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Structured abstract

Background. Data Centers Networks (DCN) represent the critical infrastructure for
running Internet-based applications and services that demand colossal computing and
storage resources. However, the most prevalent multipath routing mechanism in DCNs,
Equal Cost Multiple-Path (ECMP), may degrade the performance of these applications
and services while using low network capacity due to the traffic characteristics of flows
in DCNs (mice and elephants). Novel multipath routing approaches tackle this prob-
lem by leveraging Software-Defined Networking (SDN) for detecting and rescheduling
the elephant flows. Some SDN-based approaches have also incorporated Machine
Learning (ML) techniques to improve elephant detection and predict elephant traffic
characteristics. However, SDN-based multipath routing still requires finding the best
trade-off between prompt elephant detection, traffic overhead, data collection accuracy,
and network modifications. Moreover, SDN-based multipath routing algorithms call for
finer granularity traffic characteristics of elephant flows for improving rescheduling de-
cisions.

Aims. This thesis focuses on developing a multipath routing mechanism based
on ML and SDN for improving the routing function in DCNs. This objective divides into
three tasks: (i) to design a multipath routing reference architecture that incorporates the
capabilities of ML and SDN for improving the routing function in DCNs, (ii) to construct
and evaluate a mechanism based on ML that predicts, in a fine-granularity way, flow
characteristics in DCNs; and (iii) to construct and evaluate a routing mechanism based
on SDN that uses predicted flow characteristics for improving the routing function in
DCNs.

Methods. This thesis proposes a multipath routing mechanism that leverages both
SDN and ML to improve the routing function in DCNs. Three major components form
the proposed multipath routing mechanism. First, a flow detection method, called Net-
work Elephant Learner and anaLYzer (NELLY), incorporates incremental learning at the
server-side of SDN-based DCNs (SDDCN) to accurately and timely identify elephant
flows at low traffic overhead while enabling continuous model adaptation under limited
memory resources. Second, a Pseudo-MAC-based Multipath (PM2) routing algorithm
supports transparent host migration across the whole network while reducing the num-
ber of rules installed on SDN switches, decreasing the delay introduced to flows (mainly
mice) traversing the SDDCN. Third, a flow rescheduling method at the controller-side
of SDDCNs, called intelligent Rescheduler of IDentified Elephants (iRIDE), improves
network throughput and traffic completion time by using deep incremental learning to



predict the rate and duration of elephants for computing and installing the best path
across the network.

Results. An extensive evaluation shows that NELLY achieves high accuracy with
a short classification time when using adaptive decision trees algorithms. Moreover,
NELLY reduces traffic overhead, elephant detection time, and switch table occupancy
compared to other ML-based flow detection methods. On the other hand, an analyt-
ical comparison corroborates that PM2 installs much fewer rules than other multipath
routing algorithms that support transparent host migration across a large network area
(other than the same switch). Finally, an extensive evaluation demonstrates that iRIDE
achieves a low prediction error of the flow rate and flow duration when using deep neu-
ral networks with regularization and dropout layers. Moreover, iRIDE enables intelligent
elephant rescheduling algorithms that efficiently use the available bandwidth, generat-
ing higher throughput and shorter traffic completion time than conventional ECMP.

Conclusions. Incremental learning builds accurate and efficient models for classi-
fying and predicting flow traffic characteristics in DCNs. In fact, incremental learning
reduces memory consumption by continuously updating the models from constantly
generated data that is temporarily persisted. Furthermore, incorporating incremental
learning into an SDN-based multipath routing mechanism improves the network traf-
fic routing function in DCNs by reducing traffic overhead and switch table occupancy,
and by supporting intelligent elephant rescheduling algorithms that efficiently use the
available bandwidth.

Keywords: software-defined networking, machine learning, data center networks,
multipath routing, incremental learning



Resumen estructurado

Antecedentes. Las Redes de Centros de Datos (DCN, Data Center Network) repre-
sentan la infraestructura clave para ejecutar aplicaciones y servicios basados en la
Internet que demandan grandes cantidades de recursos de procesamiento y almace-
namiento. Sin embargo, el mecanismo de enrutamiento multicamino más predominan-
te en las DCNs, Equal Cost Multiple-Path (ECMP), puede degradar el rendimiento de
estas aplicaciones y servicios cuando se utiliza poca capacidad de red debido a las
características de tráfico de los flujos en las DCNs (ratones y elefantes). Nuevas pro-
puestas de enrutamiento multicamino abordan este problema aprovechando las Redes
Definidas por Software (SDN, Software-Defined Networking) para detectar y redirigir
los flujos elefante. Algunas propuestas basadas en SDN también han incorporado téc-
nicas de Aprendizaje Automático (ML, Machine Learning) para mejorar la detección
de elefantes y predecir características de tráfico de elefantes. Sin embargo, el enru-
tamiento multicamino basado en SDN aún require encontrar el mejor balance entre
detección temprana de elefantes, sobrecarga de tráfico, precisión de la recolección de
datos y modificaciones de red. Adicionalmente, los algoritmos de enrutamiento multi-
camino basado en SDN demandan características de tráfico más específicas de los
flujos elefante para mejorar las decisiones de enrutamiento.

Objetivos. Esta tesis se enfoca en desarrollar un mecanismo de enrutamiento mul-
ticamino basado en ML y SDN para mejorar la función de enrutamiento en las DCNs.
Este objetivo se divide en tres partes: (i) diseñar una arquitectura de referencia de
enrutamiento multicamino que incorpore capacidades de ML y SDN para mejorar la
función de enrutamiento en las DCNs, (ii) construir y evaluar un mecanismo basado en
ML para predecir, de forma muy fina, las características de los flujos en las DCNs; y (iii)
construir y evaluar un mecanismo de enrutamiento basado en SDN que utilice las pre-
dicciones de las características de los flujos para mejorar la función de enrutamiento
en las DCNs.

Métodos. Esta tesis propone un mecanismo de enrutamiento multicamino que
aprovecha tanto SDN como ML para mejorar la función de enrutamiento en DCNs. Tres
componentes principales componen el mecanismo de enrutamiento multicamino pro-
puesto. Primero, un método de detección de flujos, llamado Aprendiz y Analizador de
Elefantes de Red (NELLY, Network Elephant Learner and anaLYzer), incorpora apren-
dizaje incremental del lado del servidor de las DCNs basadas en SDN (SDDCN, SDN-
based DCN) para identificar los flujos elefante de forma precisa y oportuna con baja
sobrecarga de tráfico y soportando una adaptación continua del modelo con recursos



de memoria limitados. Segundo, un algoritmo de enrutamiento Multicamino basado en
Pseudo-MAC (PM2, Pseudo-MAC-based Multipath) soporta la migración transparente
de máquinas a través de toda la red y reduce el número de reglas instaladas en los
conmutadores SDN, reduciendo el retardo introducido a los flujos (principalmente, ra-
tones) que viajan a través de la SDDCN. Tercero, un método de redirección del lado del
controlador de las SDDCNs, llamado Redireccionador Inteligente de Elefantes Identi-
ficados (iRIDE, intelligent Rescheduler of IDentified Elephants), mejora el rendimiento
de la red y el tiempo de finalización del tráfico utilizando aprendizaje incremental pro-
fundo para predecir la tasa de envío y la duración de elefantes para calcular e instalar
el mejor camino a través de la red.

Resultados. Una evaluación extensiva demuestra que NELLY alcanza alta preci-
sión y un tiempo corto de clasificación cuando utiliza algoritmos de árboles de decisión
adaptativos. Adicionalmente, NELLY reduce la sobrecarga de tráfico, el tiempo de de-
tección de elefantes y la ocupación de las tablas de enrutamiento en comparación a
otros métodos de detección de flujos basados en ML. Por otra parte, una comparación
analítica corrobora que PM2 instala muchas menos reglas que otros algoritmos de en-
rutamiento multicamino que soportan migración transparente de máquina a través de
un área grande de la red (otra que en el mismo switch). Finalmente, una evaluación
extensiva demuestra que iRIDE alcanza un error bajo de predicción tanto de la tasa
de envío como de la duración del flujo cuando utiliza redes neuronales profundas con
regularización y capas de abandono (dropout). Además, iRIDE soporta algoritmos in-
teligentes de redirección de elefantes que utilizan de forma eficiente el ancho de banda
disponible, generando un rendimiento más alto y un tiempo de finalización de tráfico
más corto que el tradicional ECMP.

Conclusiones. El aprendizaje incremental construye modelos precisos y eficientes
para clasificar y predecir características de tráfico de los flujos en las DCNs. De hecho,
el aprendizaje incremental reduce el consumo de memoria al adaptar continuamen-
te los modelos utilizando datos generados de forma constante que son almacenados
temporalmente. Adicionalmente, incorporar aprendizaje incremental en un mecanismo
de enrutamiento multicamino basado en SDN mejora la función de enrutamiento de
tráfico de red en las DCNs al reducir la sobrecarga de tráfico y la ocupación de las ta-
blas de enrutamiento, y al soportar algoritmos inteligentes de redirección de elefantes
que utilizan el ancho de banda disponible de forma eficiente.

Palabras clave: redes definidas por software, aprendizaje automático, redes de
centros de datos, enrutamiento multicamino, aprendizaje incremental
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Chapter 1

Introduction

1.1 Problem statement

Nowadays, the ever-growing Internet-based applications and services demand a huge
amount of computing and storage resources. Data centers represent the key infras-
tructure that supports and provides such resources as a large number of servers in-
terconnected by a specially designed network, called Data Center Network (DCN) [1].
The goal of DCN is to provide significant bandwidth capacity in order to achieve high
throughput1 and low-latency2.

Everyday, DCN managers are looking for solutions that allow optimizing these per-
formance requirements (i.e., high bandwidth, high throughput, and low latency) without
the need to add more capacity to the network. Traffic engineering represents a great
opportunity in this realm. Particularly, load-balancing is a desirable feature for reducing
network congestion while improving network resource availability and application per-
formance [2, 3]. A well-known technique for implementing load-balancing in DCNs is
multipath routing, which distributes traffic over multiple concurrent paths such that all
the links are optimally loaded [4]. Hereinafter, when this dissertation mentions routing
in DCN, it is particularly referring to intra-DCN routing.

The most prevalent multipath routing solution in DCNs is Equal Cost Multiple-Path
(ECMP) [5, 6]. Usually, ECMP uses a hash function in every switch to assign each
incoming flow to one of the equal-cost forwarding paths maintained by the switch for
reaching a destination [7]. However, traffic in DCNs presents a broad distribution of
flow sizes: from small, short-lived flows (i.e., mice) to large, long-lived flows (i.e., ele-
phants) [8–11]. This wide dispersion of flow sizes causes hot-spots in DCNs based on
ECMP routing, i.e., some links are highly utilized while others are underutilized.

For example, if two mouse flows and two elephant flows arrive at the same ECMP-
1Total number of packets processed per second.
2Average processing time used for a single packet.
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enabled switch, it is possible that this switch assigns the two mouse flows to one of
the forwarding paths and the two elephant flows to one of the other forwarding paths.
Therefore, the link transporting the two mouse flows is going to present less load and
be free much faster than the link transporting the two elephant flows, causing an under-
using and overloading of links, respectively. Facebook’s Altoona [12] propose to prevent
the degrading of elephant flows by making the network multi-speed. However, this is
not an efficient approach. Rather than adding more capacity, the issue is selecting a
routing mechanism for drawing traffic effectively.

For this reason, recent multipath routing mechanisms have been proposed for im-
proving ECMP. Broadly, these mechanisms can be categorized as distributed and
centralized multipath routing. Distributed multipath routing maintains routing decisions
at switches or servers and tackles ECMP limitations by (i) using different levels of gran-
ularity for traffic splitting (i.e., packet-level [13, 14] and sub-flow-level [15]), (ii) adding
weights to the paths [15, 16]; or (iii) incorporating congestion information for making
routing decisions [17]. Distributed multipath routing mechanisms that combine sub-
flow-level traffic splitting and congestion-awareness—local congestion [18,19] or global
congestion [20–22]—have provided great results for load-balancing in DCNs. However,
these solutions require specialized hardware implementation, potentially cause packet
reordering, and lack a global view of traffic for making routing decisions.

Centralized multipath routing have leveraged Software-Defined Networking (SDN)
to face the ECMP limitations; DCNs using SDN are referred to as Software-Defined
Data Center Networks (SDDCNs). SDN allows a logically centralized controller to dy-
namically make and install routing decisions on the basis of a global view of the net-
work [23, 24]. Hereinafter, this dissertation uses the term SDN-based multipath rout-
ing to refer to centralized mechanisms. SDN-based multipath routing reschedules ele-
phant flows, while handling mouse flows by employing default routing, such as ECMP.
Early SDN-based mechanisms proposed reactive flow detection methods to discrimi-
nate elephants from mice by using static thresholds either at the controller-side [25,26],
switch-side [27], or server-side [28,29] of SDDCNs. However, reactive methods are not
suitable for SDDCNs since hot-spots may occur before the elephant flows are detected.

Novel SDN-based multipath routing have incorporated Machine Learning (ML)-based
flow detection methods for proactively identifying elephants. However, ML-based meth-
ods train their classification models at the controller-side of SDDCNs, requiring the
central collection of either per-flow data [30–32] or sampling-based data [33–35]. The
central collection of per-flow data, however, causes problems such as heavy traffic over-
head and poor scalability. Sampling-based data, on the other hand, tends to provide
delayed and inaccurate flow information. Moreover, sampling techniques that mitigate
the problem rely on non-standard SDN specifications.

Another gap in multipath routing is that SDN-based mechanisms, both with reactive
and ML-based flow detection methods, merely identify elephant flows (i.e., binary clas-
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sification) and lack fine-grained information for making routing decisions. Therefore,
their routing algorithm reschedules all the elephants using the same approach regard-
less of the different traffic characteristics that elephant flows exhibit in DCNs. This
elephant-oblivious routing, however, may cause hot-spots in SDDCNs, reducing the
performance of the network. Only a few SDN-based mechanisms introduce ML-based
methods that classify flows into more than two categories (i.e., multiclass classifica-
tion) [31, 33]. However, the routing algorithms in such SDN-based mechanisms use
only a part of the information given by their flow detection methods. Moreover, such
flow detection methods employ a reduced number of classification categories (up to
five) that still fall short to cover the broad distribution of elephant flows in DCNs.

Based on these statements, SDN-based multipath routing still requires finding the
best trade-off between prompt elephant detection, traffic overhead, data collection ac-
curacy, and network modifications. Besides, SDN-based multipath routing algorithms
call for finer granularity traffic characteristics of elephant flows for improving reschedul-
ing decisions. Therefore, this thesis project focused on solving the following research
question:

How to carry out multipath routing in DCNs for enabling high throughput and
low delay while maintaining efficient use of resources?

1.2 Hypothesis

To address the research question, this thesis raised the following hypothesis: using
ML for fine-granularity prediction of flow characteristics and SDN for dynamic
control of flow scheduling would allow building a multipath routing mechanism
for DCNs that improves3 the routing function.

The following fundamental questions, associated with the hypothesis, guided the
investigation conducted in this thesis.

• What is the accuracy and efficiency, in terms of time and memory, of ML tech-
niques for predicting flow characteristics of network traffic from DCNs?

• Does incorporating ML techniques to an SDN-based multipath routing mechanism
improve network traffic routing, in terms of throughput and delay, in DCNs?

3In terms of high throughput and low delay while efficient use of resources
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1.3 Objectives

1.3.1 General objective

To develop a multipath routing mechanism based on ML and SDN for improving the
routing function in DCNs.

1.3.2 Specific objectives

• To design a multipath routing reference architecture that incorporates the capabil-
ities of ML and SDN for improving the routing function in DCNs.

• To construct and evaluate4 a mechanism based on ML that predicts, in a fine-
granularity way, flow characteristics in DCNs.

• To construct and evaluate5 a routing mechanism based on SDN that uses pre-
dicted flow characteristics for improving the routing function in DCNs.

1.4 Contributions

The scientific research process conducted during this thesis led to building a multipath
routing mechanism that leverages ML techniques for predicting traffic flow characteris-
tics and SDN capabilities for differentiated and dynamic control of traffic flows aiming
to improve the routing function in DCNs. Three major components form our multipath
routing mechanism.

• A flow detection method that incorporates incremental learning at the server-side
of SDDCNs to accurately and timely identify elephant flows while generating low
traffic overhead and adapting to varying traffic characteristics under limited mem-
ory resources.

• A Pseudo-MAC (PMAC)-based multipath routing algorithm for steering traffic flows
(mainly, mice) in SDDCNs that supports transparent host migration across the
whole network while reducing the number of rules installed on SDN switches,
decreasing the delay introduced to flows traversing the network.

• A flow rescheduling method at the controller-side of SDDCNs that applies deep
incremental learning for predicting traffic characteristics of elephant flows to com-
pute and install the best path per elephant flow across the network.

4In terms of accuracy (e.g., true/false positives/negatives) and processing requirements (e.g., training
data, training time, run-time).

5In terms of traffic performance (e.g., throughput, delay) and resource utilization (e.g., links load)
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Moreover, collaborations with other researchers (i.e., student advisory and research
internships) during this thesis led to the following contributions.

• An SDN management architecture based on Hierarchical Task Network (HTN)
and Network Function Virtualization (NFV) that provides an automated, workable,
and flexible approach for monitoring, configuring, and controlling SDN resources.

• A vertical Management Plane for SDN that considers management tasks involving
more than one Autonomous System (AS).

• A set of data models for the SDN architecture based on the Yet Another Next
Generation (YANG) language to support integrated management in a technology-
agnostic and heterogeneous SDN environment.

These three contributions are built on the reference architecture for SDN inte-
grated management and the Common Information Model (CIM)-based informa-
tion model proposed in the author’s master thesis [36].

• A cognitive control loop framework for autonomic network management that in-
corporates ML at every function of the closed-loop and each of the Fault, Con-
figuration, Accounting, Performance, and Security (FCAPS) management areas.
A discussion about the opportunities and challenges pertaining to using ML to
manage autonomic networks complements this cognitive framework.

• A comprehensive body of knowledge on ML techniques in support of networking.
Particularly, this body of knowledge comprehends the following contributions.

– A generic approach for designing ML-based solutions in networking.

– A brief history of ML focused on the techniques that have been applied in
networking.

– A literature review about the advances made in the application of ML in differ-
ent networking areas, including traffic prediction, classification, and routing,
which are fundamental in traffic engineering for optimizing network perfor-
mance.

– Prominent challenges and open research opportunities on the feasibility and
practicality of ML in current and future networks.

1.5 Scientific production

Two published papers (one in a highly ranked journal and one in a renowned confer-
ence) and one journal paper in construction report to the scientific community the major
contributions achieved during this thesis.
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• “NELLY: Flow Detection Using Incremental Learning at the Server Side of SDN-
based Data Centers,” published in IEEE Transactions on Industrial Informatics,
2020 [37]. Ranking: JCR Q1, SJR Q1, Publindex A1, Qualis A1. Contribution:
the elephant flow detection method using incremental learning.

• “An Efficient Mice Flow Routing Algorithm for Data Centers based on Software-
Defined Networking,” published in the proceedings of 2019 IEEE International
Conference on Communications (ICC) [38]. Ranking: H5-index 56, Qualis A1,
CORE B. Contribution: the PMAC-based multipath routing algorithm for SDDCNs.

• “iRIDE: Rescheduling of Elephant Flows in SDN-based Data Centers Using In-
cremental Deep Learning to Predict Traffic Characteristics,” in construction. Con-
tribution: the flow rescheduling method using deep incremental learning.

Furthermore, six papers published in renowned journals and conferences report
to the scientific community the contributions achieved in collaboration with other re-
searchers. These papers are listed in chronological order.

• “A Framework for SDN Integrated Management based on a CIM Model and a
Vertical Management Plane,” published in Computer Communications, 2017 [39].
Ranking: JCR6 Q2, SJR7 Q2, Publindex8 A1, Qualis9 A2. Contribution: the refer-
ence architecture for the SDN integrated management and the CIM-based infor-
mation model.

• “SDN Management Based on Hierarchical Task Network and Network Functions
Virtualization,” published in the proceedings of the 2017 IEEE Symposium on
Computers and Communications (ISCC) [40]. Ranking: H5-index10 20, Qualis
A3, CORE11 B. Contribution: the HTN- and NFV-based architecture for managing
SDN.

• “A YANG Model for a vertical SDN Management Plane,” published in the proceed-
ings of the 2017 IEEE Colombian Conference on Communications and Computing
(COLCOM) [41]. Ranking: H5-index 9. Contribution: the YANG data model for
the SDN Management Plane.

• “Machine Learning for Cognitive Network Management,” published in IEEE Com-
munications Magazine, 2018 [42]. Ranking: JCR Q1, SJR Q1, Publindex A1,

6Quartile from Journal Citation Reports (JCR)
7Quartile from SCImago Journal Rank (SJR)
8Bibliographic index from COLCIENCIAS, Colombia
9Bibliographic index from CAPES, Brazil

10H-index from Google Scholar Metrics
11Rank from COmputing Research and Education (CORE), Autralia
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Qualis A1. Contribution: the cognitive control loop framework for autonomic net-
work management.

• “A comprehensive survey on machine learning for networking: evolution, appli-
cations and research opportunities,” published in Journal of Internet Services and
Applications, 2018 [43]. Ranking: SJR Q2, Publindex A2, Qualis A2. Contribution:
the body of knowledge on ML in networking.

• “An Approach based on YANG for SDN Management,” published in International
Journal of Communication Systems, 2021 [44]. Ranking: SJR Q2, Publindex A2,
Qualis A3. Contribution: the Management Plane with multiple ASs support and
the YANG data models for the SDN architecture.

Appendix A lists the eight published papers in chronological order.

1.6 Methodology and organization

The research process that guided the development of this thesis is based on a typ-
ical scheme of the scientific method [45]. Figure 1.1 depicts the phases that form
this research process: Problem Statement, Hypothesis Construction, Experimentation,
Conclusion, and Publication. Problem Statement, for identifying and establishing the
research question. Hypothesis Construction, for formulating the hypothesis and the as-
sociated fundamental questions. In addition, this phase aimed to define and carry out
the conceptual and technological approaches. Experimentation, for testing the hypoth-
esis and analyzing the evaluation results. Conclusion, for outlining conclusions and
future works. Note that Hypothesis Construction had feedback from Experimentation
and Conclusion. Publication, for submitting and publishing papers for renowned confer-
ences and journals. The writing of this dissertation document also belongs to this last
phase.

Journals and conferences

Dissertation

Major contributions

Future works

Test of the hypothesis

Analysis of the evaluation results

How to carry out multipath routing in 
DCNs for enabling high throughput 

and low delay while maintaining 
efficient use of resources?

Using ML for fine-granularity 
prediction of flow characteristics and 

SDN for dynamic control of flow 
scheduling would allow building a 
multipath routing mechanism for 
DCNs that improves the routing 

function

Fundamental questions

Conceptual and technological 
approaches

Problem 
Statement

Hypothesis 
Construction

Experimentation Conclusion Publication

Figure 1.1: Thesis phases

The organization of this document reflects the phases of the methodology.
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• This introductory chapter presents the problem statement, delineates the hypoth-
esis, exposes the objectives, summarizes the contributions, lists the scientific pro-
duction, and describes the overall structure of this dissertation.

• Chapter 2 reviews the main concepts and research related to SDN management,
ML for networking, and traffic engineering in DCNs.

• Chapter 3 introduces the server-side flow detection method for SDDCNs based
on incremental learning.

• Chapter 4 details the multipath routing mechanism based on ML and SDN for
DCNs. Section 4.1 describes the multipath routing algorithm for steering mice in
SDDCNs.

• Chapter 5 presents conclusions about the hypothesis and the fundamental ques-
tions as well as research directions.



Chapter 2

Background and state-of-the-art

This chapter presents the background of the main research topics encompassed in
this thesis. In this way, the first section introduces a bottom-up description of the typi-
cal SDN architecture followed by a detailed explanation of our view of a management
plane for SDN. The second section provides a primer of ML for networking, discussing
different categories of ML-based techniques, their essential constituents, and their evo-
lution. Moreover, this section reviews the notion of cognitive networking, focusing on
our proposal for realizing a cognitive control loop for autonomic networking. Finally,
this chapter contextualize the concepts of DCN and traffic engineering, and provides
a literature review about multipath routing for load-balancing in DCNs, focusing on the
seminal works that use SDN and ML for addressing such a challenge.

2.1 Software-defined networking

SDN represents one of the most accepted and attractive trends, in research and indus-
try, for defining the architecture of future networks [46,47]. From a general aspect, SDN
decouples the control and forwarding planes for enabling a simpler network operation
from a logically centralized software program, usually known as the controller [24]. The
control plane (i.e., the controller) compiles decision policies and enforces them on the
data plane (i.e., switches and routers) through a vendor independent protocol. Open-
Flow [48] is the most well-known open SDN protocol and a de facto standard because
of its widespread use by vendors and research.

SDN provides four major advantages for operating networks [49]: (i) a centralized
global view about the network state (e.g., resource capabilities and dynamic status)
and the deployed applications (e.g., QoS requirements), (ii) a dynamic programma-
bility of multiple forwarding devices (e.g., allocating resources to prevent congestion
and improve performance), (iii) open interfaces for handling the forwarding plane (e.g.,
OpenFlow) and for developing the applications (e.g., Application Programming Inter-
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faces (APIs) based on protocols and programming languages); and (iv) a flexible flow
management (e.g., multiple flow tables in OpenFlow). These unique features lead the
SDN architecture to emerge as a promising scenario for efficiently and intelligently im-
plementing management techniques, particularly for traffic engineering.

2.1.1 SDN Architecture

Multiple standardization bodies, such as the Linux Foundation [50] and Open Network
Foundation (ONF) [51], focus on encouraging and normalizing open SDN frameworks.
Also, various private networking vendors, such as Cisco [52] and Juniper [53], of-
fer proprietary SDN deployments. In turn, several research surveys [23, 54] work on
improving architectural aspects of SDN. These open, proprietary, and research pro-
posals establish a typical SDN architecture composed of three horizontal planes (i.e.,
data, control, and application) and three interfaces (i.e., southbound, northbound, and
east/westbound), as depicted in Figure 2.1.
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Figure 2.1: High-level SDN architecture

At the bottom of the SDN architecture, the data plane (a.k.a. forwarding plane) de-
ploys the network infrastructure formed by interconnected Network Devices (NetDevs),
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such as switches and routers, that perform forwarding operations. A NetDev con-
sists of a physical and a functional part. The former comprises hardware elements,
such as ports, storage, processor, and memory. The latter defines a collection of
software-based forwarding functions executed by NetDevs. Regarding this functional
part, a NetDev ranges from dumb to custom. A dumb NetDev merely carries out
simple forwarding functions, such as longest prefix match. For example, OpenFlow-
only switches [55] just forward packets using the rules installed in their flow tables—
updated by an OpenFlow controller. On the other hand, a custom NetDev relies on pro-
grammable platforms [56]—e.g., Protocol-Independent Switch Architecture (PISA) and
Field-Programmable Gate Array (FPGA)—to integrate more complex forwarding func-
tions, such as load balancing [57] and in-band network telemetry [58]. For example,
P4 [59] provides a target- and protocol-independent language that allows programming
packet processing functionality.

In the middle, the control plane compiles the network logic and enforces deci-
sion policies on the data plane through SouthBound Interfaces (SBIs). Each SBI de-
fines the set of instructions and the communication protocols to allow the interaction
between components in the control and data planes. The OpenFlow protocol [48]
is the most well-known open standard SBI because its widespread use by vendors
and research [46]. Other SBI proposals are Forwarding and Control Element Separa-
tion (ForCES) [60], Protocol-Oblivious Forwarding (POF) [61], and P4Runtime [62].

The control plane comprises Network Slicers (NetSlicers) and Network Operating
Systems (NOSs). A NetSlicer divides the underlying network infrastructure into sev-
eral isolated logical network instances (a.k.a. slices), assigning their control to specific
NOSs. NetSlicers may employ SBIs to communicate with NOSs. For example, FlowVi-
sor [63] acts as an OpenFlow proxy between switches and controllers, redirecting mes-
sages according to flow parameters, such as TCP ports and IP addresses. An NOS
instructs the underlying data plane and provides generic services (e.g., topology dis-
covering and host tracking) and NorthBound Interfacess (NBIs) to the application plane,
facilitating to integrate custom Network Applications (NetApps). The possibility to add
these NetApps in an easier way is the key advantage of SDN to encourage innova-
tion on the Internet. OpenFlow controllers [55] and ForCES Control Element (CE) [60]
represent NOS instances. It is important to highlight that a lot of frameworks exist to
develop and deploy OpenFlow controllers, including open source projects like NOX [64]
for C++, POX [65] and Ryu [66] for Python, Floodlight [67] and OpenDaylight [68] for
Java, and Trema [69] for Ruby. Also, the control plane defines East/WestBound In-
terfacess (EWBIs) to deploy distributed NOSs. For example, SDNi [70] and ForCES
CE-CE interface [60].

At the top of the SDN architecture, the application plane contains NetApps that de-
ploy and orchestrate business logic and high-level network functions, such as routing
policies and access control. As aforementioned, NetApps communicate with the con-
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trol plane through NBIs provided by NOSs. NBIs encompass common APIs based
on protocols (e.g., Floodlight REST API [71]), programming languages (e.g., ad-hoc,
Pyretic [72], and Procera [73]), file systems (e.g., YANC [74]), among others. NetApps
run either locally or remotely regarding NOSs. Local NetApps prefer NBIs based on pro-
gramming languages, whereas remote NetApps usually employ protocol-based NBIs.

2.1.2 Management plane

As depicted in Section 2.1.1, the traditional SDN architecture lacked an integrated and
standardized framework for managing the virtual1, dynamic2, and heterogeneous3 SDN
environment. Later SDN approaches [75–78] considered a vertical management plane
in the SDN architecture (see Figure 2.1) for carrying out different Operation, Admin-
istration, and Maintenance (OAM) functions. For example, assigning the data plane
resources to the corresponding control components, and configuring the policies and
Service Level Agreements (SLAs) of the control and application planes. Although NOSs
may implement some OAM functions, flooding the control plane with a lot of managing
tasks may cause low network performance.

These SDN approaches exposed a very high-level of their management component.
Therefore, we extended and detailed such management plane aiming to facilitate inte-
grated control and monitoring of heterogeneous SDNs [39]. This approach originally
lacked inter-domain communication management; hence, we later incorporated inter-
AS elements (i.e., repository, adapter, interface, and agent) for supporting management
tasks involving more than one domain [41, 44]. Figure 2.2 depicts the proposed verti-
cal management plane comprising different elements: data repositories, managers,
adapters, agents, and management interfaces.

Two data repositories coexist, each holding a Resource Representation Model (RRM)
that handles metadata to provide an abstract, technology-neutral characterization of
SDN resources. Data repositories also serve managers for storing instance data, which
represents execution-specific data whose structure follows such an RRM. Particularly,
the inter-AS data repository focuses on information relevant from other ASs for enabling
management tasks in an inter-domain environment. On the other hand, managers or-
chestrate and deploy management services to carry out different SDN management
functions. These management services expose user interfaces to enable network ad-
ministrators to interact with managers. Managers also interact with agents via adapters,
which enable a protocol-agnostic communication using data type rendering, protocol
translation, and well-defined management interfaces. Note each management inter-

1Capability for sharing network resources from a same physical infrastructure among several virtual
network instances.

2Flexibility for adding, modifying, migrating, and removing network resources.
3Independence of the technology deployed by network resources.
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Figure 2.2: SDN vertical management plane

face connects an adapter with its corresponding agent. Finally, agents inside managed
SDN resources act on behalf of managers.

Figure 2.2 also describes our management plane referencing the four Open System
Interconnection (OSI) network management submodels [79]. First, the organizational
model specifies roles and collaboration forms of the managing entities (i.e., managers
and adapters) and managed entities (i.e., agents). Second, the communication model
delineates the exchange of management data (e.g., operations, queries, events) and
the enabling technologies for the user and adapter interfaces (e.g., JSON [80] over
HTTP [81]), repository interfaces (e.g., XML [82] over HTTP), and management inter-
faces (e.g., OVSDB [83], NETCONF [84], SNMP [85]). Third, the functional model
structures the management services referencing the five OSI management functional
areas (i.e., FCAPS [86]) along with a novel programmability function (i.e., FCAPS+P)
introduced by SDN. Fourth, the information model establishes a shared abstraction of
SDN resources for achieving an integrated and technology-independent management.

The whole operation of our management plane is based on RRM, which implements
the information model and originally leveraged CIM4 for representing the SDN architec-
ture as a conceptual model [39]. We later implemented the CIM model using YANG data
models5 since the latter provides a more human-readable and easier-to-learn language

4CIM is an open standard aimed at assisting the management of devices, services, and computer
networks by facilitating their modeling [87].

5Information models represent managed objects at a conceptual level, independent of any specific
protocols used to transport the data. Whereas, data models define managed objects at a lower level of
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than the former, while also being technology-agnostic [41,44]. Note that different SDN
solutions from the industry and academia increasingly use YANG to build new man-
agement solutions [89–91]. This is because YANG emerged from a widely adopted
network management protocol (i.e., NETCONF) [92, 93] and structures data under a
hierarchical tree topology using modules and submodules that allow description easily
network devices and their relationships [94].

We also defined our management plane in the context of network automation by
introducing an SDN management architecture based on HTN and NFV [40]. This archi-
tecture provides an automated, workable, and flexible approach for monitoring, config-
uring, and controlling SDN resources. To achieve this goal, our management plane in-
stantiates the three NFV MANagement and Orchestrator (MANO) functional blocks [95].
The two managers (i.e., virtual function and virtualized infrastructure) enable the com-
munication between the managing and managed entities. Whereas, the orchestrator
leverages the automated planning capability from HTN [96] to facilitate composing net-
work management tasks. This allows overcoming low automation management tasks,
such as reconfiguring a broken connection, with minimal human intervention.

2.2 Machine learning for networking

Machine learning is a branch of artificial intelligence whose foundational concepts were
acquired over the years from contributions in the areas of computer science, mathemat-
ics, philosophy, economics, neuroscience, psychology, control theory, and more [97]. In
1959, Arthur Samuel coined the term “Machine Learning”, as “the field of study that
gives computers the ability to learn without being explicitly programmed.” However,
ML goes beyond simply learning or extracting knowledge, to utilizing and improving
knowledge over time and with experience [98]. Broadly, ML can be divided into three
paradigms, based on how the learning is achieved [97,99]: supervised, unsupervised,
and reinforcement learning.

Supervised learning uses labeled training datasets to create models that map in-
puts to their corresponding outputs. Then, this learning approach requires labeling
methods for establishing the ground truth in datasets and “learns” to identify patterns or
behaviors in the “known” training datasets. Typically, supervised learning solves classi-
fication and regression problems that pertain to predicting discrete or continuous valued
outcomes, respectively (see Figures 2.3(a) and 2.3(b)). For example, a classification
problem can be to identify mice and elephant flows. Whereas, a regression problem
can be to predict the size of each flow.

Unsupervised learning uses unlabeled training datasets to create models that find

abstraction, including implementation- and protocol-specific details. Multiple data models can be derived
from a single information model [88].
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dominating structure or patterns in the data. This approach is most suited for clustering
problems (see Figure 2.3(c)). For instance, outliers detection and density estimation
problems in networking, can pertain to grouping different instances of attacks based
on their similarities. Between supervised and unsupervised learning resides semi-
supervised learning to face partial knowledge. That is, having incomplete labels or
missing labels for training data.

Reinforcement learning (RL) uses an agent that interacts with the external world
to learn by exploring the environment and exploiting the knowledge. The actions are
rewarded or penalized. Therefore, the training data constitutes a set of state-action
pairs and rewards (or penalties). The agent uses feedback from the environment to
learn the best sequence of actions or “policy” to optimize a cumulative reward. Hence,
this learning approach is best suited for making cognitive choices, such as decision
making, planning, and scheduling [100]. For example, rule extraction from the data that
is statistically supported and not predicted (see Figure 2.3(d)).

(a) Classification (b) Regression (c) Clustering (d) Rule extraction

Figure 2.3: Problem categories that benefit from ML paradigms

Though there are different categories of problems that enjoy the benefits of ML,
there is a generic approach to building ML-based solutions. Figure 2.4 illustrates the
key constituents in designing ML-based solutions for networking. Data collection per-
tains to gathering, generating, and defining the set of data and the set of classes of
interest. Depending on the applied ML paradigm, the collected data might be labeled
for establishing the ground truth. Feature engineering is used to reduce dimensional-
ity in data and identify discriminating features that reduce computational overhead and
increase accuracy. Model learning refers to training one or multiple models using ML
techniques, which carefully analyze the complex inter- and intra-relationships in data to
yield the outcome. Finally, model validation regards defining the accuracy metrics that
measure the performance of the trained models.
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Figure 2.4: The constituents of ML-based solutions

2.2.1 Incremental learning

Most ML approaches, mainly based on supervised and unsupervised learning, imple-
ment the classical batch learning: all data needed to generate an inference is collected
before training and is simultaneously accessed [101]. Usually, batch learning divides
the data into training, validation (also called development), and test sets [102]. The
training set is leveraged to fit the parameters of an ML model (e.g., weights). Whereas,
the validation set is used to choose the suitable hyperparameters of an ML model (e.g.,
architecture, learning rate, regularization), or choose a model from a pool of ML mod-
els. Finally, the test set is used to assess the unbiased performance of the selected
model. Note, batch learning considers that both the data and its underlying structure
are static.

A common batch setting decomposition of the dataset can conform to 60/20/20%
among training, validation, and test datasets, or 70/30% in case validation is not re-
quired [102]. These rule-of-thumb decompositions are reasonable for datasets that are
not very large. However, in the era of big data, where a dataset can have millions of en-
tries, other extreme decompositions, such as 98/1/1% or 99.8/0.1/0.1%, are also valid.
Several ML studies and practitioners consider that validation and test sets with sizes on
the order of tens of thousands of instances are sufficient. In batch learning, validation
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and testing usually follows one of two methods6 [103]: holdout or k-fold cross-validation.
In the holdout method, part of the available dataset is set aside and used as a valida-
tion (or testing) set. Whereas, in the k-fold cross-validation, the available dataset is
randomly divided into k equal subsets. Validation (or testing) process is repeated k

times, with k − 1 unique subsets for training and the remaining subset for validating (or
testing) the model, and the outcomes are averaged over the rounds.

Batch learning has also incorporated some big data upgrades, such as external stor-
age and data subsets, that enable processing large but static datasets [103]. However,
the more data available, the less performance to simply output a final static model.
Moreover, batch learning fails to handle a continuous supply of changing data (i.e.,
sequential data or data stream), which is characteristic of the networks and its high dy-
namicity. Since static models cannot continuously integrate new information, they have
to be constantly reconstructed to ensure their validity over time. However, re-training a
model from scratch is computationally expensive, time-consuming, and leads to poten-
tially outdated models [104]. An interesting research direction is to achieve incremental
learning, where the model is re-trained with only the new data.

Incremental learning7 refers to continuously updating a model using sequential data
(i.e., constantly arriving data with no specific order) without re-processing the data al-
ready used [105]. In fact, many datasets, although static, are so large that they would
be dealt with as sequential data. Since sequential data can become endless in some
domains, including computer networks, incremental learning aims for bounding model
complexity and processing time, enabling lifelong learning and a constantly updated
model under limited memory resources. Therefore, four fundamental aspects charac-
terize an incremental learning algorithm [103]: (i) it processes an instance at a time
in the order that arrives, inspecting it as input only once8, (ii) it uses a limited amount
of memory, even when processing data much more extensive than available memory,
(iii) it restricts the runtime to a limit, which is particularly pivotal for algorithms aimed at
real-time applications (e.g., networking); and (iv) it can provide a prediction anytime, no
matter the number of instances used for training.

The evaluation of incremental learning algorithms follows one of two methods [103]:
holdout and interleaved test-then-train. Holdout represents a natural extension from
batch learning, where a single, independent, and sufficiently large (i.e., tens of thou-
sands of instances) test set can provide a valid accuracy measurement. The model

6Other evaluation practices for batch learning exist, such as leave-one-out and bootstrap, but the ML
community warns about using them.

7The definition of incremental learning is not always consistent in the literature and involves certain
ambiguity regarding related terms, including online learning, data stream mining, stream learning, and
incremental online learning. The definition presented in this thesis aims to cover the commonalities
among such related concepts.

8An algorithm may store some instances internally in the short term. However, at some point, it needs
to discard some of them to meet memory and time limits.
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can be evaluated on the test set either after the last training or periodically to track its
performance over time. In scenarios where the data statistics change over time (a.k.a.
concept change), the test set cannot be static but must be constantly collected using
new instances not yet used for training. On the other hand, interleaved test-then-train
(a.k.a. prequential) refers to using each individual instance for testing the model be-
fore training. Note this method does not need a holdout set, making maximum use
of the collected data for both testing and training. In interleaved test-then-train, early
mistakes from a poorly trained model (a.k.a. cold start) punish the actual accuracy
that incremental algorithms might achieve. Although this effect diminishes over time,
evaluation techniques like pretraining and sliding windows help to correct the accuracy
measurement. Incremental learning algorithms are usually evaluated using interleaved
test-then-train as it easily handles a potentially infinite sequence of instances arriving
one after another.

2.2.2 Evolution of machine learning techniques

Research efforts during the last 75 years have given rise to a plethora of ML tech-
niques [97–99, 106]. This section provides a brief history of ML, focusing on the tech-
niques that have been particularly applied in the area of computer networks, including
this thesis (see Figure 2.5).
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Figure 2.5: The evolution of machine learning techniques with key milestones

The beginning of ML dates back to 1943, when the first mathematical model of
Neural Network (NN) for computers was proposed by McCulloch [107]. This model
introduced a basic unit called artificial neuron that has been at the center of NN de-
velopment to this day. However, this early model required to manually establish the
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correct weights of the connections between neurons. This limitation was addressed in
1949 by Hebbian learning [108], a simple rule-based algorithm for updating the con-
nection weights of the early NN model. Like the neuron unit, Hebbian learning greatly
influenced the progress of NN. These two concepts led to the construction of the first
NN computer in 1950, called SNARC (Stochastic Neural Analog Reinforcement Com-
puter) [97]. In the same year, Alan Turing proposed a test—where a computer tries
to fool a human into believing it is also human—to determine if a computer is capa-
ble of showing intelligent behavior. He described the challenges underlying his idea
of a “learning machine” in [109]. These developments encouraged many researchers
to work on similar approaches, resulting in two decades of enthusiastic and prolific
research in the ML area.

In the 1950s, the simplest linear regression model called Ordinary Least Squares
(OLS)—derived from the least squares method [110,111] developed around the 1800s—
was used to calculate linear regressions in electro-mechanical desk calculators [112].
To the best of our knowledge, this is the first evidence of using OLS in computing
machines. Following this trend, two linear models for conducting classification were
introduced: Maximum Entropy (MaxEnt) [113,114] and logistic regression [115].

Different ML techniques derived from pattern recognition and root-finding problems
appeared during this decade too. Research trends centered on pattern recognition ex-
posed two non-parametric models (i.e., not restricted to a bounded set of parameters)
capable of performing regression and classification: k-Nearest Neighbors (kNN) [116,
117] and Kernel Density Estimation (KDE) [118], also known as Parzen density [119].
The former uses a distance metric to analyze the data, while the latter applies a kernel
function (usually, Gaussian) to estimate the probability density function of the data. On
the other hand, research on root-finding optimization introduced the stochastic approx-
imation algorithm [120, 121], which uses successive approximations to find the unique
root of a regression function. This algorithm was later referred to as Stochastic Gra-
dient Descent (SGD) [122] since it approximates the true gradient (computed using
the whole dataset) by iteratively adding a scaled gradient estimate over every single
instance of the dataset—a later proposed variant that iterate over instance subsets,
called mini-batches, can improve performance and convergence [123]. SGD has be-
come a well-known incremental (a.k.a. online) learning method for training various ML
models, such as linear regression and NNs, facing large-scale datasets [124].

The 1950s also witnessed the first applications of the Naïve Bayes (NB) classifier in
the fields of pattern recognition [125] and information retrieval [126]. NB, whose founda-
tions date back to the 18th and 19th centuries [127,128], is a simple probabilistic clas-
sifier that applies Bayes’ theorem on features with strong independence assumptions.
NB was later generalized using KDE, also known as NB with Kernel Estimation (NBKE),
to estimate the conditional probabilities of the features. In the area of clustering, Stein-
haus [129] was the first to propose a continuous version of the to be called k-Means
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algorithm [130], to partition a heterogeneous solid with a given internal mass distribu-
tion into k subsets. The proposed centroid model employs a distance metric to partition
the data into clusters where the distance to the centroid is minimized.

By the end of the 1950s, the Markov model [131, 132] (elaborated 50 years ear-
lier) was leveraged to construct a process based on discrete-time state transitions and
action rewards, named Markov Decision Process (MDP), which formalizes sequential
decision-making problems in a fully observable, controlled environment [133]. MDP has
been essential for the development of prevailing RL techniques [106]. Research efforts
building on the initial NN model flourished too: the modern concept of perceptron was
introduced as the first NN model that could learn the weights from input examples [134].
This model describes two NN classes according to the number of layers: Single-Layer
Perceptron (SLP), an NN with one input layer and one output layer, and Multi-Layer
Perceptron (MLP), an NN with one or more hidden layers between the input and the
output layers. The perceptron model is also known as feedforward NN since the nodes
from each layer exhibit directed connections only to the nodes of the next layer. Finally,
the term “Machine Learning” was coined and defined for the first time by Arthur Samuel
(see Section 2.2), who also developed a checkers-playing game that is recognized as
the earliest self-learning program [135].

ML research continued to flourish in the 1960s, giving rise to a novel statistical class
of the Markov model, named Hidden Markov Model (HMM) [136]. An HMM describes
the conditional probabilities between hidden states and visible outputs in a partially ob-
servable, autonomous environment. The Baum-Welch algorithm [137] was proposed
in the mid-1960s to learn those conditional probabilities. At the same time, MDP con-
tinued to instigate various research efforts. The Partially Observable MDP (POMDP)
approach to finding optimal or near-optimal control strategies for partially observable
stochastic environments, given a complete model of the environment, was first pro-
posed by Cassandra et al. [138] in 1965, while the algorithm to find the optimal solution
was only devised five years later [139]. Another development in MDP was the learning
automata—officially published in 1973 [140]—an RL technique that continuously up-
dates the probabilities of taking actions in an observed environment, according to given
rewards. Depending on the nature of the action set, the learning automata is classi-
fied as Finite Action-set Learning Automata (FALA) or Continuous Action-set Learning
Automata (CALA) [141].

In 1963, Morgan and Sonquis published Automatic Interaction Detection (AID) [142],
the first regression tree algorithm that seeks sequential partitioning of an observation
set into a series of mutually exclusive subsets, whose means reduces the error in pre-
dicting the dependent variable. AID marked the beginning of the first generation of
Decision Tree (DT) models. However, the application of DTs to classification problems
was only initiated a decade later by Morgan and Messenger’s THeta AID (THAID) [143]
algorithm.
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In the meantime, the first algorithm for training MLP-NNs with many layers 9—also
known as Deep NN (DNN) in today’s jargon—was published by Ivakhnenko and Lapa in
1965 [145]. This algorithm marked the commencement of the Deep Learning (DL) disci-
pline, though the term only started to be used in the 1980s in the general context of ML,
and in the year 2000 in the specific context of NNs [146]. By the end of the 1960s, Min-
sky and Papertkey’s Perceptrons book [147] drew the limitations of perceptrons-based
NN through mathematical analysis, marking a historical turn in Artificial Intelligence (AI)
and ML in particular, and significantly reducing the research interest for this area over
the next several years [97].

Although ML research was progressing slower than projected in the 1970s [97], this
decade was marked by milestones that greatly shaped the evolution of ML, and con-
tributed to its success in the following years. These include the Back-Propagation (BP)
algorithm [148], the Cerebellar Model Articulation Controller (CMAC) NN model [149],
the Expectation Maximization (EM) algorithm [150], the to-be-referred-to as Temporal
Difference (TD) learning [151], the Iterative Dichotomiser 3 (ID3) algorithm [152], and
the AQ11 learning system [153].

Werbos’s application of BP—originally a control theory algorithm from the 1960s [154–
156]—to train NNs [148] resurrected the research in the area. BP is to date the most
popular NN training algorithm and comes in different variants [157], such as SGD
(the de facto standard algorithm), conjugate gradient, one step secant, Levenberg-
Marquardt, and resilient BP. Though, BP is widely used in training NNs, its efficiency
depends on the choice of initial weights. In particular, BP has been shown to have
slower speed of convergence and to fall into local optima. Over the years, global op-
timization methods have been proposed to replace BP, including Genetic Algorithms
(GA), simulated annealing, and ant colony algorithms [158]. In 1975, Albus proposed
CMAC, a new type of NN as an alternative to MLP [149]. Although CMAC was primarily
designed as a function modeler for robotic controllers, it has been extensively used in
RL and classification problems for its faster learning compared to MLP.

In 1977, in the area of statistical learning, Dempster et al. proposed EM, a gen-
eralization of the previous iterative, unsupervised methods, such as the Baum-Welch
algorithm, for learning the unknown parameters of statistical HMM models [150]. At
the same time, Witten developed an RL approach to solve MDPs, inspired by ani-
mal behavior and learning theories [151], that was later referred to as TD in Sutton’s
work [159,160]. In this approach, the learning process is driven by the changes, or dif-
ferences, in predictions over successive time steps, such that the prediction at any given
time step is updated to bring it closer to the prediction of the same quantity at the next
time step. Towards the end of the 1970s, the second generation of DT models emerged
as the ID3 algorithm was released. The algorithm, developed by Quinlan [152], relies

9By 1971, the learning algorithm Group Method of Data Handling was capable of training an 8-layer
MLP [144]
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on a novel concept for attribute selection based on entropy10 maximization. ID3 is a
precursor to the popular and widely used C4.5 and C5.0 DT algorithms. In addition,
Michalski and Larson developed AQ11 [153], a learning system that incrementally gen-
erates new rules using the existing ones and new training instances, later discarded
after learning. AQ11 is the first evidence of using the term “incremental” in an ML
technique, to the best of our knowledge.

The 1980s witnessed a renewed interest in ML research, and in particular in NNs.
In the early 1980s, three new classes of NN models emerged, namely Convolutional
Neural Network (CNN) [161], Self-Organizing Map (SOM) [162], and Hopfield net-
work [163]. CNN is a feedforward NN specifically designed to be applied to visual
imagery analysis and classification, and thus require minimal image preprocessing.
Connectivity between neurons in CNNs is inspired by the organization of the animal vi-
sual cortex—modeled by Hubel in the 1960s [164,165]—where the visual field is divided
between neurons, each responding to stimuli only in its corresponding region. Similarly
to CNN, SOM was also designed for a specific application domain; dimensionality re-
duction [162]. SOMs employ an unsupervised competitive learning approach, unlike
traditional NNs that apply error-correction learning (such as BP with gradient descent).

In 1982, the first form of Recurrent Neural Network (RNN) was introduced by Hop-
field. Named after the inventor, Hopfield network is an RNN where the weights connect-
ing the neurons are bidirectional. The modern definition of RNN, as a network where
connections between neurons exhibit one or more than one cycle, was introduced by
Jordan in 1986 [166]. Cycles provide a structure for internal states or memory allowing
RNNs to process arbitrary sequences of inputs. As such, RNN are found particularly
useful in time series forecasting, handwriting recognition, and speech recognition.

Several key concepts emerged from the 1980s’ connectionism movement, one of
which is the concept of distributed representation [167]. Introduced by Hinton in 1986,
this concept supports the idea that a system should be represented by many features
and that each feature may have different values. Distributed representation establishes
a many-to-many relationship between neurons and (feature,value) pairs for improved
efficiency, such that a (feature,value) input is represented by a pattern of activity across
neurons as opposed to being locally represented by a single neuron. The second half of
the 1980s also witnessed the increase in popularity of the BP algorithm and its success-
ful application in training DNNs [168,169], as well as the emergence of new classes of
NNs, such as Restricted Boltzmann Machines (RBM) [170], Time-Lagged Feedforward
Network (TLFN) [171], and Radial Basis Function (RBF) NN (RBFNN) [172].

Originally named Harmonium by Smolensky, RBM is a variant of Boltzmann ma-
chines [173] with the restriction that there are no connections within any of the network
layers, whether it is visible or hidden. Therefor, neurons in RBMs form a bipartite graph.

10Measure of the uncertainty about a source of messages
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This restriction allows for more efficient and simpler learning compared to traditional
Boltzmann machines. RBMs are found useful in a variety of application domains such
as dimensionality reduction, feature learning, and classification, as they can be trained
in both supervised and unsupervised ways. The popularity of RBMs and the extent
of their applicability significantly increased after the mid-2000s as Hinton introduced
in 2006 a faster learning method for Boltzmann machines, called Contrastive Diver-
gence [174], making RBMs even more attractive for DL [175]. Interestingly, although
the use of the term “deep learning” in the ML community dates back to 1986 [176], it
did not apply to NNs at that time.

As aforementioned, TLFN—an MLP that incorporates the time dimension into the
model for conducting time series forecasting [171]—and RBFNN—an NN with a weighted
set of RBF kernels trained in supervised or unsupervised ways [172]—joined the grow-
ing list of NN classes. Indeed, any of these NNs can be employed in a DL architecture,
either by implementing a larger number of hidden layers or by stacking multiple simple
NNs.

In addition to NNs, several other ML techniques thrived during the 1980s. Among
these techniques, Bayesian Network (BN) arose as a Directed Acyclic Graph (DAG)
representation for the statistical models in use [177], such as NB and HMM—the latter
considered as the simplest dynamic BN [178, 179]. Two DT learning algorithms, sim-
ilar to ID3 but developed independently, referred to as Classification And Regression
Trees (CART) [180], were proposed to model classification and regression problems.
Another DT algorithm, under the name of Reduced Error Pruning Tree (REPTree), was
also introduced for classification. REPTree aimed at building faster and simpler tree
models using information gain for splitting, along with reduced-error pruning [181]. DT
also experienced its earliest incremental learning algorithms built upon batch models,
mainly ID3 (e.g., ID4 [182], ID5 [183], and ID5R [184]), which greatly influenced the
incremental DTs in the new millennium.

Towards the end of the 1980s, two TD approaches were proposed for RL: TD(λ) [160]
and Q-learning [185]. TD(λ) adds a discount factor (0 ≤ λ ≤ 1) that determines to what
extent estimates of previous state-values are eligible for updating based on current er-
rors, in the policy evaluation process. For example, TD(0) only updates the estimate
of the value of the state preceding the current state. Q-learning, however, replaces
the traditional state-value function of TD by an action-value function (i.e., Q-value) that
estimates the utility of taking a specific action in specific states. As of today, Q-learning
is the most well-studied and widely-used model-free RL algorithm. By the end of the
decade, the application domains of ML started expending to the operation and man-
agement of communication networks [186–188].

In the 1990s, significant advances were realized in ML research, focusing primarily
on NNs and DTs. Bio-inspired optimization algorithms, such as GA and Particle Swarm
Optimization (PSO), received increasing attention and were used to train NNs for im-



38 Chapter 2. Background and state-of-the-art

proved performance over the traditional BP-based learning [189, 190]. Probably one
of the most important achievements in NNs was the work on Long Short-Term Mem-
ory (LSTM), an RNN capable of learning long-term dependencies for solving DL tasks
that involve long input sequences [191]. Today, LSTM is widely used in speech recogni-
tion as well as natural language processing. In DT research, Quinlan published the M5
algorithm in 1992 [192] to construct tree-based multivariate linear models analogous to
piecewise linear functions. One well-known variant of the M5 algorithm is M5P, which
aims at building trees for regression models. A year later, Quinlan published C4.5 [193],
that builds on and extends ID3 to address most of its practical shortcomings, including
data overfitting and training with missing values. C4.5 is to date one of the most impor-
tant and widely used algorithms in ML and data mining.

Several techniques other than NNs and DTs also prospered in the 1990s. Research
on regression analysis propounded the Least Absolute Selection and Shrinkage Opera-
tor (LASSO), which performs variable selection and regularization for higher prediction
accuracy [194]. Another well-known ML technique introduced in the 1990s was Support
Vector Machines (SVM). SVM enables plugging different kernel functions (e.g., linear,
polynomial, RBF) to find the optimal solution in high-dimensional feature spaces. SVM-
based classifiers find a hyperplane to discriminate between categories. A single-class
SVM is a binary classifier that deduces the hyperplane to differentiate between the
data belonging to the class against the rest of the data, that is, one-vs-rest. A multi-
class approach in SVM can be formulated as a series of single class classifiers, where
the data is assigned to the class that maximizes an output function. SVM has been
widely used primarily for classification, although a regression variant exists, known as
Support Vector Regression (SVR) [195]. In addition, SVM can learn incrementally us-
ing SGD, though this applies only to models using a linear kernel function. By 1999, an
incremental learning variant of SVM appeared for handling perceived and real concept
drifts [196].

In the area of RL, State-Action-Reward-State-Action (SARSA) was introduced as
a more realistic, however less practical, Q-learning variation [197]. Unlike Q-learning,
SARSA does not update the Q-value of an action based on the maximum action-value
of the next state, but instead it uses the Q-value of the action chosen in the next state.

A new emerging concept called ensemble learning demonstrated that the predictive
performance of a single learning model can be be improved when combined with other
models [97]. As a result, the poor performance of a single predictor or classifier can
be compensated with ensemble learning at the price of (significantly) extra computa-
tion. Indeed the results from ensemble learning must be aggregated, and a variety of
techniques have been proposed in this matter. The first instances of ensemble learning
include Weighted Majority Algorithm (WMA) [198], boosting [199], bootstrap aggregat-
ing (or bagging) [200], and Random Forest (RF) [201]. RF focused explicitly on tree
models and marked the beginning of a new generation of ensemble DT. In addition,
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some variants of the original boosting algorithm were also developed, such as Adaptive
Boosting (AdaBoost) [202] and Stochastic Gradient Boosting (SGBoost) [203].

These advances in ML facilitated the successful deployment of major use cases in
the 1990s, particularly, handwriting recognition [204] and data mining [205]. The latter
represented a great shift to data-driven ML, and since then it has been applied in many
areas (e.g., , retail, finance, manufacturing, medicine, science) for processing huge
amounts of data to build models with valuable use [98]. Furthermore, from a conceptual
perspective, Tom Mitchell formally defined ML: “A computer program is said to learn
from experience E with respect to some class of tasks T and performance measure P ,
if its performance at tasks in T , as measured by P , improves with experience E” [206].

The 21st century began with a new wave of increasing interest in SVM and en-
semble learning, and in particular ensemble DT. Research efforts in the field gener-
ated some of the the most widely used implementations of ensemble DT as of today:
Multiple Additive Regression Trees (MART) [207], extra-trees [208], and eXtreme Gradi-
ent Boosting (XGBoost) [209]. MART and XGBoost are respectively a commercial and
open source implementation of Friedman’s Gradient Boosting Decision Tree (GBDT) al-
gorithm; an ensemble DT algorithm based on gradient boosting [203,207]. Extra-trees
stands for extremely randomized trees, an ensemble DT algorithm that builds random
trees based on k randomly chosen features. However instead to computing an optimal
split-point for each one of the k features at each node as in RF, extra-trees selects a
split-point randomly for reduced computational complexity.

At the same time, the popularity of DL increased significantly after the term “deep
learning” was first introduced in the context of NNs in 2000 [146]. However, the attrac-
tiveness of DNN started decreasing shortly after due to the experienced difficulty of
training DNNs using BP (e.g., vanishing gradient problem), in addition to the increasing
competitiveness of other ML techniques (e.g., SVM) [98]. Hinton’s work on Deep Belief
Networks (DBN), published in 2006 [210], gave a new breath and strength to research
in DNNs. DBN introduced an efficient training strategy for DL models, which was fur-
ther used successfully in different classes of DNNs [211,212]. The development in ML
(particularly, in DNNs) grew exponentially with advances in storage capacity and large-
scale data processing (i.e., big data) [98]. This wave of popularity in DL has continued
to this day, yielding major research advances over the years. One approach that has
recently received tremendous attention is Deep RL (DRL), which incorporates DL mod-
els into RL for solving complex problems. For example, Deep Q-Networks (DQN)—a
combination of DNN and Q-learning—was proposed for mastering video games [213].
Although the term DRL was coined recently, this concept was already discussed and
applied 25 years ago [214,215].

The 2000s have also been fruitful for the incremental learning research community.
Although well-known ML techniques, such as NN and kNN, fit naturally to incremen-
tal learning, several algorithms emerged during the last 20 years, particularly for in-
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cremental DT. In 2001, the Very Fast Decision Tree (VFDT) algorithm [216] (a.k.a.
Hoeffding tree) exposed an incremental DT that selects a root node from the first
training instances and grows the tree from the leaf nodes. However, VFDT aimed
for static concepts; hence, an extension of this algorithm, called Concept-adapting
VFDT (CVFDT) [217], addresses concept drift by maintaining a set of alternate DTs
and storing instances over a window of time. CVFDT experienced further refinements
during the subsequent years. CVFDTNBC [218] incorporated NB classifiers in the leaf
nodes of the tree, which demonstrated better accuracy than its predecessor. Hoeffding
Adaptive Tree (HAT) [219] introduced ADaptive WINdowing (ADWIN) for monitoring
the accuracy of the DT branches, which are replaced with more accurate branches
when their performance decreases. Hoeffding Option Tree (HOT) [220] refers to an
ensemble method that uses additional option nodes to build a single structure with
multiple CVFDTs as separate paths. Adaptive Hoeffding Option Tree (AHOT) [103] ex-
tends HOT by storing in each leaf the error estimation, computed using Exponentially
Weighted Moving Average (EWMA). Finally, Adaptive Random Forest (ARF) [221] pro-
vides another incremental ensemble DT, which adapts the widely used RF ensemble.
In contrast to RF, ARF comes with a drift and warning detector per base DT that en-
ables selective resets and tree replacements—when the warning becomes a drift.

Other non-strictly-DT incremental learning techniques also appeared during and af-
ter the 2000s. In 2001, Oza and Russell [222] developed incremental variants of the
bagging and boosting ensemble algorithms, simply referred to as online bagging and
online boosting, respectively. Both incremental ensembles allow using different learners
as the base model, such as NB and any incremental DT, though recent implementations
commonly use CVFDTNBC. Five years later, the online Passive-Aggressive (PA) algo-
rithms [223] characterized a family of margin-based incremental learning techniques
for solving classification and regression problems. These algorithms (passively ) keep
the same weights when no loss is present but (aggressively ) update them when the
loss is positive. In 2011, two new approaches emerged: Very Fast Decision Rules
(VFDR) [224] and Accuracy Updated Ensemble (AUE) [225]. VFDR introduced a rule-
based incremental algorithm aiming at more interpretability and flexibility than DTs.
This single-pass algorithm continuously learns ordered and unordered rule sets and
classifies using the majority class strategy. A variant called VFDRNB [224] incorpo-
rates NB classifiers that improve the accuracy. On the other hand, AUE presented an
adaptive block-based ensemble for incremental learning, which selects and updates
the base classifiers regarding the current distribution in a block series. An improvement
to AUE, called Online Accuracy Updated Ensemble (OAUE) [226], introduced a new
error-based weighting function to incrementally train and evaluate the base classifiers.
Similar to online bagging and boosting, recent implementations of both AUE and OAUE
commonly use CVFDTNBC as the base learner.

It is important to mention that the evolution in ML research has enabled improved
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learning capabilities which were found useful in several application domains, ranging
from games, image and speech recognition, network operation and management, to
self-driving cars [227].

2.2.3 Cognitive networking

In theory, ML can be used for automating network operations and management as it
allows extracting knowledge from data. However, application of ML for incorporating
intelligence and autonomy in networking is a non-trivial task. Prohibiting factors include
the distributed control and vendor-specific nature of legacy network devices, lack of
available data, and cost of compute and storage resources. Several technological ad-
vances have been made in the last decade to overcome these limitations. The advent
of network softwarization and programmability through SDN and NFV offers centralized
control and alleviates vendor lock-in. The advances in ML along with the proliferation of
new sources of data and big data analytics platforms provide abundant data and extract
knowledge from them. Furthermore, the availability of seemingly infinite storage and
compute resources through the cloud overcomes the cost of resources. These together
provide the environment to realize the vision of cognitive networks.

Knowledge-Defined Networking (KDN) [228] depicts a recent initiative for cognitive
networking. This approach revisits the inclusion of a knowledge plane proposed initially
15 years before for the Internet [229]. KDN defines the knowledge plane at the top
of the SDN architecture (see Section 2.1), replacing the application plane; hence, it
can interact with the management and control planes to obtain a rich view and control
over the network. The knowledge plane enables learning from the network behavior by
processing operation and management data collected by the other SDN planes. Via
ML techniques, such data become knowledge aimed at providing recommendations
and making network decisions—either automated or human intervention.

In the context of autonomic systems and networks, IBM’s autonomic computing ar-
chitecture [230] is to date the most influential reference model. It comprises several
layers of autonomic managers. The behavior of each manager is governed by the
MAPE control loop that consists of four functions; Monitor, Analyze, Plan, and Execute.
As shown in Figure 2.6, the Knowledge source is orthogonal to every MAPE func-
tion. Functions can retrieve data from and/or log created knowledge to the Knowledge
source. For example, the Analyze function obtains information about the historical be-
havior of a managed resource and stores the ML models and the analytics it generates
in the Knowledge source.

In [230], we observe that cognition has been restricted to the Analyze function,
which inhibits the ability to achieve closed-loop cognitive network management. In [42],
we proposed to incorporate cognition at every function in the loop. For example, the
Monitor function should be able to determine the what, when, and where to monitor.
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Figure 2.6: Cognitive control loop for network management

ML can be leveraged to build this cognition in every function and allow each function
to operate in full autonomy. Therefore, we extend IBM’s MAPE control loop into a
cognitive control loop that we denote as C-MAPE. As illustrated in Figure 2.6, cognition
is achieved by introducing learning and inference in every function.

• C-Monitor function refers to the cognitive monitor that performs intelligent probing.
For instance, when the network is overloaded, the C-Monitor function may decide
to reduce the probing rate and instead perform regression for data prediction.

• C-Analyze function is responsible for detecting or predicting changes in the net-
work environment (e.g., faults, policy violations, frauds, performance degradation,
and attacks). ML has been leveraged to address some of these challenges in
each of the FCAPS management areas, as discussed in [42].

• C-Plan function can leverage ML to develop an intelligent Automated Planning
(AP) engine that reacts to changes in the network by selecting or composing a
change plan. In the last decade, AP systems have been applied to real-world
problems and have been relying on ML for automating the extraction and organi-
zation of knowledge (e.g., plans, execution traces), and for decision making [231].
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• C-Execute function can use ML to schedule the generated plans and determine
the course of action should the execution of a plan fail. These tasks lend them-
selves naturally to RL where the C-Execute agent could exploit past success-
ful experiences to generate optimal execution policies, and explore new actions
should the execution plan fail.

Closing the control loop is achieved by monitoring the state of the network to mea-
sure the impact of the change plan.

2.3 Traffic engineering in data center networks

This section first reviews the concepts of DCN and traffic engineering to contextualize
the approach of this dissertation. Then, it provides a literature review about multipath
routing for load-balancing in DCNs, focusing on the seminal works that use SDN and
ML for addressing such a challenge.

2.3.1 Data center network

DCN encompasses the communication infrastructure of data centers that aim to in-
terconnect a large number of servers with significant bandwidth capacity in order to
achieve high throughput and low-latency [1]. Different DCN topologies have been de-
signed to meet such performance requirements. In general, these DCN topologies
can be classified into three categories based on the routing and switching equipment
used to forward or process network traffic [232–234]: switch-centric, server-centric, and
hybrid. Switch-centric topologies consider switches as the only relay nodes (i.e., rout-
ing decisions) and servers as mere endpoints, such as VL2 [235] and Jellyfish [236].
Server-centric topologies define servers as both endpoints and relaying nodes, such
as BCube [237] and DCell [238]. Hybrid topologies use a combination of electrical,
optical, and/or wireless equipment to add extra bandwidth capacity to the DCN, such
as FireFly [239] and Helios [240].

Currently, most of the DCN deployments follow the switch-centric topology, particu-
larly the tree-based design, such as Facebook’s Altoona [8] and Google’s Jupiter [241].
In switch-centric, the switches are interconnected in a hierarchical model with multiple
layers and the servers are connected to the switches of the lowest layer, known as
edge or Top-of-Rack (ToR). The tree-based design is an instance of the Clos network
with a degree defined according to the network scale indicating the number of layers.
For example, VL2 [235] and Fat-tree [242] arrange low-cost commodity switches in a
tree-based topology with fourth-degree, namely, from bottom-up, one layer of servers
and three layers of switches: edge, aggregation, and core (see Figure 2.7). Differing
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from this tree-based design, Jellyfish [236] uses a random regular graph to interconnect
the switches at the edge layer. Although Jellyfish provides some benefits over the tree-
based topologies, such as higher capacity, shorter paths, and more resilience to failures
and wiring errors, it is more challenging and complex in terms of cabling, management,
and routing.
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Figure 2.7: Tree-based DCN with fourth degree and multipath routing

In addition, several research works have analyzed the traffic characteristics of switch-
centric tree-based DCNs, converging to similar patterns [8, 9, 11]: (i) 10% to 25% of
links are hot-spots, varying over time; (ii) less than 25% of capacity is utilized, even
with over-subscription; (iii) around 80% of flows (i.e., mice) carry less than 10% of total
bytes, last less than 10 seconds, and transmit less than 10KB, while 20% of flows (i.e.,
elephants) carry almost 80% of total bytes, last up to 500 seconds, and transmit up to
5GB; (iv) almost every flow at the ToR switch presents an inter-arrival time less than
100 milliseconds; and (v) the number of active flows can be up to 10,000 flows per
second.

2.3.2 Traffic engineering

Traffic engineering involves the methods for measuring and managing network traffic to
optimize the performance of the network [3, 243]. This optimization requires providing
appropriate traffic requirements (e.g., throughput, delay, packet loss) while efficiently—
in terms of cost and reliability—utilizing network resources (e.g., bandwidth).

Traffic engineering encompasses four main dimensions [49]: flow management,
fault-tolerance, topology update, and traffic analysis. Flow management is about map-
ping and controlling the traffic flows in the network for optimizing the routing function
to steer traffic (from ingress nodes to egress nodes) in the most effective way. Fault-
tolerance refers to ensuring network reliability by providing mechanisms that enhance
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network integrity and by embracing policies emphasizing network survivability. Topol-
ogy update involves managing the capacity of the network in order to carry out planned
changes, such as network policy modifications. Traffic analysis deals with monitoring
the performance of the network and verify the compliance with network performance
goals to evaluate and debug the effectiveness of the applied traffic engineering meth-
ods. Each dimension may operate at multiple levels of temporal resolution, ranging
from a few nanoseconds to possibly years. For example, topology update works at very
coarse temporal levels, from days to years, while flow management operates at finer
levels of temporal resolution, from microseconds to hours.

Load-balancing is one of the most well-known traffic engineering methods. As part
of the flow management dimension, load-balancing controls and optimizes the routing
function to minimize the maximum load across the links [2]. The goal is mapping traffic
flows from the heavily loaded paths to the lightly loaded paths for avoiding congestion
(i.e., hot-spots) and increasing network throughput and resource utilization. Multipath
routing has shown to effectively achieve load-balancing by distributing traffic over mul-
tiple concurrent paths such that all the links are optimally loaded [4]. Figure 2.7 depicts
two disjoint11 paths in a tree-based DCN. In practice, multipath routing protocols may
split the traffic at different levels of granularity, such as per-flow, per-sub-flow, and per-
packet. In addition, these protocols may run at distinct layers of the TCP/IP model. For
example, ECMP [7] and valiant load balancing [244] work at the network layer, while
Multi-Path TCP (MPTCP) [245] operates at the transport layer.

2.3.3 Multipath routing in data center networks

From a general perspective, multipath routing in DCNs divides into two categories:
distributed and SDN-based (i.e., centralized). Initially, distributed approaches were the
standard for multipath routing. However, with the emergence of centralized network
programmability, SDN-based multipath routing has gained the same level of attention.
Recent investigations that have adopted the SDN-based approach aim to optimize the
routing function by using ML techniques for predicting flow traffic characteristics.

Distributed multipath routing

Distributed multipath routing mechanisms place routing decisions at either the switches
or servers of a DCN. These routing decisions can be oblivious to traffic conditions or
based on feedback information from the network (e.g., congestion). In addition, traffic
splitting in distributed multipath routing is conducted at different levels of granularity
(e.g., flow, packet, sub-flow). The following paragraphs describe the seminal works
focused on distributed multipath routing.

11No common nodes or links except for source and destination.
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ECMP [6,7] represents the state-of-the-art distributed mechanism for multipath rout-
ing in DCNs. ECMP is oblivious to traffic conditions and splits the traffic at the level of
flows. Generally, ECMP applies a hash function at every switch on selected packet
headers to assign each incoming flow to an output port. The output port belongs to one
of the several equal-cost forwarding paths maintained by the switch for reaching a des-
tination. A key limitation is that the broad distribution of flow sizes in DCNs (i.e., mice
and elephants) cause hot-spots in ECMP-based routing [9, 11]. This is because two
or more elephant flows can collide on their hash and end up on the same output port.
Since ECMP does not account for either current network utilization or flow size, the
resulting collisions overwhelm switch buffers and degrade overall switch and link utiliza-
tion. In addition, the performance of ECMP degrades significantly during asymmetric
topologies caused by link failures.

Despite ECMP limitations, it remains as the standard multipath routing mechanism
for load-balancing in today’s DCNs [5]. For example, Facebook’s DCN in Altoona [12]
employs BGP to populate the routing tables and ECMP for routing through the equal-
cost paths.

Motivated by the drawbacks of ECMP’s flow splitting, Random Packet Spraying [13]
and Digit Reversal Bouncing (DRB) [14] split the traffic at the level of packets through
the different equal-cost paths. However, these works rely on an ideal symmetry of the
network to avoid the adverse effects of packet reordering12 on TCP. To deal with the
asymmetry caused by failures, DRB includes a topology update mechanism, though
the distributed nature of this mechanism is not suitable for large-scale DCNs.

Other approaches have also addressed asymmetry by proposing topology-dependent
weighing of paths and using distinct granularity levels for splitting traffic. For exam-
ple, Weighted Cost Multiple-Path (WCMP) [16] extends ECMP to support weighted
flow-level splits at switches by repeating the same next-hop multiple times. Whereas,
Presto [15] implements weights at the servers and splits flows at the level of TCP Seg-
mentation Offload (TCO) units, termed as flowcells. However, WCMP and Presto rely
on static weights that are generally sub-optimal with asymmetry, particularly for dy-
namic traffic workloads. In terms of traffic splitting, WCMP inherits the elephant col-
lision problem from ECMP, while the sub-flow splitting defined by Presto is prone to
packet reordering. Moreover, neither of these distributed multipath routing mechanisms
is aware of traffic conditions, causing degraded performance during link failures.

In light of these gaps, some works have used knowledge of congestion on different
paths to make routing decisions. LocalFlow [18] and Flare [19] rely on local measure-
ments of traffic congestion to balance the load on the switch ports. However, they
lack taking global congestion information into account, yielding sub-optimal results for
high varying traffic. Therefore, further approaches use feedback from the network to

12Packet reordering can cause TCP to unnecessarily reduce the sender’s rate, leading to severe
throughput inefficiencies.



2.3. Traffic engineering in data center networks 47

gather path-wise congestion information and shift traffic to less-congested paths. The
congestion feedback can be collected either at the servers (e.g., FlowBender [17], Let-
Flow [20], MPTCP [245]) or switches (e.g., HULA [21], CONGA [22], DeTail [246]) of the
network. These global congestion-aware mechanisms achieve better throughput and
delay results in DCNs, yet at the cost of significant implementation complexity or spe-
cialized hardware support—software implementation produces sub-optimal results—at
the servers or switches of the network.

On the other hand, the level of granularity for splitting traffic in congestion-aware
multipath routing is variable. FlowBender works at flow-level, DeTail at packet-level, and
the rest at sub-flow-level. Particularly, LocalFlow conducts a spatial flow splitting based
on TCP sequence numbers, while MPTCP splits a TCP flow into multiple sub-flows
by varying port numbers. Flare, CONGA, HULA, and LetFlow rely on the concept of
flowlets [247], defined as a burst of packets from a flow separated by enough time gaps.
As discussed before, the flow splitting carries the elephant collision problem, while the
packet and sub-flow splitting potentially cause packet reordering. The latter because
sub-flow splitting lack an exhaustive study about the appropriate space or time between
sub-flows for achieving the best performance without causing packet reordering.

Table 2.1 outlines the limitations of distributed multipath routing. To summarize, the
distributed multipath routing mechanisms based on global congestion-awareness and
sub-flow splitting (particularly, flowlets) provide great results for load-balancing traffic
in DCNs. However, they require the implementation of specialized hardware in the
network, increasing the capital and operational expenditure for deploying a DCN. More-
over, these distributed multipath routing mechanisms rely on a static separation be-
tween sub-flows, which is not suitable for the varying traffic in DCNs.

Multipath routing based on software-defined networking

SDN-based multipath routing mechanisms leverage the potential of network programma-
bility for enabling a centralized controller to make routing decisions in a DCN. The
controller has a global view of the network status and instructs the switches for packet
forwarding. The routing decisions rely on flow detection methods that classify flows,
mostly into two classes: mice and elephants. Such classification occurs either at the
controller-side (e.g., by pulling or sampling traffic statistics), switch-side, or server-side
of SDDCNs. Moreover, some flow detection methods have leveraged ML techniques to
classify flows proactively (i.e., prediction). In the following, the seminal works centered
on Software-Defined Networking-based multipath routing are discussed.

Hedera [26] represents the state-of-the-art Software-Defined Networking-based mech-
anism for multipath routing in DCNs. Hedera defines a centralized controller that period-
ically pulls flow statistics from ToR-switches to discriminate elephant flows from mouse
flows (i.e., binary classification). By default, Hedera assumes all flows as mice, forward-
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Table 2.1: Summary of the limitations of distributed multipath routing
Perspective Approach Gaps

Traffic conditions
awareness

Oblivious
[7,13–16]

- Performance degradation due to asymmetry of network
topology caused by link failures

- Routing decisions not based on traffic conditions

Local congestion
[18,19]

- Routing decisions not based on global congestion data
- Require specialized hardware implementation

Global congestion
[17, 20–22, 245,
246]

- Significant implementation complexity
- Require specialized hardware implementation

Traffic splitting
granularity

Flow-level
[7,16,17]

- Performance degradation due to hot-spots caused by
collisions of large, long lived flows (i.e., elephant flows)

Packet-level
[13,14,246]

- Potential packet reordering
- Rely on the symmetry of the network for avoiding packet

reordering

Sub-flow-level
[15,18–22,245]

- No guarantee that two distinct sub-flows take different
paths

- Potential packet reordering
- Unclear about the spatial or time space between sub-

flows for avoiding packet reordering

ing them using ECMP, until a pre-defined threshold rate (10% of bandwidth, 100Mbps

in implementation) is reached. Hedera then executes a simple routing algorithm that
dynamically computes a suitable path for the detected elephant flow and installs the cor-
responding rules on the switches along that path. PMCE [248] provides an enhanced
routing algorithm for improving the performance of Hedera.

However, the short inter-arrival time of flows at ToR-switches (< 100ms) [8, 9, 11]
requires a high rate of statistics pulling for achieving good performance (e.g., < 500ms
to perform better than ECMP [245]). This high rate along with the huge amount of ac-
tive flows in ToR-switches (up to 10, 000 flows) greatly increases traffic overhead and
controller processing, negatively affecting the performance of the network traffic. More-
over, since Hedera installs a flow rule per each active flow in the ToR-switches, the
limited memory capacity of switches restricts its scalability. Furthermore, Hedera’s bi-
nary classification is too simple for the wide distribution of flow sizes in DCNs (i.e., tens
of bytes to hundreds of megabytes), causing the routing algorithms to make inaccurate
decisions regarding the traffic volume across a forwarding path.

To address the traffic overhead shortcoming of Hedera, Devoflow [27] reduces the
number of interactions between the controller and switches by introducing a rule cloning
action for wildcard OpenFlow rules. Each cloned wildcard rule includes a trigger (i.e., a
counter and a comparator) based on a pre-defined threshold (128KB, 1MB, or 10MB)
that enables the switches to identify elephant flows. The detected elephant flows are
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sent to the controller, which calculates the least congested path. The mouse flows are
locally handled by the switch through multipath and rapid re-routing actions (included as
select and fast failover group types in OpenFlow v1.5.1 [55], respectively). A key limi-
tation is that the rule cloning action is not supported in OpenFlow, therefore, DevoFlow
requires a specialized switch hardware implementation. In addition, although the latest
version of OpenFlow (i.e., 1.5.1) support threshold-based triggers, setting a trigger for
each flow would limit the scalability and impose a lot of processing to the switch. On
the other hand, the limitations of conducting a simple binary classification of flow sizes
remain in Devoflow.

Similarly, Mahout [29] tackles the traffic overhead shortcoming of Hedera by moni-
toring and detecting elephant flows at the server-side of SDDCNs through a shim layer
in the operating system. When an elephant flow is detected, the server marks the sub-
sequent packets of the detected elephant flow. ToR-switches recognize these marked
packets and send the first of each flow to the controller. The controller then computes
and installs a path for the marked packets. As in Hedera, the packets without marks
(i.e., mice) are routed using ECMP. Mahout greatly reduces traffic overhead, however,
at the cost of software modifications in the servers of SDDCNs. Moreover, inaccurate
routing decisions also appear in Mahout since it relies on a simple binary classification
of flow sizes. MiceTrap [28] employs the same mechanism of Mahout for identifying and
handling elephant flows, while proposing an aggregation module for managing mice
flows. This mice aggregation module reduces the number of rules installed on switches
for handling mice flows. Nevertheless, the shortcomings of Mahout persist in MiceTrap.

The Elephant Sensitive Hierarchical Statistics Pulling (ESHSP) approach [249] pro-
poses an iterative process to detect elephant flows by decomposing the flow space until
an elephant flow is isolated from the others. ESHSP uses a combination of aggregate
and individual statistics messages of OpenFlow to reduce the traffic overhead gener-
ated by Hedera-like approaches. However, the traffic overhead produced by ESHSP is
significantly higher than switch-side and server-side approaches, though it does not re-
quire hardware or software modifications in SDDCNs. While ESHSP does not perform
further actions with the detected elephant flows, the routing algorithms defined in works
like Hedera and Mahout can be easily integrated to it. In addition, ESHSP also suffer
from the problems of relying on a simple binary classification of flow sizes.

Sampling is another method that has been used for collecting data to detect ele-
phant flows without requiring hardware or software modifications. Sampling-based De-
voFlow [27] and TinyFlow [25] adopt the packet sampling mechanism from sFlow [250]
to identify elephant flows in DCNs. SDEFIX [251] has also integrated sFlow for de-
tecting elephant flows, though in Internet exchange points. In particular, DevoFlow
exposes sampling as an alternative to the threshold-based triggers for cloned wildcard
rules. However, this sampling-based DevoFlow rely on a flow-level simulation that does
not simulate actual packets but assume a distribution of packets as reported by ear-
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lier works [252]. Therefore, the evaluation of the sampling-based DevoFlow is biased
and might not represent the limitations of using sampling for detecting and scheduling
elephant flows.

In the same context of SDDCNs, TinyFlow routes all flows using ECMP by default
until a pre-defined threshold is exceeded. Once an elephant flow is detected through
sampling, the TinyFlow controller installs a new rule on the ToR-switch that monitors the
byte count of that flow. When the byte count exceeds a pre-defined threshold, the switch
resets the byte count and chooses a different egress port to route the elephant flow
through a different equal-cost path. A key limitation of TinyFlow is that it imposes pro-
cessing overhead on the switch for monitoring each elephant and changing the egress
port accordingly, which was not evaluated. On the other hand, the elephant detection
based on sampling generates a traffic overhead lower than pulling statistics, though still
significantly higher than switch-side and server-side approaches. In addition, since only
a small fraction of packets are sampled (typically, 1 in 1000), the elephant detection is
not as accurate as in the other approaches.

A common problem of these Software-Defined Networking-based multipath routing
mechanisms is that they can only detect elephant flows reactively when their traffic
characteristics (e.g., flow size or flow rate) surpass a pre-defined static threshold. This
is not ideal since hot-spots may occur until traffic characteristics are detected and new
paths are chosen by the routing algorithms. For this reason, recent works have incorpo-
rated ML techniques at the controller-side of SDDCNs to predict traffic characteristics
and to make routing decisions proactively.

Early ML-based approaches implement flow size prediction methods that learn from
centralized data collected by periodically pulling flow statistics from switches (similar to
Hedera). Xiao et al. [253] introduces a cost-sensitive C4.5 DT classifier. The accuracy
of this classifier heavily depends on the choice of the costs for identifying the class of
a flow (i.e., mouse or elephant). Experiments conducted on two real datasets, from a
trans-Pacific line [254] and a private data center edge link, demonstrated that incorpo-
rating cost-sensitive to C4.5 improves its accuracy for elephant detection. Similarly, the
Online Flow Size Prediction (OFSP) approach [32] explores different ML techniques for
elephant flow detection. These include gaussian regression, BN, and NN. Experiments
were performed on three public real datasets from two university DCNs [255] and an
academic building at Dartmouth College [256] with over three million flows each. In
contrast to the previous work, OFSP employs the predicted flow size for making rout-
ing decisions. Presumably mouse flows are routed through ECMP, whereas elephant
flows are routed through the least congested path. However, both approaches assume
that the data is centralized, requiring the centralized controller to periodically pull flow
statistics from the switches. This collection of data increases traffic overhead, which
exponentially grows as these approaches require per-packet headers. In addition, as
other non-ML approaches, the problems of a static threshold for simple binary classifi-
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cation of flow sizes remain.
Other ML-based approaches applied similar learning algorithms but on data col-

lected by sampling. The Efficient Sampling and Classification Approach (ESCA) [35]
uses sampling for collecting data and proposes a two-phase elephant flow detection.
In the first phase, the approach improves sampling efficiency by estimating the arrival
interval of elephant flows and filtering out redundant samples using a filtering flow ta-
ble, which requires modifications in the OpenFlow specification. In the second phase,
the approach classifies samples with a new supervised classification algorithm based
on the C4.5 DT. Once classified a flow, a differentiated scheduling approach called
DIFFERENCE [34] searches for the best path using a specific algorithm for each flow
class: a blocking-island-based algorithm for elephants and a weighted multipath al-
gorithm for mice. Extensive experiment results demonstrated that ESCA can provide
accurate detection with less sampled packets and shorter detection time than sFlow-
based approaches (e.g., DevoFlow and TinyFlow). However, the proposed sampling
method depends on non-existing SDN specifications, hence, requiring custom-made
switch hardware.

FlowSeer [33] also leverages sampling and DTs for performing a two-phase coop-
erative classification for elephant detection. In the first phase, the controller applies a
simple DT algorithm (i.e., C4.5) for identifying potential elephant flows. The statistics for
this phase are collected by an unsupervised flow sampling method based on wildcard
rules. Then, the switches are instructed to forward the headers of the first five packets
of the potential elephant flows to the controller. In the second phase, the controller use
an incremental DT algorithm (i.e., Hoeffding tree) to detect true elephant flows from
the potential ones and further classify them into five categories regarding their size and
duration. The median of the classified range is used by the routing algorithm as the pre-
dicted demand for computing the best path. Although a five-class classification is much
better than a binary classification, a finer granularity prediction is desirable for improv-
ing the decisions of the routing algorithm. In addition, FlowSeer carries the limitations
of sampling statistics collection, including inaccurate elephant detection and moderate
traffic overhead.

All these mechanisms for detecting elephant flows are pre-configured with a fixed
threshold value, which might cause high detection error rates when working with the
frequently changing traffic of DCNs. Motivated by this shortcoming, Liu et al. [257]
introduce an adaptive approach for elephant flow detection by adopting a dynamical
traffic learning algorithm to configure the threshold value. Although the results show
improvement compared to other methods, this work relies on pulling flow statistics,
which generates high traffic overhead, and conducts a simple binary classification of
flow sizes.

Rather than flow detection methods, some SDN-based multipath routing approaches
have used the short-term and partial predictability of the traffic matrix to make routing
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decisions. MicroTE [258] proposes software modifications into each server (similar to
Mahout) for incorporating a monitoring component that collects network traffic. Only
one server per rack is responsible for aggregating, processing, and summarizing the
network statistics for the entire rack. This designated server then determines the ma-
trix traffic predictability and communicates this information to the controller. The con-
troller computes paths for predictable traffic, while the unpredictable traffic is routed in
a weighted form of ECMP. Similarly, Nie et al. [259] predicts and estimates the traf-
fic matrix in DCNs but applying a DL technique (i.e., DBN). The authors demonstrate
through simulations that the proposed method can capture the short time scale prop-
erty of traffic flows faithfully. However, the bursty nature of the traffic in DCNs makes
traffic matrix prediction questionable. Moreover, the short time scale predictability of the
traffic matrix (1 − 2s) might not be enough for the whole process: sending information
to the controller, making routing decisions, and installing the computed paths on the
switches. This concern is more severe for the DBN approach than for MicroTE due to
the time and processing requirements for training DL techniques. Further investigation
is required to clarify these questions.

Table 2.2 summarizes the limitations of the reviewed SDN-based multipath routing
mechanisms. In general, SDN-based multipath routing have demonstrated improve-
ments over the state-of-the-art multipath routing (i.e., ECMP). However, the existing
mechanisms lack finding the best trade-off between traffic overhead, data collection
accuracy, and network modifications. In addition, there is still room for improving the
routing decisions of SDN-based multipath routing by analyzing finer traffic characteris-
tics.

2.4 Final remarks

First, this chapter detailed the traditional three-plane architecture for deploying an SDN-
based network as well as the later inclusion of the management plane in the architec-
ture. We extended such a management plane for integrated control and monitoring of
heterogeneous SDNs in one or more domains. Our management plane included an in-
formation model that leveraged either CIM or YANG to represent the SDN architecture.
We also defined our management plane in the context of network automation by intro-
ducing an SDN management architecture based on HTN and NFV. Subsequently, the
chapter provided a primer on ML, which discussed different categories of ML-based ap-
proaches, including supervised, unsupervised, reinforcement, batch, and incremental
learning. This primer also included a brief history of ML techniques used in networking
and the vision of cognitive networks towards automating operations and management.
The latter included our C-MAPE approach that incorporates cognition in every function
of IBM’s autonomic computing control loop. Finally, this chapter exposed the concepts
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Table 2.2: Summary of the limitations of SDN-based multipath routing
Perspective Approach Gaps

Traffic analysis
location

Centralized by pulling
[26,32,248,249,253,257,259]

- High traffic overhead
- High controller processing
- Low resource scalability

Centralized by sampling
[25,27,33–35,251]

- Moderate traffic overhead
- Moderate controller processing
- Inaccurate collection of traffic statistics

Distributed at switches
[27]

- Specialized hardware
- Low resource scalability
- High switch processing

Distributed at servers
[28,29,258] - Software modifications

Traffic
characteristics

Binary classification of flow sizes
- non-ML [25–29,248,249,251]
- ML-based [32,34,35,253]

- Static threshold to identify elephants
- Coarse classification of flow sizes

(two classes)
- Reactive detection of traffic characteristics

(non-ML approaches)

Multiclass classification of flow
sizes based on ML [33]

- Moderate classification of flow sizes
(four to five classes)

Adaptive binary classification of
flow sizes based on ML [257] - Coarse classification of flow sizes

Prediction of traffic matrix
- non-ML [258]
- ML-based [259]

- Not suitable for the bursty traffic in DCNs
- Short time predictability of traffic matrix

and a literature review related to multipath routing for load-balancing in DCNs, focusing
on the seminal works that use SDN and ML for addressing such a challenge. From
the literature review, we can conclude that SDN-based multipath routing have demon-
strated improvements over the prevalent ECMP. However, the existing SDN-based
mechanisms lack finding the best trade-off between traffic overhead, data collection ac-
curacy, and network modifications. Furthermore, finer traffic characteristics is desirable
for improving the routing decisions of SDN-based multipath routing.
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Chapter 3

Flow detection using online
incremental learning at the server-side
of software-defined data center
networks

Data centers provide significant bandwidth capacity for a large number of servers in-
terconnected by a specially designed network, called DCN [1, 260]. This bandwidth
capacity can be optimized by using multipath routing, which distributes traffic over mul-
tiple concurrent paths [4]. Nowadays, ECMP is the default multipath routing mechanism
for DCNs [5]. ECMP uses in every router a hash function on packet headers to assign
each incoming flow to one of the equal-cost forwarding paths for reaching a destina-
tion. However, ECMP can degrade the performance of DCNs due to the coexistence of
many small, short-lived flows (i.e., mice) and few large, long-lived flows (i.e., elephants),
since ECMP can assign more elephant flows to the same path, generating hot-spots
(i.e., some links overused while others underused). Flows traversing hot-spots suffer
from low throughput and high latency.

Recent multipath routing mechanisms have leveraged SDN to face the ECMP limita-
tions; DCNs using SDN are referred to as SDDCNs. SDN allows a logically centralized
controller to dynamically make and install routing decisions on the basis of a global view
of the network [24]. SDN-based multipath routing dynamically reschedules elephant
flows, while handling mouse flows by employing default routing such as ECMP [5] and
our pseudo-MAC-based approach (see Section 4.1). Reactive flow detection methods,
which are at the heart of SDN-based mechanisms, discriminate elephants from mice
by using static thresholds [26, 27, 29]. However, reactive methods are not suitable for
SDDCNs since hot-spots may occur before the elephant flows are detected.

Novel SDN-based flow detection methods incorporate ML for proactively identify-
ing elephant flows. However, ML-based methods operate at the controller-side of
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SDDCNs, requiring the central collection of either per-flow data [32] or sampling-based
data [33,35]. The central collection of per-flow data, however, causes problems such as
heavy traffic overhead and poor scalability. Sampling-based data, on the other hand,
tends to provide delayed and inaccurate flow information. Moreover, sampling tech-
niques that mitigate the problem rely on non-standard SDN specifications. Using ML
on either the switch-side or server-side represents a potential solution to the controller-
side problems since these locations enable prompt and per-flow data with low traffic
overhead. Switch-side flow detection methods based on ML are impractical because
they require specialized hardware and put a heavy processing load on the switches.
Conversely, ML-based flow detection methods at the server-side require only software
modifications in the servers; nonetheless, these methods have not been fully explored.

In this chapter, we propose a novel flow detection method denominated Network
Elephant Learner and anaLYzer (NELLY), which applies online incremental learning at
the server-side of SDDCNs for accurately and timely identifying elephant flows while
generating low control overhead. Incremental learning allows NELLY to constantly train
a flow size classification model from continuous and dynamic data streams (i.e., flows),
providing a constantly updated model and reducing time and memory requirements.
Thus, NELLY adapts to the variations in traffic characteristics and performs endless
learning with limited memory resources. We extensively evaluate NELLY using datasets
extracted from real packet traces and incremental learning algorithms. Quantitative
evaluation demonstrates that NELLY is efficient in relation to accuracy and classifica-
tion time when adaptive decision trees algorithms are used. Analytic evaluation corrob-
orates that NELLY is scalable, causes low traffic overhead, and reduces detection time,
yet it is in conformance with SDN standards.

The remainder of this chapter is as follows. Section 3.1 introduces the architecture
of NELLY. Section 3.2 presents a quantitative evaluation of NELLY using incremen-
tal learning algorithms and real packet traces. Section 3.3 compares NELLY to other
related work. Section 3.4 concludes the chapter.

3.1 Architecture of NELLY

Figure 3.1 introduces NELLY, a flow detection method that applies online incremental
learning at the server-side of SDDCNs to identify elephant flows accurately in a rea-
sonable time while generating low control overhead. NELLY operates as a software
component either in the kernel of the host operating system or in the hypervisor of
servers in the SDDCN with the aim of monitoring all packets sent by the applications,
containers, and virtual machines. Since NELLY detects elephant flows at their origin, a
small overhead is demanded.

The architecture of NELLY (see Figure 3.1) presents two subsystems: Analyzer
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Figure 3.1: Architecture of NELLY

and Learner. The Analyzer applies a flow size classification model for detecting and
marking elephant flows on the fly. The Learner then applies an incremental learning
algorithm for building and updating the flow size classification model. This model maps
online features (i.e., features extracted from the first few packets of a flow) onto the
corresponding class of flows (i.e., mice or elephants). The processes of the Analyzer
and the Learner run concurrently as depicted in Algorithms 3.1 and 3.2, respectively.
Moreover, for the sake of readability, Table 3.1 lists and describes the symbols defined
in the architecture of NELLY.

NELLY is conceived for recognizing and handling elephant flows in real SDN imple-
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Table 3.1: Symbols in the architecture of NELLY
Symbol Name Description

θTO Timeout threshold Time limit above which both the Monitor and the
Collector acknowledge a flow has terminated

θF Filter threshold
Flow size limit below which either the Analyzer
sends the packets without further processing or the
Learner discards the flow records

M Packet marking Number of subsequent packets in an elephant flow
to be marked

T Collection rate Time interval at which the Collector looks for termi-
nated flows in FlowRepo

θL Labeling threshold Flow size limit above which the Tagger labels the
flows as elephants

mentations. NELLY can run on any host operating system or hypervisor. In the control
plane, any OpenFlow-compliant controller (e.g., OpenDaylight , ONOS, Ryu) can be
used since NELLY operates at the server-side. In the data plane, OpenFlow-compliant
switches (e.g., Open vSwitch) can be employed since NELLY requires only that the ToR
switches include a pre-configured routing rule to forward elephant flows to the controller.
The controller then can install specific routing rules per elephant flow based on the best
path computed by a rescheduling algorithm, as discussed in Chapter 4.

3.1.1 Analyzer

As illustrated in Figure 3.1, the Analyzer consists of four modules: Monitor, Filter, Clas-
sifier, and Marker. The process of each module is detailed in Algorithm 3.1. As shown
in lines 1–2, the Monitor keeps track of flows by extracting the header, size, and times-
tamp of each outgoing packet. A flow consists of subsequent packets sharing the same
value for certain header fields, and separated by a time-space shorter than a threshold
timeout (θTO). NELLY enables a flexible configuration of these flow parameters, namely,
flow header fields and θTO. For example, the flow header fields can be set as the well-
known 5-tuple: source IP, source port, destination IP, destination port, and IP protocol.
These flow header fields can also include MAC addresses and VLAN ID. On the other
hand, the configuration of θTO is discussed in Section 3.1.2.

The Analyzer manages a flow record in the Flow Repository (FlowRepo) for each
observed flow. As illustrated in Figures 3.2 and 3.3, the flow record includes the Flow
IDentifier (FlowID), start time, last-seen time, packet header (e.g., 5-tuple), flow size,
the size and Inter-Arrival Time (IAT) of the first N packets, as well as the identified class
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Algorithm 3.1: NELLY Analyzer
input : outgoing packet p with header hp, size sp, and timestamp tp, and flow size classification

model m
output: either packet p or packet marked p∗

data : timeout threshold θT O, filtering flow size threshold θF , and number of first packets N
1 begin on receiving p

// Monitor
2 get hp, sp, and tp from p;
3 fid← compute FlowID using the flow header fields from hp;
4 if fid /∈ FlowRepo then
5 f ← call CREATE_FLOW(fid, hp, sp, tp)
6 else
7 F ← fetch the last flow f ∈ FlowRepo such that f .id = fid;
8 if (currentTime − f .lastSeenTime) > θT O then
9 f ← call CREATE_FLOW(fid, hp, sp, tp)

10 else
11 f ← call UPDATE_FLOW(f , sp, tp)
12 end
13 end

// Filter
14 if f .size < θF then return p;

// Classifier
15 if @ f .class then
16 f .class ← m.CLASSIFY(f );
17 update f → FlowRepo;
18 end

// Marker
19 if f .class = “Elephant” then
20 p∗ ← mark p;
21 return p∗;
22 end
23 return p;
24 end
25 function CREATE_FLOW(fid, hp, sp, tp):
26 f ← initialize a new flow with FlowID fid;
27 f .headerFields[]← array of flow header fields from hp;
28 f .startTime← f .lastSeenTime← tp;
29 f .size← f .sizePackets[0]← sp;
30 create f → FlowRepo;
31 return f

32 end
33 function UPDATE_FLOW(f , sp, tp):
34 n← current number of packets of f ;
35 if n ≤ N then
36 f .sizePackets[n]← sp;
37 f .iatPackets[n]← tp −−f .lastSeenTime;
38 end
39 f .size← f .size + sp;
40 f .lastSeenTime← tp;
41 update f → FlowRepo;
42 return f

43 end
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(i.e., mice or elephants). Note that the IAT of the first packet is not included because
it does not provide distinctive flow information (i.e., the IAT is always zero for the first
packet of every flow).

Size of 
packet N

IAT of 
packet N ClassFlowID Start

time
Last-seen 

time
Packet 
header

Flow
size

Size of 
packet 1

Size of 
packet 2

IAT of 
packet 2 ···

Source
IP

Source 
port

Destination 
IP

Destination 
port

IP
protocol

e.g., 5-tuple header

Figure 3.2: Structure of flow records in FlowRepo

As depicted in lines 3–13 in Algorithm 3.1, the Monitor then generates a FlowID from
the flow header fields of each packet and checks to see if it exists in the FlowRepo. If
this FlowID is missing (e.g., for packets 1 and 3 in Figure 3.3), or if the time since the
last update of an existing record with this FlowID is longer than θTO (e.g., for packet
4), the Monitor creates a new record in the FlowRepo (Algorithm 3.1, lines 25–32).
Otherwise, the Monitor fetches and updates the flow record (Algorithm 3.1, lines 33–
43) using the FlowID stored in the FlowRepo (e.g., for packets 2 and 5 through 10 in
Figure 3.3). When multiple flow records sharing the same FlowID exist in the FlowRepo,
the Monitor always works with the most recent one (e.g., for packets 5 to 10).

Flow records in FlowRepo

FlowID
Start 

time

Last-seen 

time

Source 

IP

Source 

port

Destination 

IP

Destination 

port

IP 

protocol

Flow

size

Size of 

packet 1

Size of 

packet 2

IAT of 

packet 2
... Size of 

packet 7

IAT of 

packet 7
Class

1 1.1.1.1_2.2.2.2-2000_20-6 100 100 1.1.1.1 2000 2.2.2.2 20 6 1500 1500 - - ··· - - -

2 1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

3
1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

4

1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

1.1.1.1_2.2.2.2-2000_20-6 6000 6000 1.1.1.1 2000 2.2.2.2 20 6 1500 1500 - - ··· - - -

5

1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - -

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

1.1.1.1_2.2.2.2-2000_20-6 6000 6010 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 10 ··· - - -

6 to 9 The Monitor updates the fields last-seen time, flow size, and the size and IAT of packet N of the last flow record with FlowID 1.1.1.1_2.2.2.2-2000_20-6 (i.e., third row)

10

1.1.1.1_2.2.2.2-2000_20-6 100 900 1.1.1.1 2000 2.2.2.2 20 6 3000 1500 1500 800 ··· - - - 

1.1.1.1_3.3.3.3-3000_80-6 2000 2000 1.1.1.1 3000 3.3.3.3 80 6 175 175 - - ··· - - -

1.1.1.1_2.2.2.2-2000_20-6 6000 6060 1.1.1.1 2000 2.2.2.2 20 6 10500 1500 1500 10 ··· 1500 10 Elephant*
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1 100 1500 1.1.1.1 2000 2.2.2.2 20 6

2 900 1500 1.1.1.1 2000 2.2.2.2 20 6

3 2000 175 1.1.1.1 3000 3.3.3.3 80 6

4 6000 1500 1.1.1.1 2000 2.2.2.2 20 6

5 6010 1500 1.1.1.1 2000 2.2.2.2 20 6

6 to 9 6020 to 6050
(every 10ms) 1500 1.1.1.1 2000 2.2.2.2 20 6

10 6060 1500 1.1.1.1 2000 2.2.2.2 20 6
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Figure 3.3: Example of how flow records are created and updated in FlowRepo
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Using the updated flow record, the Filter (Algorithm 3.1, line 14) avoids the introduc-
tion of a delay in the classification of a large number of mouse flows (usually latency-
sensitive [27,29]) by sending the packets of flows with a size below a certain threshold
(θF ) directly to the SDDCN without further processing (e.g., for packets 1 to 9 in Fig-
ure 3.3). The Filter also ensures that the Classifier receives all the required online
features for making the classification. The online features refer to flow data extracted
from the first N packets of a flow. The Filter then guarantees the size and IAT of the
first N packets of a flow since the maximum value of N depends on θF . For exam-
ple, θF = 10 kB would require an N ≤ 7 over Ethernet, otherwise, data from some
packets would be missed. Consequently, the Classifier operates once the Monitor has
processed packets that increment the size of flows over θF (e.g., for packet 10).

The Classifier (Algorithm 3.1, lines 15–18) applies the flow size classification model
to the online features to identify flows as either mice or elephants. This model results
from an incremental learning algorithm, which maps the online features to the corre-
sponding class of flows used as training data. After applying the flow size classification
model, the Classifier stores the identified class in the FlowRepo for each flow record
with a flow size greater than θF (e.g., elephant for flow of packet 10 in Figure 3.3). There-
fore, when processing a packet of a previously identified flow, the Classifier checks the
fetched class from the FlowRepo to avoid any delay from the classification. The Clas-
sifier then reports to the Marker the class of the flow for each packet. We discuss in
Section 3.1.2 how the Learner collects the training data for building and updating the
flow size classification model.

The Marker (Algorithm 3.1, lines 19–23) forwards the packets of flows classified
as mice without changes but marks those classified as elephants (e.g., packet 10 in
Figure 3.3). To mark a packet, the Marker sets a predefined value in a code point
header field supported by SDN switches. For example, OpenFlow switches support
matching in two code point header fields. The first of these is the 6-bit Differentiated
Services Code Point (DSCP) field of the IPv4 header. This DSCP reserves a code point
space for experimental and local usage (i.e., ∗ ∗ ∗ ∗ 11, where ∗ is 0 or 1). The second
is the 3-bit 802.1Q Priority Code Point (PCP) field of the Ethernet header. In practice,
NELLY can rely on either one of these fields, since it is improbable that a data center
use both DSCP and PCP simultaneously [29].

The Marker can be extended by enabling a flexible configuration of the number of
subsequent packets in an elephant flow to be marked (M ), thus enabling a trade-off
between reliability and latency. For instance, as M increases, the lesser the probabil-
ity that the controller will miss elephant flows due to losses of marked packets in the
SDDCN. However, a higher M introduces a delay in the Marker for a higher number
of packets of elephant flows. Once the controller has installed a higher priority routing
rule for handling a specific elephant flow across the SDDCN, the subsequent marked
packets of this flow are not forwarded to the controller.
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3.1.2 Learner

As depicted in Figure 3.1, the Learner consists of four modules: Collector, Filter, Tag-
ger, and Trainer. The process of each module is detailed in Algorithm 3.2. As shown
in lines 1–4, the Collector fetches terminated flows from the FlowRepo at every interval
T . A flow is considered terminated if it remains idle for longer than θTO. Therefore,
the Collector recognizes terminated flows by checking that a time longer than θTO has
passed since the last-seen time of the FlowID records in the FlowRepo. Note that the
Collector relies on the FlowID records updated by the Monitor for the recognition of the
terminated flows, so their actual size can be obtained.

Algorithm 3.2: NELLY Learner
input : flow size classification model m
output: either actual m or updated m
data : learning time interval T , flow timeout threshold θT O, filtering flow size threshold θF , and

labeling flow size threshold θL

1 begin every T
// Collector

2 F ← fetch flows f ∈ FlowRepo;
3 for f ∈ F do
4 if currentTime − f .lastSeenTime > θT O then
5 delete f → FlowRepo;

// Filter
6 if f .size ≥ θF then

// Tagger
7 if f .size ≥ θL then f .class ← “Elephant” ;
8 else f .class ← “Mouse” ;

// Trainer
9 m← m.UPDATE(f .headerFields[], f .sizePackets[], f .iatPackets[], f .class);

10 end
11 end
12 end
13 return m;
14 end

The Collector avoids increasing memory consumption in NELLY by removing termi-
nated flows from the FlowRepo (Algorithm 3.2, line 5). The actual size of terminated
flows can also be further used to provide fixed-memory probability distributions that
support autonomous configuration of flow size thresholds [257]. Memory requirements
in the FlowRepo thus depend on both T and θTO. T provides a trade-off between mem-
ory and processing. As T decreases, the Collector removes the terminated flows from
the FlowRepo more quickly, consuming less memory, but leading to more processing.
In turn, θTO directly affects the number of FlowID records stored in memory. As θTO
increases, the FlowRepo retains FlowID records for a longer time. θTO is related to the
inactive timeout configuration of flow rules in SDN-enabled switches, which provides
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a trade-off between flow table occupancy and miss-rate (i.e., when the packet IAT is
greater than the timeout) [261].

The Filter of the Learner (Algorithm 3.2, line 6) receives the terminated flows from
the Collector and reports to the Tagger only those with size greater than θF . The ter-
minated flows are then used by the Trainer to build the flow size classification model.
Since the Classifier operates only with flows of a size greater than θF , the Filter of the
Learner prevents the introduction of noise to the model.

The Tagger (Algorithm 3.2, lines 7–8) compares the actual size of the filtered flows to
a labeling threshold (θL) so that they can be tagged as either mice or elephants. θL will
vary (e.g., 100 kB or 1 MB) as a function of the traffic characteristics and performance
requirements of SDDCNs. Labeled flows provide the Trainer (Algorithm 3.2, line 9) with
the ground truth for building a supervised learning model for flow size classification (see
Section 2.2). This classification model maps online features (i.e., packet header, size,
and IAT of the first N packets) onto the corresponding class (i.e., mice or elephants).
Recall that the Classifier relies on the flow size classification model to identify elephant
flows.

Since flows represent continuous and dynamic data streams, the Trainer uses an
incremental learning algorithm (e.g., Hoeffding tree and online ensembles) for build-
ing the flow size classification model. Incremental learning enables updating the flow
size classification model as the Trainer receives labeled flows over time, rather than
retraining from the beginning (see Section 2.2.1). Therefore, NELLY adapts to varying
traffic characteristics and performs continuous learning with limited memory resources.
There is no need for the Trainer to maintain labeled flows in memory. This is an impor-
tant characteristic of NELLY, since it helps to reduce the consumption of resources in
all the servers of the SDDCN.

3.2 Evaluation

This section presents the evaluation of NELLY in relation to classification accuracy and
time by using real packet traces and incremental learning algorithms. The generic
approach for designing ML-based solutions in networking (see Figure 2.4) is used to
describe and conduct the evaluation of NELLY: (i) data collection to gather the raw
packet traces and generate the flow size datasets, (ii) feature engineering to extract and
format the online features of the flow size datasets, (iii) establishing the ground truth to
label each flow in the datasets using the flow size and the classes of interest (i.e., mice
and elephants), iv model validation to define the accuracy metrics that measure the
performance of the trained models; and (v) model learning to train different models by
using a variety of incremental learning algorithms.
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3.2.1 Datasets

Two real packet traces, UNI1 and UNI2, captured in university data centers [255], were
employed to evaluate NELLY (Table 3.2 summarizes their characteristics). These two
traces are shorter than three hours long, but their mice and elephants distributions
are similar to those found in non-public traces collected at different periods along the
day [9,11]. On the other hand, to the best of our knowledge, neither traces nor datasets
of IPv6 traffic in DCNs are publicly available. In line with that, NELLY was evaluated
using IPv4 traffic only which represents over 99% of the packets in UNI1 and UNI2.

Table 3.2: Details of real packet traces and extracted IPv4 flows
Packet traces [255] UNI1 UNI2

Duration 65 min 158 min

Packets 19.85 M 100 M

IPv4 % of total traffic 98.98% (mostly TCP) 99.9% (mostly UDP)

IPv4 flows 1.02 M (TCP and UDP) 1.04 M (mostly UDP)

Details of
IPv4 flows

Flow size % of IPv4 flows % of IPv4 traffic % of IPv4 flows % of IPv4 traffic
≥ 10 kB 7.16% 95.06% 5.91% 98.81%
≥ 100 kB 0.83% 83.71% 1.93% 96.86%
≥ 500 kB 0.14% 73.14% 0.76% 93.52%
≥ 1 MB 0.07% 69.52% 0.48% 90.83%
≥ 5 MB 0.01% 60.33% 0.17% 81.34%

IPv4 flows obtained using the 5-tuple header and a threshold timeout θTO = 5 s

Only the following parameters needed to be defined to generate the datasets: the
flow header fields, θTO, and N . Firstly, the 5-tuple header (i.e., source IP, destination
IP, source port, destination port, and IP protocol) as the flow header fields since it suf-
ficiently characterizes IPv4 flows; hereinafter, they are referred just as flows. Secondly,
θTO = 5 s was established on the basis of the break-even point analysis between the
flow table occupancy and the miss-rate in OpenFlow switches for DCNs considered
by [261]. Then, since the maximum value of N depends on θF , N = 7 was set as the
maximum for θF = 10 kB. As shown in Table 3.2, the selected θF encompasses all the
potential elephants (i.e., flows carrying more than 95% of the traffic) and avoids the
introduction of the classification delay to mice (for more than 93% of the flows). Us-
ing these parameters, the UNI1 and UNI2 data traces were processed to generate the
corresponding flow size datasets, each containing somewhat more than a million flows
(see Table 3.2). Since NELLY only classifies flows greater than θF , those smaller than
θF = 10 kB were removed from both datasets. Therefore, the UNI1 and UNI2 datasets
consisted of approximately 70,000 and 60,000 flows, respectively.

The datasets [262] included the following flow information: start time, end time, 5-
tuple header, size and IAT of the first 7 packets, as well as flow size. The start and end
times enabled a more realistic evaluation (see Section 3.2.3). The 5-tuple header and
the size and IAT of the first 7 packets represented the online features for the flow size
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classification model. The flow size was compared to different θL (e.g., 100 kB, 500 kB, 1
MB, and 5 MB) to label the flows as mice or elephants (i.e., classes of interest). Unless
otherwise stated, the datasets with θL = 100 kB were used. Labeled flows represented
the ground truth for learning and validating the flow size classification model.

For complementing feature engineering, various different data types were consid-
ered for the online features, particularly for the 5-tuple header. Certainly, the size and
IAT of the first 7 packets (13 features, since the IAT of the first packet is not included) in-
dicate a measurement, hence, numeric data, whereas the 5-tuple header contains two
IP addresses in dotted-decimal notation (i.e., categorical data) and three numeric codes
(i.e., nominal data). However, the huge set of possible categories for IP addresses (i.e.,
232) hinders a real implementation. To address this problem, the IP addresses were di-
vided into four octets, resulting in a total of 11 nominal features for the 5-tuple header. To
handle these 11 nominal features as numeric data, a Numeric (Num) header type was
defined. These features were then transformed into binary digits (bits), generating 104
features for the 5-tuple header. Considering these binary features, two more header
types were defined: Binary-Numeric (BinNum) to treat binary features as numeric data
(i.e., a value between zero and one) and Binary-Nominal (BinNom) to handle binary
features as nominal data (i.e., zero or one). Table 3.3 illustrates the features included
by each header type. Unless otherwise stated, the datasets with BinNom-header were
used.

Table 3.3: Header types defined during feature engineering
Header

type
Features of the header type

(example)
# of

features

5-tuple
Source/Destination IP Source/Destination Port IP Protocol

541.177.26.55 80
6

244.3.160.248 43521

Num

Source/Destination IP
Source/Destination Port IP Protocol

11
Octet 1 Octet 2 Octet 3 Octet 4

41 177 26 55 80
6

244 3 160 248 43521

BinNum
BinNom

Source/Destination IP Source/Destination Port IP Protocol

104∗
8 bits 8 bits 8 bits 8 bits 16 bits 8 bits

00101001 10110001 00011010 00110111 0000000001010000
00000110

11110100 00000011 10100000 11111000 1010101000000001
∗Each bit represents one feature

3.2.2 Accuracy metrics

Metrics derived from the confusion matrix (see Figure 3.4) were used, including the True
Positive Rate (TPR) and the False Positive Rate (FPR), thus avoiding the over-optimism
of the conventional accuracy metric caused by an imbalance of classes [263]. In the
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datasets, the imbalance between mice and elephants depends on θL. For example,
assuming θL = 100 kB, only 12% of flows above 10 kB in the UNI1 dataset represent
the elephant class (see Table 3.2). The imbalance grows as θL increases.

Predicted
outcome

Actual instance

Positive (P) Negative (N)

P
True

Positive
(TP)

False
Positive

(FP)

N
False

Negative
(FN)

True
Negative

(TN)

Figure 3.4: Confusion matrix for binary classification

Consider that each row in the confusion matrix, illustrated in Figure 3.4, represents
a predicted outcome and each column represents the actual instance. In this manner,
True Positive (TP) is the intersection between correctly predicted outcomes for the ac-
tual positive instances. Similarly, True Negative (TN) is when the classification model
correctly predicts an actual negative instance. Whereas, False Positive (FP) and False
Negative (FN) describe incorrect predictions for negative and positive actual instances,
respectively. Note, that TP and TN correspond to the true predictions for the positive
and negative classes, respectively.

Recall that flows classified as elephants are forwarded to the controller for further
processing, thus introducing transmission and processing delays. Therefore, NELLY
aims at detecting as many elephants while negatively affecting as few latency-sensitive
mice as possible. Considering elephants as the positive condition, the TPR describes
the proportion of detected elephants (see Equation 3.1) whereas the FPR provides
the ratio of negatively affected mice (see Equation 3.2). Both TPR and FPR range
between 0 and 1. Furthermore, the Matthews Correlation Coefficient (MCC) was used
to analyze the balance between the TPR and the FPR. The MCC takes all values from
the confusion matrix to provide a measure between 1 and -1 (see Equation 3.3). As
the MCC gets closer to 1, the difference of the TPR over the FPR increases, leading to
a more accurate classifier. An MCC between 0 and -1 means that TPR ≤ FPR, which
would be less accurate than a random classifier. In our experiment, the MCC values
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were always greater than 0, hence, we use a range between 0 and 1 to plot TPR, FPR,
and MCC in Figures 3.5, 3.6, and 3.7.

TPR = TP

TP + FN
(3.1)

FPR = FP

FP + TN
(3.2)

MCC = (TP × TN)− (FP × FN)√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.3)

The MCC metric is employed in the performance analysis because it is recom-
mended for imbalanced datasets (like UNI1 and UNI2) [264]. The MCC score is only
high when the classification algorithms are doing well in both the positive and negative
elements (i.e., elephants and mice, respectively). The ROC curve has also proven to
be useful for imbalanced datasets but it is more appropriate to analyze classification
algorithms that output a real value [265]. Thus, we preferred the MCC because the
output of the incremental learning classification algorithms employed in this paper is a
single class value (either mouse or elephant) rather than a real value.

3.2.3 Experiment setup

Incremental learning algorithms are commonly evaluated using the interleaved test-
then-train approach [266]. This approach refers to going through each flow to classify it
first by working only with the online features and then use its actual class for training the
flow size classification model. However, since flows start and end over time, some order
of the flows must be established. Moreover, under real conditions, some flows start
before a classified flow ends, whereas others end before a new flow starts. Therefore,
the flows are classified at the start time and the model is trained at the end time, so the
performance evaluation will be based on more realistic conditions.

The imbalance of classes in the UNI1 and UNI2 datasets was addressed by train-
ing the flow size classification model using inverse weights, as in [32], i.e., weights
(between 0 and 1) inversely proportional to the ratio of training instances previously en-
countered by the model for each class. If the model is trained with a single weight (i.e.,
1 by default in the Massive Online Analysis (MOA) tool [266]), it would tend to classify
all flows as mice due to the imbalance of classes.

To corroborate the weighting decision, the accuracy was evaluated when training the
model with the single weight and inverse weights for three incremental learning algo-
rithms available in MOA, namely, Adaptive Random Forest (ARF), Adaptive Hoeffding
Option Tree (AHOT), and Hoeffding trees (a.k.a. CVFDT)—as later discussed in Sec-



68
Chapter 3. Flow detection using online incremental learning at the

server-side of software-defined data center networks

tion 3.2.4, NELLY achieves the best performance by using these algorithms. Figure 3.5
shows that the three algorithms achieve a higher elephant detection rate (i.e., TPR) for
both datasets with the inverse weights than with the single weight. These gains in the
TPR come at a sacrifice to the FPR; however, the three algorithms maintain a similar
MCC. Therefore, in the performance evaluation, inverse weights were used to improve
the TPR while maintaining the trade-off between the TPR and FPR.
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Figure 3.5: Classification accuracy of NELLY when using a single weight and inverse
weights for the UNI1 and UNI2 datasets

3.2.4 Performance analysis

To determine the consideration for the best classification performance of NELLY, the
UNI1 and UNI2 datasets were used with different header types (i.e., Num, BinNum, and
BinNom), as well as 50 incremental learning classification algorithms available in MOA.
The performance evaluation included the accuracy metrics (i.e., TPR, FPR, and MCC)
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and the classification time per flow (TC). The algorithms were executed with their default
settings (except for the training weights) and without previous model initialization.

For the sake of brevity, Table 3.4 presents ten algorithms, namely, AHOT, ARF, Ho-
effding tree, k-Nearest Neighbors (kNN) with Probabilistic Adaptive Windowing (PAW),
Naïve Bayes (NB), Online Accuracy Updated Ensemble (OAUE), online bagging, on-
line boosting, Stochastic Gradient Descent (SGD) for Support Vector Machines (SVM),
and Very Fast Decision Rules (VFDR) with NB classifiers (VFDRNB). These algorithms
were selected on the basis of the best performance results between algorithms with
a similar learning approach. Furthermore, Table 3.4 includes only the best results of
each algorithm, taking into account both accuracy and classification time for a specific
header type. The BinNom headers were found to enable the best performance of the
majority of the algorithms for the UNI1 and UNI2 datasets. This was due to the fact
that most algorithms achieved greater accuracy using the BinNom headers than the
Num headers for a comparable classification time. The use of the BinNum headers is
strongly discouraged; although similar or slightly better accuracy results were obtained,
there was a significant increase in the classification time (up to 4x).

Table 3.4: Classification performance of NELLY with different incremental algorithms

Algorithms

UNI1 UNI2

TPR
(%)

FPR
(%) MCC TC

(µs)
Header

type
TPR
(%)

FPR
(%) MCC TC

(µs)
Header

type

AHOT 85.97 35.52 0.327 4.07 BinNom 60.16 28.58 0.304 10.17 BinNom

ARF 82.39 28.82 0.359 12.01 BinNom 68.65 21.33 0.460 17.39 BinNom

Hoeffding tree 86.79 36.38 0.326 3.18 BinNom 57.92 28.46 0.284 4.64 BinNom

kNN-PAW 25.30 2.99 0.311 473.1 Num 40.29 10.22 0.302 454.1 Num

NB 74.76 35.69 0.254 4.76 BinNom 49.74 23.18 0.267 4.82 BinNom

OAUE 86.79 33.63 0.347 25.58 BinNom 63.28 28.65 0.332 33.06 BinNom

Online bagging 87.78 37.11 0.327 23.98 BinNom 64.17 31.13 0.314 36.61 BinNom

Online boosting 75.88 29.93 0.307 11.56 BinNom 64.62 32.22 0.307 16.82 BinNom

SGD-SVM 16.76 10.21 0.067 0.81 Num 38.69 30.99 0.076 0.8 Num

VFDRNB 74.44 33.77 0.267 18.47 BinNom 54.83 29.15 0.248 18.59 BinNom

In bold the top five results of TPR and MCC, and the TC results shorter than 17.5 µs, for both UNI1 and UNI2

The accuracy results show that no single algorithm achieves the best values of the
TPR and MCC for the UNI1 and UNI2 datasets. This is due to the fact that the flow size
distribution and the features of the elephant and mouse flows were specific for each
dataset. Therefore, the top five results were used to analyze the accuracy performance.
Regarding the TC , most algorithms introduced a classification delay per flow shorter
than 17.5 µs, but this represents only a small percentage (7%) of the Round-Trip Time
(RTT) in DCNs (i.e., 250 µs in the absence of queuing [267]).

Both Hoeffding tree and NB represent the state-of-the-art in incremental learning
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algorithms. Their simplicity and low computational cost enabled a very short delay
(TC < 5 µs) that accounts for only 2% of the RTT in DCNs. However, only the Hoeffding
tree represents a valid alternative for the traffic similar to that of UNI1 because its TPR
and MCC were among the top five results for the UNI1 dataset. The Hoeffding tree in
MOA uses NB classifiers on the leaves (i.e., CVFDTNBC), which improves the accuracy
without compromising the computational cost.

The ARF, OAUE, online bagging, and online boosting are ensemble-based algo-
rithms that combine multiple Hoeffding trees (ten in our evaluation) for improving the
accuracy at the expense of increasing the computational cost. As described in Sec-
tion 2.2.2, ensemble learning aims at improving the accuracy performance of a single
learning model by combining it with other models. As a result, the poor performance
of a single classifier can be compensated with ensemble learning at the price of ex-
tra computation. Indeed the results from ensemble learning must be aggregated, and
a variety of techniques have been proposed in this matter, including random forest,
block-weighting, bagging, and boosting.

Therefore, the ARF and online boosting algorithms introduced a TC shorter than 7%
of the RTT in DCNs. ARF provided the best MCC and a TPR among the top five for
the UNI1 and UNI2 datasets. Online boosting can be seen as an option for the traffic
similar to that of UNI2 since it was in the top five accuracy results only for the UNI2
dataset. In contrast, although the OAUE and online bagging algorithms also provided
good accuracy results (particularly for the UNI1 dataset), they introduced a TC twice
longer than the TC of ARF and online boosting. This long TC is because OAUE and
online bagging rely on ensemble methods (block-weighting and bagging, respectively)
that demand more computation than those used by ARF and online boosting (random
forest and boosting, respectively).

Similar to ARF, the AHOT algorithm figured in the top five accuracy results for both
datasets. Moreover, AHOT only introduced a TC shorter than 2% (5 µs) and 4% (10
µs) of the RTT in DCNs for the UNI1 and UNI2 datasets, respectively. AHOT is capable
of improving the accuracy of the Hoeffding tree algorithm without demanding too much
computation by providing an intermediate solution between a single Hoeffding tree and
an ensemble of Hoeffding trees. AHOT uses additional option paths (five maximum in
our evaluation) to build a single structure that efficiently represents multiple Hoeffding
trees.

The implementations in MOA of the VFDRNB, SGD-SVM, and kNN-PAW algorithms
are strongly discouraged. The VFDRNB presented accuracy results outside the top five
for both datasets and a TC slightly longer than 7% of the RTT in DCNs. This is because
rule-based algorithms focus on building more interpretable models than does the Ho-
effding tree algorithm, which increases the computational cost but not necessarily im-
proves the accuracy. The SGD-SVM algorithm introduced the shortest classification
delay (TC < 1 µs) but it produced the worst values in the TPR and MCC metrics. The
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reason for these values is that MOA implements a very simple SGD-SVM algorithm that
uses a linear kernel which is not sufficient to model different patterns in flows of pack-
ets. The kNN-PAW provided the second-worst TPR for both datasets and a very long
classification delay (TC > 450 µs), which increased up to 3,000 µs with the BinNum and
BinNom headers (i.e., 12x the RTT in DCNs). This long TC value is a consequence of
the computation of a distance metric by the algorithms based on kNN every time the
classification is performed.

In conclusion, NELLY achieves the best classification performance by using the Bin-
Nom headers along with the following incremental learning algorithms:

• The ARF is good for any type of traffic and if the RTT is flexible. It achieved the
best MCC for the UNI1 and UNI2 datasets, and it was also the fifth- and second-
best for the TPR while introduced a TC lesser than 7.5% of the RTT in DCNs.

• The AHOT is good for any type of traffic and a strict RTT. The TPR and MCC
ranked among the top five for both datasets while the TC was shorter than that of
the ARF, especially for the UNI1 dataset.

• The Hoeffding tree (CVFDTNBC) is good for traffic similar to that of UNI1 and if the
RTT is very strict. The TPR was the second-best and the MCC was the fifth (quite
close to the AHOT) for the UNI1 dataset while introduced a very short TC . When
the RTT constraint takes precedence over the accuracy, this would be a good
option for traffic similar to that of UNI2 because a very short TC was maintained
while provided the sixth-best TPR and MCC for such traffic.

The classification accuracy of NELLY was also evaluated with the ARF and AHOT
algorithms for different values of θL since this threshold may vary as a function of traffic
and routing requirements. Both ARF and AHOT ranked among the top five in accu-
racy for both datasets with a TC shorter than 7.5% of the RTT in DCNs. As shown
in Figure 3.6, the MCC results of both algorithms were degraded as θL increased, es-
pecially for the UNI1 dataset. This is because the difference between the features of
the elephants and mice becomes less significant as θL increases. In contrast, the TPR
remained very similar as θL increased, except that the ARF suffered from a significant
reduction in the TPR for the UNI1 dataset. Therefore, the AHOT was more robust to
variations in θL for traffic similar to that of UNI1, although the performance of both al-
gorithms was similar for the UNI2 dataset. Based on this summary, NELLY with the
AHOT algorithm enables a flexible configuration of θL while providing great elephant
flows detection in data centers regardless the type of traffic. For traffic similar to that of
UNI2, both ARF and AHOT represent valid alternatives for the use of NELLY and the
flexible configuration of θL is possible since they perform similarly in terms of elephants
detection.
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Figure 3.6: Classification accuracy of NELLY with the ARF and AHOT algorithms when
varying the labeling threshold (θL) for the UNI1 and UNI2 datasets

Finally, the effect of the handling of different ranges of the inverse weights in the
two classes on the classification accuracy of NELLY with the two algorithms (ARF and
AHOT) was analyzed. The weights of the mice were maintained between 0 and 1,
whereas the weights of the elephants ranged from 0 to WE, where WE varied from
1 to 5. Figure 3.7 shows that both the ARF and AHOT algorithms achieved a higher
TPR for both datasets as WE increased (up to 94% and 98% of elephants detection,
respectively). These results were expected since establishing greater weights for the
elephant class makes the learning algorithms increment the influence of the features of
the elephant flows in the classification model. Moreover, the trade-off between the TPR
and FPR (i.e., MCC) remained quite similar for UNI1-type traffic whereas that of UNI2
was degraded as WE increased. This is due to the greater differences between the
elephants and mice for the UNI1 dataset than for UNI2 when θL = 100 kB. Therefore,
as WE increased for the UNI2 dataset, the increment of mouse flows wrongly classified



3.3. Comparative analysis 73

as elephants (i.e., FPR) was greater than that of elephant flows correctly classified (i.e.,
TPR). In conclusion, NELLY supports a flexible configuration of inverse weights for
meeting different accuracy requirements.

1 2 3 4 5
Elephants weight WE

0.0

0.2

0.4

0.6

0.8

1.0

TP
R 

| F
PR

 | 
M

CC

(a) ARF for UNI1

1 2 3 4 5
Elephants weight WE

(b) AHOT for UNI1

1 2 3 4 5
Elephants weight WE

0.0

0.2

0.4

0.6

0.8

1.0

TP
R 

| F
PR

 | 
M

CC

(c) ARF for UNI2

1 2 3 4 5
Elephants weight WE

(d) AHOT for UNI2

TPR FPR MCC

Figure 3.7: Classification accuracy of NELLY with the ARF and AHOT algorithms when
varying the inverse weights of elephant flows (WE) for the UNI1 and UNI2 datasets

3.3 Comparative analysis

NELLY was compared with OFSP [32], ESCA [35], FlowSeer [33], and Mahout [29].
OFSP, ESCA, and FlowSeer incorporate ML at the controller-side of SDDCNs for
proactively detecting elephant flows, whereas Mahout performs reactive detection at
the server-side. The results reported by each work for the UNI1 dataset were used to
compare them in relation to: learning approach, elephants detection, false elephants,
table occupancy, control overhead, detection time, network modifications, and perfor-
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mance factors. The seminal works involving Hedera [26] and DevoFlow [27] were not
considered. These approaches perform reactive flow detection and their limitations
hinder real implementation. Hedera causes large control traffic overhead and has poor
scalability, whereas Devoflow requires custom-made switch hardware and imposes a
heavy burden on switches. Devoflow also presents an alternative based on sFlow [250],
however, ESCA revealed and outperformed the inaccurate and late elephant detection
suffered by the sFlow-based DevoFlow.

Table 3.5 summarizes the comparative analysis. Overall, NELLY achieved a better
balance between the comparative features than the other approaches, namely, a very
high elephant detection rate with a very short detection time, while significantly reducing
traffic overhead, without demanding switch table occupancy, and only software modifi-
cations and resources in servers were required. The following paragraphs outline the
comparison of NELLY with the other approaches.

Table 3.5: Comparison of NELLY with related approaches

FEATURE OFSP
[32]

ESCA
[35]

FlowSeer
[33]

Mahout
[29] NELLY

Learning approach Incremental Batch Batch and
incremental None Incremental

Elephants detection Very high High Very high Perfect Very high

False elephants Very low Very low High None Very low

Table occupancy Very high Medium Low None None

Control overhead High Medium Medium Very low Very low

Detection time Very short Medium Medium Long Very short

Network modifications∗ None Hardware
of switches None Software

in servers
Software
in servers

Performance factors Controller
and ToR

Controller
and ToR

Controller
and ToR Servers Servers

∗Assuming OpenFlow-based networks [48]

Learning approach. ML algorithms used for detecting elephant flows can involve
batch or incremental learning. Batch learning refers to the use of training models
based on static datasets (i.e., all training data are simultaneously available). However,
batch learning requires the storage of unprocessed data to cope with traffic variations
in DCNs, so the models must repeatedly work from scratch. This is time-consuming
and prone to outdated models. Conversely, incremental learning continuously adapts
the ML models on the basis of streams of training data, enabling constantly updated
models and reducing time and memory requirements (see Section 2.2.1). ESCA relies
on batch learning whereas NELLY and OFSP rely on incremental learning for detecting
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elephant flows. FlowSeer is a mixed approach using batch learning for the identifica-
tion of potential elephants and incremental learning for the classification of the potential
ones. Mahout has no learning approach, since it performs reactive elephants detection.

Elephants detection. The main goal of flow detection methods is to identify ele-
phant flows (i.e., TPR). NELLY, OFSP, and FlowSeer all proactively detected more
than 95% of elephant flows, whereas ESCA detected a maximum of 88.3%. Mahout
provides perfect detection, although this is reactive.

False elephants. Mouse flows mistakenly identified as elephants (i.e., FPR) are
needlessly forwarded to and processed by the controller. For achieving the highest
elephants detection rate, FlowSeer informed the controller of 29% of mice as potential
elephants, whereas OFSP and ESCA only reported around 2%. No mouse flow is
reported to the controller by Mahout since detection is reactive. NELLY yielded an
FPR of 40%, but this was computed using only 7% of the flows (i.e., θF = 10 kB, in
Section 3.2.1). NELLY sent the other 93% of the flows (corresponding to mice) directly
to the SDDCN without further processing (see Section 3.1.1). NELLY thus forwards
only 2.5% of mice to the controller for achieving the highest elephants detection rate
(see Figure 3.9(b)).

Figures 3.8 and 3.9 depict the elephants detection and false elephants results that
NELLY achieves when considering all the IPv4 flows from the UNI1 and UNI2 data
traces, including the portion of mice sent directly to the SDDCN without further pro-
cessing. Figure 3.8 shows the results for different values of θL (cf. Figure 3.6), while
Figure 3.9 sets θL = 100 kB and varies the range of the inverse weights of elephant
flows (WE) (cf. Figure 3.7).

Table occupancy. Controller-side flow detection methods install flow table entries
in ToR switches for centrally collecting flow data. The smaller the number of flow table
entries, the more efficient is the resource utilization. OFSP requires one entry per flow,
thus constraining its scalability because of the limited memory in SDN switches. ESCA
and FlowSeer install wildcard entries for sampling packets of flows. They reported 236
and 50 flow table entries, respectively, for achieving their highest detection rate in the
UNI1 dataset. Conversely, NELLY and Mahout do not require flow table entries for
collecting data since they operate at the server-side.

Control overhead. Flow detection methods require ToR switches to send control
packets to the controller, either for the collection of flow data or for the reporting of
detected elephant flows. The smaller the control overhead, the lower are the link uti-
lization and the impact on the controller performance (since it has to process fewer
control packets). The overhead of this control was computed by assuming no loss in
the network and a control packet of 64 bytes. OFSP collects information from the first
three packets of each flow, generating a control overhead of 402 kbps. FlowSeer col-
lects information from the first five packets of sampled flows (i.e., 30% of the flow data)
and potential elephants, yielding a control overhead of 288 kbps. ESCA reduces the
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Figure 3.8: Accuracy of NELLY with the ARF and AHOT algorithms when varying the
labeling threshold (θL) for all the IPv4 flows in UNI1 and UNI2 data traces

control overhead to 215 kbps by using a sampling method that only reports information
from the first packet. In contrast, NELLY and Mahout merely require that ToR switches
send information of flows marked as elephants, greatly reducing the control message
overhead to 4.4 kbps and 1.1 kbps, respectively.

Detection time. Timely detection of elephant flows enables the controller to make
early decisions to improve routing. OFSP, ESCA, FlowSeer, and NELLY enable a short
detection time by proactively detecting elephant flows. ESCA reported a detection time
of 1.98 s for achieving the highest detection rate. OFSP and NELLY detect elephants
in a shorter time since they rely on the first N packets. On average, the detection time
was 0.5 s for OFSP (N = 3) and 0.8 s for NELLY (N = 7). Further experimentation is
needed to evaluate the detection time of FlowSeer. Nevertheless, the detection time of
the latter would be slightly greater than for ESCA, since it is also based on sampling and
considers the first five packets (ESCA considers only one packet). In contrast, Mahout



3.3. Comparative analysis 77

1 2 3 4 5
Elephants weight WE

0

20

40

60

80

100
TP

R 
/ F

PR
 / 

M
CC

(a) ARF for UNI1

1 2 3 4 5
Elephants weight WE

(b) AHOT for UNI1

1 2 3 4 5
Elephants weight WE

0

20

40

60

80

100

TP
R 

/ F
PR

 / 
M

CC

(c) ARF for UNI2

1 2 3 4 5
Elephants weight WE

(d) AHOT for UNI2

Elephants detection False elephants

Figure 3.9: Accuracy of NELLY with the ARF and AHOT algorithms when varying the
inverse weights of elephant flows (WE) for all the IPv4 flows in UNI1 and UNI2 data
traces

relies on a reactive mechanism that detects elephant flows after their corresponding
socket buffer in a server surpasses a certain threshold. Assuming a small threshold
of 100 kB, the average detection time of Mahout is 3.8 s. However, unlike ML-based
flow detection methods, the detection time of Mahout becomes longer as the thresh-
old increases, which may cause hot-spots before the traffic carried by elephant flows
reaches the threshold.

Network modifications. ESCA proposes a sampling method that depends on non-
existing SDN specifications, hence, requiring custom-made switch hardware. In con-
trast, OFSP, FlowSeer, NELLY, and Mahout rely on OpenFlow [48], therefore enabling
the use of commercial switches. Essentially, NELLY and Mahout require the installa-
tion of additional software in the servers, which need only to be done once with fur-
ther configuration possible on the basis of a policy manager or autonomously. This
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installation can be carried out by using DevOps automation tools, such as Puppet and
Chef, that support the distribution of software components to the operating systems of
servers [268]. Moreover, virtualization platforms, such as VMWare and Xen, support
software distribution to the servers as updates to the hypervisor without interrupting
running virtual machines (either by live-migration or live-updating) [269].

Performance factors. Depending on the location of the flow detection method, dif-
ferent factors may affect its performance. Controller-side methods (i.e., OFSP, ESCA,
and FlowSeer) rely on the resources available at the controller and ToR switches. The
controller should be powerful enough for detecting all the elephants and processing the
control packets sent by the ToR switches in the DCN. Similarly, the ToR switches should
have enough memory for installing the required flow table entries. Moreover, the accu-
racy of the controller-side methods can be negatively affected if the ToR switches drop
some of the first packets of the elephant flows. On the other hand, NELLY and Mahout
operate at the server-side, so they depend on servers resources. As NELLY is based
on ML, it requires more resources than does Mahout. Both server-side methods detect
the elephants generated by each server (i.e., distributed operation). Note that servers
should be able to monitor the first packets of the elephant flows for avoiding a decrease
in accuracy.

3.4 Final remarks

ECMP, which is the default routing technique in DCNs, can degrade the network per-
formance when handling mouse and elephant flows. Novel techniques for scheduling
the elephant flows can alleviate this problem. Recently, several approaches have in-
corporated ML techniques at the controller-side of SDDCNs to detect elephant flows.
However, these approaches can produce heavy traffic overhead, low scalability, low
accuracy, and high detection time. In this chapter, we introduced NELLY to deal with
this limitations. NELLY performs continuous learning and requires limited memory re-
sources by virtue of using incremental learning. An extensive evaluation based on real
packet traces and various incremental learning algorithms demonstrated the high accu-
racy and speed of NELLY when used with the ARF and AHOT algorithms. Moreover, an
analytical comparison to seminal related works corroborated the scalability of NELLY
as well as its generation of low traffic overhead and the fact that no modifications in
SDN standards are required.
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The majority of the flows in DCNs are mice (i.e., , small, short-lived flows), whereas
only very few are elephants (i.e., , large, long-lived flows) [8–11]. Mouse flows rep-
resent latency-sensitive and bursty network traffic, such as search results [260], and
elephant flows depict massive data traffic, such as server migrations [270]. These traf-
fic characteristics negatively impact the performance of mice in DCNs as elephants tend
to utilize most bandwidth, introducing delay to mouse flows sharing the same links.

To tackle this problem, first, this chapter proposes a PMAC-based multipath rout-
ing algorithm for steering traffic flows (mainly, mice) in SDDCNs that supports trans-
parent host migration across the whole network while reducing the number of rules
installed on SDN switches, decreasing the delay introduced to flows traversing the net-
work. Second, this chapter introduces a flow rescheduling method at the controller-side
of SDDCNs that applies incremental deep learning for predicting traffic characteristics
of elephant flows to compute and install the best path per elephant flow across the
network.

4.1 Pseudo-MAC-based multipath routing in software-
defined data center networks

As described in Section 2.3.3, several SDDCN (i.e., DCNs using SDN) multipath rout-
ing mechanisms focus on dynamically rescheduling paths for identified elephants from
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the controller while relying on a default multipath routing algorithm, like ECMP [7], for
handling the rest of the flows (potentially, mice). However, most of these SDN-based
mechanisms do not specify how to implement such a default multipath routing algorithm
in an SDN enviroment. The simplest SDN implementation would dynamically compile
and install the path for each flow from the controller. However, this implementation in-
troduces a delay (approximately, 10 ms1) when edge switches (a.k.a. ToR) send the
first packet of each flow to the controller [27, 271]. This delay negatively affects the
latency-sensitive mouse flows [272]. Moreover, the massive number of flows in DCNs
leads to scalability issues due to a large occupancy of the narrow flow tables in SDN
switches and a significant overload to the controller, which increases the processing
delay [273].

Implementing the default multipath routing algorithm (e.g., ECMP) by installing static
flow rules overcomes the controller-related drawbacks (i.e., overload and first packets
delay). However, this implementation usually relies on multipath routing algorithms that
install a high number of source-destination (either Media Access Control (MAC) or IP)
static flow rules. As aforementioned, an SDN switch with many flow rules installed
creates scalability issues and increases the delay while the switch matches the rule for
a specific flow. Some approaches have proposed algorithms for reducing the number
of flow rules installed, particularly for mice [15, 28, 274]. However, these approaches
do not address the complexity of continuously updating the static flow rules in case
of dynamic changes in the network state. Therefore, an efficient implementation of
the default multipath routing algorithm should avoid sending the first flow packet to the
controller, install the less possible number of flow rules in switches, and update these
rules as the network state changes.

This section introduces an SDN-based multipath routing algorithm, named Pseudo-
MAC-based Multipath (PM2), which performs efficient routing of flows (mainly, mice) in
DCNs following the fat-tree topology [242]. Unlike other proposals that use addresses
(either MAC or IP) from hosts, PM2 identifies each switch’s layer (i.e., edge, aggre-
gation, core) and position for generating Pseudo-MAC (PMAC) prefixes, which allow
installing routing flow rules with wildcards to save space in the flow tables. PM2 then
intercepts Address Resolution Protocol (ARP) messages at the controller to generate
a PMAC address for each host (virtual and physical) and install the corresponding flow
rules in edge switches for both parsing MAC addresses and reaching destination. Re-
sults reveal that PM2 significantly reduces the number of rules installed in switches
while supporting transparent host migration across the whole SDDCN.

The remainder of this section is as follows. Section 4.1.1 demonstrates the impact
of the number of switch installed flow rules on the routing delay. Section 4.1.2 describes
the algorithm and procedures of PM2. Section 4.1.3 presents a proof of concept of PM2

1Assuming that only the first packet goes to the controller. If multiple packets arrive (i.e., bursty traffic)
before installing the flow rule, more packets will bear the cost.
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in an emulated scenario. Section 4.1.3 compares PM2 with feasible routing approaches
in SDDCNs regarding the number of rules installed.

4.1.1 Motivation

Figure 4.1 shows three experimental scenarios that we use to explain how the num-
ber of flow rules installed in a switch table impact the delay of flows traversing that
switch. All three scenarios deploy a Ryu controller [66] running an algorithm developed
in Python that simply installs static flow rules into the flow table of the corresponding
switch. The emulated scenario uses the network emulation tool Mininet 2.2.2 [275] to
deploy two virtual hosts2 (h) and an OpenFlow switch in a single Virtual Machine (VM).
The Ryu controller runs in the same Physical Computer (PC) hosting the VM. The
virtual scenario deploys two virtual hosts and an Open vSwitch 2.5.4 [277] using dif-
ferent VMs interconnected through virtual Ethernet interfaces [278]. The Ryu controller
and the three VMs run in the same PC. The physical scenario deploys an HP 2920
OpenFlow switch (a.k.a. Aruba 2920) [279] that interconnects two PCs (physical hosts)
through OpenFlow VLAN interfaces. The Ryu controller runs in an independent PC.
The PCs for all three scenarios shared the following system specifications: Lubuntu
16.04 operating system, 2.40 GHz Intel Core i5 processor, and 3 GB RAM.

Controller

Emulated
Switch

Controller Controller

Virtual
Switch
(OVS)

HP 2920

h1 h2 h1 h2 h1 h2

VM1 VM1

VM2 VM3

PC1 PC1 PC1

PC2 PC3

Emulated Virtual Physical

Figure 4.1: RTT measurement experimental scenarios

We measured the RTT for all three scenarios while varying the number and ar-
rangement of flow rules installed in the corresponding switch. RTT represents the
total time a packet takes to go to the destination and back to the source. The num-
ber of installed flow rules (r) ranged from 1000 to 16000 in steps of 1000 (r ∈ R =

2Mininet virtual hosts are processes running in their own Linux network namespace [276].
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{1000, 2000, ..., 16000}), where only two rules matched and forwarded the packets sent
between the hosts (routing rules) while the remaining occupied the flow table memory
(filling rules). For each r ∈ R, the arrangement of the flow rules varied by placing the
routing rules at the beginning, middle, and end of the filling rules. We installed each
flow rule arrangement T times in the switch and took the RTT N times for each t ∈ T .
Each experiment was about sending a ping request from the first host to the second
one and then measuring the RTT in the first host after receiving the corresponding ping
reply from the second host.

Figure 4.2 depicts the results for each scenario with T = 30 and N = 30. These
results reveal that the RTT for the emulated scenario remains around 0.1 ms regardless
of the number of installed flow rules and the position of the routing rules. Similarly, the
RTT for the virtual scenario persists as the number and arrangement of the installed
flow rules vary, though it approximates to 1.3 ms. Such an increment in the RTT value is
because the virtual scenario deploys more virtual Ethernet interfaces between the hosts
than the emulated scenario. In contrast, the RTT for the physical scenario increases
from 0.8 ms up to 2.1 ms as the number of installed flow rules grows and as the position
of the routing rules moves to the end of the filling rules. For example, for routing rules
placed at the beginning of the filling rules, the RTT grows from 0.8 ms for r = 1000 to
1.1 ms for r = 16000. Whereas, for r = 16000, the RTT increases to 1.6 ms and 2.1
ms when placing the routing rules in the middle and end of the filling rules, respectively.
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Figure 4.2: Average RTT per number of flow rules installed in the switch of each exper-
imental scenario with T = 30 and N = 30
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We learned from these experiments that the RTT in the emulated and virtual scenar-
ios remains nearly constant while varying the number of installed flow rules. Second,
in the physical scenario, the limited memory in switches causes the number of installed
flow rules to impact the delay introduced to the packets of flows traversing the switch.
Thus, reducing the number of flow rules installed in SDN switches represents an op-
portunity to lower the delay introduced to packets of flows (mainly, mice) traveling in
SDDCNs.

4.1.2 Pseudo-MAC-based multipath routing

PM2 provides a multipath routing algorithm for steering flows (mainly, mice) in a fat-
tree SDDCN. PM2 focuses on supporting transparent host migration across the whole
SDDCN while reducing the number of rules installed in the switches, decreasing the
delay introduced to the packets of flows traversing the network. To do so, PM2 reuses
the key concept of Pseudo-MAC (PMAC), which defines a hierarchical MAC address
assigned to the physical and virtual hosts in a fat-tree DCN topology [280].

PM2 generates and assigns 48-bit PMACs using the form lia:pod:pos:port:vmid,
where lia, pod, pos, and port represent eight-bit fields, whereas vmid depicts a 16-
bit field. lia defines PMACs as local-individual addresses (e.g., 0x0a or 000010103).
pod depicts the number of the pod containing the edge switch. pos describes the posi-
tion of the edge switch within the pod. port details the switch port number connected
with the physical host. vmid identifies different virtual hosts using a bridge adapter in
the same physical host (0x00 if no virtual hosts using bridge adapters).

Figure 4.3 presents the process executed by PM2 for installing the routing rules.
This process involves four main tasks: (i) generate PMAC addresses, (ii) define the set
of routing rules based on the PMAC addresses, (iii) install the set of routing rules in
the corresponding switches; and (iv ) update the routing rules when network changes
occur. Note the PM2 process runs after either discovering the topology or intercepting
an ARP message.

Topology discovery

PM2 requires an overview of the fat-tree DCN topology, including the position of the
switches and their connections to the other switches, for generating the PMAC ad-
dresses and installing the required routing rules. The fat-tree topology represents a
k-ary network that consists of k-port switches distributed into three layers: core, ag-
gregation, and edge, top-down. There are k pods interconnected by k2

4 core switches.

3A MAC address with the second-least-significant bit of the first octet set to one (1) represents a
locally administered address, whereas setting to zero (0) the least-significant bit of the first octet defines
an individual address meant for unicast communication [281].
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Figure 4.3: PM2 process to install routing rules

Each pod contains k
2 aggregation switches (upper pod) and k

2 edge switches (lower
pod). Aggregation switches connect to the core switches. Each aggregation switch
connects to each edge switch in the same pod. Each edge switch connects to k

2 phys-
ical hosts. The fat-tree topology provides a high degree of available path diversity:
between any source and destination host pair from different pods, k2

4 equal-cost paths
exist, each corresponding to a core switch, although the paths are not link-disjoint. Ta-
ble 4.1 depicts the fat-tree topology size, in terms of hosts, switches, and links, based
on the typical number of ports in switches.

For topology discovery, PM2 relies on the Link Layer Discovery Protocol (LLDP) to
obtain the connections among the switches. To do so, first, PM2 installs a routing rule
on every switch for redirecting any received LLDP packet to the controller, and then
frequently instructs every switch for sending LLDP packets through all the ports. The
switch connections allow PM2 determining the position of the switches in the fat-tree
topology. Assuming the network is fully connected, PM2 identifies as edge switches
those ones that failed to receive LLDP packets from half of their ports (i.e., ports con-
nected to physical hosts). In case the network is not fully connected, PM2 might rely
on the switch identifier (ID) to identify edge switches. In OpenFlow, for example, the
switch ID is a 64-bit field known as datapath ID: the 48 Least Significant Bits (LSB) cor-
respond to the switch MAC, whereas the 16 Most Significant Bits (MSB) depend on the
switch implementation (vary among models). Most OpenFlow switch implementations
allow defining a custom MSB, enabling network administrators to set a specific value in
the datapath ID of edge switches that PM2 identifies when the switches connect to the
controller. Finally, switches connected to edge switches become aggregation switches,
and those connected to aggregation switches become core switches.
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Table 4.1: Fat-tree topology size
Order∗

(k) Pods Hosts Edge
switches

Aggregation
switches

Core
switches

Total
switches Links

4 4 16 8 8 4 20 48

8 8 128 32 32 16 80 384

10 10 250 50 50 25 125 750

12 12 432 72 72 36 180 1296

16 16 1024 128 128 64 320 3072

24 24 3456 288 288 144 720 10368

28 28 5488 392 392 196 980 16464

48 48 27648 1152 1152 576 2880 82944

52 52 35152 1352 1352 676 3380 105456
∗Based on the typical number of ports in switches

Having determined the position of the switches in the fat-tree topology, PM2 gener-
ates PMAC prefixes for the pods and edge switches. PMAC prefixes for the pod and
edge switches have the form lia:pod:∗ and lia:pod:pos:∗, respectively, where ∗ repre-
sents the remaining wildcard bits (32 bits and 24 bits, respectively). For example, the
pod two in the fat-tree topology would have the PMAC prefix 0a:02:∗, whereas the edge
switch in the position one of the pod two would have the PMAC prefix 0a:02:01:∗. Note
that all the hosts (virtual and physical) under the same pod and edge switch share the
same PMAC prefix.

After generating the PMAC prefixes, PM2 defines and installs the wildcard routing
rules in the core and aggregation switches for enabling the top-down communication
(i.e., from core to aggregation and from aggregation to edge). Core switches only need
to match the PMAC prefix of a pod for sending a packet to a host that is under that pod.
For example, if the port two of a core switch connects to the pod two, the core switch
would have installed a wildcard routing rule that forwards through the port two every
packet whose destination MAC address matches the PMAC prefix 0a:02:∗. Similarly,
aggregation switches only need to match the PMAC prefix of an edge switch for sending
a packet to a host that is connected to that edge switch. For example, if the port one of
an aggregation switch in the pod two connects to the edge switch in position one, the
aggregation switch would have installed a wildcard routing rule that forwards through
the port one every packet whose destination MAC address matches the PMAC prefix
0a:02:01:∗. These wildcard routing rules based on PMAC prefixes enable reducing the
number of flow rules installed on switches at the core and aggregation layers.
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PM2 also defines and installs group routing rules at the edge and aggregation
switches for enabling the bottom-up communication (i.e., from edge to aggregation
and from aggregation to core). These group routing rules represent low priority rules
that switches apply when none of the PMAC-based routing rules, with a higher priority,
match the packet. Therefore, if a packet from a source host arrives at an edge switch
but the destination host is not connected to the same edge switch, this switch applies a
group routing rule to select one of the ports connected to the aggregation switches to
forward the packet. Similarly, if a packet from an edge switch arrives at an aggregation
switch but the destination host is not in the same pod, the aggregation switch applies
a group routing rule select one of the ports connected to the core switches to forward
the packet. These group routing rules enable multipath routing between the equal-cost
paths in the fat-tree topology. For example, OpenFlow [55] provides a group table that
contains group entries, each consisting of a list of action buckets (e.g., forward through
port two, forward through port three, etc.). OpenFlow switches apply the actions in one
or more action buckets depending on the group type. Particularly, the select group type
executes one of the action buckets in the group. The selection of the action bucket in
the group depends on the switch implementation. Open vSwitch, for instance, applies
a hash function on the packet header for selecting the action bucket in the group.

The last routing rules that PM2 defines using the topology discovery and installs on
the switches are for handling ARP messages. PM2 installs a routing rule on every edge
switch for intercepting all the ARP requests and replies. To do so, the ARP intercepting
routing rule matches all the packets with the EtherType field set to the ARP protocol
(0x0806) and forwards them to the controller. At the core and aggregation layer, PM2
simply instructs the switches to drop all the ARP messages. Note the ARP routing rules
present the highest priority among the installed routing rules.

Finally, PM2 triggers the update of routing rules when discovering changes in the
topology, such as broken links or switches down. That way, PM2 avoids forwarding
packets through disconnected ports, minimizing the rate of droppped packets. To do
so, PM2 generates a new configuration of routing rules and compares it with the current
configuration to enforce only the modifications. Note this updating task might imply gen-
erating new PMAC prefixes, installing new routing rules, and deleting existing routing
rules.

ARP interception

PM2 also operates when intercepting ARP messages. As shown in Figure 4.4, let’s
assume that a source host A, using the IP 10.0.0.1, wants to communicate with a
destination host B, using the IP 10.0.0.6. The source host A initially ignores the IP
10.0.0.6 is served by the destination host B, so host A sends an ARP request to ask
“who has 10.0.0.6?” and “what is you MAC address?” in order to get the MAC address
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from host B. Since host A ignores the MAC address from host B, the ARP request
uses the broadcast MAC address (ff :ff :ff :ff :ff :ff ) for the destination MAC. This
ARP request matches the intercepting routing rule at the edge switch, which forwards
it to the controller.

Controller

ARP Request
Src: 10.0.0.1 (03:45:21:a2:4b:61)
Dst: 10.0.0.6 (f f : f f : f f : f f : f f : f f )

Edge / ToR

Host A

A

A

A

Host B

Figure 4.4: ARP request interception in PM2

As depicted in Algorithm 4.1, PM2 receives as input the intercepting edge switch
data (sw) and the intercepted ARP message (A). The intercepting edge switch data
includes the switch ID (id) and the input port number the edge switch received the
ARP packet in (in_port). Note the intercepting edge switch data is not part of the ARP
message but of the messages sent to the controller by SDN protocols (e.g., OpenFlow
packet-in message). The intercepted ARP message contains the fields oper, ip_src,
ip_dst, eth_src, and eth_dst, which represent the ARP operation code (e.g., request
or reply), the source IP address, the destination IP address, the source MAC address,
and the destination MAC address. In the example from Figure 4.4, the value of the oper
field is 0x01 since the ARP message corresponds to an ARP request (this field is 0x02
for ARP reply).

Algorithm 4.1 shows that PM2, first, generates the PMAC address for the source
host using the switch ID (sw.id), the input port (sw.in_port), the source IP (A.ip_src),
and the source MAC (A.eth_src). Then, PM2 inserts the host generated PMAC into the
PMAC table, associating it with the source IP address (A.ip_src). Note that the switch
ID (sw.id), the input port (sw.in_port), and the source MAC (A.eth_src) are also stored
in the PMAC table record. In Figure 4.5, for example, the PMAC table associates the IP
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Algorithm 4.1: Handling intercepted ARP messages in PM2
data: sw edge switch that intercepted ARP message

A intercepted ARP message data
TH PMAC table for hosts (virtual or physical)
R installed PMAC routing rules
E set of edge (ToR) switches
θS ARP stale time threshold

// Function to handle intercepted ARP messages
1 function HANDLE_ARP(sw, A):

// Generate and store PMAC
2 pmac← GENERATE_PMAC(sw.id, sw.in_port, A.ip_src, A.eth_src);
3 TH [A.ip_src]← {pmac, sw.id, sw.in_port, A.eth_src};

// Install PMAC routing rules
4 if {sw.id, A.eth_src, pmac} /∈ R then
5 INSTALL_PMAC_RULES(sw.id, A.eth_src, pmac, sw.in_port);
6 R← {sw.id, A.eth_src, pmac};
7 end

// Update ARP data
8 A.eth_src← pmac;
9 UPDATE_TIME(A.dst_ip);

// Check if ARP request
10 if A.oper = 1 then

// Check if destination host is known
11 if A.dst_ip /∈ TH then
12 actions← [flood];
13 for each e ∈ E do
14 e.SEND_PACKET(A, actions);
15 end
16 else

// Check if stale time is shorter than threshold
17 if STALE_TIME(A.dst_ip) > θS then
18 CHECK_CONNECTION(A.dst_ip);
19 else

// Send ARP reply with source MAC set to destination PMAC
20 dst_pmac← TH [A.dst_ip][pmac];
21 reply ← ARP_REPLY(A);
22 reply.eth_src← dst_pmac;
23 actions← [A.in_port];
24 sw.SEND_PACKET(reply, actions);
25 end
26 end
27 else

// Forward ARP reply
28 dst_swid, dst_port← TH [A.dst_ip];
29 dst_sw ← GET_SWITCH(dst_swid);
30 actions← [dst_port];
31 dst_sw.SEND_PACKET(A, actions);
32 end
33 end



4.1. Pseudo-MAC-based multipath routing in software-defined
data center networks 89

10.0.0.1 with the PMAC 0a:01:01:01:00:00, which was generated using the ARP request
sent by host A, whose MAC is 03:45:21:a2:4b:61 and connects to the edge switch on
port one.

IP PMAC MAC Port

10.0.0.1 0a:01:01:01:00:00 03:45:21:a2:4b:61 1

10.0.0.6 0a:01:01:02:00:00 08:d4:6c:59:23:1e 2

Edge / ToR

Host A

1

d: 1 Position: 1

P

Host B

2

PMAC Table

B

B

Check

Figure 4.5: PMAC table in PM2

Continuing with Algorithm 4.1, PM2 defines and installs on the intercepting edge
switch the routing rules associated with the generated PMAC, in case it has not been
done yet. The PMAC routing rules consist of two routing rules per host on the edge
switch the host connects to. The first rule updates the source MAC of any packet
received from any of the hosts connected to the edge switch. This rule parses the actual
MAC of the host to the PMAC generated for that host. For example, in Figure 4.5, this
rule parses the source MAC from 03:45:21:a2:4b:61 to 0a:01:01:01:00:00 for any packet
host A sends to the edge switch. The second rule updates the destination MAC of any
packet targeting any host connected to the edge switch and forwards the packet though
the corresponding port. This rule parses the PMAC generated for the host to the actual
MAC of that host. For example, in Figure 4.5, this rule, first, parses the destination
MAC from 0a:01:01:01:00:00 to 03:45:21:a2:4b:61 for any packet targeting host A, and
then forwards the packet through port one.

Next, Algorithm 4.1 depicts that PM2 updates the source MAC (A.eth_src) of the
ARP message by setting the generated PMAC. This enables each host to associate
the IPs to the PMACs generated for the other hosts instead of using their actual MACs.
Therefore, when the hosts send packets targeting any IP, they will set the source MAC
with their own actual MAC addresses and the destination MAC with the corresponding



90
Chapter 4. Multipath routing based on software-defined

networking and machine learning for data center networks

PMAC that the controller reported for such IP. In our example, PM2 would parse the
source MAC of the ARP request from 03:45:21:a2:4b:61 to 0a:01:01:01:00:00. Following,
PM2 checks the operation code of the intercepted ARP message (A.oper) to discrimi-
nate ARP requests and ARP replies. For intercepted ARP requests (A.oper = 1), if the
PMAC table ignores the IP destination address (A.dst_ip), PM2 instructs all the edge
switches to flood the updated ARP request (i.e., send the packet through all ports) to
find the host with the destination IP. The destination host then receives the updated
ARP request and responds with an ARP reply to inform that the destination IP is at the
corresponding MAC. For example, in Figure 4.5, host B would respond that IP 10.0.0.6
is at MAC 08:d4:6c:59:23:1e. Note the ARP reply matches the intercepting routing rule
at the edge switch, which forwards it to the controller.

As show in Algorithm 4.1, PM2 also leverages ARP replies for generating host
PMACs, which are further stored in the PMAC table and used for defining and installing
the PMAC routing rules on the intercepting edge switch. In Figure 4.5, for example,
the PMAC table associates the IP 10.0.0.6 with the PMAC 0a:01:01:02:00:00, which was
generated using the ARP reply sent by host B, whose MAC is 08:d4:6c:59:23:1e and
connects to the edge switch on port two. Subsequently, PM2 updates the source MAC
(A.eth_src) by setting the generated PMAC and recognizes the ARP message is an
ARP reply (A.oper = 2), so it forwards the updated ARP reply to the destination host via
the corresponding edge switch and port. In our example, PM2 would parse the source
MAC of the ARP reply from 08:d4:6c:59:23:1e to 0a:01:01:02:00:00 and forward it through
port one towards host A.

When validating if the PMAC table knows the IP destination from the ARP request
(A.dst_ip), in case it does but the controller has not intercepted an ARP message (re-
quest or reply) from that IP for longer than a stale time threshold (θS), PM2 checks
the connection by sending the updated ARP request directly to the known destination
host. When the destination host replies, PM2 forwards the updated ARP reply to the
source host, reporting that the destination IP is at the generated PMAC. If the controller
does not intercepts an ARP reply from the destination host for longer than a removal
time threshold (θR), PM2 removes the record associated with the destination IP from
the PMAC table. On the other hand, in case the PMAC table knows the destination IP
from the ARP request (A.dst_ip) and the time since the controller intercepted an ARP
message from that IP is shorter than θS, PM2 generates and sends an ARP reply to
the source host, reporting that the destination IP is at the generated PMAC. Note that
θS and θR enable recognizing hosts down to avoid filling the network with traffic (e.g.,
UDP) that has no destination.

Finally, PM2 supports transparent migration of hosts across the whole SDDCN.
Transparent migration refers to moving a host (virtual or physical) while keeping its
IP and being able to communicate with that host without performing manual configura-
tions. In PM2, when changing the position of a host, any source host communicating
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with it stops receiving replies for the direct ARP requests. Source hosts will receive
an ARP reply either when one of them sends a broadcast ARP request or when the
migrated host sends an ARP request for communicating with any other host. These
ARP messages allow discovering the new position of the migrated host, for which PM2
updates the PMAC address and the corresponding routing rules.

4.1.3 Implementation

Figure 4.6 depicts the proof of concept we implemented for evaluating the feasibility of
PM2. We deployed this implementation on a server at the Computer Networks Labo-
ratory (LRC, Laboratório de Redes de Computadores) of the University of Campinas.
This server runs Debian 8.11 server in a 2.66 GHz Intel Xeon Processor X5650 ma-
chine, with 12 physical cores, 24 logical cores, and 40 GB RAM. On the server, we
deployed a VM for running Mininet [275], a well-known tool for emulating OpenFlow
networks [48]. We installed Mininet 2.3.0 and Open vSwitch 2.5.9 [277], which Mininet
uses for deploying the OpenFlow switches in the emulated network. Open vSwitch
2.5.9 fully supports up to OpenFlow 1.3 and OpenFlow 1.5 with missing features. The
Mininet VM runs an Ubuntu 16.04 server with 6 logical cores and 20 GB RAM. Using
the Mininet Python API, we developed a custom fat-tree topology that accepts as input
a parameter k for setting the size of the fat-tree network (see Table 4.1). Our custom
fat-tree topology implementation is available in [282]. We executed our custom fat-tree
topology on the Mininet VM, varying the size of the network.

On the server, we also deployed the Ryu SDN framework [66] as the controller
for managing the OpenFlow switches in Mininet. We installed Ryu 4.34, which fully
supports up to OpenFlow 1.5 [55]. Using the Python libraries from the Ryu SDN frame-
work, we developed a network application that implements PM2, including the topology
discovery, the ARP management, and the process for generating PMAC addresses,
defining the routing rules, and installing them on the OpenFlow switches. Note we
assumed a fully connected network, so our PM2 implementation identifies as edge
switches those ones that failed to receive LLDP packets from half of their ports. Our
Ryu network application that implements PM2 is available in [282]. We executed our
PM2 network application on the Ryu SDN framework.

To test that PM2 installs the appropriate routing rules, we performed a ping test
between all the hosts in the emulated fat-tree network, validating that all of them were
able to communicate with each other. Due to resource limitations, we were able to test
the communication for a fat-tree topology of size 16, which deploys 1024 hosts, 320
switches (128 at edge layer, 128 at aggregation layer, and 64 at core layer), and 3072
links (see Table 4.1).
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Figure 4.6: Implementation of PM2

4.1.4 Analytic evaluation

PM2 enforces a PMAC-based routing for reducing the number of routing rules installed
on the switches. PM2 is similar to PortLand [280] in that both assign PMAC addresses
to the hosts according to their position in the fat-tree topology. However, for topology
discovery, PortLand depends on a custom Location Discovery Protocol (LDP), whereas
PM2 relies on the widely-used LLDP. Moreover, unlike PortLand, PM2 defines and in-
stalls the routing rules for supporting multipath routing (i.e., group routing rules). Port-
Land simply assumes a standard technique such as flow hashing in ECMP. Finally, PM2
validates the time that hosts have been in communication with others (i.e., θS and θR)
to identify hosts down, avoiding filling the network with traffic (e.g., UDP) that has no
destination. PortLand does not account for hosts down.

We further evaluated PM2 by analyzing the number of rules installed per switch for



4.1. Pseudo-MAC-based multipath routing in software-defined
data center networks 93

an all-to-all communication in an OpenFlow fat-tree topology, in comparison with other
three feasible approaches: (i) Layer 2 (L2), which uses MAC addresses for communica-
tion, (ii) Hierarchical Layer 3 (HL3), which divides the network using IP prefixes; and (iii)
a hybrid approach between L2 and HL3 (L2-HL3), which uses MAC addresses from the
aggregation layer down and divides the pods using IP prefixes. Hereinafter, k denotes
the order (i.e., size) of the fat-tree topology (see Table 4.1).

First, we compute the number of rules that PM2 installs on the switches of an Open-
Flow fat-tree topology. Equation 4.1 describes the number of rules that PM2 installs per
edge switch. The four (4) rules are the ARP intercepting rule, the group rule, a miss
destination MAC rule that redirects to the group rule, and a miss source MAC rule that
handles packets coming from the aggregation layer. Moreover, PM2 installs two PMAC
routing rules per each host h in each server machine s ∈ 1..k2 connected to the edge
switch. The first PMAC rule parses the source MAC, whereas the second rule parses
the destination MAC and forwards the packet through the corresponding port. Note that
h includes the physical host and the virtual hosts using a bridge adapter to connect to
the network. Virtual hosts using NAT adapters communicate to the network using the
IP and MAC addresses of the physical host.

4 + 2 ·
k/2∑
s=1

hs (4.1)

Equation 4.2 depicts the number of rules that PM2 installs per aggregation switch.
The three (3) rules are the ARP dropping rule, the group rule, and a miss destination
MAC rule that redirects to the group rule. In addition, PM2 installs a wildcard routing rule
per each of the k

2 edge switches connected to the aggregation switch. Note these wild-
card rules use the PMAC prefixes generated for the edge switches (i.e., lia:pod:pos:∗).

3 + k

2 (4.2)

Equation 4.3 presents the number of rules that PM2 installs per core switch. One
(1) ARP dropping rule and a wildcard routing rule per each of the k pods connected to
the core switch. These wildcard rules use the PMAC prefixes generated for the pods
(lia:pod:∗).

1 + k (4.3)

Next, we calculate the number of rules installed on the switches by the other three
OpenFlow-feasible approaches, namely, L2, HL3, and L2-HL3. Equation 4.4 denotes
the number of rules that these three routing approaches install per edge switch. The
three (3) rules are an ARP management rule, the group rule, and the miss destination
MAC rule that redirects to the group rule. Furthermore, these approaches install a
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routing rule per each host h in each server machine s ∈ 1..k2 connected to the edge
switch.

3 +
k/2∑
s=1

hs (4.4)

Equation 4.5 describes the number of rules that L2 and L2-HL3 install per aggrega-
tion switch. The three (3) rules are an ARP management rule, the group rule, and the
miss destination MAC rule that redirects to the group rule. Moreover, L2 and L2-HL3
install a routing rule per each host h in each server machine s ∈ 1..k2 connected to each
edge switch e ∈ 1..k2 connected to the aggregation switch. In contrast, the number of
rules that HL3 installs per aggregation switch is given by Equation 4.2. Similar to PM2,
HL3 leverages address prefixes for reducing the number of rules at the aggregation
layer.

3 +
k/2∑
e=1

k/2∑
se=1

hse (4.5)

Lastly, Equation 4.6 depicts the number of rules that L2 installs per core switch. One
(1) ARP management rule and a routing rule per each host h in each server machine
s ∈ 1..k2 connected to each edge switch e ∈ 1..k2 belonging to each pod p ∈ 1..k. In
contrast, the number of rules that HL3 and L2-HL3 install per core switch is shown in
Equation 4.3. Similar to PM2, HL3 and L2-HL3 leverage address prefixes for reducing
the number of rules at the core layer.

1 +
k∑
p=1

k/2∑
ep=1

k/2∑
sep=1

hsep (4.6)

For facilitating the analytic comparison, we make some assumptions to compute
the number of rules all these approaches install per switch for each layer in a fat-tree
topology. Table 4.2 simplifies Equations 4.1-4.6 by assuming only one host (i.e., the
physical host) in each server machine (i.e., hs = 1). Furthermore, Figure 4.7 shows
the number of rules each approach (PM2, L2, HL3, L2-HL3) install per switch for each
layer in a fat-tree topology of size k = 48 and only one host in each server machine
(i.e., hs = 1). Note that a fat-tree topology of size k = 48 consists of 27648 hosts, 2880
switches (1152 at edge layer, 1152 at aggregation layer, and 576 at core layer), and
82944 links (see Table 4.1). Moreover, the Y axis of Figure 4.7 is in logarithmic scale.

The results show that PM2, HL3, and L2-HL3 installs much less rules per core
switch than L2. Note the former three leverage address prefixes (either PMAC or IP)
for reducing the number of rules at the core layer. At the aggregate layer, PM2 and
HL3 install much fewer rules than L2 and L2-HL3. In this case, only PM2 and HL3
leverage address prefixes (PMAC and IP, respectively) for reducing the number of rules
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Table 4.2: Comparison of PM2 routing with related approaches
FEATURE L2 HL3 L2-HL3 PM2

Rules per edge (ToR) switch∗ 3 + k
2 3 + k

2 3 + k
2 4 + k

Rules per aggregation switch∗ 3 + k2

4 3 + k
2 3 + k2

4 3 + k
2

Rules per core switch∗ 1 + k3

4 1 + k 1 + k 1 + k

Transparent host migration Network Edge switch Pod Network
∗Equations obtained assuming only one host in each server (hs = 1)
∗k denotes the order (i.e., size) of the fat-tree topology
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Figure 4.7: Number of rules installed per switch for each layer in a fat-tree topology with
size k = 48 and only one host in each server (hs = 1)

per aggregate switch. Lastly, PM2 installs a little more rules per edge switch than the
other approaches. This is because PM2 requires the MAC-PMAC address parsing.
Overall, PM2 installs much fewer rules than L2 and L2-HL3. In contrast, PM2 installs a
little more rules than HL3.

However, as described in Table 4.2, HL3 limits the transparent host migration to
the edge switch. Note that transparent host migration requires migrated hosts to keep
their IPs since services running on other hosts might depend on it. As HL3 divides the
whole network using IP prefixes, each edge switch supports only a specific range of
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IPs. Therefore, using HL3, a host cannot be migrated to another edge switch without
changing its IP. On the other hand, L2-HL3 extends the transparent host migration
scope to the pod since it uses IP prefixes only for dividing the pods. Whereas, PM2
and L2 enable transparent host migration across the whole fat-tree network.

To sum up, PM2 installs much fewer rules than the other OpenFlow-feasible ap-
proaches that support transparent host migration across a fat-tree topology area larger
than the same edge switch. Such reduction in the number of rules installed on switches
allows decreasing the delay introduced to flows (mainly mice) traversing the fat-tree
topology network.

4.2 Rescheduling of elephants in software-defined data
center networks using deep incremental learning

Recall that SDDCN multipath routing mechanisms (see Section 2.3.3) deploy a con-
troller that dynamically reschedules paths for identified elephants while relying on a de-
fault multipath routing algorithm, like PM2 (see Section 4.1 and ECMP [7], for handling
the rest of the flows (potentially, mice). These SDDCN multipath routing mechanisms
depend on flow detection methods that discriminate elephants from mice, either reac-
tively by using thresholds or proactively by incorporating ML (see NELLY, introduced
in Chapter 3). However, these flow detection methods merely indicate which flows are
elephants (i.e., binary classification) but do not provide specific traffic characteristics
(e.g., size, rate, duration) of such flows.

Therefore, most SDDCN multipath routing mechanisms handle all the elephants
flows in the same way, that is, all with the same traffic characteristics. This is not
suitable for covering the broad distribution of traffic characteristics of elephant flows
in DCNs [8–11]. Only FlowSeer [33] perform a multiclassification for dividing the rate
of the elephants into five classes. Although a five-class classification is much better
than a binary classification, finer granularity traffic characteristics are desirable for im-
proving the decisions of the multipath routing algorithm. Moreover, FlowSeer relies on
sampling-based data collection, which increases the traffic overhead and the detec-
tion time while reducing the accuracy. As described in Section 3.3, FlowSeer reports
to the controller 29% of mice as potential elephants, which can negatively affect the
performance of the multipath routing algorithm.

In this section, we introduce a flow rescheduling method denominated intelligent
Rescheduler of IDentified Elephants (iRIDE), which applies incremental learning at the
controller-side of SDDCNs for predicting traffic characteristics of flows identified as ele-
phants to compute and install the best path per flow across the network. Incremental
learning allows iRIDE adapting to the variations in traffic characteristics and performing
endless learning with limited memory resources. Quantitative evaluation demonstrates
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that iRIDE achieves low prediction error of flow rate and flow duration when using DNNs
with regularization and dropout layers. Moreover, iRIDE enables intelligent elephant
rescheduling algorithms that efficiently use the available bandwidth, generating higher
throughput and shorter traffic completion time than conventional ECMP.

The remainder of this section is as follows. Section 4.2.1 introduces the architecture
of iRIDE. Section 4.2.2 presents a quantitative evaluation of the prediction compo-
nents in iRIDE using real data and incremental learning algorithms in both batch and
incremental settings. Section 4.2.3 describes practical heuristics for implementing two
rescheduling algorithms for iRIDE. Section 4.2.4 exposes the implementation of iRIDE,
including the prediction and rescheduling components, for evaluating the networking
performance. Section 4.2.5 discusses the networking performance results.

4.2.1 Architecture of iRIDE

Figure 4.8 introduces iRIDE, a flow rescheduling method at the controller-side of SDDCNs
that applies incremental learning for predicting traffic characteristics of elephant flows
to compute and install the best path per elephant flow across the network. iRIDE relays
on flow detection methods, such as NELLY, for sending marked packets that identify
elephant flows traversing the network.

As illustrated in Figure 4.8, iRIDE consists of five modules: Catcher, Predictor,
Rescheduler, Monitor, and Trainer. For the sake of readability, Table 4.3 lists and de-
scribes the symbols defined in the architecture of iRIDE. The Catcher installs rules
on edge switches (a.k.a. ToR) that forward the marked packets to the controller (i.e.,
catching rules). This installation can be conducted once the controller knows a switch
belongs to the edge layer. The Catcher can receive this information from a topology
discovery application (see Section 4.1). The catching rule can look for a predefined
value in a code point header field supported by SDN switches. For example, OpenFlow
switches support matching in two code point header fields. The first of these is the 6-bit
DSCP field of the IPv4 header. This DSCP reserves a code point space for experimen-
tal and local usage (i.e., ∗∗∗∗11, where ∗ is 0 or 1). The second is the 3-bit 802.1Q PCP
field of the Ethernet header. In practice, iRIDE can rely on either one of these fields,
since it is improbable that a data center use both DSCP and PCP simultaneously [29].

As soon as the catching rule matches a marked packet in an edge switch, the
marked packet is sent to the controller. The catcher receives the marked packet and
extracts the flow information from it, commonly, the header (e.g., 5-tuple) to identify the
elephant flow. This marked packet might also include the size and IAT of the first N
flow packets that flow detection methods, such as NELLY, usually collect for classify-
ing flows as mice and elephants (see Chapter 3). Note that NELLY requires a small
modification in the Marker module of the Analyzer subsystem (see Section 3.1.1) to be
able to communicate this extra information to iRIDE. Instead of marking the packets
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Figure 4.8: Architecture of iRIDE

Table 4.3: Symbols in the architecture of iRIDE
Symbol Name Description

θCS Cold-start threshold
Value (e.g., number of training instances) above
which the Predictor uses the regression models for
predicting the traffic characteristics

θTO Timeout threshold
Time limit above which switches acknowledge in-
active flows as terminated for removing the corre-
sponding routing rule

θL Labeling threshold Flow size limit below which the Trainer discards
flows incorrectly classified as elephants

nB Mini-batch size Number of elephant instances for training the re-
gression models

TM Monitoring rate Time interval at which the Monitor requests flow
characteristics from the network



4.2. Rescheduling of elephants in software-defined data center
networks using deep incremental learning 99

of flows classified as elephants, the Marker forwards the packets without changes and
generates an extra marked packet for each elephant flow. Such an extra marked packet
uses the same flow header (e.g., 5-tuple) and includes the size and IAT of the first N
packets in its payload. In this case, the parameter M of the Marker would represent the
number of extra marked packets generated for an elephant flow, thus enabling a trade-
off between reliability and overhead. As M increases, the lesser the probability that the
controller will miss elephant flows due to losses of extra marked packets in the SDDCN,
but the more extra packets are sent to edge switches and to the controller. Once the
controller has installed a higher priority routing rule for handling a specific elephant flow
across the SDDCN, the subsequent extra marked packets of this flow are not required
but they are still forwarded to the controller, which increases traffic overhead.

After the Catcher extracts the flow information from marked packets, it passes that
data to the Predictor, which uses the regression models to predict the rate and dura-
tion of the flows identified by the marked packets. If the flow information includes the
size and IAT of the first N packets, the Predictor’s configuration can be extended by
including a cold start threshold (θCS) that defines if estimating or predicting the flow
traffic characteristics (i.e., rate and duration). For example, if the number of instances
(i.e., flows) used to train the model is less than θCS, the Predictor computes the rate
using the first N packets data and assigns a default value to the duration. When the
number of trains reaches θCS, the Predictor starts using the regression models to pre-
dict the traffic characteristics. θCS allows warming up the regression models to avoid
predictions about which they have not yet gathered sufficient information.

The Predictor stores all the flow information in the elephant camp (a temporal repos-
itory for elephant flows) and communicates the predicted traffic characteristics to the
Rescheduler. The Rescheduler then can install specific routing rules per elephant flow
across the network based on a path computed by a rescheduling algorithm that uses
the predicted traffic characteristics. Section 4.2.3 describes two rescheduling algo-
rithms that use either the predicted flow rate or flow duration to compute the path and
install the routing rules for rerouting elephants in a fat-tree DCN topology.

Each routing rule includes a threshold timeout (θTO) that instructs SDN-enabled
switches to remove the routing rule as soon as the corresponding flow has been inac-
tive for θTO (i.e., the switch has not received a packet that matches the flow rule). Note
that θTO is related to the flow definition in NELLY (see Section 3.1.1). Edge switches
additionally include a mechanism that reports to the controller flow statistics of the re-
moved routing rules due to time-out. Such a report must include the flow header, flow
size, and flow duration of the routing rule. For example, OpenFlow allows inserting the
flag OFPFF_SEND_FLOW_REM into the installed flow rules so when the OpenFlow
switch removes one of them, it reports the removed flow rule to the controller, includ-
ing the match header, removal cause (e.g., idle time-out), byte count, and duration in
seconds. P4 enables a flexible data plane programming for easily implementing this
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reporting mechanism into P4 switches.
The Monitor receives the report of the removed routing rule from the edge switch

and extracts the flow statistics: flow header, flow size, and flow duration. The Monitor
then communicates these flow statistics to the Trainer, which discards those flows that
were incorrectly marked as elephants, that is, flows whose size (e.g., byte count) is less
than an elephant size threshold (θL). In NELLY, θL represents the labeling threshold for
tagging flows as either mice or elephants (see Section 3.1.2). The Trainer computes
the rate and duration (ground truth) of the non-discarded flows (i.e., true elephants) and
use them to train the regression models. Each regression model maps online features
(i.e., packet header, size, and IAT of the first N packets) onto the corresponding value
(i.e., rate and duration). Recall that the Predictor relies on the regression models to
predict flow traffic characteristics. The Trainer avoids increasing memory consumption
in iRIDE by removing all timed-out flows (both discarded and used for training) from the
elephant camp. Instead of using only one elephant instance, the Trainer might hold a
mini-batch of elephant instances of size nB for training the regression models.

Since flows represent continuous and dynamic data streams, the Trainer uses an
incremental learning algorithm for building the regression models. Incremental learning
enables updating the regression models as the Trainer receives timed-out flows over
time, rather than retraining from the beginning (see Section 2.2.1).

Note that the Rescheduler operates depending on the predicted traffic character-
istics that the Predictor communicates. However, the Monitor might also support the
Rescheduler by implementing a mechanism that frequently requests flow characteris-
tics (e.g., rate) from the network. This mechanism should keep a low traffic overhead.
Therefore, every TM , the Monitor requests traffic characteristics from elephant flows
from edge switches and passes that information to the Rescheduler. For example,
the Monitor can compute the rate of each requested elephant flow and pass it to the
Rescheduler to have an updated view of the network traffic for taking routing decisions.

4.2.2 Prediction

This section presents the evaluation of the ML modules in iRIDE (i.e., the Predictor
and the Trainer) in relation to prediction accuracy and time by using real packet traces
and incremental learning algorithms. We used both batch and incremental settings
for evaluating these learning algorithms. Furthermore, we used the generic approach
for designing ML-based solutions in networking (see Figure 2.4) to describe and con-
duct this evaluation: data collection, feature engineering, establishing the ground truth,
model validation, and model learning.
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Datasets

We reused the two datasets [262], UNI1 and UNI2, generated for evaluating NELLY
(see Section 3.2.1). We selected the datasets with BinNom-header as they enabled
the best performance of the majority of the algorithms (see Section 3.2.4). BinNom-
header provides a total of 117 online features. Moreover, since iRIDE only reschedules
flows marked as elephants, we removed those flows smaller than θL = 100 kB from
both datasets. Therefore, the newly generated UNI1 and UNI2 datasets consisted of
approximately 8,500 and 20,000 flows, respectively.

The new datasets included the following flow information: start time, end time, 5-
tuple header, size and IAT of the first 7 packets, as well as flow size. The start and
end times allowed computing the duration of each flow. The 5-tuple header and the
size and IAT of the first 7 packets represented the online features for the two regression
models: flow rate and flow duration. The flow size was divided by the duration of the
flow to compute its rate. The rate and duration of each flow represent the target value
to predict and provide the ground truth for learning and validating the corresponding
regression model.

To complement feature engineering, we converted to negative one (-1) the binary
zero (0) values from the online features corresponding to the 5-tuple header since some
ML techniques (particularly, NNs) perform better when the input values are centered
around zero rather than ranging between 0 and 1 [283, 284]. We also transformed the
numeric values in the online features (i.e., size and IAT of first 7 packets) using different
feature scaling methods, as discussed later in the experiment setup.

Accuracy metrics

We used two accuracy metrics commonly used in the literature to report the perfor-
mance of regression models: the coefficient of determination (R2) and the Root Mean
Square Error (RMSE). R2 provides a goodness-of-fit score that measures how well the
regression models fit the observed data (i.e., ground truth) [285]. We rely on the com-
mon R2 definition that uses the first equation of Kvålseth (see Equation 4.7), which
provides scores usually between 0 and 1. As the R2 score gets closer to 1, the bet-
ter the regression predictions (ŷ) approximate to the observed values (y). Note that
R2 scores below 0 might occur, which represent that the regression fit performs worse
than a horizontal line [286]. R2 enables comparisons across different types of data as
it does not depend on the scale of the values. However, R2 by itself cannot indicate
if a regression model is adequate. Therefore, we used RMSE to complement the R2

scores.

R2(y, ŷ) = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 , where ȳ = 1

n

n∑
i=1

yi (4.7)
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As shown in Equation 4.8, RMSE measures the differences between the values
predicted by the regression models (ŷ) and the observed values (y). RMSE provides
a non-negative value that expresses a higher accuracy as the error gets smaller. We
preferred RMSE over other similar error metrics often used to gauge the accuracy of
regression models, such as MAE and MSE [286]. The three error metrics disregard
the direction of under- and over-estimations in the predictions. Moreover, unlike R2,
these metrics depend on the scale of the data so they cannot be used to compare
the accuracy of regression models working with different types of data. However, MSE
and RMSE are more useful than MAE for heavily penalizing large errors and outliers.
Additionally, in contrast to MSE, RMSE expresses the standard deviation of the error,
which is in the same units as the quantity being predicted. Our RMSE results display
Megabits per second (Mbps) for flow rate and seconds (s) for flow duration.

RMSE =
√∑n

i=1(yi − ŷi)2

n
(4.8)

At the end of the evaluation process, we also analyzed the residual plots of the
selected regression models to check no bias nor problematic patterns exist in the resid-
uals.

Experiment setup

Incremental learning algorithms are commonly evaluated using the interleaved test-
then-train approach [266]. However, for selecting the data preprocessing techniques
(i.e., feature scaling, target transformation, imbalance correction) and the regression
model (i.e., learning algorithm and hyperparameter tuning), we followed the common
60/20/20% batch decomposition for dividing the datasets into training, validation, and
test sets, respectively (see Section 2.2.1). This batch decomposition allows using the
validation set for selecting the best model and evaluate it on the test set to get an
unbiased estimate of the model’s performance [287]. Since our datasets are in the
order of the tens of thousands, we applied the batch holdout method for validation and
testing. Note the result from the test set represents the optimal performance to which
the model would tend when using an incremental evaluation method (either holdout or
interleaved test-then-train) [288].

Feature scaling is an essential data preprocessing step for ML algorithms that com-
pute a distance function between input features, such as kNN [283]. Distance func-
tions (e.g., Euclidean distance) depend heavily on the variability of the features and
are biased towards numerically larger values. For example, the online features in our
datasets contain binary values [-1, 1] for the 5-tuple packet header and numeric values
for the size and IAT of the first 7 packets. The packet size ranges from 60 bytes up
to 1522 bytes, whereas the packet IAT can go from a microsecond up to five million of
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microseconds (i.e., θTO = 5s). Therefore, our non-scaled numeric values (particularly,
large IATs) could bias ML algorithms based on distance functions. Moreover, feature
scaling for ML algorithms using gradient descent, such as NNs, might not be strictly re-
quired but can make their training to converge faster and with less chances of sticking
in a local optima [283]. Conversely, DT algorithms (e.g., Hoeffding trees) are insensitive
to feature scaling.

We analyzed different feature scaling methods on the numeric values of the online
features [289]. The min-max zero-center scaler (see Equation 4.9) is a simple method
that rescales the features to the range [-1, 1] by using the minimum and maximum
values of each feature. In our datasets, we defined 60 and 1522 (bytes) as the minimum
and maximum values for the packet size, as well as one and five million (microseconds)
for the packet IAT. The standard scaler, also called Z-score normalization (see Equation
4.10), removes the mean and scales the values to unit variance. The robust scaler
removes the median and scales the data according to the interquartile range (i.e., range
between the first and third quartiles). The quantile transformer provides a non-linear
transformation that maps the features to follow either a uniform or a normal distribution.
The power transformer applies either the Box-Cox transform (see Equation 4.11) or
the Yeo-Johnson transform (see Equation 4.12). Both non-linear transformations use
the maximum likelihood to estimate the optimal parameter λ that maps data to follow
a Gaussian-like distribution. The normalizer performs the Euclidean norm (a.k.a. L2
norm) to scale features individually to unit form.

X ′i = 2 · (Xi −min(X))
max(X)−min(X) − 1 (4.9)

X ′i = Xi − X̄
σ

, where X̄ is the mean and σ is the standard deviation (4.10)

X
(λ)
i =


Xλ
i −1
λ

λ 6= 0
ln(Xi) λ = 0

(4.11)

X
(λ)
i =



(Xi+1)λ−1
λ

λ 6= 0, Xi ≥ 0
ln(Xi + 1) λ = 0, Xi ≥ 0
− (−Xi+1)(2−λ)−1

2−λ λ 6= 2, Xi < 0
− ln(−Xi + 1) λ = 2, Xi < 0

(4.12)

We also analyzed different target variable transformations by applying some of
these feature scaling methods: quantile-uniform, quantile-normal, Box-Cox, and Yeo-
Jhonson. Figures 4.9 and 4.10 depict these transformations on the two target vari-
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ables, flow rate and flow duration, respectively, in both datasets, UNI1 and UNI2.
Note both target variables present an imbalanced domain when no transformation has
been applied to the data. Therefore, we further included the Synthetic Minority Over-
sampling technique for regression with Gaussian Noise (SMOGN) [290] into our ex-
periments for analyzing imbalance correction (i.e., under-sampling and over-sampling)
in our datasets. SMOGN combines three methods proposed for addressing regression
imbalance: random under-sampling [291], Synthetic Minority Over-sampling TEchnique
for Regression (SMOTER) [292], and introduction of Gaussian Noise (GN) [293]. Ran-
dom under-sampling enables removing less interesting instances, whereas SMOTER
and GN introduction generate new synthetic data from close and distant instances,
respectively.

0 50 100
Mbps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

No transformation

0.0 0.5 1.0
0.000

0.002

0.004

0.006

0.008

0.010

Quantile-uniform

5 0 5
0.00

0.01

0.02

0.03

0.04

Quantile-normal

(a) Transformation of flow rate in UNI1

2 0 2 4
0.00

0.01

0.02

0.03

0.04

Box-Cox ( =0.14)

0 2
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Yeo-Johnson ( =-0.77)

0 200 400
Mbps

0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

No transformation

0.0 0.5 1.0
0.000

0.002

0.004

0.006

0.008

0.010

Quantile-uniform

5 0 5
0.00

0.01

0.02

0.03

0.04

Quantile-normal

(b) Transformation of flow rate in UNI2

4 2 0 2
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Box-Cox ( =-0.08)

1 0 1
0.00

0.01

0.02

0.03

0.04

0.05

Yeo-Johnson ( =-0.51)

Figure 4.9: Transformations of flow rate in UNI1 and UNI2
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Figure 4.10: Transformations of flow duration in UNI1 and UNI2
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Finally, we used the interleaved test-then-train approach [266] for evaluating the se-
lected regression model in an incremental setting. Similar to NELLY (see Section 3.2.3,
the prediction of flow characteristics (i.e., flow rate and flow duration) takes place at the
flow start time, while retraining the regression models at the flow end time. Moreover,
we analyzed different mini-batch sizes (nB) for training the model incrementally.

Performance analysis

To determine the regression model with the best accuracy performance, first, we used
the batch decomposition to evaluate different learning algorithms that can operate in an
incremental approach. Three regression algorithms from scikit-learn [294]: Stochastic
Gradient Descent (SGD) for Ordinary Least Squares (OLS), Passive-Aggressive (PA),
and Multi-Layer Perceptron (MLP) (i.e., NN); plus four regression algorithms from scikit-
multiflow [295]: k-Nearest Neighbors (kNN), Hoeffding tree, Hoeffding Adaptive Tree
(HAT), and Adaptive Random Forest (ARF). The algorithms were executed with their
default settings and without previous model initialization. We only modified the MLP
structure to two hidden layers: the first one with 175 units and the second one with 117
units (i.e., respectively, 3/2 and 1 times the number of input units, which is the number
of online features). Moreover, we evaluated all the feature scaling methods and target
transformations (both explained in the experiment setup) for each learning algorithm.

For the sake of brevity, Table 4.4 presents the learning algorithm and data prepro-
cessing techniques that achieved the best accuracy performance (i.e., the highest R2

and the lowest RMSE) for predicting each target variable (i.e., flow rate and flow dura-
tion) in the training and validation sets of UNI1 and UNI2. The results show that MLP
achieved the best accuracy for predicting the two target variables in both evaluation sets
of UNI1 and UNI2, though the associated feature scaling methods and target transfor-
mations varied. Note Table 4.4 presents the second best accuracy performance for
predicting both target variables in the validation set of UNI1. Although kNN achieved
the best accuracy in the validation set, its accuracy results performed really bad in the
training set. In fact, kNN presented negative R2 values in the training set, represent-
ing that the regression fit performed worse than a horizontal line. Therefore, the kNN
results in the validation set of UNI1 were not reliable.

The results in Table 4.4 also depict that MLP fits better the rate (i.e., higher R2) in
UNI1 than in UNI2, achieving a lower error (i.e., RMSE) for the first one. In contrast,
although MLP fits better the duration in UNI1 than in UNI2, the error in the first one
is higher than in the other. This is because UNI1 presents some flow duration values
that greatly differ from the others, which are highly penalized by the RMSE metric.
Therefore, hereinafter, we make decisions based on RMSE results.

We further applied SMOGN to our datasets for evaluating the effect of imbalance
correction (i.e., under-sampling and over-sampling) on the accuracy performance. In
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Table 4.4: Learning algorithm and data preprocessing with the best accuracy perfor-
mance in a batch learning setting

Dataset Target
variable

Evaluation
set

Learning
algorithm

Feature
scaling

Target
transform R2 RMSE∗

UNI1

Rate
Train MLP Box-Cox None 0.9417 1.42

Validation† MLP Robust Yeo-Johnson 0.3123 5.61

Duration
Train MLP Quantile-normal Quantile-normal 0.9678 85.64

Validation† MLP Min-max None 0.9119 197.92

UNI2

Rate
Train MLP Quantile-normal Quantile-normal 0.5424 23.07

Validation MLP Robust None 0.4367 24.81

Duration
Train MLP Quantile-normal Box-Cox 0.7378 14.28

Validation MLP Min-max Quantile-normal 0.5215 19.34
∗RMSE units depend on target variable: Megabits per second (Mbps) for rate and seconds (s) for duration
†Showing the second best result, disregarding kNN

this experiment, we only used MLP as the learning algorithm as it performed the best
in the results depicted in Table 4.4. However, we kept analyzing all the feature scaling
methods and target transformations. MLP preserved the same NN structure (i.e., two
hidden layers of 175 and 117 units), as well as the rest of default settings and no
previous model initialization.

Table 4.5 shows the data preprocessing techniques (imbalance correction, feature
scaling, and target transformation) with which MLP achieved the best accuracy perfor-
mance in the validation set for predicting both target variables in UNI1 and UNI2. To
summarize, for predicting the rate in UNI1, MLP achieved the best accuracy by using the
under-sampling imbalance corrective, the robust feature scaler, and the Yeo-Johnson
target transformation. Whereas, for the duration in UNI1, MLP performed the best by
using over-sampling, the min-max scaler, and no target transformation. On the other
hand, for predicting both target variables in UNI2, MLP required no imbalance correc-
tive nor target transformation but used the feature normalizer to achieve the best perfor-
mance. However, many data preprocessing techniques that enabled the best accuracy
have been specially designed for batch learning (i.e., operate with the whole training
set), including under-sampling and over-sampling, robust scaler, normalizer, and Yeo-
Johnson transformer. Implementing these techniques in an incremental setting might
require huge memory resources and it is still an open research challenge [296].

Therefore, we evaluated a feasible incremental approach by combining MLP with
those data preprocessing techniques that can operate in an incremental setting, namely,
min-max feature scaler, no target transformation, and no imbalance correction. Note
the min-max scaler only requires defining the minimum and maximum values of the
features. In our datasets, 60 and 1522 (bytes) as the minimum and maximum values
for the packet size, as well as one and five million (microseconds) for the packet IAT.
Table 4.6 presents the accuracy performance of MLP using the feasible incremental
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Table 4.5: Data preprocessing with the best accuracy performance for MLP in a batch
learning setting

Dataset Target
variable

Imbalance
corrective

Feature
scaling

Target
transform

Training Validation

R2 RMSE∗ R2 RMSE∗

UNI1

Rate

None† Robust None 0.9722 1.12 0.4849 4.27

Under-sampling Robust Yeo-Johnson 0.9745 1.62 0.4944 4.23

Over-sampling Yeo-Johnson None 0.9801 1.75 0.4649 4.35

Duration

None† Standard None 0.9979 24.82 0.8899 192.24

Under-sampling Min-max None 0.9976 44.89 0.8885 193.46

Over-sampling Min-max None 0.9978 49.58 0.9023 181.14

UNI2

Rate

None† Normalizer None 0.5167 23.45 0.4308 25.28

Under-sampling Normalizer Yeo-Johnson 0.7081 24.72 0.3971 26.01

Over-sampling Robust None 0.7532 23.09 0.4139 25.65

Duration

None† Normalizer None 0.6335 17.01 0.4936 21.77

Under-sampling Min-max None 0.6476 22.05 0.4647 22.38

Over-sampling Min-max Yeo-Johnson 0.6786 22.15 0.4522 22.64
∗RMSE units depend on target variable: Megabits per second (Mbps) for rate and seconds (s) for duration
†Original dataset, with no under-sampling nor over-sampling

data preprocessing techniques. As expected, MLP achieved worse validation errors in
comparison with using the best data preprocessing techniques (see Table 4.5). RMSE
in the validation set increased by 0.6 (Mbps) and 0.3 (seconds) when predicting the flow
rate in both datasets and the flow duration in UNI2, respectively. Moreover, the flow du-
ration prediction in UNI1 represents the worst case, incrementing the validation RMSE
by 21 (seconds). Nevertheless, MLP achieved similar RMSE values in the training set,
opening an opportunity to improve the validation error.

Table 4.6: Accuracy performance of MLP using feasible incremental data preprocessing
techniques in a batch learning setting

Dataset Target
variable

Training Validation

R2 RMSE∗ R2 RMSE∗

UNI1
Rate 0.9532 1.45 0.3259 4.88

Duration 0.9969 29.77 0.8778 202.57

UNI2
Rate 0.4990 23.88 0.4032 25.88

Duration 0.5832 18.14 0.4781 22.09
∗RMSE units depend on target variable: Megabits per second

(Mbps) for rate and seconds (s) for duration

Aiming at improving the accuracy performance on the validation set, first, we fo-
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cused on building NN structures that reduce the training errors by using Tensorflow [297]
and Keras [298]. We set typical hyperparameters for DNNs [299–301], including the
Rectified Linear Unit (ReLU) [302] as the activation function in the units of the hidden
layers, He normal [303] to initialize the NN weights, Adam optimization [304] to improve
SGD, and the default mini-batch size of 32 instances per gradient update [305]. For
tuning the NN structure (see Figure 4.11), we varied the number of hidden layers (Lh)
from one up to ten in steps of one (i.e., Lh ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]), and the number
of units per each hidden layer (n[lh] ∀ lh ∈ LH) from 15 up to 600 in steps of specific
multiples of 15 (i.e., n[lh] ∈ [15, 30, 60, 120, 240, 360, 480, 600]). Note the data preprocess-
ing techniques remained as the feasible incremental approach (i.e., min-max feature
scaler, no target transformation, and no imbalance correction).

...

... ... ...
...
...
...

...
n [lh] → number of units in hidden layer lh ∈ Lh

Lh → number of hidden layers

n [i] = 117

Input layeri

n [o] = 1
Output layero

predicted 
value

...

Figure 4.11: NN structure

Table 4.7 describes the NN structures that achieved the lowest RMSE values in the
training sets of both datasets, UNI1 and UNI2, for predicting the two target variables. In
general, the results show that for reducing the training errors, NN requires deep struc-
tures (i.e., DNN) from five up to nine hidden layers (Lh) and from 360 up to 600 units
per each hidden layer (n[lh]). In comparison to the results of MLP using the feasible
incremental data preprocessing techniques (see Table 4.6, the reduction of the training
RMSE was good for predicting the rate and duration in UNI1 (∼33% and ∼24%, re-
spectively), moderate for the duration in UNI2 (∼11%), and minimal for the rate in UNI2
(∼4.6%).

The problem about focusing on reducing the training error is that it causes overfit-
ting [306], which means that the model would not be able to generalize in unseen data
(i.e., poor accuracy performance on the validation and test sets). To tackle this prob-
lem, we incorporated a combination of two regularization methods to reduce the error
on the validation sets. First, L2 regularization [307] (see Equation 4.13), for which we
varied the regularization parameter (λ) from 0 up to 0.1 in steps of 1 thousand (i.e.,
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Table 4.7: DNN structures with the lowest training errors in a batch learning setting

Dataset Target
variable

Hidden layers
(Lh)

Hidden units
(n[lh])

Training
RMSE∗

UNI1
Rate 5 480 0.97

Duration 8 360 22.53

UNI2
Rate 8 600 22.78

Duration 9 480 16.22
∗RMSE units depend on target variable: Megabits per second (Mbps) for

rate and seconds (s) for duration

λ ∈ [0, 10−5, 10−4, 10−3, 0.01, 0.1]). Second, a dropout regularization layer [308] for each
hidden layer, for which we varied the dropout rate from 0% up to 75% in steps of 25%
(i.e., [0, 25, 50, 75]%).

L2 = λ

2m ‖ w
[l] ‖2

F , where λ is the regularization parameter, m is the number
of training instances, and ‖ w[l] ‖2

F is the squared Frobenius

norm of the weights in layer l
(4.13)

Table 4.8 depicts the DNN structures and regularization methods (i.e., L2 and dropout
layers) that achieved the lowest RMSE values in the validation sets of both datasets,
UNI1 and UNI2, for predicting the two target variables. For predicting the rate, the
results show the DNN structures achieved the lowest validation errors by using a com-
bination of the two regularization methods, with λ = 0.1 and a dropout rate of 50% for
UNI1, and λ = 10−4 and a dropout rate of 25% for UNI2. Whereas, for predicting the
duration, using only L2 regularization with λ = 10−5 provided the best validation results.
In comparison to the results of MLP with the feasible incremental data preprocessing
techniques (see Table 4.6), the trained DNNs reduced the validation RMSE values, ex-
cept for the rate in UNI2, where no improvement nor degradation was observed. In fact,
in comparison to the results of MLP with the best data preprocessing techniques (see
Table 4.5), the DNNs reduced the validation errors for predicting the duration in UNI1
and UNI2. Although the validation RMSE for predicting the rate in UNI1 is higher for the
trained DNN than for the best MLP, this error is still lower than for MLP with the feasible
incremental data preprocessing techniques.

To conclude the evaluation in a batch learning setting, we evaluated the obtained
DNN regression models in the test set of both datasets, UNI1 and UNI2, for reporting
an unbiased estimate of the model’s accuracy performance when predicting the flow
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rate and the flow duration (see Table 4.8).

Table 4.8: DNN structures and regularization methods with the lowest validation errors
in a batch learning setting

Dataset Target
variable Structure∗ Regularization

parameter (λ)
Dropout

rate
Training
RMSE†

Validation
RMSE†

Testing
RMSE†

UNI1
Rate Lh = 5, n[lh] = 480 0.1 50% 4.61 4.34 5.42

Duration Lh = 8, n[lh] = 360 10−5 0% 30.14 173.97 126.89

UNI2
Rate Lh = 8, n[lh] = 600 10−4 25% 25.51 25.88 27.08

Duration Lh = 8, n[lh] = 360 10−5 0% 17.51 21.52 18.55
∗Defines the number of hidden layers (Lh) and the number of units per each hidden layer (n[lh])
†RMSE units depend on target variable: Megabits per second (Mbps) for rate and seconds (s) for duration

Continuing our prediction evaluation, we used the interleaved test-then-train ap-
proach for evaluating the tuned DNN regression models in an incremental learning
setting. Figure 4.12 shows the mean RMSE over a sliding window of approximately
10% of the instances (1000 in UNI1 and 2000 in UNI2). Note that we also analyzed
mini-batch sizes (nB) other than one, varying the number of training instances from 8
up to 256 in doubling steps (i.e., nB ∈ [1, 8, 16, 32, 64, 128, 256]). Moreover, the refer-
ence dotted-red line (Ref.) in the figure represents the RMSE values reported for the
test sets in the batch learning evaluation (see Table 4.8). The results show, first, the
DNN regression models incrementally tend to the test errors from the batch learning
evaluation, except for the duration in UNI2. Second, the models suffer from higher error
as new traffic characteristics appear in the data. However, the DNN regression mod-
els incrementally adapt to new traffic characteristics, lowering the RMSE values back.
Third, using a large nB generally provides no significant improvement over time. In fact,
using nB = 256 for predicting the duration in UNI2 might cause overfitting, producing a
higher error than using a smaller nB. This is not the case for the duration in UNI1, which
greatly benefits from using nB > 1 to reduce the negative impact of the flow duration
outliers on the prediction error.

Figure 4.13 corroborates the impact of nB on the prediction errors by presenting the
mean RMSE over different values of nB for the tuned DNN regression models. Similarly,
the dotted-striped-red bar represents the RMSE values reported for the test sets in
the batch learning evaluation (see Table 4.8). The results show that using nB > 1 for
predicting the rate in both UNI1 and UNI2 reduces RMSE by a small amount (maximum
9.5%), achieving a minimum value that is around 11% over the test errors from the batch
learning evaluation. Note the RMSE reduction is less significant for nB > 32. Regarding
the duration in UNI1, using nB > 1 greatly reduces the prediction error by a maximum
of 79%, achieving the lowest RMSE when using nB = 256, which is only 7% over the
test error from the batch learning evaluation. Similarly, the error reduction is minor for
nB > 32. In contrast, for predicting the duration in UNI2, the results show that using
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Figure 4.12: Mean RMSE over a sliding window of instances for DNN regression mod-
els with different mini-batch sizes (nB) in an incremental learning setting

nB > 1 provides no perceptible RMSE reduction. In fact, when nB = 8, the RMSE
grows up to 27% over the rest of nB values. Note the lowest RMSE is 44% over the test
error from the batch learning evaluation.

Lastly, Figure 4.14 depicts the mean prediction time per flow over different values of
nB for the tuned DNN regression models. Note that the time for predicting the two target
variables, rate and duration, in both datasets UNI1 and UNI2, achieves the minimum
value when nB = 1. This prediction time per flow grows as nB increases, achieving a
maximum value when nB = 32, which is between 1.8 and 3.4 milliseconds (ms) over
the lowest prediction time. Based on the results of both the prediction time per flow and
the mean RMSE (see Figure 4.13), we recommend using only one training instance at
a time (i.e., nB = 1) when predicting the rate in UNI1 and UNI2 as the error reduction
is small (up to 9.5%) in comparison to the increment of the prediction time (> 2 ms)
when using nB > 1. Similarly, stick to nB = 1 when predicting the duration in UNI2
since no error reduction is perceptible when using nB > 1 while the prediction time
does increment by at least 2 ms. In contrast, for predicting the duration in UNI1, we
recommend using nB = 256 because the error is greatly reduced (up to 79%) while
generating a prediction time per flow that is only 0.7 ms above the prediction time for
nB = 8.
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Figure 4.13: Mean RMSE over mini-batch sizes (nB) for DNN regression models in an
incremental learning setting

4.2.3 Rescheduling

As described in Section 4.8, the Rescheduler module of iRIDE implements a reschedul-
ing algorithm that uses the predicted traffic characteristics, reported by the Predictor, to
compute a path and install specific routing rules per elephant flow across the network.
The problem about finding the path for different flows while not exceeding the bandwidth
capacity of any link is known as Multi-Commodity Flow, which is NP-complete [26]. To
the best of our knowledge, no polynomial time algorithm exists for simultaneous flow
routing in realistic DCN topologies, such as the 3-tier fat-tree topology (i.e., 5-stage
Clos network) [26]. Therefore, this section describes practical heuristics for implement-
ing two rescheduling algorithms that consider the fat-tree DCN topology, as seminal
related works have done (e.g., simulated annealing [26] and increasing first-fit [29]).

Least Congested (LC) path

In a fat-tree topology, multiple equal-cost paths exist between any pair of hosts not
connected to the same edge switch. When the Rescheduler receives a flow identified
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Figure 4.14: Mean prediction time per flow over mini-batch sizes (nB) for DNN regres-
sion models in an incremental learning setting

as elephant, the Least Congested (LC) path algorithm linearly searches all the paths
between the source and destination hosts to select the one whose link components
carry the less traffic load. Note that only one path exists if the pair of hosts are con-
nected to the same edge switch. The Rescheduler then places the flow on the selected
path. First, the Rescheduler uses the predicted flow rate, reported by the Predictor, to
reserve the bandwidth capacity for the flow on the links corresponding to the selected
path. Second, the Rescheduler installs routing rules for bottom-up communication (i.e.,
from edge to aggregation and from aggregation to core) in the corresponding edge
and aggregation switches. The top-down communication (i.e., from core to aggrega-
tion, from aggregation to edge, and from edge to destination host) relies on the default
routing algorithm, such as PM2 (see Section 4.1). The Rescheduler then maintains
the reserved bandwidth capacity for every link in the network to determine which paths
carry the less traffic load for placing new flows identified as elephants. When receiving
the notification from the Monitor that a flow has expired (i.e., a flow has been inactive
for θTO), the Rescheduler clears the corresponding reservations of bandwidth capacity.
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Worst-Fit Badwidth-Time-Fit (WF+BTF)

In contrast to LC, the Worst-Fit Badwidth-Time-Fit (WF+BTF) algorithm uses the two
predicted traffic characteristics reported by the Predictor, namely, flow rate and flow du-
ration. To do so, WF+BTF operates in two steps. First, when the Rescheduler receives
a flow identified as elephant, WF+BTF linearly searches all the paths to find the one
with the less traffic load whose link components can all accommodate the predicted
rate of that flow. Note that this corresponds to the Worst-Fit (WF) algorithm from the
bin packing problem [309]; WF places an item (flow) in a feasible bin (path) with most
free space (bandwidth). When the network traffic load is light, finding such a path that
can accommodate the predicted flow rate is likely to be easy. However, as the network
traffic load grows and links become congested, WF does not guarantee that all flows
identified as elephants will be placed in a path. When no path among the many existing
ones between the pair of hosts can accommodate the predicted flow rate, WF+BTF
moves to the second step, the Badwidth-Time-Fit (BTF) algorithm. BTF searches for
the path with the maximum harmonic mean (see Equation 4.14) between the relative
scores of the available bandwidth in the path (bp) and the time the path would take to fit
the predicted rate (tp). BTF computes the relative scores bp and tp for each path by com-
paring the corresponding values of the path to the best values (i.e., the maximum free
bandwidth and the minimum time to fit, respectively) among the many possible paths
between the pair of hosts. Note that the time to fit the predicted flow rate is computed
using the predicted duration of the flows.

H = 2× bp × tp
bp + tp

, where bp = available bandwidth in path
maximum available bandwidth among paths

tp = minimum time to fit among paths
time to fit in path

(4.14)

4.2.4 Implementation

As depicted in Figure 4.15, we reused the Mininet VM deployed for PM2 (see Sec-
tion 4.1.3) for running our custom fat-tree topology to evaluate iRIDE. However, instead
of executing a simple ping test between the hosts as in PM2, we installed the traffic
generator Tcpreplay 4.3.4 [310] on the Mininet VM for the hosts to inject real traffic
into the network. Tcpreplay supports replaying network traffic captured in the format of
PCAP files. Moreover, we installed Ifstat 1.1 [311] on the Mininet VM for capturing the
activity of the switch interfaces in our fat-tree emulated network. Ifstat reports interface
statistics such as the incoming and outgoing bandwidth traffic. Note that all the hosts in
our fat-tree emulated network concurrently execute a Tcpreplay process for generating
traffic, which requires more resources (around a logical processor per process) than a
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simple ping test. Therefore, we redeployed our Mininet VM on to a more powerful server
at LRC than the one used for the proof of concept of PM2. The new server also runs
Debian 8.11 server but in a 2.00 GHz Intel Xeon Processor ES-2660 machine, with 28
physical cores, 56 logical cores, and 226 GB RAM. Then, we increased the resources
of the Mininet VM to 18 logical cores and 100 GB RAM.

Figure 4.15: Implementation of iRIDE

Similar to PM2, we installed Ryu 4.34 [66] on the new server for deploying the
OpenFlow controller that manages the OpenFlow switches. Furthermore, we installed
Tensorflow 2.3.0 [297] and Keras 1.1.2 [298] for training (incrementally) and inference
of DNNs. Using the Python libraries from Ryu, Tensorflow, and Keras, we developed
a network application that implements the five modules of iRIDE: Catcher, Predictor,
Rescheduler, Monitor, and Trainer. The Catcher uses the value 001111 in the 6-bit DSCP
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field of the IPv4 header for installing the catching rules that match and forward to the
controller the marked packets reporting the identified elephant flows. The Predictor im-
plements no cold start threshold (θCS = 0) for predicting the flow traffic characteristics.
The Rescheduler sets the timeout threshold θTO = 5 seconds for instructing OpenFlow
switches to remove idle rules installed for routing identified elephant flows. Moreover,
the Rescheduler inserts the OpenFlow flag OFPFF_SEND_FLOW_REM into the rout-
ing rules installed on the edge switches that report the elephant flows (i.e., forward the
marked packets). That way, when a rule times out, the OpenFlow switch removes it
and reports the flow rule statistics to the controller. The Monitor performs no frequent
requesting of flow characteristics from the network (TM = ∞). The Trainer sets the
labeling threshold θL = 100 kB for filtering out flows incorrectly marked as elephants. In
addition, the Trainer implements a mini-batch size nB = 1. Finally, we used the DNN
structures and regularization methods from Table 4.8 for implementing the incremental
regression models that the Trainer builds and the Predictor applies for inference. Our
Ryu network application that implements iRIDE is available in [282]. We executed our
iRIDE network application on the Ryu SDN framework.

Each host in our fat-tree emulated network runs a Tcpreplay process for replay-
ing the traffic from a PCAP file. Figure 4.16 describes the process we followed to
build a PCAP file for each host from public real packet traces. We used the Scapy
2.4.5 Python library to develop a PCAP parser that hashes the MAC and IP addresses,
adds payload, and generates marked packets. Note the two real packet traces [255],
UNI1 and UNI2, consist of different PCAP files. For security reasons, these PCAP
files come anonymized, which changes the source and destination MAC and IP ad-
dresses, remaps the transport layer ports, and truncates the payload of the captured
packets [312]. Our PCAP parser then hashes the source and destination MAC and IP
addresses for distributing the packets among the hosts in our fat-tree network. We
use the source IP for assigning each packet to the corresponding PCAP file (e.g.,
10.0.0.1.pcap). The PCAP parser also reads the packet length for padding the pay-
load of each packet with empty data. Lastly, recall that iRIDE relies on a flow detection
method, such as NELLY (see Chapter 3), that reports the elephant flows using marked
packets. Therefore, the PCAP parser reads the classification results from NELLY for
generating the marked packets that report those flows classified as elephants. The
PCAP parser inserts the value 001111 into the DSCP field of the marked packets, so
the catching rules will match and forward them to the controller. Moreover, the marked
packets include the size and IAT of the first 7 packets of the flow into their payload.

4.2.5 Evaluation

Due to resource limitations, we executed our evaluation using a fat-tree topology of size
k = 4, which deploys 16 hosts, 20 switches (8 at edge layer, 8 at aggregation layer, and
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Figure 4.16: PCAP parsing for the traffic generator in iRIDE

4 at core layer), and 48 links (see Table 4.1). Note that the number of logical cores in the
server is insufficient for running a fat-tree topology of size k = 8 with all the 128 hosts
concurrently executing a Tcpreplay process. Since the total bandwidth in our Mininet
VM (obtained using the iperf test) was restricted to a maximum of 20 Gbps, we limited
each link to a bandwidth of 100 Mbps, for a total of 4.8 Gbps. Moreover, we replayed
only the traffic from the UNI1 packet trace, for which the PCAP parser generated the
PCAP files with a total size of 12 GB. We were not able to generate the PCAP files
for the UNI2 packet trace due to disk space limitations in the server. The hosts in our
fat-tree emulated network replayed the traffic from UNI1 at top-speed.

For the evaluation, we measured the throughput over time in the links of the fat-
tree emulated network when using iRIDE, with both rescheduling algorithms LC and
WF+BTF, and when using PM2, which provides an ECMP implementation for Open-
Flow networks. Figure 4.17 depicts the throughput over time in the bisection links of
the fat-tree topology from the first run of the evaluation. The bisection links of a net-
work is represented by “the minimum number of links to be removed to disconnect the
network into two halves of equal size” [313]. It is noteworthy that we also measured the
throughput on links from other areas of the fat-tree topology, including the links from
the edge layer to the aggregation layer and from the aggregation layer to the core layer
(the links from the edge layer to the hosts are not of our interest as they do not provide
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multiple paths). However, we observed the same pattern as in the bisection links, so we
decided to present only the throughput in the bisection links for simplicity. The results
show that iRIDE is able to use more efficiently the bisection bandwidth than PM2. More-
over, iRIDE using the rescheduling algorithm WF+BTF is able to use more efficiently
the bisection bandwidth than using LC. Note that as better the bandwidth efficiency, the
faster to complete the traffic.
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Figure 4.17: Throughput over time in the bisection links of a fat-tree topology of size
k = 4 when using PM2 and iRIDE, with both LC and WF+BTF, for routing UNI1 traffic

Finally, Figure 4.18(a) presents the mean throughput in the bisection links of the fat-
tree topology, whereas Figure 4.18(b) depicts the traffic completion time. Both figures
display the average values and the corresponding standard deviation from ten runs for
each routing algorithm. Figure 4.18(a) shows that PM2 achieves a mean throughput of
33 Mbps in the bisection links of the fat-tree topology, whereas iRIDE increments that
throughput by 5 and 11 Mbps when using LC and WF+BTF, respectively. Conversely,
Figure 4.18(b) depicts that all the hosts in the fat-tree topology completed the communi-
cation in about 38 minutes when using PM2 only, whereas iRIDE reduced such a traffic
completion time by 5 and 9 minutes when using LC and WF+BTF, respectively. These
results confirm that iRIDE is able to generate more throughput and to complete the
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traffic faster than PM2, particularly, when using the rescheduling algorithm WF+BTF,
which uses the flow rates and flow durations predicted using the incremental DNNs.
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Figure 4.18: Mean throughput in the bisection links of a fat-tree topology of size k = 4
and traffic completion time when using PM2 and iRIDE, with both LC and WF+BTF, for
routing UNI1 traffic

4.3 Final remarks

A relevant problem affecting the overall performance of multipath routing in SDDCNs is
the coexistence of mice and elephant flows. Aiming at overcoming this problem, this
chapter introduced PM2, a multipath routing algorithm for steering flows (mainly mice)
in a fat-tree DCN topology. PM2 supports transparent host migration across the whole
network while reducing the number of rules installed on SDN switches, decreasing the
delay introduced to flows (mainly mice) traversing the network. An analytical compari-
son corroborated that PM2 installs much fewer rules than other OpenFlow-feasible mul-
tipath routing algorithms that support transparent host migration across a topology area
greater than the same edge switch. Futhermore, this chapter proposed iRIDE, a flow
rescheduling method that applies incremental learning at the controller-side of SDDCNs
for predicting traffic characteristics of flows identified as elephants to compute and in-
stall the best path per flow across the network. An extensive evaluation based on real
packet traces and various incremental learning algorithms demonstrated the low error
for predicting the flow rate and duration of iRIDE when using DNNs with regularization
and dropout layers. Furthermore, the evaluation results show the high throughput and
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short traffic completion time of iRIDE when implementing a rescheduling algorithm that
uses the two predicted traffic characteristics.



Chapter 5

Conclusions

This chapter starts summarizing the research work carried out in this thesis. Then, it
provides the answers for the fundamental questions that guided the verification of the
hypothesis defended in this thesis. The last section outlines directions for future work.

This thesis presented the investigation carried out to verify the hypothesis: using
ML for fine-granularity prediction of flow characteristics and SDN for dynamic
control of flow scheduling would allow building a multipath routing mechanism
for DCNs that improves1 the routing function. Based on the hypothesis, this work
proposed a multipath routing mechanism that leverages both SDN and ML to improve
the routing function in DCNs. Three major components form the proposed multipath
routing mechanism: NELLY, PM2, and iRIDE.

NELLY introduced a flow detection method that incorporates incremental learning
at the server-side of SDDCNs to accurately and timely identify elephant flows at low
traffic overhead while enabling continuous model adaptation under limited memory re-
sources. An extensive evaluation based on real packet traces and various incremental
learning algorithms demonstrated the high accuracy and speed of NELLY when used
with the ARF and AHOT algorithms. Moreover, an analytical comparison to seminal re-
lated works corroborated the scalability of NELLY as well as its generation of low traffic
overhead and the fact that no modifications in SDN standards are required.

PM2 provided a multipath routing algorithm that supports transparent host migration
across the whole network while reducing the number of rules installed on SDN switches,
decreasing the delay introduced to flows (mainly mice) traversing the SDDCN. A pro-
totype implementation serves as a proof of concept for demonstrating the feasibility
of PM2 in a fat-tree DCN topology. Moreover, an analytical comparison corroborated
that PM2 installs much fewer rules than other OpenFlow-feasible multipath routing al-
gorithms depending on either MAC or IP addresses and supporting transparent host
migration across a topology area greater than the same edge switch.

1In terms of high throughput and low delay while efficient use of resources
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iRIDE proposed a flow rescheduling method at the controller-side of SDDCNs that
improves network throughput and traffic completion time by using incremental learning
to predict the rate and duration of elephants for computing and installing the best path
across the network. An extensive evaluation based on real packet traces and various
incremental learning algorithms demonstrated the low error of iRIDE for predicting the
flow rate and flow duration when using DNNs with regularization and dropout layers.
Furthermore, the evaluation results show the high throughput and short traffic comple-
tion time of iRIDE when implementing the rescheduling algorithm WF+BTF, which uses
both predicted traffic characteristics, flow rate and flow duration.

5.1 Answers for the fundamental questions

Two fundamental questions guided the investigation about using ML for fine-granularity
prediction of flow characteristics and SDN for dynamic control of flow scheduling aiming
at building a multipath routing mechanism for DCNs that improves the routing function.
This section reviews and answers such questions.

Fundamental question I: What is the accuracy and efficiency, in terms of time
and memory, of ML techniques for predicting flow characteristics of network traffic from
DCNs?

In this work, NELLY focused on predicting the size of flows by classifying them as
mice or elephants. The evaluation results demonstrated that using incremental learn-
ing algorithms for performing such a classification achieves high elephant detection
with short classification time. In particular, NELLY achieved the best classification per-
formance, in terms of accuracy and time, by using the BinNom headers along with the
following adaptive decision trees algorithms. ARF provides the best classification accu-
racy for UNI1 and UNI2 traffic with a classification time less than 17 µs (i.e., less than
7.5% of the RTT in DCNs). AHOT is also good for UNI1 and UNI2 traffic, with a minor
classification accuracy than ARF but reducing the classification time to less than 10 µs.
Finally, the Hoeffding tree is only good for traffic similar to that of UNI1 but achieves a
classification accuracy similar to that of AHOT with a classification time less than 3 µs.

Similarly, iRIDE focused on predicting the rate and duration of flows by using re-
gression models. The evaluation results revealed that iRIDE achieved the lowest pre-
diction errors of flow rate and flow duration when using DNNs with L2 regularization
and dropout layers. In particular, the most accurate DNNs required deep structures
from five up to nine hidden layers and from 360 up to 600 units per each hidden layer.
Moreover, for predicting the flow rate, the DNN structures achieved the lowest errors by
using a combination of L2 regularization and dropout layers, whereas, for predicting the
duration, the most accurate DNN structures only required L2 regularization.

Finally, note that incremental learning reduces memory consumption by continu-
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ously updating the models from constantly generated data that is temporarily persisted.
This enabled both NELLY and iRIDE, which rely on incremental learning algorithms, to
adapt to the variations in traffic characteristics and perform endless learning with limited
memory resources.

Fundamental question II: Does incorporating ML techniques to an SDN-based
multipath routing mechanism improve network traffic routing, in terms of throughput
and delay, in DCNs?

Recall that NELLY incorporates incremental learning at the server-side of SDDCNs
for proactively identifying elephant flows at low traffic overhead. An analytical compar-
ison to seminal related works corroborated that NELLY reduces the switch table occu-
pancy, the traffic overhead, and the flow detection time. In particular, NELLY requires
no flow table entries on the SDN switches for collecting data since NELLY operates
at the server-side of SDDCNs, having local access to the data. Regarding the traffic
overhead, NELLY merely requires that edge (ToR) switches send control packets of
flows marked as elephants, greatly reducing the control traffic overhead (to 4.4 kbps
if assuming a control packet of 64 bytes). Lastly, NELLY detects elephant flows in a
very short time as it relies on the first N packets (0.8 seconds when using the first 7
packets).

On the other hand, iRIDE incorporated incremental learning at the controller-side of
SDDCNs to predict the rate and duration of flows. These predicted flow traffic charac-
teristics enabled constructing intelligent elephant rescheduling algorithms, such as LC
and WF+BTF. The results from a quantitative evaluation demonstrated that iRIDE effi-
ciently uses the available bandwidth, generating higher throughput and shorter traffic
completion time than conventional ECMP. In particular, when replaying the traffic from
the UNI1 packet trace in a fat-tree emulated network, iRIDE with WF+BTF incremented
the bisection throughput by 11 Mbps and reduced the traffic completion time by 9 min-
utes in comparison with PM2. Note that WF+BTF uses the flow rates and flow durations
predicted using the incremental DNNs.

5.2 Future work

During the development of this thesis, we observed interesting opportunities for further
research. These opportunities are outlined as follows.

• Implement NELLY as an in-kernel software component for evaluating its impact
cost to server resources, including processing and memory consumption. This
implementation would enable to evaluate NELLY in an emulated SDDCN by in-
stalling the software component into micro virtual machines connected to Open
vSwitch instances.
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• Although this paper has proven that incremental learning algorithms are efficient
to detect elephant flows in DCNs, there is still no consistent and accepted method
for defining the threshold value that discriminates between mice and elephants in
DCNs. In this thesis, we evaluated different thresholds but did not specify how
to select the appropriate threshold value for the traffic and routing requirements.
RL algorithms can be useful for selecting a threshold that maximizes DCN routing
performance (e.g., throughput and delay) for specific traffic conditions.

• A future analysis of network traffic using IPv6 or at other layers of IIoT systems
would help to analyze if such traffic characteristics can also benefit from incremen-
tal learning for either classifying flows (NELLY) or predicting flow features (iRIDE).
For example, fog layers are formed by micro data centers that analyze data that
require a rapid return (low latency). Moreover, it is expected that IIoT systems
introduce more diversity of network traffic (from elephant flows to mouse flows).
Therefore, there is a need to create publicly available datasets of network traffic
with different characteristics (e.g., IPv6, fog layers) to evaluate the performance
improvement of ML-based methods on such datasets.

• Extending iRIDE to achieve a full cognitive networking, such as the C-MAPE loop
that we proposed in collaboration with other researchers (see Section 2.2.3. Note
that the cognitive operation in iRIDE (i.e., predicting flow traffic characteristics)
belongs to the C-Analyze function. However, the statistics collection, the path
selection, and the rescheduling algorithm can be extended using an ML-based
approach, providing cognition in the Monitor, Plan, and Execute functions, respec-
tively. Different works [40, 314–316] in our research group have already explored
some of these cognitive approaches but independently.
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