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Structured Abstract 
	
	
BACKGROUND:		
Fault	diagnosis	techniques	have	been	based	on	many	paradigms,	which	derive	from	diverse	areas	
and	have	different	purposes:	obtaining	a	representation	model	of	the	network	for	fault	localization,	
selecting	optimal	probe	 sets	 for	monitoring	network	devices,	 reducing	 fault	detection	 time,	 and	
detecting	faulty	components	 in	the	network.	Although	there	are	several	solutions	 for	diagnosing	
network	faults,	there	are	still	challenges	to	be	faced:	a	fault	diagnosis	solution	needs	to	always	be	
available	and	able	enough	to	process	data	timely,	because	stale	results	inhibit	the	quality	and	speed	
of	informed	decision-making.	Also,	there	is	no	non-invasive	technique	to	continuously	diagnose	the	
network	symptoms	without	leaving	the	system	vulnerable	to	any	failures,	nor	a	resilient	technique	
to	the	network's	dynamic	changes,	which	can	cause	new	failures	with	different	symptoms.		
	
AIMS:		
This	thesis	aims	to	propose	a	model	for	the	continuous	and	timely	diagnosis	of	IP-based	networks	
faults,	independent	of	the	network	structure,	and	based	on	data	analytics	techniques.	
	
METHOD(S):		
This	 research's	 point	 of	 departure	was	 the	 hypothesis	 of	 a	 fault	 propagation	 phenomenon	 that	
allows	the	observation	of	failure	symptoms	at	a	higher	network	level	than	the	fault	origin.	Thus,	for	
the	model's	 construction,	monitoring	 data	was	 collected	 from	 an	 extensive	 campus	 network	 in	
which	impact	 link	failures	were	induced	at	different	 instants	of	time	and	with	different	duration.	
These	data	 correspond	 to	widely	used	parameters	 in	 the	actual	management	of	a	network.	The	
collected	 data	 allowed	us	 to	 understand	 the	 faults'	 behavior	 and	how	 they	 are	manifested	 at	 a	
peripheral	level.	
	
Based	on	this	understanding	and	a	data	analytics	process,	 the	 first	 three	modules	of	our	model,	
named	 PALADIN,	 were	 proposed	 (Identify,	 Collection	 and	 Structuring),	 which	 define	 the	 data	
collection	 peripherally	 and	 the	 necessary	 data	 pre-processing	 to	 obtain	 the	 description	 of	 the	
network's	state	at	a	given	moment.	These	modules	give	the	model	the	ability	to	structure	the	data	
considering	the	delays	of	the	multiple	responses	that	the	network	delivers	to	a	single	monitoring	
probe	and	the	multiple	network	interfaces	that	a	peripheral	device	may	have.		
	
Thus,	a	structured	data	stream	is	obtained,	and	it	is	ready	to	be	analyzed.	For	this	analysis,	it	was	
necessary	 to	 implement	 an	 incremental	 learning	 framework	 that	 respects	 networks'	 dynamic	
nature.	It	comprises	three	elements,	an	incremental	learning	algorithm,	a	data	rebalancing	strategy,	
and	a	concept	drift	detector.	This	framework	is	the	fourth	module	of	the	PALADIN	model	named	
Diagnosis.		
	
In	order	to	evaluate	the	PALADIN	model,	the	Diagnosis	module	was	implemented	with	25	different	
incremental	 algorithms,	 ADWIN	 as	 concept-drift	 detector	 and	 SMOTE	 (adapted	 to	 streaming	



	

scenario)	 as	 the	 rebalancing	 strategy.	 On	 the	 other	 hand,	 a	 dataset	 was	 built	 through	 the	 first	
modules	of	the	PALADIN	model	(SOFI	dataset),	which	means	that	these	data	are	the	incoming	data	
stream	of	the	Diagnosis	module	used	to	evaluate	its	performance.	
	
The	 PALADIN	 Diagnosis	 module	 performs	 an	 online	 classification	 of	 network	 failures,	 so	 it	 is	 a	
learning	model	that	must	be	evaluated	in	a	stream	context.	Prequential	evaluation	is	the	most	used	
method	to	perform	this	task,	so	we	adopt	this	process	to	evaluate	the	model's	performance	over	
time	through	several	stream	evaluation	metrics.	
	
RESULTS:		
This	research	first	evidences	the	phenomenon	of	 impact	 fault	propagation,	making	 it	possible	to	
detect	 fault	 symptoms	at	 a	monitored	network's	 peripheral	 level.	 It	 translates	 into	non-invasive	
monitoring	 of	 the	 network.	 Second,	 the	 PALADIN	 model	 is	 the	 major	 contribution	 in	 the	 fault	
detection	context	because	it	covers	two	aspects.	An	online	learning	model	to	continuously	process	
the	 network	 symptoms	 and	 detect	 internal	 failures.	Moreover,	 the	 concept-drift	 detection	 and	
rebalance	data	stream	components	which	make	resilience	to	dynamic	network	changes	possible.	
Third,	 it	 is	 well	 known	 that	 the	 amount	 of	 available	 real-world	 datasets	 for	 imbalanced	 stream	
classification	context	is	still	too	small.	That	number	is	further	reduced	for	the	networking	context.	
The	SOFI	dataset	obtained	with	the	first	modules	of	the	PALADIN	model	contributes	to	that	number	
and	 encourages	 works	 related	 to	 unbalanced	 data	 streams	 and	 those	 related	 to	 network	 fault	
diagnosis.	
	
CONCLUSIONS:		
The	proposed	model	contains	the	necessary	elements	for	the	continuous	and	timely	diagnosis	of	IP-
based	 network	 faults;	 it	 introduces	 the	 idea	 of	 periodical	monitorization	 of	 peripheral	 network	
elements	and	uses	data	analytics	techniques	to	process	it.	Based	on	the	analysis,	processing,	and	
classification	 of	 peripherally	 collected	 data,	 it	 can	 be	 concluded	 that	 PALADIN	 achieves	 the	
objective.	 The	 results	 indicate	 that	 the	peripheral	monitorization	 allows	diagnosing	 faults	 in	 the	
internal	network;	besides,	the	diagnosis	process	needs	an	incremental	learning	process,	concept-
drift	detection	elements,	and	rebalancing	strategy.	
	
The	results	of	the	experiments	showed	that	PALADIN	makes	it	possible	to	learn	from	the	network	
manifestations	 and	 diagnose	 internal	 network	 failures.	 The	 latter	was	 verified	with	 25	 different	
incremental	 algorithms,	 ADWIN	 as	 concept-drift	 detector	 and	 SMOTE	 (adapted	 to	 streaming	
scenario)	as	the	rebalancing	strategy.	
	
This	research	clearly	illustrates	that	it	is	unnecessary	to	monitor	all	the	internal	network	elements	
to	 detect	 a	 network's	 failures;	 instead,	 it	 is	 enough	 to	 choose	 the	 peripheral	 elements	 to	 be	
monitored.	Furthermore,	with	proper	processing	of	the	collected	status	and	traffic	descriptors,	it	is	
possible	 to	 learn	 from	 the	 arriving	 data	 using	 incremental	 learning	 in	 cooperation	 with	 data	
rebalancing	 and	 concept	 drift	 approaches.	 This	 proposal	 continuously	 diagnoses	 the	 network	
symptoms	without	leaving	the	system	vulnerable	to	failures	while	being	resilient	to	the	network's	
dynamic	changes.	
	
PRIMARY	KEYS:	network	management,	network	monitoring,	fault	diagnosis,	incremental	learning,	
data	stream.	
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INTRODUCTION	
	
	
Networks	 have	 dramatically	 increased	 in	 size	 and	 complexity	 over	 the	 years.	 The	 increase	 in	
complexity	presents	severe	challenges	to	the	operations	of	network	management	systems.	One	of	
the	 central	 issues	 faced	 by	 a	 network	 management	 system	 is	 fault	 management.	 Failures	 are	
unavoidable	in	large	communication	networks,	so	the	timely	detection	and	identification	of	failures	
are	vital	for	the	reliable	operation	of	the	networks	(Dusia	&	Sethi,	2016a).	
	
In	 the	 field	 of	 fault	management,	 there	 are	 three	 basic	 concepts:	 faults,	 errors,	 and	 symptoms.	
Faults	 constitute	 a	 class	 of	 network	 events	 that	 can	 cause	other	 events	 but	 are	 not	 themselves	
caused	 by	 other	 events.	 Error	 is	 defined	 as	 a	 discrepancy	 between	 a	 computed,	 observed,	 or	
measured	value	or	condition	and	a	true,	specified,	or	theoretically	correct	value	or	condition.	The	
errors	are	a	consequence	of	a	fault,	and	they	may	cause	deviation	of	a	delivered	service	which	is	
visible	 to	 the	 outside	world.	 The	 term	 failure	 denotes	 this	 type	 of	 error.	 Finally,	 symptoms	 are	
external	 manifestations	 of	 failures	 (Steinder	 &	 Sethi,	 2004c).	 The	 fault	 detection	 process	 in	
networking	aims	to	identify	if	failures	have	occurred	by	observing	network	symptoms	(Dusia	&	Sethi,	
2016a).		
	
In	 the	past,	many	paradigms	were	proposed	upon	which	 fault	diagnosis	 techniques	were	based.	
These	paradigms	derive	from	different	areas	(e.g.,	computer	science,	including	artificial	intelligence,	
graph	theory,	neural	networks,	machine	learning,	statistical	analysis)	and	have	different	purposes:	
obtain	a	representation	model	of	the	network	for	fault	localization,	selecting	optimal	probe	sets	for	
monitoring	network	devices,	reduce	fault	detection	time,	and	detection	of	faulty	components	in	the	
network,	among	others.		
	
So,	 there	 are	 a	 variety	 of	 fault	 detection	 techniques.	 The	 most	 traditional	 ones	 are	 passive	
monitoring	 techniques,	 active	 monitoring	 techniques,	 decentralized	 probabilistic	 management	
approaches,	 and	 temporal	 correlation	 techniques.	 However,	 they	 are	 invasive	 because	 of	 the	
increase	 in	network	traffic	and	control	overhead.	On	the	other	hand,	techniques	for	overlay	and	
virtual	 networks	 increase	 the	 internal	 processes	 of	 the	 network	 because	 of	 the	 need	 to	 install	
monitoring	agents	on	all	overlay	nodes.	This	last	problem	also	applies	to	decentralized	management	
techniques	 because	 of	 the	 need	 to	 have	 an	 embedded	management	 process	 on	 all	 networking	
devices.	
	
All	the	above	techniques	need	in-depth	knowledge	of	the	network	connectivity	and	operations	in	
addition	to	an	extensive	understanding	of	network	behavior.	So,	to	solve	it,	fault	diagnosis	based	on	
machine	learning	techniques	emerge.	
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Learning	techniques	would	not	require	a	complete	dependency	model	of	a	network	(Dusia	&	Sethi,	
2016a).	For	example,	a	network	management	system	that	monitors	complex	networks	can	generate	
a	 comprehensive	 history	 of	 SNMP	 (Simple	 Network	Management	 Protocol)	 requests	 or	 a	 large	
number	of	log	files.	So,	using	statistical	and	machine	learning	techniques	to	process	this	information,	
it	can	get	empirical	data.	
	
Nevertheless,	 existing	 learning	 techniques	 have	 some	 gaps.	 They	 deal	 with	 insufficient	 data	
samples,	 and	 lengthy	 retraining	 may	 be	 required	 whenever	 the	 system	 behavior	 changes	
significantly.	Moreover,	these	techniques	have	to	be	thrown	away	during	the	period	of	retraining,	
leaving	the	systems	vulnerable	to	any	failures.	On	the	other	hand,	a	fault	diagnosis	solution	needs	
to	be	capable	enough	to	timely	process	data	because	stale	results	inhibit	the	quality	and	speed	of	
informed	decision-making.	
	
In	 brief,	 there	 isn't	 a	 non-invasive	 technique	 to	 continuously	 diagnose	 the	 network	 symptoms	
without	 leaving	 the	 system	 vulnerable	 to	 any	 failures,	 nor	 a	 resilient	 technique	 to	 the	 dynamic	
changes	of	the	network,	which	can	cause	new	failures	with	different	symptoms.		
	
Consequently,	this	work	proposes	a	fault	detection	model	based	on	the	peripheral	observation	of	
failure	symptoms,	which	are	processed	continuously	and	timely	by	incremental	learning	algorithms.	
In	this	way,	a	non-invasive	and	resilient	fault	detection	to	the	dynamic	changes	of	the	network	will	
be	guaranteed.	
	
	

1 Objectives 
			
This	thesis	aims	to	propose	a	model	for	the	continuous	and	timely	diagnosis	of	IP-based	networks	
faults,	independent	of	the	network	structure,	and	based	on	data	analytics	techniques.	
	
Specific	Objectives:		

1. Create	a	data	set	that	relates	peripheral	symptoms	with	network	faults.	
2. Propose	an	online	fault	classification	model	with	data	stream	conditions.		
3. Develop	and	evaluate	the	fault	diagnosis	model	through	an	experiment	that	measures	its	

behavior	over	time.		
	
	

2 Research Contributions 
	
This	doctoral	research	makes	the	following	contributions:		

§ A	formal	classification	of	link	failures,	which	is	found	in	Chapter	I.	
§ A	peripheral	strategy	for	collecting	failure	symptoms	reflected	in	Chapter	III.	
§ The	PALADIN	model	to	detect	failures	in	IP	networks,	which	represents	the	overall	doctoral	

proposal.	It	is	described	in	Chapter	III.	
§ The	 introduction	 to	 the	 concept	 "peripheral	 network	 element"	 for	 monitored	 networks	

through	the	proposed	approach.			
§ The	 SOFI	 dataset	 (Symptom-Fault	 relationship	 for	 IP-Network)	 and	 its	 building	 guide,	

described	in	Chapter	IV.	



	 3	

§ A	network	fault	diagnosis	module	based	on	symptoms	and	incremental	learning	techniques	
without	in-depth	knowledge	of	the	network.	It	is	described	in	Chapter	III.		

§ Pieces	of	evidence	of	the	existence	of	the	propagation	phenomenon	for	impact	link-failures.	
Chapter	V	explains	them.	

	
	

3 Document Structure  
	
This	document	is	divided	as	follows.	Chapter	I	describes	the	relevant	concepts	for	the	work.	Chapter	
II	 presents	 a	 state-of-the-art	 study	 about	 fault	 diagnosis	 techniques	 used	 over	 time.	 Chapter	 III	
describes	the	proposed	model.	Chapter	IV	describes	the	dataset	construction,	which	was	built	based	
on	three	components	of	the	proposed	model.	Chapter	V	contains	the	experiments	that	support	the	
research	results.	Finally,	Chapter	VI	presents	the	conclusions	and	future	work.	 	
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Chapter	I: Background	
	
	

“Nothing	in	life	is	to	be	feared,	it	is	only	to	be	understood.		
Now	is	the	time	to	understand	more,		

so	that	we	may	fear	less.”	
(Marie	Curie)	

	
	
This	 chapter	 presents	 the	 essential	 concepts	 of	 this	 thesis	 proposal	 development.	 Firstly,	 the	 IP	
Network,	 which	 depicts	 the	 context	 for	 which	 the	 proposal	 is	 developed.	 Secondly,	 the	 fault,	
failures,	and	symptoms	terms	that	represent	the	problem	area	to	face	in	that	context.	Thirdly,	the	
machine	 learning	 paradigm,	 along	 with	 the	 descriptions	 of	 the	 algorithms	 discussed	 later	 in	
experiments.	Finally,	this	chapter	describes	the	incremental	learning	approach,	which	is	our	way	of	
solving	the	problem,	and	the	algorithms'	list	involved	in	the	thesis	evaluation.	
	
	

1 IP Network  
	
An	 IP	 network	 is	 a	 communication	 network	 whose	 elements	 (hosts	 or	 network	 nodes)	 use	 the	
Internet	Protocol	(IP)	to	send	and	receive	messages	between	them.	Its	design	follows	a	top-down	
approach,	loosely	using	the	TCP/IP	stack.	The	Internet	is	the	best	known	and	largest	IP	network.	
	
The	IP	network	topology	depends	on	its	size.	This	work	is	focused	on	large	networks,	which	have	a	
modular	design	known	as	the	Enterprise	Composite	Network	Model.	The	modular	network	design	
separates	the	network	into	functional	areas	or	major	modules,	each	targeting	a	specific	place	and	
purpose	in	the	network,	and	also	facilitates	the	design	of	larger,	more	scalable	networks	because	
the	model	follows	the	rules	of	hierarchical	network	design	(Cisco	Academy,	2014).		
	
As	shown	in	Figure	1.1,	the	enterprise	network	model	has	three	main	modules:	enterprise	campus,	
enterprise	 edge,	 and	 service	 provider	 edge.	 Each	 of	 them	 is	 further	 divided	 to	 define	 specific	
functions	for	the	network.		
	
The	 Service	Provider	 Edge	module	 represents	 the	physical	 connection	 terminations	with	 several	
service	providers.	It	is	necessary	for	enabling	communication	with	other	networks	through	Internet	
Service	Providers	and	WAN	technologies	(Conlan,	2009).		
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The	Enterprise	Edge	module	allows	 the	 connectivity	between	elements	outside	 the	 campus	and	
routes	the	traffic	into	the	campus	core.	This	connection	is	made	directly	or	through	an	optional	Edge	
Distribution	module,	which	is	the	last	line	of	defense	against	external	attacks	(Teare,	2012).	
	

	
Figure	1.1	Enterprise	Composite	Network	Model.	

	
The	Enterprise	Campus	module	is	a	large	site,	usually	is	a	corporate	headquarter	or	a	head	office,	
which	 houses	 all	 the	 local	 area	 networks,	 such	 as	 regional	 offices,	 SOHOs	 (Small	 Office,	 Home	
Office),	and	mobile	workers	(Teare,	2012)	(Conlan,	2009).	It	is	composed	of	the	submodules:	campus	
infrastructure	and	server	farm.	
	
The	 campus	 infrastructure	 provides	 network	 access	 to	 end	 users.	 The	 network	 of	 this	 module	
adheres	to	the	classical	hierarchical	design	model	made	up	of	three	layers:	the	access,	distribution,	
and	 core	 layers	 (Conlan,	 2009).	 It	 spans	 from	 a	 single	 building	 to	 several	 buildings	 for	 larger	
enterprises	 connected	across	 a	 core.	A	 single	building	 contains	 an	 access	 and	distribution	 layer.	
When	more	buildings	are	added,	a	backbone	or	core	layer	is	added	between	buildings	(Teare,	2012).	
Following,	each	of	these	layers	is	described:	
	
Access	 layer:	 It	 provides	 users	 or	 end	 devices	 (including	 teleworkers	 or	 remote	 sites	 for	WAN	
environments)	 access	 to	 the	 corporate	 network	 and	 uplinks	 to	 the	 distribution	 layer	 (Cisco	
Academy,	2014).		
	
Distribution	layer:	It	receives	the	data	from	the	access	layer	switches	to	transmit	them	to	the	core	
layer	for	routing	to	the	final	destination.	The	above	means	it	is	the	boundary	between	the	access	
layer	and	the	core	layer	(Cisco	Academy,	2014).	
	
Core	layer:	It	is	also	known	as	the	network	backbone	and	is	the	central	point	in	the	network.	The	
campus	core	layer	must	be	highly	available	and	redundant	because	it	interconnects	the	distribution	
layer	with	 the	 server	 farm	and	 the	enterprise	edge	modules.	 It	 carries	 all	 the	 traffic	 from	 these	
modules,	so	it	also	must	forward	a	large	amount	of	data	as	quickly	and	efficiently	as	possible.	
	
Finally,	the	server	farm	module	follows	a	multilayer	architecture	as	the	campus	infrastructure,	and	
hosts	in	the	access	layer	all	the	servers	which	deploy	the	applications	that	the	users	will	access	and	
network	services	such	as	DNS	and	DHCP.		
	

CAMPUS	INFFRAESTRUCTURE

Campus Core

Distribution Layer

Access	Layer

Enterprise	Campus Enterprise	Edge Service Provider
Edge

SERVER	FARM

EDGE	DISTRIBUTION
E-Commerce

Internet

VPN	and
remote access

WAN

ISP	#1

ISP	#2

PSTN

Frame Relay /	
ATM
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In	addition,	it	typically	deploys	network	management	services,	including	monitoring,	logging,	and	
troubleshooting	 such	 as	 RADIUS,	 Network	 Time	 Protocol	 (NTP),	 Simple	 Network	 Management	
Protocol	(SNMP),	and	Syslog	traffic.	
	
	

2 Faults, failures, and symptoms 
	
In	the	field	of	fault	management,	there	are	three	basic	concepts:	faults,	error,	and	symptoms.	Faults	
(also	referred	to	as	problems	or	root	causes)	constitute	a	class	of	network	events	that	can	cause	
other	 events	 but	 are	 not	 themselves	 caused	 by	 other	 events.	 Error	 is	 defined	 as	 a	 discrepancy	
between	 a	 computed,	 observed,	 or	 measured	 value	 or	 condition	 and	 a	 true,	 specified,	 or	
theoretically	correct	value	or	condition.	As	the	Figure	1.2	shows,	an	error	is	a	consequence	of	a	fault.	
Faults	may	or	may	not	cause	one	or	more	errors.	Errors	may	cause	deviation	of	a	delivered	service	
from	the	specified	service,	which	is	visible	to	the	outside	world.	The	term	failure	is	used	to	denote	
this	 type	 of	 error.	 Finally,	 symptoms	 are	 external	 manifestations	 of	 failures	 (Steinder	 &	 Sethi,	
2004a).	
	

	
Figure	1.2	The	relation	between	failures	and	their	root	causes	and	effects.	

	
	

2.1 Types of network failures 
	
This	research	has	taken	the	most	widely	and	commonly	failures	classification	used,	which	defines	
two	types	of	failures:	link	failures	and	device	failures.	A	link	failure	occurs	when	there	is	an	event	
causing	 the	 connection	between	 two	devices	 to	 be	down	or	 excessive	packet	 discards	 in	 a	 link.	
Usually,	such	failures	are	detected	by	SNMP	monitoring	on	the	interfaces	of	the	devices.	A	device	
failure	 occurs	when	 there	 is	 an	 event	 causing	 a	 device	 to	 be	 inoperable	 for	 routing/forwarding	
traffic.	These	failures	are	produced	when	a	device	is	crash	due	to	hardware	errors	or	powered	down	
for	maintenance	(Potharaju	&	Jain,	2013).	
	
Device	failures	are	usually	caused	by	maintenance	tasks	(Gill	et	al.,	2011),	so	they	have	a	predictable	
occurrence.	Meanwhile,	link	failures	are	more	frequent,	variable,	and	bursty.	Thus,	link	failures	are	
the	focus	of	this	research.	
	
As	shown	in	Figure	1.3,	we	classify	the	link	failures,	on	the	one	hand,	according	to	their	impact,	and	
according	to	the	cause	on	the	other.	
	

fault error/failure symptoms
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Figure	1.3	Link	Failures	types.	

	
The	classification	by	impact	defines	four	link	failures	types	based	on	traffic	observations	before	and	
during	failure.	First,	the	inactive	type	occurs	when	there	is	no	data	before	and	during	failure.	Second,	
the	provisioning	 type	occurs	when	 there	 is	no	data	before	 failure	and	 some	data	during	 failure.	
Third,	 a	 link	 failure	with	no	 impact	occurs	when	 there	 is	 about	 the	 same	amount	of	data	 traffic	
before	and	during	failure.		Fourth,	a	link	failure	with	impact	occurs	when	the	traffic	significantly	goes	
down	during	failure	(Gill	et	al.,	2011).	Table	1.1	summarizes	the	traffic	behavior	for	each	link	failure	
type.	
	

Table	1.1	Traffic	beffore	and	during	link	failure.	
Link	failure	(by	impact)	 Traffic	before	failure	 Traffic	during	failure	

Inactive	 no	data	 no	data	
Provisioning	 no	data	 some	data	
No	impact	 data	 data	
Impact	 data	 data	goes	down	

	
The	 classification	 by	 cause	 discriminate	 the	 link	 failures	 in	 those	 caused	 by	 software	 errors,	 by	
hardware	errors,	and	by	an	external	agent.	
	
	

2.2 Fault diagnosis 
	
Fault	management	 is	 a	multi-stage	process	 that	 includes	 two	activities:	 fault	diagnosis	 and	 fault	
recovery	 (see	 Figure	 1.4).	 Fault	 diagnosis	 is	 addressed	 by	 three	 steps:	 fault	 detection,	 fault	
localization,	 and	 testing.	 Fault	 detection	 consists	 of	 network	 symptoms	 observation	 in	 order	 to	
determine	 if	 one	 or	more	 failures	 have	 occurred.	 Fault	 localization	 deduces	 the	 location	 of	 the	
failures	in	a	network	by	using	the	set	of	observed	symptoms.	Testing	checks	the	inferred	failures.	
After	the	fault	has	been	identified,	the	fault	recovery	process	fixes	it	(Dusia	&	Sethi,	2016b).	
	

	
Figure	1.4	Fault	management	process.	
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3 Data stream 
	
A	data	 stream	 is	 a	 sequence	of	data	 that	 arrive	ordered	and	 separated	by	 time	 intervals.	 It	 is	 a	
sequence	< "#, "%, . . . , "', . . . >	where	each	") 	is	a	set	of	instances	(unit	set	for	online	learning).	Each	
instance	 is	 generated	 according	 to	 a	 distribution	*) 	 (Fernández	 et	 al.,	 2018a).	 Some	 examples	
include	credit	card	transactions,	sensor	measurement,	telecommunication,	and	more.	
	
As	 (Fernández	 et	 al.,	 2018a)	 note,	 the	 following	 differentiates	 data	 streams	 from	 traditional	
datasets:	
	

- Each	data	item	in	the	data	stream	arrives	sequentially	over	time.	
- We	do	not	have	control	over	the	data	order,	so	it	is	compulsory	to	be	ready	to	react	to	them	

at	any	time.		
- Data	streams	are	potentially	infinite,	so	it	is	almost	impossible	to	save	all	of	their	items	in	

memory.	The	previous	generally	implies	that	a	data	item	is	only	processed	once,	then	it	is	
discarded,	and	sometimes	is	stored	if	it	is	indispensable.	

- Data	 streams	 are	 susceptible	 to	 changes;	 in	 other	 words,	 the	 data	 can	 change	 their	
distribution	over	time.	

- Data	labeling	is	costly	and	sometimes	impossible.	
	
There	are	two	types	of	data	streams:	stationary	and	evolving.	Stationary	data	streams	are	those	
relating	to	historical	data	or	with	a	regular	bulk	arrival	(Patil,	2019).	The	instances	of	each	set	") 	have	
a	distribution	*),	and	this	distribution	is	unchanged	for	all	instances	set	of	a	stationary	data	stream.	
That	is,	the	distribution	*)+#	of	a	set	")+#	is	equivalent	to	*) 	distribution	(*) = *)+#)	(Fernández	et	
al.,	2018a).	Meanwhile,	evolving	data	streams	refer	to	real-time	data,	so	it	updates	continuously.	It	
means	that	the	distributions	*) 	always	change	over	time,	so	*) ≠ *)+#	(Fernández	et	al.,	2018a;	Z.	
Li	et	al.,	2020).	This	phenomenon	is	known	as	concept-drift.	We	can	categorize	concept-drift	in	two	
ways:	according	to	the	influence	on	learned	decisions	or	classification	boundaries,	and	according	to	
the	speed	of	changes	taking	place	within	the	stream.	
	
In	the	first	branch,	the	concept-drift	is	virtual	or	real.	Figure	1.5	illustrates	both.	When	a	virtual	drift	
occurs,	the	change	in	the	data	distribution	over	time	does	not	affect	the	probability	that	an	instance	
will	be	classified	as	one	class	or	another.	So,	the	classification	boundaries	will	remain	consistent	over	
time.	Meanwhile,	when	a	real	drift	occurs,	said	data	distribution	change	affects	the	probability	that	
an	instance	belongs	to	a	class.	This	means	that	the	classification	boundaries	will	no	longer	become	
effective,	so	the	learning	model	must	change	(Priya	&	Uthra,	2020).	
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Figure	1.5	Concept-drifft	types	according	to	the	influence	on	learned	decisions	or	classification.	Based	on	the	image	

provided	by	(Fernández	et	al.,	2018a). 
 

In	the	second	branch,	concept-drift	is	classified	as	sudden,	gradual,	incremental,	or	recurring.	Figure	
1.6	illustrates	each.	A	sudden	concept-drift	causes	a	sudden	and	significantly	different	change	in	the	
data	 distribution.	 It	 is	 also	 known	 as	 a	 shift	 (Bifet	 et	 al.,	 2018).	When	 gradual	 and	 incremental	
concept-drift	 occurs,	 data	 distribution	 undergoes	 slight	 and	 continuous	 changes,	 so	 the	
accumulated	 changes	 become	 significant	 after	 a	 while.	 The	 difference	 between	 gradual	 and	
increment	 drift	 is	 based	 on	 the	 ratio	 of	 changes	 (incremental	 drift	 has	 a	 slower	 ratio	 of	 slight	
changes).	Recurring	concept-drift	refers	to	the	reappearance	of	past	distributions	(Priya	&	Uthra,	
2020).	
	

	
Figure	1.6	Concetp-drift	types	according	to	speed	of	changes	taking	place	within	the	stream.	Based	on	the	image	

provided	by	(Fernández	et	al.,	2018a).	
	
It	is	essential	to	highlight	that	in	real-world	applications,	generally,	there	are	combinations	of	several	
kinds	of	concept-drift.	
	
		

4 Machine learning 
	
Machine	Learning	(ML)	is	an	artificial	intelligence	field	that	tackles	the	idea	of	systems	learn	from	
data	 and	 identify	 patterns	 for	 making	 predictions	 on	 new	 data	 without	 explicit	 programming	
instructions	or	human	intervention.	So,	ML	explores	the	study	and	construction	of	algorithms	that	
can	 learn	 and	 predict.	 Those	 algorithms	 learn	 from	 experience,	 that	 is,	 existing	 data	 (existing	
instances).	The	algorithms	discover	data	patterns	from	a	data	set	(examples	of	data),	resulting	in	a	
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model;	it	is	a	process	denominated	as	training.	The	model	is	a	mathematical	function	representing	
the	learned	patterns	(generally	complex	depending	on	the	algorithm	and	the	data)	and	allows	to	
predict	on	new	data	(new	instances)	not	seen	in	training	(Witten	et	al.,	2017).	
	
For	information,	the	following	are	the	traditional	ML	algorithms	used	in	experiments.	
	

• Naive	Bayes:	It	is	a	machine	learning	algorithm	for	classification	tasks,	which	uses	the	Bayes	
Theorem	and	assumes	that	all	the	predictive	attributes	are	independent	of	each	other.	The	
independence	principle	is	not	always	fulfilled	in	reality;	nevertheless,	Naive	Bayes	is	a	very	
efficient	algorithm,	even	if	this	criterion	is	not	met	(Webb,	2010).		

	
As	(John	&	Langley,	1995)	explains	it,	let	0	the	class	variable	(target	variable)	and	1	be	the	
vector	of	the	observed	predictive	attributes	values.	Suppose	2	is	a	particular	class	and	3	is	
an	observed	attribute	vector	to	classify	(new	instance).	In	that	case,	the	probability	of	each	
class	must	be	calculated	given	the	vector	3	(using	(1)	formula)	and	select	the	class	with	the	
highest	probability.	
	

	 4 1 = 3	 	0 = 2 = 4 16 = 36	 	0 = 2)
6

	 (1)	

	
• Multi-Layer	Perceptron	(MLP):	The	artificial	neural	networks	are	based	on	the	biological	

idea	of	the	brain	neural	networks:	the	neurons	are	connected	to	propagate	electrical	signals	
through	the	network	(send	and	receive	signals	between	them).	The	neurons	process	input	
signals	and	can	be	activated	if	the	electrical	input	crosses	a	threshold.	Then,	that	activation	
allows	them	to	send	the	signal	to	another	neuron.	
	
Applying	 the	 above	 concept,	 the	 artificial	 neural	 networks	 have	 the	 structure	 shown	 in	
Figure	1.7.	The	units	represent	the	neurons,	and	weighted	edges	connect	them.	The	units	
are	arranged	into	at	least	two	layers:	the	input	and	output	layers.	The	input	layer	stores	the	
data	to	be	processed	(the	predictors	or	attributes),	and	the	output	layer	gives	the	results	
(the	target	variable).	 If	there	are	hidden	layers	between	the	output	and	input	 layers,	the	
artificial	neural	network	is	called	Multi-Layer	Perceptron.	
	
To	make	a	prediction,	the	units	 in	the	first	hidden	 layer	receive	a	weighted	value	(76)	of	
each	input	unit	(36)	and,	considering	a	bias	(78),	computes	the	activation	function	(9)	on	
the	values	to	get	an	output.	The	output	value	is	weighted	and	propagated	to	the	next	layer.	
This	process	is	repeated	until	the	output	layer	is	reached.	The	hidden	layers	use	the	same	
activation	function,	while	the	output	layer	generally	uses	a	different	function.	
	
Given	a	set	of	input	training	data,	the	activation	function	to	use,	and	the	number	of	hidden	
layers,	MLP	finds	the	best	bias	(78)	and	weights	(76)	to	perform	predictions.	
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Figure	1.7	Multi-Layer	Perceptron	Representation.	

	
• K-Nearest	Neighbors	(KNN):	The	KNN	algorithm	is	introduced	by	(Cover	&	Hart,	1967),	and	

it	 does	 not	 have	 a	 training	 process	 as	 such;	 instead,	 it	 performs	 an	 instance-based	
classification,	which	is	why	it	is	referred	to	as	a	lazy	algorithm.	Given	a	new	instance	to	be	
classified,	KNN	measures	the	similarity	in	terms	of	distance	between	the	new	and	existing	
instances	to	select	the	closest	k	neighbors.	The	assigned	class	corresponds	to	the	majority	
class	of	the	found	nearest	neighbors	(Witten	et	al.,	2017).	

	
• AdaBoost:	 It	 is	 a	meta-algorithm	 that	 embeds	 any	weak	machine	 learning	 algorithm	 to	

boost	the	performance	using	a	sequential	learning	technique.		
	
Figure	1.8	shows	the	training	process	of	AdaBoost	using	any	algorithm.	The	training	is	a	loop	
starting	with	all	training	instances	having	equal	weights.	For	each	cycle,	the	weak	learning	
algorithm	uses	 data	weighted	 for	 training	 and	 produces	 a	weak	model.	 Then,	 AdaBoost	
updates	all	the	weights	on	all	the	training	instances	according	to	the	residual	error	of	the	
previous	weak	model,	so	weights	are	not	going	to	be	equal	at	the	next	training	cycle.	In	this	
way,	 AdaBoost	 gives	 greater	 weight	 to	 those	misclassified	 observations	 in	 the	 previous	
model.	The	loop	continues	until	a	certain	number	of	weak	models	have	been	created	(preset	
by	 the	 user).	 For	 making	 predictions,	 given	 a	 new	 instance	 to	 be	 classified,	 AdaBoost	
averages	the	models'	predictions		(Freund	&	Schapire,	1996).		
	
The	AdaBoostM1	algorithm	version	(Freund	&	Schapire,	1996)	is	used	for	experimentation	
issues	in	this	work.	
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Figure	1.8	AdaBoost	algorithm.	

	
• Bagging:	Bootstrap	Aggregation	or	Bagging	is	a	meta-algorithm	that	uses	a	parallel	learning	

technique	and	any	machine	learning	algorithm	(a	base	learner).	Several	training	subsets	are	
extracted	randomly	given	a	training	dataset,	and	then	Bagging	fits	the	base	learner	on	each	
subset	separately.	The	number	of	created	models	is	equal	to	the	number	of	sets.	For	the	
prediction	task,	Bagging	averages	the	models'	predictions	to	provide	a	prediction.		(Breiman,	
1996).	
	

• Decision	Tree:	The	algorithms	that	create	a	model	looking	like	a	flowchart	are	referred	to	
as	decision	trees,	so	humans	can	easily	understand	those	models.	As	Figure	1.9	shows,	each	
diagram	 level	 represents	a	decision	question	related	 to	an	attribute	with	 two	options	as	
answers.	Following	a	sequence	of	questions	and	answers,	the	model	finds	a	classification	
for	a	new	instance.	The	model	has	four	components:	the	internal	nodes	representing	the	
attributes,	the	branches	representing	a	decision	rule,	each	leaf	representing	the	result,	and	
a	root	node	at	the	top	of	the	tree.	
	
The	algorithm	selects	the	best	attribute	using	an	attribute	selection	measure	in	the	training	
or	tree	creation	process.	Then,	it	sets	that	attribute	as	the	root	node,	which	divides	the	data	
into	smaller	subsets.	This	procedure	is	recursively	repeated	for	each	attribute	until	there	
are	 no	 more	 cases,	 there	 are	 no	 more	 attributes,	 or	 all	 variables	 belong	 to	 the	 same	
attribute	value.	
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In	this	work,	the	C4.5	decision	tree	(Salzberg,	1994)	is	used	for	experimentation	issues.	
	

	
Figure	1.9	Example	of	a	decisión	tree.	

	
• PART:	It	is	a	rule	algorithm;	consequently,	its	function	is	to	create	a	decision	list	as	its	model.	

It	iteratively	builds	partial	C4.5	decision	trees	(one	tree	for	each	iteration)	and	selects	the	
best	leaf	as	one	of	its	decision	rules	(one	rule	for	each	tree)	(Frank	&	Witten,	1998).	

	
	

5 Incremental learning 
	
Traditional	approaches	to	knowledge	extraction	assume	that	all	 the	data	needed	to	generate	an	
inference	have	been	collected	and	are	available	in	a	training	set	(Bramer,	2013).	However,	the	more	
data	available,	 the	more	performance	difficulties	of	machine	 learning	algorithms	will	have.	Also,	
there	 are	more	 and	more	 situations	 in	which	 there	 is	 a	 large	 volume	 of	 information	 to	 extract	
knowledge	 from	 it	 (Del	 Campo-Ávila,	 2007).	 Hence,	 traditional	 approaches	 have	 limitations	 to	
process	 large	 amounts	 of	 data,	 especially	 data	 continuously	 growing.	 So,	 incremental	 learning	
algorithms	arise	to	solve	these	and	other	issues.	
	
Algorithms	with	incremental	learning	(also	known	as	online	learning)	are	those	that	can	update	their	
learning	model	 using	 new	 arrival	 data	without	 re-processing	 the	 data	 already	 used.	 Then,	 they	
discard	 the	 training	data	 if	 it	 is	no	 longer	 required.	These	algorithms	are	used	when	the	data	 to	
process	are	not	all	available	at	 the	beginning	of	 the	process	 (Bramer,	2013).	Also,	 they	are	 ideal	
when	the	input	to	a	learning	process	is	streaming	data,	in	other	words,	when	data	that	arrives	in	
real-time	as	an	infinite	stream	making	predictions	in	real-time	while	refining	the	model	according	
to	the	changes	in	the	evolving	input	stream	(Utgoff,	2017;	Witten	et	al.,	2017).	
	
Two	fundamental	aspects	characterize	 incremental	 learning.	Firstly,	 it	 is	capable	of	 incorporating	
information	from	new	experiences,	which	were	not	previously	available	in	the	dataset,	to	the	model.	
Secondly,	it	is	capable	of	making	the	model	evolve	so	that	it	increasingly	represents	more	complex	
concepts.	So,	the	term	"any-time	learning"	emerges	(Del	Campo-Ávila,	2007).	
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As	will	be	seen,	this	work	addresses	the	fault	diagnosis	issue	in	an	IP-based	network	using	machine	
learning	 techniques,	 more	 specifically	 by	 incremental	 learning	 approaches	 which	 process	 the	
monitoring	 data	 of	 the	 network	 that	 are	 constantly	 being	 generated	 as	 a	 data	 stream.	 In	 this	
chapter,	we	 introduced	the	 fundamental	knowledge	relevant	 to	 this	 research,	 so	 the	vocabulary	
used	in	the	further	sections	is	based	on	the	previous	literature	for	a	better	understanding.	 	
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Chapter	II: 	State	of	the	Art	
	
	

“¿Quién	les	dio	la	verdad	absoluta?	
Nada	hay	absoluto.	Todo	cambia,	todo	se	mueve,		

todo	revoluciona,	todo	vuela	y	se	va…”	
(Frida	Kalho)	

	
	

1 Network fault diagnosis through years 
	
A	bibliometric	study	through	science	mapping	around	network	fault	diagnosis	offers	an	overview	of	
this	topic	through	years.	We	used	the	open-source	science	mapping	software	tool	called	SciMAT	
(Cobo	et	al.,	2012)	for	this	purpose.	This	section	describes	in-depth	the	followed	steps	to	build	up	
the	state	of	the	art	study.	
	

1.1 Methodology 
	
The	methodological	foundation	of	SciMAT	is	the	general	workflow	in	a	science	mapping	analysis.	So,	
it	incorporates	the	needed	modules	to	perform	the	steps	of	this	mapping	workflow	and	enables	us	
to	follow	it	 flexibly.	Figure	2.1	shows	the	workflow	configuration	according	to	our	purpose.	Each	
step	is	described	below.	

	
Figure	2.1	Workflow	of	bibliometric	analysis	with	SciMAT.	

	
1. Data	retrieval:		

	
We	gathered	 the	 relevant	work	about	 fault	diagnosis	 in	networking	 from	scientific	bibliographic	
databases	 Scopus	 and	Web	 of	 Science	 (WoS).	 The	 used	 descriptive	 terms	 were	 fault	 diagnosis	
(including	synonyms:	fault	detection,	failure	detection,	and	failure	diagnosis),	network	management	
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(including	 synonym:	 network	 monitoring),	 network	 (including	 synonyms:	 computer	 network,	 IP	
based	network,	and	communication	network).	Also,	the	following	terms	were	excluded	to	guarantee	
a	strong	concerned	scientific	field	description:	electrical	network,	nano	network,	sensor	network,	
and	power	network.	
	
The	retrieved	number	of	works	was	1720	from	Scopus	and	220	from	WoS,	from	1990	until	now.	
1940	documents	in	all.	
	

2. Pre-processing:		
	
Preprocessing	allows	filtering	the	set	of	related	works	found	to	refine	bibliometric	study.	Using	the	
SciMAT	 tool,	 this	 procedure	 consisted	 of	 delete	 duplicate	 items	 and	 not	 relevant	 (because	 the	
search	yielded	some	works	outside	the	area	of	interest).	The	period	between	2001	and	today	was	
selected	for	the	study.	The	data	was	divided	into	four	subperiods	in	order	to	analyze	the	temporal	
evolution	 of	 the	 scientific	 field	 (2001-2005,	 2006-2010,	 2011-2015,	 2016-2020).	 As	 a	 result,	 the	
corpus	of	information	was	reduced	to	a	size	of	1535	documents.	
	

3. Network	extraction	and	normalization:	
	
This	 step	 makes	 possible	 the	 construction	 of	 the	 bibliometric	 network,	 that	 is,	 to	 detect	 all	
relationships	between	documents.	For	this	purpose,	we	set	the	keywords	present	in	the	scientific	
papers	as	 the	unit	of	analysis.	So,	a	word	grouping	process	was	performed	manually	so	that	 the	
SciMAT	tool	could	recognize	associated	terms	or	expressions.	Then,	the	SciMAT	tool	was	configured	
to	build	a	bibliometric	network	 from	 the	co-occurrence	of	 keywords,	 thus	generating	a	 co-word	
network.	
	
Also,	 to	 keep	 only	 the	 most	 significant	 works	 in	 the	 resulting	 network,	 a	 minimum	 reference	
frequency	was	 configured	 (three	 references	 is	 our	 threshold),	 and	 the	 equivalence	 index	 as	 the	
similarity	measure	for	normalization.	Equivalence	 index	 is	a	measure	that	takes	 into	account	the	
number	 of	 co-occurrences	 of	 the	words	 in	 a	 set	 of	 documents,	 and	 the	 number	 of	 documents	
described	 by	 those	words,	 so	 it	 enhances	 the	 pairs	 of	 keywords	 that	 adequately	 represent	 the	
corpus	analyzed.	
	

4. Mapping:		
	
SciMAT	locates	the	groups	of	keywords	closely	linked	to	each	other.	Those	groups	correspond	to	
the	focuses	of	interest	or	research	problems	in	which	researchers	have	been	concentrated.	The	tool	
executes	 this	 process	using	 a	 clustering	 algorithm	 (Simple	Centers	Algorithm	 (Cobo	et	 al.,	 2011;	
Coulter	et	al.,	1998)).	
	

5. Analysis	and	visualization:		
	
In	this	step,	SciMAT	takes	quality	measures	 (h-index	and	average	citations)	 into	consideration	to	
performs	the	analysis.	The	tool	deploys	the	following	elements:	
		
- Evolution	maps:	 it	allows	us	to	see	each	period's	clusters	and	their	relationship	with	other	

neighboring	periods	in	a	single	graph.	It	is	known	as	longitudinal	view.	
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- Strategic	diagrams:	 it	 is	a	two-dimensional	space	built	 that	places	the	topics	 (clusters)	 in	a	
quadrant	according	to	their	type.	Four	topic	types	are	considered:	motor,	highly	developed	
and	isolate,	emerging	or	declining,	and	basics	and	transversal.		

- Clusters'	network:	they	highlight	the	relationship	between	keywords	into	a	detected	cluster.	
One	graph	by	each	cluster.	

- Documents	 associated	 with	 the	 cluster:	 List	 of	 highest	 impact	 documents	 related	 to	 the	
cluster.	

	
SciMAT	builds	all	listed	graphics.	As	a	result,	61	prominent	clusters	or	topics	were	obtained	in	the	
research	field	during	the	entire	observation	window	(2001	to	2020).	
	

6. Interpretation:		
	
Figure	2.2	shows	the	appearance	of	an	evolution	map.	Each	circle	represents	a	cluster	or	detected	
topic.	Those	topics	are	closely	related	to	one	or	more	periods,	so	one	cluster	can	appear	in	more	
than	 one	 column.	 Each	 column	 represents	 a	 period,	 and	 they	 are	 ordered	 in	 time.	 The	 lines	
represent	 the	 relationship	 between	 topics.	 The	 thicker	 and	 repainted	 the	 line,	 the	 closer	 the	
relationship	is.	

	
Figure	2.2	Evolution	map	appearance.	

	
Figure	2.3	is	a	Cartesian	plane	that	indicates	how	SciMAT	distributes	the	detected	topics	according	
to	 their	 types.	 In	 the	 upper-right	 quadrant	 are	 well-developed	 and	 essential	 topics	 for	 the	
construction	of	the	research	field.	These	topics	are	known	as	motor	clusters.	
	
The	upper-left	quadrant	collects	very	specialized	topics,	so	they	have	very	well	developed	internal	
links,	 but	 their	 importance	 is	 marginal	 in	 the	 research	 field.	 These	 topics	 are	 known	 as	 highly	
developed	and	isolate	clusters.	

1st subperiod
(2001-2005)

2nd subperiod
(2006-2010)
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(2011-2015)
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(2016-2020)
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Very	underdeveloped	and	marginal	 themes	are	 located	 in	the	 lower-left	quadrant.	 It	means	that	
they	mainly	 represent	 appearing	 or	 disappearing	 topics,	 so	 their	 name	 is	emerging	 or	 declining	
clusters.	
	
The	topics	in	the	lower-right	quadrant	are	known	as	basic	and	transversal	clusters.	They	are	essential	
to	the	scientific	field	but	are	not	well	developed.	Those	clusters	are	transversal	and	generic	topics,	
so	they	are	the	basic	topics	of	the	scientific	field.	
	

	 	
Figure	2.3	Strategic	diagram	appearance.	

	
Figure	2.4	is	a	cluster	network	example.	As	shown,	a	network	is	a	set	of	interlinked	words,	so	no	
cluster	is	isolated.	
	

	
Figure	2.4	Cluster'	network	appearance.	

	
The	next	section	contains	a	more	in-depth	analysis	of	the	results	obtained	with	the	SciMAT	tool.	
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1.2 Analysis of results 
	
To	 obtain	 a	 scientific	 panorama	 over	 the	 years,	 we	 have	 analyzed	 the	 research	 and	 trends	 of	
developments	around	influential	topics	in	diagnosing	failures	in	communications	networks	for	every	
subperiods.	Those	topics	correspond	with	the	clusters	found	by	SciMAT.	We	heeded	those	clusters	
that	stand	out	in	various	subperiods	of	time	to	observe	the	research	focus's	evolution	deeply.	
	
	

1.3 First period (2001-2005) 
	
As	we	can	see	in	Figure	2.5,	the	cluster	“algorithm”	contains	the	principal	motor	works	and	repeats	
its	appearance	in	another	period,	as	we	will	see	later.	Its	size	is	because	it	collects	works	from	other	
spheres	 in	the	same	period,	which	base	their	research	on	algorithms.	Going	 into	this	cluster,	we	
found	that	the	traffic	analysis	process	led	to	the	studies	(Krishnamurthy	et	al.,	2003).	This	process	
was	done	in	order	to	see	traffic	changes	as	an	indication	of	anomalies.	Signal	processing	and	log	
analysis	are	two	other	motors	processes	of	fault	diagnosis.	The	first	approach	was	envisioned	as	a	
great	potential	to	enhance	the	anomaly	detection	field	and	improve	IP	networks'	reliability	(Steinder	
&	Sethi,	2004a).	The	second,	to	detect	frequent	patterns	from	logs	and	to	identify	anomalous	log	
file	lines	(Vaarandi,	2003).		
	

	
Figure	2.5	Strategic	map	for	period	2001-2005.	

	
Exploring	the	lower-right	quadrant	works,	or	basic	and	transversal	clusters,	especially	those	of	the	
“fault-localization”	cluster,	it	is	evident	that	the	fundamentals	of	the	topic	are	bayesian	reasoning	
(Steinder	&	Sethi,	2004c),	probability,	and	event-driven	(Steinder	&	Sethi,	2004b).	
	
On	the	other	hand,	as	we	can	see	in	the	upper-left	quadrant,	“security”	is	an	isolated	cluster,	but	
“bayesian-networks”	is	a	highly	developed	topic	because	of	its	works.	Those	works	are	concerned	
with	improving	the	probing	methods	for	active	monitoring	using	mainly	Bayesian	networks	(Kirmani	
&	Hood,	2004;	Rish	et	al.,	2005).	
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On	the	other	hand,	it	is	interesting	to	see	through	the	lower-left	quartile	that	the	“mobile-networks”	
cluster	emerges.	It	was	precisely	in	this	period	that	the	2.5G	technology	for	voice	and	data	support	
arose.	 The	 popularization	 of	 VoIP	 also	 occurred	 in	 2003,	 so	 works	 to	 diagnose	 faults	 in	 those	
networks	emerged	(Ritter	et	al.,	2004;	Xueshan	Shan	&	Li,	2001).	
	
	

1.4 Second period (2006-2010) 
	
Figure	2.6	shows	the	strategic	map	for	this	period.	Now,	it	 is	evident	the	clusters	increment,	and	
there	are	new	topics	around	fault	diagnosis.		
	

	
Figure	2.6	Strategic	map	for	period	2006-2010.	

	
Let	us	 look	at	 the	upper-right	quadrant	 first.	All	motor	 clusters	of	 this	period	 incorporate	active	
probing	 for	 network	 monitoring	 and	 combine	 it	 with	 other	 approaches	 for	 different	 network	
diagnostic	 purposes	 (such	 us	 studying	 fault	 propagation,	 detecting	 congestion,	 and	 detecting	
performance	problems)	(L.	Cheng	et	al.,	2010;	Natu	&	Sethi,	2006).	
	
It	 should	be	noted	 that	within	 the	motor	 clusters,	 there	 are	 two	 that	were	also	 in	 the	previous	
period,	but	 in	a	different	quadrant.	The	cluster	"fault-localization",	a	basic	transversal	during	the	
last	 period,	 is	 now	 a	 motor	 topic	 that	 incorporates	 work	 based	 on	 association	 rules,	 alarm	
correlation,	and	fault	propagation	(Huang	et	al.,	2006;	T.	Li	&	Li,	2010).	The	"bayesian-networks"	
cluster	was	 highly-developed	 in	 the	 previous	 period.	 It	 now	uses	 all	 the	 knowledge	 of	 Bayesian	
networks	in	broader	studies,	such	as	avoiding	congestion,	modeling	fault	propagation,	fault	location,	
and	agents'	use	(Cho	et	al.,	2008;	García-Algarra	et	al.,	2011;	Jian,	2010).	
	
The	"network-management"	cluster	classified	as	emerging	in	the	previous	period	made	way	for	the	
motor	 sphere	 "IP-network-management".	 The	 works	 under	 this	 cluster	 are	 mainly	 focused	 on	
studying	 congestion	 and	 performance	 problems	 in	 optical	 (Harvey	 et	 al.,	 2007),	 IMS	 (Reali	 &	
Monacelli,	2009),	and	IPTV	networks	(Mahimkar	et	al.,	2009).	
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Now	let	us	look	at	the	lower-right	quadrant	to	learn	about	the	transversal	themes	of	the	period.	If	
we	 study	 the	 quadrant's	works	 in-depth,	we	will	 see	 that	 the	 basic	 theme	 revolves	 around	 the	
temporal	analysis.	Researches	find	spatio-temporal	patterns	through	temporal	correlation	(Natu	&	
Sethi,	2008a;	T.	Wang	et	al.,	2010).	Here	also	works	focused	on	overlay	networks	are	highlighted	
(Natu	&	Sethi,	2008b).	
	
In	 the	upper-left	quadrant,	 two	clusters	stand	out,	"anomaly-detection"	and	"machine-learning".	
We	will	consider	the	first	topic	a	developed	theme	as	it	focuses	its	efforts	on	the	study	of	traffic	to	
detect	anomalies	(Chhabra	et	al.,	2008),	and	as	we	saw	in	the	period	2001	to	2005,	this	approach	
was	a	driving	theme.	While	the	second	cluster,	we	consider	it	isolated,	as	it	is	dispersed	among	SVM	
(Support	Vector	Machine)	topics	(Guo	Jiangwei	et	al.,	2010),	digraphs	(C.	Li	et	al.,	2009),	adaptive	
probes	(L.	Cheng	et	al.,	2010),	and	exploring	AI	as	promising	for	network	management	(Qi	et	al.,	
2007).	
	
Finally,	in	the	lower-left	quadrant,	we	see	emerging	topics	such	as	the	study	of	fault	resilience	in	
metro	 ethernet	 networks	 (Huynh	 et	 al.,	 2007),	 specific	 studies	 for	 link	 failures	 (Fraiwan	 &	
Manimaran,	2008),	and	event	correlation	implementation	(Hanemann,	2006).	
	
	

1.5 Third period (2011-2015) 
	
As	Figure	2.7	shows,	the	upper-right	quadrant	 includes	motor	topics	that,	for	the	most	part,	had	
already	appeared	in	previous	periods	but	different	quadrants.	The	"mobile-networks"	cluster	was	
an	emerging	topic	in	the	first	study	period	(2001-2005).	The	"fault-diagnosis"	cluster	between	2006	
and	2010	was	a	transversal	topic.	The	"IP-network-management"	cluster	is	also	an	emerging	sphere	
since	the	previous	period.	Scrutinizing	through	these	recurring	clusters'	research	work,	we	discover	
that	the	period's	motor	is	the	study	of	anomaly	detection	in	LTE	mobile	networks	applying	several	
approaches.	
	
It	is	important	to	note	that	the	introduction	of	LTE	technology	in	the	world	takes	place	in	these	five	
years.	So,	we	consider	this	to	be	the	cause	of	the	intense	research	focus	on	these	networks.	Some	
noteworthy	examples	of	motor	works	belonging	to	the	three	clusters	mentioned	above	are	(Asghar	
et	al.,	2012;	Nováczki,	2013;	Szilagyi	&	Novaczki,	2012).	
	
Another	motor	topic	of	the	period	is	"artificial-intelligence"	which	focuses	on	applying	this	scientific	
field	to	provide	support	to	make	decisions	against	attacks	(Arendt	et	al.,	2015).	The	cluster	also	uses	
artificial	intelligence	to	build	systems	network	triage	alarms	to	help	operators	find	and	fix	problems		
(Amershi	et	al.,	2011),	correlate	alerts	(Salah	et	al.,	2013),	and	the	study	of	failures	from	the	user's	
perspective	(Takeshita	et	al.,	2015)	
	
The	 lower-right	 quadrant	 has	 the	 basic	 and	 transversal	 topics	 where	 there	 are	 also	 recurring	
clusters,	 such	 as	 "algorithms"	 and	 "anomaly-detection."	 Within	 these	 clusters,	 we	 mainly	 find	
different	approaches	for	detecting	anomalies	in	large-scale	IP	networks	(He	et	al.,	2012;	Kanda	et	
al.,	2013).	
	
Let	us	move	to	the	upper-left	quadrant.	It	contains	highly	developed	clusters	oriented	to	processing	
complex	 events	 (S.	 Cheng	 et	 al.,	 2011),	 the	 study	of	 failures	 in	multilayer	 and	overlay	 networks	
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(Steinert	et	al.,	2011),	diagnosis	of	 fiber	 failures	 (Yuan,	C.	et	al.,	2015),	and	detection	of	attacks,	
especially	DDoS	type	(F.	Wang	et	al.,	2012).	
	
The	cluster	"software-defined-networking"	also	stands	out,	between	the	limit	of	research	classified	
as	emerging	and	those	classified	as	isolated.	It	is	an	emerging	topic	because	works	studying	faults	
in	SDN	with	simulated	experiments	are	beginning	to	appear	(Adrichem	et	al.,	2014;	Kamisiński	&	
Fung,	2015;	Sharma	et	al.,	2013).	However,	it	is	also	isolated	because	all	the	studies	of	the	period	
around	SDN	networks	do	not	fall	precisely	on	fault	diagnosis.	
	

	
Figure	2.7	Strategic	map	for	period	2011-2015.	

	
Finally,	according	to	the	lower-left	quadrant,	works	focused	on	strategies	to	mitigate	failures	(X.	Wu	
et	al.,	2012),	and	natural	 language	processing	 to	analyze	 trouble	 tickets	 in	a	monitored	network	
emerge	(Potharaju	et	al.,	2013).	
	
As	 could	be	 seen,	 in	 this	period,	 there	are	 several	 clusters	of	previous	periods,	 but	 located	 in	 a	
different	quadrant,	this	is	a	sign	of	the	dynamism	of	our	research	area.	
	
	

1.6 Fourth period (2016-2020) 
	
This	last	period	is	remarkable.	If	we	take	a	general	look	at	all	the	works	analyzed	during	this	period,	
we	will	realize	that	the	vast	majority	are	related	to	SDN	networks,	regardless	of	the	quadrant	to	
which	they	belong	(Bu	et	al.,	2016;	Tang	et	al.,	2016).	The	above	makes	sense	because,	over	the	last	
few	 years,	 SDN	 networks	 have	 not	 only	 represented	 a	 network	 evolution	 but	 a	 disruptive	
technology.	Let	us	remember	that	in	the	previous	period,	SDN	was	en	emerged	issue.	
	
There	 are	 three	 recurring	 topics	 in	 the	 upper-right	 quadrant,	 of	 which	 the	 “machine-learning”	
cluster	stands	out,	which	was	an	isolated	sphere	between	2006	and	2010	and	now	is	a	motor	topic.	
It	is	the	motor	of	various	studies	related	to	the	diagnosis	of	faults	as	identification	of	attacks	and	
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malware	(Watson	et	al.,	2016),	detecting	abnormal	flows	(Kasai	et	al.,	2016),	and	forwarding	faults	
(Bu	et	al.,	2016).	
	
On	the	other	hand,	analyzing	each	sphere	of	 the	 lower	right	quadrant,	 the	basic	and	transversal	
topics,	there	are	several	related	to	machine	learning	and	big	data,	such	as	(Lin	et	al.,	2016;	Musumeci	
et	al.,	2019;	Yang	et	al.,	2017),	regardless	of	the	sphere	to	which	they	belong.	Some	of	these	works	
use	these	techniques	for	data	stream	analysis	(Ahmad	et	al.,	2017).	An	in-depth	analysis	shows	us	
that	the	research	in	this	quadrant	focus	on	the	study	of	network	performance.	
	

	
Figure	2.8	Strategic	map	for	period	20016-2020.	

	
The	transition	of	services	to	the	cloud	or	cloud	computing	has	become	a	fundamental	part	of	many	
companies'	 business	 strategy	 in	 recent	 years.	 As	 shown	 in	 the	 upper-left	 quadrant,	 the	 "cloud-
computing"	cluster	appears	as	an	isolated	topic,	but	its	proximity	to	the	emerging	research	quadrant	
is	also	evident.	This	sphere	contains	works	mainly	oriented	to	the	analysis	of	anomalies	 in	cloud	
environments	(Colman-Meixner	et	al.,	2016;	Sauvanaud	et	al.,	2018;	Watson	et	al.,	2016).	
	
Finally,	 it	 is	 interesting	to	analyze	the	works	 in	the	 lower-left	quadrant,	where	there	are	clusters	
such	as	"quality-of-service",	"prediction",	and	"data-mining".	Network	management	tasks	tend	to	
improve	the	quality	of	service	for	users	during	this	period	(Ahmed	et	al.,	2016;	H.	Wang	et	al.,	2017).	
Most	significantly,	prediction	tasks	are	closely	related	to	the	emerging	data	mining	process	in	the	
last	five	years	within	the	fault	diagnosis	field	(Duenas	et	al.,	2018;	Ozcelik	&	Yilmaz,	2017).	
	
As	 we	 have	 appreciated,	 network	 fault	 diagnosis	 has	 been	 a	 constant	 research	 topic,	 that	 has	
evolved	according	to	the	networks'	evolution	and	their	new	needs	over	 the	years.	So,	much	still	
remains	to	be	done	and	discuss.	
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2 Network fault diagnosis techniques  
	
We	can	extract	the	six	approaches	used	in	fault	diagnosis	tasks	shown	in	Figure	2.9	from	the	periods	
studied.	
	
Passive	techniques	monitor	a	network	by	deploying	monitoring	agents	on	networking	devices.	So,	
any	failure	condition	in	the	network	could	generate	multiple	alarms	by	monitoring	agents.	These	
techniques	are	named	passive	because	the	Network	Management	System	waits	passively	for	alarms	
to	be	sent	by	the	agents,	and	then	use	as	a	symptom	to	analyze	the	exact	failure	condition	in	the	
network.	(Steinder	&	Sethi,	2004a)	is	a	comprehensive	survey	of	these	approaches.	
	

	
Figure	2.9	Fault	diagnosis	techniques.	

	
Active	monitoring	 techniques	 use	 probing	 for	 a	 variety	 of	 network	management	 applications.	 A	
probing	station	is	a	node	in	the	network	that	transmits	one	or	more	packets	called	probes	to	monitor	
the	state	of	the	network.	Examples	of	probes	may	be	ping	or	traceroute;	probes	may	also	be	more	
complex	and	may	be	handled	by	any	protocol	layer.	The	use	of	probes	to	determine	the	network	
behavior	or	measure	the	quality	of	network	performance	is	called	probing	(Dusia	&	Sethi,	2016a).	
Active	monitoring	techniques	are	still	being	used	today.	Two	examples	of	their	use	in	the	current	
decade	are	(Likun	Yu	et	al.,	2010)	and	(Lu	et	al.,	2013),	which	use	probing	for	a	variety	of	network	
management	applications.	
	
The	 decentralized	 probabilistic	management	 approaches	 budded	with	 the	 goal	 of	 decrease	 the	
traffic	load	to	a	central	management	node.	In	this	technique,	each	network	node	has	embedded	a	
management	process.	The	network	nodes	communicate	with	each	other,	and	the	final	analysis	is	
reported	to	the	network	administrator.	Some	examples	of	related	works	that	propose	this	type	of	
technique	are	(Steinert	&	Gillblad,	2010)	and	(Prieto	et	al.,	2011).	
	
Around	2007,	Software-Defined	Networks	(SDN)	emerge	and,	therefore,	the	techniques	for	overlay	
and	virtual	networks,	such	as	those	proposed	by	(Gillani	et	al.,	2014;	Yan	et	al.,	2014)	and	(H.	Wang	
et	al.,	2015).	These	approaches	focus	on	solving	different	challenges	of	fault	diagnosis	process	for	
this	 type	of	networks,	 such	as	 inaccessible	 substrate	network	 fault	 information,	 incomplete	 and	
inaccurate	 network	 observations,	 dynamic	 symptom-fault	 causal	 relationships,	 and	 multilayer	
complexity.	
	
The	temporal	correlation	techniques	like	(Z.	Li	et	al.,	2009)	and	(Steinert	et	al.,	2011)	comes	up	in	
tackling	 the	 dynamic	 and	multilayer	 nature	 of	 networks	 and	 correlate	 internal	 events	 for	 fault	
localization.		
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While	the	learning	approaches,	such	as	statistical	and	machine	learning,	have	been	adopted	by	other	
techniques	over	time	to	serve	their	intended	purposes,	they	can	be	classified	in	a	separate	category.	
Then,	if	we	separate	the	learning	techniques	as	a	specific	type,	these	can	be	defined	as	those	that	
diagnose	the	empirical	data	provided	by	the	network	management	system.	These	techniques	would	
not	 require	 a	 complete	 dependency	model	 of	 a	 network.	 Some	 examples	 of	 related	works	 that	
propose	this	type	of	technique	are	(Mahimkar	et	al.,	2009)	and	(Kavulya	et	al.,	2012),	which	use	
statistical	 approaches,	 and	 (Johnsson	 &	 Meirosu,	 2013)	 and	 (Johnsson	 et	 al.,	 2014),	 which	
implement	traditional	machine	learning	approaches.	
	
Each	technique	can	favor	or	disfavor	aspects	of	the	network,	as	well	as	being	a	problem	by	itself.	As	
proof	 of	 this,	 passive,	 active,	 and	 decentralized	 methods	 are	 the	 most	 common	 traditional	
techniques	for	 fault	 localization,	but	they	are	 invasive	because	they	 increase	network	traffic	and	
control	overhead.	Techniques	for	overlay	and	virtual	networks	and	the	decentralized	management	
increase	the	internal	processes	of	the	network	because	the	first	needs	to	install	monitoring	agents	
on	 all	 overlay	 nodes,	 and	 the	 last	 requires	 having	 an	 embedded	 management	 process	 on	 all	
networking	devices.	Temporal	 techniques	mean	analysis	complexity,	and	all	 the	methods	named	
above	 need	 in-depth	 knowledge	 of	 the	 network	 connectivity	 and	 operations	 in	 addition	 to	 an	
extensive	understanding	of	network	behavior.	So,	fault	diagnosis	based	on	learning	techniques	can	
be	 useful	 because	 they	 would	 not	 require	 a	 complete	 dependency	 model	 of	 a	 network.	
Nevertheless,	existing	learning	techniques	to	date,	deal	with	insufficient	data	samples,	and	lengthy	
retraining	may	be	necessary	whenever	the	system	behavior	changes	significantly.		
	
	

3 Current fault diagnosis gaps 
	
Each	studied	period	has	problems	to	face,	but	undoubtedly,	some	issues	remain	intact	over	time	
despite	the	techniques'	evolution.	We	identify	several	gaps:	
	

a) None	of	the	studied	techniques	is	resilient	to	the	network	topology	changes.	For	example,	
if	network	structure	changes,	 the	 learning	 techniques	will	need	to	 learn	new	symptoms-
fault	relationships.	

b) The	existing	learning	techniques	to	date	deal	with	insufficient	data	samples.	They	require	
lengthy	retraining	whenever	the	system	behavior	changes	significantly	because	traditional	
machine	learning	techniques	learn	from	static	data,	which	will	become	obsolete	because	of	
that	changes.	

c) A	non-invasive	method	to	continuously	diagnose	the	network	symptoms	without	 leaving	
the	system	vulnerable	to	any	failures	has	not	been	found	in	the	state	of	the	art	revision.	The	
existing	models	to	date	based	on	learning	techniques	must	be	thrown	when	the	retraining	
period	occurs,	so	the	systems	become	vulnerable	to	any	failures.	

d) A	non-invasive	approach	resilient	to	the	dynamic	changes	of	the	network,	which	can	cause	
new	failures	with	different	symptoms,	has	not	been	found	in	the	literature.	

e) Although	there	are	studies	 that	detect	 faults	 in	real-time,	a	 technique	based	on	 learning	
(non-invasive	and	without	knowledge	of	network	model)	and	real-time,	has	not	been	found.	
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4 Problem Statement 
	
In	brief,	there	is	no	a	non-invasive	technique	to	continuously	diagnose	network	symptoms	without	
leaving	 the	 system	 vulnerable	 to	 any	 failures,	 nor	 is	 there	 a	 technique	 resilient	 to	 the	 dynamic	
changes	of	the	network	which	can	cause	new	failures	with	different	symptoms.	Hence,	this	work	
focuses	on	to	propose	a	fault	detection	approach	that	does	not	 increase	network	traffic,	control	
overhead,	or	internal	network	processes.		
	
We	hypothesized	that	if	there	is	a	phenomenon	of	failure	propagation,	the	symptoms	of	failures	can	
be	observed	at	levels	higher	than	their	origin.	The	peripheral	observation	of	symptoms	guarantees	
a	 non-invasive	 network	 monitoring	 because	 neither	 the	 traffic	 nor	 the	 control	 overhead	 is	
incremented	in	the	internal	level	of	the	monitored	network.		
	
This	 proposal	 also	 raises	 the	 combination	 of	 data	 analytics	 techniques	 based	 on	 incremental	
learning	algorithms	to	process	those	failure	symptoms	peripherally	observed.	We	conceive	an	online	
learning	model	for	this	purpose,	that	is,	to	process	symptoms	on-the-fly	and	continuously	during	
the	 operation	 of	 the	 network	 to	 detect	 faults	 that	 occurred	 in	 internal	 network	 elements.	 This	
learning	approach	contributes	to	timely	detect	 failures	 in	an	 IP-based	network.	Additionally,	 it	 is	
resilient	 to	 dynamic	 network	 changes	 because	 the	 incremental	 learning	 models	 guarantee	
continuous	learning	from	new	symptoms	adapting	the	model	by	self,	while	network	change,	so	does	
the	model.	
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Chapter	III: PALADIN	 -	 A	 Peripheral	 Fault	
Diagnosis	 Model	 for	 IP-based	
Networks	

	
	

“All	sorts	of	things	can	happen	when	you’re	open	
to	new	ideas	and	playing	around	with	things.”		

(Stephanie	Kwolek)	
	
	
This	 chapter	 presents	 the	 PALADIN	 model	 (PeripherAL	 fAult	 Diagnosis	 model	 for	 Ip-based	
Networks),	representing	this	work's	principal	and	general	objective.	This	model	proposes	a	module	
set	 to	diagnose	 faults	 in	 IP-based	networks	 through	peripheral	observation	of	 failure	symptoms,	
which	are	processed	continuously	and	timely	by	incremental	learning	algorithms.	In	this	way,	a	non-
invasive	and	resilient	fault	detection	to	the	dynamic	changes	of	the	network	will	be	guaranteed.	
	
PALADIN	consists	of	four	modules,	as	Figure	3.1	indicates.	The	identify	module	identifies	the	piece	
of	the	network	in	which	make	the	diagnosis.	The	collection	module	sets	the	rules	for	monitoring	
parameters	on	the	selected	network	piece.	The	structuring	model	establishes	how	to	structure	the	
monitored	parameters	before	diagnosing	faults.	Finally,	the	diagnosis	module	proposes	a	learning	
model	to	detect	failure	from	monitorisation	results.	The	first	module	is	executed	only	once,	and	it	
is	the	starting	point	of	the	entire	model.	All	other	modules	are	sequential,	and	their	execution	is	
continuous	and	infinite.	
	
The	following	sections	fully	describe	the	proposed	modules.	
	

	
Figure	3.1	PALADIN	-	Fault	diagnosis	model	for	IP-based	networks.	

	
	

Identify Collection Structuring Diagnosis
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1  Identify 
	
This	work	focuses	on	large	IP-based	networks	with	the	industry	wide	adopted	hierarchical	model,	
as	 described	 in	 Chapter	 I.	 Then,	 before	 any	 monitoring	 network	 process,	 it	 is	 essential	 to	
determinate	the	hierarchical	piece	of	network	to	diagnosis,	named	monitored	network.	For	these	
monitored	networks,	we	define	 the	peripheral	network	elements	as	 those	 that	 interconnect	 the	
network	with	other	networks;	in	other	words,	are	those	that	are	closest	to	the	Internet.	Figure	3.2	
shows	an	example	of	the	concepts	mentioned	above.	
	

	
Figure	3.2	Elements	of	monitored	network.	

	
The	 fault	 diagnosis	 proposed	 by	 our	 model,	 detects	 failures	 caused	 in	 internal	 layers,	 through	
information	from	peripheral	network	elements	only.	These	issues	will	be	covered	in-depth	in	the	
next	sections.	
	
	

2 Collection 
	
There	are	several	network	data	collection	approaches,	as	shown	in	Figure	3.3	and	surveyed	by	(Zhou	
et	 al.,	 2018).	 Our	 work	 focuses	 on	 collecting	 management	 information	 in	 addition	 to	 traffic	
information	from	the	peripheral	devices.	So,	the	active	probing	mechanisms	are	the	best	option.	
We	propose	to	use	an	SNMP-based	collection	mechanism	to	the	parameter	monitorization	in	the	
peripheral	elements	because	the	Simple	Network	Management	Protocol	(SNMP)	has	been	widely	
adopted	 (Khan	 et	 al.,	 2018).	 Also,	 its	 use	 in	 a	 significant	 amount	 of	 management	 activities	 for	
enterprise	 and	 service	 provider	 networks	 by	 almost	 all	 networking	 vendors,	 make	 it	 popular	
(Narayanan	et	al.,	2013).	
	
This	 module	 defines	 a	 periodical	 collection	 of	 parameters	 polled	 on	 the	 peripheral	 network	
elements	only.	So,	 this	approach	decreases	the	monitorization	traffic	and	control	overload	while	
networking	management.	Figure	3.4	shows	the	difference	between	traditional	monitorization	and	
our	proposal.	

Internet
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of	monitored network
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Figure	3.3	Classification	of	network	data	collection	approaches,	according	to	(Zhou	et	al.,	2018).	

	
	

	
Figure	3.4	Traditional	monitorization	(left)	vs	peripheral	monitorization	(right).	

	
Table	3.1	contains	the	parameters	set	to	collect	on	peripheral	elements.	This	set	was	selected	from	
the	analysis	performed	 in	 the	dataset	 construction	described	 in	Chapter	 IV.	With	 respect	 to	 the	
collection	or	monitorization	tool,	any	network	management	tool	with	SNMP	support	can	be	used	
(e.g.,	Zabbix	(Zabbix	LLC,	2021),	Nagios	(Nagios	Enterprises.	LLC,	2021),	and	Pandora	FMS	(Pandora	
FMS,	2020)).		
		

Table	3.1	Parameters	to	collect.	
PARAMETER	 DESCRIPTION	

Bits	received		 The	total	number	of	bits	received	on	each	 interface	of	the	device.	 It	 is	
measured	for	all	peripheral	device	interfaces.	

Bits	sent	 The	 total	 number	 of	 bits	 sent	 by	 each	 interface	 of	 the	 device.	 It	 is	
measured	for	all	peripheral	device	interfaces.	

Inbound	packets	discarded	 The	total	number	of	inbound	packets	discarded	by	each	interface	of	the	
device.	It	is	measured	for	all	peripheral	device	interfaces.	

Inbound	packets	with	errors	
The	 total	 number	 of	 packets	 that	 contained	 errors,	 received	 on	 each	
interface	of	the	device.	It	is	measured	for	all	peripheral	device	interfaces.	

Operational	status	
The	 current	 operational	 state	 of	 each	 interface	 of	 the	 device.	 It	 is	
measured	for	all	peripheral	device	interfaces.	

Outbound	packets	discarded	
The	 total	 number	 of	 packets	 discarded	 out	 of	 each	 interface	 of	 the	
device.	It	is	measured	for	all	peripheral	device	interfaces.	

Outbound	packets	with	errors	
The	 total	 number	 of	 packets	 that	 could	 not	 be	 transmitted	 by	 each	
interface	of	the	device	because	of	errors.	It	is	measured	for	all	peripheral	
device	interfaces.	

Device	uptime	 The	time	since	the	device	was	last	re-initialized.	
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SNMP	availability	
Peripheral	device	availability.	Values:	the	device	has	not	SNMP	enabled,	
or	the	device	has	SNMP	enabled.	

ICMP	response	time	
Time	between	echo	 request	 and	echo	 response	messages	 from	SNMP	
server	to	the	device.		

ICMP	loss	 Percentage	of	lost	packets.	

ICMP	ping	
Device	accessibility	by	ICMP	ping.	Values:	ICMP	ping	fails,	or	ICMP	ping	
successful.	

	
	

3 Structuring 
	
A	parameter	set	is	polled	each	period	on	the	peripheral	network	elements.	According	to	Figure	3.5,	
that	means,	 there	 are	:	 requests,	 one	 for	 each	 peripheral	 network	 element,	 so	we	 expected	:	
responses	periodically	(period	;).	However,	as	a	result	of	the	conditions	specific	to	each	network	
and	 the	 priority	 tasks	 of	 each	 device,	 one	 response	 is	 carried	 by	 several	 messages	 arriving	 in	
different	instants;	then,	one	response	has	a	distribution	of	parameters	over	time.	On	the	other	hand,	
the	PALADIN	model	should	be	independent	of	the	configuration	of	the	selected	peripheral	 layer,	
where	the	number	of	interfaces	of	the	monitored	devices	may	vary,	and	therefore	the	amount	of	
information	that	each	response	brings	(the	parameters	of	each	interface).	Under	this	scenario,	the	
Structuring	module	has	to	provide	m	vectors	of	values	ii,	where	ii	(named	instance)	represents	each	
polling	response	and	m	is	potentially	infinite,	and	each	vector	should	have	the	same	fixed	length.	
	

	
Figure	3.5	Structuring	conditions.	

	
Thus,	the	Structuring	module	has	to	deal	with	two	issues	to	perform	its	mission	successfully:	several	
messages	in	response	to	one	polling	and	several	interfaces	of	the	peripheral	element.	To	solve	them,	
we	propose	the	two	steps	showed	in	Figure	3.6	for	the	structuring	task.	The	first	step	is	the	grouping	
of	messages	that	contain	the	parameters	of	the	same	polling.	Section	2.1.1	of	Chapter	IV	indicates	
this	 procedure	 in	 depth.	 The	 second	 step	 is	 grouping	 the	 parameters	 by	 three	 interface	 sets	
(Internal,	Peripheral	and	External)	to	ensure	a	fixed	structure	for	each	response;	that	is,	an	interface-
based	grouping,	as	section	2.1.2	of	Chapter	IV	describes.	
	

	
Figure	3.6	Structuring	steps.	
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In	this	way,	as	the	Structuring	module	result,	each	response	has	a	fixed	number	of	parameters	and	
a	shared	timestamp.	Its	structure	is	the	one	raised	for	the	instances	of	the	SOFI	dataset	(Symptom-
Fault	 relationship	 for	 IP-Network)	described	 in	Chapter	 IV.	This	data	set	construction	follows	the	
first	three	modules	of	the	PALADIN	model	and	constitutes	the	reaching	of	the	first	specific	objective	
of	the	thesis.	
	
	

4 Diagnosis 
	
This	process	must	consider	that	one	instance	of	the	SOFI	dataset	is	obtained	for	each	polling	to	a	
peripheral	 device	 (:	4<=>4ℎ<=@A	B<C7D=:	<A<E<BCF).	 Moreover,	 a	 label	 is	 assigned	 to	 each	
internal	layer	characterising	the	on	failure	or	healthy	network	state,	so	the	number	of	internal	layers	
of	the	monitored	network	define	the	number	of	labels	(B)	the	model	must	deal	with;	then,	we	face	
a	multi-label	learning	problem	as	indicated	in	Figure	3.7.	
	

	
Figure	3.7	Diagnosis	conditions.	

	
Each	instance	will	have	G	possible	combinations	of	labels.	This	number	is	defined	by	equations	(2)	
and	(3),	where	H6 	represents	all	the	possible	labels	which	represent	the	state	of	the	layer	>	of	the	
monitored	network.	
	

	 H6 = 	IA@FF	F<C	D9	"JKL	M@C@F<C	A@N<AA<M	7>Cℎ	9@>AO=<F	I@OF<M	>B	A@2<=	>	 (2)	

	

	 G = 	
I@=M(H6)

6P'
6P# !

B! I@=M(H6)
6P'
6P# − B !

−
I@=M H6 !

B! I@=M H6 − B !

6P'

6P#

	 ; B = BOEN<=	D9	A@2<=F	 (3)	

	
For	example,	if	we	have	two	internal	layers	of	the	monitored	network,	there	are	two	label	sets	as	
equation	 (4)	defines.	Suppose	each	one	has	 two	possible	 labels.	Then,	equation	 (5)	produce	 the	
number	of	possible	combinations	taken	in	pairs	(because	there	are	two	internal	layers)	between	the	
two	sets.	
	

	
T = 	 @ @	>F	@	IA@FF	D9	9@>AO=<	I@OF<M	>B	A@2<=	T = U, KT 	
H = N N	>F	@	IA@FF	D9	9@>AO=<	I@OF<M	>B	A@2<=	H = U, KH 	

U = UD	9@>AO=<, KT = K@>AO=<	>B	A@2<=	T, KH = K@>AO=<	>B	A@2<=	H	
I@=M T = 2, I@=M H = 2		

(4)	

	

	
G = 	
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4
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1
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On	the	other	hand,	the	collecting	of	SOFI	instances	takes	place	every	fixed	time	period	ad	infinitum;	
consequently,	 the	Diagnosis	module,	as	 the	container	of	 the	 learning	model,	 receives	an	 infinite	
stream	of	SOFI	instances	(>6)	with	a	lapse	of	time	in	between	them.	So,	the	algorithm	has	to	operate	
indefinitely,	 deal	with	 large	 volumes	 of	 data,	 and	 needs	 to	 be	 tailored	 to	 the	 time	 available	 to	
perform	failure	classification	for	each	instance	(C\]^__6`6\^a6b' < ;	).	
	
This	condition	is	facing	us	to	several	challenges	depicted	in	Figure	3.8.	Using	a	limited	amount	of	
memory,	processing	instances	faster	than	they	arrive	dealing	with	each	one	within	a	fixed	interval	
and	updating	the	model	in	such	a	way	that	it	is	not	necessary	to	store	new	data	inexorably.	These	
aspects	cover	the	typical	data	stream	mining	learning	scenario,	so	it	is	challenging	on	its	own.		
	
Such	difficulties	are	amplified	in	networking	by	the	fact	that	the	time	elapsed	in	the	normal	state	of	
a	network	is	greater	than	in	a	fault	state.	So,	the	number	of	instances	that	we	will	classify	as	a	failure	
will	be	significantly	less	than	the	instances	that	represent	the	normal	network	behavior	(as	evidence,	
the	 class	 ratio	 in	 the	 SOFI	 dataset	 is	 approximately	 1:70).	 This	 phenomenon	 is	 known	 as	 class	
imbalance	and	is	a	problem	generally	associated	with	concept-drift	(Z.	Li	et	al.,	2020).	
	

	
Figure	3.8	The	ecosystem	of	challenges	to	be	faced	in	diagnosis.	

	
Incremental	algorithms	have	emerged	to	deal	with	the	frequent	arrival	of	new	data,	which	involves	
the	 three	 main	 aspects	 of	 the	 data	 stream	 learning	 scenario.	 Nevertheless,	 they	 alone	 are	
insufficient	 to	 support	 learning	 in	 imbalance	and	concept-drift	 contexts	 (as	 the	experiment	with	
SOFI	dataset	in	section	3	of	Chapter	V	demonstrates).		
	
The	last	two	issues	merit	further	analysis	to	abord	our	specific	problem.	The	next	section	explains	
the	options	for	dealing	with	the	challenges,	and	based	on	them,	the	components	of	the	PALADIN	
diagnostic	module,	which	meets	the	indicated	initial	conditions,	will	be	presented.	
	
	

4.1 How to tackle imbalancement and concept-drift 
	
There	 are	 three	 strategies	 to	 deal	with	 concept-drift	 (Bifet	 et	 al.,	 2018).	 Firstly,	 as	 Figure	 3.9(a)	
shows,	using	an	external	change	detector	algorithm	(one	or	more)	parallel	with	the	main	classifier	
over	 time.	 It	 measures	 stream	 properties	 (e.g.,	 standard	 deviation,	 or	 instance	 distribution)	 to	
detect	significant	changes.	When	a	change	is	detected,	it	triggers	the	revision	and	recalibration	of	
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the	 current	model.	 Secondly,	 as	 Figure	3.9(b)	 illustrates,	 feeding	 the	model	 from	estimators.	An	
estimator	 monitors	 a	 statistic	 from	 the	 data	 stream,	 and	 the	 model	 synchronizes	 with	 these	
statistics.	Thirdly,	adopting	an	ensemble	strategy,	as	Figure	3.9(c)	depicts.	It	means	implementing	a	
management	algorithm	that	selects	a	single	or	several	model-building	algorithms	at	different	times.	
The	management	algorithm	bears	the	responsibility	of	detecting	and	reacting	to	change	and	execute	
rules	 that	 enables	 it	 to	 create,	 erase,	 or	 revising	 the	 models.	 These	 three	 strategies	 can	 be	
implemented	alone	or	a	combination	of	them.	
	

	
Figure	3.9	Strategies	to	deal	with	concept-drift.	(Bifet	et	al.,	2018)	

	
On	the	other	hand,	our	fault	diagnosis	scenario	is	also	affected	by	class	imbalance.	The	imbalance	is	
a	 common	 and	 widely	 studied	 topic	 in	 traditional	 machine	 learning	 problems.	 It	 is	 addressed	
through	well-defined	techniques,	such	as	over-sampling1,	under-sampling2,	a	combination	of	both,	
and	penalized	models3.	Nevertheless,	deal	with	skewed	static	datasets	is	still	a	difficult	task,	so	for	
skewed	data	 streams,	 it	 gets	even	worse.	Consequently,	other	unique	characteristics	of	 this	 last	
context	must	be	taken	into	account.	
	
Those	characteristics	are	defined	by	(Fernández	et	al.,	2018a):	Firstly,	not	only	concept-drift	over	
time	but	also	the	ratio	of	skewed	classes	may	change	over	time	(in	fact,	our	problem).	Secondly,	the	
class	ratio	may	change	over	time,	and	even	it	could	change	so	much	that	the	imbalance	ratio	would	
reverse.	Nevertheless,	our	research	problem	does	not	embrace	this	characteristic	because	it	is	well-
known	that	 failure	 instances	will	always	be	a	minority	class.	Thirdly,	new	classes	may	emerge	or	
existing	ones	to	arrive	less	frequently,	even	disappearing.	This	aspect	does	not	concern	us	for	now	
as	our	objective	is	to	determine	whether	or	not	there	is	an	internal	fault.	The	increase	in	diagnostic	
granularity	 is	 future	 work.	 Fourth,	 the	 overlap	 between	 classes	 can	 increase,	 most	 notably	 if	
concept-drift	occurs,	so	a	classification	task	is	more	complicated	to	perform.	This	last	issue	could	
potentially	harm	us.	
	
As	a	result,	concept-drift	and	imbalance	in	data	stream	blend	several	limitations	that	give	rise	to	an	
emerging	paradigm	within	machine	learning.	
	

																																																													
1	Over-sampling	refers	to	add	copies	or	generate	synthetic	samples	from	the	minority	class.			
2	Under-sampling	refers	to	delete	samples	from	the	majority	class.	
3	Penalized	models	refer	to	punish	the	algorithm	when	it	makes	classification	mistakes	with	minority	class	
while	training.	So,	the	algorithm	is	being	forced	to	increase	its	learning	from	the	minority	class.	
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A	comprehensive	study	of	several	works	that	propose	approaches	to	deal	with	this	double	challenge	
and	all	the	difficulties	that	imbalance	entails,	is	presented	in	(Fernández	et	al.,	2018a).	It	is	found	
that	there	is	no	a	widely	adopted	algorithm	to	address	the	issue,	so	the	authors	who	have	faced	it	
adapt	 existing	 techniques	 for	 static	 datasets	 to	 contexts	 where	 the	 data	 arrive	 sequentially	 to	
infinity.	
	
Learning	from	imbalanced	and	drifting	data	streams	is	still	relatively	new.	Many	related	issues	still	
await	 to	 be	 appropriately	 analyzed,	 understood,	 categorized,	 and	 addressed	 (Fernández	 et	 al.,	
2018a).	So,	we	decided	to	adopt	the	general	framework	proposed	by	(S.	Wang	et	al.,	2013),	which	
has	been	the	baseline	for	emerging	works	and	fits	our	diagnosis	problem.	The	next	section	explains	
its	components	in	detail.	
	
	

4.2 Diagnosis components 
	
The	 paper	 (S.	 Wang	 et	 al.,	 2013)	 contends	 that	 imbalanced	 data	 streams	 require	 combined	
monitoring	of	class	ratio	and	drift	detection	over	time,	and	from	this,	proposes	a	general	framework	
for	learning	from	imbalanced	data	streams.	Figure	3.10	shows	this	framework,	which	also	represents	
the	diagnosis	module	for	the	PALADIN	model.	
	

	
Figure	3.10	Diagnosis	components	(S.	Wang	et	al.,	2013).	

	
There	are	three	principal	components,	the	concept-drift	detector,	the	class	imbalance	detector,	and	
the	 online	 classifier.	 These	 components	 communicate	with	 one	 another	 for	 information	 on	 the	
current	status	of	the	data	stream.		
	
On	the	one	hand,	the	class	imbalance	detector	brings	the	class	imbalance	status.	It	detects	which	
classes	belong	to	the	majority	and	minority,	what	is	the	current	class	ratio,	and	thus,	which	classes	
need	more	attention	from	the	classification	algorithm.		
	
On	the	other	hand,	the	concept-drift	detector	aims	to	detect	the	changes	in	the	data	distribution.	It	
must	be	able	to	discover	different	types	of	drifts	(sudden,	gradual,	incremental,	among	others).	It	
focuses	more	on	the	minority	class	thanks	to	the	class	imbalance	detector's	output	information,	and	
it	warns	that	imbalance	detector	about	possible	changes	in	the	skew.		
	
Finally,	the	online	classifier	decides	when	and	how	to	respond	to	the	imbalance	and	concept-drift	
based	on	the	above	components'	information.	The	"how"	refers	to	using	a	technique	to	cope	with	
imbalance	or	drift,	such	as	some	resampling	method.	Of	course,	it	is	also	responsible	for	making	a	
real-time	prediction.	
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The	 above	 framework	 (also	 our	 diagnosis	 components)	 addresses	 the	 ecosystem	 of	 challenges	
presented	 in	 the	 previous	 section	 because	 it	 incorporates	 two	 elements	 to	 directly	 tackle	 the	
problem	of	skewed	data	streams	and	concept-drift	over	time.	On	top	of	that,	it	defines	an	online	
learning	model	that,	by	its	nature,	can	deal	with	a	limited	amount	of	memory,	and	constant	model	
updating.	
	
Section	3	of	Chapter	V	details	the	results	of	the	proposed	components	implementation	using	the	
SOFI	 dataset	 as	 the	 data	 stream.	 The	 experiment	was	 carried	 out	 through	 twenty-five	 different	
incremental	 or	 online	 learning	 algorithms,	 the	 algorithm	 ADWIN	 (Bifet	 &	 Gavaldà,	 2007)	 as	 a	
concept-drift	detector	and	SMOTE	(Chawla	et	al.,	2002)	that	is	one	of	the	most	used	and	efficient	
rebalance	methods.	You	can	see	in	detail	the	tests,	the	analysis,	and	the	result	 in	the	mentioned	
section,	which	reflect	the	good	performance	of	the	framework	for	the	correct	diagnosis	of	faults.	
The	implementation	of	this	module	also	represents	the	reaching	of	the	second	specific	objective	of	
the	thesis.	 	
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Chapter	IV: Dataset	Construction	
	
	

“It	is	a	capital	mistake	to	theorize	before	one	has	data.		
Insensibly	one	begins	to	twist	facts	to	suit	theories,	

	instead	of	theories	to	suit	facts.”	
(Sherlock	Holmes	in	A	Scandal	in	Bohemia,	

author:	Arthur	Conan	Doyle,	1891)	
	
	
This	chapter	describes	the	process	of	building	a	dataset	of	symptom-fault	causal	relationships	for	
an	 IP-based	 network,	 from	 now	 SOFI	 (Symptom-Fault	 relationship	 for	 IP-Network)	 dataset.	 This	
process	 is	 based	 on	 CRISP-DM	 methodology	 (Chapman	 et	 al.,	 2000),	 which	 defines	 a	 six-phase	
reference	model	 for	 data	 mining	 projects	 shown	 in	 Figure	 4.1.	 Three	 of	 them	 refer	 to	 dataset	
construction,	and	they	are	our	steps	for	building	the	dataset	thanks	to	the	fact	that	the	sequence	of	
the	model	phases	is	not	rigid:	business	understanding,	data	understanding,	and	data	preparation.	
	

	
Figure	4.1.	Phases	of	the	CRISP-DM	reference	model.	

	
The	 initial	 step	 is	business	understanding,	which	 is	 focused	on	dataset	objectives	or	data	mining	
problem	definition.	In	this	respect,	the	objective	of	this	work	is	to	obtain	data	that	allow	relating	
faults	of	the	internal	network	elements	of	the	monitored	IP-network	with	the	symptoms	observed	
in	the	peripheral	network	elements.	
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The	 second	 step	 is	 data	 understanding,	 which	 refers	 to	 the	 data	 collection	 and	 exploration	
processes.	 At	 this	 point,	 the	 collected	 information	 is	 raw	 data.	 Finally,	 the	 third	 step	 is	 data	
preparation,	which	covers	the	activities	needed	to	construct	the	SOFI	dataset	from	that	raw	data.	
These	last	two	steps	are	described	in	greater	depth	in	the	following	sections.	
	
Another	essential	point	to	note	is	that	the	first	specific	objective	of	this	work	is	met	with	the	SOFI	
dataset	construction.	
	
	

1 Data understanding 
	
The	 data	 understanding	 is	 the	 fundamental	 basis	 for	 the	 SOFI	 dataset	 construction	 because	 it	
represents	the	ground	truth	of	failures	behavior	in	an	IP-network.	This	step	is	composed	of	three	
tasks,	as	shown	in	Figure	4.2.	Firstly,	in	the	data	collection	and	description	task,	the	monitoring	data	
from	an	IP-network	is	acquired	(traffic,	logs,	SNMP	polling	and	traps)	in	order	to	have	the	dynamic	
view	of	the	IP-network.	Secondly,	in	the	data	exploring	task,	the	examination	of	data	characteristics,	
the	attributes	distribution	analysis,	and	the	relationship	between	attributes	and	internal	events,	are	
performed.	Thirdly,	the	quality	verification	aims	to	detect	unsent	attributes	during	monitorization	
or	with	an	empty	value.	These	tasks	are	described	in	detail	in	the	next	subsections.	
	

	
Figure	4.2.	Data	understanding	activities.	

	

1.1 Fault data collection and description  
	
The	monitoring	data	collection	was	performed	in	an	extensive	campus	network	through	different	
network	monitoring	systems	which	supports	the	traditional	and	more	used	management	standards,	
such	as	SNMP,	Syslog,	and	sFlow	or	NetFlow.	Several	link	failures	with	impact	(the	traffic	significantly	
goes	down	during	 failure)	were	 induced	at	different	 instants,	 in	order	 to	 collect	healthy	 and	 in-
failure	 network	 behavioral	 patterns.	 Data	 are	 extracted	 directly	 from	 the	 monitoring	 systems	
storage	used.	
	
Within	this	chapter,	section	1.1.1	describes	the	used	network	scenario.	Section	1.1.2	exposes	the	
fault	data	collection	experiment.	Section	1.1.3	presents	the	process	for	extracting	raw	monitoring	
data	and	describes	all	the	assembled	data.	
	
1.1.1 Network scenario 
	
A	complete	large	enterprise	network	(refer	to	section	1	of	Chapter	I)	was	emulated	in	order	to	have	
an	accurate	knowledge	about	failures	and	total	control	over	them.	The	campus	infrastructure	is	the	
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monitored	network	on	which	fault	diagnosis	is	made,	so	the	peripheral	network	elements	are	the	
core	layer	devices	(see	Figure	4.3).	
	

	
Figure	4.3	Topology	of	the	Emulated	Enterprise	Network.	

	
The	 emulated	 network	 allows	 collecting	 real	 monitoring	 data	 because	 of	 it	 provides	 Internet	
connection,	 and	 all	 the	 carried	 traffic	 is	 generated	 from	 clients	 with	 access	 capabilities	 to	 the	
external	network	(such	as	DHCP	and	DNS	requests,	browser,	etc.).	

	
As	shown	in	Figure	4.3,	the	implemented	campus	module	emulates	all	the	campus	infrastructure	
layers	enabling	access	 to	about	more	 than	one	 thousand	 clients	 through	 four	VLAN.	All	 campus	
infrastructure	devices	 are	able	 to	 respond	 to	SNMP	 requests,	 send	event	messages	 to	a	 logging	
server	by	Syslog	protocol,	and	exports	 flow	records	 towards	a	server	collector	by	Netflow/sFlow	
protocol.	
	
In	this	network,	the	server	farm	only	deploys	the	network	services	and	the	management	block,	so	a	
simple	 data	 center	 was	 emulated	 collapsing	 the	 network	 layers	 into	 a	 single	 switch.	 Server	 A	
provides	all	the	network	services,	and	Server	B	contains	the	monitoring	software	tools.	
	
Because	of	the	emulated	network	only	provides	clients	with	Internet	access,	an	edge	distribution	is	
not	necessary;	moreover	this	block	is	optional	as	shown	in	section	1	of	Chapter	I.		
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For	the	same	above	reason,	the	implemented	enterprise	edge	module	only	emulates	the	Internet	
functional	area	by	an	edge	router.	Finally,	the	implemented	service	provider	edge	module	emulates	
two	 different	 ISP.	 Both	 ISP	 routers	 are	 bridged	 to	 the	 Ethernet	 Card	 of	 the	 machine	 in	 which	
emulation	runs,	in	order	to	get	a	real	connection	to	the	Internet.	
	
As	the	emulation	tool,	the	Graphical	Network	Simulator	3	(GNS3)	was	selected	because	it	is	an	open	
source,	 free	 real-time	 network	 software	 emulator,	 used	 by	 hundreds	 of	 thousands	 of	 networks	
engineers	and	companies	all	over	the	world	(such	as	AT&T,	Google,	NASA,	and	Exxon).	It	allows	the	
emulation,	configuration,	testing,	and	troubleshooting	of	virtual	and	real	networks.	GNS3	virtualizes	
real	hardware	devices	from	multiple	network	vendors,	whether	commercial	or	open	source	(such	
as	Cisco,	 Juniper,	HP,	and	Fortinet),	 so	enables	engineers	 to	 test	 interoperability	between	many	
vendors	and	to	combine	several	network	technologies	in	complex	networks	(such	as	SDN,	NFV,	and	
Linux)	(Bombal	&	Duponchelle,	2019).		
	
The	 components	 of	 each	 module	 of	 the	 enterprise	 network	 and	 the	 emulation	 hardware	 and	
software	 specifications	 are	 described	 below.	 Annex	 A	 contains	 all	 the	 detailed	 configuration	
(subnetting,	servers,	network	address	translation,	etc.)	for	each	device.	
	
1.1.1.1 Enterprise	campus	module	
	
The	enterprise	campus	has	four	VLAN	in	which	several	client	types	are	emulated	through	different	
types	 of	 virtual	 machines	 or	 container;	 client	 types	 are:	 Basic	 PC,	 Ostinato	 (packet	 generator),	
Firefox,	Windows	10,	PC	Loopback	and	Lubuntu.	Each	client	uses	DHCP	service	to	get	an	IP,	except	
those	of	VLAN4	which	have	a	static	network	configuration	for	management	reasons.	Each	Ethernet	
switch	represents	a	VLAN;	for	example,	clients	connected	to	EthSwVlan1	are	part	of	VLAN1	and	so	
on.	Thanks	to	segmentation	to	VLAN,	client's	traffic	is	sent	by	a	corresponding	access	switch	to	the	
distribution	layer	without	being	spread	across	the	other	access	switches	on	the	campus.	
	
For	high	availability,	the	access	switches	have	a	redundant	uplink	connection.	This	dual	attached	
ensures	the	access	switches	remain	connected	to	the	distribution	layer,	even	in	case	of	failure	of	
one	of	the	distribution	switches.	
	
There	are	two	emulated	distribution	switches	which	connect	the	lower	layer	to	the	core	and	route	
the	traffic	between	clients.	The	redundancy	in	this	layer	allows	having	two	equal-cost	paths	to	each	
destination	network.	According	to	the	OSI	model,	these	devices	work	in	both	layer	two	and	three.	
Their	 interfaces	 connecting	 the	 access	 layer	 are	 switch	 port	 or	 layer	 two	 interfaces	 while	 their	
interfaces	that	connect	the	core	are	 layer	three	 interfaces	which	use	the	OSPF	protocol	to	route	
traffic.	
	
The	core	of	the	campus	infrastructure	is	composed	of	two	core	switches	and	a	firewall.	The	firewall	
filters	and	inspect	traffic	for	forwarding	it	to	the	outside	or	inside	campus	infrastructure	according	
to	 administrative	 rules	 (for	 example,	 request	 DNS	 are	 allowed	 only	 from	 inside	 infrastructure	
campus	 to	 data	 center/server	 farm).	 It	 also	 has	 the	 responsibility	 of	 connecting	 the	 enterprise	
campus	module	with	the	enterprise	edge	module.	
	
The	emulated	server	farm	contains	a	multilayer	switch	(ServerSwich)	and	two	servers	which	make	
up	the	VLAN5.	Server	A	house	the	network	services:	NTP,	DHCP,	DNS,	and	RADIUS.	Server	B	deploy	
the	 monitoring	 software	 tools:	 Zabbix	 for	 SNMP	 probing,	 Rsyslog	 for	 collect	 Syslog	 messages,	
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LogAnalyzer	to	display	from	a	client	GUI	the	collected	logs,	and	nProbe	for	collect	traffic	flow	(any	
monitoring	tool	can	be	used.	It	is	not	intended	to	have	the	best	tools	but	those	commonly	used	by	
network	 administrators.	 The	 objective	 is	 to	 emulate	 a	 real-world	 business	 network.	 For	 this	
particular	emulation,	free	tools	were	selected).	The	firewall	grants	permission	to	clients	of	VLAN4	
for	access	to	monitoring	tools	and	managing	the	network.	
	
All	the	campus	network	elements	synchronize	their	time	with	NTP	server,	allow	the	management	
by	RADIUS	protocol,	deal	with	SNMP	 requests,	and	send	Syslog	message	and	traffic	 flows	to	the	
corresponding	servers.	
	
Table	4.1	presents	the	specification	for	each	network	element	of	the	enterprise	campus	module.	
	

Table	4.1	Network	elements	of	enterprise	campus	module.	
Submodule	 or	
Block	

Network	Element	 Vendor	 Software	Specifications	

Building	Access	

Access	Switches	 Cisco	 Cisco	vIOS-l2	Qemu	appliance	on	qcow2	disks	
(version	15.2)	

Ethernet	Switches	 GNS3	 Ethernet	 swithes	 are	 part	 of	 the	 Dynagen	
package	used	by	GNS3.	

Cl
ie
nt
s	

Basic	PC	 Linux	 Core	Linux	Qemu	Appliance	(version	4.7.7)	
Ostinato	 Linux	 Ostinato	Qemu	Appliance	(version	0.9.1)	
Firefox	 Linux	 Firefox	Qemu	Appliance	(version	31.1.1)	

Windows	10	 Windows	 Windows10	 VMWare	 Appliance	 (version	
w/Edge)	

PC	Loopback	 Linux	 Loopback	connection	
Lubuntu	 Linux	 Lubuntu	17.10	installed	in	VMWare	

Building	
Distribution	

Distribution	Switches	 Arista	 Arista	vEOS	Qemu	appliance	on	VMware	disks	
(version	4.17.8M)	

Campus	Core	 Core	Switches	 Cisco	 Cisco	vIOS-l2	Qemu	appliance	on	qcow2	disks	
(version	15.2)	

Firewall	 Juniper	 Juniper	 vSRX	 Qemu	 appliance	 on	 qcow2	 disk	
(version	17.3R1)	

Server	Farm	 Server	Switch	 Cisco	 Cisco	vIOS-l2	Qemu	appliance	on	qcow2	disks	
(version	15.2)	

Server	A	 Linux	 O.S.:	Ubuntu	16.04.4	LTS	
Servers:		
ISC	DHCP	server	
Bind	server	(for	DNS	service)	
NTP	server	
FreeRADIUS	

Server	B	 Linux	 O.S.:	Ubuntu	16.04.4	LTS	
Servers:	
nProbe	(version	8.4.180628)	
Zabbix	server	appliance	(version	3.4.2)	
Rsyslog	
LogAnalyzer	(version	4.1.6)	

	
The	sections	A.1,	A.2,	A.3	and	A.4	of	Annex	A	describe	the	internal	configurations	of	all	the	devices	
in	the	Enterprise	Campus	Module.	
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1.1.1.2 Enterprise	edge	module	
	
An	edge	router	was	emulated	as	a	boundary	between	the	enterprise	campus	module	and	the	service	
provider	module.	Also,	it	enables	the	campus	to	connect	to	the	Internet.	
	
In	 a	 real	 network	 and	 certainly	 in	 this	 emulated	 network,	 the	 service	 providers	 assign	 a	 public	
address	range	to	the	enterprise,	but	a	wider	private	address	range	is	used	inside	the	campus.	The	
edge	router	has	enabled	the	Network	Address	Translation	(NAT),	to	deal	with	these	incompatible	
addresses.	Finally,	the	Border	Gateway	Protocol	(BGP)	is	used	to	exchange	routing	information	with	
both	ISP.	
	
Table	4.2	presents	the	specification	for	the	network	element	of	the	enterprise	edge	module.	
	

Table	4.2	Network	elements	of	enterprise	edge	module.	
Network	Element	 Vendor	 Software	Specifications	
EDGE	router	 Cisco	 Cisco	IOSv	Qemu	appliance	(version	15.6(1)T)	

	
The	section	A.5.1	of	Annex	A	describes	the	internal	configurations	of	the	device	in	the	Enterprise	
Edge	Module.	
	
1.1.1.3 Service	provider	edge	module	
	
Two	high-performance	routers	were	emulated	to	play	the	Internet	provider	role.	These	routers	are	
bridged	to	the	interface	corresponding	to	the	NIC	of	the	machine	over	which	the	emulation	runs.	
	
Table	4.3	presents	the	specification	for	the	network	element	of	the	service	provider	edge	module.	
	

Table	4.3	Network	elements	of	service	provider	edge	module.	
Network	Element	 Vendor	 Software	Specifications	
ISP1		 Cisco		 Cisco	7200	router	(IOS	version	15.2(4)M7)	ISP2	

	
The	 section	A.5.2	 of	Annex	A	describes	 the	 internal	 configurations	 of	 the	devices	 in	 the	 Service	
Provider	Edge	Module.	
	
1.1.1.4 Hardware	and	Software	specifications	
	
All	devices	are	emulated	and	distributed	in	two	GNS3	servers.	Each	server	runs	over	an	independent	
machine,	and	there	is	one	GNS3	user	interface	through	which	the	devices	are	interconnected	and	
configurated.	After	a	preliminary	 implementation	 in	 the	network	 laboratory	at	UC3M,	 the	GNS3	
servers	were	installed	on	virtual	machines	running	over	the	Telco	2.0	laboratory	of	the	Telematics	
Department	of	Universidad	del	Cauca	which	is	composed	of	several	blade	servers	with	100	cores,	
768	GB	RAM,	and	24	TB	hard	disk.		

	
Figure	4.4	shows	the	details	of	the	machines.	The	hardware	and	software	specifications	for	each	
machine	are	listed	below.	
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Figure	4.4	Emulation	Requirements.	

	
Hardware	Specifications:	
Machine	1:	 

 RAM:	32	GB 
 Processor	model:	Intel(R)	Xeon(R)	CPU	E5-2670	v3	@	2.30	GHz	
 CPUs:	6	

Machine	2:	 
 RAM:	33	GB 
 Processor	model:	Intel(R)	Xeon(R)	CPU	E5-2670	v3	@	2.30	GHz 
 CPUs:	8 

	
Software	Specifications:	
Machine	1:		

Ubuntu	16.04,	GNS3	version	2.1.3,	Vmware	and	VIX	API,	and	Docker	version	17.12.0-ce	
Machine	2:		

GNS3	VM	version	0.10.14	(with	GNS3	version	2.1.6,	KVM	support	available	and	cloud	
node	support)	

	
Table	4.4	presents	the	memory	allocation	for	all	emulated	devices.	
	

Table	4.4	Memory	allocation	for	emulated	devices.	
Module	 Network	Element	 Assigned	RAM	
Enterprise	Campus	 Access	 Basic	PC	 256	MB	

Ostinato	 256	MB	
Firefox	 512	MB	
Windows	10	 1024	MB	
Lubuntu	 1024	MB	
AccSwitch-I	 2048	MB	
AccSwitch-II	 2048	MB	

Distribution	 DisSwitch-I	 3072	MB	
DisSwitch-II	 3072	MB	

Core	 CoreSwitch-I	 2048	MB	
CoreSwitch-II	 2048	MB	
Firewall	 8192	MB	

Server	Farm	 Server	A	 2048	MB	
Server	B	 2048	MB	
ServerSwitch	 1024	MB	

Internet GNS3	Server

GNS3	Server

GNS3	GUI
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Enterprise	Edge	 RouterEDGE	 3072	MB	
Service	Provider	Edge	 ISP1	 2048	MB	

ISP2	 2048	MB	
	
	
1.1.2 Data collection experiment 
	
The	data	collection	was	performed	through	the	following	three	consecutive	steps.	
	

• Monitoring	 tools	 configuration	 step:	 For	 this	 purpose,	 with	 the	 in-service	 emulated	
network,	the	Zabbix	server	was	configurated	with	official	Zabbix	templates	for	collecting	all	
the	generic	SNMP	parameters.		

	
According	to	the	template,	each	parameter	 type	 is	periodically	collected	with	a	different	
period,	also	called	the	polling	 interval,	and	they	have	associate	one	or	more	triggers.	For	
status	descriptors,	the	period	oscillates	between	30	and	60	seconds	(such	us,	device	uptime,	
and	availability).	For	traffic	descriptors,	the	period	oscillates	between	180	to	300	seconds	
(such	 us,	 bits	 sent,	 inbound	 packets	 with	 errors,	 and	 outbound	 packets	 discarded).	 For	
identification	parameters,	 the	period	 is	 set	 to	 3600	 seconds	 (such	us,	 device	 name,	 and	
device	description).	
	
The	above	default	 time	 conditions	 limit	 the	 construction	of	 complete	 instances	 for	 each	
measuring.	So,	it	was	necessary	to	set	the	same	period	for	collecting	all	the	parameters.	This	
polling	 interval	 is	180	seconds	or	3	minutes.	The	 time	decision	was	based	on	selecting	a	
midpoint	between	the	possible	times,	and	on	estimating	a	possibly	time	chosen	by	a	real-
world	network	manager.	
	
The	tools	Rsyslog	and	nProbe	were	executed	with	defect	configurations	because	these	are	
listening	servers.	The	first	one	stores	the	arriving	logs	in	a	simple	database.	The	second	one	
uses	comma-separated	formatting	to	save	traffic	flows.	
	
It	 is	 essential	 to	mention	 that	 although	 the	 SOFI	 dataset	 consists	 of	 peripheral	 network	
element	parameters,	 the	 collection	 is	 also	done	 for	 internal	 elements.	Undoubtedly	 it	 is	
necessary	to	have	the	ground	truth	to	corroborate	the	fault	propagation	as	well	as	to	cross	
any	essential	information	to	verify	the	dataset.	

	
• Selection	of	link	failures	step:	Based	on	different	works	like	(Gill	et	al.,	2011)	and	(Potharaju	

&	 Jain,	2013),	different	 faults	associated	with	 link	 failures	were	 listed	 to	analyze	how	 to	
induce	them	into	the	emulation.	The	Table	4.5	summarizes	this	analysis.	

	
In	order	to	eliminate	many	spurious	failures	from	our	analysis	and	focus	on	problems	that	
have	a	measurable	 impact	on	the	network,	 those	 listed	faults	were	 induced	for	different	
timescales	(5,	12,	and	17	minutes),	and	the	network	behavior	was	observed	while	clients	
navigated	around	several	Web	pages	or	Internet	services.	From	this	observation,	the	faults	
"link	flapping"	and	"unexpected	reloads"	did	not	cause	an	impact	failure	because	from	the	
user	 point	 of	 view	 the	 network	 never	 crash,	 and	 they	 are	 absent	 from	 the	 actionable	
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network	logs	(seen	in	LogAnalyzer	and	Zabbix	events).	Consequently,	these	two	faults	will	
not	be	induced	during	data	collection.	
	
In	parallel,	we	can	conclude	that	our	emulated	network	provides	a	good	approximation	of	
the	real	world,	because	of	those	two	faults	are	not	observable	from	monitoring	tools	and	
do	not	impact	connectivity	in	a	real	network	either	(Gill	et	al.,	2011).	

	
Table	4.5	Faults	to	induce.	

No.	 FAULT	 HOW	TO	INDUCE	FAULT	 FAILURES	OCCUR	
1	 CRC	packet	error	 N.P	
2	 Faulty	cables	 Removing	a	link	connection.	 P	
3	 Fiber	cuts	 Removing	a	link	connection.	 P	
4	 High	link	utilization	 Injecting	a	lot	of	traffic	from	a	client.	 P	
5	 Line	card	failure	 Shutting	down	interfaces	from	line	card.	 P	
6	 Link	down	 Shutting	down	one	or	both	linked	interfaces.	 P	

7	 Link	flapping	 Shutting	down	and	starting	up	one	or	both	
linked	interfaces,	several	times.	 O	

8	 Misconfigurations	 Removing	 a	 configuration	 line	 or	 invert	 a	
configuration	line.	 P	

9	 Operative	system	bugs	 N.P	

10	 Protocol	issues	 A	 cable	 disconnected	 or	 incorrectly	
connected	can	produce	incorrect	routes.	 P	

11	 Soft-parity	errors	 N.P	
12	 Software	bugs	 N.P	

13	 Unexpected	reloads	 Rebooting	 virtual	 machine	 of	 the	 network	
element.	 O	

14	 Distribution	layer	going	
down	

Shutting	down	the	access	switches	linked	of	
the	same	distribution	switch	for	a	while,	or	
shutting	 down	 the	 interfaces,	 of	 these	
access	 switches,	 connected	 to	 the	
distribution	layer	for	a	while.	

P	

	 N.P:	it	is	not	possible	to	induce	it.	
	

• Link	failures	induction	step:	For	this	purpose,	different	network	traffic	behaviors	are	first	
generated,	each	one	for	an	extended	period	of	time:	a)	clients	surfing	the	web,	b)	clients	
consuming	social	networks	and	surfing	the	web,	c)	clients	watching	online	video,	d)	all	the	
above.	The	network	behaviors	above	are	an	attempt	to	change	the	network	utilization	rate	
and	to	allow	a	comprehensive	analysis	before,	during,	an	after	failure;	so,	network	behavior	
is	occasionally	changed.	Then,	within	each	behavior,	different	failures	are	induced	randomly	
chosen	with	several	durations.	Between	each	induction,	there	is	at	least	the	necessary	time	
to	failure	recovery.	All	the	induced	failures	are	documented	in	order	to	have	a	well-known	
failure	set.	So,	we	register	the	type,	the	device	that	causes	the	failure,	and	the	time	interval	
for	each	induced	failure.	
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1.1.3 Data extraction and description 
	
As	shown	in	Figure	4.5,	the	network	has	both	a	static	and	dynamic	view.	We	define	the	static	view	
as	the	network	configuration,	and	the	dynamic	view	as	the	performance	in	time,	so	it	is	collected	
periodically.		
	
The	dynamic	view	 is	 the	base	 for	SOFI	dataset	construction	and	 is	composed	of	 four	data	 types.	
Firstly,	 the	 network	 event	 logs	 that	 are	 extracted	 from	 log	messages,	 SNMP	 polling,	 and	 traps.	
Secondly,	 the	 task	 coordination	 documents	 which	 are	 annotations	 or	 records	 about	 incidents	
(trouble	tickets).	They	amount	to	the	experiment's	well-known	link	failures.	Thirdly,	 the	network	
traffic	data	which	is	the	amount	of	data	transferred	on	network	interfaces.	It	is	extracted	from	SNMP	
polling	and	flows	captured	via	NetFlow/sFlow	protocol.	Finally,	the	maintenance	data	report	track	
activities	such	as	upgrades,	configuration	changes,	and	repairs.	

	
Figure	4.5	Network	views.	

	
Consequently,	two	data	types	must	be	collected	in	the	emulated	network:	the	network	event	logs,	
and	the	network	traffic	data.	Figure	4.6		shows	the	elements	involved	in	these	data	collection.		
	
As	shown,	the	traffic	flows	are	stored	in	comma-separated	text	files	with	the	extension	.flow,	and	
with	a	well-defined	structure,	so	it	is	not	necessary	to	perform	extra	tasks	for	their	extraction.	Each	
flow	is	described	by	116	parameters	according	to	Netflow	v9	standard	(Claise,	2004).	Table	B.1	of	
Annex	B	presents	the	descriptors	list.	
	
The	network	logs	are	stored	in	a	simple	database,	and	their	extraction	does	not	require	complex	
queries	 (it	 is	 a	 single	 table).	 Each	 incoming	 system	 log	 from	 the	 devices	 is	 described	 by	 the	
parameters	list	of	Table	B.2	of	Annex	B	and	are	based	on	Syslog	protocol	messages	standardized	by	
RFC	5424	(Gerhards,	2009).	
	

	
Figure	4.6	Elements	involved	in	network	event	logs	collection	and	network	traffic	data	collection.	
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On	the	contrary,	the	data	related	to	SNMP	requests	are	stored	in	a	large	complex	database,	so	it	
was	necessary	to	design	a	software	tool	to	extract	them.	The	collected	SNMP	data	is	described	in	
table	B.3	of	Annex	B	sorted	by	three	types:	traffic	descriptors,	status	descriptors,	and	identification	
descriptors.	 The	 first	 type	 contains	 parameters	 related	 to	 traffic	 and	 are	 collected	 from	 all	 the	
interfaces	of	each	device.	The	second	and	third	data	types	are	related	to	the	whole	device.	
	
Annex	C	describes	the	said	extraction	tool,	and	Figure	4.7	shows	the	structure	of	the	extracted	data.	
The	extracted	data	conforms	a	comma-separated	text	file,	where	its	attributes	are	the	parameters	
collected,	 and	 the	 timestamp	 reflects	 when	 they	 were	 collected.	 This	 means	 that	 for	 each	
timestamp	 registered	 in	 the	 parameter's	 history,	 there	 is	 an	 instance.	 So,	 each	 parameter	 is	
recovered	with	its	timestamp.	If	more	than	one	parameter	has	the	same	timestamp,	they	set	in	the	
same	instance.	If	a	parameter	is	not	recovered	for	a	timestamp,	its	value	is	set	to	-1.	This	is	done	
separately	for	each	device	of	the	monitored	network.	
	

	
Figure	4.7	Structure	of	the	SNMP	extracted	data.	

	
The	structure	of	the	SNMP	extracted	data	is	the	base	for	SOFI	dataset,	so	the	set	of	files	resulting	
from	this	extraction	is	called	SOFI	raw	data.	Flows	and	logs	are	used	to	explore	the	failure	behavior,	
when	a	fault	occurs,	or	to	cross	information	for	labeling.	All	data	collected	gathers	the	SOFI	ground	
truth.	
	
	

1.2 Raw data exploring 
	
This	 section	 describes	 the	 two	 raw	data	 exploration	 findings,	 the	 first	 related	 to	 the	 parameter	
delays	 in	 polling	 responses,	 and	 the	 second	 refers	 to	 the	 late	 triggering	 of	 internal	 events	 after	
failure.	
	
	
1.2.1 Parameter delays 
	
As	 shown	 in	 Figure	 4.8(a),	 in	 data	 extraction,	 getting	 all	 the	 values	 of	 monitored	 parameters	
periodically	was	expected.	 In	other	words,	 a	 value	 set	 should	have	been	 registered	at	 the	 same	
timestamp.	Figure	4.8(b)	shows	the	raw	dataset	structure	expected,	where	each	instance	has	all	the	
parameter	values,	and	the	time	between	instances	is	three	minutes.	
	
Nevertheless,	according	to	the	observations,	each	measure	is	divided	into	several	value	subsets	that	
arrive	 within	 a	 short	 time	 window.	 Meaning,	 there	 are	 delays	 between	 the	 same	 group	 of	
parameters	even	though	they	are	polled	simultaneously.		
	
	

timestamp,	 parameter1,	 parameter2,	 parameter3,	 .	.	.	 parametern	
t1,	 -1,	 v12,	 -1,	 .	.	.	 v1n	
t2,	 v21,	 -1,	 v23,	 .	.	.	 -1	
.	
.	
.	

	 	 	 	 .	
.	
.	

tn,	 vn1,	 -1,	 vn3,	 .	.	.	 -1	
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(a)	

	

	
(b)	

Figure	4.8	Expected	periodic	arrival	of	parameters.	
	
As	shown	in	Figure	4.9,	there	are	several	parameter	distribution	cases	in	time.	The	most	common	
(“case	a”	in	Figure	4.9),	concentrates	most	of	the	parameters	very	close	to	the	polling	time	and	the	
rest	of	the	parameters	during	the	next	seconds.	For	example,	the	polling	time	is	00:03:00,	and	the	
timestamp	of	the	first	measured	value	subset	is	00:03:03.	Exceptional	and	less	frequent	cases	were	
observed	(like	case	b,	c,	and	d	in	Figure	4.9).	For	these	cases,	the	concentration	of	most	parameters	
is	almost	a	minute	after	the	polling	time.	
	

	
Figure	4.9	Observerd	arrival	of	parameters	over	time.	

	
According	to	this	behavior,	the	original	raw	dataset	structure	is	as	shown	in	Figure	4.10.	Each	polled	
parameter	set	is	recorded	in	two	or	more	instances,	so	the	time	between	instances	is	not	fixed.	If	
two	instances	belong	to	the	same	parameter	set,	the	time	between	them	is	much	less	than	three	
minutes.	The	time	between	the	first	instances	of	two	consecutive	parameter	sets	is	approximately	
three	minutes	(Cc − C#	in	Figure	4.10).	
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Figure	4.10	SOFI	raw	dataset	structure.	

	
In	other	matters,	let’s	follow	the	example	of	values	distribution	shown	in	the	matrix	of	Figure	4.10.	
We	extract	the	matrix	of	values	of	parameters.	This	matrix	is	named	d.	Then,	let’s	suppose	that	the	
first	 three	 rows	 compose	 a	 polled	 parameter	 set,	 as	 Figure	 4.11(a)	 indicates.	 If	 these	 rows	 are	
extracted	to	a	new	matrix	named	T,	each	column	of	it	has	at	most	one	value	that	must	be	greater	
than	or	equal	to	zero	for	numeric	parameters,	or	one	value	that	must	be	different	from	null	for	text	
parameters.	We	can	express	T	as	B	columns-vectors	(see	Figure	4.11(b)),	where	B	is	the	number	of	
parameters	 collected.	Each	column-vector	 represent	an	element	 set,	as	 shown	 in	Figure	4.11(c).	
From	observations,	a	vector	whose	elements	are	the	maximum	values	from	these	sets	represents	
the	parameter	set	collected	in	one	polling	(see	Figure	4.11(d)).	
	

	
Figure	4.11	Analysis	of	the	obtained	matrix	of	parameter	values.	

	
So,	to	find	the	instances	of	the	same	group	of	parameters	in	a	SOFI	raw	dataset,	we	extract	the	d	
matrix	 (equation	 (6))	 of	E×B	 dimensions,	 where	E	 is	 the	 number	 of	 raw	 instances	 and	B	 the	
number	of	monitored	parameters.	Given	a	matrix	d,	we	can	get	as	many	T	matrices	as	possible	
where	each	one	conforms	to	equation	(7).	In	equation	(7),	N	and	:	terms	are	the	row	numbers	of	
the	first	and	last	instance,	which	make	up	the	group	of	instances	that	represent	a	set	of	parameters	
from	one	polling.	;	is	the	polling	period	(3	minutes	in	this	particular	case).	From	each	T	matrix,	we	
get	a	vector	f	by	equation	(8),	where	f	is	a	complete	instance	of	parameters	from	one	polling.	
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	 T = 	 g6) #h)h'

jh6hk
	, 7ℎ<=<	 Ck − Cj < ; 	∧ 	 Ck+# − Cj ≥ ; 	 (7)	

	
	 f = 	 E@3 T) #h)h'

	, 7ℎ<=<	T) = 	 g6)
jh6hk

	 (8)	

	
The	dataset	 labeling	 is	a	process	based	on	both	 the	 instances	 timestamp	and	well-know	failures	
timestamp.	So,	it	is	necessary	to	assign	a	suitable	timestamp	for	each	f	vector	found.	This	issue	is	
further	explained	in	section	2.1.1	Time-based	grouping.	
	
Furthermore,	 we	 noted	 that	 the	 dimension	 of	 SOFI	 raw	 dataset	 depends	 on	 the	 number	 of	
peripheral	element	interfaces.	Therefore,	the	features	set	varies	depending	on	the	peripheral	level	
selected.	The	solution	to	this	issue	is	explained	in	section	2.1.2	Interface-based	grouping.	
	
	
1.2.2 Late triggering of internal events 
	
It	 is	 expected	 that	 in	 the	polling	 immediately	 after	 the	moment	 of	 a	 fault	 induction,	 parameter	
values	collected	from	the	internal	devices	involved	in	a	failure	induction	could	trigger	an	event	in	
the	monitoring	 system	 (Zabbix	 for	 this	 case).	 However,	 the	 exploration	 of	 raw	 data	 indicated	 a	
sequence	of	events	triggered	at	unexpected	times	related	to	those	internal	devices4.	
	
Data	 exploration	 found	 that	 one	 or	more	 events	 are	 triggered	 in	 the	monitoring	 system	 at	 the	
induction	level	after	inducing	the	failure.	Figure	4.12	represents	the	sequence	observed.	The	figure	
shows	two	timelines.	The	upper	one	indicates	the	moment	of	fault	 induction	(F),	the	moment	of	
fault	 recovery	 (F'),	 and	 the	events	 (e1…	en)	 triggered	by	parameters	 values	 from	 the	device	 that	
causes	 the	 failure	 (internal	 element)5.	 A	 green	downward	 arrow	 represents	 the	beginning	of	 an	
event,	while	a	green	upward	arrow	represents	its	end.	Green	dotted	lines	indicate	the	duration	of	
each	of	those	events.	Because	of	the	granularity	per	minute	applied	in	this	work,	the	figure	indicates	
the	minutes	of	 induction	and	 recovery	of	 faults,	 shaded	with	blue,	 and	projected	 to	 the	 second	
timeline.	The	 total	duration	of	 the	 fault	 is	 shaded	with	 light	blue.	The	 lower	 timeline	 shows	 the	
moments	when	we	observe	sudden	changes	of	parameter	values	in	the	peripheral	device,	indicated	
by	 red	 asterisks.	 Finally,	 the	 red	 dotted	 lines	 are	 intended	 to	 indicate	 the	 delay	 between	 the	
occurrence	of	the	fault	and,	at	the	upper	timeline,	the	first	event	generated	 in	the	element	that	
causes	the	failure	and,	at	the	lower	timeline,	the	change	of	parameters	monitored	in	the	peripheral	
device.	
	
As	 indicated	by	 the	delays	between	 the	 induced	 failure	 and	 the	 reported	events	 at	 the	 internal	
element,	the	failure	 is	not	detected	 in	the	expected	timestamp,	and	there	are	even	cases	where	
events	 are	 never	 triggered.	 This	 issue	 is	 not	 harmful	 because	 the	 detection	 generally	 occurs;	
nevertheless,	 it	 affects	 the	 failure	 detection	 time	 so	 that	 it	 can	 involve	 risk	 for	 the	 monitored	
network.	

																																																													
4	It	is	assumed	that	behavior	could	be	due	to	a	mechanism	to	make	sure	something	has	indeed	happened	(the	
Zabbix	documentation	does	not	explain	this	behavior).	
5	The	triggered	events	are	inferred	from	the	behavior	of	the	parameters.	Some	examples	of	those	reported	by	
the	 monitoring	 system	 (Zabbix)	 are	 "no	 SNMP	 data	 collection",	 "high	 ICMP	 ping	 loss",	 "high	 error	 rate	
[interfaces	list]	[vlan	list]",	and	so	on. 
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Figure	4.12	Behavior	of	induced	fault.	

	
On	the	other	hand,	as	shown	in	Figure	4.12,	although	no	events	are	generated	at	the	peripheral	
layer	during	the	failure,	a	change	in	the	behavior	of	some	monitored	parameters	is	noticeable.	Those	
changes	 take	 place	 in	 the	 polling	 immediately	 after	 the	 fault	 has	 been	 induced	 in	 the	 internal	
element,	so	we	consider	them	as	failures	symptoms.	Section	1	of	Chapter	V	presents	an	in-depth	
analysis	 of	 parameter	 behavior	 during	 a	 failure.	 As	 a	 consequence,	 the	 peripheral	 symptom	
monitorization	can	significantly	mitigate	the	observed	late	triggering	of	internal	events	and	provide	
timely	fault	detection.	
	
	

1.3 Data quality verification 
	
We	manually	inspect	the	different	dimensions	of	data	quality	(Loshin,	2011)	in	the	SOFI	raw	data,	
focusing	 on	 those	 applicable	 to	 our	 context.	 This	 quality	 examination	 revealed	 three	 particular	
issues:	

1. In	 almost	 every	 instance,	 two	 text	 type	 values	 were	 blank	 (device_location	 and	
device_contact_details),	but	it	does	not	mean	that	they	are	missing	values.		

2. Three	 text	 type	 values	 almost	 always	 had	 the	 same	 values	 (device_description,	
device_name,	and	system_object_id)	because	they	are	the	device's	static	descriptors.		

3. Many	parameters	were	set	to	-1;	nevertheless,	they	do	not	represent	missing	values	for	the	
instance	either;	as	described	in	section	1.2.1	of	this	chapter,	this	is	since	a	parameter	set	
polled	at	the	same	time	can	arrive	dispersed	in	time.	

	
Consequently,	SOFI	raw	dataset	does	not	present	any	significant	quality	problem,	and	the	previous	
issues	will	be	resolved	in	the	data	preparation	process	(section	2	of	this	chapter).	
	
	

2 Data preparation: structuring 
	
As	shown	in	Figure	4.13,	the	SOFI	dataset	structuring	process	from	raw	data	consists	of	three	steps.	
The	first	step	is	to	group	those	instances	resulting	from	the	same	monitoring	request,	on	account	of	
delays	between	parameters	of	 the	same	polling	observed	 in	the	above	data	exploration.	Section	
2.1.1	presents	a	detailed	description	of	this	step.	
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The	second	step	is	to	group	parameters	so	that	the	SOFI	dataset	has	a	fixed	dimension	of	attributes,	
regardless	of	the	number	of	device	interfaces.	A	dataset	with	a	fixed	dimension	is	essential	for	the	
learning	model	of	the	diagnostic	process	to	be	valid	for	any	number	of	peripheral	device	interfaces,	
and	therefore	for	any	chosen	monitored	network.	This	process	is	further	explained	in	section	2.1.2.	
SOFI	dataset	is	the	result	of	executing	the	above	two	steps,	and	the	third	step	allows	labeling	it	from	
a	well-known	failure	set.	Section	2.1.3	describes	the	labeling	procedure.	
	

	
Figure	4.13	Steps	for	structuring	SOFI	dataset.	

	
Each	step	represents	a	function	that	transforms	a	matrix	into	another	one.	Figure	4.14	shows	the	
three	functions.	The	first	function	9 n 	transforms	a	matrix	n	of	size	O×g	into	a	matrix	*	of	size	
E×(g + 1),	where	E < O	because	of	rows'	grouping	and	a	new	attribute	represents	a	distribution	
range.	The	second	function	f * 	transforms	the	matrix	*	into	a	matrix	"	of	size	E×B	where	B < g	
since	the	operations	between	columns	make	a	dimensionality	reduction.	The	matrix	"	is	the	SOFI	
dataset	without	the	label.	Finally,	the	third	function	ℎ " 	transforms	the	matrix	"	into	a	matrix	o	of	
size	E×(B + 1),	adding	a	class	column.	The	matrix	o	corresponds	to	the	labeled	SOFI	dataset.	
	

	
Figure	4.14	Functions	for	structuring	SOFI	dataset.	

	
	
2.1.1 Time-based grouping 
	
The	raw	data	exploration	showed	different	arrival	times	for	a	parameter	set	from	the	same	polling	
because	of	their	values	are	sent	through	different	responses.	Consequently,	it	is	necessary	to	order	
those	responses	in	the	same	instance	of	the	dataset.		
	
For	this	purpose,	we	consider	the	raw	dataset	as	a	matrix	n	of	size	O×g,	as	defined	in	equation	(9).	
This	matrix	can	be	partitioned	into	smaller	matrices,	so	n	can	be	expressed	as	E	submatrices	pi,	as	
shown	in	equation	(10),	where	each	submatrix	obeys	equation	(11).	A	submatrix		pi	represents	a	
set	 of	 raw	 instances	 containing	 the	 same	 polling	 parameters,	 so	 the	 timestamps	 delimiting	 the	
matrix	obeys	the	condition	indicated	in	equation	(11),	where	;	is	the	polling	period	(3	minutes	in	
this	particular	case).	
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	 nq×r = =6) #h)hr

#h6hq
	 (9)	

	

	 nq×r =
p#
…
pi

	;E < O		 (10)	

	

	 pi = =6) #h)hr

jh6hk	 ;	7ℎ<=<	 =k# − =j# < ; 	∧ 	 = k+# #	– =j# ≥ ; ,		
@BM	=6# 	= 	9>=FC	4@=@E<C<=	9=DE	=6	>BFC@BI<	(C>E<FC@E4)	

(11)	

	
On	the	other	hand,	the	matrix	*	of	size	E×(g + 1)	(see	equation	(12))	represents	the	dataset	that	
stores	the	parameter	set	values	from	each	polling	in	a	single	instance.		
	

	 *i×(r+#) = M^) #h)h(r+#)

#h^hi
	 (12)	

	
Equation	(13)	represents	the	partition	of	*	 into	its	row	matrices	Mi.	Each	row	matrix	Mi	can	be	
partitioned	into	three	matrices,	as	shown	in	equation	(14).	The	first	matrix,	u,	is	a	one-dimensional	
matrix	with	a	unique	element.	This	element	is	the	timestamp	that	best	represents	the	arrival	time	
of	all	the	one	polling	response	messages.	The	second	matrix	v	is	a	row	matrix	that	contains	all	the	
arriving	 polling	 parameter	 values.	 The	 third	 matrix,	0,	 is	 a	 one-dimensional	 matrix	 with	 a	 new	
derived	parameter.	

	 *i×(r+#) =
M#
…
Mi

			 (13)	

	
	 Mi = 	 u		M		Y 	 (14)	

	
Each	column	of	pi	(from	column	2	to	the	last	column)	has	at	most	one	value	that	must	be	greater	
than	or	equal	to	zero	for	numeric	parameters	or	one	value	that	must	be	different	from	null	for	text	
parameters.	From	observations,	the	row	vector	whose	elements	are	the	maximum	values	of	each	
column	of	pi	represents	the	parameter	set	collected	in	one	polling.	The	matrix	v	comprises	those	
maximum	values	of	each	column	of	pi,	as	defined	by	equation	(15).	
	

	 v#×(ry#) = [max	(G))])h%hr				;	G) = I:	<A<E<BC	D9	pi
()) 			 (15)	

	
On	the	other	hand,	the	dataset	labeling	described	in	section	2.1.3	is	a	process	based	on	both	the	
instances	 timestamp	 and	well-known	 failures	 timestamp.	 So,	 it	 is	 necessary	 to	 assign	 a	 suitable	
timestamp	for	every	instance,	so	u	is	essential.	The	matrix	u	comprises	the	third	quartile	timestamp	
as	the	unique	element	(see	equation	(16)).	The	third	quartile	is	derived	from	the	values	of	the	first	
column	of	pi.	

	 u#×# = Cℎ<	Cℎ>=M	ÄO@=C>A	C>E<FC@E4	 (16)	

	
The	 choice	 of	 the	 third	 quartile	 timestamp	 follows	 the	 parameters'	 distribution	 over	 time	 and	
indicates	when	most	parameters	have	arrived	 (75%	of	 them).	 Two	examples	 are	 given	below	 in	
order	to	illustrate	and	understand	the	timestamp	choice.	
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Suppose	a	poll	to	a	peripheral	device	for	31	parameters,	the	polling	time	is	C8	and	the	device	split	
its	 response	 into	 three	 messages	 which	 arrive	 in	 three	 different	 timestamps.	 Figure	 4.15(a,b)	
illustrates	 the	number	 of	 parameters	 collected	 for	 each	 timestamp.	 If	 the	 items	 are	 ordered	by	
timestamp,	as	shown	in	Figure	4.15(c),	it	is	possible	to	find	the	third	quartile	(u3)	of	that	set.	The	
third	quartile	indicates	the	moment	at	which	75%	of	the	data	was	already	collected.		
	

	
(a)	

	
(b)	

	

	
(c)	

Figure	4.15	Parameter	distribution	in	one	polling	(example	1).	
	
The	formula	(17)	enables	us	to	calculate	the	u3	position,	where	it	is	understood	that	B	is	the	number	
of	collected	parameters.	 In	the	above	example,	the	u3	position	has	a	value	of	24.	Timestamp	C#	
corresponds	with	the	24th	parameter	time,	so	75%	of	the	data	arrive	between		C8		and		C#.	According	
to	Figure	4.15,	the	parameter	collection	carries	out	over	the	polling	minute,	and	the	u3	position	
confirms	 this.	 The	 selected	 timestamp	 for	 the	 polling	u#×#	 is	 C8;	 in	 other	 words,	 it	 is	 C#	 with	
granularity	per	minute	or	the	zeroth	minute	of	u3.	
	

	 u3 =

3 B + 1

4
, B	>F	@B	DMM	BOEN<=

	 	
3B

4
, B	>F	@B	<g<B	BOEN<=	

		 (17)	

	
Figure	4.16	shows	a	different	example.	Suppose	a	poll	of	68	parameters,	and	the	parameters	arrive	
at	four	different	times	distributed	in	an	interval	higher	than	or	equal	to	1	minute.	The	polling	time	
is	C8,	and	the	parameters	arrive	at	times	C#,	C%,	CÇ,	and	Cc.	Using	the	(17)	formula,	the	position	of	u3	
is	51,	which	means	Cc	is	the	moment	when	at	least	75%	of	the	parameters	have	arrived.	Hence,	the	
polling's	assigned	timestamp	is	at	the	next	minute	to	the	polling	time	and	equal	to	the	zeroth	minute	
of	Cc.	
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(a)	

	
(b)	

	

	
(c)	

Figure	4.16	Parameter	distribution	in	one	polling	(example	2).	
	
Additionally,	 the	 time-based	 grouping	 process	 generates	 a	 new	 attribute	 that	 indicates	 the	
distribution	 range	of	 the	arrives	of	 the	 same	polling	parameters.	 It	 is	 the	 time	 range	 that	exists	
between	the	arrival	timestamp	of	the	first	and	last	parameter.	For	example,	the	range	is	equal	to	
CÇ − C#	in	Figure	4.15,	while	the	range	is	equal	to	Cc 	− 	 C#,	for	the	Figure	4.16	example.	It	is	a	new	
derived	feature	of	the	SOFI	dataset	(see	equation	(18)).	This	is	why	the	size	of	the	resulting	matrix	
*	is	E×(g + 1)	as		(12)	defines.	
	

	 0#×# = =@Bf<	D9	Cℎ<	@==>g<F	D9	Cℎ<	4@=@E<C<=F	9=DE	Cℎ<	F@E<	4DAA>Bf	 (18)	
	
	
2.1.2 Interface-based grouping  
	
SOFI	raw	dataset	has	a	dimension	proportional	to	the	number	of	active	interfaces	in	the	peripheral	
device,	because	each	parameter	related	to	both	network	traffic	and	interface	status,	are	measured	
for	 every	 interface.	 Consequently,	 this	work	 proposes	 to	 standardize	 the	 size	 of	 the	 dataset	 by	
grouping	interfaces	and,	therefore,	the	parameters	measured	in	them.	
	
As	Figure	4.17	shows,	we	propose	to	divide	interfaces	of	peripheral	devices	into	three	levels.	The	
internal	level,	which	connects	the	device	with	the	monitored	network.	The	external	level,	in	charge	
of	connecting	the	device	with	external	networks.	Finally,	the	peripheral	level,	which	connects	the	
device	with	other	elements	at	the	same	level.	Each	level	represents	an	interface	set	determined	by	
the	statements	(19)	to	(22).	
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Figure	4.17	Interface	grouping	scheme.	

	
	

	 L		 = 	 >	 >	>F	@	B<C7D=:	>BC<=9@I<	Cℎ@C	F<BMF/=<I<>g<F	M@C@	9=DE	Cℎ<	EDB>CD=<M	B<C7D=:}	
I@= L 	= 	3		

(19)	

	
	 Ö	 = 	 <	 <	>F	@	B<C7D=:	>BC<=9@I<	Cℎ@C	F<BM/=<I<>g<F	M@C@	9=DE	Cℎ<	<3C<=B@A	B<C7D=:}	

I@= Ö 	= 	2		 (20)	

	
	 p	 = 	 4	 4	>F	@	B<C7D=:	>BC<=9@I<	Cℎ@C	F<BMF/=<I<>g<F	M@C@	9=DE	F@E<	A<g<A	<A<E<BCF}	

I@= p 	= 	Ü		 (21)	

	

	

T	 = 	 @	 @	>F	@	B<C7D=:	>BC<=9@I<	D9	Cℎ<	4<=>4ℎ<=@A	M<g>I<}	
L ∈ T, Ö ∈ T, p ∈ T	

T	 = 	L ∪ Ö ∪ p	
I@= T 	= 	3 + 2 + Ü		

(22)	

	
As	 mentioned	 in	 section	 1.1.3	 of	 this	 chapter,	 the	 raw	 dataset	 consists	 of	 SNMP	 parameters	
classified	into	three	types:	traffic	descriptors,	status	descriptors,	and	identification	descriptors.	The	
traffic	descriptors	are	nine	parameters	measured	in	the	interfaces;	therefore,	they	must	be	grouped	
by	interface	sets.	So,	for	each	interface	set	(L,	Ö,	and	p),	the	values	as	traffic	descriptors	must	be	
calculated	based	on	 the	parameters	of	 the	 individual	 interfaces.	For	 this	purpose,	we	divide	 the	
traffic	descriptors	into	three	subtypes	and	define	an	operation	for	each	subtype.		
	
First,	those	that	measure	an	aspect	of	interface	behavior	must	be	summed.	Equation	(23)	declares	
this	 sum,	where	H	 is	 a	 behavior	 parameter	 for	 any	 interface	 set	 (L,	Ö,	 and	p),	â	 is	 a	 behavior	
parameter	measured	on	an	interface	of	the	corresponding	set,	and	ä	is	the	set	size.		
	
Second,	 if	 the	 parameter	 describes	 an	 aspect	 related	 to	 the	 interface	 type,	 its	 value	 for	 each	
interface	 set	 is	 equal	 to	 the	 measure	 on	 any	 interface	 of	 the	 set.	 Equation	 (24)	 shows	 this	
declaration,	where	T	is	a	parameter	of	type,	for	any	interface	set	(L,	Ö,	and	p),	ã	is	a	parameter	of	
type	measured	on	an	interface	of	the	corresponding	set,	and	ä	is	the	set	size.		
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Third,	those	that	measure	the	interface	status	with	binary	values	must	be	averaged.	Equation	(25)	
defines	this	average,	where	Γ	is	a	status	parameter	for	any	interface	set	(L,	Ö,	and	p),	ç	is	a	behavior	
parameter	measured	on	an	interface	of	the	corresponding	set,	and	ä	is	the	set	size.	
	

	 Β = 	 â)

)

)P#

	 (23)	

	
	 Α = 	ã) 	 (24)	

	

	 Γ = 	
ç)

)
)P#

ä
	 (25)	

	
Table	4.6	details	the	subtype	of	each	parameter,	the	description	of	each	subtype,	and	the	operation	
to	be	performed	for	the	grouping.	
	

Table	4.6	Operations	for	each	subtype	of	traffic	descriptors.	
PARAMETER	 SUBTYPE	 DESCRIPTION	 OPERATION	

Bits_received		

Behavior	 They	 are	 parameters	 that	 describe	 the	
behavior	of	the	interfaces.	 (23)	

Bits_sent	
Inbound_packets_discarded	
Inbound_packets_with_errors	
Outbound_packets_discarded	
Outbound_packets_with_errors	
Interface_type	

Type	
They	 are	 parameters	 that	 describe	 the	
interface	type.	 (24)	Speed	

Operational_status	 Status	 They	are	parameters	that	determine	the	
status	of	the	interfaces.	 (25)	

	
All	in	all,	the	operations	reduce	the	multiple	traffic	descriptors	to	nine	parameters	for	each	interface	
set,	that	is,	twenty-seven	descriptors	added	to	five	status	descriptors	and	one	derived	descriptor,	
(see	 Table	 B.3	 of	 Annex	 B),	 for	 a	 total	 of	 thirty-three	 fixed	 parameters.	 The	 collected	 five	
identification	 descriptors	 measured	 in	 the	 device	 (Device_contact_details,	 Device_description,	
Device_location,	Device_name,	and	System_object_ID)	identify	each	peripheral	element	and	do	not	
provide	relevant	knowledge,	so	they	were	not	used.		
	
In	other	words,	the	result	of	operations	is	a	matrix	"	of	thirty-four	columns,	including	the	timestamp	
attribute,	as	(26)	defines.	

	 "i×' = F^j #hjh'
#h^hi	; B = 34	 (26)	

	
	
2.1.3 Event correlation or labeling 
	
We	considered	two	ways	to	label	the	dataset,	but	only	one	was	selected.	The	first	one	considers	the	
timestamps	when	the	device	that	causes	the	failure	triggers	events	during	induction.	The	second	
one	considers	the	time	interval	of	the	well-known	induced	faults.	As	mentioned	in	section	1.2.2	of	
this	chapter,	there	is	a	delay	between	the	moment	of	fault	induction	and	the	events	generated	due	
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to	it,	this	condition	evidences	that	the	events	are	generated	long	after	the	network	is	already	failing.	
Therefore,	they	cannot	be	considered	to	detect	the	failure	in	a	timely	manner.	For	this	reason,	this	
work	labels	the	SOFI	dataset	through	a	well-known	failure	set.		
	
As	mentioned	in	the	data	collection	experiment	(section	1.1.2	of	this	chapter),	we	register	the	type,	
occurrence	 layer,	 and	 time	 interval	 for	 each	 induced	 failure.	 So,	 the	 induced	 failure	 set	 can	 be	
grouped	into	several	subsets	according	to	the	occurrence	layer.	As	Figure	4.18(a)	shows,	there	are	
B	layers	below	the	peripheral	layer,	then	there	will	be	B	failure	subsets.	In	this	particular	case,	the	
access	layer	and	distribution	layer	are	the	deeper	layers	of	the	monitored	network;	thus,	there	are	
two	subsets	to	bear	in	mind.				
	
The	 labeling	 process	 takes	 each	 failure	 subset	 to	 label	 the	 SOFI	 dataset.	 As	 a	 consequence,	 the	
labeling	result	is	a	multilabel	dataset,	as	shown	in	Figure	4.18(b).	This	means	that	there	is	a	labeled	
SOFI	 dataset	 for	 each	monitored	 layer	 and	 that	 a	 SOFI	 dataset	 instance	 could	 have	 one	 or	 two	
classes.	
	

	
(a)	

	
(b)	

Figure	4.18	SOFI	labeling	approach.	
	
The	 labeling	process	 finds,	 for	each	well-known	 failure,	 the	 instances	whose	 timestamps	comply	
with	the	condition	(27)	and	label	them	according	to	the	layer.	T	if	the	failure	origin	is	in	the	access	
layer.	*	if	the	cause	is	in	the	distribution	layer.	If	an	instance	does	not	meet	the	condition	for	any	
failure,	its	label	is	UÖ.	
	

	 C>E<FC@E4K@OAC6 	≤ C>E<FC@E4LBFC@BI< ≤ C>E<C@E4K@OAC`	 (27)	

	
By	joining	the	two	labels,	we	have	a	data	set	that	identifies	if	a	failure	occurs	in	an	internal	layer	
(K	label)	or	 if	a	failure	does	not	occur	(UÖ	 label).	 It	 is	 important	to	note	that	this	work	does	not	
consider	failures	that	overlap	in	time	at	the	same	level	or	different	levels.	Nor	does	it	use	a	high	
granularity	in	labeling.	We	only	define	whether	or	not	there	is	a	fault,	but	we	do	not	differentiate	
the	type	of	failure	or	its	cause.	These	two	issues	are	future	challenges.	
	
	

3 SOFI dataset summary 
	
The	SOFI	(Symptom-Fault	relationship	for	IP-Network)	dataset	is	the	result	of	the	implementation	
of	the	previous	processes	 in	a	monitored	network	of	two	 internal	 levels.	SOFI	was	collected	at	a	
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different	time	in	several	days.	It	contains	12971	instances,	which	correspond	to	about	649	hours	of	
network	monitoring,	and	during	around	10	hours	of	that	time,	the	network	was	fault	 induced	at	
different	time	intervals.		
	
SOFI	has	three	labeled	versions.	All	versions	have	the	same	instances	and	are	differentiated	by	the	
label	classes:	
ü The	 first	 version	 is	 labeled	by	NE	 and	 F	 classes,	where	NE	 indicates	 normal	 behavior,	 and	 F	

represents	in	failure	behavior	of	the	monitored	network	regardless	of	the	layer	where	the	failure	
occurs.	This	dataset	version	is	the	object	of	study.	

ü The	second	version	is	labeled	by	NE	and	A	classes,	where	A	indicates	in	failure	behavior	in	the	
access	layer.	This	version	does	not	contain	failure	information	about	the	distribution	sayer.		

ü The	third	version	is	labeled	by	NE	and	D,	where	D	indicates	in	failure	behavior	in	the	distribution	
layer.	This	third	version	does	not	contain	failure	information	about	the	distribution	layer.		

	
As	evidenced	by	the	relationship	of	hours	of	monitoring	in	normal	and	in	failure	states,	SOFI	 is	a	
highly	imbalanced	dataset	with	an	approximate	1:70	ratio,	being	failure	class	the	minority	class.	
	
Finally,	each	sample	in	the	dataset	consists	of	the	33	features6	listed	in	Table	4.7	and	the	timestamp	
and	a	label	class.	
	

Table	4.7	SOFI	attributes	list.	
SOFI	ATTRIBUTES	

P_Bits_received	 EX_Inbound_packets_with_errors	 IN_Interface_type	
IN_Bits_received	 P_Outbound_packets_discarded	 EX_Interface_type	
EX_Bits_received	 IN_Outbound_packets_discarded	 P_Speed	
P_Bits_sent	 EX_Outbound_packets_discarded	 IN_Speed	
IN_Bits_sent	 P_Outbound_packets_with_errors	 EX_Speed	
EX_Bits_sent	 IN_Outbound_packets_with_errors	 SNMP_availability	
P_Inbound_packets_discarded	 EX_Outbound_packets_with_errors	 ICMP_loss	
IN_Inbound_packets_discarded	 P_Operational_status	 ICMP_ping	
EX_Inbound_packets_discarded	 IN_Operational_status	 ICMP_response_time	
P_Inbound_packets_with_errors	 EX_Operational_status	 Device_uptime	
IN_Inbound_packets_with_errors	 P_Interface_type	 Range	

	
SOFI	repository	is	https://data.mendeley.com/datasets/tc6ysmh5j8/	(Vargas-Arcila	et	al.,	2021).	 	

																																																													
6	 The	 collected	 identification	descriptors	 like	Device_name,	Device_description,	 and	 so	on,	were	not	used	
because	they	are	identifying	data	for	each	peripheral	element	and	do	not	provide	relevant	knowledge.	The	
collected	raw	data	are	described	Table	B.3	in	Annex	B.	
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Chapter	V: 	Experiments	
	
	

Every	stumble	is	not	a	fall,		
and	every	fall	does	not	mean	failure		

(Oprah	Winfrey)	
	
	
This	chapter	presents	the	experiments	and	analyses	that	support	the	viability	of	our	Peripheral	Fault	
Diagnosis	Model	for	IP-based	Networks	(PALADIN).	The	first	section	corresponds	to	a	data	exploring	
that	allows	us	to	reveal	the	existence	of	the	fault	propagation	phenomenon	to	a	peripheral	level,	
which	 demonstrates	 the	 feasibility	 of	 our	 approach.	 The	 second	 section	 compares	 several	
incremental	learning	algorithms	for	data	streams	implemented	according	to	the	components	of	the	
diagnosis	model.	This	same	section	compares	the	performance	of	these	algorithms	with	the	results	
of	their	basic	 implementation.	Both	explorations	suggest	sufficient	pieces	of	evidence	to	support	
our	proposal.	
	
	

1 Structured data exploring 
	
If	there	is	a	sudden	change	in	the	behavior	of	the	monitored	parameters	in	a	peripheral	device	when	
the	 failure	 occurs	 in	 an	 internal	 element,	 it	 would	 mean	 that	 there	 is	 a	 fault	 propagation	
phenomenon.	So,	those	parameter	changes	would	represent	the	failure	symptoms.	This	is	why	we	
observed	the	behavior	of	all	the	monitored	parameters	for	several	failure	time	windows,	including	
pre-	and	post-failure	time	intervals.	We	certainly	use	the	SOFI	dataset	for	the	analysis.	
	
There	are	four	findings	as	a	result	of	observations.	Table	5.1	 indicates	the	parameters	related	to	
each	finding.	Firstly,	a	parameter	subset	has	constant	values	not	only	at	failure	time	but	also	at	all	
times.	This	parameter	subset	contains	three	status	descriptors	and	seven	traffic	descriptors.	Within	
the	traffic	descriptors,	 two	are	those	which	determine	the	 interfaces	type,	one	 is	 the	parameter	
which	 determines	 the	 operational	 status	 of	 the	 interfaces,	 and	 four	 that	 measure	 the	 packets	
discarded	and	with	errors	in	the	interfaces.	
	

Table	5.1	Parameter's	findings	details.	

FINDING	 PARAMETER	
NAME	 INTERFACES	 TYPE	

CONSTANT	BEHAVIOR	
Inbound_packets_discarded	 P,	I,	E	 Traffic	descriptor	

(Behavior)	Inbound_packets_with_errors	 P	
Outbound_packets_discarded	 P,	I,	E	
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(not	only	at	failure	
time	but	also	at	all	

times)	

Outbound_packets_with_errors	 P	

Operational_status	 P,	I,	E	 Traffic	descriptor	
(Status)	

Interface_type	 P,	I,	E	 Traffic	descriptor	
(Type)	Speed	 P,	I,	E	

SNMP_availability	 N/A	
Status	descriptor	ICMP_loss	 N/A	

ICMP_ping	 N/A	

SPORADIC	PEAKS	 Range	 N/A	 Calculated	
parameter	

VARIABLE	BEHAVIOR	
without	significant	

change	

Bits_received	 P	
Traffic	descriptor	

(Behavior)	
Bits_sent	 P	
Inbound_packets_with_errors	 I,	E	
Outbound_packets_with_errors	 I,	E	
ICMP_response_time	 N/A	 Status	descriptor	Device_uptime	 N/A	

AFFECTED	BEHAVIOR	
when	the	failure	occurs	

Bits_received	 I,	E	 Traffic	descriptor	Bits_sent	 I,	E	
	
Secondly,	the	Range	parameter	has	a	constant	value	at	failure	time	but	presents	sporadic	peaks	at	
different	timestamp	outside	failures.	Figure	5.1	shows	the	Range	parameter	behavior	at	two	ample	
time	intervals	for	the	two	peripheral	elements	(SwitchCore	I	and	SwitchCore	II).	The	plotted	time	
intervals	cover	different	failure	times.	Although	the	sudden	changes	of	the	Range	parameter	do	not	
match	 those	 times,	 these	 could	be	due	 to	a	 change	 in	 the	network	 traffic	behavior	 (increase	or	
decrease	in	traffic),	so	Range	is	not	a	parameter	directly	related	to	failures.		
	
Thirdly,	several	parameters	behave	as	variables	without	a	notably	significant	change	at	failure	time.	
Figure	5.2	to	Figure	5.5	show	the	behavior	of	five	of	them	for	the	two	peripheral	elements	and	the	
failure	 types	 under	 the	 spotlight.	 We	 have	 selected	 two	 impact	 failures	 to	 show;	 the	 first	 is	
"Distribution	 layer	going	down",	 caused	 in	 the	access	 layer,	and	 the	 second	 is	 "protocol	 issues",	
caused	in	the	distribution	layer.	The	plots	illustrate	the	failure	time	window	broadened	to	note	the	
parameter	behavior	before,	during	(red	timeline),	and	after	failure.	
	
As	 figures	 show,	 the	 Device_uptime	 descriptor	 presents	 a	 linear	 behavior	 (Figure	 5.4),	 the	
Inbound_packets_with_errors	parameter	for	the	external	interfaces	presents	sporadic	peaks	even	
sometimes	within	 the	 failures	 time	window	 (Figure	 5.5),	 and	 the	other	 attributes	 show	variable	
values.	 Hence,	 there	 is	 no	 pattern	 of	 behavior	 change	 for	 any	 of	 these	 parameters,	 so	 it	 is	 not	
possible	to	determine	at	a	glance	if	they	are	affected	or	not	during	a	failure.	
	
	
	
	
	
	
	
	
	
	
	



	 61	

	
Figure	5.1	Range	parameter	behavior	at	different	time	intervals.	

	
	

	
Figure	5.2	ICMP_response_time	parameter	behavior	before,	during,	and	after	the	failure.	The	failure	time	interval	is	

indicated	in	red.	
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Figure	5.3	P_Bits_received	and	P_Bits_sent	parameters	behavior	before,	during,	and	after	the	failure.	The	failure	time	

interval	is	indicated	in	red.	
	
	

	
Figure	5.4	Device_uptime	parameter	behavior	before,	during,	and	after	the	failure.	The	failure	time	interval	is	indicated	

in	red.	
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Figure	5.5	E_inbound_packets_with_errors	parameter	behavior	before,	during,	and	after	the	failure.	The	failure	time	

interval	is	indicated	in	red.	
	
Fourthly,	the	parameters	Bits_received	(for	I	and	E	interface	set)	and	Bits_sent	(for	I	and	E	interface	
set)	change	their	values	due	to	the	induced	failures,	as	Figure	5.6	shows.	For	example,	the	parameter	
Bits_received	for	the	external	interface	set	decreases	its	value	at	the	polling	time	immediately	after	
causing	a	failure.	Meanwhile,	the	Bits_received	discriminator	for	the	internal	interface	set	presents	
a	significant	decrease	or	increase	(depending	on	the	peripheral	device	and	the	induced	failure)	once	
the	failure	is	induced.	Likewise,	the	four	parameters	have	a	recovery	time	after	the	failure	window.		
	
As	Figure	5.6	well	demonstrates,	these	parameters	are	affected	when	the	failure	occurs;	therefore,	
we	interpret	them	as	failure	symptoms	as	well	as	evidence	of	the	existence	of	the	fault	propagation	
phenomenon,	which	makes	feasible	the	hypothesis	of	this	research.	
	

	
Figure	5.6	E_Bits_received,	I_Bits_received,	E_Bits_sent	and	I_Bits_sent	parameters	behavior	before,	during,	and	after	

the	failure.	The	failure	time	interval	is	indicated	in	red.	
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The	previous	observations	suggest	that	a	fault	propagation	phenomenon	occurs	when	a	fault	takes	
place	in	internal	levels	of	a	monitored	network.	This	phenomenon	only	happens	for	impact	failures,	
and	its	manifestation	is	the	change	in	behavior	of	some	parameters	monitored	from	the	peripheral	
level.	
	
Parameters	 that	 manifest	 the	 failure	 symptoms	 are	 those	 related	 to	 the	 traffic	 carried	 by	 the	
peripheral	devices.	Then,	they	present	either	a	gradual	increase	or	decrease	in	their	value	during	
the	failure	time.	This	gradual	behavior	is	also	attributed	to	fault	propagation.	Likewise,	the	recovery	
values	of	each	affected	parameter	are	evident,	so	we	affirm	that	as	there	 is	a	propagation	time,	
there	 is	 also	 a	 recovery	 time	 of	 the	 failure,	 both	 reflected	 in	 the	 level	 of	 observation	 of	 the	
symptoms.	
	
In	 conclusion,	 the	proposed	peripheral	 and	non-invasive	monitoring	approach	 is	 feasible	 for	 the	
diagnosis	of	impact	link	failures.	It	represents	a	novelty	way	with	the	possibility	of	solving	persistent	
gaps	in	traditional	works.	
	
	

2 A brief experimental analysis for traditional 
machine learning models with the SOFI dataset 

	
In	order	to	have	a	deeper	knowledge	base	about	the	collected	and	labeled	data	(SOFI	dataset),	this	
section	 analyses	 the	 fault	 classification	 performance	 of	 several	 traditional	 machine	 learning	
algorithms	and	applies	resampling	methods	to	deal	with	imbalanced	data.	
	
	

2.1 Experimental setup 
	
Using	 the	 Weka	 tool's	 experimenter	 environment	 (Witten	 et	 al.,	 2017),	 an	 experiment	 was	
configured	 for	 testing	 and	 training	 seven	 traditional	machine	 learning	 algorithms	 over	 the	 SOFI	
dataset7.	Those	algorithms	are	Naive	Bayes,	Multilayer	Perceptron,	K-Nearest	Neighbors,	Boosting,	
Bagging,	C4.5,	and	PART.	
	
It	should	be	pointed	out	that	the	SOFI	dataset	consists	of	two	dataset	files	because	there	are	two	
peripheral	network	elements,	so	both	collect	network	monitoring	data.	All	the	dataset	files'	values	
were	normalized	and	resampled	to	get	two	new	SOFI	versions	for	each	peripheral	element.	This	was	
done	because	we	already	know	that	SOFI	is	an	imbalanced	dataset,	so	it	 is	necessary	to	consider	
techniques	 that	 avoid	algorithms	 ignoring	 the	 learning	 from	 the	minority	 class	or	 instances	 that	
represent	 network	 failures.	 So,	 two	 resampling	 methods	 were	 used:	 undersampling	 and	
oversampling.		
	
The	undersampling	approach	reduces	the	dataset	size	by	eliminating	several	instances	belonging	to	
the	majority	class	and	preserving	all	the	samples	belonging	to	the	minority	class.	This	experiment	

																																																													
7	 It	 is	 important	 to	 clarify	 that	 the	 timestamp	 attribute	 was	 not	 included	 in	 this	 experiment	 since	 this	
parameter	only	indicates	the	instances'	order.	
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implements	random	undersampling,	that	is,	random	deletion	from	the	healthy	network	instances	
to	obtain	a	small	subset	of	the	majority	class	and	a	1:1	ratio	of	balancing.	
	
The	oversampling	method	creates	new	instances	from	the	minority	class	by	synthetic	creation	or	
replicating	 samples.	 This	 experiment	 implements	 Synthetic	 Minority	 Oversampling	 Technique	
(SMOTE)	 (Chawla	 et	 al.,	 2002)	 to	 get	 synthetic	 instances	 from	 in	 fault	 network	 state.	 SMOTE	
performs	an	iterative	process	which	can	be	explained	using	Figure	5.7.	First,	it	randomly	selects	an	
instance	from	the	minority	class	(vector	T)	to	get	the	nearest	neighbor	(vector	H),	and	it	takes	the	
difference	between	the	two	(T − H	line).	Then,	it	multiplies	the	difference	with	a	random	number	
between	 0	 and	 1.	 The	 above	 finds	 a	 random	 point	 (4)	 along	 the	 line	 between	 the	 vectors	 and	
therefore	causes	a	new	synthetic	instance	(p)	(Fernández	et	al.,	2018b).	
	

	
Figure	5.7	Synthetic	Minority	Oversampling	Technique	(SMOTE).	

	
In	summary,	the	Weka	experiment	executed	seven	algorithms	over	three	different	SOFI	versions	
(original,	undersampled,	oversampled),	and	each	version	consists	of	two	dataset	files.	
	
The	five	evaluation	metrics	described	in	the	next	section	were	taken	as	references	to	compare	the	
algorithms'	 performance	 and	 select	 the	 best	 models.	 Furthermore,	 the	 popular	 k-fold	 cross-
validation	method	was	 configured	 to	 estimate	 the	metrics	 values.	 The	 cross-validation	 involves	
splitting	the	dataset	into	k	groups	or	folds,	and	the	model	training	and	testing	are	executed	k	times.	
The	first	time,	the	first	group	is	the	testing	data,	while	the	model	fits	the	other	folds.	The	second	
time,	the	second	group	is	the	testing	data,	while	the	model	is	fitted	on	the	other	folds,	and	so	on.		
At	the	end	of	iterations,	the	performance	is	estimated	by	averaging	the	results	from	the	k	executions	
(Zhang	et	al.,	2020).		
	
	

2.2 Performance evaluation metrics 
	
The	 most	 used	 and	 easy	 way	 to	 evaluate	 the	 classification	 models	 is	 computing	 the	 accuracy	
(percentage	 of	 correctly	 classified	 instances).	 Nevertheless,	 as	 has	 been	 so	 often	 repeated,	 the	
network	 fault	 classification	 is	 a	 severely	 class	 imbalance	 problem	 where	 the	 minority	 class	
corresponds	to	on	failure	network	state.	As	an	assumption,	if	all	the	healthy	states	of	the	network	
were	classified	correctly	but	the	failure	states	were	not,	a	high	precision	would	be	obtained.	Then	
using	 accuracy	 is	 a	 mistake.	 Besides,	 misclassifying	 an	 on	 failure	 state	 is	 costlier	 for	 network	
management	than	determining	that	a	healthy	state	is	a	failure.	
	

!⃗

# $
%
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Hence,	 different	 performance	 metrics	 are	 required	 to	 evaluate	 the	 models'	 behavior	 with	 the	
minority	class	mainly,	without	neglecting	to	know	what	happens	with	the	majority	class.	
	
Thus,	on	the	one	hand,	metrics	biased	toward	one	class	are	used,	specifically	toward	the	minority	
because	it	is	the	interest	class.	Those	metrics	are	the	sensitivity	and	F1-score.	Through	them,	we	are	
going	to	focus	on	analyzing	the	performance	of	the	relevant	class	classification.	On	the	other	hand,	
metrics	that	consider	errors	and	correct	classification	for	both	classes	were	used.	Those	metrics	are	
G-mean,	Kappa	 statistic,	 and	Matthews	Correlation	Coefficient	 (MCC).	These	 last	are	among	 the	
most	popular	for	performance	evaluation	in	imbalanced	scenarios.	
	
The	 mentioned	 five	 metrics	 could	 be	 better	 understood	 by	 considering	 the	 confusion	 matrix	
because	 they	 are	 based	 on	 its	 elements.	 As	 figure	 Figure	 5.8	 represents,	 the	 confusion	 matrix	
collects	the	classification	results	discriminated	by	classes.	There	are	a	row	and	a	column	for	each	
class;	furthermore,	the	rows	contain	the	actual	class	results	while	the	columns	are	the	predicted	
class.	The	main	diagonal	depicts	the	good	results,	while	the	misclassifications	are	counted	off	the	
main	diagonal	(Witten	et	al.,	2017).			
	
Consequently,	a	two-dimensional	confusion	matrix	for	our	fault	classification	environment	contains	
four	elements:		

• True	 Positive	 (TP):	 The	 number	 of	 predicted	 instances	 as	 failures	 and	 they	 actually	 are	
failures.	

• False	Positive	(FP):	The	number	of	predicted	instances	as	failures,	but	they	actually	are	not.	
• False	Negative	(FN):	The	number	of	predicted	instances	as	healthy	network	class,	but	they	

actually	are	failures.	
• True	Negative	(TN):	The	number	of	predicted	instances	as	healthy	network	class	and	they	

actually	are	healthy	states.	
	

	
Figure	5.8	Confusion	matrix	structure.	

	
Below	is	a	detailed	description	of	each	metric:	
	

• Sensitivity	/	true	positive	rate	(TPR)	/	recall	
	
The	 sensitivity	 is	 the	 classification	 accuracy	 of	 the	 relevant	 class.	 Using	 the	 confusion	 matrix	
terminology,	it	represents	how	well	a	model	can	identify	the	true	positives	(Ting,	2010b),	and	it	is	
also	known	as	recall	or	true	positive	rate	(TPR)	(Sammut	&	Webb,	2010b).	Equation	(28)	indicates	
how	to	calculate	the	sensitivity.	
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	 "<BF>C>g>C2 =
;p

;p + KU
	 (28)	

	
In	this	context,	the	relevant	class	indicates	on	failure	network	state,	so	the	sensitivity	is	the	fraction	
of	faults	predicted	correctly	by	a	model.	
	

• F1	Score	
	
In	mathematical	terms,	the	F1	measure	is	the	harmonic	mean	of	precision	and	recall.	The	precision	
is	the	proportion	of	true	positives	of	the	total	number	of	positives	predicted		(Ting,	2010a).	Those	
metrics'	equations,	(28)	and	(29),	reflect	that	the	F1	measure	focuses	on	the	analysis	of	the	relevant	
class,	specifically	in	assess	how	appropriate	are	the	predictions	as	the	relevant	class	(Fernández	et	
al.,	2018b),	but	also	assumes	the	false	negatives	and	false	positives	are	equally	costly.	Equation	(30)	
defines	how	to	compute	it.	
	

	 p=<I>F>DB =
;p

;p + 	Kp
	 (29)	

	 	 	

	 K1 = 2
p=<I>F>DB	×	n<I@AA

p=<I>F>DB + 	n<I@AA
	 (30)	

	
• Geometric	mean	(G-Mean)	

	
In	mathematical	terms,	the	geometric	mean	is	the	real	positive	B-th	root	of	B	numbers	(Clark-Carter,	
2010).	This	work	implements	the	geometric	mean	of	sensitivity	and	specificity	as	(Kubat	et	al.,	1997)	
propose	(equation	(31)).	Thus,	this	metric	considers	the	accuracies	of	both	majority	and	minority	
classes	separately,	so	it	is	independent	of	the	class	distribution	and	insensitive	to	class	imbalance	
issues	(Kubat	et	al.,	1998;	S.	Wang	et	al.,	2013).	
	

	 ëíì^' = F<BF>C>g>C2	×	F4<I>9>I>C2 = 	
;p

;p + KU
×

;U

;U + Kp
	 (31)	

	
• Kappa	statistic	

	
The	coefficient	î	was	introduced	by	(Cohen,	1960),	and	it	is	best	known	as	Cohen's	kappa	statistic.	
Equation	 (32)	 defines	 it	 considering	 two	 relevant	 values,	 the	 proportion	 of	 instances	 correctly	
classified	(48)	and	the	proportion	of	instances	for	which	the	classification	is	expected	by	chance	(4\).		
	
As	may	be	seen,	this	coefficient	compensates	the	accuracy	of	a	classifier	considering	the	proportion	
of	successful	classifications	that	could	be	obtained	at	random	(Fernández	et	al.,	2018b).	Thus,	kappa	
statistic	 is	generally	preferred	over	the	traditional	accuracy	(equivalent	to	48).	 	48	and	4\ 	can	be	
calculated	with	the	confusion	matrix's	aid	as	the	equations	(33)	and	(34)	define.	
	

	 î =
48 − 4\
1 − 4\

	 (32)	
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	 48 =
;p + ;U

B
	 (33)	

	 	 	

	 4\ =
(;p + KU)×(;p + Kp)

B%
+
(Kp + ;U)×(KU + ;U)

B%
	 (34)	

	
• Matthews	correlation	coefficient	(MCC) 

	
The	MCC	metric	was	 introduced	by	(Matthews,	1975)	for	performance	evaluation	 in	biochemical	
environments.	It	is	widely	used	for	class	imbalance	contexts.	Its	formula	arises	from	the	Pearson's	
correlation	coefficient	for	binary	vectors,	so	it	is	known	as	the	discretization	of	Pearson's	correlation	
coefficient	(Boughorbel	et	al.,	2017)	for	binary	classification.	
	
In	other	words,	MCC	indicates	the	correlation	between	observed	and	predicted	classes,	and	it	can	
be	expressed	in	terms	of	all	confusion	matrix	elements,	as	equation	(35)	defines.	It	is	widely	used	
for	class	imbalance	contexts	because	it	gives	equal	importance	to	both	classes	regardless	of	their	
skew	(Boughorbel	et	al.,	2017).	
	

	 vGG =
;p×;U − KU×Kp

;p + KU ;p + Kp Kp + ;U KU + ;U
	 (35)	

	
Its	value	ranges	from	-1	to	1.	-1	indicates	a	negative	correlation,	so	the	classification	is	wholly	wrong.	
0	 means	 no	 correlation,	 so	 the	 classification	 is	 no	 better	 than	 random.	 1	 denotes	 a	 complete	
correlation,	so	the	classification	is	always	correct,	then	a	value	closer	to	1	is	preferable	(Fernández	
et	al.,	2018b).		
	
	

2.3 Experimental results and discussion  
	
A	paired	T-tester	executed	in	Weka	compares	the	results	delivered	by	the	same	tool.	This	way,	it	is	
possible	to	know	the	statistical	significance,	that	is,	 if	an	algorithm	is	statistically	better	or	worse	
than	another.	The	Bagging	algorithm	is	selected	as	the	test	base	to	perform	the	T-test	because	it	
has	one	of	the	best	performances,	carrying	out	a	fast	revision.		
	
Table	5.2	to		Table	5.7	contain	the	metrics	results.	The	"*"	and	"v"	characters	refer	to	a	statistically	
significant	difference	from	the	test	base;	"*"	when	the	results	are	lower	than	the	base	algorithm,	
and	"v"	when	the	results	are	larger.	Weka	provides	the	statistical	significance	for	sensitivity,	kappa,	
and	MCC,	so	the	tables	indicate	it.	Nevertheless,	F1-score	and	G-Mean	are	not	provided	by	Weka;	
they	were	computed	using	the	confusion	matrix	data,	so	their	statistical	significance	is	not	available.	
Tables	also	highlight	the	column	of	the	base	algorithm	in	another	color.	
	
Before	analyzing	the	tables'	results,	it	is	important	to	note	that	the	specificity	or	true	negative	rate	
metric	was	verified	for	all	the	tests	carried	out.	This	metric	focuses	on	evaluating	the	majority	class's	
learning,	and	always	its	results	are	close	to	1	(range	between	0.81	and	0.99).	This	means	that	both	
with	the	original	dataset	and	the	balanced	ones,	the	algorithms	never	neglect	the	majority	class.	
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Now,	Table	5.2	and	Table	5.3	provide	the	results	with	the	original	SOFI	dataset.	As	shown,	none	of	
the	algorithms	return	good	results,	and	they	cannot	learn	from	the	minority	class.	All	metrics	are	
poor,	especially	with	Naive	Bayes,	Multilayer	Perceptron,	and	KNN	algorithms.	On	the	other	hand,	
Boosting,	Bagging,	C2.5,	and	PART	have	results	slightly	less	bad.	Nevertheless,	none	is	statistically	
better	than	the	other,	and	the	results	are	not	sufficient	to	conclude	a	good	performance.	

	
Table	5.2	Classification	performance	with	original	SOFI	dataset	(SwitchCore-I	file)	

	 NB	 MP	 KNN	 Boosting	 Bagging	 C2.5	 PART	
Sensitivity	 0,307	 0,001	*	 0,311	 0,447	 0,390	 0,403	 0,390	
F1	score	 0,084	 0,003	 0,358	 0,574	 0,529	 0,529	 0,513	
G-Mean	 0,529	 0,038	 0,556	 0,668	 0,624	 0,634	 0,624	
Kappa	 0,060	*	 0,000	*	 0,340	*	 0,560	 0,510	 0,510	 0,500	
MCC	 0,090	*	 0,005	*	 0,354	*	 0,594	 0,562	 0,552	 0,535	

	
Table	5.3	Classification	performance	with	original	SOFI	dataset	(SwitchCore-II	file)	

	 NB	 MP	 KNN	 Boosting	 Bagging	 C2.5	 PART	
Sensitivity	 0,329	 0,011	*	 0,317	 0,436	 0,399	 0,382	 0,384	
F1	score	 0,072	 0,021	 0,340	 0,559	 0,537	 0,525	 0,510	
G-Mean	 0,538	 0,105	 0,561	 0,660	 0,631	 0,618	 0,619	
Kappa	 0,050	*	 0,020	*	 0,330	*	 0,540	 0,520	 0,510	 0,490	
MCC	 0,078	*	 0,036	*	 0,331	*	 0,579	 0,568	 0,561	 0,535	

	
The	above	is	a	logical	behavior	due	to	the	well-known	class	imbalance	issue.	There	will	always	be	an	
imbalance	 situation	 in	 the	 network	 fault	 diagnosis	 context,	 so	 it	 is	 necessary	 to	 apply	 class	
rebalancing	strategies	if	acceptable	results	are	to	be	achieved.	
	
The	results	 in	Table	5.4	and	Table	5.5	correspond	to	the	executions	over	the	undersampled	SOFI	
dataset	version.	Although	there	is	a	performance	improvement	over	the	above	tables,	Naive	Bayes,	
Multilayer	 Perceptron,	 and	 KNN	 are	 still	 the	 worst	 with	 mediocre	 responses	 and	 significantly	
different.	 The	 other	 algorithms	 have	 good	 behavior	with	 the	minority	 class,	 as	 reflected	 by	 the	
sensitivity	 and	 F1-score	 metrics	 (above	 0,8).	 Based	 on	 the	 G-Mean,	 Kappa,	 and	 MCC,	 these	
algorithms	also	have	a	good	balance	between	observed	and	predicted	classes,	though	they	do	not	
exceed	the	0,7	value.		
	
On	 the	 other	 hand,	 an	 important	 consideration	 is	 that	 the	 evaluation	 is	 performed	with	 cross-
validation	with	a	very	small	SOFI	subset,	due	to	undersampling.	So,	these	results	possibly	are	due	to	
the	overfitting	of	the	model.	
	

Table	5.4	Classification	performance	with	undersampled	SOFI	dataset	(SwitchCore-I	file)	
	 NB	 MP	 KNN	 Boosting	 Bagging	 C2.5	 PART	

Sensitivity	 0,785	 0,790	 0,835	 0,850	 0,815	 0,834	 0,818	
F1	score	 0,725	 0,734	 0,794	 0,846	 0,833	 0,833	 0,822	
G-Mean	 0,697	 0,710	 0,782	 0,846	 0,836	 0,832	 0,822	
Kappa	 0,400	*	 0,430	*	 0,570	 0,690	 0,670	 0,660	 0,640	
MCC	 0,410	*	 0,432	*	 0,571	*	 0,691	 0,673	 0,665	 0,645	

	
Table	5.5	Classification	performance	with	undersampled	SOFI	dataset	(SwitchCore-II	file)	

	 NB	 MP	 KNN	 Boosting	 Bagging	 C2.5	 PART	
Sensitivity	 0,782	 0,803	 0,804	 0,857	 0,843	 0,819	 0,839	
F1	score	 0,727	 0,753	 0,790	 0,851	 0,849	 0,832	 0,852	
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G-Mean	 0,729	 0,754	 0,790	 0,851	 0,849	 0,832	 0,853	
Kappa	 0,410	*	 0,470	*	 0,570	*	 0,700	 0,700	 0,670	 0,710	
MCC	 0,417	*	 0,476	*	 0,573	 0,699	 0,699	 0,670	 0,710	

	
Table	5.6	and	Table	5.7	indicate	the	classification	results	with	the	oversampling	version	of	the	SOFI	
dataset.	 As	 shown	 clearly,	 the	 algorithms	 have	 excellent	 results	 except	 for	 Naive	 Bayes.	 All	 the	
metrics	are	high	(near	to	1),	so	it	is	necessary	to	analyze	the	significant	differences	between	them.	
	
If	the	sensitivity	is	analyzed,	Boosting	is	significantly	better	than	the	others	for	both	dataset	files.	
KNN	and	the	test	base	are	not	significantly	different	between	them	for	one	of	the	dataset	files,	but	
with	the	other,	KNN	is	better	than	Bagging.	Moreover,	although	the	other	algorithms	present	high	
results,	 they	 are	 significantly	worse	 than	 the	 test	 base.	 So,	 Boosting	 creates	 a	 better	model	 for	
minority	class	classification.				
	
If	 the	significances	of	kappa	and	MCC	are	observed,	 there	are	three	things	 to	be	said.	The	PART	
results	are	not	significantly	different	from	Bagging.	Boosting	is	significantly	better	than	the	test	base.	
Furthermore,	the	other	algorithms	are	significantly	worst	than	Boosting,	Bagging,	and	PART.	Thus,	
Boosting	creates	a	better	model	for	both	classes.	
	

Table	5.6	Classification	performance	with	oversampled	SOFI	dataset	(SwitchCore-I	file)	
	 NB	 MP	 KNN	 Boosting	 Bagging	 C2.5	 PART	
Sensitivity	 0,800	*	 0,939	*	 0,996	 0,998	v	 0,995	 0,990	*	 0,991	*	
F1	score	 0,713	 0,911	 0,985	 0,996	 0,989	 0,985	 0,988	
G-Mean	 0,666	 0,908	 0,985	 0,996	 0,989	 0,985	 0,988	
Kappa	 0,350	*	 0,820	*	 0,970	*	 0,990	v	 0,980	 0,970	*	 0,980	
MCC	 0,366	*	 0,819	*	 0,970	*	 0,991	v	 0,979	 0,971	*	 0,977	

	
Table	5.7	Classification	performance	with	oversampled	SOFI	dataset	(SwitchCore-II	file)	

	 NB	 MP	 KNN	 Boosting	 Bagging	 C2.5	 PART	
Sensitivity	 0,756	*	 0,965	*	 0,997	v	 0,997	v	 0,994	 0,988	*	 0,990	*	
F1	score	 0,705	 0,923	 0,984	 0,995	 0,989	 0,982	 0,989	
G-Mean	 0,679	 0,918	 0,983	 0,995	 0,989	 0,982	 0,988	
Kappa	 0,370	*	 0,840	*	 0,970	*	 0,990	v	 0,980	 0,960	*	 0,980	
MCC	 0,370	*	 0,842	*	 0,967	*	 0,989	v	 0,977	 0,964	*	 0,977	

	
Clearly,	the	best	results	are	obtained	when	the	data	is	rebalanced.	Now,	to	analyze	which	of	the	two	
rebalancing	approaches	is	better	for	the	SOFI	dataset	context,	the	three	test	versions'	performance	
has	been	plotted	on	a	radar	chart	concerning	one	of	the	dataset	files	(SwitchCore-II).	
	
Figure	 5.9	 shows	 three	 radar	 charts	 describing	 each	 scenario's	 performance	 (original,	
undersampling,	and	oversampling).	This	graphic	way	allows	identifying	the	differences	between	the	
results	quickly.	The	radar's	aperture	for	the	oversampling	scenario	is	more	remarkable	than	others	
because	the	metrics	have	better	results	for	almost	all	the	models,	and	there	is	no	loss	of	information	
from	the	classes.	The	original	and	undersampling	 scenarios	do	not	have	a	 large	aperture	on	 the	
radar,	 especially	 the	 original	 that	 tends	 to	 concentrate	 in	 the	 graph	 center,	 so	 there	 is	 a	more	
significant	 difference	 with	 the	 ideal	 behavior.	 Therefore,	 the	 oversampling	 has	 thrown	 better	
learning	outcomes.	
	



	 71	

What	is	valuable	about	this	experiment	is	that	it	gives	us	an	idea	of	which	resampling	method	works	
best	with	SOFI.	This	is	an	important	aspect	and	one	which	is	certainly	considered	in	the	diagnosis	
module	of	the	model	proposed.	That	is,	what	rebalancing	method	to	incorporate	in	a	data	stream	
classification	for	network	fault	classification	environments.	
	

	
Figure	5.9	Traditional	classification	performance.	

	
	

3 PALADIN model evaluation 
	
As	mentioned	in	section	4.2	of	Chapter	III,	the	PALADIN	model	has	a	Diagnosis	module	based	on	
three	 components,	 a	 concept-drift	detector,	 a	 rebalancing	method,	 and	an	 incremental	 learning	
algorithm	 (see	 Figure	 3.10	 in	 Chapter	 III).	 This	 module	 is	 a	 framework	 to	 deal	 with	 combined	
difficulties	from	streaming	and	imbalanced	data.	So,	this	section	aims	to	implement	it	through	25	
different	 incremental	algorithms,	the	most	appropriate	rebalance	technique	according	to	section	
2.3	analysis	of	the	current	chapter,	and	the	ADWIN	algorithm	as	the	concept-drift	detector.		
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This	section	also	contains	an	in-depth	analysis	of	the	results	of	this	implementation.	The	test	of	this	
implementation	 constitutes	 the	 evaluation	 of	 the	 entire	 PALADIN	model	 since	we	 use	 the	 SOFI	
dataset8,	obtained	through	the	first	three	PALADIN	modules,	as	the	incoming	data	stream	to	the	last	
module	 (Diagnosis	 module).	 So,	 the	 experiments	 described	 here	 represent	 the	 third	 specific	
objective	of	this	research.	
	
	

3.1 Experimental setup 
	
The	 experiment	 is	 based	 on	 the	 meta-strategy	 proposed	 by	 (Bernardo	 et	 al.,	 2019)	 called	
RebalanceStream,	which	can	rebalance	a	data	stream	and	train	a	model.	We	can	frame	this	strategy	
within	 the	 Diagnosis	 module	 of	 the	 current	 work	 because	 it	 comprises	 the	 proposed	 diagnosis	
components.	RebalanceStream	uses	ADWIN	to	detect	if	a	concept-drift	is	in	the	stream.	When	that	
detection	is	successful,	 it	rebalances	the	data	arrived	until	then	through	SMOTE.	Then,	it	trains	a	
new	model	using	the	rebalanced	data.	The	two	models	(the	current	and	the	new	one)	are	evaluated	
through	 the	 Kappa-statistic	 performance	 evaluation	 methodology	 (Bifet	 et	 al.,	 2015).	 The	 best	
trained	model	is	chosen	to	continue.	Figure	5.10	shows	the	flowchart	of	the	process.	
	

	
Figure	5.10	Flowchart	of	RebalanceStream	meta-strategy	(Bernardo,	2019).	

	
The	 work	 (Bernardo	 et	 al.,	 2019)	 evidently	 has	 PALADIN's	 diagnosis	 module	 components,	 so	 it	
provides	the	basis	for	our	evaluation,	and	its	code	has	been	reused.	Nevertheless,	that	code	only	
receives	 a	 synthetic	 data	 stream,	 is	 configured	 for	 one	 single	 online	 algorithm	 and	 provides	
performance	results	based	on	a	single	metric.	So,	the	code	was	modified	to	support	any	real	data	

																																																													
8	 It	 is	 important	 to	 clarify	 that	 the	 timestamp	 attribute	 was	 not	 included	 in	 this	 experiment	 since	 this	
parameter	only	indicates	the	instances'	arriving	order.	
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stream	and	throw	four	additional	performance	measures.	The	implementation	was	written	in	the	
Java	language	and	using	the	MOA	API	(Bifet,	Holmes,	Kirkby,	et	al.,	2010).		
	
The	elements	used	in	each	component	of	our	Diagnostic	module	are	described	in	detail	below.	The	
implementation	of	each	element	preserves	the	default	parameters	that	MOA	has	configured.	
	

• Concept-drift	detector	and	class	 imbalance	detector:	ADaptive	sliding	WINdow	(ADWIN)	
(Bifet	&	Gavaldà,	2007)	is	a	change	detection	method	that	uses	a	variable-length	window	of	
recent	 instances	 for	 monitoring	 the	 prediction	 errors	 for	 those	 instances.	 Suppose	 the	
window	of	predictions	in	Figure	5.11	for	a	simplified	explanation	of	this	algorithm.	Number	
1	 indicates	 correct	 prediction,	 and	 0	 indicates	 incorrect	 prediction.	 This	 window	ï	 is	
partitioned	into	78	and	7#	subwindows.	78	represents	the	most	recent	predictions	and	7#	
the	 older.	 For	 each	 partition,	 ADWIN	 calculates	 their	 mean	 error	 rate	 O8	 and	 O#	 and	
compares	the	difference	absolute	to	a	given	threshold.	When	the	difference	is	higher	than	
the	threshold,	a	drift	is	detected.	Then,	the	oldest	data	of	the	window	(7#)	are	dropped.		

	

	
Figure	5.11	How	the	ADWIN	drif-detector	works.		

	
ADWIN	is	widely	embedded	by	incremental	algorithms	such	as	CVFDTNBC	(Bifet,	Frank,	et	al.,	
2010),	Hoeffding	Adaptive	Tree	(Bifet	&	Gavaldà,	2009),	Leveraging	Bagging	(Bifet,	Holmes,	
&	Pfahringer,	2010)	and	Adaptable	Diversity-based	Online	Boosting	 (Santos	et	al.,	2014),	
which	validates	its	great	utility	for	the	data	stream	analysis.	Therefore,	it	is	justified	to	use	
it	in	our	experiment.	So,	although	there	are	many	other	drift	detectors	(R.	Barros	&	Santos,	
2018),	ADWIN	is	sufficient	for	the	research	scope.	
	
On	 the	other	hand,	as	mentioned	earlier,	 class	 imbalance	 in	a	data	 stream	 is	 a	problem	
generally	associated	with	concept-drift,	 so	 in	 this	experiment,	our	concept-drift	detector	
and	class	imbalance	detector	are	both	the	same	algorithm.		

	
• Rebalancing	 method:	 According	 to	 the	 previous	 experiment,	 it	 is	 clear	 that	 both	 an	

undersampling	 and	 oversampling	 technique	 considerably	 improve	 the	 performance	 of	
traditional	machine	learning	algorithms,	with	the	most	noted	one	being	the	oversampling	
approach.	Based	on	these	results,	we	will	incorporate	the	SMOTE	oversampling	technique	
in	this	experiment	to	achieve	incremental	rebalancing	learning.	

	
• Online	classifier:	To	have	a	wide	range	of	data	to	compare,	we	choose	to	implement	the	

framework	 for	 25	 different	 incremental	 algorithms	 and	 evaluate	 if	 the	 fault	 diagnostic	
module	proposed	can	introduce	improvements	in	the	classification	process	with	imbalanced	
data	streams.	Table	5.8	specifies	in	chronological	order	all	the	algorithms	used	through	their	
names,	 types,	 and	 references.	 As	 can	 be	 seen,	we	 have	 implemented	 four	 classification	
algorithm	types:	decision	trees,	function	classifiers,	lazy	learners,	and	ensemble	methods.		
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A	 decision	 tree	 algorithm	 builds	 a	 tree	 structure	 where	 each	 node	 establishes	 a	 split	
criterion	of	data	based	on	an	attribute's	values.	So,	for	classification	tasks,	each	node	splits	
the	data	into	two	branches,	and	each	branch	of	data	will	reach	another	decision	node	that	
will	split	them	again.	This	is	a	recursive	process	until	a	leaf	of	the	tree	is	found.	The	leaves	
are	 the	 predictors.	 Decision	 trees	 wait	 to	 receive	 enough	 instances	 to	 create	 reliable	
statistics	and	build	their	structure	in	an	incremental	learning	approach	(Hulten	et	al.,	2001).		
	
Function	 classifiers	 are	 based	 on	 linear	 models	 but	 extend	 to	 non-linear	 kernels.	 Lazy	
learners	keep	the	instances	seen	or	some	of	them,	and	when	a	new	instance	arrives,	the	
algorithm	makes	a	prediction	based	on	the	closest	instances'	classes	to	the	incoming	one	
(Bifet	et	al.,	2018).		
	
Ensemble	methods	are	meta-algorithms	that	combine	predictions	from	smaller	models	to	
give	 one	 more	 accurate	 single	 prediction.	 These	 methods	 are	 the	 most	 widely	 used	
techniques	for	data	stream	classification,	so	this	is	why	they	represent	the	majority	in	the	
table	 list.	 Work	 (Gomes,	 Barddal,	 et	 al.,	 2017)	 is	 a	 comprehensive	 survey	 of	 ensemble	
methods	for	data	stream	classification.	
	
It	is	noteworthy	that	several	online	classifiers	embed	strategies	to	deal	with	concept	drift	
(the	first	column	of	Table	5.8	highlights	those	algorithms).	Nevertheless,	the	independent	
concept-drift	detector	of	our	diagnosis	module	is	still	necessary	to	achieve	class	rebalancing.	

	
Table	5.8	List	of	online	classifiers	for	evaluating	the	PALADIN	diagnosis	module.	

No.	 ALGORITHM	NAME	 TYPE	 REFERENCE	
1	 CVFDT	 Decision	Trees	 (Hulten	et	al.,	2001)	
2	 Online	Bagging	 Ensemble	method	 (Oza	&	Russell,	2001)	
3	 Online	Boosting	 Ensemble	method	 (Oza	&	Russell,	2001)	
4	 Accuracy	Weigthed	Ensemble	(AWE)	 Ensemble	method	 (H.	Wang	et	al.,	2003)	
5	 Dynamic	Weighted	Majority	(DWM)	 Ensemble	method	 (Kolter	&	Maloof,	2007)	
6	 Hoeffding	Option	Tree	(HOT)	 Ensemble	method	 (Pfahringer	et	al.,	2007)	

7	 Stocastic	variant	of	PEGASOS	(Primal	Estimated	sub-
GrAdient	SOlver	for	SVM)	 Function	classifier	 (Shalev-Shwartz	 et	 al.,	

2007)	

8	 CVFDTNBC	 Decision	Trees	 (Bifet,	 Frank,	 et	 al.,	
2010)	

9	 Paired	learning	 Ensemble	method	 (Bach	&	Maloof,	2008)	
10	 ADWIN	Bagging	 Ensemble	method	 (Bifet	et	al.,	2009)	
11	 ASHT	(Adaptive-Size	Hoeffding	Tree)	Bagging	 Ensemble	method	 (Bifet	et	al.,	2009)	
12	 Hoeffding	Adaptive	Tree	 Decision	Trees	 (Bifet	&	Gavaldà,	2009)	
13	 Online	Coordinate	Boosting	 Ensemble	method	 (Pelossof	et	al.,	2008)	

14	 Leveraging	Bagging	 Ensemble	method	 (Bifet,	 Holmes,	 &	
Pfahringer,	2010)	

15	 ADAGRAD	 Function	classifier	 (Duchi	et	al.,	2011)	
16	 Learn++.NSE	 Ensemble	method	 (Elwell	&	Polikar,	2011)	
17	 OSBoost	(Online	Smooth	Boost)	 Ensemble	method	 (Chen	et	al.,	2012)	

18	 Accuracy	Updated	Ensemble	(AUE2)	 Ensemble	method	 (Brzezinski	 &	
Stefanowski,	2014)	

19	 Dynamic	Adaptation	to	Concept	Changes	(DACC)	 Ensemble	method	 (Jaber	et	al.,	2013)	

20	 Recurring	Concept	Drifts	(RCD)	 Ensemble	method	 (Gonçalves	 Jr	&	Barros,	
2013)	

21	 ADOB	(Adaptable	Diversity-based	Online	Boosting)	 Ensemble	method	 (Santos	et	al.,	2014)	
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22	 Boosting-like	Online	Learning	Ensemble	(BOLE)	 Ensemble	method	 (R.	S.	M.	d	Barros	et	al.,	
2016)	

23	 Hoeffding	 Adaptive	 Tree	 (HAT)	 with	 feature	
weighted	kNN	(HAT-kNN-FW)	and	NB	(HAT-kNN-NB)	 Decision	Trees	 (Barddal	et	al.,	2016)	

24	 SAM-kNN	 (Self	Adjusting	Memory	model	 for	 the	 k	
Nearest	Neighbor)	 Lazy	learning	 (Losing	et	al.,	2016)	

25	 Adaptive	Random	Forest	(ARF)	 Ensemble	method	 (Gomes,	 Bifet,	 et	 al.,	
2017)	

	
The	SOFI	dataset	was	built	through	the	first	modules	of	the	PALADIN	model,	which	means	that	these	
data	are	the	incoming	data	stream	of	the	Diagnosis	module,	therefore,	the	ones	that	were	used	to	
evaluate	its	performance.	Since	the	monitored	network	used	to	obtain	SOFI	contains	two	peripheral	
devices,	 there	are	 two	dataset	 files;	one	corresponds	 to	 the	monitoring	of	CoreSwitch-I	and	 the	
other	of	CoreSwitch-II.	Each	of	the	25	versions	of	the	module	implemented	was	executed	for	the	
two	data	 sets	 obtained.	 It	 is	 also	 important	 to	 note	 that	 all	 data	were	normalized	before	 being	
processed	by	the	Diagnostic	module	to	avoid	memory	overflows.	
	
	

3.2 Evaluation method and imbalanced stream evaluation 
metrics  

	
As	 has	 been	 seen,	 the	 PALADIN	 Diagnosis	module	 performs	 an	 online	 classification	 of	 network	
failures,	so	it	is	a	learning	model	that	must	be	evaluated	in	a	stream	context.	Prequential	evaluation	
is	the	most	used	method	to	perform	this	task	in	that	context	(Bifet	et	al.,	2015),	so	we	adopt	this	
process.		
	
Figure	5.12	describes	the	implemented	prequential	evaluation	method.	This	evaluation	uses	each	
incoming	instance	to	test	and	then	train	the	model,	so	the	evaluation	is	always	done	with	not	seen	
before	instances.	Each	evaluation	process	updates	the	confusion	matrix,	so	we	can	read	the	matrix	
every	B	 incoming	instances	to	compute	a	set	of	five	performance	metrics.	It	ensures	we	obtain	a	
history	of	performance	over	time,	that	is,	how	the	fault	classification	has	adapted	over	time.	In	this	
particular	experiment,	B	is	equal	to	200	samples.	For	comparison	purposes,	this	evaluation	method	
was	 applied	 both	 for	 the	 proposed	 Diagnostic	 module	 that	 performs	 incremental	 rebalancing	
learning	and	the	online	base	algorithm	without	any	rebalancing	strategy.	
	
We	deal	with	an	imbalanced	data	stream,	so	traditional	metrics	are	not	adequate	for	the	diagnosis	
module	performance	evaluation.	According	to	(Fernández	et	al.,	2018b),	prequential	accuracy	is	the	
most	used	measure,	and	nevertheless,	as	discussed	before,	accuracy	is	misleading	for	imbalanced	
context.	 So,	 the	 same	 author	 suggests	 using,	 for	 imbalanced	data	 stream,	 the	 prequential	 AUC,	
prequential	G-mean,	and	class	Recall	metrics.			
	
On	the	other	hand,	(Bernardo	et	al.,	2019)	uses	the	standard	Kappa	statistic	inside	the	rebalance	
stream	 process,	 so	 we	 will	 be	 faithful	 to	 the	 base	 code	 and	 use	 Kappa	 statistic	 as	 one	 of	 the	
performance	measures.	Further,	the	Kappa	statistic	is	widely	used	when	dealing	with	imbalanced	
data	 (Bifet	 &	 Frank,	 2010).	 Nevertheless,	 some	 studies	 prefer	 Mathews	 Correlation	 Coefficient	
(MCC)	over	the	Kappa	statistic	(Delgado	&	Tibau,	2019),	so	it	is	a	measure	that	will	also	be	taken	
into	account.	(Chicco	&	Jurman,	2020)	analyzes	the	advantages	of	MCC	in	binary	classification.	
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The	 above	 reasons	 led	 us	 to	 select	 these	 five	metrics	 as	 the	most	 informative	 to	 evaluate	 the	
Diagnosis	 module.	 The	 previous	 section	 2	 describes	most	 of	 these	metrics,	 which,	 applied	 in	 a	
streaming	context,	are	measured	following	the	prequential	evaluation	process.	Therefore,	the	next	
item	describes	in-depth	the	prequential	AUC	that	has	not	been	explained	before.	
	

	
Figure	5.12	Prequential	evaluation	process.	

	
• Prequential	AUC	

	
Prequential	AUC	is	proposed	by	(Brzezinski	&	Stefanowski,	2017)	to	measure	data	stream	classifiers'	
performance	using	the	Area	Under	the	ROC	Curve	(AUC)	metric.	To	understand	the	approach,	first,	
it	is	necessary	to	know	its	underlying	concepts.		
	
A	predictor	classifies	an	 instance	based	on	 the	probability	of	belonging	 to	each	of	 the	classes	 (a	
score).	To	perform	the	classification,	it	has	a	decision	threshold,	that	is,	the	minimum	probability	
value	needed	to	belong	to	a	class.	Varying	the	decision	threshold	allows	us	to	obtain	the	classifier	
performance	under	different	decision	thresholds	and	plot	 the	Receiver	Operating	Characteristics	
(ROC)	curve.	The	ROC	curve	is	a	graph	representing	the	relation	between	sensitivity	and	specificity	
of	a	classifier	(each	one	is	a	graph	axis),	so	a	point	on	the	curve	refers	to	the	classifier	behavior	with	
a	particular	operating	condition	(Brzezinski	&	Stefanowski,	2017;	Flach,	2010).	
	
AUC	is	a	value	that	concentrates	all	the	meaning	of	the	ROC	curve	in	a	single	point	metric	equivalent	
to	the	calculated	area	under	the	ROC	curve	(Sammut	&	Webb,	2010a).	Its	value	ranges	from	0	to	1,	
where	a	value	closer	to	1	is	preferable.		
	
According	to	the	previous	explanation,	it	is	evident	that	it	is	necessary	to	perform	several	evaluation	
iterations,	changing	the	decision	threshold	with	the	entire	data	to	calculate	the	AUC.	Therefore,	this	
metric	cannot	be	calculated	as	the	data	stream	arrives.	Consequently,	 (Brzezinski	&	Stefanowski,	
2017)	proposes	a	new	metric	named	prequential	AUC	suitable	for	data	stream	scenarios.	
	
The	prequential	AUC	uses	the	red-black	tree	structure	(Bayer,	1972;	Guibas	&	Sedgewick,	1978)	to	
sort	the	classification	scores	as	a	new	sample	arrives.	Once	the	tree	is	updated,	AUC	is	computed	by	
the	method	proposed	by	(S.	Wu	et	al.,	2007).	This	method	is	equivalent	to	getting	the	sum	of	the	

Test

new	sample

Update	confusion	matrix

Train
Is	sample	
number	

multiple	of	n?

Compute	metrics

no

yes



	 77	

trapezoid's	 areas	 formed	 by	 each	 pair	 of	 consecutive	 points	 on	 the	 ROC	 curve	 (Brzezinski	 &	
Stefanowski,	2017).	
	
MOA	 provides	 the	 prequential	 AUC	 calculation	 described	 in	 (Brzezinski	 &	 Stefanowski,	 2017),	
through	the	BasicAUCImbalancedPerformanceEvaluator	class	inside	its	evaluation	packet.	Thus,	our	
experiment	 uses	 this	 implementation.	 Also,	 the	 source	 code	 is	 available	 at	
http://www.cs.put.poznan.pl/dbrzezinski/software.php.		
	
	

3.3 Experimental results and discussion 
	
The	prequential	evaluation	provides	a	set	of	values	for	each	metric	representing	the	fault	diagnosis	
performance	 as	 the	 data	 arrive.	 Thus,	 each	 prequential	 metric	 is	 plotted	 in	 line-charts.	 This	
experiment	yielded	numerous	results,	exactly	250	performance	graphs	(five	metrics	for	each	of	the	
twenty-five	algorithms	and	both	dataset	files).	
	
As	Figure	5.13	shows,	each	graph	represents	the	tested	algorithms'	performance	curves	according	
to	the	corresponding	metric.	The	vertical	axis	 indicates	the	metric	values,	and	the	horizontal	axis	
indicates	the	number	of	incoming	instances	that	have	arrived	until	the	measurement	time.	The	black	
circles	series	are	the	results	with	the	Diagnosis	module	approach,	that	is,	with	the	rebalance	stream	
strategy.	The	red	squares	series	are	the	results	of	the	online	base	algorithm	performance	without	
rebalancing	or	concept-drift	treatment.	Table	5.13	to	Table	5.9	show	examples	of	graphs	obtained	
for	all	measured	metrics	and	a	few	algorithms.	All	the	250	graphs	are	in	Annex	D.	
	

	
Figure	5.13	Performance	curves	format.	

	
During	the	graphs	reviewing,	it	was	noted	that	there	is	a	wide	variety	of	behavior.	The	most	common	
relationships	 that	 can	 be	 observed	 between	 the	 performance	 of	 the	 base	 algorithm	 and	 the	
rebalance	stream	approach	are	described	below,	and	the	indicated	tables	exemplify	them.	
	

• In	most	charts,	the	first	two	measurements	are	equivalent	for	both	curves,	and	then	the	
black	curve	is	plotted	higher	than	the	red	curve.	All	the	plots	of	Table	5.9	to	Table	5.12	depict	
that	mentioned	above.	

• In	 some	 outcomes,	 both	 curves	 maintain	 an	 almost	 constant	 behavior	 throughout	 the	
measurement,	 so	 it	 is	 evident	 which	 one	 represents	 a	 better	 performance	 and	 if	 the	
difference	between	them	is	significant	or	not.	Taking	the	examples	from	the	next	tables,	
this	occurs	in	the	second	row	of	Table	5.10	and	the	first	row	of	Table	5.11.	
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• A	 near-zero	 performance	 for	 base	 algorithm	 versus	 a	 better	 performance	 for	 rebalance	
stream	strategy	but	also	poor.	The	third	row	of	Table	5.11	exemplifies	it.	

• Some	results	present	a	consistent	and	outstanding	performance	 for	 rebalancing	 learning	
and	a	constant	improvement	throughout	the	base	algorithm's	performance	measurement.	
The	second	row	of	Table	5.9	and	the	third	row	of	Table	5.10	show	it.	

• For	some	graphs,	there	are	sudden	changes	in	either	or	both	of	the	curves.	From	Table	5.9	
to	Table	5.12,	there	are	examples	of	this	behavior.	

• There	may	be	some	constant	changes	in	a	measurement	chunk,	as	observed	in	the	first	row	
and	the	first	column	of	Table	5.10.	

• Considerable	 decrease	 in	 the	 behavior	 of	 the	 base	 algorithm	 while	 the	 rebalancing	
algorithm	improves.	The	second	row	of	the	Table	5.11	shows	an	example.	

• The	 prequential	 AUC	 results	 are	 similar,	 so	 the	 black	 and	 red	 curves	 are	 close.	 This	 is	
evidenced	by	Table	5.13.	

	
Table	5.9	Some	results	of	prequential	Sensitivity/Recall.	

	 SwitchCore-I	dataset	file	 SwitchCore-II	dataset	file	
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Table	5.10	Some	results	of	prequential	G-Mean.	
	 SwitchCore-I	dataset	file	 SwitchCore-II	dataset	file	
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Table	5.11	Some	results	of	prequential	Kappa	statistic.	
	 SwitchCore-I	dataset	file	 SwitchCore-II	dataset	file	
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Table	5.12	Some	results	of	prequential	MCC.	
	 SwitchCore-I	dataset	file	 SwitchCore-II	dataset	file	
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Table	5.13	Some	results	of	prequential	AUC.	
	 SwitchCore-I	dataset	file	 SwitchCore-II	dataset	file	
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The	experiment	yielded	too	many	graphs	to	analyze,	each	one	with	different	behaviors.	Although	
the	above	chart	samples	are	the	overview	of	the	graph	types	obtained,	it	is	necessary	to	condense	
the	 results	 into	 tables	 to	 visually	 identify	 whether	 or	 not	 the	 rebalance	 strategy	 for	 fault	
classification	 represents	 an	 improvement	 of	 the	 base	 algorithm	 according	 to	 each	 performance	
metric.	Hence,	heatmaps	were	created	for	each	of	the	metrics.		
	
Three	measurements	were	obtained	to	create	the	heatmaps	and	quickly	identify	the	magnitude	of	
the	improvement	represented	by	the	use	of	the	diagnosis	module	with	the	rebalancing	approach.	
The	calculation	of	these	measures	was	also	incorporated	into	the	code	of	(Bernardo	et	al.,	2019):	

ü the	mean	of	the	rebalanced	curve	(black	curve),	
ü the	mean	of	the	curve	without	balancing	(red	curve),	
ü the	weighted	difference	between	them.	
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The	weighted	difference	is	a	measure	between	0	and	1	indicating	the	difference	between	the	two	
performance	lines	(black	and	red	line),	taking	into	account	a	weighting	function	that	assigns	some	
importance	to	the	performance	obtained	at	each	measurement.	
	
Each	example	will	become	increasingly	less	significant	to	the	overall	average,	as	(Bifet	et	al.,	2018)	
argues.	Then,	our	weighting	 function	 is	a	decreasing	 function	that	assigns	a	greater	value	 to	 the	
differences	of	the	first	measurements.	Equation	(36)	represents	the	weighting	function	(K7).	U	is	
the	total	of	measurements.	3	indicates	the	measurement	number	(3 = 1	for	the	first	measurement,	
3 = 2	for	the	second,	and	so	on).	The	:	value	is	set	to	3	to	obtain	a	convex	exponential	weight	that	
maintains	a	high	valuation	of	differences	in	an	initial	interval	and	then	decreases.	As	an	example,	
Figure	5.14(a)	shows	the	weighting	function	for	a	prequential	evaluation	of	20	measurements.	
	
Equation	(37)	represents	the	weighted	difference	(*7).	v=ñ	is	the	metric	value	obtained	at	point	3	
with	the	rebalancing	strategy	(point	of	black	curve).	vNñ	 is	the	metric	value	obtained	at	point	3	
with	 the	base	algorithm	 (point	of	 red	curve).	As	 the	equation	shows,	 it	 is	 the	summation	of	 the	
weighted	differences	at	each	point,	and	the	result	is	normalized	to	obtain	a	value	between	0	and	1.	
Figure	5.14	illustrates	the	equation	components.	
	

	 K7 3 = 1 −
3 − 1

U − 1

k

; 					1 ≤ 3 ≤ U				, : = 3		 (36)	

	 	 	

	 *7 =
v=ó − vNó Kó

ò
óôö

Kó
ò
óP#

			 (37)	

	

	
Figure	5.14	Weighted	difference	elements.	

	
For	 each	 performance	 metric	 (sensitivity,	 G-mean,	 kappa,	 MCC,	 and	 prequential	 AUC),	 three	
heatmaps	were	obtained	representing	the	values	of	the	three	measures	mentioned	above,	for	the	
25	algorithms	 in	 Table	5.8.	 Figure	5.15	 contains	 the	 color	 settings	used	 in	 the	heatmaps.	 Figure	
5.15(a)	shows	the	configuration	for	the	means.	The	redder	the	color,	the	better	the	measurement	
because	it	is	closer	to	1,	while,	if	the	color	becomes	lighter,	the	value	is	closer	to	0,	and	worse	is	the	
performance.	 Figure	 5.15(b)	 indicates	 the	 color	 setting	 for	 the	 weighted	 difference.	 A	 positive	
difference	 is	 colored	 green,	 and	 the	 more	 saturated	 the	 color,	 the	 more	 significant	 the	
improvement.	The	gray	 color	 indicates	no	difference	and	 the	blue	 color	 that	 there	 is	 a	negative	
difference.	The	difference	also	is	reflected	if	one	of	the	means	heatmaps	is	lighter	than	the	other.		
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(a)
Example	of	the	weighting	function	for	a	prequential evaluation	of	20	measurements

(b)
Example	of	how	to	compute	the	weighted	difference	of	a	point
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Figure	5.15	The	color	scale	for	evaluation	metrics.	
	
Figure	5.16	to	Figure	5.20	present	the	created	heatmaps.	As	can	be	seen,	some	image	fields	are	set	
as	"NaN,"	which	means	that	it	was	impossible	to	calculate	the	metric	at	some	points	(due	to	very	
bad	behavior),	making	the	developed	tool	unable	to	calculate	the	corresponding	metric's	means.		
	

	
Figure	5.16	Heatmap	of	prequential	Sesitivity/Recall	resuls.	

	

	
Figure	5.17	Heatmap	of	prequential	G-mean	results.	

	

	
Figure	5.18	Heatmap	of	prequential	Kappa	statistic	results.	
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Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SwitchCore	I 0,91435 0,83005 0,94417 0,68958 0,9339 0,91027 0,91759 0,83499 0,9101 0,83005 0,90969 0,93294 0,82679 0,92255 0 0,72049 0,88881 0,71935 0,93853 0,9027 0,87061 0,95426 0,92921 0,94743 0,77167
SwitchCore	II 0,9234 0,90694 0,86544 0,59726 0,83203 0,92326 0,91865 0,84771 0,8641 0,91544 0,8447 0,93115 0,88981 0,92685 0 0,3496 0,89905 0,71619 0,8816 0,92644 0,95566 0,90252 0,8033 0,94311 0,88989

SwitchCore	I 0,41285 0,42327 0,49094 0,02378 0,58944 0,32979 0,62518 0,38084 0,41381 0,42327 0,40814 0,52 0,3618 0,65972 0 0,11462 0,22496 0,06529 0,52297 0,49601 0,60628 0,63527 0,69961 0,73097 0,26563
SwitchCore	II 0,47734 0,4451 0,56097 0,02585 0,33132 0,4143 0,63417 0,43915 0,4751 0,4451 0,43546 0,49851 0,28664 0,68121 0 0 0,30996 0,04689 0,44952 0,52262 0,52889 0,61313 0,43032 0,72167 0,32616

SwitchCore	I 0,5231 0,44622 0,44777 0,65329 0,32882 0,58948 0,28902 0,48924 0,47542 0,44622 0,52075 0,4286 0,45948 0,27792 0 0,61106 0,69763 0,69183 0,40514 0,39533 0,28752 0,31103 0,20872 0,21872 0,52485
SwitchCore	II 0,46383 0,48577 0,31243 0,54748 0,46105 0,50387 0,27953 0,43549 0,39558 0,49071 0,44575 0,44952 0,5743 0,25911 0 0,35433 0,61661 0,70081 0,41731 0,40184 0,37453 0,28769 0,33633 0,22229 0,56252
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Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SwitchCore	I 0,94809 0,90377 0,96657 0,80242 0,95755 0,94563 0,95447 0,90658 0,6402 0,90377 0,94542 0,9606 0,903 0,9563 0 0,83148 0,93099 0,83451 0,9624 0,93969 0,92539 0,96955 0,89701 0,9705 0,87208
SwitchCore	II 0,95475 0,94552 0,92342 0,74185 0,9001 0,95447 0,95507 0,91498 0,92502 0,94986 0,9133 0,95916 0,93657 0,95876 0 0,57763 0,94035 0,83263 0,93296 0,9546 0,97121 0,94168 0,86902 0,96779 0,93526

SwitchCore	I 0,63214 0,64055 0,69811 0,08024 0,75789 0,5678 0,78816 0,6088 0,6402 0,64055 0,62854 0,71597 0,59797 0,80897 0 0,32354 0,41878 0,14953 0,71847 0,67529 0,77211 0,79096 0,80583 0,8527 0,51247
SwitchCore	II 0,6841 0,65916 0,74407 0,08327 0,57032 0,64007 0,79369 0,65785 0,68692 0,65918 0,65241 0,70033 0,53254 0,82223 0 0 0,53637 0,12133 0,66722 0,69982 0,71678 0,77649 0,64672 0,84683 0,56495

SwitchCore	I 0,33692 0,29282 0,26677 0,75977 0,19029 0,38972 0,16355 0,32507 0,2966 0,29282 0,33647 0,25749 0,30009 0,15638 0 0,49719 0,56667 0,75673 0,23913 0,2561 0,16703 0,17446 0,10666 0,11898 0,37505
SwitchCore	II 0,28618 0,30667 0,18361 0,69175 0,30936 0,31479 0,15756 0,2763 0,24115 0,30922 0,28775 0,27314 0,38963 0,14442 0 0,57826 0,43744 0,77443 0,25734 0,2491 0,21829 0,16444 0,20664 0,12128 0,37817
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Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SwitchCore	I 0,92616 0,86027 0,94545 0,73925 0,91673 0,92139 0,92708 0,86606 0,91694 0,86027 0,92119 0,93919 0,84973 0,92363 0 0,72395 0,91149 0,80901 0,93228 0,89871 0,85444 0,93428 0,77976 0,94918 0,83193
SwitchCore	II 0,93072 0,9191 0,85718 0,6598 0,85318 0,9303 0,92777 0,8714 0,88119 0,92655 0,87621 0,93824 0,91 0,92774 0 0,42139 0,91831 0,80683 0,88964 0,92361 0,94235 0,87549 0,79679 0,94279 0,91095

SwitchCore	I 0,49523 0,49927 0,56187 0,03974 0,43875 0,39994 0,68138 0,46864 0,45619 0,49927 0,48661 0,5867 0,42899 0,68812 0 0,05505 0,29506 0,10499 0,52804 0,22223 0,56797 0,5917 0,28739 0,75529 0,38116
SwitchCore	II 0,54336 0,52818 0,56162 0,04437 0,33082 0,49364 0,68456 0,51409 0,54095 0,52976 0,52361 0,5722 0,38491 0,70516 0 -0,01603 0,39725 0,07823 0,50414 0,29745 0,46375 0,56241 0,33869 0,73295 0,43644

SwitchCore	I 0,45298 0,39718 0,378 0,73733 0,44005 0,53046 0,24401 0,43078 0,43787 0,39718 0,45577 0,36505 0,42115 0,24712 0 0,67333 0,66978 0,75586 0,39609 0,6159 0,30611 0,33664 0,53791 0,1956 0,47006
SwitchCore	II 0,40386 0,41421 0,30663 0,64909 0,47461 0,43693 0,2397 0,38228 0,34091 0,41719 0,38501 0,38036 0,50841 0,23287 0 0,44501 0,55758 0,77077 0,37502 0,55288 0,42731 0,31268 0,4102 0,21195 0,48449
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Figure	5.19	Heatmap	of	prequential	MCC	results.	

	

	
Figure	5.20	Heatmap	of	prequential	AUC	results.	

	
According	to	Figure	5.16,	the	sensitivity	during	fault	diagnosis	is	higher	when	using	the	rebalancing	
and	concept-drift	approach	than	when	using	only	the	base	incremental	learning	algorithm.	So,	the	
PALADIN	diagnosis	module	learns	from	minority	class	despite	huge	class	imbalance.	This	behavior	is	
attributed	to	the	fact	that	SMOTE	was	able	to	engage	in	online	learning,	positively	affecting	failure	
classification.	
	
The	prequential	measurements	of	G-Mean	(Figure	5.17),	kappa	(Figure	5.18),	and	MCC	(Figure	5.19)	
also	confirm	that	the	Diagnosis	module	does	not	neglect	the	learning	of	any	of	the	two	states	of	the	
network	(in	failure	and	healthy	states).	
	
The	intensity	of	the	color	of	the	weighted	difference	heatmap	for	the	Sensitivity,	G-Mean,	kappa,	
and	MCC	metrics	also	suggests	that	it	is	not	enough	to	use	an	incremental	algorithm	without	the	
components	 of	 the	 proposed	 Diagnosis	 module	 (concept	 drift	 detector	 and	 class	 imbalance	
detector).	In	the	same	line,	it	is	not	enough	to	deal	with	the	concept-drift	to	face	the	classification	
of	 an	 imbalanced	 data	 stream.	 As	 evidence,	 most	 of	 the	 base	 algorithms	 have	 concept	 drift	
incorporated	 (as	 Table	 5.8	 indicates	 in	 experiment	 setup);	 however,	 they	 perform	 poorly,	 so	 a	
rebalancing	and	concept-drift	detection	procedure	external	to	the	algorithm	is	necessary.	
	
Meanwhile,	prequential	AUC	is	very	similar	in	the	proposed	Diagnosis	module	and	the	online	base	
classifier	(Figure	5.20).	Suppose	this	is	contrasted	with	the	results	mentioned	above.	In	that	case,	it	
is	safe	to	say	that	this	metric	does	not	provide	reliable	information	to	compare	the	two	scenarios	
and	neither	to	evaluate	the	classification	performance	of	imbalanced	data	streams.	
	
If	it	were	to	select	an	online	base	algorithm	for	the	Diagnosis	module,	it	is	evident	that	some	do	not	
perform	well	 even	with	 the	 rebalancing	 process	 and	 could	 not	 be	 selected	 as	 candidates	 to	 be	
implemented	within	the	Diagnostic	module	(AWE,	ADAGRAD,	Learn++.NSE,	and	AUE2).	However,	
this	occurs	with	few.	Twenty-one	algorithms	out	of	twenty-five	have	excellent	results	 if	 they	are	
coupled	with	the	concept-drift	and	class	imbalance	detectors,	as	the	diagnosis	module	proposes.	
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Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SwitchCore	I 0,92774 0,86193 0,94613 NaN 0,91675 0,92295 0,92745 0,86818 0,91783 0,86193 0,92237 0,94035 0,85105 0,9239 NaN NaN 0,91409 NaN 0,93235 0,89999 0,85448 0,9344 0,79648 0,94929 0,83847
SwitchCore	II 0,9318 0,92077 0,85722 NaN 0,85963 0,93139 0,92811 0,8729 0,88215 0,92822 0,87852 0,93964 0,91303 0,92794 NaN NaN 0,92127 NaN 0,89014 0,92429 0,94236 0,87566 0,80855 0,94286 0,91437

SwitchCore	I 0,51353 0,51389 0,57057 NaN 0,45367 0,41708 0,68545 0,48931 0,46219 0,51389 0,50255 0,59561 0,44162 0,68961 NaN NaN 0,32757 NaN 0,52857 0,2591 0,56846 0,59257 0,3495 0,76025 0,43408
SwitchCore	II 0,55295 0,54461 0,56199 NaN 0,33862 0,507 0,68786 0,52577 0,54917 0,54653 0,54212 0,58354 0,41863 0,70621 NaN NaN 0,43096 NaN 0,51033 0,33885 0,46806 0,56357 0,35436 0,7402 0,47317

SwitchCore	I 0,43304 0,38168 0,3693 NaN 0,42817 0,51206 0,24074 0,40929 0,43165 0,38168 0,43853 0,35573 0,41243 0,24564 NaN NaN 0,63759 NaN 0,39567 0,58882 0,30568 0,33571 0,48674 0,19063 0,42301
SwitchCore	II 0,39377 0,39669 0,30646 NaN 0,47387 0,42454 0,23715 0,37093 0,33249 0,39937 0,36571 0,36842 0,4803 0,23185 NaN NaN 0,52165 NaN 0,36995 0,51998 0,42276 0,31155 0,41152 0,20462 0,44963
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Dataset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SwitchCore	I 0,8402 0,91562 0,90967 0,47048 0,80799 0,82507 0,81083 0,84033 0,88174 0,91562 0,91879 0,85991 0,71464 0,92224 0,5 0,52552 0,90308 0,45182 0,87877 0,8298 0,91286 0,92452 0,87263 0,88742 0,93589
SwitchCore	II 0,85766 0,92719 0,93561 0,46638 0,67701 0,8463 0,81355 0,85167 0,91042 0,92862 0,92286 0,86784 0,67805 0,93404 0,5 0,54407 0,90573 0,45443 0,90253 0,87655 0,93143 0,94676 0,87663 0,88567 0,93942

SwitchCore	I 0,84528 0,91525 0,86956 0,44997 0,83787 0,83822 0,80975 0,84341 0,88676 0,9159 0,92112 0,88124 0,6765 0,92168 0,5 0,49816 0,89934 0,46322 0,87862 0,85487 0,89615 0,92802 0,89656 0,88488 0,94238
SwitchCore	II 0,85326 0,92571 0,93422 0,44991 0,68197 0,83754 0,81419 0,85224 0,91128 0,9255 0,9254 0,86923 0,64072 0,9353 0,5 0,49829 0,90161 0,45558 0,9001 0,8819 0,8159 0,94079 0,92539 0,88238 0,94689

SwitchCore	I -0,00401 5,03E-04 0,03961 0,01198 -0,02368 -0,00905 6,25E-04 -0,00237 -3,22E-04 2,34E-04 -0,00218 -0,012 0,0198 -1,12E-04 0 0,03011 0,003 0,01693 -1,79E-04 -0,01743 0,02103 -0,00285 -0,01436 0,00221 -0,00741
SwitchCore	II 0,00256 0,00113 7,70E-04 0,00884 -0,00452 0,00622 -3,08E-04 -0,00117 -0,00104 0,00167 -0,00153 -0,00134 0,0211 -0,00154 0 0,04419 0,00337 -0,00998 0,00129 -0,00289 0,0732 0,00639 -0,02765 0,0029 -0,00773
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Hence,	this	proposal	is	a	useful	approach	to	network	fault	diagnosis	and	appropriate	for	network	
scenarios	where	monitoring	data	arrives	on	the	fly.	
	
This	 experiment	 reaffirms	 that	 the	 PALADIN	model	 proposed	 to	 detect	 failures	 from	 peripheral	
devices'	 monitoring	 data	 allows	 detecting	 internal	 network	 failures	 using	 data	 stream	 learning	
techniques.	
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Chapter	VI: Conclusion	and	future	work	
	
	
This	research	aimed	to	diagnose	IP-based	networks'	faults	in	a	timely,	non-invasive	way	and	resilient	
to	dynamic	network	changes.	The	proposed	PALADIN	model	(Peripheral	Fault	Diagnosis	Model	for	
IP-based	Networks)	contains	the	necessary	elements	for	the	continuous	and	timely	diagnosis	of	IP-
based	 network	 faults;	 it	 introduces	 the	 idea	 of	 periodical	monitorization	 of	 peripheral	 network	
elements	and	uses	data	analytics	techniques	to	process	it.	Based	on	the	analysis,	processing,	and	
classification	 of	 peripherally	 collected	 data,	 it	 can	 be	 concluded	 that	 PALADIN	 achieves	 the	
objective.	 The	 results	 indicate	 that	 the	peripheral	monitorization	 allows	diagnosing	 faults	 in	 the	
internal	network;	besides,	the	diagnosis	process	needs	an	incremental	learning	process,	concept-
drift	detection	elements,	and	rebalancing	strategy.	
	
This	 research's	 point	 of	 departure	was	 the	 hypothesis	 of	 a	 fault	 propagation	 phenomenon	 that	
allows	the	observation	of	failure	symptoms	at	a	higher	network	level	than	the	fault	origin.	Thus,	for	
the	model's	 construction,	monitoring	 data	was	 collected	 from	 an	 extensive	 campus	 network	 in	
which	impact	 link	failures	were	induced	at	different	 instants	of	time	and	with	different	duration.	
These	data	 correspond	 to	widely	used	parameters	 in	 the	actual	management	of	a	network.	The	
collected	 data	 allowed	us	 to	 understand	 the	 faults'	 behavior	 and	how	 they	 are	manifested	 at	 a	
peripheral	level.	
	
Based	on	this	understanding	and	a	data	analytics	process,	the	first	three	modules	of	our	model	were	
proposed	(Identify,	Collection	and	Structuring),	which	define	the	data	collection	peripherally	and	
the	 necessary	 data	 pre-processing	 to	 obtain	 the	 description	 of	 the	 network's	 state	 at	 a	 given	
moment.	These	modules	give	the	model	the	ability	to	structure	the	data	taking	 into	account	the	
delays	of	 the	multiple	 responses	 that	 the	network	delivers	 to	a	single	monitoring	probe	and	the	
multiple	network	interfaces	that	a	peripheral	device	may	have.		
	
Thus,	a	structured	data	stream	is	obtained,	and	it	is	ready	to	be	analyzed.	For	this	analysis,	it	was	
necessary	 to	 implement	 an	 incremental	 learning	 framework	 that	 respects	 networks'	 dynamic	
nature.	It	comprises	three	elements,	an	incremental	learning	algorithm,	a	data	rebalancing	strategy,	
and	a	concept	drift	detector.	This	framework	is	the	Diagnosis	module	of	the	PALADIN	model.	
	
The	results	of	the	experiments	were	as	expected.	On	the	one	hand,	impact	failures	propagate	in	the	
network	 and	manifest	 themselves	 in	 the	monitored	network's	 peripheral	 devices.	On	 the	other,	
PALADIN	 makes	 it	 possible	 to	 learn	 from	 these	 network	 manifestations	 and	 diagnose	 internal	
network	 failures.	 The	 latter	 was	 verified	 with	 25	 different	 incremental	 algorithms,	 ADWIN	 as	
concept-drift	detector	and	SMOTE	(adapted	to	streaming	scenario)	as	the	rebalancing	strategy.	
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This	research	clearly	illustrates	that	it	is	unnecessary	to	monitor	all	the	internal	network	elements	
to	detect	a	network's	failures.	It	is	enough	to	choose	the	peripheral	elements	to	be	monitored.	This	
way,	 the	 increase	 in	network	 traffic	 and	 control	 overhead	 is	 avoided.	 Furthermore,	with	proper	
processing	of	the	collected	status	and	traffic	descriptors,	it	is	possible	to	learn	from	the	arriving	data	
using	incremental	learning	in	cooperation	with	data	rebalancing	and	concept	drift	approaches.	This	
proposal	continuously	diagnoses	the	network	symptoms	without	leaving	the	system	vulnerable	to	
failures	while	being	resilient	to	the	network's	dynamic	changes.		
	
Having	 solved	 the	 fault	 detection	 problem,	 then	 the	 question	 of	 how	 granular	 the	 peripheral	
approach	can	detect	faults	arises;	for	example,	determine	if	a	failure	occurs	in	the	access	layer	or	
the	distribution	layer,	and	even	determine	what	causes	failure.	
	
Future	 studies	 could	 address	 the	 granularity	 concerns	 mentioned	 above	 from	 the	 peripheral	
perspective	to	understand	our	results'	implications	better.	Also,	we	would	like	to	extend	our	study	
to	overlapping	faults	because	it	is	an	interesting	point	that	has	not	been	answered	with	the	PALADIN	
model.	Another	important	aspect	not	specific	to	networking	is	the	normalization	process	for	a	data	
stream.	 In	 the	 experimentation,	 this	 process	 was	 carried	 out	 before	 the	 incremental	 learning	
process,	as	if	all	the	data	arrived	normalized.	However,	the	calculation	of	statistical	measures	from	
a	non-static	data	set	is	still	a	field	under	study.		
	
On	 the	 other	 hand,	 researchers	 should	 consider	 that	 fault	 detection	 handled	 as	 a	 classification	
process	is	a	problem	with	combined	difficulties	from	streaming	and	excessive	imbalanced	data.	This	
is	why	careful	metrics	selection	is	needed	for	performance	evaluation,	and	as	a	recommendation,	
the	prequential	AUC	is	not	a	suitable	performance	metric	for	unbalanced	data	streams.	
	
To	summarize	this	research's	main	contributions,	let	us	return	to	the	problem	statement	identified	
from	a	strong	literature	review.	It	ensures	that	there	is	no	non-invasive	technique	to	continuously	
diagnose	 the	 network	 symptoms	 without	 leaving	 the	 system	 vulnerable	 to	 any	 failures,	 nor	 a	
resilient	technique	to	the	network's	dynamic	changes,	which	can	cause	new	failures	with	different	
symptoms.	This	 research	 first	evidences	the	phenomenon	of	 impact	 fault	propagation,	making	 it	
possible	to	detect	fault	symptoms	at	a	monitored	network's	peripheral	level.	It	translates	into	non-
invasive	monitoring	of	the	network.	Second,	the	PALADIN	model	 is	the	major	contribution	in	the	
fault	detection	context	because	 it	 covers	 two	aspects.	An	online	 learning	model	 to	continuously	
process	the	network	symptoms	and	detect	internal	failures.	Moreover,	the	concept-drift	detection	
and	 rebalance	 data	 stream	 components	 which	 make	 resilience	 to	 dynamic	 network	 changes	
possible.	 Third,	 it	 is	 well	 known	 that	 the	 number	 of	 available	 real-world	 datasets	 for	 testing	
imbalanced	 stream	 classifiers	 is	 still	 too	 small.	 That	 number	 is	 further	 reduced	 for	 networking	
context.	The	SOFI	dataset	obtained	with	the	first	modules	of	the	PALADIN	model	contributes	to	that	
number	and	encourages	works	related	to	unbalanced	data	streams	and	those	related	to	network	
fault	diagnosis.	
	
As	previously	noted,	the	main	objective	of	this	research	was	achieved	because	PALADIN	is	a	model	
for	the	continuous	and	timely	diagnosis	of	IP-based	networks	faults,	independent	of	the	network	
structure	 and	 based	 on	 data	 analytics	 techniques.	 Furthermore,	 the	 three	 specific	 objectives	
pursued	were	achieved	as	follows:	

1. A	data	set	that	relates	peripheral	symptoms	with	network	faults	was	created	and	named	
SOFI.	
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2. PALADIN's	 diagnosis	 module	 represents	 an	 online	 fault	 classification	 model	 with	 data	
stream	considerations.	

3. The	 implementation	 and	 evaluation	 of	 PALADIN	 through	 the	 experiments	 allowed	 us	 to	
measure	the	proposed	model	behavior	over	time.	 	
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Annexes	
	
	
		

Annex	A: Network	Emulation	on	GNS3	
	
This	network	configuration	is	based	on	the	"Enterprise	Network	on	GNS3"	online	guide	published	
by	(Brezula,	2017).	Figure	A.1	shows	the	emulated	network	over	the	GNS3	platform;	it	details	all	the	
addressing	and	 routing	configuration,	and	all	 the	device	details	 (vendor,	 software	version).	Each	
item	details	the	configuration	of	each	device	in	the	campus	infrastructure	layers,	the	server	farm,	
the	enterprise	edge,	and	the	service	provider	edge.	Finally,	summary	credentials	are	presented.	
	
	

A.1  Access Layer Configuration 
	

A.1.1  Access Switches Configuration 
	
The	two	access	switches	are	similarly	configured.	Therefore,	the	configuration	for	one	Access	Switch	
(AccSwitch-I)	is	indicated,	and	both	configuration	files	are	attached	to	perform	the	same	procedure	
with	 the	 remaining	 access	 switch	 (AccSwitch-II).	 Both	 switches	 are	emulated	by	 installed	qcow2	
images	of	Cisco	vIOS-l2	Qemu	appliance	(version	15.2).	
	

a) Basic	Configuration	
	

switch# conf t 
switch(config)# hostname AccSwitch-I 

	
b) Configuration	of	VLANs	

	
AccSwitch-I	 provides	 the	 connection	 to	 VLAN10	 and	 VLAN20,	 while	 AccSwitch-II	 provides	 it	 to	
VLAN30	and	VLAN40.	
	

AccSwitch-I(config)# vlan 10 
AccSwitch-I(config-vlan)# no shutdown 
AccSwitch-I(config)# vlan 20 
AccSwitch-I(config-vlan)# no shutdown 
AccSwitch-I(config-vlan)# exit 
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Figure	A.1	Emulated	network	in	GNS3	platform.	
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c) IP	Address	and	Trunk	Port	Configuration	
	
The	port	G0/0	is	selected	as	the	management	port.	This	interface	has	an	IP	address	and	netmask	
appropriate	to	access	it	remotely.	Therefore,	it	is	configured	as	a	routed	port	or	a	Layer	3	interface.	
10.1.1.8/30	 is	 the	subnetwork	 to	which	 it	belongs	and	shared	with	DisSwith-I	of	 the	distribution	
layer.	
	

AccSwitch-I(config)# interface GigabitEthernet 0/0 
AccSwitch-I(config-if)# description Link to DisSwitch-I 
AccSwitch-I(config-if)# no switchport 
AccSwitch-I(config-if)# ip static 10.1.1.9 255.255.255.252 
AccSwitch-I(config-if)# no shutdown 
AccSwitch-I(config-if)# exit 

	
In	order	to	allow	these	switches	to	access	servers	in	the	data	center	(to	synchronize	their	time	with	
the	NTP	server,	to	send	logs	to	the	Rsyslog	server,	and	so	forth),	the	Switch	Virtual	Interface	(SVI)	is	
created	in	the	access	switches.	
	

AccSwitch-I(config)# interface vlan 20 
AccSwitch-I(config-if-vlan)# ip address 192.168.20.250 255.255.255.0 
AccSwitch-I(config-if-vlan)# no shutdown 
AccSwitch-I(config-if-vlan)# exit 

 
The	ports	GigabitEthernet0/1	and	0/2	on	access	switches	are	trunk	ports	because	they	carry	traffic	
from	multiple	VLANs.	Also,	they	connect	the	access	switches	to	the	distribution	network	elements.	
The	ports	which	connect	access	switches	with	the	ethernet	switches	(on	the	same	access	layer)	are	
GigabitEthernet0/3	and	1/0,	and	they	are	configured	as	access	ports.	
 

AccSwitch-I(config)# interface GigabitEthernet0/1 
AccSwitch-I(config-if)# switchport trunk encapsulation dot1q  
AccSwitch-I(config-if)# switchport mode trunk 
AccSwitch-I(config-if)# switchport trunk allowed vlan 10,20 
AccSwitch-I(config-if)# no shutdown 
AccSwitch-I(config-if)# exit 
 
AccSwitch-I(config-if)# interface GigabitEthernet0/2 
AccSwitch-I(config-if)# switchport trunk encapsulation dot1q  
AccSwitch-I(config-if)# switchport mode trunk 
AccSwitch-I(config-if)# switchport trunk allowed vlan 10,20 
AccSwitch-I(config-if)# no shutdown 
AccSwitch-I(config-if)# exit 

 
AccSwitch-I(config-if)# interface GigabitEthernet0/3 
AccSwitch-I(config-if)# switchport mode access 
AccSwitch-I(config-if)# switchport access vlan 10 
AccSwitch-I(config-if)# no shutdown 
 
AccSwitch-I(config-if)# int GigabitEthernet1/0 
AccSwitch-I(config-if)# switchport mode access 
AccSwitch-I(config-if)# switchport access vlan 20 
AccSwitch-I(config-if)# no shutdown 
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Creating	a	static	default	route	for	the	switch	for	routing	NTP	and	Syslog	messages	to	the	server	farm	
is	necessary.	
	

AccSwitch-I(config)# ip route 0.0.0.0 0.0.0.0 192.168.20.254 
	

d) NTP	Configuration	
	
The	NTP	server	is	located	in	172.16.50.1.	The	timezone	is	UTC-5	for	Colombia.	

 
AccSwitch-I(config)# ntp server 172.16.50.1 
AccSwitch-I(config)# ntp source GigabitEthernet 0/0 
AccSwitch-I(config)# clock timezone UTC-5 -5 0 

	
e) Logging	

	
The	level	of	logging	corresponds	to	notifications	(level	5).	
	

AccSwitch-I(config)# logging trap notifications 
	
Configure	the	Syslog	server	address	where	the	logs	are	sent	(Server	B	with	IP	address	172.16.50.3).	

 
AccSwitch-I(config)# logging host 172.16.50.3 

	
The	logging	source	interface	is	the	management	interface	or	loopback.	
	

AccSwitch-I(config)# logging source-interface GigabitEthernet0/0 
	

f) SNMP	Configuration	
	
Enable	the	Read-only	(RO)	community	string	as	"emulation"	in	this	particular	case.	
	

AccSwitch-I(config)# snmp-server community emulation RO 
 
Enable	the	router	to	send	all	 traps	to	the	Zabbix	Server	(172.16.50.3)	with	the	community	string	
"emulation"	and	SNMP	version	2.	
	

AccSwitch-I(config)# snmp-server host 172.16.50.3 traps version 2c emulation 
AccSwitch-I(config)# snmp-server enable traps 

	
g) Configuration	Files	

	
The	 /enterprise_campus/access/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
files	for	the	AccSwitch-I	and	AccSwitch-II	devices	for	consultation	purposes.	
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A.1.2  Clients Configuration 
 
Clients	are	default	DHCP	configured	(172.16.50.1	as	DHCP	server).	However,	VLAN	40	is	used	for	
network	management	tasks,	so	all	its	devices	are	statically	configured.	The	client	device	types	used	
are	 Basic	 PC	 (GNS3	 built-in	 basic	 Linux	 PC),	 Ostinato	 appliance,	 Firefox	 appliance,	Windows	 10	
appliance,	PC	Loopback	(connection	to	the	machine	itself),	and	Lubuntu	virtual	machine.	
	
The	 static	 IP	 address	 configuration	 for	 Basic	 PC	 and	PC	 Loopback	 is	 in	 the	 next	 item.	 The	other	
devices	are	configured	with	an	intuitive	graphical	interface,	so	they	will	not	be	explained.	
	

a) Network	Configuration	for	Basic	PC 
 
The	bootlocal.sh	file	contains	network	interface	configuration	information	for	Basic	PC.	Access	this	
file	in	PC4.	
	

$ vi /opt/bootlocal.sh 
 
To	setup	eth0	to	a	static	address,	enter:	
	

	
 
The	next	command	is	needed	to	save	the	configuration.	
	

$ /usr/bin/filetool.sh -b 
	

b) Loopback	Configuration	
 
A	loopback	interface	is	configured	to	use	the	GNS3	user	interface	machine	as	an	emulated	network	
client.	For	this	purpose,	follow	the	next	steps	in	that	machine.	
	

$ sudo apt-get install uml-utilities 
$ sudo modprobe tun 

 
Verify	the	name	of	the	loopback	interface	available	for	configuration.	
 

$ sudo tunctl 
Set 'tap0' persistent and owned by uid 0 

 
Configure	the	available	loopback	interface	with	an	IP	within	the	VLAN	40	addresses	range.	
	

$ sudo ifconfig tap0 192.168.40.2 netmask 255.255.255.0 
$ sudo route add default gw 192.168.40.254 
$ sudo echo “nameserver 172.16.50.1” >> /etc/resolv.conf 
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A	Cloud	element	has	to	be	added	and	configured	to	add	the	loopback	interface	as	a	client	of	the	
emulated	network,	as	shown	in	Figure	A.2:	
	

	
Figure	A.2	Configuration	of	Cloud	element	with	the	loopback	interface. 

	
	

A.2  Distribution Layer Configuration 
	
The	 two	 distribution	 switches	 are	 similarly	 configured.	 Therefore,	 the	 configuration	 for	 one	
Distribution	Switch	(DisSwitch-I)	is	indicated,	and	both	configuration	files	are	attached	to	perform	
the	same	procedure	with	the	remaining	distribution	switch	(DisSwitch-II).	Both	switches	are	Arista	
vEOS	Qemu	appliances	installed	on	VMware	disks	(version	4.17.8M).	
	

a) Basic	Configuration	
	
To	configure	the	Arista	network	elements,	it	is	necessary	to	log	into	the	appliance	using	the	default	
username	admin,	which	has	no	assigned	password.	Then,	configure	the	hostname	as	the	first	step.	
	

switch> en 
switch# conf t 
switch(config)# hostname DisSwitch-I 

	
b) Configuration	of	VLAN	

	
DisSwitch-I(config)# vlan 10 
DisSwitch-I(config-vlan-10)# vlan 20 
DisSwitch-I(config-vlan-20)# vlan 30 
DisSwitch-I(config-vlan-30)# vlan 40 
DisSwitch-I(config-vlan-40)# exit 

	
c) IP	Address	and	Trunk	Port	Configuration	

	
Use	the	loopback	interface	for	management	and	assign	the	IP	address	10.1.1.6/32	to	it.	
	

DisSwitch-I(config)# interface loopback 0 
DisSwitch-I(config-if-Lo0)# ip address 10.1.1.6/32 
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On	both	distribution	switches,	the	ports	Ethernet4	and	Ethernet5	are	configured	as	trunks	because	
they	are	Layer	2	interfaces	that	carry	traffic	from	VLANs.	
	

DisSwitch-I(config)# interface Ethernet5 
DisSwitch-I(config-if-Et4)# description Link to AccSwitch-I 
DisSwitch-I(config-if-Et4)# switchport 
DisSwitch-I(config-if-Et4)# switchport mode trunk 
DisSwitch-I(config-if-Et4)# switchport trunk allowed vlan 10,20 
DisSwitch-I(config-if-Et4)# no shutdown 
DisSwitch-I(config-if-Et4)# exit 
 
DisSwitch-I(config)# interface Ethernet4 
DisSwitch-I(config-if-Et5)# description Link to AccSwitch-II 
DisSwitch-I(config-if-Et5)# switchport 
DisSwitch-I(config-if-Et5)# switchport mode trunk 
DisSwitch-I(config-if-Et5)# switchport trunk allowed vlan 30,40 
DisSwitch-I(config-if-Et5)# no shutdown 
DisSwitch-I(config-if-Et4)# exit 

	
On	both	distribution	network	elements,	the	port	Ethernet6	is	a	routing	interface	that	connects	the	
management	port	of	the	access	switches	to	the	network.	As	is	clear,	the	loopback	and	Ethernet	6	
ports	belong	to	the	same	network	10.1.1.0/24.	
	

DisSwitch-I(config)# interface Ethernet6 
DisSwitch-I(config-if-Et6)# description Link to Management AccSwitch-I 
DisSwitch-I(config-if-Et6)# no switchport 
DisSwitch-I(config-if-Et6)# ip address 10.1.1.10/30 
DisSwitch-I(config-if-Et6)# no shutdown 
DisSwitch-I(config-if-Et6)# exit 

	
The	 routed	 ports	 or	 Layer	 3	 interfaces	 (Ethernet	 1,	 2,	 and	 3)	 connect	 the	 distribution	 network	
elements	to	each	other	and	to	the	Core	switches.	The	networks	formed	are	shown	in	Table	A.1.	As	
is	clear,	all	point-to-point	links	belong	to	the	subnet	10.0.0.0/24.	
	

Table	A.1	Distribution	networks.	

Network	 Interfaces	
10.0.0.0/30	 Ethernet	1	of	DisSwitch-I	and	Ethernet	1	of	DisSwitch-II	
10.0.0.2/30	 Ethernet	2	of	DisSwitch-I	and	Ethernet	1	of	CoreSwitch-II	
10.0.0.8/30	 Ethernet	3	of	DisSwitch-I	and	Ethernet	2	of	CoreSwitch-I	
10.0.0.16/30	 Ethernet	2	of	DisSwitch-II	and	Ethernet	1	of	CoreSwitch-I	
10.0.0.12/30	 Ethernet	3	of	DisSwitch-II	and	Ethernet	2	of	CoreSwitch-II	

	
DisSwitch-I(config)# interface Ethernet1 
DisSwitch-I(config-if-Et3)# description Link to DisSwitch-II 
DisSwitch-I(config-if-Et3)# no switchport 
DisSwitch-I(config-if-Et3)# ip address 10.0.0.1/30 
DisSwitch-I(config-if-Et3)# no shutdown 
DisSwitch-I(config-if-Et3)# exit 

	
DisSwitch-I(config)# interface Ethernet2 
DisSwitch-I(config-if-Et1)# description Link to CoreSwitch-II 
DisSwitch-I(config-if-Et1)# no switchport 
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DisSwitch-I(config-if-Et1)# ip address 10.0.0.21/30 
DisSwitch-I(config-if-Et1)# no shutdown 
DisSwitch-I(config-if-Et1)# exit 
 
DisSwitch-I(config)# interface Ethernet3 
DisSwitch-I(config-if-Et2)# description Link to CoreSwitch-I 
DisSwitch-I(config-if-Et2)# no switchport 
DisSwitch-I(config-if-Et2)# ip address 10.0.0.9/30 
DisSwitch-I(config-if-Et2)# no shutdown 
DisSwitch-I(config-if-Et2)# exit 

	
To	prevent	connecting	with	another	network	device	accidentally,	shutdown	the	unused	interfaces.	
	

DisSwitch-I(config)# interface Ethernet7 
DisSwitch-I(config-if-Et7)# description Unused 
DisSwitch-I(config-if-Et7)# shutdown 
DisSwitch-I(config-if-Et7)# exit 

	
d) Switch	Virtual	Interfaces	Configuration	

	
In	 order	 to	 route	 traffic	 between	 VLANs,	 the	 configuration	 of	 Switch	 Virtual	 Interfaces	 (SVI)	 is	
necessary	 for	 each	VLAN.	 	 The	 interface	 SVI10,	 20,	 30,	 and	40	of	DisSwitch-I	 has	 the	 IP	 address	
192.168.x.253/24	 configured,	 where	 x	 is	 the	 VLAN	 identifier.	 Those	 SVI	 interfaces	 have	 the	 IP	
address	192.168.x.252/24	assigned	on	the	switch	DisSwitch-II.	
	
The	following	commands	execute	such	configuration.	That	configuration	snippet	must	be	repeated	
for	each	VLAN	changing	the	x	for	the	corresponding	VLAN	identifier	(10,	20,	30,	or	40).	
	

DisSwitch-I(config)# interface vlan x 
DisSwitch-I(config-if-Vl10)# ip address 192.168.x.253/24 
DisSwitch-I(config-if-Vl10)# no shutdown 
DisSwitch-I(config-if-Vl10)# exit 

	
e) OSPF	Protocol	Configuration	

	
Enable	IP	routing	on	the	distribution	network	elements.	
	

DisSwitch-I(config)# ip routing 
	
Open	Shortest	Path	First	 (OSPF)	configuration	ensures	the	routes	propagation	 inside	the	campus	
and	server	farm.	In	order	to	avoid	adjacency	and	save	CPU	cycles	of	the	distribution	switches,	the	
interfaces	Ethernet4,	Ethernet5,	and	Ethernet6	are	configured	as	passive.	 In	this	way,	no	routing	
updates	 are	 performed	 on	 the	 SVI	 interfaces,	 the	 trunk	 ports,	 and	 the	 connection	 to	 the	
management	interface	of	the	access	switches.	
	

DisSwitch-I(config)# router ospf 1 
DisSwitch-I(config-router-ospf)# router-id 10.1.1.6 
DisSwitch-I(config-router-ospf)# network 10.1.1.6/32 area 0 
DisSwitch-I(config-router-ospf)# network 10.1.1.8/30 area 0 
DisSwitch-I(config-router-ospf)# network 10.0.0.0/30 area 0 
DisSwitch-I(config-router-ospf)# network 10.0.0.20/30 area 0 
DisSwitch-I(config-router-ospf)# network 10.0.0.8/30 area 0 
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DisSwitch-I(config-router-ospf)# network 192.168.10.0/24 area 0 
DisSwitch-I(config-router-ospf)# network 192.168.20.0/24 area 0 
DisSwitch-I(config-router-ospf)# network 192.168.30.0/24 area 0 
DisSwitch-I(config-router-ospf)# network 192.168.40.0/24 area 0 
DisSwitch-I(config-router-ospf)# passive-interface Ethernet4 
DisSwitch-I(config-router-ospf)# passive-interface Ethernet5 
DisSwitch-I(config-router-ospf)# passive-interface Ethernet 6 
DisSwitch-I(config-router-ospf)# passive-interface vlan 10,20,30,40 

	
In	order	to	securely	exchange	routing	updates,	the	Message-Digest	algorithm	5	(MD5)	is	used	to	set	
the	password	authentication	for	OSPF	neighbors.	The	OSPF	broadcast	network	type	used	is	Point-
to-Point.	
	

DisSwitch-I(config)# interface Ethernet2 
DisSwitch-I(config-if-Et1)# ip ospf authentication message-digest 
DisSwitch-I(config-if-Et1)# ip ospf message-digest-key 1 md5 #MyPass!034 
DisSwitch-I(config-if-Et1)# ip ospf network point-to-point 
 
DisSwitch-I(config-if-Et1)# int Ethernet3 
DisSwitch-I(config-if-Et2)# ip ospf authentication message-digest 
DisSwitch-I(config-if-Et2)# ip ospf message-digest-key 1 md5 #MyPass!034 
DisSwitch-I(config-if-Et2)# ip ospf network point-to-point 
 
DisSwitch-I(config-if-Et2)# int Ethernet1 
DisSwitch-I(config-if-Et3)# ip ospf authentication message-digest 
DisSwitch-I(config-if-Et3)# ip ospf message-digest-key 1 md5 #MyPass!034 
DisSwitch-I(config-if-Et3)# ip ospf network point-to-point 

	
f) Virtual	Router	Redundancy	Protocol	(VRPP)	Configuration	

	
Each	VLAN	has	a	default	gateway	as	a	single	connection	point	to	the	campus	network.	This	point	is	
a	distribution	switch;	then,	 if	this	network	element	fails,	the	connected	VLANs	will	be	decoupled	
from	the	network.	 It	 is	necessary	 to	configure	all	 the	gateways	 IP	addresses	 in	both	distribution	
switches	to	avoid	that.	Thanks	to	the	VRRP	protocol,	the	above	is	possible,	enabling	several	network	
elements	to	use	the	same	virtual	IP	address.	So,	one	distribution	switch	is	configured	as	the	Master	
while	the	other	acts	as	a	backup	when	the	Master	becomes	unavailable.	
	
The	 switch	 DisSwitch-I	 is	 the	 Master	 for	 the	 VLAN10	 and	 20,	 so	 it	 has	 the	 IP	 addresses	
192.168.10.254	and	192.168.20.254	assigned	(default	gateway).	DisSwitch-I	is	the	VRRP	Backup	for	
the	 VLAN30	 and	 40,	 so	 it	 forwards	 traffic	 from	 these	 VLANs	 in	 case	 the	 Master	 (DisSwitch-II)	
becomes	unavailable.	In	the	same	way,	the	DisSwitch-II	is	the	Master	for	VLAN30	and	40	and	the	
Backup	for	VLAN10	and	20.	
	
In	order	to	determine	whether	the	switch	becomes	a	Master,	the	higher	VRRP	priority	is	configured	
for	the	wanted	SVI	interface.	For	example,	DisSwitch-I	sets	150	as	VRRP	priority	for	the	SVI	interfaces	
10	and	20,	but	the	DisSwitch-II	sets	the	default	priority	(100)	for	these	interfaces.	
	
MD5	authentication	is	used	to	avoid	rogue	VRRP	server	to	become	a	Master,	and	thereby,	to	prevent	
the	Man-in-the-Middle	attack.	
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The	following	commands	execute	such	configuration.	That	configuration	snippet	must	be	repeated	
for	each	VLAN	changing	the	“x”	for	the	corresponding	VLAN	identifier	(10,	20,	30,	or	40)	and	the	“P”	
by	the	VRRP	priority.	
	

DisSwitch-I(config)# interface vlan x 
DisSwitch-I(config-if-Vl10)# vrrp x priority P 
DisSwitch-I(config-if-Vl10)# vrrp x ip 192.168.x.254 
DisSwitch-I(config-if-Vl10)# vrrp x authentication ietf-md5 key-string MiKei10! 

	
g) NTP	Configuration	

	
The	NTP	server	allows	time	synchronization	on	all	network	devices	(Server	A	with	IP	172.16.50.1).	
	

DisSwitch-I(config)#	ntp server 172.16.50.1 
DisSwitch-I(config)#	clock timezone America/Bogota	
DisSwitch-I(config)#	ntp source loopback 0	

	
h) IP	Helper	Address	Configuration	

	
Server	A	(172.16.50.1)	provides	a	DHCP	server	to	clients	in	VLAN	10,	20,	and	30.	So,	the	DHCP	relay	
agent	has	to	be	enabled	on	the	SVI	interfaces	(command	ip	helper-address)	for	forwarding	the	DHCP	
broadcast	to	the	unicast	Server	A.	
	

DisSwitch-I(config)# interface vlan 10 
DisSwitch-I(config-if-Vl10)# ip helper-address 172.16.50.1 
DisSwitch-I(config-if-Vl10)# exit 
DisSwitch-I(config)# interface vlan 20 
DisSwitch-I(config-if-Vl20)# ip helper-address 172.16.50.1 
DisSwitch-I(config-if-Vl20)# exit 
DisSwitch-I(config)# interface vlan 30 
DisSwitch-I(config-if-Vl30)# ip helper-address 172.16.50.1 
DisSwitch-I(config-if-Vl20)# exit 

	
i) DNS	Server	Configurations	

	
DisSwitch-I(config)# ip name-server 172.16.50.1 

	
j) Remote	Authentication	Dial-In	User	Service	(RADIUS)	Client	Configuration	

	
The	RADIUS	running	on	Server	A	(172.16.50.1)	is	used	to	provide	centralized	authentication	to	the	
network	devices.	The	full	local	user	access	is	necessary	if	the	RADIUS	server	is	not	reachable.	
	
Enable	local	user	access.	
	

DisSwitch-I(config)# username admin privilege 15 secret cisco 
DisSwitch-I(config)# enable secret cisco 

	
Configure	RADIUS	with	a	secret	key.	The	key	will	also	be	configured	on	the	server.	
	

DisSwitch-I(config)# radius-server host 172.16.50.1 auth-port 1812 acct-port 
DisSwitch-I(config)# radius-server key test123 
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DisSwitch-I(config)# ip radius source-interface loopback 0 
	
The	following	login	method	establishes	that	RADIUS	authentication	will	be	used	first,	and	local	user	
authentication	is	used	instead	if	Server	A	is	unreachable.	
	

DisSwitch-I(config)# aaa authentication login default group radius local 
DisSwitch-I(config)# aaa authentication enable default group radius local 

	
Enable	authorization	for	console	and	exec	terminal	sessions.	
	

DisSwitch-I(config)# aaa authorization console 
DisSwitch-I(config)# aaa authorization exec default group radius local 

	
k) Logging	Configuration	

	
The	level	of	logging	corresponds	to	notifications	(it	is	equivalent	to	level	5	and	lower).	
	

DisSwitch-I(config)# logging trap notifications 
 
Configure	the	Syslog	server	address	where	the	logs	are	sent	(Server	B	with	IP	address	172.16.50.3).	
The	server	uses	the	path	/var/log/syslog-ng/10.1.1.6/	to	store	the	log	messages.		

 
DisSwitch-I(config)# logging host 172.16.50.3 

	
The	logging	source	interface	is	the	management	interface	or	loopback.	
 

DisSwitch-I(config)# logging source-interface Loopback0 
	

l) SNMP	Configuration	
	
Enable	the	Read-only	(RO)	community	string	as	"emulation"	in	this	particular	case.	
	

DisSwitch-I(config)# snmp-server community emulation ro 
 
Enable	the	router	to	send	all	traps	to	the	Zabbix	Server	(Server	B	with	IP	address	172.16.50.3)	with	
the	community	string	"emulation"	and	SNMP	version	2.	
	

DisSwitch-I(config)# snmp-server host 172.16.50.3 version 2c emulation 
DisSwitch-I(config)# snmp-server enable traps 

	
m) sFlow	Configuration	

	
Send	flows	to	the	nProbe	server	(Server	B	with	IP	address	172.16.50.3).	
	

DisSwitch-I(config)#sflow destination 172.16.50.3 2055 
	
The	source	interface	is	the	management	interface	or	loopback.	
	

DisSwitch-I(config)#sflow source Loopback0 
	



	 99	

Set	the	sampling	properties	according	to	network	conditions.	
	

DisSwitch-I(config)#sflow sample dangerous 256 
DisSwitch-I(config)#sflow polling-interval 60 

	
Enables	the	flows	sending	from	all	active	interfaces.	
	

DisSwitch-I(config)#sflow run  
	
Verify	configuration	with	commands	showed	in	Figure	A.3	and	the	Figure	A.4.	
	

	
Figure	A.3	Distribution	switch	command	output:	show	sflow	interfaces.	

	

	
Figure	A.4	Distribution	switch	command	output:	show	sflow.	

	
n) Configuration	Files	

	
The	 /enterprise_campus/distribution/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
files	for	the	DisSwitch-I	and	DisSwitch-II	devices	for	consultation	purposes.	
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A.3 Core Layer Configuration 
	

A.3.1 Core Switches Configuration 
	
The	two	core	switches	are	similarly	configured,	and	the	configuration	procedure	to	be	followed	is	
as	 defined	 for	 access	 switches.	 Therefore,	 a	 thorough	 explanation	 is	 not	 needed,	 and	 only	 the	
NetFlow	configuration	is	detailed.	The	configuration	files	are	attached.	Both	switches	are	emulated	
by	installed	qcow2	images	of	Cisco	vIOS-l2	Qemu	appliance	(version	15.2).	
	

a) NetFlow	Configuration	
	
Send	flows	to	nProbe	server	(Server	B	with	IP	address	172.16.50.3).	
	

CoreSwitch-I> enable 
CoreSwitch-I# configure terminal 
CoreSwitch-I(config)# ip flow-export destination 172.16.50.3 2055 
CoreSwitch-I(config)# ip flow-export version 9 

 
Enables	the	flows	sending	from	all	active	interfaces.	
 

CoreSwitch-I(config)# interface GigabitEthernet0/0 
CoreSwitch-I(config-if)# ip flow ingress 
CoreSwitch-I(config-if)# ip flow egress 
CoreSwitch-I(config-if)# exit 
 
CoreSwitch-I(config)# interface GigabitEthernet0/1 
CoreSwitch-I(config-if)# ip flow ingress 
CoreSwitch-I(config-if)# ip flow egress 
CoreSwitch-I(config-if)# exit 
 
CoreSwitch-I(config)# interface GigabitEthernet0/2 
CoreSwitch-I(config-if)# ip flow ingress 
CoreSwitch-I(config-if)# ip flow egress 
CoreSwitch-I(config-if)# exit 
 
CoreSwitch-I(config)# interface GigabitEthernet0/3 
CoreSwitch-I(config-if)# ip flow ingress 
CoreSwitch-I(config-if)# ip flow egress 
CoreSwitch-I(config-if)# exit 

	
Verify	configuration	with	following	commands.	
	

CoreSwitch-I# show ip flow interface 
CoreSwitch-I# show ip cache flow 

	
b) Configuration	Files	

	
The	 /enterprise_campus/core/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
files	for	the	CoreSwitch-I	and	CoreSwitch-II	devices	for	consultation	purposes.	
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A.3.2 Firewall Configuration 
	
The	firewall	is	a	Juniper	vSRX	Qemu	appliance	on	qcow2	disk	(version	17.3R1).	Next,	its	configuration	
is	detailed.	The	configuration	files	are	attached	at	the	end	of	the	explanation.	
	

a) Basic	Configuration	
	
Log	in	as	the	root	user	(no	password	is	set).	

login: root 
	
Start	the	CLI	and	enter	to	configuration	mode.		
	

root#cli  
root> configure 
root#  

	
Configure	the	root	authentication	password	using	a	cleartext	password	(also,	it	is	possible	to	set	an	
encrypted	password	or	an	SSH	public	key	string).		
	

[edit]  
root# set system root-authentication plain-text-password  
New password: Juniper 
Retype new password: Juniper 

	
Configure	the	hostname.		

[edit]  
root# set system host-name vSRX-I 
root# commit 
root@vSRX-I# 

	
b) Interfaces	Configuration	

	
The	 interfaces	 connecting	 vSRX-I	 to	 the	 Core	 network	 elements	 are	 named	 inside0	 and	 inside1.	
Those	relating	vSRX-I	 to	 the	Server	Farm	are	denominated	as	server0	and	server1.	The	 interface	
connecting	vSRX-I	to	the	RouterEDGE	router	is	set	with	the	name	outside.	
	

[edit] 
root@vSRX-I# set interfaces ge-0/0/0 unit 0 family inet address 172.16.0.13/30 
root@vSRX-I# set interfaces ge-0/0/0 unit 0 description "Link to CoreSwitch-II" 
root@vSRX-I# set interfaces ge-0/0/0 unit 0 alias inside0 
 
root@vSRX-I# set interfaces ge-0/0/1 unit 0 family inet address 172.16.0.9/30 
root@vSRX-I# set interfaces ge-0/0/1 unit 0 description "Link to CoreSwitch-I" 
root@vSRX-I# set interfaces ge-0/0/1 unit 0 alias inside1 
 
root@vSRX-I# set interfaces ge-0/0/2 unit 0 family inet address 172.16.0.1/30 
root@vSRX-I# set interfaces ge-0/0/2 unit 0 description "Link to RouterEDGE" 
root@vSRX-I# set interfaces ge-0/0/2 unit 0 alias outside 
 
root@vSRX-I# set interfaces ge-0/0/3 unit 0 family inet address 172.16.0.5/30 
root@vSRX-I# set interfaces ge-0/0/3 unit 0 description "Link to ServerSwitch" 
root@vSRX-I# set interfaces ge-0/0/3 unit 0 alias server0 
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root@vSRX-I# set interfaces ge-0/0/4 unit 0 family inet address 172.16.0.17/30 
root@vSRX-I# set interfaces ge-0/0/4 unit 0 description "Link to ServerSwitch" 
root@vSRX-I# set interfaces ge-0/0/4 unit 0 alias server1 

	
c) OSPF	Configuration	

	
Enable	routing	on	the	firewall.	
 

[edit] 
root@vSRX-I# set routing-options router-id 10.1.1.3 
 

Configure	the	default	static	route.	
	

[edit] 
root@vSRX-I# edit routing-options 
[edit routing-options] 
root@vSRX-I# set static route 0.0.0.0/0 next-hop 172.16.0.2 
 

Configure	the	single-area	OSPF	network.	
	

[edit] 
root@vSRX-I# set protocols ospf area 0.0.0.0 interface ge-0/0/0 
[edit] 
root@vSRX-I# set protocols ospf area 0.0.0.0 interface ge-0/0/1 
[edit] 
root@vSRX-I# set protocols ospf area 0.0.0.0 interface ge-0/0/3 
[edit] 
root@vSRX-I# set protocols ospf area 0.0.0.0 interface ge-0/0/4 

	
Configure	the	authentication	with	the	MD5	algorithm.	

 
[edit] 
root@vSRX-I# edit protocols ospf area 0 interface ge-0/0/0.0 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/0.0] 
root@vSRX-I# set authentication md5 1 key #MyPass!034 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/0.0] 
root@vSRX-I# top 
 
[edit] 
root@vSRX-I# edit protocols ospf area 0 interface ge-0/0/1.0 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/1.0] 
root@vSRX-I# set authentication md5 1 key #MyPass!034 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/1.0] 
root@vSRX-I# top 
 
[edit] 
root@vSRX-I# edit protocols ospf area 0 interface ge-0/0/3.0 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/3.0] 
root@vSRX-I# set authentication md5 1 key #MyPass!034 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/3.0] 
root@vSRX-I# top 
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[edit] 
root@vSRX-I# edit protocols ospf area 0 interface ge-0/0/4.0 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/4.0] 
root@vSRX-I# set authentication md5 1 key #MyPass!034 
[edit protocols ospf area 0.0.0.0 interface ge-0/0/4.0] 
root@vSRX-I# top 

	
Redistribute	static	routes	with	OSPF.	
	

[edit] 
root@vSRX-I# set policy-options policy-statement exportstatic1 term exportstatic1 from protocol 
static 
root@vSRX-I# set policy-options policy-statement exportstatic1 term exportstatic1 then accept 
root@vSRX-I# set protocols ospf export exportstatic1 

	
d) NTP	Configuration	

	
The	NTP	server	allows	time	synchronization	on	all	network	devices	(Server	A	with	IP	172.16.50.1).	
	

[edit] 
root@vSRX-I# set system ntp server 172.16.50.1 version 4 
root@vSRX-I# set system time-zone America/Bogota 

	
e) Logging	

	
Enable	logging	messages	to	console	and	RAM	(buffer).	
	

[edit] 
root@vSRX-I# set system syslog console any info                      
root@vSRX-I# set system syslog file messages any info 
 

Set	the	Syslog	server	address	where	the	logs	are	sent	(Server	B	with	IP	address	172.16.50.3).	
	

[edit] 
root@vSRX-I# set system syslog host 172.16.50.3 any any 

	
f) Security	Zones	Configuration		

	
Configure	the	security	zones	and	bind	them	to	traffic	interfaces.	Interfaces	inside0	and	inside1	are	
binding	 to	 the	 inside_zone	 zone.	 Interfaces	 server0,	 and	 server1	are	binding	 to	 the	 server_zone	
zone.	Interface	outside	is	binding	to	outside_zone.	
	

[edit] 
root@vSRX-I# set security zones security-zone inside_zone interfaces ge-0/0/0 
root@vSRX-I# set security zones security-zone inside_zone interfaces ge-0/0/1 
root@vSRX-I# set security zones security-zone server_zone interfaces ge-0/0/3 
root@vSRX-I# set security zones security-zone server_zone interfaces ge-0/0/4 
root@vSRX-I# set security zones security-zone outside_zone interface ge-0/0/2 

 
Enable	all	expected	host-inbound	traffic	from	the	inside_zone	zone	(ping,	ssh,	telnet,	ospf).	
	

root@vSRX-I# set security zones security-zone inside_zone host-inbound-traffic system-services ping 
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root@vSRX-I# set security zones security-zone inside_zone host-inbound-traffic system-services ssh 
root@vSRX-I# set security zones security-zone inside_zone host-inbound-traffic system-services 
telnet 
root@vSRX-I# set security zones security-zone inside_zone host-inbound-traffic protocols ospf 
root@vSRX-I# set security zones security-zone inside_zone host-inbound-traffic protocols ospf3 

 
Enable	all	expected	host-inbound	traffic	from	the	server_zone	zone	(ping,	ssh,	telnet,	ntp,	ospf).	
	

root@vSRX-I# set security zones security-zone server_zone host-inbound-traffic system-services ping 
root@vSRX-I# set security zones security-zone server_zone host-inbound-traffic system-services ssh 
root@vSRX-I# set security zones security-zone server_zone host-inbound-traffic system-services 
telnet 
root@vSRX-I# set security zones security-zone server_zone host-inbound-traffic system-services ntp 
root@vSRX-I# set security zones security-zone server_zone host-inbound-traffic protocols ospf 
root@vSRX-I# set security zones security-zone server_zone host-inbound-traffic protocols ospf3 

 
Enable	all	expected	host-inbound	traffic	from	the	outside_zone	zone	(ospf).	
 

root@vSRX-I# set security zones security-zone outside_zone host-inbound-traffic protocols ospf 
root@vSRX-I# set security zones security-zone outside_zone host-inbound-traffic protocols ospf3 
 

g) Address	Book	Configuration	
	

The	address	book	inside_addresses	contains	the	end	VLANs	network	addresses	(which	conforms	an	
address	set)	and	the	loopbacks	addresses	of	the	access,	distribution,	and	core	switches.	
	

root@vSRX-I# set security address-book inside_addresses address loopbacks_inside 10.1.1.0/24 
root@vSRX-I# set security address-book inside_addresses address vlan10_192.168.10 
192.168.10.0/24 
root@vSRX-I# set security address-book inside_addresses address vlan20_192.168.20 
192.168.20.0/24 
root@vSRX-I# set security address-book inside_addresses address vlan30_192.168.30 
192.168.30.0/24 
root@vSRX-I# set security address-book inside_addresses address vlan40_192.168.40_mgmt 
192.168.40.0/24 
 
root@vSRX-I# set security address-book inside_addresses address-set end_vlans address 
vlan10_192.168.10 
root@vSRX-I# set security address-book inside_addresses address-set end_vlans address 
vlan20_192.168.20 
root@vSRX-I# set security address-book inside_addresses address-set end_vlans address 
vlan30_192.168.30 
root@vSRX-I# set security address-book inside_addresses address-set end_vlans address 
vlan40_192.168.40_mgmt 
  
root@vSRX-I# set security address-book inside_addresses attach zone inside_zone 
 

The	address	book	outside_addresses	contains	the	DNSs	addresses	(which	conforms	an	address	set)	
and	the	loopback	address	of	the	RouterEDGE	router.	
	

root@vSRX-I# set security address-book outside_addresses address google_dns1 8.8.8.8 
root@vSRX-I# set security address-book outside_addresses address google_dns2 8.8.4.4 
root@vSRX-I# set security address-book outside_addresses address-set google_dns address 
google_dns1 
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root@vSRX-I# set security address-book outside_addresses address-set google_dns address 
google_dns2 
root@vSRX-I# set security address-book outside_addresses address loopback_edge 10.1.1.5 
root@vSRX-I# set security address-book outside_addresses attach zone outside_zone 

	
The	address	book	datacenter_addresses	 contains	 the	 servers	addresses	and	 the	VLAN5	network	
address.		
	

root@vSRX-I# set security address-book datacenter_addresses address vlan50_172.16.50 
172.16.50.0/24 
root@vSRX-I# set security address-book datacenter_addresses address server_a 172.16.50.1 
root@vSRX-I# set security address-book datacenter_addresses address server_b 172.16.50.3 
root@vSRX-I# set security address-book datacenter_addresses attach zone server_zone 

 
h) Application	Sets	Configuration	

 
root@vSRX-I# set applications application-set server_tcp_out application junos-http 
root@vSRX-I# set applications application-set server_tcp_out application junos-https 
root@vSRX-I# set applications application-set server_tcp_out application junos-dns-tcp 
 
root@vSRX-I# set applications application-set server_udp_out application junos-dns-udp 
 
root@vSRX-I# set applications application snmp protocol udp 
root@vSRX-I# set applications application snmp destination-port 161 
 
root@vSRX-I# set applications application snmptrap protocol udp 
root@vSRX-I# set applications application snmptrap destination-port 162 
 
root@vSRX-I# set applications application netflow protocol udp 
root@vSRX-I# set applications application netflow destination-port 2055 
 
root@vSRX-I# set applications application dhcp protocol udp 
root@vSRX-I# set applications application dhcp source-port 67 destination-port 67 
 
root@vSRX-I# set applications application mysql protocol tcp 
root@vSRX-I# set applications application mysql destination-port 3306 

	
i) Traffic	Rules	Configuration	

	
Permit	ping	between	network	elements.	
	

[edit] 
root@vSRX-I# set security policies global policy policy_ping match application junos-ping source-
address any destination-address any 
root@vSRX-I# set security policies global policy policy_ping then permit 

	
Permit	HTTP,	HTTPS,	and	DNS	traffic.	
	

root@vSRX-I# set security policies global policy policy_tcp_udp match application server_tcp_out 
application server_udp_out from-zone any to-zone any destination-address any source-address any 
root@vSRX-I# set security policies global policy policy_tcp_udp then permit 

	
Permit	SSH	access	from	management	VLAN	to	servers.	
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root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_ssh 
match application junos-ssh source-address vlan40_192.168.40_mgmt destination-address 
vlan50_172.16.50 
root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_ssh 
then permit 
 

Permit	Mysql	traffic	between	servers	and	the	management	VLAN.	
	

root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy 
policy_databases match application mysql source-address vlan40_192.168.40_mgmt destination-
address vlan50_172.16.50 
root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy 
policy_databases then permit 

	
Permit	Syslog	traps	to	ServerB	from	inside_zone	and	outside_zone	to	server_zone.	
	

root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_syslog 
match application junos-syslog source-address any destination-address server_b 
root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_syslog 
then permit 
root@vSRX-I# set security policies from-zone outside_zone to-zone server_zone policy 
policy_syslog match application junos-syslog source-address any destination-address server_b 
root@vSRX-I# set security policies from-zone outside_zone to-zone server_zone policy 
policy_syslog then permit 
 

Permit	NTP	requests.	
	

root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_ntp 
match application junos-ntp source-address loopbacks_inside destination-address server_a 
root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_ntp 
then permit 
 
root@vSRX-I# set security policies from-zone outside_zone to-zone server_zone policy policy_ntp 
match application junos-ntp source-address any destination-address any 
root@vSRX-I# set security policies from-zone outside_zone to-zone server_zone policy policy_ntp 
then permit 

	
root@vSRX-I# set security policies from-zone server_zone to-zone outside_zone policy policy_ntp 
match application junos-ntp source-address server_a destination-address any 
root@vSRX-I# set security policies from-zone server_zone to-zone outside_zone policy policy_ntp 
then permit 

	
Permit	SNMP	probes	and	traps	between	inside_zone	and	server_zone.	
	

root@vSRX-I# set security policies global policy policy_snmp match application snmp from-zone 
server_zone from-zone inside_zone to-zone server_zone to-zone inside_zone destination-address any 
source-address any 
root@vSRX-I# set security policies global policy policy_snmp then permit 

	
root@vSRX-I# set security policies global policy policy_snmptrap match application snmptrap from-
zone inside_zone to-zone server_zone destination-address any source-address any 
root@vSRX-I# set security policies global policy policy_snmptrap then permit 
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Permit	NetFlow/sFlow	messages	from	loopbacks	to	the	servers	(VLAN5).	
	

root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_netflow 
match application netflow source-address loopbacks_inside destination-address vlan50_172.16.50 
root@vSRX-I# set security policies from-zone inside_zone to-zone server_zone policy policy_netflow 
then permit 

	
Permit	DHCP	traffic	between	inside_zone	and	server_zone.	
	

root@vSRX-I# set security policies global policy policy_dhcp match application dhcp from-zone 
inside_zone from-zone server_zone to-zone server_zone to-zone inside_zone destination-address any 
source-address any 
root@vSRX-I# set security policies global policy policy_dhcp then permit 

	
j) Verify	the	Configuration		

 
[edit]  
root@# commit check  
configuration check succeed 

	
k) Commit	the	Configuration	

	
[edit]  
root@# commit  
commit complete 

	
l) Configuration	File	

	
The	 /enterprise_campus/core/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
file	for	the	vSRX	firewall	device	for	consultation	purposes.	
	
	

A.4 Server Farm Configuration 
	

A.4.1 Switch Configuration 
	
The	 switch	 is	 a	 Cisco	 vIOS-l2	 Qemu	 appliance	 on	 qcow2	 disks	 (version	 15.2).	 The	 configuration	
procedure	 to	be	 followed	 is	 as	defined	 for	 the	access	 and	 core	 switches.	 Therefore,	 a	 thorough	
explanation	 is	 not	 needed,	 and	 only	 the	 configuration	 file	 is	 attached.	 The	
/enterprise_campus/server_farm/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
file	for	consultation	purposes.		
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A.4.2  Server A Configuration 
	
A.4.2.1 Main	configuration	

	
The	ServerA	is	an	Ubuntu	16.04.4	LTS	Vmware	virtual	machine.	The	first	step	to	configure	it	is	to	
update	the	list	of	available	packages	and	install	newer	versions	of	the	current	packages.	
 

$ sudo su 
# apt-get update && apt-get upgrade 

	
a) Basic	Configuration		

	
Change	the	hostname.	
	

# vi /etc/hostname 
 
ServerA 
 

 
Add	 the	hostname	with	 an	 IP	 address	127.0.1.1	 into	 the	 file	 /etc/hosts	 for	hostname	 resolution	
purposes,	and	reboot	to	apply	changes.	
	

# echo "127.0.1.1 ServerA" >> /etc/hosts 
	
Configure	a	banner	for	SSH	connections.	
	

# vi /etc/issue.net 
 
Bienvenido al servidor “ServerA” 
Todas las conexiones estan siendo monitorizadas y grabadas. 
Finalice su conexión si no es un usuario autorizado. 
 

 
Install	 the	OpenSSH	server	and	edit	 its	configuration	file	by	uncommenting	the	 line	starting	with	
#Banner	as	follows.	
	
 # apt-get install openssh-server 

# vi /etc/ssh/sshd_config 

 
	
Restart	the	SSH	service.	
	

# systemctl restart ssh 
 

b) VGA	Output	to	Serial	Port	Redirection	
	
GNS3	supports	the	console	connection	via	a	serial	port	connection	with	the	appliances.	ServerA	is	a	
Vmware	 virtual	 machine	 running	 inside	 GNS3.	 So,	 to	 ensure	 the	 connection	 through	 the	 GNS3	
platform,	it	is	necessary	to	reconfigure	Ubuntu	for	redirecting	the	VGA	output	to	a	serial	port.			
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$ sudo su 
# vi /lib/systemd/system/ttyS0.service 

 
 
Enable	and	start	ttyS0	service.	Then	reboot	the	ServerA.	

 
# systemctl daemon-reload 
# systemctl enable ttyS0 
# systemctl start ttyS0 

	
c) Interface	Configuration	

Edit	 the	 configuration	 file	 /etc/network/interfaces	 to	 assign	 a	 static	 IP	 address	 to	 the	 network	
interface.	
	

$ sudo vi /etc/network/interfaces 

 
	
Restart	the	network	interfaces	to	apply	the	changes.	
	

$ sudo /etc/init.d/networking restart 
	
	
A.4.2.2 DNS	server	installation	and	configuration	

	
a) Bind	Server	Installation	

 
$ sudo apt-get update 
# sudo apt-get install bind9 bind9-doc 

	
b) Bind	Server	Configuration	

	
Edit	the	configuration	file	/etc/bind/named.conf.options	to	define	the	allowed	client	list	to	access	
the	DNS	server	and	the	public	name	servers	for	resolving	domains.	
	

# vi /etc/bind/named.conf.options 
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First,	add	the	following	access	list	of	clients	allowed	before	the	options	block. 
 

 
	
Inside	the	options	block,	reference	to	the	access	list	of	clients	and	allow	recursion	as	following.	

 
recursion yes; 
allow-query { 
ourclients; 
}; 
	

	
Set	Google	public	DNS	servers	as	forwarders	inside	options	block.	The	line	“forward	only”	makes	the	
Bind	server	forward	the	request	to	Google	DNS	servers.	
	

 
forwarders { 
8.8.8.8; 
8.8.4.4; 
}; 
 
forward only; 
	

	
Change	the	line	dnssec-validation	and	add	the	new	line	dnssec-enable	as	following.	
	

	
	
Save	the	file	and	check	the	configuration	with	the	next	command.	If	there	are	no	errors,	the	output	
is	blank.	
	

# named-checkconf 
	

c) Logging	Configuration	
	
Create	the	directory	/var/log/named	and	assign	Bind	as	its	owner	and	group.	
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# mkdir /var/log/named/ 
# chown bind:bind /var/log/named/ 

	
Edit	the	configuration	file	/etc/bind/named.conf.options	adding	the	following	lines.	
	

	
	
Inside	the	options	block,	add	the	following	line.	
 

 
querylog yes; 
 

 
Save	the	file	and	check	the	configuration.	Then,	restart	Bind	server	and	all	DNS	queries	will	be	stored	
in	the	file	/var/log/named/bind.log	

 
# named-checkconf 
# systemctl restart bind9 

	
d) DNS	Configuration	File	

	
The	 /enterprise_campus/server_farm/ServerA/DNS_server/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
file	named.conf.options	for	consultation	purposes.		
	
	
A.4.2.3 NTP	server	installation	and	configuration	

		
a) NTP	Installation	

 
$ sudo apt-get install ntp 

	
b) NTP	Client	Configuration	

 
Edit	the	configuration	file	/etc/ntp.conf	to	specifying	the	NTP	public	servers	geographically	near	
and	commenting	the	lines	of	the	preconfigured	NTP	servers	as	following.	
 

$ sudo su 
# vi /etc/ntp.conf 
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#pool 0.ubuntu.pool.ntp.org iburst 
#pool 1.ubuntu.pool.ntp.org iburst 
#pool 2.ubuntu.pool.ntp.org iburst 
#pool 3.ubuntu.pool.ntp.org iburst 
#pool ntp.ubuntu.com 
 
# Add the following lines. 
server 0.co.pool.ntp.org 
server 1.south-america.pool.ntp.org 
server 2.pool.ntp.org 
	

	
Add	the	following	lines	to	allow	synchronization	with	a	public	NTP	server	and	restrict	the	access	of	
those	servers	to	the	local	NTP	server.	
	

	
	
Add	the	following	lines	to	allow	queries	from	the	emulated	network	elements.	
	

	
restrict 10.1.1.0 mask 255.255.255.0 nomodify notrap 
restrict 172.16.0.0 mask 255.255.255.0 nomodify notrap 
restrict 10.0.0.0 mask 255.0.0.0 nomodify notrap 
restrict 192.168.0.0 mask 255.255.0.0 nomodify notrap 
	

	
Restart	the	NTP	service.	

# systemctl restart ntp 
	

c) NTP	Configuration	File	
	 	
The	 /enterprise_campus/server_farm/ServerA/NTP_server/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
file	ntp.conf	for	consultation	purposes.		
	
	
A.4.2.4 DHCP	server	installation	and	configuration	

	
a) DHCP	Server	Installation	

	
$ sudo apt-get install isc-dhcp-server 

	
b) DHCP	Server	Configuration	

	
Edit	the	configuration	file	/etc/dhcp/dhcpd.conf	to	define	the	addresses	ranges	for	each	subnetwork	
(VLAN	1,	2,	3,	and	5).	
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# vi /etc/dhcp/dhcpd.conf 

 
 
Configure	 the	 listening	 interface	and	 the	 configuration	 file	path	 in	 the	 file	 /etc/default/isc-dhcp-
server.	

	
# vi /etc/default/isc-dhcp-server 

 
	
Enable	and	start	the	DHCP	server.	The	file	/var/lib/dhcp/dhcpd.leases	stores	the	leased	addresses.	
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# sudo systemctl enable isc-dhcp-server 
# sudo systemctl start isc-dhcp-server 

	
	
A.4.2.5 RADIUS	installation	and	configuration	

	
a) FreeRADIUS	Installation	

 
$ sudo apt-get install freeradius 

	
Edit	the	configuration	file	/etc/freeradius/clients.conf	to	define	the	clients.	
	

# vi /etc/freeradius/clients.conf 
 
The	 /enterprise_campus/server_farm/ServerA/FreeRADIUS_server/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 complete	
configuration	file	clients.conf	for	consultation	purposes.		
	
Edit	the	configuration	file	/etc/freeradius/users	as	following.			
	

# vi /etc/freeradius/users 

 
	

The	 /enterprise_campus/server_farm/ServerA/FreeRADIUS_server/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 complete	
configuration	file	users	for	consultation	purposes.		
 
Edit	the	configuration	file	/etc/freeradius/radiusd.conf	to	log	authentication	requests	as	following.	
The	file	/var/log/freeradius/radius.log	stores	the	logs.	

 
# vi /etc/freeradius/radiusd.conf 

 
 
Restart	FreeRADIUS.	
	

# systemctl restart freeradius 
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A.4.3 Server B Configuration 
 
The	 ServerB	 is	 the	 Zabbix	 Appliance	 v3.4.0,	 which	 is	 pre-installed	 and	 pre-configured	 Zabbix	
software	over	Ubuntu	16.04	virtual	machine.		
	
	
A.4.3.1 SNMP	server	configuration	(Zabbix)	

	
We	use	 the	Zabbix	Appliance	 for	 trouble-free	deployment.	Zabbix	Appliance	virtual	machine	has	
prepared	 the	 Zabbix	 server	 with	 MySQL	 support,	 all	 monitoring	 capabilities,	 including	 the	
configuration	 for	 handle	 SNMP	 traps	 (download	 URL:	
https://www.zabbix.com/download_appliance).	Nevertheless,	it	also	is	possible	to	install	it	from	the	
distribution	packages	or	download	the	container.	
	

a) IP	Address	Configuration	
	
By	default,	the	appliance	uses	DHCP	to	obtain	the	IP	address.	This	configuration	is	used	in	this	work,	
so	the	ServerA	assigns	the	IP	address	for	172.16.50.0/24	network	(172.16.50.3	has	been	assigned).	
	

b) Time	Zone	Configuration	
	
To	set	the	correct	time	zone,	copy	the	appropriate	file	from	/usr/share/zoneinfo/Americas/Bogota	
to	/etc/localtime.	
	

$ cp /usr/share/zoneinfo/Americas/Bogota /etc/localtime 
	
Frontend	timezone	should	also	be	modified	in	/etc/apache2/conf-available/zabbix.conf.	
	

c) Credentials	
	

Table	A.2	Credentials	for	Zabbix	appliance.	

	 Login/User	 Password	
Operative	System	 appliance	 zabbix	

Database	 root	 <random	password>	
zabbix	 <random	password>	

Frontend	 Admin	 zabbix	
	
As	 shown	 in	 Table	 A.2,	 database	 passwords	 are	 randomly	 generated	 and	 stored	 in	 the	 file	
/root/.my.cnf.	 The	 following	 files	 have	 to	 be	 edited	 to	 change	 the	 database	 user	 password	 if	
necessary.	
	

/etc/zabbix/zabbix_server.conf	

/etc/zabbix/web/zabbix.conf.php	

	
To	access	the	Zabbix	frontend,	open	a	browser	with	the	URL	http://172.16.50.3/zabbix	from	a	PC	of	
VLAN4.	
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A.4.3.2 Syslog	server	installation	and	configuration	(Rsyslog)	

	
There	are	different	Syslog	server	implementations;	in	this	case,	two	were	used.	First,	syslog-ng	to	
save	the	logs	in	files.	Second,	Rsyslog	to	store	logs	in	a	database.	The	LogAnalyzer	tool,	configured	
for	Rsyslog,	is	used	to	monitor	the	stored	logs	via	Web.	
	

a) Syslog-ng	Installation	and	Configuration	
	
Install	the	package	syslog-ng.	
	

$ sudo apt-get install syslog-ng 
$ sudo su 

	
Edit	the	configuration	file	/etc/syslog-ng/conf.d/firewalls.conf	as	following.	
	

# cd /etc/syslog-ng/conf.d 
# vi firewalls.conf 

 
 
Restart	the	Syslog	server.	This	server	will	store	the	logs	in	the	directory	/var/log/syslog-ng/[source	
device	IP]/[year]/[month]/[day]	
 

# service syslog-ng restart 
	

b) Rsyslog	Installation	and	Configuration	
	
The	 first	 step	 is	 to	 install	 the	 MySQL	 server	 on	 Ubuntu	 and,	 once	 installed,	 follow	 the	 next	
instructions.	In	this	case,	the	Zabbix	appliance	guarantees	to	have	MySQL	installed.	
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Install	the	following	key.	
	

$ sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com AEF0CF8E 
	
Edit	the	configuration	file	/etc/apt/sources.list	as	following.	
	

$ sudo vi /etc/apt/sources.list 
 
deb http://ubuntu.adiscon.com/v7-devel precise/ 
deb-src http://ubuntu.adiscon.com/v7-devel precise/ 
 

	
Save	the	file	and	update	the	system.	
	

$ sudo apt-get update && sudo apt-get upgrade 
	
Install	Rsyslog	with	the	following	command.	
	

$ sudo apt-get install rsyslog 
	
Install	the	Rsyslog	support	for	MySQL	databases.	
	

# install rsyslog-mysql 
	
The	installation	wizard	will	be	open	and	will	ask	if	you	want	to	configure	the	database	for	rsyslog-
mysql	with	dbconfig-common.	Select	"Yes"	and	then	press	ENTER.	
	

	
Figure	A.5	rsyslog-mysql	configuration	(step	1).	

	
Enter	the	password	of	MySQL	Server	root	superuser	(see	credentials	of	A.4.3.1	section).		The	rsyslog-
mysql	package	must	access	MySQL	and	create	a	user,	a	catalog,	and	the	corresponding	tables.	
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Figure	A.6	rsyslog-mysql	configuration	(step	2).	

	
Enter	the	password	for	rsyslog-mysql	to	access	the	MySQL	server.	
	

	
Figure	A.7	rsyslog-mysql	configuration	(step	3).	

	
As	a	 result,	 the	necessary	configuration	 files,	 the	user,	 catalog,	and	 tables	will	be	created	 in	 the	
MySQL	database.	MySQL	Workbench	now	will	show	the	"Syslog"	scheme	created	by	rsyslog-mysql,	
and	the	tables	"SystemEvents"	and	"SystemEventsProperties".	
	

	
Figure	A.8	Syslog	scheme	in	MySQL	workbench.	
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MySQL	Workbench	also	will	show	the	"rsyslog"	user.	
	

	
Figure	A.9	rsyslog	user	in	MySQL	workbench.	

	
Once	the	module	for	MySQL	is	installed,	edit	the	file	/etc/rsyslog.conf	to	enable	RSyslog	listening	on	
ports	514/UDP	and	514/TCP.	Search	the	next	lines	and	uncomment	them	as	following.	
	

# vi /etc/rsyslog.conf  

 
	

c) LogAnalyzer	Installation	and	Configuration	
	
The	first	step	is	to	install	PHP5	y	Apache2	on	Ubuntu.	Any	Apache2	installation	guide	found	on	the	
web	is	useful.	To	install	PHP5,	see	the	following	steps.	
	

$ sudo apt-get install software-properties-common 
$ sudo add-apt-repository ppa:ondrej/php 
$ sudo apt-get update 
$ sudo apt-get install php5.6 

 
Add	MySQL	support	to	PHP.	
	

$ sudo apt-get insall php5.6-mysql 
	
Once	 installed	PHP,	create	a	 folder	 for	 the	 temporary	download	of	 the	compressed	LogAnalyzer	
installation	package.	
	

$ sudo mkdir /tmp/loganalyzer 
	
Access	the	folder	created	above,	and	download	the	LogAnalyzer	installation	package	(the	version	
used	is	loganalyzer-4.1.7).	
	

$ cd /tmp/loganalyzer 
$ wget http://download.adiscon.com/loganalyzer/loganalyzer-4.1.7.tar.gz 
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Unzip	the	package	and	access	the	created	folder.		
	

$ tar -xvf loganalyzer-4.1.7.tar.gz 
$ cd /tmp/loganalyzer/loganalyzer-4.1.7 

	
Create	the	loganalyzer	subfolder	inside	/var/www/html/	and	copy	the	contents	of	the	"src"	folder	
within	it.	Repeat	the	process	for	the	"contrib"	folder.	
	

$ sudo mkdir /var/www/html/loganalyzer 
$ sudo cp -R /tmp/loganalyzer/ loganalyzer-4.1.7/src/* /var/www/html/loganalyzer 
$ sudo cp -R /tmp/loganalyzer/loganalyzer-4.1.7/contrib/* /var/www/html/loganalyzer 

	
Set	write	permissions	for	configure.sh	and	secure.sh	files.	
	

$ cd /var/www/html/loganalyzer  
$ sudo chmod +x configure.sh secure.sh 

	
Start	 LogAnalyzer	 via	 web	 from	 a	 PC	 of	 VLAN4	 by	 opening	 a	 browser	 with	 the	 URL	
http://172.16.50.3/loganalyzer.	
	
LogAnalyzer	will	start.	At	the	first	start,	it	will	give	an	error	message	because	it	detects	that	it	has	
not	been	configured.	Click	on	"here"	to	install	Adiscon	LogAnalyzer.	
	

	
Figure	A.10	LogAnalyzer	installation	(error	at	the	first	start).	

	
The	wizard	will	start.	Press	"Next"	in	the	first	step.	
	

	
Figure	A.11	LogAnalyzer	installation	(step	1).	

	
In	the	second	step,	the	LogAnalyzer	installation	wizard	will	check	if	config.php	file	is	writable.	Press	
"Next".	
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Figure	A.12	LogAnalyzer	installation	(step	2).	

	
In	the	third	step,	enter	the	configuration	data	as	following.	

a) Enable	User	database:	Yes	
b) Database	Host:	localhost	
c) Database	Port:	3306	
d) Database	Name:	loganalyzer	(MySQL	catalog	name	to	be	created	for	LogAnalyzer).	
e) Table	prefix:	logcon_	(it	is	the	prefix	added	to	the	names	of	the	tables).	
f) Database	User:	root		
g) Database	Password:	(password	for	the	root	user.		See	credentials	of	A.4.3.1	section).	
h) Require	user	to	be	logged	in:	Yes	
i) Authentication	method:	Internal	authentication.	

	

	
Figure	A.13	LogAnalyzer	installation	(step	3).	

	
In	the	fourth	and	fifth	step,	press	"Next".	
	

	
Figure	A.14	LogAnalyzer	installation	(step	4).	
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Figure	A.15	LogAnalyzer	installation	(step	5).	

	
In	the	sixth	step,	enter	the	user	data	used	to	access	LogAnalyzer.	
	

	
Figure	A.16	LogAnalyzer	installation	(step	6).	

	
In	the	seventh	step,	enter	the	Rsyslog	data	as	a	data	source.	
	

a) Name	of	the	Source:	Syslog	emulated	network	
b) Source	Type:	MYSQL	Native	
c) Select	View:	Syslog	Fields	
d) Table	type:	MonitorWare	
e) Database	Host:	localhost	
f) Database	Name:	Syslog	
g) Database	Tablename:	SystemEvents	
h) Database	User:	rsyslog	(or	root)	
i) Database	Password:	(password	for	database	user).	
j) Enable	Row	Counting:	No	(because	there	will	be	hundreds	of	thousands	of	events.	Option	

"Yes"	is	not	advisable	because	it	can	slow	down	the	access).	
	

	
Figure	A.17	LogAnalyzer	installation	(step	7).	
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Now	 it	 is	 possible	 to	 view	 the	 logs	 of	 the	 network	 elements	 with	 the	 LogAnalyzer	 URL	 used	
previously.	
	
	
A.4.3.3 NetFlow	collector	installation	and	configuration	(nProbe)	

	
nProbe	is	selected	as	Netflow/sflow	server	collector.	To	install	nProbe,	download	the	stable	build	
packages	as	follows.		
	

$ wget http://apt-stable.ntop.org/16.04/all/apt-ntop-stable.deb 
$ dpkg -i apt-ntop-stable.deb 

	
Install	nProbe	with	the	following	commands.	
	

$ sudo apt-get clean all 
$ sudo apt-get update 
$ sudo apt-get install pfring nprobe ntopng ntopng-data n2disk cento nbox 

	
To	collect	incoming	flows,	use	the	following	command.	
	

$ nprobe --zmq "tcp://*:5556" -i none -n none --collector-port 2055 --dump-path [flow_storage_path] 
--timestamp-format 2 -T "[flow_parameters]" 

	
Where	flow_storage_path	is	the	directory	path	that	will	store	the	flows,	and	flow_parameters	is	the	
flow	descriptors	list	to	be	saved.	flow_parameters	should	be	listed	as	follows:	"%param1	%param2	
...	 $paramN.	 The	 flows	 will	 be	 stored	 inside	 the	 directory	 tree	 [flow_storage_path]	

/[year]/[month]/[day]/[hour]/[minute].flow	
	
	

A.5 Enterprise Edge and Service Provider Configuration 
	

A.5.1 Router EDGE Configuration 
	
The	 RouterEDGE	 is	 a	 Cisco	 IOSv	 Qemu	 appliance	 on	 qcow2	 disk	 (version	 15.6(2)T).	 Next,	 its	
configuration	is	detailed.	The	configuration	file	is	attached	at	the	end	of	the	explanation.	
	

a) Basic	Configuration	
	
Change	the	hostname	of	the	router	and	create	a	local	user	with	a	password.	
	

Router> en 
Router# conf t 
Router(config)# hostname RouterEDGE 
RouterEDGE(config)# username admin secret cisco 
RouterEDGE(config)# enable secret cisco 
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b) IP	Addresses	Configuration	
	

RouterEDGE(config)# interface GigabitEthernet 0/2 
RouterEDGE(config-if)# description Link to vSRX-I 
RouterEDGE(config-if)# ip address 172.16.0.2 255.255.255.252 
RouterEDGE(config-if)# no shutdown 
RouterEDGE(config-if)# exit 
 
RouterEDGE(config)# interface GigabitEthernet 0/1 
RouterEDGE(config-if)# description Link to ISP1 
RouterEDGE(config-if)# ip address 198.10.10.2 255.255.255.252 
RouterEDGE(config-if)# no shutdown 
RouterEDGE(config-if)# exit 
 
RouterEDGE(config)# interface GigabitEthernet 0/3 
RouterEDGE(config-if)# description Link to ISP2 
RouterEDGE(config-if)# ip address 197.10.10.2 255.255.255.252 
RouterEDGE(config-if)# no shutdown 
RouterEDGE(config-if)# exit 
 
RouterEDGE(config)# interface loopback 0 
RouterEDGE(config-if)# description Management 
RouterEDGE(config-if)# ip address 10.1.1.5 255.255.255.255 
RouterEDGE(config-if)# no shutdown 
RouterEDGE(config-if)# exit 

 
c) NAT	Configuration	

	
In	the	standard	access-list	1	define	the	subnetworks	that	can	be	translated.	
	

RouterEDGE(config)# access-list 1 permit 192.168.10.0 0.0.0.255 
RouterEDGE(config)# access-list 1 permit 192.168.20.0 0.0.0.255 
RouterEDGE(config)# access-list 1 permit 192.168.30.0 0.0.0.255 
RouterEDGE(config)# access-list 1 permit 192.168.40.0 0.0.0.255 
RouterEDGE(config)# access-list 1 permit 10.0.0.0 0.0.0.255 
RouterEDGE(config)# access-list 1 permit 10.1.1.0 0.0.0.255 
RouterEDGE(config)# access-list 1 permit 172.16.0.0 0.0.0.255 
RouterEDGE(config)# access-list 1 permit 172.16.50.0 0.0.0.255 
RouterEDGE(config)# access-list 1 deny any 

	
We	are	assuming	that	the	prefix	195.1.1.0/24	is	assigned	to	the	enterprise	network.	The	address	
pool	195.1.1.128/25	is	used	to	translate	addresses	from	campus	network	and	server	farm	to	public	
addresses.	
	

RouterEDGE(config)# ip nat pool 1 195.1.1.1 195.1.1.127 netmask 255.255.255.128 
	
Configure	NAT	translation	by	relating	the	inside	networks	with	the	corresponding	pool.	
	

RouterEDGE(config)# ip nat inside source list 1 pool 1 overload 
	
Define	inside	and	outside	interfaces.	
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RouterEDGE(config)# interface GigabitEthernet 0/1 
RouterEDGE(config-if)# ip nat outside 
 
RouterEDGE(config)# interface GigabitEthernet 0/2 
RouterEDGE(config-if)# ip nat inside 
 
RouterEDGE(config)# interface gigabitEthernet 0/2 
RouterEDGE(config-if)# ip nat outside 

	
d) Static	Routes	Configuration	

	
RouterEDGE(config)# ip route 172.16.0.0 255.255.0.0 172.16.0.1 
RouterEDGE(config)# ip route 192.168.0.0 255.255.192.0 172.16.0.1 
RouterEDGE(config)# ip route 10.0.0.0 255.0.0.0 172.16.0.1 

	
e) BGP	Configuration	

	
Configure	a	static	route	to	195.1.1.0/24,	pointing	to	a	null	interface.	
	

RouterEDGE(config)# ip route 195.1.1.0 255.255.255.0 null0 
	
Configure	 the	autonomous	system	number	 for	RouterEDGE,	assuming	 that	64500	 is	 the	number	
assigned	to	the	enterprise	and	64501	to	the	ISPs.	Also,	configure	authentication	between	peers.	
	

RouterEDGE(config)# router bgp 64500 
RouterEDGE(config-router)# neighbor 198.10.10.1 remote-as 64501 
RouterEDGE(config-router)# neighbor 198.10.10.1 password isp1md5pass 
RouterEDGE(config-router)# neighbor 197.10.10.1 remote-as 64502 
RouterEDGE(config-router)# neighbor 197.10.10.1 password isp2md5pass 
RouterEDGE(config-router)# network 195.1.1.0 mask 255.255.255.0 
RouterEDGE(config-router)# neighbor isp-group peer-group 
RouterEDGE(config-router)# neighbor isp-group ttl-security hops 1 
RouterEDGE(config-router)# neighbor isp-group filter-list 10 out 
RouterEDGE(config-router)# neighbor 198.10.10.1 peer-group isp-group 
RouterEDGE(config-router)# neighbor 198.10.10.1 route-map setlocalin in 
RouterEDGE(config-router)# neighbor 197.10.10.1 peer-group isp-group 
RouterEDGE(config)# ip as-path access-list 10 permit ^$ 

	
The	preferred	way	to	connect	the	Internet	is	ISP1,	so	configure	a	local	preference	150	for	prefixes	
from	ISP1,	while	maintaining	the	default	local	preference	(100)	for	prefixes	from	ISP2.	
	

RouterEDGE(config)# route-map setlocalin permit 10 
RouterEDGE(config-route-map)# set local-preference 150 

	
f) NTP	Configuration	

	
RouterEDGE(config)# ntp server 172.16.50.1 
RouterEDGE(config)# clock timezone mytime -5 0 
RouterEDGE(config)# ntp source loopback 0 
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g) Logging	Configuration	
	

RouterEDGE(config)# logging trap notifications 
RouterEDGE(config)# logging host 172.16.50.3 
RouterEDGE(config)# logging source-interface loopback 0 

	
h) DNS	Configuration	

	
RouterEDGE(config)# ip name-server 8.8.8.8 8.8.4.4 
RouterEDGE(config)# ip domain-lookup 

	
i) SSH	Access	and	VTY	Access-list	Configuration	

	
RouterEDGE(config)# ip domain name companyXYZ.sk 
RouterEDGE(config)# ip ssh version 2 
RouterEDGE(config)# crypto key generate rsa modulus 4096 
RouterEDGE(config)# line vty 0 924 
RouterEDGE(config-line)# login local 
RouterEDGE(config-line)# transport input ssh 

	
Create	an	access-list	that	permits	login	to	VTY	from	the	VLAN4	only.	
	

RouterEDGE(config)# ip access-list standard ssh-access 
RouterEDGE(config-std-nacl)# permit 192.168.40.0 0.0.0.255 
RouterEDGE(config-std-nacl)# deny any 
RouterEDGE(config)# line vty 0 924 
RouterEDGE(config-line)# access-class ssh-access in 

	
j) Configuration	file	

	
The	/edge/	directory	located	in	the	https://github.com/angelavarcila/emulatedNet_configFiles.git	
repository	stores	the	configuration	file	for	the	RouterEDGE	device	for	consultation	purposes.	
	
	

A.5.2 ISP Configuration 
	
The	 two	 internet	 service	providers	are	similarly	configured.	Therefore,	 the	configuration	 for	one	
service	provider	(ISP1)	is	indicated,	and	both	configuration	files	are	attached	to	perform	the	same	
procedure	with	the	remaining	ISP.	Both	routers	are	Cisco	7200	routers	(IOS	version	15.2(4)M7).	
	

a) IP	Address	Configuration	
	
ISP1	connects	to	the	Internet	through	interface	GigabitEthernet0/0.	DHCP	server	running	on	GNS3	
NAT	assigns	the	IP	address	for	this	interface.	
	

ISP1(config)# interface GigabitEthernet 0/0 
ISP1(config-if)# description Link to Simulated Internet 
ISP1(config-if)# ip address dhcp 
ISP1(config-if)# ip nat outside 
ISP1(config-if)# no shutdown 
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ISP1(config)# interface GigabitEthernet 1/0 
ISP1(config-if)# description Link to Company Inc. 
ISP1(config-if)# ip address 198.10.10.1 255.255.255.252 
ISP1(config-if)# ip nat inside 
ISP1(config-if)# no shutdown 

	
b) eBGP	Configuration	

	
ISP1(config)# ip prefix-list static_default permit 0.0.0.0/0 
ISP1(config)# route-map static_default permit 10 
ISP1(config-route-map)# match ip address prefix-list static_default 
 
ISP1(config)# router bgp 64501 
ISP1(config-router)# neighbor 198.10.10.2 remote-as 64500 
ISP1(config-router)# neighbor 198.10.10.2 ttl-security hops 1 
ISP1(config-router)# neighbor 198.10.10.2 password isp1md5pass 
ISP1(config-router)# neighbor 198.10.10.2 route-map static_default out 
ISP1(config-router)# network 0.0.0.0 mask 0.0.0.0 

	
c) NAT	Configuration	

	
To	have	a	real	internet	connection,	translate	the	subnets	195.1.1.0/24	and	198.10.10.0/30	to	the	IP	
address	that	is	received	for	interface	GigabitEthernet0/0.	
	

ISP1(config)# ip access-list standard 1 
ISP1(config-std-nacl)# permit 195.1.1.0 0.0.0.255 
ISP1(config-std-nacl)# permit 198.10.10.0 0.0.0.3 
ISP1(config-std-nacl)# deny any 
SP1(config)# ip nat inside source list 1 interface GigabitEthernet 0/0 overload 

	
d) DNS	Configuration	

	
ISP1(config)# ip domain-lookup 
ISP1(config)# ip name-server 8.8.8.8 8.8.4.4 

	
e) Configuration	file	

	
The	 /service_provider/	 directory	 located	 in	 the	
https://github.com/angelavarcila/emulatedNet_configFiles.git	 repository	 stores	 the	 configuration	
files	for	the	ISP1	and	ISP2	devices	for	consultation	purposes.	
	
	
A.6 Credentials summary 
	
Table	A.3	shows	the	list	of	the	credentials	for	all	devices	in	the	emulated	network.		
	

Table	A.3	Credentials	summary	for	emulated	network	elements.	

Device	 Login/User	 Password	
Cisco	and	Arista		
Network	Elements	

Local	User		-	Level	1	 admin	 cisco	
Local	User		-	Level	15	 admin15	 cisco15	
Local	enable	 	 cisco	
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Radius	User	-	Level	1	 raadmin	 racisco	
Radius	User	-	Level	15	 raadmin15	 racisco15	
Radius	enable	 	 racisco	

Juniper	Firewall	 Local	User	 root	 Juniper	
PCs	 tc	 tc	
ISPs	 not	configured	for		

authentication	
	

ServerA	 Operative	sytem	 server1	 server1	
ServerB	 Operative	system	 appliance	 zabbix	
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Annex	B: Description	of	raw	data	
	

Table	B.1	Parameters	collected	from	nProbe	flow	files.	

No.	 PARAMETER	 DESCRIPTION	
1	 IN_BYTES	 Incoming	flow	bytes.	
2	 IN_PKTS	 Incoming	flow	packets.	
3	 PROTOCOL	 The	protocol	field	of	IP	header	(8	bits).	
4	 PROTOCOL_MAP	 IP	protocol	name.	
5	 SRC_TOS	 Type	of	Service	byte	setting	when	entering	incoming	

interface.	
6	 TCP_FLAGS	 Cumulative	of	all	the	TCP	flags	seen	for	the	flow.	
7	 L4_SRC_PORT	 TCP/UDP	source	port	number.	
8	 L4_SRC_PORT_MAP	 Layer	4	source	port	symbolic	name.	
9	 IPV4_SRC_ADDR	 IP	version	4	source	address.	
10	 IPV4_SRC_MASK	 IP	version	4	source	subnet	mask.	
11	 INPUT_SNMP	 Index	of	SNMP	input	interface.	
12	 L4_DST_PORT	 TCP/UDP	destination	port	number	 i.e.:	FTP,	Telnet,	

or	equivalent.	
13	 L4_DST_PORT_MAP	 Layer	4	destination	port	symbolic	name.	
14	 L4_SRV_PORT	 Layer	4	server	port.	
15	 L4_SRV_PORT_MAP	 Layer	4	server	port	symbolic	name.	
16	 IPV4_DST_ADDR	 IP	version	4	destination	address.	
17	 IPV4_DST_MASK	 IP	version	4	dest	subnet	mask.	
18	 OUTPUT_SNMP	 Index	of	SNMP	output	interface.	
19	 IPV4_NEXT_HOP	 IP	version	4	address	of	next-hop	router.	
20	 SRC_AS	 Source	BGP	autonomous	system	number.	
21	 DST_AS	 Destination	BGP	autonomous	system	number.	
22	 LAST_SWITCHED	 System	uptime	at	which	the	last	packet	of	the	flow	

was	switched.	
23	 FIRST_SWITCHED	 System	uptime	at	which	the	first	packet	of	the	flow	

was	switched.	
24	 OUT_BYTES	 Outgoing	flow	bytes.	
25	 OUT_PKTS	 Outgoing	flow	packets.	
26	 IPV6_SRC_ADDR	 IP	version	6	Source	Address.	
27	 IPV6_DST_ADDR	 IP	version	6	Destination	Address.	
28	 IPV6_SRC_MASK	 Length	of	the	IP	version	6	source	mask	in	contiguous	

bits.	
29	 IPV6_DST_MASK	 Length	 of	 the	 IP	 version	 6	 destination	 mask	 in	

contiguous	bits.	
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30	 ICMP_TYPE	 Internet	 Control	 Message	 Protocol	 (ICMP)	 packet	
type;	reported	as	((ICMP	Type*256)	+	ICMP	code).	

31	 SAMPLING_INTERVAL	 The	rate	at	which	packets	are	sampled.	
32	 SAMPLING_ALGORITHM	 The	type	of	algorithm	used	for	sampled	NetFlow	
33	 FLOW_ACTIVE_TIMEOUT	 Timeout	value	(in	seconds)	for	active	flow	entries	in	

the	NetFlow	cache.	
34	 FLOW_INACTIVE_TIMEOUT	 Timeout	value	(in	seconds)	for	inactive	flow	entries	

in	the	NetFlow	cache.	
35	 ENGINE_TYPE	 Type	of	flow	switching	engine:	RP	=	0,	VIP/Linecard	

=	1	
36	 ENGINE_ID	 ID	number	of	the	flow	switching	engine.	
37	 TOTAL_BYTES_EXP	 Total	number	of	bytes	exported.	
38	 TOTAL_PKTS_EXP	 Total	number	of	flow	packets	exported.	
39	 TOTAL_FLOWS_EXP	 Total	exported	flows.	
40	 MIN_TTL	 Minimum	TTL	on	incoming	packets	of	the	flow.	
41	 MAX_TTL	 Maximum	TTL	on	incoming	packets	of	the	flow.	
42	 DST_TOS	 Type	of	Service	byte	setting	when	exiting	outgoing	

interface.	
43	 IN_SRC_MAC	 Source	MAC	Address.	
44	 SRC_VLAN	 Virtual	 LAN	 identifier	 associated	 with	 ingress	

interface.	
45	 DST_VLAN	 Virtual	 LAN	 identifier	 associated	 with	 egress	

interface.	
46	 IP_PROTOCOL_VERSION	 [4=IPv4],[6=IPv6]	
47	 DIRECTION	 If	0,	it	is	incoming	flow.	If	1,	it	is	an	outcoming	flow.		
48	 IPV6_NEXT_HOP	 IPv6	address	of	the	next-hop	router.	
49	 OUT_DST_MAC	 Destination	MAC	Address.	
50	 APPLICATION_ID	 Cisco	NBAR	Application	Id.	
51	 PACKET_SECTION_OFFSET	 Packet	section	offset.	
52	 SAMPLED_PACKET_SIZE	 Sampled	packet	size.	
53	 SAMPLED_PACKET_ID	 Sampled	packet	id.	
54	 EXPORTER_IPV4_ADDRESS	 Exporter	IP	version	4	Address.	
55	 EXPORTER_IPV6_ADDRESS	 Exporter	IP	version	6	Address.	
56	 FLOW_ID	 Serial	Flow	Identifier.	
57	 FLOW_START_SEC	 Seconds	of	the	first	flow	packet.	
58	 FLOW_END_SEC	 Seconds	of	the	last	flow	packet.	
59	 FLOW_START_MILLISECONDS	 Milliseconds	of	the	first	flow	packet.	
60	 FLOW_END_MILLISECONDS	 Milliseconds	of	the	last	flow	packet.	
61	 BIFLOW_DIRECTION	 1=initiator,	2=reverseInitiator	
62	 OBSERVATION_POINT_TYPE	 Observation	point	type.	
63	 OBSERVATION_POINT_ID	 Observation	point	id.	
64	 SELECTOR_ID	 Selector	id.	
65	 IPFIX_SAMPLING_ALGORITHM	 Sampling	algorithm.	
66	 SAMPLING_SIZE	 Number	of	packets	to	sample.	
67	 SAMPLING_POPULATION	 Sampling	population.	
68	 FRAME_LENGTH	 Original	L2	frame	length.	
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69	 PACKETS_OBSERVED	 Total	number	of	packets	seen.	
70	 PACKETS_SELECTED	 Number	of	packets	selected	for	sampling.	
71	 SELECTOR_NAME	 Sampler	name.	
72	 APPLICATION_NAME	 Name	associated	with	a	classification.	
73	 FRAGMENTS	 Number	of	fragmented	flow	packets.	
74	 APPL_LATENCY_MS	 Application	latency	(msec)	
75	 NUM_PKTS_UP_TO_128_BYTES	 Number	of	packets	with	size	S,	where	S	<=	128	
76	 NUM_PKTS_128_TO_256_BYTES	 Number	of	packets	with	size	S,	where	128	<	S	<=	256	
77	 NUM_PKTS_256_TO_512_BYTES	 Number	of	packets	with	size	S,	where	256	<	S	<	512	
78	 NUM_PKTS_512_TO_1024_BYTES	 Number	of	packets	with	size	S,	where	512	<	S	<	1024	
79	 NUM_PKTS_1024_TO_1514_BYTES	 Number	of	packets	with	 size	S,	where	1024	<	S	<=	

1514	
80	 NUM_PKTS_OVER_1514_BYTES	 Number	of	packets	with	size	S,	where		S	>	1514	
81	 CUMULATIVE_ICMP_TYPE	 Cumulative	OR	of	ICMP	type	packets		
82	 SRC_IP_COUNTRY	 Country	where	the	src	IP	is	located		
83	 SRC_IP_CITY	 City	where	the	src	IP	is	located		
84	 DST_IP_COUNTRY	 Country	where	the	dst	IP	is	located		
85	 DST_IP_CITY	 City	where	the	dst	IP	is	located	
86	 FLOW_PROTO_PORT	 L7	 port	 that	 identifies	 the	 flow	 protocol	 or	 0	 if	

unknown.	
87	 UPSTREAM_TUNNEL_ID	 Upstream	 tunnel	 identifier	 (e.g.	 GTP	 TEID)	 or	 0	 if	

unknown.	
88	 LONGEST_FLOW_PKT	 Longest	packet	of	the	flow		
89	 SHORTEST_FLOW_PKT	 Shortest	packet	of	the	flow	
90	 RETRANSMITTED_IN_PKTS	 Number	of	incoming	retransmitted	TCP	flow	packets	
91	 RETRANSMITTED_OUT_PKTS	 Number	 of	 outcomings	 retransmitted	 TCP	 flow	

packets	
92	 OOORDER_IN_PKTS	 Number	of	out-of-order	TCP	incoming	flow	packets	
93	 OOORDER_OUT_PKTS	 Number	of	out-of-order	TCP	outcoming	flow	packets	
94	 UNTUNNELED_PROTOCOL	 Untunneled	IP	protocol	byte	
95	 UNTUNNELED_IPV4_SRC_ADDR	 Untunneled	IP	version	4	source	address		
96	 UNTUNNELED_L4_SRC_PORT	 Untunneled	IP	version	4	source	port	
97	 UNTUNNELED_IPV4_DST_ADDR	 Untunneled	IP	version	4	destination	address		
98	 UNTUNNELED_L4_DST_PORT	 Untunneled	IP	version	4	destination	port		
99	 L7_PROTO	 Layer	7	protocol	(numeric)	
100	 L7_PROTO_NAME	 Layer	7	protocol	name	
101	 DOWNSTREAM_TUNNEL_ID	 Downstream	tunnel	identifier	(e.g.	GTP	TEID)	or	0	if	

unknown	
102	 FLOW_USER_NAME	 Flow	username	of	the	tunnel	(if	known)		
103	 FLOW_SERVER_NAME	 Flow	server	name	(if	known)	
104	 PLUGIN_NAME	 Plugin	name	used	by	this	flow	(if	any)		
105	 NUM_PKTS_TTL_EQ_1	 Number	of	packets	with	TTL	=	1	
106	 NUM_PKTS_TTL_2_5	 Number	of	packets	with	1	<	TTL	<=	5		
107	 NUM_PKTS_TTL_5_32	 Number	of	packets	with	5	<	TTL	<=	32		
108	 NUM_PKTS_TTL_32_64	 Number	of	packets	with	32	<	TTL	<=	64		
109	 NUM_PKTS_TTL_64_96	 Number	of	packets	with	64	<	TTL	<=	96		
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110	 NUM_PKTS_TTL_96_128	 Number	of	packets	with	96	<	TTL	<=	128		
111	 NUM_PKTS_TTL_128_160	 Number	of	packets	with	128	<	TTL	<=	160		
112	 NUM_PKTS_TTL_160_192	 Number	of	packets	with	160	<	TTL	<=	192		
113	 NUM_PKTS_TTL_192_224	 Number	of	packets	with	192	<	TTL	<=	224		
114	 NUM_PKTS_TTL_224_255	 Number	of	packets	with	224	<	TTL	<=	255		
115	 IN_SRC_OSI_SAP	 OSI	Source	SAP	(OSI	Traffic	Only)	
116	 OUT_DST_OSI_SAP	 OSI	Destination	SAP	(OSI	Traffic	Only)	

	
	

Table	B.2	Parameters	collected	from	Rsyslog	data	base.	

No.	 PARAMETER	 FORMAT	 DESCRIPTION	
1	 Date	 date	 The	system	time	when	the	syslog	message	was	generated.	
2	 Facility	 text	 Numerical	

Code	

Facility	 Description	

0	 kern	 Kernel	messages.	
1	 user	 User-level	messages.	
2	 mail	 Mail	system.	
3	 daemon	 System	daemons.	
4	 auth	 Security/authorization	messages.	
5	 syslog	 Messages	generated	internally	by	syslogd.	
6	 lpr	 Line	printer	subsystem.	
7	 news	 Network	news	subsystem.	
8	 uucp	 UUCP	subsystem.	
9	 cron	 Clock	daemon.	
10	 security	 Security/authorization	messages.	
11	 ftp	 FTP	daemon.	
12	 ntp	 NTP	subsystem.	
13	 logaudit	 Log	audit.	
14	 logalert	 Log	alert.	
15	 clock	 Clock	daemon	(note	2).	

16	-	23	 local0	-7	 local	use	0	(local0)	-	local	use	7	(local7).	
	 	 	

	

3	 Severity	 text	 Numerical	

Code	

Severity	 Description	

0	 	 	Emergency	 The	system	is	unusable.	
1	 	 	Alert	 An	action	must	be	taken	immediately.	
2	 	 	Critical	 Critical	conditions.	
3	 	 	Error		 Error	conditions.	
4	 	 	Warning		 Warning	conditions.	
5	 	 	Notice	 Normal	but	significant	condition.	
6	 	 	Informational	 Informational	messages.	
7	 	 	Debug	 Debug-level	messages.	
	 	 	 	

	

4	 Host	 text	 The	administratively-assigned	name	for	the	device	that	originally	sent	
the	syslog	message.	

5	 Syslogtag	 text	 A	string	prefix	to	the	Syslog	entry	which	usually	indicates	the	name	of	
the	program	or	process	that	generated	the	message.	

6	 ProcessID	 text	 Identification	of	the	originator	process.	
7	 MessageType	 text	 The	type	of	message.	
8	 Message	 text	 Free-form	text	that	provides	the	messaje	with	information	about	the	

event.	
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Table	B.3	Parameters	collected	from	Zabbix	data	base.	

No.	 TYPE	 PARAMETER	 FORMAT	 DESCRIPTION	
1	

Tr
af
fic
	d
es
cr
ip
to
rs
	

Bits_received		 numeric	 The	 total	 number	 of	 bits	 received	 on	 each	
interface	of	the	device.	

2	 Bits_sent	 numeric	 The	 total	 number	 of	 bits	 sent	 by	 each	
interface	of	the	device.	

3	 Inbound_packets_discarded	 numeric	 The	 total	 number	 of	 inbound	 packets	
discarded	by	each	interface	of	the	device.		

4	
Inbound_packets_with_errors	

numeric	 The	 total	number	of	packets	 that	contained	
errors,	 received	 on	 each	 interface	 of	 the	
device.	

5	
Interface_type	

numeric	 The	type	of	each	interface	of	the	device.	The	
value	is	based	on	the	IANAifType	defined	by	
Internet	Assigned	Numbers	Authority	(IANA).	

6	 Operational_status	 numeric	 The	 current	 operational	 state	 of	 each	
interface	of	the	device.	

7	 Outbound_packets_discarded	 numeric	 The	total	number	of	packets	discarded	out	of	
each	interface	of	the	device.	

8	
Outbound_packets_with_errors	

numeric	 The	total	number	of	packets	that	could	not	be	
transmitted	by	 each	 interface	of	 the	device	
because	of	errors.	

9	 Speed	 numeric	 Current	bandwidth	for	each	interface	of	the	
device.	

10	

St
at
us
	d
es
cr
ip
to
rs
	

Device_uptime	 numeric	 The	 time	 since	 the	 device	 was	 last	 re-
initialized.	

11	 SNMP_availability	 numeric	 0	-	if	the	device	has	not	SNMP	enabled.	
1	-	if	the	device	has	SNMP	enabled.	

12	

ICMP_response_time	

numeric	 The	time	between	the	echo	request	and	echo	
response	messages	from	the	SNMP	server	to	
the	 device.	 If	 the	 host	 is	 not	 available	
(timeout	reached),	the	item	will	return	0.	

13	 ICMP_loss	 numeric	 Percentage	of	lost	packets.	
14	

ICMP_ping	
numeric	 Device	accessibility	by	ICMP	ping.		

0	-	ICMP	ping	fails.	
1	-	ICMP	ping	successful.	

15	

Id
en

tif
ica

tio
n	
de

sc
rip

to
rs
	

Device_name	 text	 The	 administratively-assigned	 name	 for	 the	
device.	

16	 System_object_ID	 text	 The	 vendor's	 authoritative	 identification	 of	
the	device.	

17	 Device_location	 text	 The	 physical	 location	 of	 the	 device	 (e.g.,	
“building	A,	floor	3,	RAC	2”).		

18	

Device_description	

text	 The	 device	 description.	 This	 value	 includes	
the	name	of	the	manufacturer,	the	full	name	
and	 version	 of	 the	 software	 operating-
system,	and	networking	software.	

19	
Device_contact_details	

text	 The	 administrative	 contact	 details	 of	 the	
device	(e.g.,	e-mail	of	the	responsible	for	the	
device).	
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Annex	C: Extraction	application	for	Zabbix	
	
The	software	application	for	SOFI	dataset	extraction	(SOFIApp)	is	an	open-source	java	project	found	
in	 https://github.com/angelavarcila/zabbixDataSets	 based	 on	 the	 Zabbix	 database	 version	 3.4.2.	
SOFIApp	is	made	up	of	four	independent	modules	that	run	specific	tasks.	The	processes	must	be	
executed	in	the	order	shown	in	Figure	C.1	to	build	a	SOFI	dataset	for	a	peripheral	device.	
	

	
Figure	C.1	Modules	of	SOFIApp	extraction	application.	

	
The	first	step	is	to	execute	the	module	or	process	"SOFI	raw	dataset	extraction"	that	is	responsible	
for	extracting	the	raw	data	of	the	monitorization	of	a	particular	peripheral	device.		The	second	step	
corresponds	 to	 the	 "instance	 grouping"	 process	 that	 takes	 a	 SOFI	 raw	 dataset	 and	 groups	 the	
instances	resulting	from	the	same	polling.	The	third	step	is	grouping	the	parameters	from	the	same	
interface	 level.	 For	 this	purpose,	 the	process	 "column	operation"	allows	operating	a	 column	 set	
applying	any	defined	formula	in	section	2.1.2	of	Chapter	IV.	So,	this	process	creates	as	many	new	
columns	that	contain	the	results	as	performed	operations.	
	
Before	doing	the	labeling	process,	the	columns	that	were	operands	in	any	of	the	operations	must	
be	eliminated,	because	they	become	unnecessary.	Any	desired	tool	that	allows	removing	columns	
can	perform	this	step.	Once	the	removal	is	done,	the	result	is	the	unlabeled	SOFI	dataset.	
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EXTRACTION
LABELING

COLUMN	
OPERATION

INSTANCE	
GROUPING

device name

Δ" time	interval

#	monitored
parameters

operation list

well known
failure list

(remove unnecesary
columns)

SOFI

device name



	 135	

Finally,	the	following	step	is	to	execute	the	"labeling"	process,	which	generates	a	class	column	for	
the	SOFI	dataset	with	the	labels	according	to	a	list	of	well-known	failures.	
	
These	modules	are	described	in	more	detail	below.	
	
	

C.1 SOFI raw dataset extraction process 
	
This	process	receives	two	inputs,	the	name	of	the	peripheral	device	for	which	being	built	the	SOFI	
dataset	and	the	time	interval	that	will	cover	this	dataset.		
	
As	shown	in	Figure	C.2,	the	first	function	of	this	module	requests	the	Zabbix	database	the	monitored	
parameter	list	in	the	specified	peripheral	device.	A	second	task	obtains	all	the	timestamps	within	
the	specified	time	interval,	in	which	there	is	a	record	of	any	monitored	parameter.	The	last	function	
creates	 an	 instance	 for	 each	 timestamp	 with	 the	 monitored	 parameters	 at	 that	 moment.	 If	 a	
parameter	does	not	have	a	record	for	a	timestamp,	its	value	is	set	to	-1.	
	
In	this	way,	the	SOFI	raw	dataset	of	size	!×#	is	obtained,	where	# − 1	is	the	number	of	monitored	
parameters	and	!	the	number	of	timestamps	with	some	monitoring	record.	
	

	
Figure	C.2	SOFI	raw	dataset	extraction	process.	

	
	

C.2 Instance grouping process 
	
This	process	receives	three	inputs	from	the	user,	the	SOFI	raw	dataset	(!×#	size)	in	which	grouping	
will	be	performed,	the	device	name	to	which	the	dataset	belongs,	and	the	number	of	monitored	
parameters	in	the	device.	
	
As	shown	in	Figure	C.3,	the	first	function	of	this	module	identifies,	in	the	raw	dataset,	the	instance	
groups	 from	 the	 same	 polling.	 This	 function	 represents	 each	 group	 by	 a	 time	 interval	 and	 a	
timestamp.	The	timestamp	is	the	time	in	which	the	third	quartile	of	the	data	collected	in	the	said	
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interval	is	located.	With	these	two	values	found,	the	second	function	obtains	a	single	instance	for	
each	interval,	being	the	third	quartile	timestamp	the	time	assigned	to	the	instance.	
	
In	this	way,	the	dimensions	of	the	new	dataset	(grouped	SOFI	raw	dataset)	are	&×#,	where	& < !,	
and	& = )*&+,#	./	0.112)34.	
	

	
Figure	C.3	Instance	grouping	process.	

	
	

C.3 Column operation process 
	
This	process	receives	two	files	as	input,	the	dataset	on	which	the	operations	will	be	performed	(&×#	
size),	and	a	file	that	details	the	desired	operations.	Figure	C.4	specifies	the	format	of	the	operations	
file	with	an	example.	
	

	
Figure	C.4	Format	of	the	operations	list	file.	

	

As	 shown	 in	Figure	C.5,	 this	module	executes	a	 single	 function	 that	 reads	 the	operation	 list	and	
creates	 a	 new	 column	 for	 each	 operation	with	 the	 resulting	 values.	 In	 this	way,	 a	 new	 dataset	
(grouped	 and	 operated	 SOFI	 raw	 dataset)	 of	 dimension	 &×0	 is	 obtained,	 where	 0	 = 	#	 +
	)*&+,#	./	.0,#672.)4.	
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Figure	C.5	Column	operation	process.	

	

Remove	all	the	columns	which	were	operands	before	executing	the	fourth	module.	Thus,	a	dataset	
of	dimension	&×)	with	a	fixed	number	of	features	is	obtained.	This	new	dataset	corresponds	to	
the	unlabeled	SOFI	dataset.	
	
	

C.4 Labeling process 
	
This	process	receives	two	files	as	input,	the	unlabeled	SOFI	dataset	(&×)	size),	and	a	file	that	details	
the	well-known	failures.	Figure	C.6	specifies	the	format	of	the	failures	file.	
	

	
Figure	C.6	Format	of	the	failure	list	file.	

	
As	shown	in	Figure	C.7,	this	module	executes	a	single	function	that	creates	the	class	column	and	
assigns	the	corresponding	label	(A	for	failures	in	the	access	layer,	D	for	failure	in	the	distribution	
layer,	and	NE	if	there	are	not	failure)	according	to	the	instance	timestamp	and	failure	time	interval.	
The	result	is	the	labeled	SOFI	dataset.	
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Figure	C.7	SOFI	labeling	process.	

	

C.5 Other functions 
	
In	addition	to	the	SOFI	building	process,	SofiApp	allows	to	perform	other	four	tasks:	
	

a) Get	all	events	triggered	by	a	specific	network	device	within	a	specified	time	interval.	
b) Get	 the	history	 of	 all	 the	monitored	parameters	 in	 a	 particular	 network	 device	within	 a	

specified	time	interval.	
c) Get	from	the	distribution	of	monitored	parameters,	the	timestamps	of	events	triggered	for	

those	parameters	(third	quartile).	
d) Generate	the	SOFI	dataset	class	column	from	a	set	of	events.	

	
	

C.6 Zabbix database 
	
Zabbix	has	an	extensive	database	of	140	tables.	Nevertheless,	SOFIApp	development	involves	only	
the	tables	shown	in	Figure	C.8.	The	description	of	each	table	is	in	¡Error!	No	se	encuentra	el	origen	
de	la	referencia..	
	

Table	C.1	Description	of	the	tables	from	the	Zabbix	database	used	by	SOFIApp.	

TABLE	TYPE	 TABLE	NAME	 DESCRIPTION	
Device	description	 hosts	 It	stores	all	monitored	devices	by	Zabbix.	

interface	 It	 stores	 the	 interfaces	 for	 SNMP	 communication	 with	
each	host.	

Monitorization	
configuration	

items	 It	stores	the	monitored	parameters	of	each	host	(such	as	
the	number	of	bits	sent	on	the	Gi0/0	interface	of	Switch	
A	device,	the	name	of	the	Router	A	device,	etc.).	

functions	 It	relates	each	item	with	triggers	that	can	launch	an	event	
for	the	item.	

triggers	 It	 stores	 all	 triggers	 that	 can	 activate	 an	 event	 during	
monitoring.	

History	 history	 They	contain	the	monitoring	history	according	to	the	type	
of	item.	history_log	

history_text	
history_uint	
history_str	
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Events	 event	 It	stores	all	events	that	occur	on	monitored	devices	and	
interfaces.	

event_recovery	 It	 relates	 two	 events	 to	 know	 which	 events	 mean	 the	
recovery	of	another	event.	

	
	
	

	
	

Figure	C.8	Tables	from	the	Zabbix	database	used	by	SOFIApp.	
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Annex	D: Experiments	charts	
	
	
This	annex	contains	all	the	results	obtained	when	executing	the	PALADIN	model's	diagnosis	module	
using	25	different	algorithms	for	data	stream	mining	and	the	two	datasets	built	from	monitoring	the	
monitored	network's	two	peripheral	devices.		
	
Each	section	of	the	annex	sorts	the	results	of	a	performance	parameter.	Section	D.1	presents	the	
prequential	AUC	 charts,	 section	D.2	 contains	 the	G-mean	 charts,	 section	D.3	 shows	 the	Cohen's	
Kappa	Coefficient	charts,	section	D.4	contains	the	MCC	charts,	and	section	D.5	presents	the	Recall	
charts.	
	
All	results	are	organized	in	tables.	The	first	column	of	the	tables	indicates	the	algorithm	used.	The	
second	 column	 contains	 the	 graphs	 obtained	 for	 the	 corresponding	 parameter	 using	 the	 first	
peripheral	device's	data	set.	The	third	column	contains	the	graphs	for	the	second	peripheral	device.	
	
As	the	Figure	D.1	shows,	each	graph	represents	tested	algorithms'	performance	curves	according	to	
the	 corresponding	metric.	 The	 vertical	 axis	 indicates	 the	metric	 values,	 and	 the	 horizontal	 axis	
indicates	the	number	of	incoming	instances	that	have	arrived	until	the	measurement	time.	The	black	
circles	series	are	the	results	with	the	diagnosis	module	approach,	that	is,	with	the	rebalance	stream	
strategy.	The	red	squares	series	are	the	results	of	the	online	base	algorithm	performance	without	
rebalancing	or	concept-drift	treatment.	
	

	
Figure	D.1	Performance	curves	format.	
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D.1 Prequential AUC charts 
	

Table	D.1	Charts	of	results	of	the	Prequential	AUC	performance	metric.	
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D.2 Geometric mean (G-Mean) charts 
	

Table	D.2	Charts	of	results	of	the	prequential	GMean	performance	metric.	

Al
go

rit
hm

	

SwitchCore-I	
Dataset	

SwitchCore-II	
Dataset	

1	

	 	

CV
FD

T	

2	

	 	On
lin
e	
Ba

gg
in
g	

3	

	 	On
lin
e	
Bo

os
tin

g	

	
	



	 145	

4	

	 	Ac
cu
ra
cy
	W

ei
gt
he

d	
En

se
m
bl
e	
(A
W
E)
	

5	

	 	Dy
na
m
ic	
W
ei
gh
te
d	

M
aj
or
ity

	(D
W
M
)	

6	

	 		H
oe

ffd
in
g	
Op

tio
n	
Tr
ee
	

7	

	 	PE
GA

SO
S	
(P
rim

al
	

Es
tim

at
ed

	su
b-

Gr
Ad

ie
nt
	S
Ol
ve
r	f
or
	

SV
M
)	

8	

	 	

CV
FD

T N
BC
	

9	

	 	Pa
ire

d	
le
ar
ni
ng
	

10	

	 	AD
W
IN
	B
ag
gi
ng
	

11	

	 	AS
HT

	(A
da
pt
iv
e-
Si
ze
	

Ho
ef
fd
in
g	
Tr
ee
)	

Ba
gg
in
g	



	146	

12	

	 	Ho
ef
fd
in
g	
Ad

ap
tiv

e	
Tr
ee
	

13	

	 	On
lin
e	
Co

or
di
na
te
	

Bo
os
tin

g	

14	

	 	Le
ve
ra
gi
ng
	B
ag
gi
ng
	

15	

	 	

AD
AG

RA
D	

16	

	 	

Le
ar
n+

+.
NS

E	

17	

	 	OS
Bo

os
t	(
On

lin
e	

Sm
oo

th
	B
oo

st
)	

18	

	 	Ac
cu
ra
cy
	U
pd

at
ed

	
En

se
m
bl
e	
(A
UE

2)
	

19	

	 	Dy
na
m
ic	
Ad

ap
ta
tio

n	
to
	C
on

ce
pt
	C
ha
ng
es
	

(D
AC

C)
	



	 147	

20	

	 	Re
cu
rr
in
g	
Co

nc
ep

t	
Dr
ift
s	(
RC

D)
	

21	

	 	AD
OB

	(A
da
pt
ab
le
	

Di
ve
rs
ity

-b
as
ed

	
On

lin
e	
Bo

os
tin

g)
	

22	

	 	Bo
os
tin

g-
lik
e	
On

lin
e	

Le
ar
ni
ng
	E
ns
em

bl
e	

(B
OL

E)
	

23	

	 		H
oe

ffd
in
g	
Ad

ap
tiv

e	
Tr
ee
	(H

AT
)	w

ith
	fe

at
ur
e	

w
ei
gh
te
d	
kN

N	
(H
AT

-
kN

N-
FW

)	a
nd

	N
B	
(H
AT

-
kN

N-
NB

)	

24	

	 	

SA
M
-k
NN

	(S
el
f	

Ad
ju
st
in
g	
M
em

or
y	

m
od

el
	fo

r	t
he

	k
	

Ne
ar
es
t	N

ei
gh
bo

r)	

25	

	 	Ad
ap
tiv

e	
Ra

nd
om

	
Fo
re
st
	(A

RF
)	

	
	
	
	
	
	
	
	
	
	
	
	



	148	

D.3 Cohen's Kappa coefficient charts 
	

Table	D.3	Charts	of	results	of	the	prequential	Kappa	statistic	performance	metric.	
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D.4 Matthews correlation coefficient (MCC) charts 
	

Table	D.4	Charts	of	results	of	the	prequential		Matthews	Correlation	Coefficient	performance	metric.	
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D.5 Recall or sensitivity charts 
	

Table	D.5	Charts	of	results	of	the	prequential	Sensitivity/Recall	performance	metric.	
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