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Abstract

The Internet of Things (IoT) opens opportunities to monitor, optimize, and au-
tomate processes into the Agricultural Value Chains (AVC). However, challenges
remain in terms of energy consumption. In this thesis, we assessed the impact of
environmental variables in AVC based on the most influential variables. We devel-
oped an adaptive sampling period method to save IoT device energy and to maintain
the ideal sensing quality based on these variables, particularly for temperature and
humidity monitoring. The evaluation on real scenarios (Coffee Value chain) shows
that the suggested adaptive algorithm can reduce the current consumption up to
11% compared with a traditional fixed-rate approach, while preserving the accuracy
of the data.

keywords: Internet of Things, Energy consumption, Agricultural value chain



Resumen

El Internet de las cosas (IoT) abre oportunidades para monitorear, optimizar y au-
tomatizar procesos en las cadenas de valor agrícolas (AVC). Sin embargo, persisten
desafíos en términos de consumo de energía. En esta tesis, evaluamos el impacto
de las variables ambientales en AVC en función de las variables más influyentes.
Desarrollamos un método de período de muestreo adaptativo para ahorrar energía
del dispositivo IoT y mantener la calidad de detección ideal en función de estas vari-
ables, particularmente para el monitoreo de temperatura y humedad. La evaluación
en escenarios reales (cadena de valor del café) muestra que el algoritmo adaptativo
sugerido puede reducir el consumo actual hasta en un 11% en comparación con un
enfoque tradicional de tasa fija, al tiempo que preserva la precisión de los datos.

keywords: Internet de las cosas, Consumo de energia, cadena de valor agricola
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Chapter 1

Introduction

1.1 Problem statement

In recent years, having an effective traceability system has become an essential ele-
ment in the global market, especially in the food sector companies [1]. Concerning
this sector, traceability helps food safety, planning alerts and emergencies due to
food issues, defending product quality, and others [2]. Traceability consists in gen-
erating concise and transparent information on each one of the production stages,
transformation, and distribution of a specific product, where the set of stages that
add value as the product goes through them is known as Value Chain (VC)[3].
Therefore, employing traceability, the VC of a product is reconstructed, “from farm
to fork”, to guarantee the product safety, the improvement of the processes, and
generate greater confidence in the consumer [4].

In general, traceability systems use different technologies to record information on
the VC of a product. In particular, there are systems based on technologies such
as infrared, barcode, Quick Response (QR) code, Radio Frequency Identification
(RFID), Near Field Communication (NFC), smart labels, or data loggers[1]. These
systems work by scanning; that is, to access the information collected, it is necessary
to have their respective application and reader [5]. In addition, they have been help-
ful in different aspects of traceability, such as inventories, product counting, among
others. However, they are not sufficient with the needs required in sectors such
as agriculture. Besides product management, it is necessary to guarantee specific
conditions of physical variables: for example, temperature, humidity, oxygen. That
indicates the conservation state of the product, or it is required to report an alert
when environmental parameters are not in the desired range [6, 7, 8].

With the emergence of new technologies, such as the Internet of Things (IoT), these
variables can be measured and controlled. The IoT is a technological paradigm that
consists of a global network between devices, which can communicate with other
objects [9]. Several kinds of research have shown that the IoT improves processes in
the VCs of products in the agricultural sector [10, 11, 12, 13, 14].At the same time,
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the IoT opens opportunities beyond optimization and automation of processes when
using the collected data. Based on this data, they can be used as inputs to intelligent
systems and provide predictions and recommendations [15], which facilitates plan-
ning or decision-making by owners, managers, and heads of agricultural companies.
Thus, to improve in a range of aspects, from minimizing the effort required in the
different phases of the VC, enhancing the quality of the product, providing more
information to the end-user, and even determining the status of the product and its
market demand.

However, despite the benefits that IoT brings, there are still challenges in terms of
energy consumption, transmission range, transmission and storage security, device
standardization, data storage capacity, and so on [16, 14, 17], which create difficulties
for the implementation in the VCs.

For example, the Colombian coffee value chains comprise different phases (pre-
production, harvest and post-harvest process, marketing, threshing, export). That
involves agents (suppliers, coffee growers, cooperatives, exporters). Who fulfill differ-
ent functions (fertilizers supplies, planting, harvest, classification, purchase, export),
and institutions (ministries of Finance, Agriculture and Commerce, National Feder-
ation of Coffee Growers, Cenicafé) dedicated to support and regulate the VC in its
different phases. It entails challenges since it is required to collect and integrate the
information generated in the stages of the VC.

In particular, the production and the post-harvest phase in the coffee sector is per-
formed on mountain ranges between 1,100 and 1,700 meters above sea level [18],
with great climatic variability [19], with an extension of 3.2 million hectares [20] and
an average duration of 5 months from the beginning of flowering [21], n which the
monitoring of variables is carried out under outdoor conditions. Like the drying and
storage processes that take place over several days or weeks, constant monitoring
of environmental conditions, especially humidity, is required; a decisive variable to
prevent deterioration of coffee by molds and insects [22]. Such as the export stage,
in which the maritime transport lasts between 4 to 28 days from the shipment to
the port of destination [23], where it is unknown if the environmental conditions are
necessary to ensure the quality of the product.

These phases bring along with their high levels of energy consumption in IoT devices,
given the outdoor conditions, remote and duration, limit the possibility of recharging
them or being connected to the grid or photovoltaic systems. That being the most
used techniques, [24] are not applicable or represent a high cost, especially for small
coffee growers who represent 95% of the coffee produced in Colombia [25]. Therefore,
managing energy consumption is a challenge to support the efficient operation of
IoT-based monitoring devices for some stages of the VC in the agricultural sector,
especially the VC in the coffee sector.

Some studies have designed wireless sensors [12, 13, 26] for agricultural VCs; despite
this, they do not present models related to the management of the energy consump-
tion of their sensors. Some studies [27, 28, 29], carry out multiple configurations
and evaluations of algorithms applied to IoT to achieve minimum energy cost and
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maximum range. However, these studies fall short of evidence in the context of the
VCs; in other words, they remain only in simulations and under ideal conditions.
Additionally, there are studies related to the reduction of energy consumption in the
context of precision agriculture [24, 30, 31, 32, 33] focused only on improving the
quality and production of crops, which corresponds to one of the first stages in the
production phase of the VC. Therefore, other phases are not considered where the
monitoring of environmental variables is also required. Some researches [10, 2, 34, 35]
in the field of traceability has presented proposals for IoT-based logistic informa-
tion systems for agricultural VCs, like previous efforts, they lack models or systems
concerning the relevant parameters for efficient energy management.

Motivated by the above problem statement, this proposal formulates the following
research question: How to manage energy consumption in IoT devices for
monitoring agricultural value chains?
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1.2 Objectives

1.2.1 General objective

To propose an energy consumption management system for IoT-based devices to
monitor variables in agricultural value chains.

1.2.2 Specific objectives

• To structure a conceptual energy management model for value chains in terms
of monitoring environmental variables.

• To develop a management system based on the conceptual model that allows
managing energy consumption in IoT monitoring devices.

• To evaluate the management system proposed under the conceptual model in
a case study.

14



1.3 Document Structure

This document has been divided into chapters described below.

• This introductory chapter presents the problem statement, raises the hy-
pothesis, exposes objective general and specifics, summarises the contribu-
tions,and describes the overall structure of this thesis.

• Chapter 2 presents the Background of the main research topics touched in
this thesis. These topics include Value chain, traceability, Internet of Things
and Energy efficiency.

• Chapter 3 presents the Related Work that describes the researches works
closer to this thesis. In addition, this chapter presents the challenges about
our proposal leading to a reformulation of research question and hypothesis.

• Chapter 4 describes the Conceptual energy Model, that describes agricul-
tural value chains in terms of monitoring environmental variables for focusing
the management system around these variables.

• Chapter 5 describes the Management Energy System, that describes the
steps conducted to developed system, discusses the corresponding results, and
presents implementations highlights.

• Chapter 7 presents Conclusions and Future work. In this chapter is pro-
vided the main conclusion of this thesis and exposes implications.
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Chapter 2

Background

2.1 Value Chain

It corresponds to a theoretical concept introduced by Porter (1985)[36] in his book
called "Competitive advantage: Creating and sustaining superior performance" where
he describes how the actions and activities of a company are developed. Therefore,
in value chains, different links are involved in an economic process: it begins with
the raw material and reaches the distribution of the product to the final consumer
[37]. Through value chain analysis, a systematic representation of the activities of
an organization is achieved, helping the improvement of the production process since
the operation of the company can be seen in detail at each step. Cost reduction and
the search for efficiency in the use of resources are usually the main objectives of
the entrepreneur while looking through the value chain; in this way, it is possible to
diagnose the company position concerning its competitors and obtain actions aimed
at developing competitive advantages in the market.

In general, a value chain consists of three elements:

• Primary activities: directly related to the product, production, logistics, mar-
keting and after-sales services.

• Support activities: they are complementary to the primary activities and are
composed of the human resource management, purchase of goods and services,
technological development and infrastructure.

• Margin: it is constituted as the difference between the total value and the total
costs incurred by a company while developing the activities that generate value.

The elements consisting of the value chains are related and interact by coordinating
the different activities to increase differentiation or reduce costs.From an agricul-
tural standpoint, a value chain is defined as the itinerary or process that an agricul-
tural, livestock, forestry, or fishing product follows through production, post-harvest
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stages, conservation, and transformation until it reaches the final consumer. This
chain also includes the supply of inputs (financing, safety, machinery, seeds, fertiliz-
ers, among others) and essential equipment, as well as all the support services that
significantly impact the development of these activities [38].

2.2 Traceability

There are different definitions of this concept according to the standards of other
countries or public and private entities. However, the definition adopted by In-
ternational Organization for Standardization (ISO) Standards (2001) is considered
for this proposal, given its importance in management systems and quality stan-
dards. According to the ISO, traceability is defined as those pre-established and
self-sufficient procedures that allow knowing the history, location, and development
of a product or group of products along with the VC at a given moment, through
specific tools [39]. In other words, traceability is the ability to follow a product along
the value chain, from its origin to its final state as a consumer item. To do this, it
is necessary to systematically associate a flow of information with a physical flow of
goods. Information on the batches or groups of determined products is obtained at
any time.

There are 3 types of traceability:

• Ascending traceability (backwards): it consists of knowing which products are
received in the company, delimited with some traceability information (batch,
expiration date / minimum durability), and who are the suppliers of those
products.

• Internal traceability or traceability of processes: it means traceability within
the company itself.

• Descending traceability (forward): to know which products are shipped by the
company, delimited with some traceability information (batch, expiration date
/ minimum durability) and to know its destinations and customers.

In the agricultural sector, traceability in food allows the complete monitoring of a
product on the VC. Thus, to trace its history from producer to consumer ”from farm
to fork”[40]. In these terms, it is a preventive quality and safety management instru-
ment. Traceability is a mechanism to prevent contamination and diseases that food
consumption can transmit. Additionally, the information can be helpful to carry out
good business administration and as feedback for future decision making, promoting
continuous improvement through the production cycle, added to the satisfaction of
the final consumer who can access the product information [41, 42].
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2.3 Internet of Things

According to CISCO [43], IoT consists of sensor networks connected to objects and
communication devices, which provide data that can be analyzed and used to initiate
automated actions. The attributes of the world of things are low power consump-
tion, automatic configuration, embedded objects. The data also generates vital
intelligence for planning, management, policies, and decision-making. Essentially,
the five properties that characterize the Internet of Things are the following:

• A unique identification on the Internet whereby each object and physical device
connected will identify and communicate with each other.

• A unique location (static or mobile) within a network or system that gives
meaning to the function and purpose of the object in its specific environment,
generating intelligence to allow autonomous actions to be carried out.

• More information generated and processed by the machine that will overtake
the information processed by man, and will potentially link with other systems
to create what some have called “the nervous system of the planet”.

• New complex security, analytics and management capabilities achievable through
more powerful processing devices and software, enabling a network of con-
nected devices and systems to cluster together and operate seamlessly with
each other in a "network of networks."

• Time and location reach new levels of importance in information processing
since objects connected to the Internet work to generate ambient intelligence.
For example: on the heating, ventilation, and air conditioning heating, venti-
lation, and air conditioning (HVAC) efficiency of a building, or to study soil
samples and climate change in relation to growing crops.

Concepts and technologies that have led to IoT, or the interconnectivity of real-
world objects have been around for some time. Initially,Machine-to-Machine (M2M)
and IoT communications were considered the same. However, M2M is only a sub-
set; IoT is a phenomenon that also includes Machine-to-Human (M2H) commu-
nication. Some technological innovations such as Radio Frequency Identification
(RFID), Location-Based Services (LBS), Lab-on-a-chip (LOC) sensors, Augmented
Reality (AR), robotics, and telematics in vehicles, use both communications (M2M
and ) in the IoT as it is conceived today. From the above, applications emerge in
the military and industrial supply chains that combine integrated sensory objects
with communication intelligence, interchanging data over a combination of wired
and wireless networks [43].
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2.4 Management Power Consumption

The Internet of Things (IoT) and wireless sensor networks have developed rapidly
over the years, and this has increased the demand for wireless implementations of
energy efficiency [44]. The energy consumption of IoT devices depends on the in-
tegrated elements generally consisting of microcontrollers, Radio Frecuency (RF)
modules, battery power, and sensors. Moreover, they can communicate wirelessly
through a link and send their data to a base station or coordinating node by speaking
with a gateway. Communication between IoT devices depends on the combination
of various sensors, from simple (i.e., humidity, pressure, and temperature) to com-
plex (i.e., location, tracking, micro-radar, and imaging). Although IoT devices are
increasingly complex, battery manufacturing has not developed at the same rate
[45]. Therefore,IoT-based devices are mainly limited by their batteries [46].

Consequently, prolonging battery life in IoT devices is a current challenge [47].
Nowadays, different techniques have been applied for energy management used in
agriculture. According to the review of systems proposed in these techniques [24]
they are classified into two categories, and in turn, they are classified into subcate-
gories:

• Power reduction techniques: due to the total power consumption of a sensor
node is the sum of each element in the node, (sensor, microcontroller, radio
module) and each component can operate in different power states, the useful
life of a device can be operated by managing the elements that comprise it
in such a way that the device operation is below the sustainable operating
threshold.

• Harvesting techniques: this consists of allowing the sensor nodes to obtain
different types of energy, such as solar energy, Wireless Power Transfer (WPT),
mechanical vibration, kinetics and wind energy from different environments.
In this way, the devices are rechargeable to operate continuously for a long
useful life.

These techniques show that it is possible to manage energy consumption by ad-
dressing different aspects of sensor networks. The use of wireless communication
protocols or technologies relating to the best energy consumption and communica-
tion distance such as Bluetooth Low Energy (BLE), Zigbee, and LoRa. As well as
energy efficiency schemes such as power reduction techniques through settings in
ON/OFF times such as Duty-cycling, MAC protocols or Topology Controls, modi-
fication in radio communication parameters such as modifying transmission power
or scheme modulation; as well as efficient routing schemes such as Sink mobility,
Multi-path or Cluster architecture Routing [48].
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Chapter 3

Related Works

This section establishes the main works that have addressed the issue related to this
proposal in the framework of energy consumption management in devices based on
IoT for traceability of agricultural products. The listed articles were selected from
searches in the Web of Science, Scopus and Science Direct digital libraries. From
the results obtained, they were organized manually in order to include only the most
relevant articles for this master’s degree proposal.

Table 3.1 shows the grouped words with the same meaning or synonyms used in the
search criteria. Through the combination of groups using logical operators (AND,
OR) supported in digital libraries, articles were obtained for further analysis. The
general structure of the search queries that were applied to the information sources
by integrating the words from at least 3 groups is listed below.

• (Internet of Things OR IoT OR IoT device) AND (Agriculture OR agricul-
tural technology OR agricultural industry OR agroindustry OR agribusiness
OR agriculture food OR agro-food OR agrofood OR agrifood OR agro food
production OR Farm OR farming OR smart farming) AND (Traceability OR
tracking OR product traceability OR food traceability).

• (Internet of Things OR IoT OR IoT device) AND (Agriculture OR agricul-
tural technology OR agricultural industry OR agroindustry OR agribusiness
OR agriculture food OR agro-food OR agrofood OR agrifood OR agro food
production OR Farm OR farming OR smart farming) AND (Energy efficiency
OR battery-less OR energy consumption OR power managment OR power
consumption).

• (Internet of Things OR IoT OR IoT device) AND (Traceability OR tracking
OR product traceability OR food traceability) AND (Energy efficiency OR
battery-less OR energy consumption OR power managment OR power con-
sumption).

• (Agriculture OR agricultural technology OR agricultural industry OR agroin-
dustry OR agribusiness OR agriculture food OR agro-food OR agrofood OR
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agrifood OR agro food production OR Farm OR farming OR smart farming)
AND (Traceability OR tracking OR product traceability OR food traceability)
AND (Energy efficiency OR battery-less OR energy consumption OR power
managment OR power consumption)

Group 1 Internet of Things, IoT, IoT device

Group 2 Agriculture, agricultural technology, agricultural industry,
agroindustry, agribusiness, agriculture food, agro-food,
agrofood, agrifood, agro food production
Farm, farming, smart farming

Group 3 Traceability, tracking, product traceability, food traceability

Group 4 Energy efficiency, battery-less, energy consumption, power managment,
power consumption

Table 3.1: Words used in digital libraries

Despite the fact that IoT has been applied to food, it is a recent field of research
[49, 47], several works have begun to generate knowledge on this subject.

3.1 IoT in food VC

In the document ”Value-centric design of the internet-of-things solution for food sup-
ply chain: Value creation, sensor portfolio and information fusion” [50], the authors
propose a value-centric business-technology joint design framework. Based on it, the
income-centric added-values including shelf life prediction, sales premium, precision
agriculture, and reduction of assurance cost are identified and assessed. Concluding
that the revolution of IoT technologies have brought out great potentials to make
today’s food supply chain safer, more effective and more sustainable. However, the
article does not contribute or solve some of the challenges that exist in IoT-based
technologies for value chains.

In the document ”Food safety pre-warning system based on data mining for a sustain-
able food supply chain”[51], the researchers proposed a food safety pre-warning sys-
tem, adopting association rule mining and Internet of Things technology, to timely
monitor all the detection data of the whole supply chain and automatically pre-
warning. The aim of pre-warning system is to help managers in food manufacturing
firm to find food safety risk in advance and to give some decision support informa-
tion to maintain the quality and safety of food products. However, there are no
weaknesses or aspects to improve in future work related to parameters in the IoT
system.

In the document ”An Internet of Things (IoT)-based risk monitoring system for
managing cold supply chain risks” [52] proposes an IoT- based risk monitoring sys-
tem (IoTRMS) for controlling product quality and occupational safety risks in cold
chains. Real-time product monitoring and risk assessment in personal occupational
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safety can be then effectively established throughout the entire cold chain. In the
design of IoTRMS, there are three major components for risk monitoring in cold
chains, namely: wireless sensor network; cloud database services and fuzzy logic
approach. However, the parameters used to manage the devices are not detailed in
order to guarantee the delivery of the information, the life cycle of the device or the
maximum reach.

3.2 IoT in agricultural food VC

In the paper ”A reference architecture for IoT-based logistic information systems
in agri-food supply chains”[35], the authors developed a reference architecture for
IoT based logistic information systems in agrifood supply chains. It presents a
hybrid solution that combines the IoT and cloud computing. However, a reference
architecture is presented without evaluations in a real environment and does not
consider the challenges in the context of agriculture.

In the document called ”Conceptual Data Model for IoT in a Chain-Integrated
Greenhouse Production: Case of the Tomato Production in Almeria (Spain)”[53],
the researchers developed the data model of the part of the food chain in the province
of Almeria (Spain), including all the data from farmer’s inputs until the transport
to the wholesalers and retailers; but taking into account of the whole chain where
the food chain is based on IoT technology, that lets them transfer the information
to the IoT platform in the cloud. However, in this article, parameters of the IoT in-
frastructure are not evaluated in order to extend the life cycle of the device without
affecting the operation in the proposed scenario.

In the paper ”Blockchain and IoT based Food Traceability for Smart Agriculture”[54],
the authors proposed a trusted, self-organized, open and ecological food traceability
system based on blockchain and Internet of Things (IoT) technologies, which in-
volves all parties of a smart agriculture ecosystem, even if they may not trust each
other. In addition, they use IoT devices to replace manual recording and verifica-
tion as many as possible, which can reduce the human intervention to the system
effectively. The authors show good results in the implementation of the system by
reducing human intervention through IoT devices, however, they do not highlight
the challenges that still persist in terms of the use of IoT in agriculture, just as they
do not contribute to any of them.

Studies presented show that traceability through the use of the IoT generates greater
efficiency in production processes, lower costs in the event of failures and better
customer service. In addition, they allow monitoring environmental conditions to
which the product was subjected, for this it is necessary that parameters such as
energy consumption and communication range are considered in the 3 models to
guarantee the sending of information, report alarms or change configurations, which
greatly increases the possibilities when managing a product. This is why the proposal
aims to contribute to the current needs of IoT devices for monitoring in the context
of agricultural VCs.
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3.3 Energy management in IoT and agricultural sec-
tor

In the paper called ”Energy efficient automated control of irrigation in agriculture by
using wireless sensor networks”[31] proposes a scheme based on the collaboration of
an integrated system for automated irrigation management with an advanced novel
routing protocol for Wireless Sensor Networks (WSN), named ECHERP (Equalized
Cluster Head Election Routing Protocol). At its core, the proposed system aims
at efficiently managing water supply in cultivated fields in an automated way. The
system takes into consideration the historical data and the change on the climate
values to calculate the quantity of water that is needed for irrigation. In case that
the change on the collected values is above a threshold, more frequent data collec-
tion is proposed to minimize the necessary quantity of water. Although techniques
are applied to reduce energy consumption, these are specifically aimed at efficient
irrigation management by finding the appropriate schemes for the rational use of
water.

In the paper ”Power Reduction with Sleep/Wake on Redundant Data (SWORD) in a
Wireless Sensor Network for Energy-Efficient Precision Agriculture”[24] the authors
aim to further minimize the energy consumption of a wireless agriculture system
(WAS), which includes air temperature, air humidity, and soil moisture. Two power
reduction schemes are proposed to decrease the power consumption of the sensor
and router nodes. The article presents good results due to the reductions in energy
consumption obtained above 80%, however, it is framed in the context of precision
agriculture where the proposed topology of the wireless nodes is evaluated in a
reduced area of 4000 m2 under the Zigbee wireless protocol without specifying the
characteristics of the crop or the topology of the test site.

In the paper ”SEES: a scalable and energy-efficient scheme for green IoT-based het-
erogeneous wireless nodes”[55], the researchers study the impact of energy-harvesting
techniques by implementing ambient energy-harvesting relay nodes in such a way
that enables a higher energy conservation and guarantees a long-lived network. SEES
includes: (1) a zone-based hybrid-placement scheme, (2) a Multi-Stage Weighted
Election heuristic (MSWE), and (3) a Minimum Cost Cross-layer Transmission
model (MCCT). The objective is to ensure an even-random deployment of hetero-
geneous nodes, a scalable pre-deterministic placement of energy-harvesting nodes, a
fair energy-load balancing among all the zones, and a minimum energy cost for data
transmission from the bottom layer to the topmost layer. However, the results are
experimental from simulations and the evaluation is based on a simplified model of
the environmental energy harvesting node, therefore, it has differences when com-
pared to tests with a real device.

In the paper ”A Real-Time Monitoring Service based on Industrial Internet of Things
to manage agrifood logistics.”[56], using a technology called See Your Box, the re-
searchers monitor changes in the cold chains and food through a logistics system
in real time. In addition, it presents the results of the evaluations carried out in
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different stages where there is a greater emphasis on the shipment stage. How-
ever, the document does not detail the management techniques in terms of device
consumption since it corresponds to a commercial device.

In this context, related works in IoT have proven to be of great help when it comes
to managing energy under different fields and scenarios, however, previous works
do not consider the management in terms of energy consumption in the context of
agricultural VC.

3.4 Final Remarks

Table 3.2 summarizes the aspects considered in the related works, it is organized
according to a horizontal classification in the context of IoT, agriculture, traceability
and energy consumption.

Author Title IoT Agro Traceability Energy
managment

[50]
Value-centric design of the internet-of-things solution
for food supply chain: Value creation,
sensor portfolio and information fusion

- -

[51] Food safety pre-warning system based on data mining
for a sustainable food supply chain - -

[57] An Internet of Things (IoT)-based risk monitoring
system for managing cold supply chain risks - -

[35] A reference architecture for IoT-based logistic
information systems in agri-food supply chains. -

[53]
Conceptual Data Model for IoT in a
Chain-Integrated Greenhouse Production: Case of
the Tomato Production in Almeria (Spain)

-

[54] Blockchain and IoT based Food Traceability
for Smart Agriculture -

[31] Energy efficient automated control of irrigation
in agriculture by using wireless sensor networks - Calculate

[48]
Power Reduction with Sleep/Wake on Redundant
Data (SWORD) in a Wireless Sensor Network for
Energy-Efficient Precision Agriculture

- Node

[55] SEES: a scalable and energy-efficient scheme for
green IoT-based heterogeneous wireless nodes - Position

[56] A Real-Time Monitoring Service based on Industrial
Internet of Things to manage agrifood logistics. Commercial

Table 3.2: Remarks on related works

There are studies in IoT dedicated to the implementation of traceability of agricul-
tural foods, however, they do not present information about management schemes
in devices related to energy consumption, as in sensor networks, different manage-
ment techniques have been evaluated in the context of precision agriculture, which
corresponds to a stage of the initial phases, however, it is not evaluated in other
stages of the agricultural VC. Finally, in the search for the state of the art, there
is only one work that involves the 4 aspects that frame this proposal (IoT, Agricul-
ture, Traceability, energy management) which only names energy management as an
existing feature in the system. Therefore, this proposal aims to provide the energy
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management of devices based on IoT under the context of monitoring environmental
variables in traceability systems in agricultural VCs.
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Chapter 4

Environmental Model

This chapter introduces a conceptual monitoring model for value chains in terms of
monitoring environmental variables, it is based on literature review.

4.1 Conceptual Model

A conceptual model is a representation of a system. It uses a group of concepts
that are used to help people know, understand, or simulate a subject the model
represents. Conceptual model is formed after a conceptualization or generalization
process[58]. Generally, Conceptual models are abstractions of things in the real
world, whether physical or social.

The objective is to answer the following questions

• What is being described? (The system.)

• Who interacts with the system? (The actors.)

• What can the actors do? (The use cases.)

A widely used standard for making conceptual models is the “Business Process Model
and Notation” BPMN standard (defined in [?]). That is mainly used to provide a
standard notation readily understandable concept description of a study domain.
BPMN diagrams to try and understand the various meanings of the terms asset
pool with many experts, adopting a common language to describe processes. It is
based on a flowcharting technique very similar to activity diagrams from Unified
Modeling Language (UML)[59].

Agricultural value chains have a large number of possible adaptation options. Fig 4.1
presents a basic general model made on BPMN for providing readers a description of
activities and set of stages that bring the agricultural product. From production in
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Figure 4.1: Agricultural value chain.

the field to final consumption, the value can be studied more deeply and considered
a tree with many branches in each stage.

It is an approach that analyzes a production unit or process in a market chain from
input suppliers to final buyers and the relationships among them, it identifies value
adding activities in the chain and assign cost and added value to each of those
activities.

4.2 Stages

Pre production

At this stage all inputs are prepared as seeds, agro-chemical, fertilizers and farm
equipment companies are used in the production of agricultural raw materials. Fur-
thermore, Triage operations carried out by farmers, the base actors of the value
chain are also necessary.

Production

This includes triage activities until harvest is reached when raw materials such
as agricultural and livestock products are ready for sale or continue to the post-
production stage.

Post production
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This includes food processing and manufacturing, such as beverages, breweries,
wineries, and packaged food companies. These post processors companies convert
raw materials into branded or unbranded food products. These products are then
marketed at the retail stage for distribution and sale to consumers.

Distribution

This stage the agri-food value chain serves the consumer. the related activities are
retail, distribution, sale and marketing of food products. In the last stage of the
agri-food value chain, it includes all related actors in food distribution, grocery sales,
and food service[60].

In addition, the remarkable point is that we are all part of value chains in one way or
another as producers, consumers of goods and services, processors, retailers, finance
providers. As consumers, we all eat and wear clothes, so we are linked to many
value chains, chains of grain crops, roots and tubers, fruits and vegetables, legumes,
oils, and textiles. These chains stretch from growers to our kitchens, eating tables,
clothing, and beyond.

4.2.1 BPMN Coffee Value Chain

Supracafe[61] is company who has modeled each stage of the coffee value chain; Fig-
ure 4.2 briefly shows from crop to export stages using Business Process Model and
Notation(BPMN); however, we focus only on two value chain stages highlighted in
red. For Crop, the inputs at this stage are coffee seeds. This stage is associated
with four roles of coffee growers at the beginning of the Crop: Germinator, Seedling,
Planting, and Growth. It can take between 8 months and two years. It is the stage
that takes the longest of the entire value chain. Then, the harvest stage begins,
accompanied by the transport phases. Coffee beans go through transformation pro-
cesses, from cherry coffee to parchment coffee and wet to dry coffee. The coffee is
classified and threshed in the storage stage, turning into green coffee; This process
can take between two weeks and six months. The next stages are land or ship trans-
portation, sale, and export until roasting, where the coffee already acquires all its
properties and is ready for consumption. The detailed BPMN-based coffee value
chain is available at the following repository:
https://github.com/iotagro2018/BPMN-coffee-model.
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Figure 4.2: BPMN coffee value chain.

4.3 Environmental Variables

This subsection identifies a compilation of articles that assess the impact of en-
vironmental variables at agricultural value chain. From the following study, the
conceptual model is structured in terms of monitoring environmental variables.

Various articles have worked on the study of environmental variables that affect agri-
cultural products at pre production stage of the value chain, such as [62] who expose
that agriculture production is directly tied to weather variables such as rainfall, tem-
perature, humidity and wind. As well as [63] implement an agriculture greenhouse
production environment measurement and control system, it offered a good growth
condition based on monitoring of temperature and humidity.

Following, at production stage articles [64] identifies changes due to temperature and
relative humidity in flavor, texture, shelf life, nutritional attributes, aroma, among
others. once the harvest of the product occurs for different fresh fruits and vegeta-
bles. Same as [65] suggests permanent monitoring of crops in order to minimize risks
in the face of dangerous levels of temperature and humidity.
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Ref Stage Conclusion Environment variables

[63] Pre production Research shows the greenhouse monitor system based on lOT technology
has certain precision of monitor and control.

Temperature,
Relative humidity

[64] Production
Shelf life needs to include a retail phase and this depends on knowledge
of temperatures and RH to which products are exposed. Improvements
in retail display equipment may improve quality maintenance at the point of sale.

Temperature,
Relative humidity

[66] Production,
Post Production

The methodology used shall enable the practitioners to understand
the importance of temperature, humidity, odor and ethylene sensitivity
for storage and transportation of perishables.

Temperature,
humidity

[65] Pre production,
production

Big data delivered by a plethora of data sources related to these domains,
has a multitude of payoffs including precision monitoring of fertilizer and
fungicide levels to optimize crop yields, risk mitigation that results from
monitoring when temperature and humidity levels reach dangerous
levels for crops, increasing livestock production while minimizing
the environmental footprint of livestock farming, ensuring high levels of
welfare and health for animals, and more.

Temprature,
humidity

[62] Pre production

Agriculture production and its associated value chains are at the center of
rural economies. In both developed and developing countries, agriculture
production is directly tied to weather variables such as Rainfal,
temperature, humidity and wind.

Rainfal, temperature,
humidity and wind

[67] Post prodution

To minimize respiration and avoid quality deterioration, perishable
productsneed to be stored and transported in a controlled
atmosphere environment. Among the many factors influencing the
respiration process and quality degradation of fresh produce,
temperature plays a dominant role

Temperature, humidity

[68] Transport Temperature is usually the prime parameter, but other parameters,
such as relative humidity and environmental gases, may also be useful

Temperature, Humidity,
enviromental gases

[69] Distribution

The quality of such products at the place of consumption can change.
This change depends on the level of temperature stressing the product,
i.e., on the climate conditions. The uncertainty of the climate conditions
can be responsible for uncertainty regarding the quality of the product
at the place of consumption

Temperature,
Humidity

[70] post production,
distribution

The study of the temperature variation of a given location not only
allows verification of the compliance of the storage conditions with
the imposed quality and safety standards, but also enables managers
to design proper storage assignment strategies for temperature-sensitive products.

Temperature

[71] post production,
distribution

A sustainable and efficient management of food products also involves
the definition of shelf life in planning warehouse operations and
avoiding food loss. The shelf-life modeling of fresh foods has been
largely investigated considering the effects of temperature or humidity
on some quality traits

Temperature,
humidity,
oxigen

[72] All Stages

The maintenance of a cold chain is a major constraint in tropical environment,
and the promotion of small scale milk processing plants could be considered as
one of the steps of the global strategy to improve milk quality at grass root level
and to stabilize the raw milk production beside the processed milk value chain.

Temperature

[73] All Stages
By identifying humidity as the primary enemy of quality for dried products,
the importance both of initial drying and of maintaining dryness through the
value chain is emphasized.

Humidity

Table 4.1: Related documents environmental variables in the agricultural value chain
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In the production stage, specifically after the harvest, the environmental variables
change, the wind, the radiation, and the rain disappear and the value chain focuses
on to prevent product spoilage, from this point on variables such as Concentration
of oxygen, light levels and gases [68, 71] are relevant because they generate the
decomposition of products or materials, however variables such as temperature and
humidity continue to be important.

Also several works focus on the cold chains in the transport phases which is trans-
versely to the products in the agricultural value chains whose presents the main
fruits and vegetables susceptible to chill injury variables [68].

In general, throughout the value chain it is important to emphasize that the main
enemies are temperature and humidity, so it is very important that it be kept at lim-
ited levels. Evidenced in the article [73, 71]. Fig 4.3 summarizes the environmental
variables that affect the stages of the value chain based on the review of previous
articles.

Figure 4.3: Environmental variables agricultural value chain.
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Chapter 5

Management system

This section describes the device selected and the power consumption model and
introduces the primary stages through an overview of the adaptive sampling period
method.

5.1 Monitoring Device

Figure 5.1 shows the CSCG Tag [74]. It is an IoT solution with an internal proces-
sor 32MHz MCU w/ 512KB internal flash and audio support, which combines the
features and functions needed for all 2.4 GHz IoT standards into a single System
on Chip (SoC). And, it has a holder to install a coin-type battery, a programming
port, and radio communication hardware; also, it has ambient light, temperature,
humidity, and shock/tilt sensors. The light sensor measures the intensity of visi-
ble light. Simultaneously, humidity and temperature sensors provide high accuracy
measurements with very low current consumption in an ultra-compact Wafer Level
Chip Scale Package (WLCSP).
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Figure 5.1: IoT monitoring Intel tag.

Figure 5.2 shows internal components, The sensor HDC2010 is placed on the bot-
tom part of the device, which makes the HDC2010 more robust against dirt, dust,
and other environmental contaminants. The capacitive-based sensor includes new
integrated digital features and a heating element to dissipate condensation and
moisture[75].

Temperature and humidity sensor (HDC2010):

• Relative humidity range: 0% to 100%

• Humidity accuracy: ± 2%

• Range operating temperature: –40◦C to 85◦C

• Functional temperature: –40◦C to 125◦C

• Temperature accuracy (Typ) (◦C) ± 0.2

Light sensor (OPT3001):

• Precision Optical Filtering to Match Human Eye: Rejects > 99% (typ) of IR,

• Automatic Full-Scale Setting Feature Simplifies Software and Ensures Proper
Configuration

• Measurements: 0.01 lux to 83 k lux

33



Figure 5.2: Monitoring Intel tag components.

5.1.1 Architecture

Figure 5.3 shows the device belongs to the perception layer located on the farm, the
devices send the monitored variables and have communication with the higher layer
(Edge Layer) which processes the data and has the ability to manage the devices if
required. For this study, The CSCG label was programmed under the C language,
the communication configured with the IEEE 802.15.4 [76] protocol, conceives a
communication range of 10 meters with a transfer speed of 250 kbit/s. As well, the
devices at the edge layer receive data from the perception layer, process them and
send it to the servers for further analysis.
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Figure 5.3: Architecture in the case study value chain.

5.1.2 Current Consumption Analysis

The CSCG tag stays most of the time in low power mode because the minimum
sampling periods for environmental variables are in the order of seconds. However,
some functions are activated periodically to maintain the state machine and per-
form sensor reading tasks, data transmission, and commands reception by wireless
protocol.

For current consumption analysis, we use the Otii Arc DC Power Analyzer Data
Logger device [77] set constant voltage source. Figure 5.4 shows the device’s current
consumption configured for data transmission every minute. The device wakes up
every 30 seconds to update the state machine. Also, it shows the power-up interval
where peripherals, radio communication, state machine, and configured sensors, this
takes about 4 seconds.
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Figure 5.4: Current consumption on Intel tag.

Figure 5.6 focuses on current consumption when the device is awake; there are five
stages, state machine update, sensor readout, transmission, time for reception of
configuration commands, and time when the device prepares to go to sleep.

State Machine Reception Go to sleep
Read Sensors

Transmission

Figure 5.5: Current consumption during awake time.

From the previous information, Table 5.1 and the general equation of average current
consumption on a IoT device, we established an equation in function of sampling
interval.
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Stage Average Current (mA) Duration (ms)
State machine 21 7
Reading of sensors 17 5
Transmission 22 12
Reception 24 20
Go to sleep mode 17 2

Table 5.1: Average current consumption per stage

Equation 5.1 shows the average total current consumed by an IoT device defined as
the sum of the current consumption multiplied by its duration divided by the total
time equation.

Iavg =
Iawake ∗ Tawake + Isleep ∗ Tsleep

Ttotal
(5.1)

Where:

• Iavg : average current consumption (uA)

• Iawake : current consumption when device is awake (uA)

• Tawake : awake time (ms)

• Isleep : current consumption when the device is on sleep mode(uA)

• Tsleep : sleep time (ms)

• Ttotal : total time (ms)

Following the power consumption during active periods is:

Iawake∗Tawake = λ∗Ism∗Tsm∗ST+Isn∗Tsn∗ST+Itx∗Ttx+Irx∗Trx+Isl∗Tsl∗ST (5.2)

Where:

• ST : times per period of time

• λ : number of times the status machine is updated per minute

• Ism : current consumption when device is updating the state machine (uA)

• Tsm : state machine time (ms)

• Isn : current consumption when device is reading sensors (uA)

• Tsn : reading sensors time (ms)

• Itx : current consumption when device is transmitting data (uA)

• Ttx : transmission time (ms)
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• Irx : current consumption when device is on reception mode (uA)

• Ttx : reception time (ms)

• Isl : current consumption when device is going to sleep mode (uA)

• Tsl : to go sleep mode time (ms)

The equation 5.2 shows ST is a variable without units that describes the number of
times that each stage is executed over the total time, this means that in a period of
time of 8 minutes, the reading of the sensors is performed 8 times, during this time
the data is stored. When the time is up, the data from the sensors are averaged and
transmitted and the reception of acknowledge and configuration commands from the
central node is expected. therefore the transmission and reception only takes place
once in the period of time.

Following we define: Tsleep

Tsleep = (Ttotal − Tawake) (5.3)

Where Ttotal: corresponds to total time in ms defined as:

Ttotal = 60 ∗ 1000 ∗ ST (5.4)

Replacing Tawake

Tawake = λ ∗ Tsm ∗ ST + Tsn ∗ ST + Ttx + Trx + Isl ∗ Tsl (5.5)

Finally, the equation of current consumption is:

Iavg =
λ ∗ Ism ∗ Tsm ∗ ST + Isn ∗ Tsn ∗ ST + Itx ∗ Ttx + Irx ∗ Trx + Isl ∗ Tsl

60 ∗ 1000 ∗ ST

+
(Isleep ∗ ((60000− λ ∗ Tsm) ∗ ST − (Ttx + Trx)))

60 ∗ 1000 ∗ ST

(5.6)

Equation 5.6 allows determining the average current consumption related to the
sampling interval and the monitoring device’s performance. Figure ?? shows the
results for an sampling interval between 1 to 30 minutes for λ = 2.
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Figure 5.6: Current consumption vs sampling interval.

5.1.3 Battery life

The equation 5.7 below gives an estimate value of the life cycle.

EstimatedHours =
Capacity(mAh)

CurrentConsumption(mA)
∗ 0.7(UsableEnergy) (5.7)

The table 5.2 shows information about different commercial battery’s capacity for
estimating life time of the monitoring device.

Battery Capacity (mAh)
CR2434 320
CR2450 620
2 Batteries AAA 1200

Table 5.2: Battery’s Capacity

Figure 5.7 shows the estimated days that the device lasts for different sampling
intervals with different commercial batteries.
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Figure 5.7: Estimated life of the device.

After developing our energy consumption model for the selected device, the following
section introduces our energy consumption optimization management through an
overview of the method and a brief description of the algorithm used.

5.2 System Overview

Figure 5.8 shows an overview of the method for managing optimize energy con-
sumption in IoT monitoring systems based on adaptive sampling period. Overall,
the proposed method includes three stages.

II. Variable Analysis

III. Get the best values

Monitoring
 variables

Management of
Energy

Consumption
System

I. Capture Variable
To acquire the
monitoring variables
setting device in low
sampling period

Identify the behavior
of the variables
through the analysis of
variance

To find the best
values for the

unknowns constants
in the equation

Figure 5.8: Method for management of energy consumption.
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• Stage I : the environment variables are the input of this stage; this stage shows
the behavior of the variable in the environment where it is installed; the goal is
to acquire the follow-up variables with the minimum sampling period allowed.
With this, it is possible to identify if a variable presents an excessive sampling
because its change is not so fast or required to use a lower sampling period.
The output of this stage is the monitoring variables data set.

• Stage II : the variable analysis receives the captured data and is responsible
for analyzing the variables’ behavior over time-based mainly on the variance
of the data, determining the most appropriate variable to manage energy con-
sumption. The output of this stage is the monitoring variable selected.

• Stage III : starts from a lineal equation as a function of the variance and two
unknown constants (α, β); At this point, an iterative process is proposed that
begins by defining a combination of values in a defined range, from which a pair
of them is taken to test them on the dataset and obtain the evaluation metrics,
the iterative process ends when all combinations of values on the dataset were
tested. Finally, the pair of values that generate the minimum value of the sum
of the evaluated metrics is selected. Figure 5.9 summarizes the flow of the
algorithm.

Figure 5.9: Flow chart to find the best values of the constants.

In this study, the evaluation metrics are the current consumption equation
found in the subsection 5.1.2 and the mean square error (MSE) defined as:

MSE =
1

n

n∑

t=1

e2t (5.8)

Where:

e2t = (Xi − X̂i)
2

Xi → V ector of observed values of the variable being predicted

X̂i → V ector of predicted values
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With the values of the constants of the equation, a monitoring device is pro-
grammed which manages the data transmission periods; therefore, the vari-
ables and their performance are evaluated concerning fixed sampling tech-
niques.

5.2.1 Variables Analysis

The study case was in the crop and storage stages of the coffee value chain; with
IoT monitoring devices installed in the coffee farm "Los Naranjos" we validated
the model. This farm belongs to Supracafé, located in La Venta district, in the
municipality of Cajibio, Cauca (21-35’08"N, 76-32’53"W).

For the crop stage, the monitoring devices were configured to the lowest sampling
period (1 minute) and located at different heights in the tree. The Figure 5.10. We
carried out the monitoring during March, April, June, July, August, and September
2020.

Figure 5.10: Installation devices on crop stage.

Figure 5.11 presents the variations in temperature and Relative Humidity (RH) in
the selected days. The analysis considered days that presented different climatic
conditions like rainy, sunny, and cloudy. The graph presents changes in temperature
with minimum values of 9.42 ◦C and a maximum value of 35.62 ◦C. In turn, there
are variations in humidity with minimum values of 21.7% RH and a maximum value
of 100% RH.
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Figure 5.11: Temperature and Humidity at Coffee Farm

5.2.2 Temperature Analysis

Figure 5.12 presents the data captured (red line) and a simulation of the values when
changing the sampling period to different fixed values; these values are obtained from
an average of data real captured. The error presents the data sampled every minute.
Similarly, an attenuation is observed in the variable’s peak values concerning the
original sampling period.
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Figure 5.12: Temperature for different sampling times.

Figure 5.13 presents the calculation of the variance for the fixed sampling periods
with respect to the data sampled every minute. From the previous graph it is
observed that the greatest variation in the values is between 9 and 14 hours, likewise
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there are some minor peaks between 6 to 9 hours and 14 to 17 hours of the day,
although the previous result corresponds to march 6, this behavior is similar for
different days under different climatic conditions.

Variance for sampling every

Variance for sampling every
Variance for sampling every

Figure 5.13: Temperature’s variance for different sampling times.

Figure 5.14 shows the calculation of the absolute value of error, It is the difference
between the value of the average and the value taken every minute. It can only be
positive, which measures the vertical extension of the data around the mean values
in 5, 15 and 30 minutes.
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Figure 5.14: Absolute value of error for different sampling times.
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5.2.3 Humidity Analysis

Figure 5.15 presents the data captured (red line), and a simulation of the humidity
from the values sampled every minute when changing the sampling period to different
fixed values and the error it presents concerning the data sampled every minute.
Also, Figure 5.15 shows that the selected sampling period’s error is more significant
for those presented in the temperature graph and saturation in the percentage of
humidity at night hours.
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Figure 5.15: Humidity for different sampling times.

Figure 5.16 presents the calculation of the variance for the fixed sampling periods
with respect to the data sampled every minute. From the previous graph, strong
variations are observed between 8 and 20 hours with a maximum peak of 46 at 9.30
in the morning. However, the variations are much higher than those managed in
temperature, which makes it more relevant for the management system approach.
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Figure 5.16: Humidity’s variance for different sampling times.

Figure 5.17 shows the calculation of the absolute value of error, the error levels for
humidity reach a maximal value of 12% RH for a period of 30 minutes compared to
6 degrees Celsius which is the highest value in temperature.
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Figure 5.17: Absolute value of error for different sampling times.

The previous data corresponds to one day; therefore, we made the same analysis for
the group of selected days.

Figure 5.18 shows the variance distribution to selected days, revealing a recurring
variation between 7:00 and 11:30 hours with a peak of variation at 8:30, as well as a
second minor peak between 13:30 and 17:00 hours. Therefore, based on the previous
information, implementing an energy management system is proposed, maintaining
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the characteristics of carrying out sampling at a sampling period of one minute and
minimizing energy consumption, which manages an inverse relationship concerning
variance the absolute value of error.
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Figure 5.18: Variance behavior for all data set.

5.2.4 Best values analysis for unknown constants

Given the selected variable’s variance, this section found the best values for managing
the device’s energy consumption from a base equation. Equation 5.9 is proposed as
a base point for our adaptive algorithm as a function of the variance and with two
constants to find

Fs = α ∗ V ar(t) + β (5.9)

Where:

Fs→ sampling frequency

V ar(t)→ V ariance function

α, β → unknowns constants

Subject to the constraints:

5.555× 10−3 <= Fs <= 16.66× 10−3 → sampling frequency range

Equation (5.9) is the base equation where the unknown variables are α and β subject
to a frequency range equivalent to a sampling period between 1 min and 30 minutes.
The period range is established based on the consultation of interested experts to

47



relate changes in humidity and temperature with studies related to production es-
timation, disease control, storage, transportation, which require a precise estimate
of the daily average maximum and minimum values of the variables selected in this
study [78, 79, 80].

Therefore, based on the result of the equation, the Period Sampling (Ps) is estab-
lished by the equation:

Ps = round

(
1

60 ∗ Fs

)
(5.10)

The equation (5.10) returns a value based on converting from frequency to time and
rounding it to the nearest whole. This value is applied to the next sampling window
(next 30 minutes), where the error is calculated as the energy consumption.

We selected two vectors and a day with high variance to define the α and β values.
Alpha ranges from 0 to 0.1 with increments of 1× 10−3, and for Beta, a range from 0
to 10× 10−3 with an increment of 0.1× 10−3. It generates a two-dimensional matrix
for each pair of a and b values; thus, we have the error and energy consumption
graph.

Figure 5.19 shows the mean square error (MSE) for different alpha and beta values.
The highest error rates occur to values close to or equal to zero in alpha, related to
handling fixed sampling time. Through the variation of β, it is possible to reduce
the error since it forces to have lower sampling periods to the point that for values
greater than 5× 10−3, the sampling is 1 minute corresponding to the minimum
sampling period and consequently an error of zero.
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Figure 5.19: Normalized MSE for different α and β.
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Figure 5.20 shows the current consumption for different values of alpha and beta
where a direct relationship is observed for the parameters alpha, beta, and energy
consumption; if fixed sampling intervals are selected (α = 0), the lower current
consumption values are obtained.
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Figure 5.20: Normalized current consumption for different α and β.

For simplification purposes, we selected β = 0 based on the previous graph due
it represents the lowest current consumption curve. The equation is simplified to
find a suitable alpha value because both the error and the current consumption are
acceptable minimums. From the elimination of β, the normalized curves of error
and current consumption are in Figure 5.21.

Figure 5.21 shows the error(blue line), the current consumption (red line), and the
sum of error and current consumption (green line) in the function of α. Error and
energy consumption are normalized because the contribution is proportional to the
sum function. Due to high error values, the sum function shows a maximum alpha
close to zero; and a stable value due to the current function. Likewise, we determined
the value to reach the minimum value, which corresponds to the lowest consumption
under a low error and low current consumption (black vertical line).
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Figure 5.21: Analysis of α for one day.

We carried out the previous analysis for all the selected days. Figure 5.22 shows the
MSE and current consumption; they had similar behavior, especially for the MSE;
the current and MSE of Figure 5.22 are normalized, which generates the general
function as shown in Figure 5.23, where the best α is selected for each day(black
lines). As a result, a distribution of points shows a value of alpha between 2× 10−3

and 12× 10−3. We took the mean value represented in the red line for the general
equation.
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Figure 5.22: Analysis of α vs Mean squared error and current.
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Therefore, the equation is:

Fs = 4.6× 10−3 ∗ V ar(t) (5.11)

Ps = round

(
1

60 ∗ (4.6× 10−3 ∗ V ar(t))

)
(5.12)

Finally, we have the next equation:

Ps = round

(
3.623

V ar(t)

)
(5.13)

The equation 5.13 defines the transmission period of the averaged variables; it takes
as a starting point the variance calculated in a 30-minute window and determines
the sending period. Ps can be between transmission every minute or a single one in
30 minutes. Since the variance calculation does not involve complex operations, as
well as the equation found, can be programmed in the firmware of the IoT devices,
the equation does not represent a significant additional time.
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Chapter 6

Evaluation

This chapter evaluates the management system proposed in a case study.

For evaluating the equation, we installed two devices, one with the lowest sampling
period (1 min) and the other with the equation’s execution as a function of the
humidity variance. Figures 6.1 and 6.2 show the results and demonstrate that our
adaptive sampling method is working correctly (These measurements correspond to
one day only apart from the whole data-set).

Sampled every minute

Figure 6.1: Temperature curve.
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Figure 6.2: Humidity curve.

As shown in Figure 6.3, the IoT device sampling time is 30 minutes at the starting
point. The variance equation says humidity is changing, and the measure is updated
12 minutes after the first measurement window.

Figure 6.3 shows the sampling intervals during measurements. If the calculated
variance increases, the sampling interval becomes smaller. In other words, if there is
a significant change in humidity, the IoT monitoring device measures the variables
more often. This result proves that our code works fine, and our method can control
the sampling period according to the variable behavior.

We select a 30 minutes window because sensors have certain noises, and the humid-
ity measurements, especially humidity measurements, are not negligible. Since our
adaptive sampling method can be susceptible to the input values, noises can result
in wrong sampling period adjustment, resulting in a loss of energy.
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Figure 6.3: Analysis of adaptable time.

6.1 Performance Evaluation

For the evaluation of the performance of environmental parameters, we used statis-
tical metrics.

• mean square error (MSE): define previously in 5.8 and parameter base in this
study. It can take any positive value with zero indicating a perfect lack of
error

• Mean absolute relative error (MARE): is defined as the ratio of the absolute er-
ror of the measurement to the actual measurement. The relative error indicates
how good measurement is relative to the size of the object being measured. If
x is the actual value of a quantity, x0 is the quantity’s measured value, and δx
is the absolute error. The relative error is measured (δx)/x

• Mean Bias Error (MBE): this measures the extent to which the estimated value
deviates from the observed value. It can take any value, with negative values
indicating systematic under-estimation and positive values, over-estimation,
and zero indicating a perfect lack of bias.

• Pearson’s correlation coefficient (R) represents a linear dependence between
two variables is widely used and easily interpreted, taking a value between −1
→ 1 with one indicating a perfect positive linear correlation [81].

• Nash-Sutcliffe efficiency coefficient (NSE): is a normalized indicator of model
efficiency corresponding to the estimate’s statistical agreement or skill relative
to the experimental measurements. It takes a value ranging from −∞ → 1.0,
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with one being a perfect fit and negative values meaning that the station offers
a better estimate.

Table 6.1 presents the results for the different metrics evaluated for energy system
management. The temperature sensor presents better results than the humidity
sensor because the first one has better accuracy (± 0.2 ◦C) than (± 2 % RH)
humidity variable register. It was mainly reflected in the MSE, which yielded results
close to the sensor’s accuracy, although a uniform environment for both devices.

Regarding MARE, the evaluation presents good results because, for this parameter,
it considers the size or magnitude of the measured variable; therefore, given that
the humidity values are more significant than the temperature, the result yielded
a smaller value. Concerning MBE related to a measurement error that remains
constant in magnitude for all observations, it shows that temperature and humidity
present values close to zero, indicating a pleasing lack of bias. For R, both variables
have values close to 1; it indicates that a linear equation perfectly describes the
relationship between the variables sampled every minute and adaptive sampling.
Subsequently, the NSE represents that the sampling with the adaptive function has
a model with good predictive skill.

Above all, the current consumption with adaptative sampling was equivalent to a
fixed sampling of 8 minutes, which, based on Figure 5.6 shows almost the flat part
of the curve of the estimated life of the device, this means the % decrease is very
close to the maximal % decrease allowed.

Statistic Adaptative Time Range Ideal Value

MSE Temperature 0.369 ◦C2 0→∞◦C2 0.0 ◦C2

MSE Humidity 1.28 %RH2 0→∞%RH2 0.0 %RH2

MARE Temperature 0.028 0→∞ 0.0

MARE humidity 0.011 0→∞ 0.0

MBE Temperature 0.345 −∞→∞ 0.0

MBE humidity 0.0015 −∞→∞ 0.0

R Temperature 0.979 −1.0→ 1.0 1.0

R Humidity 0.977 −1.0→ 1.0 1.0

NSE temperature 0.917 −∞→ 1.0 1.0

NSE humidity 0.954 −∞→ 1.0 1.0

Power Consumption 34.92uA 34.47uA→ 39.27uA 34.47 uA

% Power Consumption Decrease 11.04% 0%→ 12.2% 12.2%

Table 6.1: Statistics used for evaluation energy system management.

Figure 6.4 illustrates the results obtained under different climatic conditions. A
more significant variation in temperature and humidity is on sunny days; the de-
vices adjust to a sampling period of one minute longer than rainy days. The above
allows us to evaluate the behavior of the α parameter and the proposed management
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system from a lower level of variation in temperature and humidity and more ex-
tended sampling periods. We conducted this experiment on conditions presented on
different outdoor days where climate variability is more significant than warehouses
or transport vehicles.
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Finally, table 6.2 presents the different metrics evaluated for days under different
climatic conditions. The results are the approach of the worse scenario, where the
system is implemented. The metrics do not present a significant difference con-
cerning the analysis of the selected day that presented great variation. The energy
savings compared to the analysis of one day decreased by 0.16%.

Statics Adaptative Time Range Ideal Value

MSE Temperature 0.476 ◦C2 0→∞◦C2 0.0 ◦C2

MSE Humidity 2.33 %RH2 0→∞%RH2 0.0 %RH2

MARE Temperature 0.030 0→∞ 0.0

MARE humidity 0.015 0→∞ 0.0

MBE Temperature 0.302 −∞→∞ 0.0

MBE humidity -0.25 −∞→∞ 0.0

R Temperature 0.983 −1.0→ 1.0 1.0

R Humidity 0.981 −1.0→ 1.0 1.0

NSE temperature 0.9498 −∞→ 1.0 1.0

NSE humidity 0.959 −∞→ 1.0 1.0

Power Consumption 34.99 uA 34.47uA→ 39.27uA 34.47 uA

% Power Consumption Decrease 10.88% 0%→ 12.2% 12.2%

Table 6.2: Resume Statics for days with different conditions.

6.2 Discussion

In this section, we discuss the performance of energy consumption management
compared to other results obtained in other proposed models. In summary, the
evaluation of adaptive solutions is mainly compared with fixed sampling schemes,
where consumption savings and data quality are primarily taken into account. In
[82] selects a suitable sampling frequency during the acquisition process according to
the signal frequency’s spectral content. This paper got energy savings between 44%
and 72% and MSE values between 1.3E-04 and 1.5E-02 for three evaluated signals.
As well as in [83] performs a frequency analysis through a fast Fourier transform
mainly. They found that the algorithm can reduce the number of acquired samples
up to 79% concerning the fixed sampling frequency. At the same time, generally,
the () shows a preserving the accuracy of the data. In [84] shows a model based on
the sensing-driven cluster, correlation-based sampler selection and model derivation
and adaptive data collection, and model-based prediction called ASAP. This was
compared introducing two variants of ASAP: local approach and central approach
under a set of experiments study the performance concerning messaging cost, energy
consumption perspective, and the quality of the collected data. In [85] different
aspects were evaluated, which it is highlighted their methods conserved the energy
by 29%, 47%, and 25%, respectively. The last paper has a close proposal since one
of the proposed algorithms considers the variance, however, the proposed similarity
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algorithm is different from the strategy proposed in our article.

Our proposal evaluated different metrics by capturing real data, evidencing good
results in terms of data quality such as MSE, , and Pearson correlation. However,
it’s important highlight the effect of variables such as the devices’ accuracy and
sensitivity used. Regarding energy-saving terms, on average, it was a 10.88% sig-
nificantly low value compared to other related works; however, it corresponds to a
value of 89% within the possible range of possible reduction for the IoT device.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

We proposed the adaptive sampling period method to keep the IoT device power
consumption to a minimum and maintain the outstanding sensing quality based
on the MSE of variables, especially for humidity monitoring. We found a specific
variance pattern in the everyday humidity and temperature measurements in which
humidity is more significant than temperature. It let us reduce transmission, which
is a big part of energy consumption on IoT devices. We decided that an adaptive
sampling method is appropriate to achieve our goal and develop the technique to
adapt the sampling interval of devices based on the variables’ variance, which is a
dispersion measure between values in environmental variables.

We simulated the method with Python taking into account a minute-by-minute mea-
sured dataset. The outcome proves that an adaptive sampling method decreases
transmissions significantly while providing quite acceptable quality measurements.
Finally, we tested our method with real sensors used in the IoT-Agro project, demon-
strating the effectiveness and flexibility.

In a real scenario, we evaluated the proposed management systems indoors and
outdoors; we located two devices, one with sampling every minute and the other
with the adaptive system. For temperature evaluation, the mean square error (MSE)
was 0.369 ◦C2, a value close to 0.2 ◦C the accuracy of the sensor; in Pearson’s
correlation, the results were above 0.97, in mean absolute relative error (MARE )
presented values lower than 0.028.

For humidity, we got an error more significant than expected. Despite generating
conditions similar to the two devices, the sensor’s accuracy means that two sensors
do not deliver the same value under the same conditions. Therefore, the mean square
error (MSE) was 1.39% RH, a value lower than 2% RH to the sensor’s accuracy. In
terms of Pearson’s correlation, the results gave values above 0.97, in the mean abso-
lute relative error (MARE ) presented values lower than 0.03. With the advantages
of adaptive sampling, we achieved an equivalent to an 8-minute sampling in terms
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of current consumption. The lowest admissible sampling corresponds to a minute in
the hours where there is a more significant variation.

With the proposed management system, a reduction of 11.04% is achieved; the
result is significant because the maximum possible percentage is 12.2%, equivalent
to performing sampling every 30 minutes all the time. The reduction percentage was
90% for the selected day and 89.18% for the selected group of days with different
weather conditions concerning the total percentage decrease allowed.

Our adaptive sampling method determines the next sampling period based on the
variance of the previous measurements. Thus, if there is considerable noise, it will
not affect the result, and since the method has a 30 minutes window is not very
sensitive to the slight change of the measurements; therefore, we can handle the
noise. In this document, we got the best values for α and β by simulations with the
humidity variable. However, α and β are user parameters that the target variable
can be determined.

7.2 Future Work

From work carried out, opportunities open up to continue improving the proposed
energy management system; some current challenges are: To obtain feedback from
the system through a forecasting service to fine-tune the selected α parameter. Eval-
uate the system in other scenarios such as in a mesh mode network (communication
through hops). To work in a controlled environment to generate equal conditions
for the sensors, get good evaluations of developed systems, and perform system
evaluations for extended periods to detect faults.
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Appendix B

Repository

the code and the data used in this thesis can be found in the following link

https://github.com/Carlosrod298/AdaptiveSampling.git
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