
specially in the low-intensity activities.  
For filtered Gaussian noise model, only classification tests were made due to the complete 
randomness of the process. We obtained 57 different models, which were tested to obtain a 
range of sensitivity and specificity results. An interval for the sensitivity of (51.40 - 58.99) was 
reached, as well as an interval for the specificity of (62.04 - 69.81). This shows that this model 
might not be resembling the specific motion artifacts within this dataset, but a more general 
case. Although it is the one with a more solid mathematical base, it is left for future works given 
the limited number of realizations that are disposed of. 
 
3.5. RESULTS AND ANALYSIS 
3.5.1. Discussion 

 
The main objective of this chapter was the obtention of a noise model from IEEE 2015 Signal 
Processing Cup datasets. Although the results obtained are positive, they show that noise 
characterization techniques still can be improved for specific kind of movements. Logically, 
most of the authors are centered on noise elimination for a posterior classification of 
cardiovascular events. 
However, the opinion from Solosenko about the lack of annotated datasets cannot be 
discarded. His statement could be the right motivation for other experimental works on PPG 
signals where it is needed to contaminate clean signals, or in the case that a stress test is not 
feasible. 
Solosenko [12] and Wartzek [64] propose approaches having in account spectral and statistic 
features, respectively. Those suggestions were considered for our movement artifact noise 
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modeling, as well as the Moving Average from Han [72] and linear prediction coefficients from 
Hassani [66]. 
The Savitzky-Golay method was the base for the other noise models, but it exposed a poor 
performance at the classification error level. The good results at regression error are 
emphasized too. This seems to indicate that it makes a proper approximation to the real values 
of peaks but induces a high number of false positives with it. This might suggest that a plain 
averaging of high-frequency noise realizations is just not enough to characterize the each one 
of the realizations in a balanced way. Further analysis should be considered, as the one which 
was made with the Moving Average model.  
According to the tests conducted in subsection 3.4.6., the Dynamic Variance noise model is 
the most suitable representation of motion artifacts for the majority of the activities, reaching a 
general increment of 2% for sensitivity, specificity, and accuracy. The best results for Dynamic 
Variance model can be seen in tables 3.7,3.8,3.9,3.10 and 3.12. This exposes the adaptability 
of the dynamic variance moving average noise model, specially for low intensity levels of 
movement. Thanks to the optimal window sizes computed, it could be analyzed that when heart 
rate is slow, more waveform features are visible. Any small change over the waveform due to 
a particular random noise can abruptly change the visibility of M, P, and Q characteristic points 
in the PPG signal. This can be seen from the results in this model in all activities concerning 
resting activities 1 and 6. When the heart rate is fast, that is, for activities 2-5 only the main 
peaks of the waveform remain due to the fast increase on each slope's waveform. In other 
words, the heart pumps blood with higher pressure as the intensity of the activities arises, thus 
making the sensor to graph steeper slopes, which are hardly affected by high-frequency noise 
components (these high-frequency components throw an insignificant contribution on a steep 
slope, making them harder to notice and damage the signal). We should expect more distortion 
over the time domain if high-intensity movements were considered. 
Gaussian Filtered noise model shows an advantage, because of its entire randomness. 
However, we consider that the noise sample size is small for making generalizations as a 
stochastic process. Twelve noise signals are not enough to make characterizations about all 
possible noise features, as seen in [64]. 
With these results, the Dynamic Variance method would be the most suitable for the majority 
of activities, since sensitivity tests were surpassed. This model did not make an excellent 
performance at regression tests, but it can be seen that the number of false positives and false 
negatives it introduces after denoising is the lowest one of all models. In addition to this, we 
can generate an infinite number of noises for this model, with the moving average model as a 
particular case. Tables 3.8 and 3.9 show that in some cases, the Moving Average obtains better 
results than the Dynamic Variance model. This appears to suggest that the DV model is a 
versatile method, which could obtain a better noise characterization for each activity by just 
adjusting the variance factor, thus setting a proper model for a specific activity. This model has 
also a randomness feature, given the infinite values that F could take. A boundary between a 
model that characterizes the signal, but at the same time demonstrates randomness is noticed. 
We intended to overcome these limitations through an approach that shows the possibility for 
a movement noise approximation. The best obtained model exposed suitable results for the 
noise characterization even if the improvement of general classification results was slight. 
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As a conclusion, our data suggest that this extensive line of noise modeling should be followed 
for future works. Others could take as base the models created here or combine them with 
other techniques. 
 
3.5.2. Conclusions 
 
In this chapter, a noise model that resembles motion artifacts caused by well-defined activities 
with low and medium intensity levels is proposed. The best results can be obtained through the 
dynamic variance noise model, which allows characterizing properly the motion artifacts 
caused by specific activities and then improving the peak detection assessed by the reference 
ECG signal. These outcomes show that it is possible under certain conditions to obtain a 
movement artifact noise model for different activities as long as these are well defined and 
repeatedly executed. The lack of realizations disposed was an undesired but inevitable pitfall 
in our case. The recreation of a movement artifact noise model enables the possibility to create 
new datasets under realistic conditions for simulating physical activity situations. In our case, 
the physical activities of our interest are the wrists and hand movements presented in 1 and 6 
activities. 
The model could be seen as a contribution for future works on noise removal algorithms 
validation and posterior arrhythmia detection. As the time intervals of the movements are 
known, an annotated noise dataset can be considered as one of the first contributions to PPG 
noise modeling. 
Further analysis for the band-limited Gaussian noise model is suggested. We could obtain a 
more general motion artifact representation for low and medium intensity levels of movement. 
Although, due to its randomness, this model was not able to fit the requirements for these 
specific tests, seeming like this is a more general approach to motion artifacts modeling. This 
is stated as a future work because of time scope limitations. 
 
3.6. GENERATION OF THE DATASET WITH NOISE. 
The chosen noise model will be summed to each one of the signals of the new dataset. The 
structure of this new dataset will be explained with more detail in subsection 4.2.3. Since all 
scripts used to retrieve the dataset records have the same structure, the sum of noise is easily 
done by loading it to the main file and then summing it. This noise must be denormalized to the 
same size as the new database signals, as shown in the scheme of Figure 3.1. Due to the 
chosen Dynamic Variance model, each subset was then corrupted with noise coming from 
different F factor values. The choosing of these F values can be seen in Appendix D and the 
results for the different F factors choosing are stated in Appendix C. Of course, pre-processing 
filters included in the original code are removed from the classification algorithms, to simulate 
in a proper way Bonomi’s conditions.  
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Figure 3.1. Schematic view of the noise addition process 

 
Figure 3.2 shows different segments of one of the signals retrieved from the main loop with and 
without noise. 

 

 
Figure 3.2. Comparative of the original pulsatile signal and the corrupted 

pulsatile signal. 
 

A high-frequency artifact noise is visible, as well as the baseline drift, which is induced 
depending on the activity that is being executed. High-frequency noise induced by the modeled 
noise gives the original signal a noisy aspect, which could traduce as fake peaks in the future 
brady- and tachycardia detection. Figure 3.4 shows the oscillations of the high-frequency. 
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Figure 3.3. High-frequency noise present in the corrupted pulsatile signal. 
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CHAPTER 4. TACHYCARDIA AND 
BRADYCARDIA DETECTION MECHANISM 
 
4.1. INTRODUCTION 
This chapter aims to demonstrate the improvement of several brady- and tachycardia detection 
mechanisms, using noise removal techniques. We expect to obtain better results from a 
mechanism with proper denoising processes for the arrhythmia detection rather than a 
mechanism which receives a noisy signal. This work could provide clinicians with a piece of 
reliable evidence for them to notice how motion artifacts of even low intensity can change the 
diagnosis outcomes for brady- and tachycardia detection. 
Our approach includes the following tasks: 1) Add noise to the clean arrhythmia dataset, 2) 
Select denoisers to be used over the arrhythmia detection dataset and select arrhythmia 
detectors for testing, 3) Implement the denoisers-detectors combination over the newly created 
dataset, 4) Compare results with and without noise conditions using the denoiser that suits in 
the best way each detector. 
In the first task, we perform the adjustment of the data used in the detection of brady- and 
tachycardia events. This task creates a simulated dataset of PPG corrupted signals by adding 
the low intensity movement artifacts over a new dataset which served as the primary arrhythmia 
data provider. This procedure has already been performed in subsection 3.6. The new dataset 
mentioned is the Physionet CinC Challenge 2015 dataset provided by Physionet [81]. The 
contents and structure of this dataset will be later explained.  
In the second step, the denoising methods are chosen through a review of the literature in 
bibliographic databases. The selection of the arrhythmia detection techniques is made as well. 
These are extracted from the challenge outcomes. The Physionet 2015 Challenge seeks to 
reduce false alarms of arrhythmia detection in ICU. As the outcomes of this challenge, 
numerous algorithms and techniques for brady- and tachycardia detection have been 
proposed. A review of the articles that describe each work is performed, in order to choose the 
appropriate detection methods to be coupled with the denoising phase. The selection of 
arrhythmia detection techniques is made according to the established selection criteria. 
The third step comprehends the implementation of the group of selected denoisers over the 
group of selected arrhythmia classifiers. This implementation tests will also have the results 
obtained with the original implementation from each author and the results obtained with the 
noise simulated conditions. 
Lastly, in the fourth step, the results are compared for each denoiser-detector combination, 
which thrown the best results in each case. This process will allow us to see the improvement 
over noisy simulated conditions, then answering our research question stated in Chapter 1. 
This chapter is divided into four main parts: the first part is a conceptual framework where some 
concepts about arrhythmia detection and the new dataset information are presented. In the 
second part, a review of noise removal techniques is shown and the denoising techniques are 
chosen. In the third part, the review for brady- and tachycardia papers from the challenge 
outcomes are presented. This is made for choosing some of the arrhythmia detection 
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techniques to create different mechanisms. In the fourth part, the tests for each mechanism are 
run with and without noise. Results showing the influence of the best case denoiser over the 
performance parameters of each selected mechanism are presented and analyzed along with 
the conclusions at the end of this chapter. 
 
4.2. CONCEPTUAL FRAMEWORK 
4.2.1. Arrhythmia detection under noise conditions 
  
Noise conditions can induce distortion to the signal, making the information unrecognizable and 
therefore leading to a wrong clinical diagnosis. For this reason, several studies have proposed 
different mechanisms to clean up the signal. Most of them do it by removing the entire portion 
of the signal that contains the greater corruption of movement artifact noise [19,26]. Other 
studies opt for denoising mechanisms, so they don’t lose information that might be valuable for 
arrhythmia detection [14,17,29,74]. 
In the case of PPG signals, tachycardia and bradycardia detection under noise conditions has 
not been widely performed yet. The lack of open databases with arrhythmia events taken under 
movement of the patient is the main reason. Another option is the data collecting by our own 
means, but due to time constraints of informed consents, this could not be performed. The 
closest approach found was Bonomi's research. He proposed a technique for brady- and 
tachycardia events detection carrying out their normal routines (in free-living conditions), using 
a wrist wearable device for measuring PPG and acceleration data. ECG measures were also 
taken with another device, the total measure time was 24h [19]. We could infer from this paper 
that the signals used were affected mainly by low-intensity movement artifact noise. The 
reported sensitivities were 85% and 89% for bradycardia and tachycardia events detection, 
respectively. Therefore, we expect to improve the conditions for this arrhythmias’ detection 
under the reported low intensity artifact noise (wrists movements, according to Bonomi). It is 
also expected to obtain better sensitivity results than Bonomi. However, this comparison cannot 
be made because we don’t own the same database as Bonomi, but a simulated scenario. The 
main objective is not about the comparison with his study but about the improvement that might 
be induced by choosing an appropriate denoising technique. The main objective will be the 
choice of the best mechanism for these two arrhythmias’ detection. Then we expect that they 
maximize sensitivity and specificity results. Sensitivity is chosen because it is seemingly the 
most affected variable due to low intensity artifact noise, according to Bonomi’s results. 
Specificity was also chosen because the Challenge purposes the aim to maximize this variable 
as well.  
 
4.2.2. The 2015 Physionet/Computing in Cardiology (CinC) Challenge: Reducing False 
Arrhythmia Alarms in the ICU 

 
The dataset that we used as the information base corresponding to specific arrhythmias 
(tachycardia and bradycardia) was extracted from Physionet, on its 2015 Challenge version: 
reducing false arrhythmias in the ICU. This dataset contains information from a population of 
real patients in the ICU, who present five different types of arrhythmias. The participants 
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elaborate scripts for identification and posterior detection of the five arrhythmias, but we will 
focus on the two before mentioned. 

 
4.2.2.1. Purpose of the challenge 

 
The Physionet/CinC Challenge 2015 was set as an approach to reduce the incidence of false 
alarms in the ICU. They encourage the use of different algorithms that involve machine learning 
or digital processing techniques [81]. False alarms in the ICU can lead to a care disruption 
through several noise disturbances causing an impact over clinical staff and patients, such as 
sleep deprivation [82,83,84], inferior sleep structure [85,86], stress for both (patients and staff) 
[87,88,89,90] and depressed immune systems [91].  
These rest disruptions have a substantial effect on recovery and length of stay [92,87] due to 
elevation in cortisol levels (reflecting increased stress) [89,90]. ICU false alarms have reported 
rates as high as 86% [93] and only 2% to 9% of alarms are essential for patient management 
[94]. With this in mind, organizers of the challenge propose a classification task, where each 
five-minute record must be classified as a true or a false alarm. It should be highlighted that 
this task differs from Bonomi's one because of the type of assessment done in each one. The 
challenge considers each record as one instance of classification, while Bonomi considers time 
intervals within each record or measurement for brady- and tachycardia detection. 
Two different kinds of events were proposed by the challenge authors: the real-time event and 
the retrospective event. Both of these obey to the classification task explained above. The 
difference between them is the length of the recordings. The real time event assumes that there 
isn’t any data beyond the alarm triggering, then the classification is made with just the five-
minute information of the record. The retrospective event gave 30 seconds after the alarm of 
information for the participants to decide if use it or not. Both of these events are considered in 
this work, since they don’t differ greatly in the classification purpose. 
 
4.2.2.2. Tachycardia and bradycardia detection 

 
Bonomi's research is an essential reference for brady- and tachycardia detection. His technique 
uses the IBI intervals in PPG signals for detecting both arrhythmia events over time.  
Brady- and tachycardia sensitivity results obtained in his study could be improved by employed 
proper techniques over these artifacts. Portions of data were discarded if the movement artifact 
noise increased beyond a threshold, because these arrhythmias should be detected at rest 
conditions [33, 35]. But even in this kind of environment, when the person is not moving from 
one place to another, wrist movements induce low-intensity artifacts, as declared by the 
authors. Then, we aim to induce the low-intensity noise exactly in the moment of the arrhythmia 
occurrence. With this, we can evaluate the influence of this artifacts.  
After this, our main intention is to improve the sensitivity and specificity results obtained in the 
arrhythmia detection approaches from the challenge outcomes. We expect this scenario can 
simulate the arrhythmia detection scenario with low intensity movement noise, which was the 
one stated by Bonomi as the causative of the detection errors. Thus, it has been proposed a 
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comparison of the results under this noise conditions and then, applying denoising techniques 
retrieved from subsection 4.3. 
The guidelines have been given by the challenge organizers to recognize each one of the 
following arrhythmias, namely asystole, extreme bradycardia, extreme tachycardia, ventricular 
tachycardia, and ventricular flutter/fibrillation. According to the challenge documentation, these 
arrhythmias provoke the trigger of an alarm at the end of the recording (approximately 16 
seconds before the alarm). The competitors are encouraged to use the information before the 
alarm triggering to determine the real state of the alarm, either if it was a true or a false alarm. 
Specially the last seconds, because within this time interval would be encountered the cause 
for the alarm triggering. Due to signal length issues stated in Appendix D, the noise provoked 
by activities 1 and 6 from the IEEE SPC database are located in the same time frame as the 
arrhythmia event. 
This requirement fits in a proper way the contamination of the signal, because the portion of 
the signal which is used to make the determination is contaminated with the low intensity 
movement artifacts.     
The following definition of the five alarms types is used in this challenge [81]: 

 
● Asystole: no QRS for at least 4 seconds. 
● Extreme bradycardia (EB): heart rate lower than 40 bpm for 5 consecutive beats. 
● Extreme tachycardia (ET): heart rate higher than 140 bpm for 17 consecutive beats. 
● Ventricular tachycardia (VT): 5 or more ventricular beats with a heart rate higher than 

100 bpm. 
● Ventricular flutter/fibrillation (VF): fibrillatory, flutter, or oscillatory waveform for at 

least 4 seconds 
 
Our focus will be done over the cases of extreme bradycardia and extreme tachycardia, given 
that these definitions agree the most with those given in the theoretical framework of Chapter 
2.  
 
4.3. NOISE REMOVAL TECHNIQUES ON PPG SIGNALS  
4.3.1. Review Methodology 
 
An approach to a review methodology taken in this part of our work is the PRISMA Checklist 
for scoping reviews (ScR). This checklist is taken as a reference for the next explained steps 
and for this reason, only the most relevant aspects are taken. 
 
4.3.1.1. Rationale and objectives 
 
This review is made in the context of searching the noise removal methods that are more 
frequently used to clean PPG data corrupted by movement artifacts. The objectives of this 
review are the retrieval of some of these methods for a further implementation along with the 
arrhythmia detection algorithms. The background of this review has already been explained in 
section 4.2. 
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4.3.1.2. Selection criteria 
 
Articles were selected under a few eligibility criteria such as the year of the publication, the 
place of the PPG measurement stated in the study (preferably wristband) and the fact that the 
denoising algorithms were executed in software tools after the measurements (not made in any 
embedded component). 
 
4.3.1.3. Databases 
 
Table 4.1. exposes the results of the review from searches in EBSCO, Scopus, and Google 
Scholar databases.  
 
4.3.1.4. Search string 

 
The following search strings were used to provide the information compiled in Table 4.1. 
 
((artifacts OR noise OR motion AND artifacts) AND (ppg OR photoplethysmography) AND 
(denoising)) 

 
4.3.1.5. Data analysis 
 
The review for noise removal techniques is summarized as follows, using the search string 
provided above. It was possible to identify 41 articles and reduce them to 13 different articles, 
thanks to the eligibility criteria established. This allows declaring the 13 articles found in Table 
4.1. Finally, we explain the techniques that are of interest for our work, and provide an analysis 
of the advantages and disadvantages of each one of them.  
 

Paper Description of the Approach Analysis of the Results, 
advantages, and disadvantages 

Study 
Year 

Motion Artifact 
Reduction from 
Finger 
Photoplethysmogra
m Using Discrete 
Wavelet Transform 
[96] 

- Decompose noisy signal at different 
decomposition levels in order to analyze 
different frequency bands. 
- Soft thresholding method was used to 
remove the noisy components. 
- Different wavelet functions 
(Daubechies, Symlet, Coiflet) and soft 
thresholding methods ('rigrsure,' 
'heursure,' 'sqtwolog,' etc.) were used to 
denoise the corrupted PPG signal. 

- The mother wavelet 'db6' and 
'rigrsure' soft thresholding method 
showed the best result using 5 
level decomposition. This method 
could be an approach to a 
denoising process. 
- Statistical parameters are taken 
instead of classification ones. 
 
 
 

2019 

Improved Heart Rate 
Estimation from 
Photoplethysmograp
hy during Physical 
Exercise Using a 

- Preprocessing is made by simple 
passband filtering techniques (0.4 - 3.5) 
Hz. 
- The remotion of motion artifacts is made 
using a cascade and parallel combination 

- This approach seems to be a 
simple and effective technique. As 
a result, proper performance 
parameters are found. 
- However, some inputs (like 

2019 
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Combination of 
NLMS and RLS 
Adaptive Filters [97] 

of NLMS and RLS adaptive filters which 
have as the input PPG and tri-axis 
accelerometer data. 
- The denoised signal from NLMS and 
RLS filters are combined through convex 
combination. 
- Average Absolute Error: 0.96 BPM 
- The standard deviation of Absolute 
Error value: 1.21 

acceleration data) for this filtering 
are unavailable for the arrhythmia 
dataset we have created, since we 
made an estimation of the 
movement artifacts only for the 
PPG signal. 

Robust Heart Rate 
Monitoring for Quasi-
periodic Motions by 
Wrist-Type PPG 
Signals [98] 

- In this paper, a robust HR monitoring 
scheme for different quasi-periodic 
motions using wrist-type PPG is 
proposed, which consists of dictionary 
learning techniques.  
- Also it is used a human motion 
recognition technique for the current 
motion recognition and dictionary 
selection. Additional sparse 
representation-based MA elimination is 
used for denoising, and spectral peak 
tracking for HR-related spectral peak 
tracking. 

- The proposed scheme is robust 
to MA caused by different motions 
and has high accuracy. 
- Dictionary learning and human 
movement recognition techniques 
are too complex to be 
implemented, therefore are out of 
the scope of this work. 
Mathematical bases are described 
in the paper, but open scripts or 
examples about these techniques 
are not provided. 
- The same disadvantage as [97] is 
noticed, given that they 
necessarily use accelerometer 
data from their database. 

2019 

Denoising of PPG 
signal by wavelet 
packet transform [99] 

- PPG signals are denoised with wavelet 
techniques. Then, the signal is 
reconstructed and the denoised signal is 
obtained. 
The results are compared to adaptive 
filter techniques like Least Mean Square 
(LMS), Normalized Least Mean Square 
(NLMS), Recursive Least Square (RLS) 
and Savitzky-Golay filter. 

- The experimental result reveals 
that wavelet packet transform 
based thresholding gives better 
performance than adaptive filtering 
techniques and Savitzky-Golay 
filter. 
- The Mother wavelet family for 
signal decomposition is not 
specified. 

2018 

VLSI Wavelet-Based 
Denoising of PPG 
Signal [100] 

- They consider power line noise (60 Hz) 
for the performance evaluation of VLSI 
Wavelet-based denoising of PPG signal. 
- Different kinds of Wavelets such as db4, 
Coif1, Haar for denoising are considered. 
- Reconstruction is made with 
thresholding methods. 
- db5 denoising seems to show better 
results compared to other wavelets used 
in the denoising the PPG signal. 

- Wavelet methods seem to be the 
most used.  
- A heuristic approach is shown in 
this paper by comparing different 
kinds of mother wavelets, then 
allowing to conclude that there is 
not a predefined wavelet for a 
determined problem. 

2015 

Evaluation of 
Wavelets for 
Reduction of Motion 
Artifacts in 
Photoplethysmograp
hic Signals [101] 

- Daubechies (db10), biorthogonal (bior 
6.8), reverse biorthogonal (rbio6.8), 
symlet (sym8) and Coiflet (coif 5) 
wavelets are used in the evaluation. 
- db10 wavelet has the best results for 
retrieving respiratory signal without 

-The Daubechies was established 
by the authors as the most 
preferred wavelet for pulse-
oximetry applications and 
additionally, the results showed a 
better respiratory signal resorting 

2010 
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disturbing the signal in the attempt of 
removing movement artifacts. 
 

while removing motion artifacts 
(96% of the motion artifacts 
making bending movements and 
92% of the motion artifacts making 
vertical movements). 

PREHEAT: Precision 
heart rate monitoring 
from intense motion 
artifact corrupted 
PPG signals using 
constrained RLS and 
wavelets [102] 

- In this paper, a constrained recursive 
least-squares (cRLS) based denoising 
technique is presented.  
- A coupled, Wavelet-Fourier based 
frequency estimation technique is used to 
estimate HR more precisely.  
- To separate the clean PPG, the MA 
corrupted composite PPG signal is 
decomposed using the ensemble 
empirical mode decomposition (EEMD) 
based signal separation technique. 
- Mother Morlet wavelet is used. 
- When EEMD fails to separate the clean 
PPG from the MAs effectively, the new 
cRLS based denoising is used. 
- They use the same dataset as Zhang 
[74]. 

- The RLS denoising technique is 
used. However, authors declare in 
their state of the art that some of 
the former approximations done 
before with RLS have limitations 
(may not work well universally for 
all windows of the PPG signals). 
Moreover, they propose the cRLS 
method for dealing with these 
limitations. 
- cRLS technique uses the 
accelerometer signal for the first 
artifact reduction task, which is a 
limitation in our case. 
- Wavelet techniques are used for 
another purpose (heart rate 
estimation). 

2017 

SVM-based spectral 
analysis for heart rate 
from multi-channel 
WPPG sensor 
signals [103] 

- A mixed approach called Mix-SVM is 
proposed. It uses the same dataset as 
Zhang [74] 
- The proposed method is comprised of 
five main stages, of which three of them 
are for denoising: preprocessing, initial 
motion artifact reduction, and sparse 
signal reconstruction model. 
 

- Although SVM is used for heart 
rate estimation, the denoising 
processes are done by adaptive 
filtering of PPG signals (LMS 
filtering) using a “reference” motion 
artifact signal which was extracted 
from Principal Component 
Analysis (PCA) 
- Reference motion artifacts 
extraction is made through PCA of 
the accelerometer, which is a 
limitation in our case. 
- The average absolute error in the 
approach is 1.01 bpm 
- The Pearson correlation was 
0.9972. 

2017 

Unobtrusive heart 
rate estimation 
during physical 
exercise using 
photoplethysmograp
hic and acceleration 
data [104] 

- The proposed algorithm consists of four 
stages, of which the first two were for 
denoising purposes: a wavelet-based 
denoising and an acceleration based 
denoising.  
- A Meyer wavelet was chosen as mother 
wavelet in all DWTs. 
- For the proposed wavelet-based 
denoising system, a three-level 
decomposition-reconstruction tree is 

- Results are satisfactory for this 
study, considering that they used 
the same dataset as Zhang [74] 
and obtained similar results 
regarding the mean absolute error 
and a smaller standard deviation. 
- Even when it has already been 
said that we do not have 
accelerometer data, the approach 
using wavelet decomposition, and 

2015 
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realized, taking into account that the 
sampling frequency is 125 Hz. 
- Results obtained:  
Mean absolute error: 1.96 bpm  
Standard deviation: 2.86 bpm 
Correlation: 0.98 

specifically the decomposition-
reconstruction level, is considered 
for our work. 

Photoplethysmogra
m (PPG) signal 
analysis and wavelet 
denoising [105] 

- Besides showing the disadvantages of 
other types of widely used denoising 
techniques such as Fast Fourier 
Transform (FFT), adaptive filters, 
Periodic Moving average filter (PMAF), 
and LMS adaptive filter; they propose to 
analyze a wavelet denoising method 
through various mother wavelets. 
- Three mother wavelets are studied, and 
the performance of them is evaluated 
based on the cross-correlation with the 
original signal. Haar, Daubechies (db4) 
and symlet (sym3) wavelets are used. 

- The signal reconstruction results 
are more accurate with db4 mother 
wavelet. Other wavelets had a 
lower cross-correlation with the 
original signal, showing that they 
are less effective for their data. 

2014 

Dual-tree complex 
wavelet transform 
motion artifact 
reduction of PPG 
signals [106] 

- Dual-tree complex wavelet transform 
(DT-CWT) and the inverse of DT-CWT 
are presented. This method performs two 
wavelets procedure in parallel using the 
real and imaginary part followed by the 
common high and low filtering banks. 
- db10 wavelet is used to compare it with 
the proposed method. 

- This research proposes a method 
called "dual-tree complex wavelet 
transform" as a mechanism mixed 
with a thresholding procedure. It 
merely mentions its outcomes 
comparing them to the Daubechies 
10 mother wavelet. However, the 
authors do not provide the code. 
- Using real and imaginary part of 
the wavelet transform is taken as 
an interesting method, but a 
challenging one though, since 
working with both parts increases 
algorithm complexity. 
- Daubechies wavelet is taken as a 
good suggestion for a wavelet 
decomposition denoising 
approach. 

2012 

An effective method 
to denoise EEG, 
ECG and PPG 
signals based on 
Meyer wavelet 
transform [107] 

- This approach uses Meyer Wavelet 
decomposition to extract the motion 
artifact, which is subsequently utilized as 
the reference input of an adaptive filter for 
noise cancellation. 

-Many different techniques are 
mentioned for each signal 
separately, they do not mention the 
use of any wavelet technique for 
PPG, while they do for ECG or 
EMG. 
- The authors broadly explain what 
is the purpose of the wavelet 
decomposition for noise extraction. 
However, the authors do not 
clearly discuss the results nor the 
improvement provided by the 
denoising process. In addition, 
they do not specify which method 

2018 
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was used.  
- As a conclusion, discrete Meyer 
wavelet with soft thresholding is 
said to be effective for artifact 
removal, but it is not clear over 
which signal it is effective. 

Denoising of EEG, 
ECG and PPG 
signals using the 
wavelet transform 
[108] 

The proposed algorithm makes a peak 
detection in all three signals, and then a 
new one after the wavelet decomposition. 
The signals used in the process are not 
explicit referred by using just the notation 
for ECG signals.  

- Wavelet transform may be carried 
out for EEG, ECG, PPG denoising. 
The authors state that wavelet 
packets can be used as well, and 
provide higher consequences. 
They provide results for each 
denoising process of the signal 
and SNR is calculated. SNR 
results are better for EEG, PPG, 
and ECG in descending order. 
- The Mother wavelet used for the 
decomposition techniques is not 
specified. 

2018 

Table 4.1. Summary of analyzed works for noise elimination techniques in PPG signals 
 
4.3.1.6. Analysis of the review 
 
Table 4.1 highlights important information about these denoising techniques. First, the majority 
of the used techniques are those who perform a wavelet decomposition (either by wavelet 
packet transform or discrete wavelet transform) [96, 99, 100, 101, 104, 105, 106,107, 108]. In 
the second place, stand the adaptive filtering methods, namely LMS, NLMS, and RLS. 
However, paper [99] suggests that wavelets show better results than adaptive filtering or 
smoothing techniques (where Savitzky-Golay filtering is briefly mentioned). Authors consider 
performance measures such as MSE and PSNR, to make a comparison. Techniques as the 
ones presented in [98] could be overly advanced for what is needed, which is a fast and 
effective denoising of the signal so that it does not affect the internal processing performance 
of the given arrhythmia detection algorithms. 
EEMD method is mentioned in [102] for artifact separation from the signal, just as another 
reviewed approximations like [17]. Also, in [44], it is defined as an effective method for artifact 
removal on systems that have only a single channel. It is stated that these types of methods 
are usually utilized in the personal healthcare domain due to the desire for low hardware costs 
and operational setup complexity. Some limitations over this method are the empirical bases 
where it comes from, as explained in subsection 4.4.3. 
Methods like adaptive filters are seen as desirable techniques. However, implementation 
searches carried out showed that although these are methods available in the documentation 
from the tool, they need a reference signal so the filters can adequate their transference 
function (according to the criteria they use to minimize error). As this approach is supposed to 
simulate a scenario where only the corrupted signal is available, it can’t be afforded because 
one entry for this filter would be missing.  
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Figure 4.1 shows that more than half of the studies mention wavelet denoising, where all 
methods use thresholding to recover the appropriate signal information for reconstruction. 
  

 
Figure 4.1. Percentage of denoisers types found in review from Table 4.1. 

 
For our work, various techniques are taken into account and then, tests will be made for each 
one of these them, following the proposed model in [100]. We decided to give a heuristic focus 
towards wavelets. Wavelets have an enormous quantity of possibilities respecting the mother 
wavelet that is used, the vanishing moments, and so on. But this could also be seen as a 
disadvantage, since it does not exist a criterion that allows specifying which mother wavelet is 
the one that better couples the given application, neither it provides a rule for 
deconstruction/reconstruction levels. 
As a solution, a comparative test is planned, with different types of proposed wavelets which 
will be chosen following more detailed research on the desired features of these wavelets. This 
theoretical suggestions plus the results of this review allow to select the wavelet families. 
Suggestions from the listed studies will be taken for the mother wavelet choosing. For example, 
the suggestion of [101] for using Daubechies wavelets since they are the preferred ones for 
pulse oximetry applications. Regarding the reconstruction coefficients, various approaches with 
fixed reconstruction levels are proposed, and an approach that proves the soft thresholding 
reconstruction is proposed as well. A final decision on the selected techniques can be seen in 
subsection 4.4.5. 
 
4.3.2. Challenges and Contributions 

 
Our main challenge in this chapter is to select the most effective techniques for denoising the 
PPG signal. This implies that these techniques allow improving the sensitivity and specificity 
parameters obtained over noisy signals conditions. This task is challenging because there is 
not a unique denoising method (especially regarding wavelets) for each application that is 
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needed. Therefore, we propose to make a comparative evaluation of noise removal techniques 
with each one of the arrhythmia detection algorithms provided. 
Our goal is to configure a mechanism consisting of a denoising process and arrhythmia 
detection process, which is able to provide good classification performance if the input is a 
noisy signal. We are also trying to identify the best denoising method for each detection 
algorithm, which is evaluated later in subsection 4.6. 

 
4.4. APPROXIMATIONS TO NOISE REMOTION TECHNIQUES  

4.4.1. Wavelet-based denoising 
4.4.1.1. General concepts 
 
Wavelets are a new problem-solving tool, which has been applied to several areas such as 
mathematics, physics, and engineering [126]. Unlike Fourier series which base functions are 
sinusoids, wavelets create a family of base functions. Depending on the desired properties, 
these base functions can or cannot be orthogonal (however, it is more likely to seek that they 
are orthogonal) [125]. Fourier analysis offers a complete frequency domain, but it loses time 
domain; even with techniques as STFT (by selecting just one segment of the signal), the 
method is limited due to the fixed size of the window. If a full window is selected, the frequency 
resolution is weak, as it is stated by Heisenberg principle of uncertainty (frequency, and 
duration cannot be measured for a determined precision degree) [127]. 

 
Figure 4.2. A grid is showing how STFT and WT split the time-frequency domain [153]. 

 
Wavelets allow a time-frequency analysis through two processes: scaling and translation [128]. 
Both procedures are stated as a parametrization, which is made in the mother wavelet 
expansion equation. Every function 𝑓(𝑡) can be expressed in terms of a double parameter 
system, which orthogonal base is the mother wavelet and it’s characterized by expansion 
coefficients. These coefficients are denominated as discrete wavelet transform [125]. A wavelet 
family has subclasses, often given by the number of vanishing moments it possesses (these 
vanishing moments are better recognized by the number aside the family of wavelets that is 
mentioned), and this number is related to the number of wavelet coefficients [128]. 
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While Fourier establishes a unique base function for all applications, in wavelets, it is decided 
which mother function or orthogonal basis will be used for a specific application [125]. Although 
this would suppose an infinite or extensive set of different wavelets for the same application, 
we decide to choose those who comply with the desired conditions for multi-resolution analysis 
(MRA). More detailed information about why wavelet analysis is effective is referred in [125] 
and more detailed information about the advantages of wavelets can be referred in [125,128]. 
Wavelet transforms are mainly divided into CWT (continuous wavelet transform) and DWT 
(discrete wavelet transform). The discrete analogous of WT arises in the multi-resolution 
analysis context, which pretends the calculation of approximation and detail coefficients using 
a tree structure, called the Mallat algorithm. This algorithm bears considerable resemblance 
with a high and low pass filter bank. 
Almost every useful wavelet system satisfies the MRA requirements [125]. However, there exist 
mother wavelets which are not computationally feasible and therefore implementable. The 
multi-resolution analysis allows analyzing the signal in different sized time and frequency 
windows. The translation of the wavelet allows localizing time events, while the scaling of the 
wavelet gives a detail representation or resolution [125]. 
 

 
Figure 4.3. Translation and scaling processes of a mother wavelet [125]. 

 
Not all of the wavelets have the same shape. The shape can change as the wavelet system is 
designed, and it depends on the desired application. In 1986 Meyer and Mallat demonstrated 
that orthonormal wavelet decomposition and reconstruction could be implemented in the 
context of signals multi-resolution analysis [130]. For this reason, there exist desirable features 
for the wavelets used in this analysis, such as orthogonality and compact support. Those 
wavelets which accomplish these properties are the most used. Besides the Haar wavelet, 
there were not any other orthogonal wavelets with compact support, until Daubechies, in her 
work [129], generated a family of functions which complied with both conditions and also 
mentioned other features as regularity. Haar, Daubechies, Coiflet, and Symlet wavelets are 
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included within this orthogonal, compact supported, and computationally feasible wavelet set 
[131]. 
 
Stephane Mallat produced the Mallat algorithm in 1988. This algorithm calculates the 
approximation and detail coefficients successively, by decomposing the signal spectra in 
smaller bands each time [128]. Approximation coefficients are the ones who contain the 
‘smooth’ or the coarse information of the signal, and the details coefficients are the ones which 
contain the detailed information at each decomposition level, as it can be seen from figure 4.4. 
This decomposition can be done in the required levels, having in mind that each time it goes 
lower in the decomposition tree, more detail is made in smaller frequency bands and less 
approximation or low frequency information is left. 
 

 
Figure 4.4. Spectra division in the Mallat algorithm [152]. 

 
4.4.1.2. Noise reduction by wavelet decomposition  
 
The reconstruction and posterior denoising through Mallat’s algorithm are done again by a filter 
bank, as it can be seen in Figure 4.5. Those coefficients which characterize the signal and 
avoid noise are chosen. Therefore, a differentiation of the frequency bands which are not 
needed is made, and then, the coefficients which do not contribute much to the signal's 
information are suppressed. In this way, by reconstructing the signal with the desired 
coefficients, also is being performed denoising [108]. 
The reconstruction can be made through fixed coefficients (if recognition of the frequency 
distribution is made) or employing thresholding. This last is a system where it is globally 
reviewed, which are coefficients where a higher noise concentration exists. If the noise 
components surpass a threshold (defined by the type of thresholding made), then the 
coefficient where the noise is located is suppressed [128].  
In Figure 4.5, it can be seen the decomposition process as a filter bank system. It is desired 
that this filter bank satisfies the condition of the quadrature mirrored filters, which are commonly 
used in signal processing [149]. In other words, it is desired that the wavelet family satisfies a 
perfect reconstruction of the signal, although the idea of ideal filters is impossible. Under certain 
conditions, some wavelet families like Daubechies and others created by the same Ingrid 
Daubechies have demonstrated to provide a perfect reconstruction of the signal. 
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Figure 4.5. The decomposition process is seen as a filter bank [154] 

 
As stated in subsection 4.4.1.1, and in [140], orthogonality and compact support are features 
desired in wavelets for multi-resolution analysis (MRA). Also, the computational feasibility of 
these wavelets used for the MRA is desired, mainly because the filters used for this analysis 
are FIR filters. Some wavelet families are not feasible as FIR filters, but approximations of them 
are made with IIR filters.  
The main wavelets which accomplish these three conditions are: Haar, daubechies, symlet and 
coiflet. These features have been extracted from MATLAB tool documentation since it is the 
software used for this signal processing task, by using the waveinfo command. 
 
Figure 4.6. presents the absolute frequency of the types of wavelet used in the literature review 
of noise reduction approaches. It can be seen that the more used wavelets are daubechies, 
coiflet, and symlet, in descending order. Daubechies wavelets seem to present the best results 
in terms of noise reduction in all the studies which used them in the review. Also, considering 
the documentation available for their implementation in [140], symlet and daubechies wavelets 
are the preferred wavelets for denoising signals. This last consideration puts daubechies as 
the preferred ones, followed by symlet and coiflet wavelet families. 



 

 61   

 
Figure 4.6. Absolute frequency of wavelet families used in the literature review. 

 
Lastly, Daubechies and symlet wavelets are chosen for this analysis, although the coiflet family 
could have been chosen. In the following subsections, a description of the specific 
decomposition levels is made for each wavelet family, taking into account the results from the 
previous review. 
 
4.4.1.3. Daubechies wavelet family 
 
The Daubechies wavelet family is one of the most mentioned in the review of Table 4.1, where 
it can be seen that it has been used in several studies obtaining the best results in terms of 
MSE, PNR, MAE, SNR, MAD, among others, varying in the study [96,100,101,105,106]. 
According to [108], this is the preferred artifact noise reduction technique for pulse oximetry 
applications. In our experiments, the first test will use the wavelet configuration presented in 
[96], which corresponds to db6 with five decomposition levels. Then, the next two tests are with 
db6 from [96] and db10 from [101,106], which demonstrated good outcomes. The 
decomposition levels for these two approaches will be 4, since we consider it is an excellent 
approach for the PPG signal frequency distribution (0 - 3.9) Hz. Mallat's algorithm structure in 
Figure 4.4 was taken into account, throwing the decomposition/reconstruction levels, which are 
closer to the PPG frequency distribution (3 and 4).  
Also, as proposed by [104], db8 mother wavelet is used with three level 
decomposition/reconstruction. This decomposition level is expected to provide good results as 
well as in the study, because the bandwidth retrieved from a three-level reconstruction is 
reasonably near to the one from the PPG signal. Calculations throw a bandwidth of (0 - 7.81) 
for this three-level decomposition, by dividing the sampling frequency of the signal between 
2N+1, where N is the decomposition level. 
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Also, we will take the approximation coefficients for all wavelets approach, given that it is 
already known that the PPG signal information is more concentrated in low frequencies rather 
than in high frequencies. 
Summarizing the approaches named, we have proposed four daubechies cases for denoising, 
based on the results of the literature review along with heuristic proposals, from which we 
expect good results. The analyzing mother wavelets possess a scaling function, which is the 
one that gives the approximation coefficients, and the most known wavelet function, which is 
the one that gives the detail coefficients. In Figure 4.7, an example of the wavelet functions for 
wavelets with different vanishing moments from the Daubechies family are shown. 
 

 
Figure 4.7. Wavelet functions from the Daubechies family [131]. 

 
4.4.1.4 Symlet wavelet family. 
 
Symlet family wavelets own their name because of "symmetrical wavelet," even when they are 
almost symmetrical. They were proposed by Ingrid Daubechies, as a modification to the 
daubechies wavelet family. In [96] it has used a wide range of symlet mother wavelets, from 
sym1 to sym5, also in [105] and [101], they use sym3 and sym8, respectively. The 
decomposition/reconstruction level calculation mentioned above is used in both of the 
approaches for this wavelet. In this way, sym4 as in [96] with three levels 
decomposition/reconstruction will be used. In addition, we will test sym6 with three levels of 
decomposition since its fixed-bandwidth in the frequency domain sets an appropriate interval 
for retrieving PPG signal information. In the Figure 4.8 below, the wavelet functions for the 
symlet family with different vanishing moments are shown. 
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Figure 4.8. Wavelet functions from Symlet family [131]. 

 
4.4.2. Noise reduction by smoothing filters 
 
As it was stated in the review from Table 4.1., more specifically in [99], a comparison of wavelet 
denoising technique is made against other techniques, namely LMS, NLMS and RLS and 
Savitzky-Golay filtering. Despite the results obtained, which favored the wavelets (as 
expected), other approaches like Savitzky Golay smoothing filters (which are inside this study) 
are considered.  
In terms of the frequency components, a smoothing process can be seen as a low pass filtering 
operation. It eliminates the high-frequency components, and let pass low-frequency 
components with small changes [133]. The purpose of smoothing techniques roots in the fact 
that a signal varies slowly and simultaneously is also being affected by random noise. Thus, 
an estimate of a sample can be calculated from the adjacent ones (since their location do not 
vary greatly), reducing the noise level without biasing the value obtained [134]. 
Savitzky-Golay filtering method, also called as least squares smoothing filters or DISPO (Digital 
Smoothing Polynomial) filters; is based in a polynomial adjust over a data window. Unlike other 
smoothing methods as averaged windows, the task in this method is to approximate signal 
segments inside a window through a superior order polynomial, which is usually done from 
quadratic to quartic orders [133]. However, in comparison with averaged window methods, it is 
a little less effective for noise reduction but better at retaining the signal's original shape [133]. 
How big this window should be is not answered in the same way in every case, and it depends 
on what we want to do with the signal. The wider the window, the more points it will have for 
the smoothing, and therefore, it is more likely to distort the shape of the signal [133]. 
In other cases, smoothing filters as the median filters are more helpful in cases as spikes or 
outliers. Since Savitzky-Golay tries to maintain the shape of the signal, it could be more prone 
to keep these spikes, which is not a problem for median filters. These kinds of filters are 
effective if the spike is one or a few points wide (equal or less than the window size of adjacent 
points considered) [133]. This is the reason why we propose this filter for the task, although we 
know there is a wide set of smoothing techniques available for this situation. 
However, median filters act poorly at preserving the edges, where the samples start to scarce, 
although this limitation is often more seen in digital image processing than signal processing. 
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In addition to this, at computational practice, the window size is truncated at the endpoints when 
there are not enough samples, and the median is calculated over the elements that fill that 
window [135]. 
More detailed information about this smoothing algorithm and their features can be seen at 
[133][134]. 
 
4.4.3. Noise reduction by EMD algorithms 
  
Empirical Mode Decomposition (EMD) method is mentioned in some papers as a suitable 
method to recover the signal from noise components, such as in [17,102]. Other authors use 
this technique in combination with other techniques to enhance noise elimination, for example, 
combining it with DWT [136], using it for thresholding along with wavelets [137] and with 
smoothing methods like the Savitzky-Golay [138]. This technique along with the Hilbert Spectral 
Analysis (HSA) is a fundamental part of a major technique called Hilbert-Huang transform 
(HHT). EMD decomposes the signal in a finite and usually small set of several signals 
(denominated IMF), which range from the finest temporal scales (high frequencies) to the 
coarsest temporal scales (low frequencies) [138], through an iterative process called sifting 
[137]. This approach makes it comparable to methods such as Fourier transform or a Wavelet 
transform. 
It has highlighted its independence of using fixed-functions based on a base function (as in 
wavelets or Fourier), because EMD is able to reconstruct a signal from the IMFs, rebuilding 
only those that do not have noisy content, through a comparison process. If the energy of a 
noise-only IMF is known, this is compared to the energy of the IMF obtained from a signal that 
contains both noise and valuable information. Then, a comparison is made, looking at the 
discrepancy between these energy values. If it has retrieved a high value, the IMF can be 
maintained, in the opposite case, it is discarded [137]. 
First implementations of this method were proposed by Flandrin et al. and Wu et al. [137], and 
ever since then, various improvements have been proposed. However, EMD lacks 
mathematical theory, and up until now, it is only described by algorithms, besides the fact that 
HHT6 (Hilbert-Huang transform) theoretical bases are purely empirical, as Huang in [139] 
emphasized it. Another limitation are mode mixing problems and signal end effect presented 
when calculating HHT. These could be mitigated by EEMD (Ensemble Empirical Mode 
Decomposition), but this technique will not be referred to in this work, because it hasn’t been 
encountered a resource which can provide with an implementation of this ensembled 
technique. 
 
4.4.4. Conclusions 
 
The state of art review from subsection 4.3 shows a variety of techniques which are applicable 
for artifact noise elimination in PPG signals.  We have selected seven wavelet-based 
techniques, one EMD and two smoothing filter techniques.  

 
6 Hilbert-Huang transform refers to the combined method of empirical mode decomposition and Hilbert 
spectral analysis. This issue has only been empirically tested and validated. 
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The wavelet approaches include the daubechies family with vanishing moments: 6, 8, and 10 
with the fixed recomposition methods found in the literature. Symlets at orders: 4 and 6 with 
fixed recomposition (one of them considered in the review) and also a thresholding technique. 
This thresholding will be implemented over all the wavelets mentioned previously, because it 
is also wanted to analyze which one of the reconstruction methods fits in a best way this 
application. The thresholding denoising which gives the best results over all cases will be the 
one which will be compared with the fixed reconstruction methods. Thresholding method will 
be "soft" since it is the most used of all articles from the review in Table 4.1. Regarding the 
EMD method, an open source script will be used, which was previously analyzed. Thus the 
functioning and sifting method are understood. The two smoothing filters to be implemented 
are Savitzky-Golay and median filters, which are tested with different windows, calculated 
experimentally.  
All of these methods will be accompanied by a detrending process that will help to reduce low-
frequency artifacts, as some of these methods deal with high-frequency noise only. Then, the 
integrated implementation of these two techniques will conform to each denoiser method. More 
information of the implementation of these denoising methods can be seen in Appendix D.  
Positive results in the improvement of brady- and tachycardia detection are expected, through 
the comparison of these ten techniques. The evaluation of the methods performance will be 
part of the evaluation of the accuracy of arrhythmia detection classifiers described in the next 
section. 
 
4.5. REVIEW OF TACHYCARDIA AND BRADYCARDIA DETECTION 
MECHANISMS 
4.5.1. Review methodology 
 
The review performed for choosing the algorithms that will be used for the detection of brady- 
and tachycardia is based on the results obtained by the Physionet/CinC Challenge scoring 
system. These are currently published and available in the Computers in Cardiology journal. 
We made this review to find the most suitable arrhythmia detection algorithms for their further 
integration with the selected denoise techniques proposed in the last section. 
 
4.5.1.1. Selection criteria 
 
In this short review, various selection criteria were taken into account and later used for 
choosing the arrhythmia detection algorithms which are adapted with denoisers. As the first 
and most important criterion, we considered the fact that these algorithms use the PPG or ABP 
signals (either uniquely or mainly) in arrhythmia detection. If the arrhythmia detection is only 
based on the ECG signal, or the PPG signal is used as the last classification resource, the 
classifier is discarded. This because we intend to improve the classification in PPG signals 
contaminated with artificial movement noise added to the PPG signals. Therefore, if the 
classifier only uses the ECG signal, we do not expect an effect of the denoising process. 
As the second criterion, we take into account that the developed algorithms try to stick as much 
as possible to the base structure that was provided for the competitors because these set of 
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scripts suggest from the beginning an arrhythmia detection based on pulsatile waveforms 
resampled at the same sample frequency as the generated noise. The competitors were given 
total freedom to change scripts, create new functions, or make everything from scratch. For 
this reason, we look forward to use scripts with a similar structure as the base one, which will 
be one of the tests (the simplest case of arrhythmia detection). 
Finally, some of the classification methods include machine learning algorithms, as specified 
by competitors in their corresponding papers. It should be mentioned that these algorithms 
sometimes are easy to understand in theory, but complex to understand in the code. For this 
reason, if it is the case, we will discard some of them because of the complexity of the functions 
used, since what we want is to understand the steps followed by them rather than blindly 
execute processes without knowing their internal operation. 

 
4.5.1.2. Data analysis 
 
Nineteen contributions were the outcomes from this competition. The 16 articles shown in Table 
4.2 were selected after applying inclusion and exclusion criteria. 

 
Contribution Signal 

used 
Techniques and performance 
parameters or main features 

Gaps 

Decreasing 
the False 
Alarm Rate of 
Arrhythmias in 
Intensive Care 
Using a 
Machine 
Learning 
Approach 
[109] 

PPG/AB
P and 
ECG 

-Random Forest classifiers were trained 
separately for every type of main arrhythmia 
feature. Five predictive models were created. 
- Downsampled to 125 Hz. 
- Uses 500 data from the training set, 
unannotated during the challenge 
- Reported classification sensitivity is 75–99 
% (average 93 %) on the training set with 
cross-validation and 22–100 %(average 
90%) on the unrevealed test set. 
- Reported classification specificity on the 
training and test set were 76–94% (average 
80%) and 75–100% (average 82%), 
respectively. 

Even though both the ECG 
and ABP/PPG are used, the 
approach already included a 
very robust algorithm, were 
many denoising processes 
are made along the machine 
learning process. This issue 
makes the identification of the 
place for including the 
denoising process very 
problematic. 
The quality attributes 
selection may cause that 
many signals are discarded, 
specially ABP/PPG (if these 
are noised), leaving as the 
only signal the ECG. 
Moreover, one single 
computation of the main loop 
lasted at least 2 minutes, 
becoming then a low feasible 
method for testing every 
denoising case. 

Enhancing the 
Accuracy of 
Arrhythmia 
Classification 
by Combining 
Logical and 

PPG/AB
P and 
ECG 

- Combination of logical and SVM-based 
machine learning techniques. 
- Sample frequency: 250 Hz 
- The feature set includes R-R intervals, 
power spectrum density, autocorrelation plot, 
and standard deviation values. 

-Fs is not specified. 
-The primary disadvantage of 
the methods can be 
attributed to the non-usage of 
PPG/ABP signals for VT 
(ventricular tachycardia) and 
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Machine 
Learning 
Techniques 
[110] 

-They make signal preprocessing for 
subtracting low-frequency noise; it means 
baseline drift (bidirectional second order 
Butterworth filter) 
- If any of the records had flat-lines or zigzag, 
then it was discarded. 

VF (ventricular flutter). 
-Sensitivity is not specified. 
- As they consider the noise 
as a limitation for VT 
prediction, they use more 
methods over ECG signals, 
which could be a limitation. 
 
 

Reducing 
False 
Arrhythmia 
Alarms Using 
Robust 
Interval 
Estimation 
and Machine 
Learning [111] 

PPG/AB
P and 
ECG 

Classifiers include:  
Binary classification trees (BCTs) 
-Discriminant analysis classifiers (DACs) 
-Support vector machines (SVMs) 
-Linear and pseudo quadratic discriminant 
analysis classifiers. 
-Preprocessing by resampling to 100 Hz, 
bandpass filtering with 1-30 Hz and 
normalization to zero mean and unit standard 
deviation is performed but not explained.  

- Sampling frequency is not 
compatible with the one used 
in our noise. 
- No quality indexes are used, 
or at least not those they 
mention. 

Reduction of 
False Cardiac 
Arrhythmia 
Alarms 
through the 
use of 
Machine 
Learning 
Techniques 
[112] 

PPG/AB
P  

This article intends to reduce the number of 
false arrhythmia alarms implementing 
decision trees, which have been shown to 
generate consistent results in reducing false 
cardiac arrhythmia alarms, because of its 
robustness to noise in the data and because 
its low computational complexity. 
- Downsampled to 125 Hz. 
-Sensitivity: real-time event (79%); 
retrospective event (84%) 
-Specificity: real-time event (84%); 
retrospective event (89%) 

- This study uses only 
PPG/ABP signals, which 
makes it suitable for our 
analysis. 
-Alternative, machine learning 
techniques were considered 
for future works: neural 
networks, fuzzy logic, and 
support vector machines. 

Reliability of 
Clinical Alarm 
Detection in 
Intensive Care 
Units [113] 

PPG/AB
P and 
ECG 

- Analysis techniques and main features: 
High-pass filtering to remove baseline 
instability, scaling to normalize waveform 
amplitudes, detection of noisy and flat 
waveforms, differentiation to accentuate 
sharp waveform edges, beat detection, the 
timing between beats preceding alarm onset, 
and detection of alarm conditions 
-Sensitivities: training (89%); Testing (88%). 
-Specificities: training (38%); Testing (38%) 
ECG data alone used for training can obtain 
an average sensitivity of 88%. After adding 
the arterial blood pressure and peripheral 
pulse: 
-Sensibilities: Training (91%); Testing (84%). 
-Especificities: Training (25%); Testing 
(29%) 

- They first considered using 
algorithm without PPG/ABP 
data, showing a noticeable 
decrement of the 
performance parameters after 
adding these signals; for this 
reason, they consider using 
only ECG. 
- Sensitivity improved (2% 
only in training) by including 
arterial blood pressure and 
pulse data, this improvement 
was offset by a reduction in 
specificity (of 13% in training 
and 9% in testing). Since this 
additional data creates new 
false positives; authors 
highlight the need for finding 
new analysis techniques to 
improve performance 
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parameters. 

Reducing 
False 
Arrhythmia 
Alarms in the 
ICU by Hilbert 
QRS 
detection 
[114] 

ABP/PP
G and 
ECG 

-Removes high and low-frequency 
components by using two median filters for 
ECG channels. Missing values were 
replaced with zeros.  
-Detects D-waves QRS complex using 
Hilbert filter from ECG channel. 
-Signal Quality Index (SQI) was calculated 
from ABP and PPG signals 
-Template matching was used to detect 
ventricular tachycardia (VT) and the power 
spectrum of ECG signals and identifying the 
VF frequency components employed to 
investigate ventricular fibrillation. 
- Retrospective algorithm: 98% (TPR), 66% 
(TNR) with a score of 74.03.  
Real-time algorithm: 98% (TPR), 65% (TNR) 
and a score of 69.92%. 

- The main denoising and 
processing techniques are 
used for ECG signals, which 
could be a limitation for our 
work since ECG clean signal 
improves, and it is beyond our 
scope. 
- The noise removal 
procedure is operated for 
QRS complex cleaning and 
detection in ECG channels 
using filters. 

A Multimodal 
Approach to 
Reduce False 
Arrhythmia 
Alarms in the 
Intensive Care 
Unit [115] 

ECG - 
ABP/PP
G 

- To find the heart rate from PPG-ABP, they 
use an OSC-ANF filter, which changes its 
central frequency to follow the instantaneous 
frequency of the signal. Then, this algorithm 
is extended to multiple input signals, and 
again, it is extended to the complex domain. 
- Denoising is made to ABP/PPG signals at 
the beginning (sum of noise after this filter or 
remove filter), with eighth-grade lowpass 
Butterworth filter of cut frequency 5 Hz. 
- In order to reach a more robust detection, 
algorithms are fed with smoothed versions of 
ABP/PPG signals by means of moving 
averaging. 
-Sensitivities: real-time (94%) - retrospective 
(99%) 
-Specificities: real-time (77%) - retrospective 
(80%) 

- Resampling to 5 Hz makes it 
incompatible with our noise 
approximation. 

Identification 
of ECG Signal 
Pattern 
Changes to 
Reduce the 
Incidence of 
Ventricular 
Tachycardia 
False Alarms 
[116] 

ABP/PP
G and 
EGC 

- They obtain SQI for ABP/PPG, and it is 
compared with the threshold, which is 
different for each type of alarm. 
- They make the detection with SQI because 
any other machine learning method is 
mentioned. It seems that the principal signal 
processing has been given to ECG signal in 
VT, with the five proposed hypotheses test. 
- However, the algorithm used an additional 
threshold for the QRS complex shape 
feature, based on standard deviation. 
- No testing information is provided, just for 
training, where: sensitivity: 92.5%, 
specificity: 74.5 % 

- Even when the title suggests 
the opposite, the ECG signal 
is used to detect ventricular 
tachycardia, the other four 
arrhythmias are detected 
through PPG/ABP. 
- However, by not having 
various methods for pulsatile 
signals, except for the 
thresholds, it is seen as 
something very similar to the 
base code. 
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Multi-modal 
Integrated 
Approach 
towards 
Reducing 
False 
Arrhythmia 
Alarms During 
Continuous 
Patient 
Monitoring 
[117] 

ABP/PP
G and 
EGC 

- Five arrhythmias are treated as 
independent problems, so they use five 
subroutines for each one of them. Each 
subroutine has two main steps: peak 
detection and alarm verification. 
- Signals are resampled to 125 Hz. 
- For PPG: wabp routine from Physionet is 
used. If it is a PPG signal, it is scaled before 
introducing it to the routine. 
- Quality coefficients from PPG and ECG are 
calculated. 
-Sensitivities: real-time (89%); retrospective 
(89%) 
- Specificities: real-time (84%); retrospective 
(87%) 

- They use ABP/PPG signals 
in a good way in arrhythmia 
detection, even in asystole, 
where the signals are 
supposed to have the worst 
quality. 

Multimodal 
Data 
Classification 
using Signal 
Quality 
Indices and 
Empirical 
Similarity-
Based 
Reasoning 
[118] 

ABP/PP
G and 
ECG 

- They do not make a preprocessing further 
than what it has provided in the base script. 
However, they obtain an SQI for each signal. 
- Five additional features are retrieved, 
based on the heart rate. 
- A correlation of which register belongs to 
which arrhythmia is made using the SQI and 
additional features. If the similarity increases 
more than a determined threshold, the record 
is taken as the arrhythmia case. 

- No mention of the used 
algorithms for peaks 
extraction is made. Neither do 
they mention what type of 
signals they use to extract 
them. It could be inferred that 
they use ECG because of the 
reference to RR intervals, but 
this assertion cannot be made 
with total certainty in such an 
ambiguous case. For this 
reason, it is discarded, even 
though it is a good, novel, and 
different method. 

Reducing 
False 
Arrhythmia 
Alarms in the 
ICU using 
Novel Signal 
Quality 
Indices 
Assessment 
Method [119] 

ABP/PP
G and 
ECG 

- Considering the denoising result and time, 
they selected wavelet transform method to 
deal with the problem. 
- After filtering the signals with the wavelet 
transform method, a novel method of signal 
quality assessment was developed based on 
modifying Townsend and Tarrasenko's 
methods to fuse signal quality indices of 
different types of data from multiple sensors. 
- SQI from both ECG and ABP/PPG signals 
was retrieved: for ECG signals it was used K-
means algorithm. For PPG/ABP signals it 
was used a combination of two algorithms: a 
beat-by-beat fuzzy logic-based assessment 
of features in the ABP waveform and 
heuristic constraints of each ABP pulse to 
determine normality. 
- -Sensitivities: real-time (65%) - 
retrospective (65%) 
-Specificities: real-time (82%) - retrospective 
(87%) 
 

- Only ECG signal was 
denoised with wavelet 
decomposition (coif4 wavelet, 
with eight decompositions) 
- Approaches such as fuzzy 
logic-based assessment are 
not within our knowledge, and 
for this reason, we decide it is 
better not to use it. 
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Reducing 
False 
Arrhythmia 
Alarms in the 
ICU [120] 

ABP/PP
G and 
ECG 

They make a quality assessment of all 
signals since some of the channels might be 
damaged by artifacts. This assessment is 
made in the last 30 second of recording, for 
real-time line and detection of heartbeats will 
be performed using only signals that pass 
this quality check. 
- Heartbeat annotation is made using 
multiple methods: for only ECG (I and II): 
gqrs algorithm. For only ABP/PPG except in 
VT case: wabp algorithm. For combinations 
of both ECG leads and ABP/PPG: they used 
their in-house algorithm. 

- For VT they used ECG only 
because it seems to be an 
illness just noticeable by the 
changes of the QRS complex. 
- Since the signals used for 
the real-time line are 
sometimes discarded 
because of the quality, it is 
quite possible that none of the 
noise contaminated signals 
can pass over this condition, 
making the results null. 

Reduction of 
False Alarms 
in Intensive 
Care Unit 
using Multi-
feature Fusion 
Method [121] 

ABP/PP
G and 
ECG 

- A 5-40 Hz band-pass filter was used for 
filtering the ECG signals and 5-35 Hz band-
pass filter for ABP/PPG signals. 
- For ABP and PPG signals, pulse foot 
detection was performed using the wabp 
function 
- Then some features over these IBI and IPI 
detections were retrieved, with different 
windows sizes. 

- Different rules have been set 
for VT, which seems to be the 
most complicated 
arrhythmias overall. 
- Although they use ECG 
signals, also count with PPG 
to give the scoring. 

Algorithm for 
life-
threatening 
arrhythmias 
detection with 
reduced false 
alarms [122] 

Mainly 
ECG and 
then 
ABP/PP
G. 

-Resampled to 250 Hz. 
- A more rigorous treatment is made to ECG 
signals, while in the ABP/PPG signal, just 
offset is taken off. 
- Offset is retrieved from ECG signals, as 
they would share the same offset.  
- They do not use machine learning 
techniques, just peak calculation through 
slopes. In ABP/PPG case, they do it with the 
reverted signal, to find the negative change 
of slope. 
- Also, low-frequency noise is removed with 
zero phased eighth grade Butterworth filter 
with 40 Hz cut frequency. 
- The non-causal median filter is applied to 
ECG (250 ms window) and ABP/PPG (350 
ms window) to eliminate offset. 

- The central gap noticed is 
the use of ABP/PPG signals 
as an alternative and not as 
the primary tool for arrhythmia 
detection. 
- Sampling frequency does 
not match with the one of our 
noises. 

False Alarms 
in Intensive 
Care Unit 
Monitors: 
Detection of 
Life-
threatening 
Arrhythmias 
Using 
Elementary 
Algebra [123] 

ECG Data channels are first independently 
searched for invalid blocks and QRS 
complexes. 
Using the QRS distribution and derived R-R 
information, each channel in the record is 
tested for regular heart activity. If any of the 
channels pass this test, a 
false alarm is reported and the process ends. 
If this is not the case, a specific arrhythmia 
test is executed 
 
 

-They do not use PPG signals 
as the primary tool for 
arrhythmia detection. 
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Heartbeat 
Fusion 
Algorithm to 
reduce false 
alarms for 
arrhythmias 
[124] 

ECG - They developed an algorithm based on 
global heartbeat annotations generated by 
fusing individual heartbeat detections from 
multiple physiological signals 
- Support vector machines (SVM) with radial 
basis function kernels to classify signals as 
“noisy” or “clean” were trained for each signal 
type using libSVM 

- The central gap is the 
consideration of ECG signals 
as the main referent, having 
ABP/PPG signals as an 
alternative only if ECG signals 
do not work. This structure is 
followed only for 3 of 
arrhythmias and for the 
others, it is strictly used ECG. 

Table 4.3. Summary of analyzed works for arrhythmia detection techniques. 
 
4.5.1.3. Summary of the reviewed algorithms 
 
The Physionet/CinC Challenge 2015 present different results regarding classification 
techniques for brady- and tachycardia. All of the articles presented in the table are the best 16 
scores obtained at reducing false alarms in ICU. 
Approaches like [110,111,115,122] contain varied techniques. However, the incompatibility of 
the sampling frequency used by them and the one from the generated noise in Chapter 3, puts 
them out of the frame. If we use upsampling processes, these would generate a change in both 
spectral and time features of the noise. The same would occur if we use downsampling 
techniques over the pulsatile signals. 
PPG signal is not used in articles [113,123] where they use only ECG, and [114,122,124] do 
not use pulsatile signals as a primary reference to the classification, but as the least resource 
instance, in case ECG does not work. Thus, these ECG signals would still be clean as the 
pulsatile ones would be easily discarded or even never used because of its noise condition. 
In [118] the purpose of PPG signal for arrhythmia detection is not clarified, making the detection 
ambiguous in the sense that it is not known if the ECG signal or the PPG signal is being used. 
However, it is highlighted the usage of a method different from all the others. 
Approaches like [109] and [119] are discarded because of the complexity of the used 
techniques, which surpass our knowledge as far as it goes. Also in [109], the computational 
time required was considerably long. The usage of the signal quality indices only in ECG signals 
can be seen in [120]. Therefore, the review of just these signals makes it indifferent to what 
happens in noise corrupted PPG signals. Lastly, algorithms like [116] use the basic decision 
threshold techniques which have been already established by the challenge organizations on 
the primary provided material. Since the base case will be one of the used for comparing 
denoisers, it becomes unnecessary to review another one which contains the same techniques 
without adding any additional feature over this same basic structure. 
It is finally decided to choose articles [112,117, 121] and the base case, which is briefly 
explained in [132]. In the next section, a short explanation of the techniques used in the different 
chosen papers is made. 

 
4.5.1.4. Tachycardia and bradycardia detection techniques 
 
The classification techniques in the three chosen scripts are similar to the one in the base script. 
Each one included improvements, always considering that tachycardia and bradycardia are 
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diseases that can be detected through a correct identification of the heartbeats. According to 
the conditions given by the challenge, an alarm is called as ‘Tachycardia' when the heart rate 
is greater than 140 bpm during 17 consecutive beats. A ‘Bradycardia' alarm can be identified 
by a heart rate lower than 40 bpm during five consecutive beats [81]. We presume that these 
conditions imposed by the challenge organizers are at rest, since the original dataset was taken 
from ICU patients. An additional search of the medical definition of these arrhythmias also puts 
them at rest conditions for both [33,35]. However, as it has been stated by Bonomi, even wrist 
movements at rest might make changes in the quality of the classification. 
Even when all scripts use different techniques, classification criteria for each disease must 
follow the guidelines previously mentioned. In the Base script, an onset pulse detection 
identifies the starting point for each PPG/ABP signal to separate each waveform. For 
calculating the peak location within each period, they use thresholding techniques. Additionally, 
a quality index analysis over the pulsatile signal is carried, to see if the measures are 
acceptable. 
In Miguel Caballero’s script [112], a simple decision tree is implemented through if-else 
statements. This decision tree increases the granularity in the decision making, especially for 
ventricular tachycardia and ventricular flutter, those which are not our primary focus. However, 
new thresholds for bradycardia decision making are implemented.  
In the scripts made by Chengyu [121] and Ansari [112], a multi-feature analysis is performed 
for ECG and ABP/PPG signals, which generates a highly robust algorithm, as it can be seen in 
the scoring results. The more variables exist for classification, the more precise it will be. Given 
that these two participants use ECG and PPG signals in an equal proportion, an analysis of the 
improvement of the results can be made by changing the denoising method only for the 
pulsatile signals. As the contamination for ECG signals is not within our scope, the filters for 
these signals are removed and then put again, combined with the denoising proposes over 
pulsatile signals. 
 
4.5.2. Structure of the dataset 
 
Physionet Challenge 2015 supplies a total of 1250 recordings. These were obtained from four 
hospitals in the USA and Europe, each containing an arrhythmia alarm. The training set 
consisted of 750 training datasets, and the testing sets consisted of 500 recordings. The testing 
set is hidden from participants for scoring purposes and is currently unavailable, then the results 
obtained will be the ones from the training set. A team of expert annotators reviewed each 
alarm and labeled it either 'true', 'false', or 'impossible to tell'. However, the challenge included 
only records that were reviewed by at least two annotators, of whom a two-thirds majority 
agreed if the alarm was either true or false [89]. 
All signals had a sampling frequency of 250 Hz and had been filtered with an FIR band-pass 
filter with a passband from [0.05–40] Hz and powerline notch filters to remove noise. Each 
recording contains two ECG leads and one or more pulsatile waveforms (the 
photoplethysmogram PPG and arterial blood pressure waveform ABP). Pulsatile channels can 
suffer from slight movement artifact, sensor disconnects, and other events (such as line flushes 
or coagulation in the catheter) [95]. Overall the records from this channel, the most common 
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situation is the sensor disconnect, as we analyzed the records correspondent to brady- 
tachycardia. Some of the authors within the selected detection algorithms deal with these 
problems, but some of them leave the records as they come from the dataset. We try to stick 
as much as possible to the considerations taken by the authors of these codes, and it is for this 
reason that we will not edit any of the contributions of the challenge beyond the addition of 
noise and implementation of the denoisers. In this way, we can suggest that some of the scripts 
might be prone to misclassification because of these details. 
Event organizers idea was to allow the participants to edit a simple base algorithm which 
checks the quality of the ABP waveform, and (if it is acceptable) uses it to calculate the heart 
rate. If no ABP is available, then the same process is performed on the PPG waveform. If the 
specific heart rate calculated for each arrhythmia is outside the range indicated by the provided 
guidelines (considering a tolerance level), then the alarm is suppressed and marked as false. 
Participants could use this approach as the base to more sophisticated techniques, as 
organizers recommended it, or could make their own from scratch. 
 
4.6. EVALUATION OF THE MECHANISM 
This section exposes the steps to complete the evaluation process for the proposed 
mechanism. These steps are taken from the “Experimentation in software engineering” book 
[155] and can be seen in Figure 4.9. First, the definition of the evaluation is exposed. Then the 
planning and design of the mechanism evaluation is stated. Here, we mention the selected 
evaluation method, variables, and criteria in the arrhythmia classification context. We follow 
with the operation stage and lastly, the analysis and interpretation stage. Finally, the results 
are explained through analysis and the conclusions in the last subsection. 
 

 
Figure 4.9. Steps to follow in the proposed evaluation process [141]. 
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4.6.1. Definition of the evaluation 
 

This evaluation purpose is to answer the following question and hypothesis:  
 
Can state-of-the-art movement artifact denoisers improve the performance of state-of-the-art 
bradycardia and tachycardia classification algorithms based on PPG/APB signals? 
 
H0: The use of Wavelet, EMD or smoothing filter-based denoising methods don't affect the 
specificity, sensitivity or ROC measures of state-of-the-art Bradycardia and Tachycardia 
classification algorithms based on PPG/APB signals tested on a simulated noise to the PPG 
signals obtained from the Physionet Arrhythmia database 
 
H1: The use of Wavelet, EMD or smoothing filter-based denoising methods don't improve the 
specificity, sensitivity or ROC measures of state-of-the-art Bradycardia and Tachycardia 
classification algorithms based on PPG/APB signals tested on a simulated noise to the PPG 
signals obtained from the Physionet Arrhythmia database 
 
 The following section describes the experiment in order to test the hypothesis. 
 
4.6.2. Design of the evaluation 
4.6.2.1. Selection of the evaluation method 

 
This evaluation is presented as two separate results, the first with the purpose of showing the 
distortion that the noise induces into the behavior of the current classifiers which use PPG/ABP 
signals. This first result is purely descriptive since the hypothesis is found later in the second 
result. The second with the purpose of showing which denoising method induces the best 
possible improvement over the results of the challenge scoring. 
To accomplish the third specific objective of this undergraduate thesis work, a pre- and post 
evaluation is established. In the hypothesis testing experiment, the pre-evaluation refers to the 
classification results without the application of a denoising process, and the post-evaluation 
refers to the classification results with the application of the denoising process. Furthermore, 
every time the mechanism is run, the next variables are calculated: sensitivity, specificity, 
precision and F1 score. From the first two variables we can obtain also a new graphic variable 
called ROC curve and the AUC. A quantitative type evaluation is then presented. The evaluated 
variables are exposed in the next subsection. 

 
4.6.2.2. Selection of variables to evaluate 

 
These variables will assess the effectiveness of each classification script. As the outcomes of 
the challenge are TP, FP, TN, and FN, it is possible to compute the sensitivity, specificity, 
among others, for each arrhythmia on each script. Additionally, other variables as precision and 
F-measure are obtained to make better classifier discrimination for obtaining a better 
performance [143,144,145]. More specifically, as the primary arrhythmias for this work are 
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bradycardia and tachycardia, the variables previously mentioned will be calculated for each 
one of the arrhythmias. The definition of these variables is made down below: 

 
● Sensitivity: it is better known as the true positive rate (TPR), sometimes is also called 

a recall. The test or classifier can qualify correctly the ill patients who possess the 
illness. In other words, it is the proportion of the patients which results are positive for 
an illness test or classification, among all the patients who possess the illness condition 
[144][145]. 
It can be calculated from the following formula: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	

 
Where TP stands for True Positive (a person who has the illness and is correctly 
classified as having the illness) and FN stands for False Negative (a person who has 
the illness but was incorrectly classified as not having it). 
Then the TP+FN term refers to all the population who have the illness. 

 
● Specificity: it is better known as the true negative rate (TNR) or selectivity. The test or 

classifier can reject correctly the patients who are not ill or do not suffer from any 
condition. In other words, it is the proportion of the patients who do not possess the 
illness condition and which were correctly classified as not having it, among the totality 
of the patients who are not ill [144][145]. It can be calculated from the following formula: 

 
 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = wx

wxyz2
 

 
Where TN stands for True Negative (a person who does not have the illness and is 
correctly classified as not having it) and FP stands for False Positive (a person who 
does not have the illness but it is incorrectly classified as having the condition). 
Then the TN+FP term refers to all the population who do not have the illness. 

 
● Precision: it is also called a positive predictive value (PPV). It must not be confused 

with accuracy, which stands for the proportion of correct results a classifier obtained 
over all the results. Precision is the proportion of patients who were correctly classified 
as having the condition, among the totality of the patients who were classified as having 
the condition (correctly and incorrectly) [144]. It is calculated from the following formula: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	

 
Then this measure gives us an idea of how many times the alarm was triggered with 
the real purpose of arrhythmia detection. 
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● F-measure: while the precision can be seen as a measure of exactness (quality of the 
classifier for positive prediction), the sensitivity can be seen as a measure of 
completeness (how many times the classifier correctly predicted a person with the 
condition). These two measures can be jointly analyzed, which is called as F-measure 
or F1 score [143]. This measure is an indicator of the balance between these two 
parameters, although there are other types of F measures, such as F2 or F0.5, where 
the first one has the weighting of the sensitivity higher than precision, and the second 
one has a weighting of the precision higher than sensitivity. In this occasion, the F1 
measure (equal weights for both precision and sensitivity) is shown, which can be 
calculated from the formula: 

 

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 + 	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	

 
It is essential to highlight that given the case the classifier obtains a 100% sensitivity; it 
is taken as a trivial case because the classifier labels everything as ‘true.' Oppositely, if 
the previous statement accomplishes, this implies a deficient result in precision, turning 
the classifier useless. The same will occur if we search for an excellent precision value 
(sensitivity will decrease). 
The conclusion over these two measures is a balance between both, which can be 
easily calculated with the F1 score [146]. 
However, F1 score does not take into account the true negatives in the classification, 
and it is for this reason that the specificity is taken as well as the variable for discarding 
some of the results thrown by the different approaches for denoising. 

 
● ROC curve: ROC (Receiver Operating Characteristics) curve will also be used. ROC 

is a graphics tool which is useful to visualize a classifier's performance. This curve 
graphs the sensitivity or TPR in the y-axis, and the false positive rate (FPR) in the x-
axis at different threshold settings. The FPR or fall-out measure is equal to 1-specificity. 
Then this curve graphs the tradeoff between sensitivity and specificity (because any 
increment on sensitivity implies a decrement on specificity). A cutoff point will always 
exist between positive and negative results, where positive refers to ill or with an 
arrhythmia and negative means healthy or without arrhythmia(s) [147]. These curves 
are used in many ways, especially in applications with cost-sensitive learning and allow 
us to [145]: 

➔ Determine a decision threshold which minimizes error rate or misclassification 
cost under determined cost functions. 

➔ Identify regions where a classifier works better than the other. 
➔ Identify regions where a classifier works worse than chance. 

  
The idea is to determine the best threshold or cutoff point that maximizes either the 
sensitivity or specificity and minimizes the mistaken results such as false positives (FP) 
or false negatives (FN) [146]. Nevertheless, obtaining a 100% accuracy is the ideal case 
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and very unlikely since FP and FN are mostly present in practice. Therefore, the only 
thing that can be manageable is the cutoff point. If the classifier estimates a positive 
value following its belief, and this value is a positive value, it will increase either TPR 
and FPR. If this decision threshold or cutoff point is varied from its maximal to its minimal 
value results in a piecewise linear curve, the ROC curve is obtained such that each 
segment has a non-negative slope [145]. 
The closer this curve is from the upper-left borders, it means that the classifier is more 
accurate. The closer the curve is from the diagonal line (chance line) drawn at 45 
degrees from (0,0) to (1,1) coordinates, it means that the classifier is less accurate. 
Anything that passes under this diagonal is considered as inaccurate or wrong at 
classification and finally, any point on the diagonal means that the classification follows 
the chance criteria [146]. 
 

● AUC: the AUC (Area Under the Curve) is the measure of the classifier's accuracy. When 
this area is equal to 1, it represents a complete classification. There exists a rough 
guideline to classify the results of accuracy for the AUC [146], which is shown as follows: 

 

AUC value Classification of the result AUC value Classification of the result 

0.9 - 1  Excellent 0.6 - 0.7 Poor 

0.8 - 0.9 Good 0.5 - 0.6 Fail 

0.7 - 0.8 Fair   

Table 4.4. Classification criteria of AUC values for a classifier. 
 

AUC can also be seen as a discrimination measure, in other words, is the classifier's ability for 
distinguishing those positive results (people who have the disease) from the negative results 
(people who do not have the disease) [146]. 
 
The graphing procedure for this curve can be done in many ways. Thus, three methods are 
retrieved from various tools found at the documentation center of MATLAB software, these are 
explained in more detail in Appendix F, adjoint with the results for each graphing method. 

 
4.6.2.3. Evaluation criteria 

 
Evaluation criteria for this kind of evaluation are as follows: 
 

● The impact that generates the use of the proposed denoisers over each classification 
script. This result means the improvement that each denoiser introduces over the 
classifiers compared with the performance of the classifiers under noise conditions (for 
bradycardia and tachycardia) using the modeled noise.  
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● As a secondary evaluation, we perform a comparison between the performance of the 
denoised classification scripts against the original results for each script. In other words, 
a comparison between the results obtained with the proposed denoising method and 
the results of the unchanged scripts from the Physionet 2015 Challenge. This is done 
because the original results are considered without artificial noise models or under any 
motion artifact conditions. Therefore, they represent the ‘ceiling' results that can be used 
as a reference to test our mechanism performance.  

● The mechanism (classifier with its corresponding denoising method) that throws the 
best results regarding the evaluation variables named previously for both arrhythmias 
detection. 

● As an additional result, although not so important, the results of Bonomi will be shown 
with respect to those obtained with the classifiers. Because of the differences in the 
evaluation method from Bonomi and our case, it is not as significant to compare 
ourselves with him.  

 
4.6.3. Operation 
4.6.3.1. Procedures before the operation 

 
After the evaluation variables selection and the evaluation criteria statement, several 
procedures are executed before the operation. These are detailed in Appendix D. For each 
different mechanism (different classifiers joined several denoisers), the following steps are 
made: 
 

● Choose a range from the Dynamic Variance Moving Average model that generates a 
deviation over the original results of the classifiers. These deviations are computed by 
removing the filters that these classifiers possess internally, because we want to 
simulate Bonomi’s scenario. Then a classification is executed using them, without any 
type of preprocessing. This step is made only once for all of the scripts, because it 
throws the noise models for contaminating all the records from the arrhythmia database. 

● Introduce the chosen noise models in each of these classification scripts and obtain the 
results with noise. 

● Introduce then the set of denoisers (one by one) in each script and obtain the results 
for the impact of each one of them over the different classifiers. 

● Choose the best denoising case for each classification script. 
● Compare the final results of the best cases for each classifier with the corresponding 

original results and noise results. 
● Compare the final results of the best cases for each classification script with the ones 

in the other scripts. 
● Select then the best classification mechanism. 

 
We expect that the results serve as a proposal of a mechanism that supports bradycardia and 
tachycardia detection under low intensity movement artifact conditions. 
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4.6.4. Results and analysis 
4.6.4.1. Results after the addition of noise: simulation of Bonomi’s scenario 

 
As it was mentioned in the previous section, the noise addition over the classification results 
should induce some change in the results, specially if the proper filters used by each script are 
removed. The filters used by each work are explained in Appendix D. They are reduced to 
simple notch low-pass filtering (for the base script and Miguel Caballero) and Butterworth 
passband filtering (for Chengyu and Sardar scripts). Results are taken from the original case, 
in other words, the scripts are run as they come from the Physionet page repository. These 
results should be the same obtained from the authors. Unfortunately, these cannot be revised 
because they only mention testing results in their work, so the original results for training are 
trusted.  
First, a graphical analysis of how much the low-intensity noise can damage the classification 
results is shown. As this noise is a low intensity one, it cannot be expected that this makes the 
signal unrecognizable or extremely damaged, thus making the SNR analysis far inconvenient 
for this problem. Then, an analysis for the variables which determine the classification is made. 
Specifically, for bradycardia and tachycardia, two variables are calculated respectively: low 
heart rate for bradycardia and high heart rate for tachycardia. A signal quality index is also 
calculated for both of the arrhythmias to execute the validation of the alarm.  
The following if-else statements (translated into a logical gate schema) are made for 
determining the existence of brady- or tachycardia in the base script: 
 

 
Figure 4.10. Gate schema for the bradycardia determination block in base script. 

 
The two conditions are evaluated by a logical conjunction operator AND, so any of the results 
which turn their logical state to zero will make impossible the alarm off. In most of the cases, 
there exists just one of the pulsatile signals, making the schema active in just one of the sides. 
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Tolerance and bradycardia thresholds (BRA_THR) for the determination have already been 
established in the challenge statement, however code could be changed for the convenience 
of some competitors, as we will see later. The schema for tachycardia is similar to the previous 
one, but the condition is side changed, as it can be seen in the following figure. 

 

 
Figure 4.11. Gate schema for the tachycardia determination block in base script. 

 
The tests for showing how much the noise reaches to distort the signal are then made in terms 
of the discrimination variables. For each one of the cases (bradycardia and tachycardia) these 
features were calculated for the noise conditions and the original conditions. The following 
figures show the variance in the heart rate results for each one of the arrhythmias: low heart 
rate for bradycardia and high heart rate for tachycardia. 
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Figure 4.12. Deviation of the low heart rate decision variable for bradycardia.  

 
It should be highlighted at this point that some of the results for these variables are retrieved 
as NaN, because the algorithm initializes them like that. In the case these variables cannot be 
calculated for validation reasons, these are left as NaN. This is the reason why in the 
continuous figure 4.12, some pieces of the original signal aren’t plotted, but this is an internal 
problem of the algorithm, thus further explanation on this will not be given. 
In dotted lines are shown the thresholds for the classification of the specific instance between 
having or not having bradycardia. The former figure allows to see that even low intensity 
movements provoke this low heart rate results to distort, therefore we can infer that the heart 
rate derived from each record is being biased at some point. As the decision for the 
determination of bradycardia is also affected by a tolerance level, which is a constant value for 
all records, the solving of the inequation would give a new determination threshold. In this case, 
the upper dotted line is the edge value for bradycardia determination: all the points located over 
it would be classified as ‘non bradycardia’. However, these changes must be equally backed 
by the quality index variation. If both these values don’t produce enough variation to go beyond 
the threshold, then the classification will not change in terms of sensitivity or specificity. This is 
the same case for tachycardia. 
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Figure 4.13. Deviation of the high heart rate decision variable for tachycardia.  

 
Tachycardia results are far more affected by the simulation of the noisy scenario, as it can be 
evidenced by the figure 4.13. In this case, the dotted line in the lower part is the one that delimits 
the edge value for determining tachycardia. Then, any value below this line is considered as a 
false tachycardia alarm, of course, if the results of the signal quality index are equally distorted.  
A correlation analysis is also done over these heart rate variables to prove that even in low 
quantity, results get distorted. The scattering of the original results vs the noise results should 
provide some deviation evidence around a 45-degree diagonal. These figures are shown below 
adjoint with the correlation coefficients between the original and noisy results. This coefficient 
should be less than one, demonstrating that the noisy results are being biased from the 
originals. 
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Figure 4.14. Correlation between the decision variables after adding noise. 

 
The correlation index in tachycardia and bradycardia heart rate show the real situation that the 
classifier in base script passes through given the deviation of the noisy results from the original 
results. However, regarding sensitivity and specificity results, it’s much harder to obtain a 
noticeable change, since this specific heart rate condition is not the only determining variable 
for turning a zero-classification result into a one classification result. However, these variations 
are shown to indicate that the noise is corrupting pulsatile signals in the measure that these 
are low intensity movement artifacts.  
 
Further results are given in terms of sensitivity and specificity in the tables below. Here we can 
see that even when the heart rate estimations for each arrhythmia vary, it’s actually difficult to 
move the threshold of the signal quality index. Therefore, the general classification results do 
not change in a major quantity.  
A comparison between the sizes of the noise signal and the arrhythmia signal allows to explain 
this. The noise signal does not have such a comparable value with respect to the arrhythmia 
signal. Figure 4.15 enables to see the amplification factor needed for the noise to be size 
comparable to the signal. However, we consider this does not indicate a poor noise 
characterization. Tests conducted in chapter 3 established that this noise model is the most 
suitable for a low intensity movement artifact representation. Oppositely, this indicates that 
even when the noise is small, it damages in a certain measure the heart rate results for each 
arrhythmia. Bonomi’s affirmation seems to be right, if we consider that his evaluation is made 
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just from heart rate features. In our case, the signal quality index is a differing factor from 
Bonomi, avoiding the results to change greatly. We can still observe the change in some of the 
classification results from Table 4.5. 
 

 
Figure 4.15. Comparison between sizes of original and noise signal. 

 
The following tables have been retrieved from Appendix C and these contain the results in the 
original conditions and noisy conditions. Original conditions refer to the use of the classification 
scripts as they come from the Physionet repository, containing thus all of the preprocessing 
stages each author considered. Noisy conditions refer to the removal of these preprocessing 
techniques and adding the low intensity movement artifact noise, in hope of simulating the 
scenario from Bonomi. 
 

 Original results Noisy results 

Arrhythmia Sensitivity Specificity Sensitivity Specificity 

Bradycardia 97,826 58,140 95,652 58,140 

Tachycardia 87,023 55,556 90,076 55,556 
Table 4.5. Results after adding noise to the base classification script. 
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 Original results Noisy results 

Arrhythmia Sensitivity Specificity Sensitivity Specificity 

Bradycardia 91,304 79,069 84,783 83,271 

Tachycardia 94,656 55,555 94,656 55,556 
Table 4.6. Results after adding noise to the Miguel Caballero classification script. 

 

 Original results Noisy results 

Arrhythmia Sensitivity Specificity Sensitivity Specificity 

Bradycardia 93,478 79,070 91,304 81,395 

Tachycardia 100 77,778 100,000 33,333 
Table 4.7. Results after adding noise to Chengyu Liu classification script. 

 

 Original results Noisy results 

Arrhythmia Sensitivity Specificity Sensitivity Specificity 

Bradycardia 91,304 83,721 89,130 79,070 

Tachycardia 100 44,444 98,473 44,444 
Table 4.8. Results after adding noise to Sardar Ansari classification script. 

 
4.6.4.2. Results after the operation: best denoisers for each classification script 

 
This section presents the results obtained with each one of the selected denoisers for the 
impact evaluation over the F1 score (sensitivity and precision) and specificity measures 
regarding the brady- and tachycardia detection. 
The first test comprehends the comparison of the two main performance measures for the 
classifiers, which are sensitivity and specificity. With this test we desire to obtain a denoiser 
which causes the greatest positive impact over sensitivity and specificity in each classifier. In 
this way, we assure that the denoiser tends to improve both measures as much as possible. 
The second test uses the F1 score to reaffirm the first test. If the greater average F1 score 
coincides with the results of the first tests, then we conclude that the denoising case is making 
an improvement of both sensitivities (for bradycardia and tachycardia) in a balanced way. F1 
average score gives us an idea of the increase in both sensitivities (bradycardia and 
tachycardia) at the same time.  
Then, the specificity is reviewed, since F1 score does not directly relate to this metric. If the 
specificity results show a negative impact, then the denoising case is discarded, because it 
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shows a great improvement on sensitivities at the cost of diminishing specificities. Oppositely, 
if specificity results show a maximization or at least an improvement of this measure, then the 
denoising case is considered as the best denoising case classification script. 

 
For a better comprehension of the figures shown below, each one of the denoisers was named 
as a ‘case'. These cases are the ones mentioned in subsection 4.4. 

 
● Case 1: wavelet denoising with Daubechies db8 wavelet with a three-level 

reconstruction tree structure. 
● Case 2: wavelet denoising with Daubechies db6 wavelet with a four-level reconstruction 

tree structure. 
● Case 3: wavelet denoising with Daubechies db10 wavelet with a four-level 

reconstruction tree structure. 
● Case 4: wavelet denoising with Daubechies db6 wavelet with a five-level reconstruction 

tree structure. 
● Case 5: wavelet denoising with symlets sym4 wavelet with a three-level reconstruction 

tree structure. 
● Case 6: wavelet denoising with symlets sym6 wavelet with a three-level reconstruction 

tree structure. 
● Case 7: Savitzky-Golay smoothing filtering with parameters 3 (cubic fitting) and 41 

(window size selected). 
● Case 8: empirical mode decomposition (open source code7). 
● Case 9: wavelet denoising with thresholding.  
● Case 10: moving median filtering with parameters 11 (window size selected) 

 
To determine which wavelet would be chosen for the thresholding case, an observation of the 
results for thresholding in all cases is made. This implies the calculation of the thresholding for 
all of the wavelet cases, followed by a comparison of the best results between the thresholding 
cases. Then, the wavelet thresholding case which induces the most positive increase over both 
parameters is taken as the case 9. All of these tests can be seen with more detail in Appendix 
C. 

 
First, the results for the base script are presented. For the sake of space limitation, these 
compiled results can be found in the bar graphs from Appendix E. The results are presented 
for bradycardia from case 1 to case 5 (for space and visualization reasons), then in another 
figure are represented the rest of the cases, from 6 to 10. Tachycardia results will be presented 
using the same structure. 
The bar graphs are formed by the quantities corresponding to the sensitivity presented under 
noise conditions, then the sensitivity presented when the denoising is done. Together with 

 
7 Code taken from MATLAB File exchange central, available here: 
https://la.mathworks.com/matlabcentral/fileexchange/52502-denoising-signals-using-empirical-mode-
decomposition-and-hurst-analysis. 
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these two results, there is an additional bar showing the increase or decrease of these 
quantities. The same process will be done with the specificity of the issued cases.  
Given that these results cannot be reproduced in this same document we show only the 
deviation outcomes. These are the ones that give more information about the impact of each 
denoiser, and correspond to the tables from 4.9 to 4.17.  
 
Table 4.9 shows the results after denoising. Almost all cases for bradycardia show an 
improvement over sensitivity. In cases like 1, 5, 7 and 10, sensitivity improvement does not 
represent a decrement over specificity. Therefore, we can state that the performance of the 
classifier algorithm for this specific arrhythmia improved in the desired way. In cases 2, 6 and 
9, the specificity reaches an improvement, maintaining sensitivity results invariant. This 
suggests in this case, the denoising method works for greater detection of TN. Case 10 
oppositely increases sensitivity and maintains specificity unchanged. Cases like 3 and 8 show 
a significant improvement over sensitivity results, although this implies a specificity decrease. 
This can be the product of a tradeoff between these two parameters, showing that the denoising 
in these cases moves the cutoff point but not in the best way. In case 4, the decrease of the 
specificity is enormous, and the sensitivity reaches a higher result. We suspect a trivial 
classification case might be occurring, given the structure of the base script decision (the result 
is true unless the contrary is proofed). 
Now, if we look at tachycardia results, it shows a less favorable scenario for almost every 
denoisers. The only one which generates an improvement over both parameters is the case 3. 
Cases 2,5 and 6 improve sensitivity and maintain specificity. 
Lastly, a cross of the tachycardia and bradycardia cases is made. We assume case 5 as the 
denoiser which exposes the best results for the base script. Although it maintains as equal the 
specificity results for tachycardia, it also improves in a balanced way the other parameters, 
without demonstrating the accomplishment of a trivial case. 
We can usually see that an increment in bradycardia parameters generates slight decrements 
in tachycardia parameters and also the opposite way. For example, case 3 goes over significant 
improvements of both parameters for tachycardia, but this implies a worsening over 
bradycardia specificity. 
 

DEVIATION RESULTS FOR EACH DENOISER CASE IN BASE SCRIPT 

 
CASE 

BRADYCARDIA TACHYCARDIA 

SENSITIVITY (%) SPECIFICITY (%) SENSITIVITY (%) SPECIFICITY (%) 

1 +2,174 +4,651 -0,763 0 

2 0 +2,326 +1,257 0 

3 +4,348 -2,326 +2,290 +11,111 

4 +2,174 -25,581 +9,161 -33,3338 
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5 +2,174 +6,977 +0,764 0 

6 0 +4,651 +1,527 0 

7 +2,174 +2,326 -3,053 +11,111 

8 +4,348 -4,652 +5,344 -33,334 

9 0 +4,651 -0,763 0 

10 +2,174 0 -0,763 0 
Table 4.9. Deviation results for each denoiser case in base script. 

 
Table 4.10 presents the values of F1 score in the noisy case and then the 10 denoising cases. 
The score presented in this table is an averaging of both measures for tachycardia and 
bradycardia in each case.  We wish an improvement of this score in both arrhythmias, in a 
balanced way. With this averaging, we avoid the choosing of a case where F1 score increases 
significantly for one arrhythmia while the other is very low.  

 

Case Average F1 Score (%) Case Average F1 Score (%) 

Noisy 87,381 6 87,426 

1 88,485 7 87,851 

2 88,181 8 88,600 

3 88,893 9 88,697 

4 86,008 10 87,713 

5 89,304   
Table 4.10. Average F1 Score results for each denoiser case in base script 

 
Improving greatly the F1 score value means a better balance between precision and sensitivity 
parameters in both arrhythmias. In this script, the best case for an F1 score improvement is 
case 5, which reaffirms the results obtained in Table 4.9. The best case of denoising for this 
script increases in the right way the sensitivity for both arrhythmias, improves specificity for 
bradycardia and maintains constant the specificity for tachycardia. This approach demonstrates 
a positive impact on bradycardia detection and the need for a better technique over tachycardia 
(such as case 3), especially over specificity.  

 
Table 4.11 exposes Miguel Caballero script results. Bradycardia and tachycardia results fall 
into a less improved outlook than the base script. We notice a greater difficulty for finding a 
denoiser which improves specificity and sensitivity results. However, there are some cases for 
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bradycardia where specificity is maintained constant, and sensitivity is increased. These are 
the cases 1, 5, and 6. 
Regarding tachycardia, cases like 1, 2, and 6 show the same behavior (sensitivity improves in 
very slight steps, while specificity is maintained constant). Case 10 is the only one which 
improves both parameters for tachycardia but causes, in turn, a decrement over bradycardia 
specificity. Other cases like 2, 3, 7, 9 and 10 represent a tradeoff. 
This case is more challenging for us. It is needed to weigh all the elements, looking for a case 
which increases in a balanced way both of the parameters. However, this seems improbable. 
In this kind of situation, we prefer the denoiser which gives small steps over sensitivity and 
does not decrease specificity.  
Table 4.11 enables to see that there exist cases which present significant improvements for 
tachycardia specificity. However, this comes along with a diminished sensitivity. Case 6 seems 
to be pretty stable over specificity, suggesting that the denoising method allows detecting more 
TP, without having any adverse effect over TN for both arrhythmias. 
 

DEVIATION RESULTS FOR EACH DENOISER CASE IN CABALLERO SCRIPT 

 
CASE 

BRADYCARDIA TACHYCARDIA 

SENSITIVITY (%) SPECIFICITY (%) SENSITIVITY (%) SPECIFICITY (%) 

1 +4,348 0 +0,764 0 

2 +6,522 -13,954 +0,764 0 

3 +4,348 -6,977 +1,527 +11,111 

4 0 -16,279 +4,581 -33,333 

5 +2,174 0 0 0 

6 +4,348 0 +0,764 0 

7 +10,870 -6,977 -2,290 +11,111 

8 -6,522 -6,977 +3,054 -33,333 

9 +6,521 -2,326 0 0 

10 +6,521 -2,326 -0,763 0 
Table 4.11. Deviation results for each denoiser case in Miguel Caballero script. 
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Case Average F1 Score (%) Case Average F1 Score (%) 

Noisy 90,268 6 91,694 

1 91,694 7 91,451 

2 89,661 8 87,251 

3 90,730 9 91,425 

4 87,902 10 91,627 

5 90,888   
Table 4.12. Average F1 Score results for each denoiser case in Miguel Caballero script 

 
The best results for F1 score in Table 4.12 are the cases 1 and 6. Both demonstrate an 
increment over sensitivity without varying specificity. This result implies that denoisers help in 
better TP detection, triggering the alarm where there actually exists an arrhythmia.  
In this way, we conclude that the preferent cases in this script are case 1 and 6. 
 
In the next two scripts (Chengyu and Sardar), an additional variable is added, which is the use 
of the ECG signal. As we stated before, the desired simulated scenario is the one where there 
exists movement artifact noise due to low intensity movements and this hasn’t been 
preprocessed. To do so, the filter from both signals ECG and ABP/PPG are removed. This is a 
Butterworth passband filter which deals with high and low-frequency artifacts at the same time. 
Then the noise is added to ABP/PPG signals. However, we don’t dispose a noise 
characterization for ECG signal, as these are not within our scope. It is later decided to remove 
the preprocessing filters for ECG signals. We hope that this could cause any effect or at least 
don’t turn the classification into a matter of only ECG signal information. For resembling the 
denoised scenario, these ECG filters are put again in addition to the implementation of each 
denoising case for pulsatile signals. 
Table 4.13 shows the results for Chengyu script, where we can see a general improvement in 
almost all bradycardia sensitivities. Those cases that improve bradycardia sensitivity without 
damaging specificity or even improving it, are cases 5, 6 and 9. In all other cases, it is shown 
a decrease of the specificity, in different quantities. Case 8 seems to be a trivial case because 
the decrement of the specificity implies a great increment over sensitivity.  
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DEVIATION RESULTS FOR EACH DENOISER CASE IN CHENGYU SCRIPT 

 
CASE 

BRADYCARDIA TACHYCARDIA 

SENSITIVITY (%) SPECIFICITY (%) SENSITIVITY (%) SPECIFICITY (%) 

1 +4,348 -2,326 -0,763 +44,445 

2 +2,174 -16,279 -3,053 +44,445 

3 +6,522 -9,302 -3,817 +44,445 

4 0 -20,923 -2,290 +33,333 

5 +2,174 +2,326 -0,763 +44,445 

6 +2,174 0 -0,763 +44,445 

7 +4,348 -4,651 -3,053 +44,445 

8 +6,522 -20,930 -1,527 +44,445 

9 +2,174 0 -0,763 +44,445 

10 +4,348 -2,326 -0,763 +44,445 
Table 4.13. Deviation results for each denoiser case in Chengyu Liu script. 

 
Tachycardia obtains a noticeable improvement over all specificities, depending on the issued 
case. All sensitivities are worsened in different quantities. Although we don’t consider this as a 
bad result, taking into account that the result for noisy conditions in tachycardia sensitivity is 
100%. As it can be seen in tables from Appendix C, this result for 100% of sensitivity (in noise 
conditions) is not attributed to a proper classification. On the contrary, the results for specificity 
fall into a trivial case. This is the reason why the specificity changes are so abrupt after 
denoising. The denoising method is inducing the results into a more proper set of results, 
pushing the classifier out of the trivial case. Those cases which make a better work with 
tachycardia are cases 1, 5, 6, 9 and 10. 
Although this specificity improvement cannot be entirely attributed to pulsatile signals, at least 
it can be stated that a combination of both signals cleaned adequately, allows a proper 
classification of these arrhythmias. 
 

Case Average F1 Score (%) Case Average F1 Score (%) 

Noisy 90,268 6 93,760 

1 93,874 7 92,846 

2 90,192 8 90,903 
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3 92,338 9 93,760 

4 88,855 10 93,874 

5 94,221   
Table 4.14. Average F1 Score results for each denoiser case in Chengyu Liu script. 

 
Table 4.14 displays the best value for F1 score, which falls again in case 5. With this in mind, 
we can state that the best denoising case for this script is case 5. 
Ansari script results show a constant improvement over tachycardia sensitivities, while 
specificity remains unchanged in most of the cases. 
Sensitivities of both tachycardia and bradycardia show an increase, but specificities decrement 
or remain unchanged. 
 

DEVIATION RESULTS FOR EACH DENOISER CASE IN SARDAR SCRIPT 

 
CASE 

BRADYCARDIA TACHYCARDIA 

SENSITIVITY (%) SPECIFICITY (%) SENSITIVITY (%) SPECIFICITY (%) 

1 +2,174 +2,325 +1,527 0 

2 +2,174 0 +1,527 0 

3 +4,348 +2,325 +1,527 0 

4 +4,348 -2,326 +0,764 +11,112 

5 +2,174 0 +1,527 0 

6 +4,348 0 +1,527 0 

7 +4,348 -2,326 +1,527 0 

8 +2,174 -2,326 +1,527 0 

9 +4,348 0 +1,527 0 

10 +4,348 0 +1,527 0 
Table 4.15. Deviation results for each denoiser case in Sardar Ansari script. 

 
With these results, we state that the most suitable case for improving almost all parameters is 
case 3. This outcome is reaffirmed with the results for F1 score, where case 3 stands in the 
first place. 
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Case Average F1 Score (%) Case Average F1 Score (%) 

Noisy 91,388 6 92,941 

1 92,814 7 92,498 

2 92,363 8 91,920 

3 93,364 9 92,941 

4 92,491 10 92,941 

5 92,362   
Table 4.16. Average F1 Score results for each denoiser case in Sardar Ansari script. 

 
With the results for the best denoising case in each script, an evaluation stage is conducted for 
the different classifiers performance. Three ROC curves for each script will be calculated, one 
for the corrupted results (called as noisy results from now on), other for the original results and 
the last one will be for the best denoiser case in that specific script. This analysis is made to 
assess how much improvement is induced through the denoisers in terms of a graphic 
representation. 
The procedures for obtaining the ROC curves estimations can be seen in Appendix F along 
with a more detailed comparison of the confusion matrices information for each script. For each 
script result, it will be displayed the ROC curve estimation that gives a better visual properness 
of the empirical curve. Altogether with this, the AUC tables which compare the noisy, denoised, 
and original results under the different ROC curves estimation are shown. Finally, this appendix 
shows an improvement of the best denoising cases over the noisy results and sometimes an 
improvement or a equaling with the original results. 
The figures presented below make a better appropriation of the empirical curve, as it was 
analyzed in Appendix F. In Appendix C are presented the other ROC curves estimations with 
the three remaining methods. 
First, we will start with the ROC and AUC results for the base script. For future references and 
visualization issues, the x-axis will represent the FPR and the y-axis will represent the TPR. 
 
 

 BRADYCARDIA RESULTS TACHYCARDIA RESULTS 

ORIGINAL NOISY DENOISED ORIGINAL NOISY DENOISED 

ESTIMATED 
AUC 0,8473 0,8365 0,8751 0,8168 0,8282 0,8321 

Table 4.17. AUC comparison for the three conditions on both arrhythmias (base script). 
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Figure 4.16. Base script ROC curves for the noisy, denoised, and original conditions in 

bradycardia. 

 
Figure 4.17. Base script ROC curves for the noisy, denoised, and original conditions in 

tachycardia. 
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The improvement of the denoised results over the noisy ones is seen in figures 4.16 and 4.17. 
These curves also verify situations such as the improvement of the sensitivity when the noise 
was added. In the case of tachycardia, the area under the curve comprised by the denoised 
case is slightly larger than the area under the curve of the noisy results. The denoised curve 
presents a tiny higher value on the y-axis, since the specificity is maintained and what increases 
is the sensitivity at about +0.77.  
In the bradycardia ROC curves, the improvement over both the original and denoised cases is 
more noticeable, presenting an increase in both sensitivity and specificity. 
The curves chosen for the base script representation were the convex hull estimations over the 
empirical curve because the binormal estimation showed slight hooks at the beginning of the 
curve. However, if this kind of visual improperness is little (such as the one in ROC curves for 
base script), the error is negligible.  
Although, since we want to present a proper concave ROC curve, the convex hull estimation 
was chosen with the awareness that this induces an AUC overestimation. This overestimation 
is almost equal to all the cases (original, noisy, denoised) and for this reason, we consider it is 
not a mistake because the magnitudes are maintained in the same scale for the three areas 
under the curve. However, for a more realistic result about the classifier’s performance, we 
suggest referring to the empirical ROC curve estimation for the AUC. 
 
Now, in Caballero's script, we have the following results: 
 

 
BRADYCARDIA RESULTS TACHYCARDIA RESULTS 

ORIGINAL NOISY DENOISED ORIGINAL NOISY DENOISED 

ESTIMATED 
AUC 0,9201 0,9057 0,9321 0,8511 0,8511 0,8550 

Table 4.18. AUC comparison for the three conditions on both arrhythmias (Caballero’s 
script). 
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Figure 4.18. Caballero's script ROC curves for the noisy, denoised, and original 

conditions in bradycardia. 

 
Figure 4.19. Caballero's script ROC curves for the noisy, denoised, and original 

conditions in tachycardia. 



 

 97   

Figure 4.18 and  figure 4.19 expose the achievement of a better AUC with the denoised results 
over both the noisy and original results. It is also shown the tradeoff that occurs in bradycardia 
when the sum of the noise is done over the clean signal. The noisy ROC curve presents a 
greater closeness to the left side of the graph because the specificity has been improved while 
the closeness to the upper corner is diminished because the sensitivity has been decreased. 
In tachycardia results, it is possible to see the invariance of the results with and without noise 
(ROC curves for these two cases are overlapped). Therefore, this makes the denoised results 
to be compared with either of the two other results. However, the AUC improvement is minimal, 
but it’s an increment over the original results too.  
The convex hull curve was chosen for tachycardia representation because binormal presented 
a little hook at the beginning again.  
 
The results for Chengyu’s script are as follows. 

 

 
Figure 4.20. Chengyu's script ROC curves for the noisy, denoised, and original 

conditions in bradycardia. 
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BRADYCARDIA RESULTS TACHYCARDIA RESULTS 

ORIGINAL NOISY DENOISED ORIGINAL NOISY DENOISED 

ESTIMATED 
AUC 0,9341 0,9327 0,9677 0,9406 0,8312 0,9385 

Table 4.19. AUC comparison for the three conditions on both arrhythmias (Chengyu’s 
script). 

 

 
Figure 4.21. Chengyu's script ROC curves for the noisy, denoised, and original 

conditions in tachycardia. 
 
The convex hull estimation for tachycardia is chosen because the binormal estimation could 
not fit at all the empirical curve form. This because of the use of cumulative distribution functions 
for the computation of the AUC (as it is explained in Appendix F). The improvement over the 
original results was achieved only in bradycardia while on tachycardia, original results were 
closely tracked by denoised results, but not equaled. Other details as the tradeoff caused by 
the noise sum in bradycardia are evident in Figure 4.19.  
The original curve from Figure 4.21 is slightly larger on the Y-axis, because the sensitivity of 
the original conditions could not be reached (only differentiated by -0,763).  
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However, the improvement from the noisy results is noticeable, caused by the change in the 
specificity. This makes the curve's slope slower, and therefore closer to the chance line. We 
could presume that the noise addition and the filtering removal for ECG signals distort the 
results in a great measure for this classifier. 
 
In last place, Sardar results are exposed 
 

 
BRADYCARDIA RESULTS TACHYCARDIA RESULTS 

ORIGINAL NOISY DENOISED ORIGINAL NOISY DENOISED 

ESTIMATED 
AUC 0,9449 0,9060 0,9459 0,8643 0,8605 0,8643 

Table 4.20. AUC comparison for the three conditions on both arrhythmias (Sardar’s 
script). 

 

 
Figure 4.22. Sardar's script ROC curves for the noisy, denoised, and original 

conditions in bradycardia. 
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Figure 4.23. Sardar's script ROC curves for the noisy, denoised, and original 

conditions in tachycardia. 
 

Noisy results show improvements over original results for bradycardia, using the binormal 
estimation and the convex hull estimation for AUC calculation. For tachycardia the original 
results were equaled by the denoised results. For this reason, a dotted line has been plotted. 
Tachycardia ROC curves suggest that the noise addition and filter removal from ECG signals 
is not as damaging as expected. This could be explained by the robustness of Sardar’s 
algorithm, where he takes much more features from both signals and does not discard any of 
them. Chengyu approach makes a comparison of the features and then discard the ones which 
do not provide any significant information. Sardar creates multiple indicators that help in greater 
or lower measure to the correct alarm detection, without discarding any information. 
According to the empirical estimation of the ROC curve, original bradycardia results could not 
be achieved in the denoised conditions. They are followed closely, showing that the denoiser 
can generate satisfactory results for a ‘ceiling' that has excellent conditions. 
 
With the results of the best denoising case for each script, we can finally assemble four different 
mechanisms (denoising stage plus an arrhythmia detection stage). A comparison between 
them is made in order to declare which one has the best performance. We know that the 
algorithms that only use ABP/PPG signals are not going to obtain as good results as the ones 
who use both ECG and ABP/PPG. However, this will allow us to analyze which classifier is the 
best depending on the signals used. 
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The given score by organizers is used to qualify each one's performance, just as it was made 
at the competition. 
The equation that's used in the final scoring for the competition can be seen in [81], where a 
higher weight is placed upon the FN than the FP. This because the purpose is to avoid the 
triggering of the ICU alarm when it is not the case of arrhythmia detection, along with the correct 
identification of an alarm when the patient is experiencing an arrhythmia. FN is an alarm which 
should have been noticed, but it did not occur, thus diminishing the patients proper and 
opportune care. 

 

𝐹𝑖𝑛𝑎𝑙	𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 5 ∗ 𝐹𝑁
	

 
The scoring for each mechanism is computed, and then these two scores (one for tachycardia 
and one for bradycardia) are averaged, to present a global score for both arrhythmias in each 
script. These scores are presented in Table 4.21. 
 

Script Partial scores Global score 

Base Bradycardia 78,4946 72,2260 

Tachycardia 65,9574 

Miguel Caballero Bradycardia 70,6422 74,9552 

Tachycardia 79,2683 

Chengyu Liu Bradycardia 78,2178 86,6784 

Tachycardia 95,1389 

Sardar Ansari Bradycardia 77,2277 86,8281 

Tachycardia 96,4286 
Table 4.21. Final scoring table for tachycardia and bradycardia in each script. 

 
It is expected that these results are not as high as a normal accuracy, because the scoring 
equation is taking five times the mistakes made in the FN case. However, the results for the 
normal accuracy expression can be seen in Appendix C. 
 
As an extra result, the comparison with Bonomi's results is made. It has already been 
considered that these two results are not comparable because of the differences on the 
classification process. Since the main problem for Bonomi was the ‘low’ sensitivity results, 
these same values are compared with the ones from Bonomi, summarized in the next table. 
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Arrhythmia Sensitivity results (%) 

Bonomi Base Caballero Chengyu Sardar 

Tachycardia 85,000 97,826 89,130 93,478 93,478 

Bradycardia 89,000 90,840 95,420 99,237 100,000 
Table 4.22. Comparison of final results with Bonomi’s. 

 
4.6.4.3. Statistical tests 
 
In order to reject or accept the alternative hypothesis stated in the first part of this evaluation, 
and given the quantitative character of the evaluation variables, a statistical test is proposed. 
The tool used for this statistical test in SPSS, which is a simple and intuitive tool for making the 
t-paired test analysis, since we want to see the differences in the means before and after 
making the denoising process in the arrhythmia detection task. 
The procedure for calculating this test was inputting the confusion matrices results (TP, FP, 
TN, and FN) before and after the denoising process, in other words, a comparison between the 
results in the noisy conditions and the results in the denoised conditions is made. 
This test is run for both tachycardia and bradycardia results in each one of the detection scripts 
declared all along the former sections. 
Results in Figure 4.24. show an acceptable significance level for the base script results in terms 
of FP and TN. 
 

 
Figure 4.24. Results for T-paired test for bradycardia detection in the Base script. 
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Figure 4.24. Results for T-paired test for tachycardia detection in Chengyu script. 

 
Figure 4.23 evinces that the bradycardia detection reaches a significance level under 0.1 for 
the t-paired test. In other words, a 90% of certainty that these results are reproducible for a 
larger population is obtained.  
Figure 4.24 indicates that tachycardia detection reaches a higher significance level, with a value 
lower than 0.05. 
Therefore, in the specific bradycardia detection case within the base script, we can reject the 
null hypothesis and accept the alternative one, as well as in Chengyu script regarding 
tachycardia. 
Both these results are obtained for the variables that allow calculating specificity, FP, and TN. 
Then we conclude that the mechanism allows the improvement on tachycardia and bradycardia 
estimation for this specific two conditions: the base mechanism allows to obtain significant 
improvements over bradycardia detection, and the Chengyu mechanism allows to obtain 
significant improvements over tachycardia detection. 
With this in mind, we can infer from this results that these mechanisms would serve as a 
suitable separator of the population that does not have the arrhythmia. A level of certainty of 
90% in the estimation of bradycardia (with the base mechanism) and a level of certainty of 95% 
in the estimation of the tachycardia (with the mechanism of Chengyu). 
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4.6.5. Discussion 
4.6.5.1. Discussion of the simulation of low-intensity noise over tachycardia and 
bradycardia records 
 
The simulation of a noisy scenario was the first objective of this evaluation. From figures 4.12 
and 4.13 it is possible to evidence the real variation that the noise addition and preprocessing 
removal induce to the decision variables (in those cases, the heart rate decision variables for 
each arrhythmia). At some points, the noise makes the heart rate variables to change and 
surpass the threshold established by the competition organizers. This would infer a change in 
the classification outcome, as we would expect. However, figures 4.10 and 4.11 suggest that 
the general outcome deviation for the classification is not solely affected by heart rate variables. 
The heart rate may vary, but if the quality index turns to be fine for that record, the general 
classification remains unchanged. 
Notice that the change of heart rate variability calculated for each arrhythmia does not directly 
indicates a decrement of the signal quality index. The heart rates for each arrhythmia just take 
into account the number of detected onset pulses (regarding script base and Caballero). The 
quality index makes a comparison of the correlation with a template clean signal and thus, 
calculates a general estimate of how much the signal differs from the templates. In other words, 
peaks might be induced or removed, but in general terms, the entire signal taken into 
consideration for the classification doesn’t show great corruption. Additional results made from 
simulation show a correlation of 0,8186 and 0,8827 for the calculated heart rates for 
bradycardia and tachycardia, respectively. Whereas for the signal quality index of both these 
arrhythmias, correlation results show a lower bias with 0.9530 for bradycardia and 0.9119 for 
tachycardia results. This is an expected result since the damaging of the signals by low-
intensity movement artifacts is slight. Indeed, figure 4.15 evidences the amplitude differences 
and thus, the small contribution of the noise over for damaging the signal quality index can be 
inferred 
Results in tables 4.5 and 4.6 expose the difficulty that was thought of beforehand: it is easy to 
generate a damaging of the heart rates. However, for general classification results, it is difficult 
for the noise to damage the sensitivity and specificity. This is the case for both specificities in 
base script or sensitivity and specificity for tachycardia in Miguel Caballero script. 
An interesting outcome can be seen in the base script case, in Table 4.5 where the noisy results 
obtain a greater sensitivity than the original outcomes. This can be explained by the fact that 
the retrieved population for tachycardia classification is greatly imbalanced (this can be referred 
to in Table 1 from Appendix F). The classification outcomes of the confusion matrix can be 
seen as a conditional probability. Then, these are strongly affected by a priori probability of the 
real population or the gold standard population. The classifier may change the results of the 
confusion matrix, but this should not always be a negative impact. At least, in this particular 
case, the actual negative population is considerably smaller than the actual positive population 
(only 9 out of 140 registers). Once the noise reaches to make greater high heart rate estimates 
than originals, the change in the classification outcomes is more prone to fall into a truly positive 
register rather than in a truly negative register (as we only have nine of them). The great a priori 
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probability for the actual tachycardia registers (approximately 0.9357) makes the conditional 
probability turn in favor of the true tachycardia registers. 
For bradycardia in base script, it can be seen that this measure diminishes its value due to the 
decrement of one TP and an increment of one FN. 
Miguel Caballero results expose that noise cannot vary results in tachycardia, but it does it well 
in bradycardia, where occurs a tradeoff between sensitivity and specificity. The sensitivity 
decreases, caused by an increase of three FN while TP decreased by three as well; the 
specificity increases caused by a decrease of two FP and an increase of the same magnitude 
in TN. 
In the case of tachycardia, none of the results vary, which is a concerning result given that the 
same dataset and the same registers as base script are used. However, a deeper insight into 
Caballero script allows to see that the author of this algorithm changes the threshold for 
tachycardia (TACH_THR in figure 4.11) final determination. The reasons for this change are 
uncertain, nevertheless, the author claims that the logical decision tree that he obtained allowed 
to make a better and more robust estimation of the arrhythmia. 
Chengyu results suggest a tradeoff between bradycardia sensitivity and specificity, while 
tachycardia sensitivity remains unchanged. However, and taking into account the sharp 
decrease of tachycardia specificity, it makes us inquire that the removal of both filters for both 
of the signals is forcing the classifier into a trivial case for tachycardia. 
Lastly, Ansari results show a decrease over almost all parameters, except for tachycardia 
specificity. Results in bradycardia suggest that the removal of both filters and addition of the 
noise to pulsatile signals can decrement both sensitivity and specificity results, in other words, 
a general worsening of the classifier for this arrhythmia. 
At the end of this first analysis, it is possible to appreciate that the low intensity noise induces 
changes in the decision variables. Each one depending on the conditions established by the 
authors of the classification scripts. Those which only use pulsatile signals are difficult to 
contaminate or distort in terms of tachycardia records. The high heart rates calculated for 
tachycardia were quite variable, however, the signal quality index didn’t vary as much. For this 
reason, the general result variation is not so remarkable. Those which used ECG signals as 
well are also distorted because of the filter removal for these other signals as well.  
The simulation of the same scenario found by Bonomi led us to prove that the heart rates 
estimations were sometimes distorted. These first results back up the assertion from his study: 
the fact that even in a rest environment, low intensity movements reach to distort the heart rate 
values. Even if this noise doesn’t demonstrate a great power level. Because of this, we suggest 
to take into consideration these kind of artifacts in ambulatory scenarios. In our work’s case 
and due to the classification logic used in the scripts, results were not so easily distorted. But 
in the case that the only variable for deciding the existence of an arrhythmia was the heart rate, 
it should be expected that the classifier commits more mistakes.  
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4.6.5.2. Discussion of the results for the best denoiser case after adding low intensity 
noise 
 
The purpose of this second test was to prove that the low intensity noise induced in a 
measurement environment for tachycardia and bradycardia can be removed using different 
techniques. The improvement of this noisy condition results was proposed by assembling a 
mechanism which consisted of two parts: a denoising part and a detection part. 
Our data proved that this improvement can be reached, depending on many factors, which 
were reviewed along the evaluation procedure. Firstly, it should be noticed that the 
characterized and used noise for these tests is a low intensity noise. With this in mind, 
significant changes in sensitivities and specificities after summing it, were not expected. 
Different kind of noises (noises with different variances) were summed, causing that some 
signals were distorted in a greater quantity than others. We do not know with certainty what 
noise is being added to which signal, we only know that a set of noises are being added 
randomly to different signals. 
Second, we can see that several of the denoising methods did not show positive results. Then 
we can state that there doesn’t exist a particular denoising method for preprocessing a signal 
before a posterior procedure. Literature from the review in section 4.3 exposed various articles 
which compared different denoising methods for a specific signal: the PPG signal. This also 
affirms that there is no specific method for all applications, as it depends on both the data used 
for the test and the purpose of the posterior test. 
In this case, a trial and error approach was made, which sought to find a determined denoiser 
for each script and thus conform the mechanism. Each author extracted different features from 
the signals. Then, we expect that the best denoiser will be the one that delivers the PPG signal 
with the characteristics desired by each arrhythmia detector to make a later decision. 
The algorithms which use only pulsatile signals are those who have a lower scoring. The use 
of only one signal for diagnosis throw less accurate results than the use of two, as expected. 
However, their sensitivity and specificity results have improved with respect to those obtained 
with noise. Some have even increased these results over the ones obtained originally. This 
seems to indicate that the preprocessing method used for the pulsatile signals in these 
algorithms were not considering a proper bandwidth for the sake of the PPG signal. Both base 
and Caballero’s scripts used a simple notch low pass filter, which was more intended for the 
isolation of the powerline interference at 50 Hz and the frequencies beyond. Using a greater 
granularity over the bandwidth, it was possible to see that wavelets denoising can be 
considered as a convenient method for this task, either with a fixed reconstruction or using soft 
thresholding.  
The best denoising case for bradycardia detection in base script generates an improvement on 
both parameters. A specificity result 6,97% better than the original was obtained. It is also the 
case of sensitivity in tachycardia, where original results are outperformed as well in 3,81%. 
About Miguel Caballero's case, the improvement of sensitivity over noisy signals is 
accomplished for both arrhythmias. Tachycardia sensitivity reaches a 0,76% improvement over 
the original results. 
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The improvement over original results suggest that the best denoising method for this two first 
mechanisms reaches to deliver more valuable information or desired features of the PPG signal 
than the filtering method used originally by the author. It is possible to reconstruct a signal 
accurately after being contaminated with this low intensity noise, thus obtaining a better quality 
of the signal received by the arrhythmia detector. 
Better results were obtained using both ECG and ABP/PPG signals, because of the greater 
information provided by the extra signals. 
In Chengyu results, there was an accomplishment of the sensitivity improvement just for 
bradycardia, concerning the noisy values. In tachycardias, denoisers generated a good 
performance, differing from original results in only -0,76%. Reaching a sensitivity result of 
99,24% after denoising can be seen as a suitable output for a classification result. An 
improvement of 4,65% in the specificity of bradycardias from original results was obtained as 
well. 
Sardar case also accomplished the sensitivity improvement of both arrhythmias over noisy 
results. Regarding specificity results, one increased (tachycardia), and the other is held 
constant (bradycardia). With the best denoiser case, it is possible to obtain a 100% sensitivity 
in tachycardias, equaling original results. Also, in bradycardia sensitivity, a little improvement 
of 2,174% over the original results was reached. 
A common factor between all these mechanisms is the use of wavelets as the best denoising 
method for the pulsatile signals. The improved performance parameters were obtained in two 
scripts with symlet 4, while symlet 6, daubechies 8 and daubechies 10 wavelets obtained the 
best results for one script each. 
Both the base and Chengyu scripts obtained the best results by using sym4 wavelet, and 
Caballero obtained the best results using symlet 6 and daubechies 8. One thing that is common 
to the three first scripts is that regardless of the wavelet family used and the wavelet level, all 
of the three used a decomposition-reconstruction level of 3. A frequency analysis over the clean 
signals of the new dataset allow to evidence that the pulsatile signal information is more 
concentrated within the (0-7) Hz bandwidth, which is approximately the same interval 
reconstructed by Mallat's algorithm when the reconstruction level is chosen is 3. Looking into 
the Figure 4.4., if we divide the sampling frequency used for the signals between 2xyZ, where 
N relates to the decomposition level, we obtain a frequency interval of approximately (0 - 7,81) 
Hz.  
In the classifier case for Ansari, the denoising reconstruction level for the best results is 4, 
which indicates that the frequency band reconstructed would be approximately (0-3,9) Hz. This 
could be explained by the fact that this author cuts the signal to a really little time window before 
making the preprocessing. This cut of the signal generates a weaker spectrum, where the 
information comprises even more in the lowest frequencies.  
Better results were obtained in general for all the mechanisms, demonstrating that the noise 
conditions can be improved if the right choice of an appropriate denoiser for the detectors is 
made. However, this can be a cumbersome and exhausting job, suggesting that future work 
towards wavelets denoising techniques over PPG signals should be conducted. In this case, 
results can be primarily focused towards the wavelets symlets, as a suggestion to clean and 
collect wise PPG signal characteristics. The levels of deconstruction and reconstruction 3 and 
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4 obtain a good performance for PPG signals in our case, depending on the subsequent 
processing that we want to do on them. However, these levels of deconstruction are not 
generalizable, since the Mallat algorithm takes into account the sampling frequency used, and 
therefore, it can change from study to study. 
The thresholding method included in the analysis obtained good results, sometimes better than 
some of the fixed reconstruction cases. However, the best of the wavelet thresholding case 
could not surpass the best of the fixed reconstruction case. The deconstruction levels for 
thresholding were intentionally taken as nine, so a deeper differentiation of the detail’s 
frequency sub bands could be executed by the soft thresholding command. Nevertheless, 
results indicate that maybe in the process of rescuing only the valuable information from the 
noise, some of the important frequency components were erased since the noise overlaps with 
the signal spectra. It is taken as future work to investigate more in this technique and its extents. 
The new research path could be either using hard thresholding or executing thresholding into 
the approximation levels as well. Wavelet packets are also seen as a future investigation for 
these kinds of signals. From table 4.15, it can be seen that the thresholding was close to obtain 
the best results. In a similar way it happens with the other scripts, generating a great 
improvement in some results of the sensitivity and specificity, but in turn generating a tiny 
decrease in some other result, reason why it could not be chosen. A greater rigor in the 
variables used for this thresholding could have obtained better results, even the best. 
Statistical tests allowed us to confirm the assumption that was stated previously in this same 
discussion. The use of different and complementary signals along with the pulsatile ones result 
in a greater improvement after being denoised, as it can be seen from Chengyu significance 
results. If the condition of noised ECG signals was fulfilled, then even greater changes (worse 
performance) in the noisy results should be expected. The differences between noisy and 
denoised conditions would be more extensive, expecting the obtention of a higher significance 
level.  
Besides this considerations, significant results of the improvements could be seen in the 
specificity, although the sensitivity also obtained improvements in all the scripts for both 
arrhythmias (except for Chengyu in the tachycardia). Significance results were mostly obtained 
for the variables that handle specificity results, thus showing that the detection allows to be 
more selective about the patients that do not have the arrhythmia condition. 
As an additional test, we would like to mention the application of hybrid wavelets denoising 
over the signals. The best denoising case was partitioned into two different classification issues: 
one for bradycardia and one for tachycardia. This approach was only proved for base and 
Caballero scripts, since we have the certainty that the classification is made only with PPG 
signals. Bradycardia records maintained the same wavelet denoising case, while tachycardia 
changed to another case. Appendix C contains the results for these approaches, were ROC 
curves are also displayed. This enables us to conclude that even greater results could be 
reached with a finest granularity regarding the arrhythmia case. Since time constraints are 
exceeded for this type of approach, we leave this conclusion as the base for future works 
conducted in the same direction. 
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4.6.6. Conclusions 
 

The application of ten denoising techniques over different brady- and tachycardia classification 
algorithms allows to conclude that there is not a defined denoiser for all of them. This decision 
even varies depending on the procedure that the classification scripts make internally. 
We sought for a denoiser-classifier combination which produced an improvement over 
sensitivities in the detection of two specific arrhythmias. Results thrown a coincidence over the 
MRA using the DWT, applying symlet family in the majority of the cases. In two cases, the best 
results were obtained using daubechies family wavelets. 
As an answer to the research question made in the evaluation definition, we state that the 
wavelet denoising contribute to achieve an improvement over the results obtained with noise. 
Significance tests point to better results obtained for specificity. However, sensitivity was also 
improved as it was evidenced by the AUC results, which allow comprising the information of 
the quality of each classifier. 
Bonomi’s results were compared to ours. Although his sensitivity results were acceptable, we 
highlight his excellent specificity results. This might be also a reason for his sensitivity values, 
because it’s highly improbable that a classifier reaches such great results for both measures. 
Another important fact to take into account is that the sole use of pulsatile signals can perform 
well into a classification problem, but the results are reinforced when other kinds of 
complementary signals such as ECG is used. The results are much improved, showing that a 
combination of both signals and the correct denoising process over them would help 
significantly arrhythmia detection. Nevertheless, as the future context for this work is the use 
of the non-invasive signals obtention methods for an ambulatory environment, ECG signals are 
inconvenient for this kind of scenarios and again, all the detection responsibility would lay onto 
the pulsatile signals. 
Further analysis is needed on why some results for other denoisers threw unexpected results, 
but the causes might be the signal points that every classification script has into account, 
however, this is marked as future work because of time constraints. 
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CHAPTER 5. CONCLUSIONS AND OUTLOOK. 
  
5.1. Conclusions 
 
A first state of the art review was conducted and summarized in Table 2.1. This table presents 
a wide set of arrhythmia detection techniques. However, some of these do not consider the 
effect of the movement artifacts over PPG signals. The majority of the studies which worked 
under noise conditions are oriented towards a heart rate estimation using ECG signal as the 
gold standard. Few works were encountered to detect arrhythmias, yet these are not within the 
ones focused by us: tachycardia and bradycardia. This sets a current gap in the analyzed 
studies: there is a lack of studies that perform an estimation of this specific arrhythmias under 
noise conditions. 
Only one relevant study was found on this topic, the author is: A. Bonomi. He carries a study 
around the bradycardia and tachycardia detection under free-living conditions. His work deals 
with motion artifacts and makes an estimation of these two arrhythmias at the same time. 
However, Bonomi’s results show a limitation: the sensitivity of the brady- and tachycardias 
estimation was affected by low intensity movements induced by patients. 
We conclude in this first part of the job that there is a shortage of studies conducted towards 
the brady- and tachycardia diagnosis under low intensity movement artifacts. Bonomi’s dataset, 
which allowed the study of movement artifacts, is confidential (as most of the other literature 
datasets). Thus, a major limitation for this study is the lack of experimental (field work) data.   
As far as we know, there are very few datasets of PPG signals under noise conditions which 
could help us in this task. This is backed up by other results in this very same state of the art 
review. The majority of the conducted works carried out their own measurements. This restraint 
is understandable because of the many factors that must be taken into account to obtain proper 
results. As a result of this limitation, we propose to generate a similar dataset as the one used 
by Bonomi. This analysis entails the second part of this thesis work. 
The generation of a dataset similar to the one from Bonomi was needed. If we obtain this, then 
we can analyze the possibility of proving that these low intensity noise condition can be 
improved.  
To do so, the obtention of a noise model was planned, for the posterior contamination of the 
signals containing the specific arrhythmias. A second state of the art review exhibited the lack 
of pertinent works in this area. Solosenko names in his study the need of PPG signals datasets 
that contain arrhythmia events as well. Even if brady- and tachycardias are not present in his 
results, this author demonstrates that it is possible to model PPG signals with various 
cardiopathies features, using ECG signals as the base. The only author who developed a study 
towards noise modeling is Wartzek, with his artifact modeling for capacitive ECG signals.  
Given the small set of data we disposed to make a suitable characterization for the PPG 
movement artifacts noise, it is decided to take some suggestions from his studies in order to 
create our own noise model. 
Later on, the characterization processes for the noise were carried out. These processes were 
experimentally tested, because there is not a reference study which allowed to establish a 
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defined process for the characterization of the noise at determined activities. Most of the studies 
which generated a purposely distortion over biomedical signals, considered white noise as a 
good estimation. But we think this white noise approach might be resembling all kinds of 
artifacts affecting these signals. The procedures or approximations towards noise 
characterization were empirical. Several hints were taken from the limited results from the 
bibliographic review about noise characterization processes. A noise model that fits the desired 
results is obtained, having as the gold standard the ECG signal. Here, we state the major 
conclusion over this second part of the work, settled in the generation of a dataset containing 
arrhythmias and low intensity movements. A new dataset with the desired simulated data can 
be generated through a noise characterization process. 
We faced a difficulty with this noise modeling process, as the topic has not been widely explored 
and the information volume is reduced. However, our approach can be seen as a contribution 
for future study fields, were noisy datasets are needed for a denoiser validation procedure. 
Others could even think of an accuracy validation on the arrhythmia detection methods under 
noise conditions. Precisely, this last action is pursued in the third part of this work, but the focus 
is put into the brady- and tachycardia signals. 
In the third and last part of this work, the objective is set in the improvement of the brady- and 
tachycardias detection under these low intensity movement artifacts. An important factor is 
highlighted here: these arrhythmias are detected in rest conditions. For example, a tachycardia 
condition can be easily confused in an exercise environment. This is the reason why Bonomi 
cuts parts of the signal by looking at the accelerometer signal threshold. As the contamination 
of our available signals is done with these low intensity artifacts, we don’t need any clipping in 
this case. 
A third state of the art review was conducted and summarized in Table 4.1. The most 
remarkable technique within this review is wavelet denoising. Other methods like adaptive 
filtering or smoothing filtering are also noticed. This last review along with the review from the 
challenge outcomes take us to the next step of this work.  
After the denoisers application over the arrhythmia detectors, we get quite variable results. 
Further steps into the task of finding a determined and specific method for denoising these 
signals should be taken. Our work proved that wavelets are desirable techniques due to their 
versatility and wide range of applications. An advantage is seen as they don’t define a specific 
wavelet for the application, instead, the application is first defined and then the wavelet is 
chosen.  
Wavelets show better performance as compared to other denoisers. The wavelet family which 
exhibited the majority of best results for this specific application were symlets. We found the 
best decomposition levels at a 125 Hz sampling frequency for PPG signals are 3 and 4. This 
configuration is variable taking into account the length of the signal and the sampling frequency 
used for the signal acquirement. These two aspects affect the spectra distribution. For this 
reason, the wavelet parameters for this specific work could not be generalizable to all of the 
studies. Each study must have its own considerations and margins. 
Thresholding methods are recommended too, since very good results were obtained compared 
with the best results of each script. Also, the reconstruction for this technique is desired as it 
deals with the noise in a more suitable and automatic way. However, since the noise 
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frequencies overlap the signal’s frequencies, thresholding could have distinguished a main 
portion of the signal spectra.  
The wavelet choosing took parts of the literature review and our suggestions. Thus, this 
comparative evaluation can be recognized as one of the first steps for identifying possible 
wavelet families that accomplish a good performance regarding PPG signal denoising. 
Final results were visible thanks to ROC curves, confusion matrices and AUC final estimation. 
We can close up this last section with the conclusion of this part. It is possible to improve the 
performance of the brady- and tachycardia classification when PPG signals are affected by low 
intensity movements. The denoising of this seemingly unimportant kind of artifacts produces 
more accurate results, without the needing of cutting all of the signal parts which contain 
movement. 
Wavelets are exposed as an adaptable and useful method, that demonstrates a wide range of 
possibilities for obtaining good results.  Not only over these signals, but we presume that these 
have already been used over other type of biomedical signals. Because of the broad range of 
functions that it possesses, it is also deduced that wavelets present multiple solutions for the 
PPG signal analysis in more applications than just denoising. 
An improvement over the noisy results was achieved and some of them demonstrated a better 
performance than original results. 
This means that it is possible to return desired features of the signal, taking into account the 
subsequent process carried with the PPG signal. Also, we infer that the denoisers used in the 
original scenario could have shown better results if a more precise approach over the frequency 
band of the pulsatile signals were made. However, we cannot penalize the original results from 
the participants of the challenge, because they supposed these were clean signals already. 
The detection of these two arrhythmias under acceptable noise conditions in an ambulatory 
scenario is seen as an interesting field for future works. 
Significance results demonstrated that the correct selectivity of patient groups with these 
cardiopathies could be obtained. Two specific mechanisms acted as a good estimator of the 
population that does not possess the illness. Of course, the sensitivity was also a desired 
indicator since it is the one that denotes the population that actually has the illness. However, 
this particular work couldn’t meet the certainty percentage needed for generalizing the 
sensitivity improvements to a broader population. Although we declare that selectivity is also 
important, because the patient will be sure of their condition and then won’t have to spend on 
any unnecessary treatments. It can be seen as a facilitator for the medical specialist to 
discriminate both cases of the populations.  
Nevertheless, we propose a future work with a real case assessment of these mechanisms, 
because of the simulated environment that the tests were run on.  
Finally, we answer the research question stated in Chapter 1 of this document. The wavelet 
based denoising is the best option to improve sensitivity of bradycardia and tachycardia 
detection under low-intensity movements. We are aware of the existence of more methods for 
this purpose, but the granularity that wavelets provide and the multiple possibilities of choice, 
transforms them into the best choice for this occasion.  
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5.2. Contributions 
 
With the development of this present work, the following points are marked as contributions: 
 

● Article titled “Modeling of motion artifacts on PPG signals for heart-monitoring using 
wearable devices” presented to SIPAIM event: 15th International Symposium on 
Medical Information Processing and Analysis 2019. This event will be carried out in 
Medellín city, Colombia, from 6 to 8 of November of 2019. 

● Article titled “Tachycardia and Bradycardia Detection using Photoplethysmography 
under low-intensity Motion Artifacts” sent to Sensors MDPI journal under the special 
issue of “Wireless body sensors”. 

● An approach to the use of an alternative electro-optical method for sensing cardiac 
signals and the further diagnosis of cardiopathies on the basis of this signals, promoting 
less-invasive measurement methods than other more invasive as ECG signals. 

● The development of a noise model, extracted for characterizing low intensity activities, 
which is completely variable, allowing to generate a different noise model using the 
variance factor8. 

● An approach to a more general noise model, which is completely random and ruled by 
random variables. In this same way, five possible bases for the creation of noise models 
with a greater sophistication. 

● A database containing arrhythmia events and movement artifacts due to low-intensity 
movements. 

● A mechanism for the removal of induced artifacts due to low-intensity movements in the 
measurement and detection of brady- and tachycardias (in a simulated environment). 

● An experimental evaluation process, collecting data from 4 different arrhythmia 
detectors under the influence of 10 denoising cases9101112. This evaluation serves as 
the base for future works in the area, which are focused towards the utilization of 
preprocessing techniques over PPG signals. 

● Relationship bonding with the Valle de Pubenza clinic, especially with Dr. Nelson 
Muñoz, who guided the process of establishing the requirements for the correct 
planning of the scope of the present work. 

 
 

 

 
8 The repository with the codes for the noise models generation can be found in: 
https://github.com/sebasmos/PPGpeakDetection1 
9 The repository with the codes for the base script mechanisms can be found in: 
https://github.com/malelang/ScriptBase 
10 The repository with the codes for the Miguel Caballero script mechanisms can be found in: 
https://github.com/sebasmos/Script_Miguel_Caballero 
11 The repository with the codes for the base script mechanisms can be found in: 
https://github.com/sebasmos/Multi_Feature-Fusion-Method--Chenyu 
12 The repository with the codes for the base script mechanisms can be found in: 
https://github.com/malelang/Script_Ansari 



 

 114   

5.3. Outlook 
 
The main contribution of this work is a mechanism that allows the reduction of noise due to low 
intensity movements and posterior detection of brady- and tachycardias over PPG signals. 
Having in mind the current limitations and observations along the process of this thesis, the 
following future works are contemplated: 
 

● Implementing pattern recognition techniques over noise signals produced by quasi-
periodic movements, for example: the arm movement at the moment of walking or 
jogging. In this way a better characterization and posterior modeling of the artifacts 
produced by these movements is made, along with the collaboration of an 
accelerometer or gyroscope signal, if possible. 

● Inquire into the alternative of generating a gaussian noise model which can resemble 
in certain measure the noise produced by determined activities or movements in PPG 
signals. Use a greater quantity of realizations of noise and thus, a greater quantity of 
people who execute these movements under the proper conditions for the 
measurement. Use also the information provided by accelerometer, maybe  

● Inquire into the possibility of generating models of accelerometry signals when 
executing certain quasi-periodic movements or else, determined movements of short 
lasting, such as gesticulation, rise and lower the hand, moving horizontally or vertically 
the forearm, etc. By generating this accelerometry models, it would exist also a way of 
recognize patterns in future studies that need to make a movement discrimination and 
thus, recognize the possible activities that the patient has been making in free-living 
conditions or an ambulatory measurement scenario, where they are not being 
monitored by hospital staff. 

● Explore different techniques for the PPG signal denoising which could not be executed 
in this work, and use other kind of signals as a helper for denoising, as an example, the 
design of adaptive filters. 

● Integrate another kind of signals to the tachycardia and bradycardia detection process, 
by having then a more valuable information quantity. Some of these can be non-invasive 
ECG and respiratory. 

● Explore and indague the denoising possibilities through other wavelet families. Also, dig 
deeper into the thresholding method, the penalization methods within this thresholding 
or using other wavelet modalities of frequencies decomposition, for example: wavelet 
packets. 

● Integrate the mechanisms algorithm codes which obtained the best results to and 
application that allows to generate an anomalous cardiac rhythms evaluation, for people 
who suffer from these conditions. Send this information through wireless technologies 
from the wearable to a mobile device, thus the detection of tachycardias and 
bradycardias can be made into determined time intervals or windows. This could serve 
as a support for the assessment and diagnosis of cardiopathies carried by a health 
professional 
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