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Abstract

Background
The collection of physiological data from people has been facilitated due to the mass
use of cheap wearable devices. Although the accuracy is low compared to specialized
healthcare devices, these can be widely applied in other contexts. This research proposes
the architecture for a tourist experiences recommender system (TERS) based on the user’s
emotional states who wear these devices. The issue lies in detecting emotion from Heart
Rate (HR) measurements obtained from these wearables. Unlike most state-of-the-art
studies, which have elicited emotions in controlled experiments and with high-accuracy
sensors, this research’s challenge consisted of emotion recognition (ER) in the everyday
context of users based on the gathering of HR data.

Furthermore, an objective was to generate the tourist recommendation considering
the emotional state of the device wearer. The method used comprises three main phases:
The first was the collection of HR measurements and labeling emotions through mobile
applications. The second was emotional detection using deep learning algorithms. The
final phase was the design and validation of the TERS-ER. In this way, a dataset of
HR measurements labeled with emotions was obtained as results. Among the different
algorithms tested for ER, the hybrid model of Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) networks had promising results. Moreover, concerning
TERS, Collaborative Filtering (CF) using CNN showed better performance.

Aims
This project proposes a tourist experiences recommender system based on emotion detection
from wearable device data. The specific objectives are:

• Analyze the historical behavior of the physiological data of wearable devices users to
find emotional patterns.
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• Define the emotion recognition component based on physiological data collected
before the tourist experience.

• Design the context-aware recommender system according to the user’s profile, emo-
tional data, and the tourist experience portfolio.

• Validate the recommender system through a case study of experiences for a tourist
destination.

Method
This research defined the phases of generating the conceptual base and developing the archi-
tecture of a Tourist Experiences Recommendation System based on Emotion Recognition
(TERS-ER). Initially, the state-of-art analysis presented the trends, theoretical background,
and algorithmic approaches to identify guidelines for designing an emotion-aware tourist
RS.

The TERS-ER purpose was to previously detect the user’s emotional state who wore
a wearable for a significant time. Based on the predominant emotion of this user, the
recommender generated a list of Tourist Experiences (TE). The general process of the
method involved three phases: HR measurements and emotion labeling, detection of
emotional states, and TERS-ER design and validation.

Results
The main results were: (i) A scientometric review of Tourist Recommender Systems based
on Emotion Recognition (ER). (ii) An application for ER based on shallow machine learning
algorithms to extract the features of physiological signals in the time and frequency domain.
The experimental results on the AMIGOS dataset showed that the proposed DCNN method
achieved better accuracy in the classification of emotional states compared to that obtained
initially by the authors of this dataset. (iii) A MyEmotionBand mobile application to collect
the affective dataset. (iv) A Heart Rate (HR) dataset of the experiment participants of this
study. (v) A time series synchronization algorithm for labeling emotions in HR instances
called a sliding and adjustable window. (vi) Two implementations for affective detection and
the recommender engine of the TERS-ER architecture. In the validation results, we found
that the recommender had a better performance in the models developed of Collaborative
Filtering using Convolutional Neural Networks (CF-CNN) and Content-Based Filtering
(CBF), in contrast to the Matrix Factoring algorithms.
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Conclusions
A system for TE recommendation based on emotional recognition with data from low-cost
wearable devices called TERS-ER was presented. This recommender generates the TE most
relevant to the user’s preferences, location, and felt emotion in a period before the visit.
The TERS-ER architecture was made up of two main subsystems. The first ER integrated
the data collection from the experiment participants, preprocessing, Emotional Segments
(ES) analysis of HR instances, balancing the emotion classes, and affective detection using
DNN models. To this end, an algorithm was designed to label emotions in HR instances
called a sliding and adjustable window. Also, an ES algorithm was developed for the
predominant affective state, parameterized by the amount and time between the labeled
instances.

The second TERS was implemented with the dataset management components and the
recommender engine. The TERS engine integrated a user similarity algorithm, selecting
candidate users from the ontology based on the profile and contextual data of the wearable
user. Also, two approaches to Content-Based Filtering (CBF) and Collaborative Filtering
(CF) based on CNN were designed to generate the top-N list of Tourist Experiences (TE)
recommendations.

Keywords:
Recommender system, emotion detection, tourist experiences, heart rate, wearable, deep
neural network.





Resumen

Antecedentes
La recopilación de datos fisiológicos de personas se ha visto facilitada debido al uso
masivo de dispositivos wearable baratos. Aunque la precisión es baja en comparación
con los dispositivos médicos especializados, estos pueden aplicarse ampliamente en otros
contextos. Esta investigación propone la arquitectura de un sistema de recomendación de
experiencias turísticas (TERS) basado en los estados emocionales de los usuarios que usan
estos dispositivos. El problema radica en detectar la emoción a partir de las mediciones
de Frecuencia Cardíaca (HR) obtenidas de estos dispositivos wearable. A diferencia de la
mayoría de los estudios de estado del arte, que han provocado emociones en experimentos
controlados y con sensores de alta precisión, el desafío de esta investigación consistió en el
reconocimiento de emociones (ER) en el contexto cotidiano de los usuarios basado en la
recopilación de datos de HR.

Además, un objetivo fue generar la recomendación turística considerando el estado
emocional del usuario del dispositivo. El método utilizado consta de tres fases principales:
La primera fue la recolección de medidas de HR y etiquetado de emociones a través
de aplicaciones móviles. El segundo fue la detección emocional mediante algoritmos de
aprendizaje profundo. La fase final fue el diseño y validación del TERS-ER. De esta
manera, se obtuvo como resultados un conjunto de datos de medidas de HR etiquetadas con
emociones. Entre los diferentes algoritmos probados para ER, el modelo híbrido de Redes
Neuronales Convolucionales (CNN) y redes de Memoria a Largo y Corto Plazo (LSTM)
tuvo resultados prometedores. Además, en cuanto a TERS, el Filtrado Colaborativo (CF)
con CNN mostró un mejor rendimiento.

Objetivos
Este proyecto propone un sistema de recomendación de experiencias turísticas basado en la
detección de emociones con datos de dispositivos wearable. Los objetivos específicos son:
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• Analizar el comportamiento histórico de los datos fisiológicos de los usuarios de
dispositivos wearable para encontrar patrones emocionales.

• Definir el componente de reconocimiento de emociones en función de los datos
fisiológicos recopilados antes de la experiencia turística.

• Diseñar el sistema de recomendación contextual de acuerdo con el perfil del usuario,
los datos emocionales y el portafolio de experiencias turísticas.

• Validar el sistema de recomendación a través de un estudio de caso de experiencias
para un destino turístico.

Métodos
Esta investigación definió las fases de generación de la base conceptual y desarrollo de la
arquitectura de un Sistema de Recomendación de Experiencias Turísticas basado en el
Reconocimiento de Emociones (TERS-ER). Inicialmente, el análisis del estado del arte
presentó las tendencias, los antecedentes teóricos y los enfoques algorítmicos para identificar
las pautas para diseñar un sistema de recomendación turística consciente de las emociones.

El propósito de TERS-ER fue detectar previamente el estado emocional del usuario que
usó un wearable durante un tiempo significativo. A partir de la emoción predominante de
este usuario, el recomendador generó una lista de Experiencias Turísticas (TE). El proceso
general del método involucró tres fases: mediciones de HR y etiquetado de emociones,
detección de estados emocionales, diseño y validación de TERS-ER.

Resultados
Los principales resultados fueron: (i) Una revisión cienciométrica de Sistemas de Recomen-
dación Turística basados en el Reconocimiento de Emociones (ER). (ii) Una aplicación
para el ER basada en algoritmos de aprendizaje automático superficial para extraer las
características de las señales fisiológicas, en el dominio del tiempo y la frecuencia. Los
resultados experimentales sobre el dataset AMIGOS, muestran que el método propuesto
DCNN logró una mejor exactitud de la clasificación de los estados emocionales, en com-
paración con la originalmente obtenida por los autores de este dataset. (iii) Una aplicación
móvil MyEmotionBand para la recolección del dataset afectivo. (iv) Un dataset de Ritmo
cardíaco (HR) de los participantes del experimento de este estudio. (v) Un algoritmo
de sincronización de series de tiempo para etiquetar las emociones en las instancias HR
denominado ventana deslizante y ajustable. (vi) Dos implementaciones para la detección
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afectiva y el motor del recomendador de la arquitectura TERS-ER. En los resultados de la
validación, encontramos que el recomendador tuvo un mejor desempeño en los modelos de-
sarrollados de Filtrado Colaborativo usando Redes Neuronales Convolucionales (CF-CNN)
y Filtrado Basado en Contenido (CBF), en contraste con los algoritmos de Factorización
Matriz.

Conclusiones
Se presentó un sistema de recomendación de TE basado en el reconocimiento emocional
con datos de dispositivos wearable de bajo costo llamado TERS-ER. Este recomendador
genera el TE más relevante a las preferencias, ubicación y emoción sentida del usuario
en un período previo a la visita. La arquitectura TERS-ER estaba compuesta por dos
subsistemas principales. El primer ER integró la recopilación de datos de los participantes
del experimento, el preprocesamiento, el análisis de segmentos emocionales (ES) de instan-
cias de recursos humanos, el equilibrio de las clases de emociones y la detección afectiva
mediante modelos DNN. Con este fin, se diseñó un algoritmo para etiquetar las emociones
en instancias de recursos humanos llamado ventana deslizante y ajustable. Además, se
desarrolló un algoritmo ES para el estado afectivo predominante, parametrizado por la
cantidad y el tiempo entre las instancias etiquetadas.

El segundo TERS se implementó con los componentes de administración de conjuntos
de datos y el motor de recomendación. El motor TERS integró un algoritmo de similitud
de usuarios, selección de los usuarios candidatos de la ontología en función del perfil y los
datos contextuales del usuario del wearable. Además, se diseñaron dos enfoques de filtrado
basado en contenido (CBF) y filtrado colaborativo (CF) basado en una CNN para generar
la lista de las N-principales recomendaciones de experiencias turísticas (TE).

Palabras Clave:
Sistema recomendador, detección de emociones, experiencias turística, ritmo cardíaco,
wearable, redes neuronales profundas.
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Chapter 1

Introduction

This doctoral thesis outlines an original scientific contribution both in computer science
and in the domain of tourism. A TERS-ER model of three phases articulated the pro-
posed research objectives were developed. The first is preprocessing Heart Rate (HR)
measurements and emotional labels. The second is emotion detection, and the third is
the Tourism Experiences Recommender System based on Emotion Recognition (TERS).
Besides the scientific publications that validated the original contributions of this research.
The TERS-ER modules using the APIs of Keras, SciKitLearn, Python Surprise were
implemented. For data collection, an experiment was designed with 18 participants. Each
participant wore a low-cost wearable (Xiaomi Mi Band 3 or 4). The third-party application
to record HR pulses and the My Emotion Band (in-house) application to register emotions
were installed on their mobile device. However, unlike the experiments in other related
studies, this research was conducted outside a laboratory setting. According to the temporal
perspective, this research focused on the preliminary tourism phase, where the user who
wore a low-cost wearable plans their tourist experience next.

This document shows the following sections: Chapter 2 establishes the relationship of
the scientific literature of recommendation systems in the tourism domain based on emotion.
Chapter 3 describes the emotion detection model based on physiological signals using the
AMIGOS multimodal dataset. Then, chapter 4 explains the architecture model of a TERS-
ER using data from low-cost wearable devices. Chapter 5 evaluates the performance of
deep neural network models for emotion detection and tourist destination recommendation.
Finally, chapter 6 presents the conclusions, contributions, and future work.



2 Introduction

1.1 Problem Statement
When somebody wonders about which tourist experience is most convenient, the person
contemplates as a response the consideration of the following factors: travel agencies,
suggestions from third parties, economic plans, or the desire to know new places (novelty).
However, a convenient factor that should be taken into account is the emotional state that
the person has presented before consuming the tourist experience. Then the question arises:
How is a person’s emotional state determined? In addition, according to this emotional
state, which is the tourist experience most convenient?

In recent years the development and use of wearable technology have increased; for
example, CCS Insight forecasts that by 2021 technology companies will produce about 185
million wearable devices (such as a smartwatch, wristband, cameras, hearable, footwear,
eyewear, and jewelry) [2]. A wearable device is worn on the body and functions as a small
computer with detection, processing, storage, and communication capabilities [3]. These
devices are equipped with sensors to capture the user’s physiological data (heart rate, blood
pressure, electrodermal activity, among others) and data about the user’s environment
(location, time, and weather). The collection and processing of these data have become
a major technological and scientific challenge [4], with broad applicability for improving
the user experience in the domain of tourism. On the other hand, consideration should be
given to the systematic exploration of wearable devices best suited to specific situations
and applications for the context of daily life [5].

Concerning the dimension of the tourist attraction, the Recommendation Systems (RS)
are an essential tool before visiting the tourist destination. Research on the management
of the tourism industry highlights the importance of this type of device for ER, such as the
improvement of the Tourist Experiences (TE) through the personalization of the services
[6, 7], where the tourist’s expectation is analyzed in three phases (before, during and after
the tourist visit) for different dimensions or tourist activities. The emergence of sensors
and wearable devices as mechanisms for the acquisition of physiological data of people
in their daily lives [8] has made possible the research in affective patterns recognition for
the improvement of the user experiences in diverse contexts. In the same way, the World
Tourism Organization recognizes that in the market of the increasingly competitive tourist
destination, the tourist attractions are more inclined towards the emotional benefits than
the physical features and price of the destination [9].

During the last two decades, MIT’s affective computing research group has aroused
great interest in scientific and academic communities that seek to improve the human
emotional experience with technology [10]. Some challenges focus on deepening machine
learning and deep algorithms to ensure that the Emotion Recognition (ER) system has
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high precision and robustness in the processing of physiological data [11]. The emotional
computational models [12] have been applied to the recognition of the affective state
through physiological measures. It is based on a specific emotion model, for instance, the
evaluation of valence dimension from unpleasant to pleasant and arousal dimension from
low to high [13].

Besides, the recommendation of the TE may be influenced by the dynamic and subjective
nature of the emotions of a user when performing an activity [14]. Consequently, it is
necessary to build and dispose of datasets with physiological data coming from wearable
devices, to diagnose the emotional states of diverse user profiles, at different times, in the
distinct contexts of daily life, and over some time. Once trained and tested, these types of
datasets would be the entry to the recommender system, which would lessen the problem
of cold start [15, 16].

In this sense, RS are software tools that suggest items that interest a particular user.
These are classified in RS: content-based, collaborative filtering, knowledge-based, and
demographic [17]. For the tourism domain, demographic information is combined with
the context data to guide the recommendation process; this approach is related to the
methodology of the Context-Aware RS (CARS) [18, 19]. Emotions are an important
contextual element and in the investigations consulted, evidence the need to reduce
complexity in algorithms, propose architectures, frameworks [20] and, approaches to
facilitate the development, implementation, and evaluation of CARS [17].

There are antecedents of tourist RS that use collaborative filtering techniques to
determine tourist satisfaction during or after their visit [16]. Other content-based RS
analyzes user preferences and experiences previously made [21]. Knowledge-based RS
through large datasets, created from hotel information or tourism infrastructure, make
the respective proposals [18]. However, concerning wearable devices in the context of
tourism, few documents were found in the bibliometric study (see Chapter 2). From the
physiological data of people in their daily life, the emotions can be recognized, and an
opportunity and one scientific challenge are detected.

According to Buhalis [6] and Kim [22], tourist expectations are analyzed in three phases
from a temporal perspective. Anticipation phase to the trip’s decision and in the user’s
daily life. Experiential phase during the tourist experience and finally reflective phase of
the travel experience. However, how satisfying is the consumption of a tourist experience
for a person? It largely depends on the destination’s decision. However, the emotional state
that the person manifested before their visit is rarely taken into account. This research
focused on the preliminary phase of the visit, which detects people’s affective state as a
contextual factor of a recommender.

The gaps we found to address this study were.
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• Gap 1: Considering that from a wearable device, we can obtain user profile data
and HR measurements, and unlike controlled experiments, the challenge arises: in a
person’s everyday environment, how to discover hidden patterns in the physiological
data obtained from a low-cost wearable?

• Gap 2. Regarding the assignment of emotions to HR measurements: How to assign a
person’s emotion to a set of HR time series? Moreover, How do we differentiate the
intensity and duration of an emotional state in the HR time series?

• Gap 3. Furthermore, based on the emotional state of the wearable user: how to
recommend suitable tourist experiences?

Therefore, the following research question arises:
How to design a tourist experiences recommender system based on the user’s emotional

state who wears a low-cost wearable in a period before the tourist visit?
The hypothesis of this research is: One system recommends tourist experiences based

on the user’s emotional state who wears a low-cost wearable, based on this device’s heart
rate measurements.

1.2 Objectives

1.2.1 General Objective

Propose a tourist experiences recommender system based on emotion detection from
wearable device data.

1.2.2 Specific Objectives

• Analyze the historical behavior of the physiological data of wearable devices users to
find emotional patterns.

• Define the emotion recognition component based on physiological data collected
before the tourist experience.

• Design the context-aware recommender system according to the user’s profile, emo-
tional data, and the tourist experience portfolio.

• Validate the recommender system through a case study of experiences for a tourist
destination.



Chapter 2

State of the art

Recommendation systems have surpassed the overload of irrelevant information by consider-
ing users’ preferences and emotional states in the fields of tourism, health, e-commerce, and
entertainment. This chapter reviews the principal recommendation approach documents
found in scientific databases (Elsevier’s Scopus and Clarivate Web of Science) through a
scientometric analysis in ScientoPy. Research publications related to the recommenders of
emotion-based tourism cover the last two decades. The review highlights the collection,
processing, and feature extraction of data from sensors and wearables to detect emo-
tions. The study proposes the thematic categories of recommendation systems, emotion
recognition, wearable technology, and machine learning. This chapter also presents the
evolution, trend analysis, theoretical background, and algorithmic approaches used to
implement recommenders. Finally, the discussion section provides guidelines to design
emotion-sensitive tourist recommenders.

2.1 Introduction
Nowadays, people find varied information about service portfolios (for instance, books,
videos, and tourist attractions) to choose the most relevant to their personal needs. Although
many times, the choice of a service or product does not generate the expected results. For
this reason, Recommender Systems (RS) are valuable tools that provide adequate and
contextualized items to the users’ preferences. Emotion Recognition (ER) [23–25] and
sentiment analysis [26–28] are vital contextual factors to improve user satisfaction and
accuracy in tourist recommendations. So the user’s affective context has been inferred
from social network reviews [29–31]. Emotion detection, based on the physiological signals
collected from wearable devices, has been used to customize the user’s context [32–34].
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As a result, RS implementation is considered an interdisciplinary field of research that
involves data collection, information preprocessing, the definition of Machine Learning
(ML) approaches, and specification of recommendation services [26, 35, 36]. Such as the
recommenders of movies [37, 38, 31], music [34, 30, 39], tourist attractions [40–44], and
medical care [45–47].

In recent years, the development and use of wearable technology have increased [48–50].
In particular, CCS Insight predicted that by 2021 technology companies will produce
around 185 million wearable devices (such as a smartwatch, bracelet, cameras, audible
devices, footwear, glasses, and jewelry) [2]. A wearable device is worn on the body. It
has computational capabilities to detect, process, store, and communicate data [51, 52].
They are also equipped with sensors to capture physiological data [39, 53, 54] and data
about the user’s environment [55, 56]. Therefore, this data collection and processing have
become a tremendous technological challenge to improve the user experience using the ER
[32, 33, 1, 34].

Consequently, the purpose of this study is to provide both an overview and an un-
derstanding of the theoretical background, approaches, models, and methods for the
implementation of ER-based tourism recommender systems. This document presents a
scientometric review that covers the analysis of research documents published from 2000
to 2019. Section 2.2 details the materials and methods used in the preprocessing and
analysis of bibliographic datasets. Sections 2.3 to 2.6 comprise the four main categories
around the classification of recommender systems, emotional detection based on wearable
sensors data and proposed machine learning approaches. Besides, Section 2.7 presents the
thematic clusters associated with recommendation systems, tourism, and emotions. Finally,
sections 2.8 and 2.9 summarize the main findings and conclusions found in this work.

2.2 Materials and Methods
This section describes the bibliographic dataset gathering, the preprocessing, and the
review methodology applied in the scientometric analysis.

2.2.1 Dataset Collection

Initially, a specialized search of scientific papers from the Clarivate Web of Science and
Elsevier’s Scopus platforms was performed. These bibliographic databases contain in-
formation on high-quality multidisciplinary research published in scientific journals of
meaningful global impact and allowed the consolidation of a dataset to contribute to this
study. The search string was "(((recommender OR recommendation) AND system) AND
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(tourist OR tourism OR emotion OR physiological OR affective OR wearable)). The first
part of the string refers to the recommender systems, and the second part mentions the
recognition of emotions. The information was extracted from the bibliographic platforms
on July 15, 2020, filters were applied to the search chain by subject (Computer Science,
medicine, engineering, business, telecommunications, artificial intelligence, psychology,
multidisciplinary and tourism ) and by years (2001 to 2020) A representative dataset of
1829 documents was obtained, corresponding to 33.6% from WoS and the remaining from
Scopus (see Table 2.1).

Table 2.1 Filters applied to the search string of WoS and Scopus dataset.

Filter Scopus WoS Documents

By years: Limit-to 2001 to 2020 2001 to 2020 (4308, 1623)

By subject area: Limit-
to

Computer Science, Medicine,
Engineering, Psychology,
and Business.

Computer Science Information
Systems, Artificial Intelligence,
Engineering, Tourism, Telecom-
munications, and, Psychology.

(3637, 570)

By subject area: Ex-
clude

Mathematics, Social Sci-
ences, Decision Sciences,
Biochemistry, Nursing, Health,
among others.

- (2030, 570)

By document type: Ex-
clude

Exclude Short Survey, Note,
Editorial, and Letter. - (2016, 570)

By language: Limit-to English English (1861, 551)

By keywords: Exclude
Human, article, priority jour-
nal, female, review, male, adult,
adolescent, among others.

- (1303, 551)

By source title: Ex-
clude

Advanced Materials Research,
Information Japan, Applied
Mechanics, among others.

- (1278, 551)

The bibliographic dataset preprocessing was generated with the ScientoPy tool [57].
Table 2.2 shows a summary of the preprocessing of the duplicate documents that were
removed from the consolidated Scopus and WoS dataset. Additionally, it displays the
bibliographic dataset statistical information filtered by type of documents (conference
papers, articles, reviews, proceedings papers, and articles in press) and duplicates records
in the DOI match. In particular, the first column of information describes the input dataset.
The second column specifies the number of published documents and the number of papers
resulting from the duplicate filter. Finally, the third column shows the relative percentages
before and after the filter.
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Table 2.2 Preprocess brief with ScientoPy for the dataset obtained.

Information Number Percentage

Total loaded documents 1829
Omitted documents by type 200 10.9%
Total documents after omitted documents removed 1629
Loaded documents from WoS 547 33.6%
Loaded documents from Scopus 1082 66.4%

Duplication removal statics:
Duplicated papers found 180 11.0%
Removed duplicated papers from WoS
Removed duplicated papers from Scopus 180 16.6%
Total papers after remove duplicates 1449
Papers from WoS 547 37.8%
Papers from Scopus 902 62.2%

2.2.2 Review Methodology

The research field was systematically determined as following the scientometric review
methodology [58]:

• First, the subject of the review was searched for in the Scopus and WoS databases.
The search string was designed according to the research topic of recommendation
systems in the tourism domain based on recognizing emotions from wearable device
physiological data.

• Secondly, the scientometric tool ScientoPy [57] was used, which pre-processed these
two bibliographic databases’ files. In this way, several clusters were determined, and
the categories related to the research topic were formed. Moreover, the lead authors’
first 1000 keywords were chosen from this dataset consisting of 1449 documents.
Then, the most relevant author keywords from this list were analyzed to consol-
idate 16 categories (recommender system, tourism, emotion recognition, machine
learning, social media, user modeling, collaborative filtering, mobile application,
context, personalization, sentiment analysis, wearable, healthcare, ontology, affective
computing, and physiological signal). Later, the categories displayed in the graphics
cluster the similar author keywords that belong to the same topic (such as words in
plural/singular, acronyms, classes, or category types). For instance, the RS topics in-
clude the keywords (recommender system, recommendation system, recommendation,
recommendation systems, recommendations, and others), and the deep learning topic
includes the keywords (convolutional neural networks, convolutional neural network,
CNN, deep neural network, LSTM, and others).
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• Third, it shows the statistical graphs of the bar and parametric trend analysis
constructed with the indicators of Average Documents per Year (ADY) and Percentage
of Documents in Recent Years (PDLY) [57]. It is interesting to highlight the rise of
the RS and tourism as transversal and thematic axes. Figure 2.1 shows the trend
bar graph of the main categories and highlights in the orange bar the documents
published in the last four years in sentiment analysis, wearable devices, physiological
signals, and use of ML algorithms in the ER. Furthermore, it includes the value of
PDLY (2016 -2019). Similarly, the trend analysis in Figure 2.2 uses the ADY and
PDLY indicators to describe the behavior of the strongly related themes to RS-based
research. The graph on the left shows the evolution of the S curve of technology or
category calculated by the number of documents accumulated per year (logarithmic
scale). It represents the initial evolution, the period of growth, and the boom of the
publication of documents related to research topics. While the parametric scatter
graph located on the right side visualizes the growth of publications in recent years
(2016 -2019). New themes have emerged to support tourism RS development, such
as sentiment analysis, wearable devices, social networks, and ML algorithms. The
thematic axes of ER, affective computing, and collaborative filtering are of great
interest to recommenders.

• Fourth, the analysis of research trends belonging to these clusters was carried out
with the WoSViewer (Section 2.7) and ScientoPy tools, which determined that the
boom in the publication of the documents in these clusters began in 2016. Figures
2.1 and 2.2 show the peak of 2016, especially in the clusters of collaborative filtering,
wearables, physiological signals, sentiment analysis, healthcare, affective computing,
and social networks. The topics mentioned are included in sections 2.3 to 2.6. In
each section, reference is made concerning the most relevant documents to RS, ER,
wearable technology, and ML.
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Fig. 2.1 Research topics related to RS, tourism, and ER between 2001 and 2019.
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Fig. 2.2 Top applications and technologies in tourist recommender systems research.
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2.3 Recommender Systems
RS are software tools and techniques that provide suggestions for items that are likely
to be of interest to a determinate user. The documents cited in this section are related
to recommendations for tourism, videos, music, content-based filtering, and collaborative
filtering (see Figure 2.3). Although the search spanned the last two decades, most of the
papers related in this section have been published in the last five years and have the highest
PDLY. The RS landscape has been diverse regarding developing research prototypes that
integrate Web technologies, mobile computing, and social networks in tourism [59–61].
Furthermore, RS approaches have evolved concerning the application, the business model,
the user profile, the techniques, and the algorithms implemented.
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Fig. 2.3 Trends of approaches, frameworks, and applications in RS research.

The RS architecture integrates data collection, preprocessing, prediction models, and
recommendation services [26, 35, 36]. The papers referenced in Table 2.3 describe the
functionality and application of the stages of the recommendation process. Moreover, the
preprocessing stage extracts the relationship between the user, the item, and the contextual
features represented in a data model (vector or tensor matrix). The prediction stage then
generates a relevant list of items calculated with algorithms and recommendation models
based on similarity. Finally, the recommender specifies the services related to the users’
interests, such as listing the most innovative items and adapted to the users’ demand.
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2.3.1 Content-Based Filtering

A typical recommendation approach shares a mechanism to describe the detailed features
of items that may be of special suitable to a user [17]. Based on the representation of these
items, a user preference profile is built. Through an ML algorithm, it compares the item
features with the user’s profile and generates the recommendation list. The item similarity
is calculated based on the attributes associated with the compared items. For example, in
a music recommender, a user rates a relaxation song with a high estimate, then the system
learns to suggest other songs of the same emotional state. The song features can describe
both structured data (song title, singer name, music genre, year of release, and emotional
state) and unstructured data (user comments and song description).

Some studies have used the Cosine Similarity (CS) metric [62, 28, 63] to determine
the similarity of the items represented in the n-dimensional space vectors (for example,
a matrix of similarity between songs and emotional state). In contrast, the Euclidean
Distance (ED) [64–67] was used to measure the actual distance between the elements and
the user’s profile. The implementation of recommenders based on content emerges as an
alternative to personalize the multimedia, tourist, and entertainment content available on
the Web. Emotions have aroused intense interest in the design of user preference models.
For example, the influence of affective metadata on image rating performance using the
Support Vector Machine (SVM) algorithm [68]. The definition of the travel profiles based
on a multiple regression model of Points of Interest (POI) images implicitly extracted the
user preferences [64].

Due to the semantic ambiguity of unstructured data, Probabilistic Latent Semantic
Analysis (PLSA) techniques have been proposed for tourist attraction image annotation and
ontological representation of user profile data [69–71]. Also, [72, 73] described a tourism
approach based on social relationships and user preference profiles to calculate the POI
similarity. A hybrid approach in [29] compared the Rocchio algorithm for customizing
required queries in the classification of candidate POI with the k-Nearest Neighbors (kNN)
weighted classifier query builder.

Although content-based approaches have limitations for predicting novel items, they
have datasets that enrich domain knowledge and avoid cold start problems [74]. To overcome
the problems of prediction accuracy, some researchers have proposed hybrid approaches.
In particular, [75] presented a framework of mobile tourist services based on the semantic
relationship of the agreement of words and frequency of terms to determine the item’s
similarity to recommend. The architecture of a content-based and semantic-conscious RS
[76] described the components from a computational perspective. It introduced a cleaning
user-profile method and overcame the magic barrier problem by detecting the semantic
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similarity between the item and the profile. Besides, it used a filtering component to
generate the recommendation list appropriate to the user’s preferences.

2.3.2 Collaborative Filtering

Unlike content-based filtering, Collaborative Filtering (CF) automatically learns the rela-
tionship of items, extracts their features, and discovers new interest items to users [74].
CF methods generate user-specific item recommendations based on rating patterns from
multiple users who share similar preferences [17]. The data sources indicate the behaviors
and interests that users have had in the past concerning the products. These can be
implicit (for instance, tourist attraction reviews, review history, and search patterns) and
explicit (for example, scaling from 1 to 5 to quantify liking for a tourist site). The ratings
recorded by users are related to the dataset elements and form a two-dimensional matrix.
CF recommendation models calculate similarity weights between users and items [77].

User-Based Collaborative Filtering (UBCF), also known as Neighborhood-based, estab-
lishes a target user’s neighborhood by analyzing historical behavior and preferences to find
the best similarity between the items of other users similar to those that the target user
liked [38, 37, 30, 78]. In comparison, Items Based Collaborative Filtering (IBCF) predicts
the rating of a new item and weights the ratings of the item set by the similarity of the
target user behavior [39, 30]. The CF approaches used Pearson’s Correlation Coefficient
(PCC) [38, 29, 36, 78–80] and CS [26, 81, 30, 35] metrics to generate a list of product
recommendations of interest to the target user.

The recommenders, faced with the problem of cold start and the scarcity of user behavior
data, have implemented mining and affective computing techniques to obtain implicit
information [36, 26, 82, 38]. In personalization of tourist attractions and multimedia
content, CF hybrid models merged the emotions of user comments, contextual data, and
explicit’s ratings available on online social networks [83, 72, 29, 84]. Tourist destination
recommenders used CF review extraction methods to refine user preferences and article
reputation [26, 73].

In contrast to CF algorithms, model-based approaches are categorized into factoring
machine, matrix factoring, and ML algorithms. These models are scalable and handle sparse
data [17, 77]. The Factorization Machine (FM) is a general-purpose regression method that
models the interaction between contextual variables [17]. Some recommenders implemented
the Stochastic Gradient Descent (SGD) algorithm with regularization hyperparameters
to optimize the FMs of affective factors and tourist attractions features [85, 82, 86].
Additionally, Matrix Factorization (MF) is a model of latent factors represented in a three-
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dimensional grade cube denoted by users, items, and values of the contextual dimension
[17, 77, 26, 87, 88].

Furthermore, the Singular Value Decomposition (SVD) algorithm transforms the original
rating matrix R = users ∗ items into a matrix of users with latent features U = users ∗
latentfactors. Then, it calculates the transpose of the original rating matrix RT = items∗
users and generates a matrix of items with latent features RT = items ∗ latentfactors.
Lastly, the prediction function for a specific user rating is given by R = U ∗ MT [77, 36,
89]. Simultaneously,The SVD ++ algorithm is a specific variant of SVD that handles
both implicit and explicit interactions [17, 77]. Some studies [90] modified the SVD ++
model by merging user sentiment and tourist destinations temporal influence in the POI
recommendation. Also, [91] used the emotion label weighting as a tensor value of the
High-Order Singular Value Decomposition (HOSVD) method to consider the preference
and interest in movies suggestion.

Recently, the research challenge of developing recommendation models with a contextu-
alized approach arises to overcome users’ limitations in terms of geographic coverage and
social interaction [74]. Most recommender architectures are hybrid because they combine
various approaches with IBCF and UBCF [92]. In particular, [93] proposed a tourist
system that matches the user’s location with the top-k recommendations through a linear
distance for the contents and the CS for the relationship between the user profiles. Also,
[94] developed an approach to extract information from users’ preferences of a website,
established the similarity of users, and generated a tourist attraction with the Slope One
algorithm. Considering the problem of cold start and the scarcity of the CF algorithms’
information, [95] developed an architecture of a deep neural network based on an MF of
latent features of the project developers, their tasks, and their relationships.

2.3.3 Knowledge-Based

A knowledge-based recommender (KB) consolidates data on user preferences, restrictions,
and needs essential for item suggestions [96, 97]. Knowledge-based systems satisfy user
preferences using knowledge bases that associate item features with user requirements
[98–100]. KB recommender [73] compared user requirements with candidate travel destina-
tions by assigning a score to each dimension (location, tourist profile, type of attraction,
transportation costs) and a weighted average to predict the rating. Online social networks
provide information related to the profile, location, and feelings of users for the construction
of ontologies that have been used in the monitoring of emotional health [101]. However,
the recommendation performance depends on the knowledge base, and its implementation
is costly due to the quality of the information [102].
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2.3.4 Tourist Context

This section details the RS categories of the tourism context. Although the search spanned
the last two decades, most of the mentioned papers in this section have been published in
the last five years and have the highest PDLY. Travel planning and e-tourism documents
are closely related to emerging topics of tourist trip design problems, POI, travel, and
smart tourism (see Figure 2.4).
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Fig. 2.4 The domain of the top applications in tourist recommenders.

In the tourism sector, experiences are the main product and directly impact receptive
tourist satisfaction [6, 22]. For this, stakeholders prepare the tourist destination to have
positive experiences in the social and physical context [103, 104, 43]. One experience is
inherently personal and can involve an individual on different rational, emotional, sensory,
physical, and spiritual levels [105]. Smart tourism transformed information services to
support the design of personalized tourism experiences in a ubiquitous context [98, 106, 44].
Therefore, a recommender as technology tools provides valuable suggestions on tourist
attractions tailored to personal preferences and restrictions.

Precisely, in a smart tourism ecosystem [107, 98], wearable device sensory technology
can be considered the enabling layer that supplies the context factors and user data.
Meanwhile, the recommender displays the suggested contents about the tourist experience
and is part of the facilitation layer. Therefore, mobile tourism [108, 106, 109–111] is
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an emerging field that combines various ubiquitous devices, technologies, and services
necessary to provide well-being to tourists in the destination. Indeed, the heterogeneous
data extracted in a smart city favor the design of tourism behavior models based on travel
routes’ digital patterns [112] and cultural heritage routes[113] with a user theme similarity
model and a mean-shift clustering algorithm for visitor location.

Location-based tourism recommenders [40, 83, 41, 42] have used mobile devices’ tech-
nological capabilities to provide information to the user about POI near their geographical
position. Specifically, [114] developed a recommender based on a clustering algorithm to
discover user preferences and visualize the most novel POI on a cartesian coordinates map.
[115] proposed a context-sensitive itinerary recommender based on a routing algorithm that
used the user’s social information, popularity, and distance from the POI. Furthermore,
mobile communications and social media allowed users to share ratings and experiences
related to POI comments based on their preferences [116–118, 35].

The tourist trip design problem [119–121, 41, 122, 123, 63] has involved implementing
tourist route planning to meet the trip’s expectations, the novelties in the destination, and
the visitor’s satisfaction. For instance, the routing model based on metaheuristics made it
possible to search for POI located on the journey routes [124, 125]. According to the user’s
preferences and context, the recommender based on Dijkstra’s algorithm [123] constructed
short tourist trips within a feasible time frame. While [126] proposed a POI recommender
based on MF algorithms and an enriched cultural typology.

The trip planning of itineraries to tourist places has incorporated the user’s relevance,
location, and travel time between POI [127–129]. Some travel recommendation methods
[130–132] generated a list of POI that matched the user’s preferences obtained from
geotagged photographs and comments from tourist experiences posted on social media.
Hybrid location-based recommenders considered dynamic user interaction to suggest custom
POI using an intelligent swarm algorithm [78] and a hybrid selection scoring algorithm
[133].

On the other hand, the destination recommenders have guided the tourists in the
trip purpose, adapting their personal needs and preferences [119]. Some researchers have
extracted user sentiment trends toward preferred items by analyzing the social media
reviews. Also, they have addressed data scarcity limitations in the recommendation process
[90, 26, 73].

The researchers have boosted the visitors’ motivation towards medical and rural tourism.
Recently, rural tourism offered exciting challenges for developing the RS frameworks for
these tourist experiences [134]. Some studies [135, 85] proposed methods for the extraction
of geographic features from rural tourism attractions. Medical tourism recommenders have
supported users’ health care and medical attention while traveling [136]. For instance,
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the health-conscious ubiquitous context approach used visitor physiological sensor data
[137]. Moreover, the social trust-based approach developed an ontology for medical tourism
services [100].

It is worth highlighting the interest of researchers in integrating the contextual factor
of emotions into RS approaches to provide tourists with novel experiences that satisfy their
travel motivations and expectations.

2.3.5 Context-Aware

In recent years, contextual information has been significant in describing current user
behavior, scenarios, and mobile recommenders’ application domain [138–140, 106]. Con-
textual information can involve various contexts related to user features, technological
resources, and physical conditions [17, 77, 141]. The first involves user interaction on social
media, mood, experiences, and preferences. The second describes the communication and
computing capabilities of the user’s ubiquitous devices. The last one specifies using the
sensors to measure the climate, the weather, and the recommendation’s location. For the
above, some studies proposed a multi contextual perspective of mobile tourism RS by
integrating users’ location with environmental, temporal, and social factors to generate
more effective predictions [142–144, 110, 145].

Unlike traditional recommendation approaches, the Context-Aware Recommender Sys-
tem (CARS) added contextual information to the multidimensional classification prediction
function user ∗ item ∗ context −→ rating [17]. The three CARS categories that adapted
the user’s contextual information in a prediction model are pre-filtering, post-filtering,
and contextual modeling [17, 77]. In pre-filtering, preference data is selected according
to the context before algorithms calculate predictions [44]. In post-filtering, context is
used to filter recommendations once predictions have been calculated with a traditional
approach [44]. In contrast, contextual models incorporate contextual data directly into the
prediction model.

Some studies [37, 146] demonstrated better results in the suggestion of movies by incor-
porating contextual dimensions of the emotional [147] to the context-sensitive algorithms
(items, users and User Interface, UI), Differential Relaxation Context (DCR), and Differen-
tial Context Weighting (DCW). Similarly, [38] used a hybrid CF approach based on mood,
the fusion of preferences, and users’ ratings with similar interests. While [89] adopted
multiclass classification algorithms (Decision Tree - DT, Random Forest - RF and SVM)
to predict interactive emotional states. Furthermore, musical CARS investigations [30, 39]
have used CF approaches to extract emotional labels from songs associated with users’
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physiological states. Also, they implemented neural network models for the representation
of the users’ musical sequences [148].

Semantic Web techniques have enabled recommenders to add reasoning ability to context
information. Ontologies semantically describe the concepts for modeling the features of
user profiles, preferences, and items [99, 100]. The personalized recommenders of tourist
activities are based on ontologies built from various data sources (travel motivations, user
opinions, geographic information, ratings, among others) [149]. Particularly [80] proposed
a travel RS based on the contextual information of emotions [150] extracted from social
networks with semantic analysis techniques. Additionally, [151] proposed a cultural hybrid
RS of personalized itineraries based on social networks’ activities, the linked open data,
and the physical context. For this, it implemented the semantic-based match algorithm for
the user’s profile.

Also, POI recommenders have implemented mining techniques to identify contextual
user preferences in social media reviews. [133] generated the candidate POI with the
Adaptive KNN and Social Pertinent Trust Walker (SPTW) algorithms. Then, it displayed
the recommendations with the Hybrid Selection Score (HSS) method. Another study [78]
incorporated pre-filtering user preferences and a CF algorithm based on its proximity. On
the other hand, [88] proposed the Largest Deviation technique to estimate the selective,
parsimonious, and most relevant context of user preferences when rating POI items.

Compared to traditional RS frameworks, the majority of CARS research demonstrated
better performance on prediction results when implementing sentiment analysis and opinion
mining techniques [152]. Besides, some studies described RS architectures in various tourist
settings. [153] presented a POI itinerary recommender architecture sensitive to the user’s
physical and social context. It used semantic similarity algorithms based on a graph
for the extraction and filtering of the multimedia content of LinkedGeoData. Likewise,
[154] designed a travel itinerary recommender based on dimension trees of contextual
features, an inferential tourist guide engine, and a recommendation engine. [155] proposed
a recommender of cultural routes based on the geotagged photo content, the temporal
context, and the geographical location. For this, it used a thematic model based on the
PLSA of POI and visitors.

The analysis of user behavior is very relevant to design tourist RS frameworks with
personalized services and applications. [112] proposed an ontological framework for pre-
dicting temporal events based on tracking tourist behavior changes. It stored contextual
information in a data lake repository and implemented neural network algorithms to group
tourists and classifier their road trip satisfaction level. On the other hand, [156] designed a
mobile system to detect danger sources in the tourist destination. The system integrated
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the risk analysis component of technological, socio-political, and natural situations to
generate recommendations for a safe trip.

2.3.6 Emotion-Based

Affective computational models are increasingly efficient in generating personalized recom-
mendations by detecting the user’s emotions. Understanding and predicting user behavior is
vital to an affect-sensitive recommendation system. Emotions are closely related to people’s
physical features and are considered a relevant contextual factor in the recommendations
[68, 65, 157, 158]. Some studies [159, 160] designed user models based on personality
traits and emotional states. These models comprise a conceptual level composed of profile
data, physiological measures, contextual data, and subjective user attributes. In contrast,
the specific domain level defines the connection between emotional states and affective
elicitation attributes that can influence the recommendation process.

The emotional information of users can be obtained with explicit and implicit methods
and in a non-intrusive way. [82] integrated long-term mood into the prediction model,
and fashion product recommendations improved in contrast to short-term emotion. [86]
presented a recommendation system sensitive to affect that infers the emotional features
[147] of multimedia content. It used a cluster-based Latent Bias Model (LBM) to predict
the probability that a user would click on images taking into account emotional context,
mobile behavior, and social closeness.

The exponential growth of content on online social networks has made it possible to
identify user affective features to improve the recommendation quality. Emotional data
is restricted by the scarcity and noise of user reviews. However, emotional information
extraction avoids negative posts with the probability of increasing precision in the prediction
[102]. [35] developed an affect-sensitive RS with an emotion lexicon [147] extracted from
the reviews of the social networks of location and generated a list of POI [120]. Also, [36]
designed a recommender based on the fusion of social, emotional and rating information to
maximize the probability of the user’s selection behavior.

Some emotion-sensitive RS approaches use social information to prompt users to provide
implicit feedback on an item rating. [92] presented an algorithm that extracts emotional
information from a social network digital element rating. Then, it used the user satisfaction
scale to generate a list of neighbors based on the similarity of emotions. In addition to the
product rating, both the textual emotion analysis that detects affective polarization and
the extraction of the labels (user preferences and intrinsic attributes of the product) favor
user satisfaction when purchasing products [81, 91, 79]. [161] defined emotional contagion
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and user satisfaction in a group recommender that suggests sequences of items obtained
with emotion decay and mood assimilation that impact future items satisfaction.

Emotion-sensitive RS architectures improve the user experience by implementing services
adapted to the current emotional state. [162] developed a song recommender based on
contextual data, current emotion, and musical preferences. It showed a better prediction
when incorporating the emotions (happy, neutral, and sad) concerning the recommenders
of similarity of content and feedback of the electroencephalogram signals. In particular,
[163] designed a platform sensitive to emotions to improve people’s productivity in smart
offices. It proposed a module that recognizes the emotional context by obtaining data from
sensors (temperature and humidity), detecting emotions (facial expression, voice and text
analysis), and information from the Internet. Then, semantic rules were used in the task
automation module.

2.3.7 Sentiment Analysis-Based

Social network emotion content is an indispensable source of data to determine a user’s
points of view concerning a product or service. Affective information can be extracted
with sentiment analysis techniques to infer the user’s emotional context [29–31]. Hybrid
recommender approaches reduce the cold start problem using data from users posted
on social media [26–28, 164, 165]. Opinion mining detects and extracts affective states
subjectively expressed by users in reviews, texts, and documents shared on online social
networks [96, 166, 101, 167]. Preprocessing can use many techniques such as tokenization
and stemming that remove irrelevant data, divide text reviews into small parts (tokens),
and classify them by the highest frequency into emotional polarity (positive, negative, or
neutral) [91, 168].

Some studies have used emotion analysis to predict online product tastes and musical
choices of users [36, 169]. The Word2Vec and fastText techniques generated the corpus
of embeddings of words to suggest smartwatches [170] and the concatenation of specific
information from the corpus of words grouped by sentiments [171]. The Term Frequency -
Inverse Document Frequency (TF-IDF) technique was used to weigh the review features of
tourist destinations [26, 62, 80], measure the relevance of POI tags [73], and the vector
representation of social data [28, 67]. [90] identified the text clauses’ polarity and calculated
the trend value of tourist destinations’ sentiment. [133] built a hybrid user preference
algorithm based on a multi-criteria technique and used an affective lexicon. Then, analyzed
reviews to determine the likelihood of a new POI feeling.

RS approaches based on data mining techniques take advantage of accessing large
amounts of user comments shared on social media. Researchers highlight the relevance
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of incorporating rich text sources to discover emotional patterns using natural language
processing techniques, opinion mining, and ML [152]. [172] proposed a structured music
recommender in a content analyzer component that labels an emotion from a thesaurus
and a user preferences model. Also, [173] specified a framework for analyzing of negative
emotions disseminated on social networks. Then, it used a corpus for community detection of
affective nodes defined with a frequency of word co-occurrence. Unlike previous techniques,
[174] considered a multi-tag toxic comment classification approach with the Apache Spark
Framework ML library. The results demonstrated better precision in word embeddings
compared to a bag of words.

2.3.8 Evaluation of Recommender

The evaluation datasets were extracted from social networks and publicly shared databases.
The data has an overview of recommended items, user preferences, and historical reviews
from visitors. Depending on the experimental design, the algorithms can implement
cross-validation techniques. Initially, the item review dataset is split into a significant
percentage to train the recommender and the other to test the model’s performance. Some
studies used the k-fold Cross-Validation (CV) technique [69, 26, 82, 34, 33] to verify the
precision of each fold of the comparative methods. On the other hand, the Leave-One-Out
Cross-Validation (LOOCV) technique [26] eliminates each user’s item that ensures the
impartiality of the system to recommend items that were left out of the training data.

The challenge of providing high-quality recommendations involves using evaluation
methods to extract value from the prediction from a technical and experimental POI
[17, 77, 102]. In general, the recommendation and affective detection models according
to the performance indicators used accuracy metrics (MAE and RMSE) [78], decision
support metrics calculated in the confusion matrix (precision, recovery, and F1 score)
[35, 30, 91, 78, 148, 170], and metrics with recognition of range (MRR and NDCG) [29].

• Accuracy: Measures the ratio of suggestions for relevant items compared to actual
user ratings. Besides, it indicates the proximity of the results concerning the right
recommendations [69, 86, 28, 89, 36, 175, 81, 171, 101, 176].

• Mean Absolute Error (MAE) and Root Mean Square Error (RMSE): Compare the
predicted scores’ closeness to the actual ones and estimate the mean model’s prediction
error. In particular, RMSE assesses all rating inaccuracies, while MAE measures the
average magnitude of prediction errors. Some RS investigations implemented these
metrics [26, 72, 28, 34, 167, 177, 178, 133, 87, 171].
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• Precision: Determines the percentage of selected items relevant to the user’s rec-
ommendation [35, 29, 129, 133]. In contrast, the Mean Average Precision (MAP)
presents insight into how relevant the list of recommended items [39, 126].

• Area Under the Curve (AUC): Shows the relation between True Positive rates and
False Positive rates. This metric is used as the recommender performance measure
with a value close to 1 [38, 82, 35].

• Mean Reciprocal Rank (MRR): Identifies the first relevant item’s location in the
recommendation list. The elements relevant to the user must be located in the
notable positions of the generated list [29, 126].

• Normalized Discounted Cumulative Gain (NDCG): Use a gain factor to consider the
position in which each suggestion was relevant [29, 89].

• Hit rate: Represents the fraction of hits of the items in the recommendation list.
Besides, it contains the preferred items associated with the current context of the
user [35, 30, 133, 148].

Table 2.3 compares some recommender implementations that involved emotional data
in the personalization of music, movies, tourist attractions, and online products. Initially,
the recommended approaches were described previously (Content-based filtering CB,
Knowledge-based KB, and Collaborative-Filtering CF). The data collection section lists the
user model features and the datasets that provided the recommendation process’s contextual
factors. Then, the algorithms of the context-aware recommender system approaches were
specified (pre-filtering PRE, post-filtering POS, contextual modeling CM, based on emotion
EM, and SA sentiment analysis). Finally, in sections 2.3 and 2.6, the algorithms, similarity
metrics (Sim), validation (Valid), and the performance results evaluation of the proposed
recommendation models were synthesized. The symbol “✓” indicate that the research
complies with the approaches and types of CARS, as corresponds to the above.
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Table 2.3 Implementation of RS based on emotions in various contexts

PeriodResearch
Approach Data Collection CARS Machine Learning

C
B

K
B

C
F Item User Model Dataset

P
R

F

P
O

S

C
M

E
M SA Algorithms Sim Valid Result

2010 Wang et.
al. [38] ✓ Movie Mood and prefer-

ences.
Moviepilot: 4.544.409
ratings, 105.137 users,
and 25.058 movies.

✓
UBCF, Similarity Fusion
(SF), and Rating Fusion
(RF) based on KNN.

PCC With other
methods.

AUC: 0.71 UBCF, 0.72 SF,
and 0.73 RF.

2013

Alhamid
et.
al. [39]

✓
Music
and
movies

Profile, HRV,
and stress status.

Last.fm: 192 users,
2509 items, 15 contexts,
and 11632 assignments.

✓ ✓ CARS: User CS and IBCF. CS With other
methods.

MAP: 0.25 CARS, 0.2
UBCF and 0.23 ItemRank.

Tkalcic
et.
al. [65,
68]

✓ ✓ Image User personality. LDOS PerAff-1 and Cohn-
Kanade. ✓ SVM emotion classifier and

UBCF. ED - Mean accuracy: 0.77 SVM
and 0.72 relevant content.

2015
Pliakos
and
Kotropou-
los [69]

✓ POI
Profile, emotion
and test imagen
input.

Flickr images 150000. ✓ SVM images classifier,
PLSA, and geo-cluster. HD 5-fold CV

with SVM.
MAP: 0.82 SVM, 0.92 max-
PLS, and 0.86 TF-IDF.

2016

Zheng et.
al. [146,
37]

✓ Movie
Emotional state
(mood, dominant
emotion, and end
emotion).

LDOS - CoMoDa: 113
users, 1186 items, 2094
ratings, and 12 contexts.

✓ ✓ ✓
Context-aware: item, user,
and UI Splitting. UBCF:
DCR and DCW.

User con-
text 5-fold CV.

RMSE Splitting: 0.94 all
contexts, 0.95 emotions only,
and 0.98 no emotions.

Wu et.
al. [86] ✓ Image

Emotion, mobile
behavior pattern,
and social close-
ness.

Flickr images and 16.952
people Twitter traces. ✓

Social friendship K-means,
cluster-based LBM, SGD,
LR, and SVM.

User clus-
ter

With other
methods.

Accuracy: 0.82 LBM, 0.71
LR, and 0.68 SVM.

Christensen
et.
al. [72]

✓ ✓ Tours Individual profile
and group profile. 1300 tours and 800 users. ✓ ✓

KNN CF rating, demo-
graphic rating, and CB rat-
ing.

PCC With other
methods.

MAE: 0.55 CF, 0.45 CB,
and, 0.4 Hybrid.

Zheng et.
al. [26] ✓ Tourism

Profiles of user
preferences and
item opinion.

312.896 Tongcheng
reviews and 5.722 destina-
tions.

✓

UBCF, IBCF, and TF-IDF
(scenery, cost, traffic, infras-
tructure, lodging, and travel
sentiments).

CS
LOOCV for
the items.
5-fold CV.

MAE and RMSE: Hybrid
CF: 0.63 and 0.97 TopicMF:
0.76 and 1.04.

2017

Piazza et.
al. [82] ✓

Fashion
prod-
uct

Profile, mood
(PANAS),
and emotion
(SAM).

337 users,64 products,
and 1081 ratings. ✓ ✓

Vector representation of the
user, item, and context. FM
and SGD.

User,
item,
and con-
text

10-fold CV.
AUC: FM: 0.85 PANAS,
0.73 SAM, and 0.89 only rat-
ings.

Logesh
et.
al. [35]

✓ POI User Emotion, lo-
cation, and time.

TripAdvisor and Yelp:
48.253 POI, 33.576 users,
and 738.995 ratings.

✓ ✓ Emotion Induced UBCF
and Emotion Induced IBCF. CS With other

methods.
Precision: 0.74 UBCF,
0.66 IBCF, and 0.67 Hybrid.

2018

Zheng et.
al. [90] ✓ Tourism User preferences

312.896 Tongcheng
reviews and 5.722 destina-
tions.

✓ ✓

Syn-ST SVD++
model:vsentiment ten-
dency and temporal factors
dynamic.

PCC
Latent fac-
tors vector
(f=50).

MAE and RMSE: Syn-
ST SVD++: 1.04 and 0.91
SVD++: 1.17 and 0.96.

Arampatzis
and
Kalama-
tianos [29]

✓ ✓ POI
Profile and posi-
tive and negative
rated.

TREC Contextual Sugges-
tion: 1.235.844 POI. ✓ Weighted kNN and Rated

Rocchio. PCC With other
methods.

Precision and MRR:
Rrocchio: 0.47 and 0.68.
WkNN: 0.46 and 0.66.

Contratres
et.
al. [28]

✓ Product
Emotion and so-
cial networks pro-
file.

12.172 Facebook and Twit-
ter; reviews, 163 users,
and 1758 documents.

✓
TF-IDF: vector space, SVM:
emotions classifier, and NB:
product category classifier.

CS - Accuracy: 0.8 SVM and
0.93 NB. RMSE: 1.22 RS.

2019

Qian et.
al. [36] ✓ Song

book
Social network,
rating, and re-
views (sentiment).

Watercress: 346.242 mu-
sical acts and 373.648 be-
havior of several books.

✓

UBCF: user-friendly collec-
tion, IBCF: user behavior
history items, sentiment lex-
icon, and SVD.

PCC With two
methods.

F-measure: 0.55 UBCF,
0.56 IBCF, and 0.70
emotion- aware.

Logesh
et.
al. [133]

✓ POI
Demographic,
social, contex-
tual, behavioral,
and categorical.

TripAdvisor and Yelp:
48.253 POI, 33.576 users,
and 738.995 ratings.

✓ ✓
Fuzzy C-means: user. HSS:
AKNN and SPTW. AbiPRS:
Fuzzy-C-means.

User clus-
ter

With other
methods.

Precision, MAE, and Hit
rate: HSS: 0.81, 0.63,
and 81%. AbiPRS: 0.77,
0.73, and 76%.
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2.4 Emotion Recognition
This section describes the diverse approaches supported by technology and emotional
models to identify people’s feelings. Although the search for the documents spanned the
last two decades, most of the documents related in this section have been published in
the last five years and have the highest PDLY (see Figure 2.5). Likewise, the ER based
on physiological signals (see Table 2.4) has involved the knowledge of different areas that
make it possible to develop emotional detection frameworks made up of [32, 33, 1, 34]:

• The experimental design definition enables collecting objective and subjective data
from the participants exposed to stimuli in a controlled environment.

• The application of preprocessing techniques are used to reduce noise and artifacts of
physiological signals.

• The extraction of relevant features applying statistical and mathematical models.

• The identification of ML algorithms for the detection of the emotional states of the
participants.

• The application of performance metrics to validate and evaluate the prediction results.
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Fig. 2.5 Evolution and relevance of emotions in affective recognition.
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In particular, [179] provided recommendations related to affective detection using a
multimodal human-computer interaction system [180, 181]. These automated systems can
recognize and interpret the emotional states of a person through physical and physiological
measures. Physical conditions represent communicative signals such as facial expressions
[182, 65, 183], speech detection [184, 66], body gestures [185, 66], and eye-tracking when
viewing interactive content [186, 53]. Whereas the physiological measurements involve the
recording of bodily variations such as the change in temperature and the increase in blood
pressure [23–25]. Physiological information collected from wearable devices can be used as
personalized multisensory emotional support in the user’s context.

Emotion is a conscious and subjective experience associated with moods, physiological
changes, and behavioral responses [187]. Affective states can be classified into a categorical
model of emotions made up of basic emotions and a dimensional model of emotions
represented in a coordinate map.

In the categorical model, human beings’ primary emotions generate automatic and
temporary reactions to stimuli in the environment, daily life events, physical activities, or
personal memories [188]. Ekman [147] proposed six discrete categories of emotions (anger,
disgust, fear, sadness, happiness, and surprise) associated with facial expressions. Emotions
are related to physiological variations. For instance, the state of fear increases heart rate
measurements and skin conductance compared to the state of disgust [187]. [150] developed
the eight emotion wheel (anticipation, joy, trust, fear, surprise, sadness, disgust, and anger)
and can lead to more complex emotions. Physiological measures are also vital indicators
for detecting stress and emotions that a person feels [189, 190].

The dimensional model conceptualizes emotions in continuous data in the two-dimensional
central affect space of arousal and valence [33]. In the arousal dimension, the Autonomic
Nervous System (ANS) regulates the physiological changes of the human body, and the
sympathetic nervous system responds to an emotional activation produced by a threatening
or challenging situation [188]. Sympathetic activation increases electrodermal activity,
respiratory and heart rates associated with "fight or flight" reactions [191]. These responses
lead to the suppression of systems that are not essential for immediate survival. In contrast,
the parasympathetic nervous system (PNS) keeps the body in a state of relaxation by
decreasing physiological measurements’ frequency. The valence dimension indicates the
degree of pleasure and displeasure in response to emotional motivation [159].

Additionally, the multidimensional model incorporated arousal, valence, and dominance,
the latter defining emotional experience (on a scale from low to high) [192, 175]. Essentially,
Russell’s circumflex model [193] has significantly influenced the studies proposed for ER
(see Table 2.4). This model defines a two-dimensional circular structure that interrelates
emotional states with discrete measurements on the axes of arousal (Low to High) and
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valence (Low to High). There is an inverse relationship between the quadrants emotions
on the other side of the circle structure (HAHV quadrant: happy emotion with LALV
quadrant: sad emotion and HALV quadrant: anger emotion with LAHV quadrant: calm
emotion) [184]. Emotion-based recommenders adopted the multidimensional model for the
statistical calculation of emotions, due to its complexity, [102] provided a mapping of the
basics emotion to the multidimensional model.

2.4.1 Emotion measurements

Most of the studies utilized various stimuli to provoke the emotional states of the par-
ticipants. Various methods have been described, including viewing video clips [194, 195,
185, 33, 175, 196, 177], images [68, 49, 181], listen to music [34, 30, 197, 198], read texts
[53, 28], and doing physical activities [199, 200, 189]. Emotions can be assessed through
subjective and objective methods.

In the first method, people record subjective measurements on Positive and Negative
Affect Schedule (PANAS), and Self-Assessment Manikin (SAM) instruments [185, 82, 201].
During the process of eliciting emotional states, the user performs a self-analysis of what
"he/she feels" and assigns the ratings to each of the SAM parameters (arousal, valence, or
dominance) on a nine-point scale. Meanwhile, PANAS evaluates two 10-item scales (rating
from 1: not at all to 5: very much) to estimate positive affect on the vertical axis and
negative affect on the horizontal axis. Furthermore, valence and arousal dimensions are in
a 45-degree rotation about these axes [202].

The second method employs sensors or wearable devices for the measurement of
physiological signals. For instance, [34] defined a framework that recommends songs based
on the variability of the heart rate of users, a music database classified into four categories
based on the degree of arousal (0 extremely low HRV to 1 too high HRV ) and in the degree
of valence (1 very negative to 5 very positive). Similarly, [66] applied four domains of the
emotional semantic space model (arousal, valence, sense of control, and ease of finding a
goal) [193] to categorize user’s affective states while interacted with a video game.

Alternatively, the consolidation of multimodal datasets has assisted the analysis of
emotional stimuli with publicly available physiological data such as the Database for
Emotion Analysis Using Physiological Signals (DEAP) [192], The International Affective
Picture System (IAPS) [203], and Nencki Affective Picture System (NAPS) [204]. Specifi-
cally, DEAP [192] contains information on peripheral physiological signals, brain activity
signals, levels of arousal, valence, and dominance, and the subjective rating of the emotions
perceived by 32 participants during video viewing. Using DEAP, [196] proposed a music
recommendation framework, and [175] developed an emotional model on users’ behavior in
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an educational environment. Additionally, IAPS [203] and NAPS [204] have a repository
of photographs with the arousal and valence scores registered in SAM.

In conclusion, these datasets have been used to design affective models for images
classification [68, 49] and in the simulation of quantifiable emotional stimuli to obtain
physiological data [49].

2.5 Wearable technology
There are multiple applications supported in sensors and wearable devices for the collection
of user data. Mainly, this section includes the use of physiological sensors for the ER.
Although the search for the documents spanned the last two decades, most of the documents
related in this section have been published in the last five years and have the highest PDLY.
Besides, Figure 2.6 shows the recent trend of wearable technology used in monitoring and
tracking user activities.
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Fig. 2.6 Evolution and relevance of personalized applications using wearable devices.

The convergence of wearable devices and the Internet of Things (IoT) has had enormous
potential as a source of data to provide personalized and contextualized services that operate
on cloud computing, edge computing, and mobile computing platforms [48, 205, 49, 50].
Some studies [206, 197, 44, 111, 207] integrated Big Data and the multilayer modeling
architectures for validating the data collected from sensors. These used edge computing
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and cloud computing for improving the performance and storage capacity of music and
tourist attraction recommenders. Furthermore, [208] implemented a trusted IoT edge
computing system for smart device recommender, and [170, 205] designed a corpus of
reference phrases to recommend smartwatches to users.

Regarding the framework design using wearables, [209] proposed a generic sensor
framework for personalizing medical care based on household monitoring of physiological
measurements. Each sensor used a java component to store data records and manage access
to the system. Also, [210] defined an IoT services framework with a semantic component
for detecting falls and recognizing stress. Besides, it used a notifications component to
generate statements resulting from health monitoring. On the other hand, a data model
supported on wearable devices [211] identified the physiological conditions related to health
in the context of tourism.

2.5.1 Devices

Wearable technology is an emerging trend that enables digital traces of people to provide
contextualized and personalized information. The study of these digital life records has
promoted recommenders development that positively affects people’s lives [212, 213]. Such
as the suggestion of activities based on timeline sequences [214, 215, 55], the sentiment
analysis of registered users in health trackers’ reviews [216]. Other studies also use physical
activity and patient health history data to predict clinical diagnoses in healthcare [45–
47, 217, 218, 210, 219, 220].

While the evolution of wearable and ubiquitous computing has enriched the construction
of user models with data obtained from information systems, social networks, and the
context of people’s daily lives [207, 221–223]. Wearable device sensors collect individual
data related to the user’s behavior, physical and physiological states. Precisely, data
modeling provides the knowledge of users essential in the design of personalized services
oriented to favor well-being in health [224–226], the location of tourist activities [211], and
travel by public transport [227].

In another way, wearable wristbands and smartphones have supported monitoring
the user’s activities in real-time with the data obtained by the accelerometer, proximity
sensor, skin temperature (TEMP), and calorie consumption [51]. Some studies involved
the identification of physical activities to improve user lifestyle [52, 55, 228]. Particularly
[199, 229, 53, 230] detected the emotional activation using biosensors while users performed
high-stress computing tasks and also to personalize musical preferences.
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Eventually, augmented reality integration to smart glasses [231] has favored developing
applications related to the personalization of real-time conversations [232], tourist activities
guide [233], and specialized remote assistance [234, 235].

2.5.2 Sensors

Wearable devices incorporate various sensors to collect and process data to monitor human
activities and affective detection [178, 217, 196]. Some studies have developed wearable
prototypes to measure physiological signals based on emotional elicitation [199, 200], whose
purpose is to improve the user experience [236, 33] and provide personalized emotional
support in the educational field [23, 24].

Additionally, the users’ physical activities have been monitored with inertial locomotion
sensors such as the accelerometer, gyroscope, and magnetometer with mechanisms to collect
data to monitor people’s movement [55, 56, 237]. Also, used [51, 238, 52, 228] the data
collected from inertial sensors to extract the features required in recognition of human
activity.

2.5.2.1 Physiological

Affective states and physiological data are closely related to the elicitations that people
perceive in daily life [191]. The following describes the detection of the emotional patterns
extracted from the features of the physiological signals:

• The ANS directs the physiological responses associated with emotional ones derived
from stimuli from the external environment or the human body’s reactions [33].

• Physiological indicators are monitored through various sensors that measure cardiac
and electrodermal activity [188, 191].

• The raw physiological data is processed by applying resampling and filters to reduce
noise, detect the affective components in the signals captured within a time window
[199].

• Manual or automatic feature extraction methods facilitate the detection of emotional
states. Depending on the classifier’s approach, statistical, frequency, and non-linear
techniques can be used for the physiological segments [1, 196].
Eventually, the analysis of the features in the time domain shows the change of
affective patterns in a temporal sequence calculated by parametric methods such as
the mean, minimum (min), maximum (max), variance (var), Standard Deviation
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(SD) and mediate. Also, the Frequency Domain (DF) features are derived from the
Fourier transform and the spectral density of power [239, 240].

The cardiac monitoring sensors capture the Heart Rate (HR) of the beats per minute
and the time recording of the Intervals Between Beats (IBI) of the Heart Rate Variability
(HRV) [39, 53, 241]. The emotions analysis stems from the feature extraction in time series
and different rhythms of the Electrocardiogram (ECG) and Photoplethysmogram (PPG)
signals. The ECG measures the heart muscle electrical activation, and the PPG measures
the arterial volume through the skin [242, 229]. The time-domain parameters of the IBI
established SD in RR intervals (SDNN), applying Levene’s test and t-test to the data by
gender [34]. Also, [39, 49] applied Root Mean Square of the Successive Differences and
percentage of adjacent RR intervals with differing by more than 50 milliseconds (pNN50).
It should be noted that the detection of the R peaks resulted in different features of the
intervals between the peaks of the signals [199, 1, 178]. Regarding the spectral analysis of
the HRV time series, [34] adopted the high-frequency band HF (0.15 - 0.4 Hz), low-frequency
band LF (0.04 - 0.15 Hz), and very-low-frequency band VLF (0.003 - 0.04 Hz).

Additionally, Electrodermal Activity (EDA) or Galvanic Skin Response (GSR) signals
were employed to measure the skin’s electrical conductivity variations produced by the
sweat glands. The features of Skin Conductance Response (SCR), Skin Conductance Level
(SCL), and the detection of EDA peaks recorded the changes in the affective states of the
people [200, 54, 53, 243]. While, in the EDA and HR signals [33], applied a moving window
for the extraction of features, the Principal Component Analysis (PCA), and the selection
of the features with a priority of weighting of the input variables (calculated with PCC,
minimum redundancy maximum relevance and joint mutual information).

However, Electroencephalogram (EEG) signals calculate electrical variability in the
brain using ionic current-voltage fluctuations within neurons [240]. The EEG features
used operated in the delta (1-4 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (13-29 Hz), and
gamma (30-47 Hz) frequency bands. The last three bands seem to differentiate the affective
conditions better [32, 244, 33]. The original signals were pre-processed with downsampled
techniques, and the bandpass filters extracted the artifacts and noise from the EEG [201].
Statistical methods and wavelet transformation [175, 240] supported the feature extraction
process. Some studies found a strong relationship between the EEG and the musical
categorization by emotions [244, 175], emotional states communication transmitted by
movements, and people’s sign language [185].

Table 2.4 consolidates some works on non-intrusive sensors for emotion recognition
of participants (pt) based on physiological signals and EEG features. The experimental
designs were focused on evaluating the performance of emotional estimators according to
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the measurement of emotions (Arousal A and Valence V), the stimuli for the participants’
affective elicitation, subject (Sb), and the physiological responses collected with the sensors.
Affective detection implies the adaptation of computational processes that have enabled the
interpretation of emotions related to users within a specific application context [181]. EDA
and HR signals displayed better accuracy to predict arousal [33], while EEG signals were
more effective with valence. Also, [1] presented representative results to predict arousal
with ECG signals and detect valence with GSR signals. The comparison of the classification
algorithms [185, 34, 175, 196] allowed to validate the emotional detection performance.
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Table 2.4 Emotion recognition based on data wearable devices.

Period Research
Experiment data Physiologic signals Classifiers

Emotion Measuring Elicitation Sb Device Sensor Features Algorithm Result

2016
Matsubara et al.
[53]

Emotional
arousal.

A: 10 points
scale.

Comic
reading.

5
E4 Wristband
and RED250

EDA, BVP,
HR, TEMP,
and pupil diame-
ter.

SCL, SCR, and HR. SVM Accuracy: 0.58 A.

2017

Hassib et al.
[185]

Amused, sad, an-
gry, and neutral.

Emotions: Likert
scale. AV: SAM
9 point scale.

FilmStim
movie clips
database.

10 Emotiv EPOC EEG
Min, max, mean,
median, and SD.

RF Accuracy: 0.72 AV.

Chiu and Ko [34]
Sleep, bore-
dom, anxiety,
and panic.

AV point scale. 15 song. 30
Gear live smart-
watch

HRV
SDNN, pNN50,
ULF, VLF, LF,
and HF.

DT and
LR. 5-fold
CV.

MAE: DT: 0.82 A and
0.26 V. LR: 1.77 A and
0.32 V.

2018

Dabas et al.
[175]

VA and domi-
nance.

AV: SAM 9 point
scale.

40 videos. 32 DEAP Dataset EEG
Wavelet function
and mean.

NB and
SVM

Accuracy: 0.78 NB and
0.58 SVM of emotional
states eight.

Ayata et al. [196]
Four quadrants
in VA dimension.

AV: SAM 9 point
scale.

40 videos. 32 DEAP Dataset GSR and PPG

Mean, min, max,
var, SD, median,
skewness, kurtosis,
moment, 1 and 2 de-
gree difference.

RF, SVM,
and KNN.
10-fold CV.

Accuracy: RF: 0.72 A
and 0.71 V.

Mahmud et al.
[199]

Stress Emotion survey.
Exercise
(cycling
task).

43 SensoRing
EDA, HR,
TEMP, and ACC

R-peaks, SRC, SCL.
Mean RR and STD
RR.

Signal pro-
cessing.

Correlation: 0.9 Mea-
sured data from SensoR-
ing with BITalino.

2019
Santamaria-
Granados et al.
[1]

Arousal and va-
lence: Low and
High.

AV: SAM 9 point
scale.

16 short
videos.

40
AMIGOS
Dataset

ECG and GSR
R peaks and SCR
peaks.

CNN
Accuracy: 0.76 A and V
0.73 in ECG and GSR sig-
nals.

2020
Dordevic et al.
[33]

Arousal and va-
lence.

V: SAM 9 point
scale.

3D video
contents.

18
EDA and ECG
Electrodes Emo-
tiv EPOC

HR, EDA,
and EEG

HR: median, SD,
and PCA. EDA: me-
dian, SD, and SCR.
EEG: mean, me-
dian, and SD.

MLP and
GRNN. 9-
fold CV.

RMSE: MLP: 0.05 A
and 0.024 V. GRNN: 0.12
A and 0.14 V. In HR and
EDA signals.
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2.6 Machine Learning
This section outlines the ML techniques and algorithms used to implement RS (see Table
2.3) and ER (see Table 2.4). Although the search for the documents spanned the last two
decades, most of the documents associated in this section have been published in the last
five years and have the highest PDLY. Figure 2.7 highlights the implementation of deep
learning approaches for sentiment analysis and ER as an emerging issue.
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Fig. 2.7 The tends of machine learning approaches in the implementation of RS and ER.

2.6.1 Classification

In Section 2.3, research related to RS approaches to tourism is defined. The recommendation
models used ML algorithms to validate and compare the performance of the classifiers
of emotions, tourist attractions, and multimedia content (see Table 2.3). Some studies
used KNN and SVM algorithms for POI classification [29, 133, 72] and image classification
[65, 68, 86]. Moreover, [245] proposed an approach based on a decision tree that uses
the users’ predictions and historical interests to generate movie recommendations. Other
studies used Linear Regression (LR) and neuronal network algorithms to classification trip
profiles [64] and road trips [112].

The integration of wearable technology with ML approaches is being adopted to identify
patterns that support personalized clinical diagnoses for health care systems [242] through
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kNN algorithms [217] and DT [246, 247, 218]. The users’ lifestyle was supported in physical
activity recommenders based on SVM algorithms, RF [248] [249, 51], kNN [237], and LR
[52]. Some affective recognition studies based on data collected from sensors used decision
rule classifiers, and DT required in the music recommendation [34, 200, 197]. In particular,
the analysis of physiological signals [192], with the techniques of Naïve Bayes (NB), RF,
and SVM, was applied in emotional detection [175, 196, 185, 53, 89].

On the other hand, a multimodal approach for collecting affective responses (facial
movements, speech, and interactive activities in a video game) demonstrated greater
efficiency with the use of multiple sensors in SVM and DT emotion classifiers [66]. The
direct measurement of physiological signals from visual stimuli made it possible to design
an estimator of emotional state based on the Artificial Neural Network (ANN) of Multilayer
Perceptron (MLP) and Generalized Regression Neural Network (GRNN) [33]. Whereas
[178] extracted the features of the peaks of the physiological signals (ECG and PPG),
estimating the blood pressure with the ANN, SVM, and Least Absolute Shrinkage and
Selection Operator (LASSO) regression models. Regarding affective recognition in the
video analysis [177] used the SVM algorithm to classify the input hybrid features and the
linear regression in the arousal detection.

2.6.2 Clustering

RS approaches have implemented clustering algorithms as an alternative to overcome
data scarcity problems and reduce the response time of predictions [74]. The grouping
of users based on the features extracted from the datasets of social networks has made
it possible to detect the relationships between user interests, affective states, and the
similarity of POI. Just like, the k-means and k-modes methods customized the grouping of
users with standard profiles and common interests [83, 86, 129]. Besides, the fuzzy c-means
algorithm used demographic and preference data to construct the behavior profile of user
activities [133]. The hierarchical grouping algorithm has grouped the tourist destinations
geotagged images based on Haversine Distance (HD) [69]. Another travel recommender
[112] presented a tourist clustering based on preferred attractions, travel expenses, route
features, ratings, and tourist sites reviews. To do this, it defined a neural network model
to simplify user parameters on a two-dimensional map.

2.6.3 Deep learning

Recent studies used Deep Learning Networks (DLN) to construct recommendation models
for automatic notifications, content classification, and pattern recognition [84, 167, 87].
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DLN differ from ANN by the interconnection of multiple layers that handle various
weights and trigger functions between the inputs and outputs of hidden layers. The deep
architecture allows forward or backward propagation with adjustment of weights during
feature learning and detection. Loss functions are used in classification or regression tasks
to determine the difference between the labels predicted by the DLN and the actual labels
in the dataset. Unlike ML, DLN models use unstructured data, reduce computational costs,
and the performance scale is directly proportional to the data amount [250]. Considering
the cold start problem and the scarcity of CF algorithms information, [95] developed a
recommender based on a DLN and an MF of latent features to manage software projects.

Convolutional Neural Networks (CNN) are DLN used to identify patterns in input data
segments that operate in one, two, or three dimensions. Unlike classical ML approaches,
CNN uses filters to automatically extract features, reduce complexity, and overfit with
pooling layers [198, 129]. The specific class classification process is supported in Fully
Connected Layers (FCL). Particularly [238] managed CNN to extract features from geo-
referenced images used to recognize human activities. Also, [1] proposed combining CNN
and FCL models to extract affective features from physiological signals (ECG and GSR),
surpassing traditional techniques precision. These models (CNN and FCL) extracted
emotional features from multimedia text [168] and discriminatory features from optical
flow images [177]. A hybrid CNN model [171] applied one-hot vectors in the prediction of
sentiment polarity.

The Long Short-Term Memory (LSTM) approach is a version of the Recurrent Neural
Network (RNN) that overcomes gradients’ problems by remembering long-term sequential
data, with its structure that includes inputs, outputs, and gates of forgetfulness regulated
with the sigmoid function [250]. Specifically, [176] integrated the 3DCNN and LSTM
algorithms to extract Spatio-temporal features in gesture detection. Some affective semantic
analysis studies used the CNN and LSTM RNN algorithms in the classification of emotions
from movie comments [31] and the detection of stress in psychological phrases [101].
Additionally, [67] proposed the CNN and LSTM algorithms to extract the contextual
features of tourist attractions sentences. [170] applied the CNN and RNN techniques to
predict the phrases related to the users’ perception and intention to recommend smart
wearable devices.

Especially, the integration of ML algorithms and chatbots has enormous potential for
recommending tourist destinations. [251] designed a POI recommendation architecture
based on decision trees to establish the profile of the user of a social network with the
history of visits. Besides, [252] proposed an LSTM RNN model to detect the users’ interests
based on the history of preferences. The query chatbot provided travel options based on
the detected profile.
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Most studies showed better performance in emotion-sensitive RS when using DLN
algorithms [171, 1, 31]. For instance, [162] customized an emotion-sensitive recommender
using a DCNN to classify songs in a dataset based on user profile and history of preferences.
It defined latent features and musical relationships with the weighted feature extraction
algorithm based on an MF.

2.7 Clusters Mapping
This section analyzes the co-occurrence mapping to identify the themes related to RS
and tourism transversal axes. For this purpose, the dataset preprocessed with SientoPy
(which unifies Scopus and WoS) was used to generate a network map with the VOSViewer
tool [253]. Initially, the author keyword co-occurrence map was created by setting up a
thesaurus file to combine standard terms of technologies and algorithms to implement
recommenders based on emotions. Also, 35 words unrelated to the theme described were
filtered. The network map formed five clusters from the selection of 52 keywords, which
were merged based on the co-occurrence links values. The merged network represents
the thematics evolution over time (2000 to 2019), showing the most meaningful traces
of the related research documents (see figure 2.8). Each point represents a node in the
network, and the lines connecting the nodes are co-occurrence links. The five clusters show
homogeneity with the thematic categories considered in the preceding sections.
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Wearable device

Wearable technology

Fig. 2.8 It is a co-occurrence network mapping of author keywords related to the RS,
tourism, ER, and ML. Also, it displays five color clusters made up of nodes identified by
labels. The grouping of relevant documents defines the nodes’ size and the lines between
the nodes.

• The first red cluster focuses on implementing machine learning algorithms to recognize
emotions based on physiological data from wearable devices [53, 34, 196, 199, 1, 33] and
affective data of social networks [38, 65, 68, 37, 82]. The emerging IoT topic encourages
collecting large datasets analyzed in big data architectures that support smart tourism
applications [44, 111, 207] and health care recommenders [218, 47, 46, 210, 220].

• The second green cluster considers the implementation of on-line product recom-
mender systems [38, 39, 65, 68, 37, 86, 82, 28, 36], tourism recommenders [72, 90, 26,
80, 130–132, 67], and user modeling using clustering algorithms [83, 129, 133]. The
pop-up theme is oriented to the recommendation of interest points based on data
from social networks [69, 35, 29, 133, 116–118].

• The third purple cluster emphasizes sentiment analysis using data mining algorithms
to process and extract contextual features in social network datasets [96, 166, 101,
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167, 62]. The emerging topic of deep learning applied to the recommendation based
on emotions [168, 171, 1, 31, 101] is highlighted.

• The fourth yellow cluster establishes the relationship between collaborative filtering
and semantic web techniques in the definition of user-profiles and the construction of
the recommender systems ontologies [99, 100, 149, 101, 26, 73]. An emerging topic is
content-based filtering, which integrates the knowledge base into the recommendation
process [69–71, 64, 72, 73].

• The fifth blue cluster is oriented to implementing recommenders and context-sensitive
mobile applications supported in the ubiquitous computing infrastructure [138–140,
106, 142–144, 110, 145]. It is worth highlighting the importance of the user’s context
in the planning of tourist trips [127–129, 63, 78, 123, 122].

2.8 Discussion
This chapter provides an overview of the background, algorithmic approaches, data models,
and emerging technologies involved in sentiment analysis and emotional recognition. These
guidelines for the design of tourist recommenders with affective contextual information are
aimed at the academic and scientific community. The challenges identified are described
below.

First, challenging the emotional context leads to improved user experience and accuracy
of travel recommenders. Initially, Section 2.3 analyzes the dominance of RS architecture
approaches, platforms, and components [35, 36, 69, 26]. Table 2.3 chronologically sum-
marizes some studies on CARS with data sources, user models, algorithms, similarity
metrics, and performance evaluation. It shows that most of the works used sentiment
analysis techniques to extract the emotional context of the users’ comments posted on
social networks. However, the collection of physiological data with wearable devices for
emotional recognition in tourism has been little explored. Also, rural tourism emerges
as an area of interest in planning personalized trips to manage geographical, emotional,
and environmental factors. Additionally, both wearable, IoT, and Big Data technologies
are emerging in smart tourism to implement recommenders of positive and satisfactory
tourism experiences [110, 111, 44, 111].

Second, the emotion recognition of section 2.4 describes the framework for the analysis
of physiological signals, affective detection, and validation of the classifier’s results. The re-
lationship between physiological changes and emotional models was evidenced, emphasizing
Russell’s circumflex [193]. In particular, the measurement of the dimensions of arousal and
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valence in the face of short-term stimulus elicitation in a controlled laboratory environment.
Additionally, Table 2.4 chronologically summarizes some studies with the experimental
design of the collection of affective data, extraction of features from physiological signals,
and prediction algorithms. As a result, the detection of arousal achieved similar or better
accuracy than valence detection [33, 1, 196]. However, in the tourism domain, emotions
are considered a relevant contextual factor in recommendation satisfaction. For this reason,
there is the challenge of proposing well-defined experimental designs to obtain physiological
data and measurements of emotions in everyday life.

Third, wearable technology and IoT environments have supported the infrastructure for
data collection to personalize healthcare services [47, 46], music recommendations [206, 197],
and suggestions of e-commerce products [208, 170]. In particular, section 2.5 related recent
studies of emotion recognition based on data from physiological sensors (see table 2.4),
recognition of human activity using inertial sensors [51, 238], and augmented reality
applications supported on Smart devices Glasses [233, 234]. Besides, the investigations
evidenced the correlation between emotions and data from the physiological sensors of
Empatica E4 wristband devices (EDA and HR) [53], Gear live smartwatch [34] (HRV) and
electrodes (ECG, GSR, and EDA) [1, 33]. Hence, in the tourism domain, wearable sensors’
integration could improve the recommenders’ prediction by defining a user model with
various contextual factors.

Fourth, the ML approaches depicted in section 2.3 and section 2.6 were organized
into classification, clustering, and Deep Learning Network (DLN) algorithms. First, the
classification approaches in most of the studies described in Table 2.4 used classical ML
algorithms based on feature extraction engineering (KNN, SVM, and RF). Besides, in the
personalization of clinical diagnoses [217, 246], physical activities [248, 237], and multimodal
approaches for affective prediction (MLP, ANN, and GRNN) [66, 178]. Table 2.3 also
implemented classic ML algorithms to classify candidate films, images, travel profiles, and
POI. Second, the clustering algorithms (k-means, k-modes, and Fuzzy-C-means) made
it possible to design the users’ preference models (see table 2.3). Third, unlike previous
algorithms, DLNs lower computational costs and require large datasets. Recent studies
(see table 2.3 and table 2.4) used CNN to extract affective features from physiological
data [1], detect human activities in images [238], and analyze feelings in comments of
tourist attractions [171, 101]. Consequently, the challenge arises to propose deep learning
approaches to extract emotional pattern features from online social media datasets and
multimodal physiological signals to improve the quality of tourist recommendation services.

Finally, future trends in recommendation platforms are oriented towards collaborative
environments to support accessible tourism [254, 255] and POI recommenders based on
the contextual data gathering of the user’s lifelog [212, 213]. Besides, developers could
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propose real-time recommendation approaches that are more efficient and solve data
scarcity problems using cloud computing, edge computing, big data, and IoT platforms
[48, 49, 208, 256, 112].

2.9 Conclusion
This chapter presented a review of the literature related to emotion-sensitive RS in the
tourism domain. The analysis carried out showed several heterogeneous data sources drawn
from wearable devices, IoT, and social networks. The user profiles’ definition contains
explicit and implicit information collected from daily life records about emotional states,
physiological signals measurements, geographical location, and tourist attractions reviews.
This definition could be applied to behavior models and recommendations according to the
user’s preferences, based on recognizing emotions.

The scientometric review focused on analyzing technological research of the user emotion
detection in the tourist recommenders framework. The architectures proposed in the RS
investigations that develop efficient approaches to processing, data storage, and access
to services in mobile or cloud computing environments were considered. In tourism, the
need to develop personalized and innovative applications to help users suggest travel
experiences is highlighted. User emotions are closely related to positive satisfaction with a
recommendation. Therefore, the research challenge arises from integrating data from IoT
sensors, wearable devices, smartphones (heart rate, EDA, and affective states) into the
recommendation process.

Based on the analysis of the research works listed in Table 2.3, the following findings
should be taken into account in the design of emotion-aware RS:

• User models are the starting point of research approaches and, based on contextual
data, recommendation services are defined in various application domains. User
models have evolved by delving into daily life data obtained from ubiquitous devices.
Although in medical tourism, physiological measures have already been used for
health care. The user models have not yet been enriched with the data recorded
from the wearable devices intended to design personalized services according to the
tourist’s affective state.

• The tourist information sources come mainly from user reviews on social networks
and openly available datasets. There is a limitation in using other sources to discover
contextual patterns that enrich the data models. Furthermore, the restriction of
heterogeneous information access on tourist behavior directly impacts the performance
of the ML models.
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• Approaches based on user emotions increased the predictive capacity of recommenda-
tion models by fusing contextual features and sentiment analysis. Also, the emotions
polarity, POI ratings, and contextual factors infer behavior from user preferences.
In most researches, affective states were taken into account for the recommendation
process’s implicit feedback.

Table 2.4 consolidates some research of emotion recognition with data from wearable
devices useful in designing RS frameworks in the tourism domain. Affective sensing systems
extract emotional patterns from non-intrusive sensor signals associated with heart activity,
electrodermal activity, and brain variability. The research opportunity arises to deepen the
relationship of affective with physiological changes and emotional models. The experiments
carried out with physiological datasets reported better results in predicting emotions with
deep learning algorithms.

There are research gaps focused on developing secure tourism recommenders with
models for detecting danger sources to mitigate tourists’ risks in the destination. Besides,
the implementation of interest detection algorithms for travel planning, using chatbot
applications and deep learning techniques. The recommenders require algorithms to de-
termine affective similarity and detect the emotions resulting from tourist preferences
and the construction of user-profiles based multimodal approaches that allow the extrac-
tion of emotional features from speech analysis, physiological measurements, and facial
recognition.





Chapter 3

Emotion Detection Model Based on
Physiological Signals

Recommender systems have been based on context and content, and now the technological
challenge of making personalized recommendations based on the user’s emotional state
arises through physiological signals acquired from devices or sensors. This chapter outlines
the deep learning approach using a Deep Convolutional Neural Network (DCNN) on a
dataset of physiological signals (electrocardiogram and galvanic skin response), in this
case, the AMIGOS dataset [257]. The emotion detection is done by correlating these
physiological signals with the data of arousal and valence of this dataset to classify a
person’s affective state. Besides, an application for emotion recognition based on shallow
machine learning algorithms is proposed to extract the features of physiological signals
in the domain of time, frequency, and non-linear. This application uses a CNN for the
automatic feature extraction of the physiological signals, and through fully connected
network layers, the emotion prediction is made. The experimental results on the AMIGOS
dataset show that the method proposed in this part achieves a better precision of the
emotional states’ classification compared to the initially gathered by the authors of this
dataset.

For the above, we used CNN networks [258] in comparison with traditional machine
learning algorithms, which are used as a framework for emotions detection (See Figure 3.1).
The experimental tests for the classification of the emotional dimensions of arousal and
valence were made with the AMIGOS dataset [257]. Then, in the preprocessing stage, we
transformed the physiological signals with the QRS detection methods [259] for obtaining
the RR intervals of the ECG. Likewise, the temporal series of the Skin Conductance
Response (SCR) peaks of the GSR signals [260] were identified. A determining factor in
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the effectiveness of the emotion prediction is defined in the extraction and correlation of
the features of the physiological signals ECG and GSR.

Fig. 3.1 Emotion recognition based on physiological signals with deep learning and shallow
machine learning algorithms.

3.1 Related Work
This section presents researches on datasets for the multimodal emotions recognition and
the affective states detection through physiological responses.

3.1.1 Multimodal Dataset

Affective states are subjective experiences classified in valence and arousal focuses [261].
The stimulus of valence focus is associated with pleasurable or unpleasant aspects, in
contrast with arousal focus that induces the activation or deactivation of an emotion.
Similarly, both focuses reflect the degree to which a person incorporates emotions into
their conscious affective experience [262]. Some databases correlate the affective states
with physiological signals [192, 263, 257], which are the result of emotions self-reported
by people. The emotional categories are established in a circular structural model that
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contains basic emotions (for instance, excited, happy, relaxed, sad, and annoyed) to define
the arousal and valence dimensions [264, 265].

Emotion is the degree to which a person reacts to changes in the context as a response
to the elicitation that manifests itself in their affective states [266]. People use the senses
to express the emotion experienced through gestures, speech, or physiological responses.
The correlation between emotions and physiological data determines the multimodal affect
recognition. The contents of images [267], movie clips [268] and music videos [192] have
been used to induce emotions that users appraisal with explicit measurements [269], in
order to verify the arousal and valence levels. On the other hand, emotions elicited by
multimedia content are implicitly recognized using physiological and brain signals, enabling
the consolidation of a multimodal affective dataset that compares the affective response of
people [270].

Precisely, the dataset ASCERTAIN [271] induced the emotions through 36 movie clips
that had a duration of 58 to 128 seconds, with the registration of physiological signals
(ECG and GSR), EEG, and activity facial of 58 participants. AMIGOS dataset [257]
detected the mood, affect, and personality of 40 participants with the registration of their
EEG, ECG, and GSR signals, as a result of the stimulus caused during the viewing of
short and long videos.

Abadi et al. [272] for the affect detection analyzed the physiological response of the
ECG, Electrooculogram (EOG), and trapezius-Electromyogram (EMG), and contrasts
the brain signals (EEG and Magnetoencephalogram) of 30 participants who watched 36
movie clips from 80 seconds and 40 segments of one-minute music videos that are part of
the DEAP dataset [192]. In the emotional state’s recognition of 32 participants, DEAP
includes physiological signals (GSR, BVP, SKT, EOG, and EMG) and EEG. Similarly, the
multimodal database MAHNOB-HCI [273] contains physiological signals (ECG, GSR, SKT,
and Respiration), eye gaze, and EEG from 27 participants, who evaluated the emotion
through various stimuli (20 videos, 14 short videos, and 28 images).

Both DEAP and MANNOB-HCI demonstrated better EEG effectiveness in predicting
arousal and physiological signals obtained a better outcome with valence. AMIGOS had the
same behavior with EEG signals, but unlike [192, 273], it obtained a better f1-score outcome
with arousal. The physiological features in DECAF had a better arousal recognition in
the movie clips and a better valence outcome in the music clips. In ASCERTAIN, the
multimodal results (ECG and GSR) had a better performance than the EEG.

The works related to ER established the experimentation of the users with diverse
stimuli and the influence of the emotions in their physiological behaviors. Therefore, a
need arose to identify emotional patterns in the physiological features that improve the
states’ emotional detection. Moreover, section 3.2 describes the experiment with short
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videos of the AMIGOS affective dataset used for the ER with the ML approaches proposed
in this survey.

3.1.2 Emotional States Detection

The publications related to the ER from physiological data aim to construct reliable models
supported by techniques and ML algorithms to discover patterns of the emotional states
that are hidden in the physiological signals. Various methodologies were explored for the
data preprocessing, the extraction, and selection of physiological features, as stages prior
to the emotion classification.

Some studies for the ER have implemented supervised classification approaches [274]
such as k-Nearest Neighbor (k-NN) [275, 276], and Support Vector Machine (SVM) [263,
277]. The researchers defined keywords to validate the user’s emotional responses through
the valence and excitation model. The physiological signals are processed by sliding window
technique [278], and the process of reducing the dimensionality of the features is based
on the Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)
techniques [277].

On the other hand, the Deep Learning approach applies non-linear transformations
to physiological signals for the features detection of human emotional behavior. In this
context, CNN [279] techniques have been used for the automatic extraction of SCR and BVP
features, and 70 to 75% accuracy results have been obtained in the prediction of emotion
(relaxation, anxiety, excitement, and fun). Other investigations validated the performance
of affection models with deep learning using the multimodal DEAP database [280, 281].
They adopted a multiple-fusion-layer-based ensemble classifier of stacked autoencoder
(MESAE) framework to extract the physiological features merged into an SAE network.
The accuracy results in arousal and valence were 0.83 and 0.84, respectively.

Regarding semi-supervised learning methodologies, SAE was integrated with Deep Belief
Network (DBN) using a Bayesian inference classification based decision fusion method
[282], results of arousal were obtained in 73.1% and valence in 78.8%. Li et al. [283]
defined a hybrid model composed of a CNN and a Recurrent Neural Network (RNN). As a
requirement for the sequential processing in the CNN, the features were extracted, and
the prediction was made in the Long Short-Term Memory (LSTM) unit of the RNN. This
model obtained an accuracy of 74.1% for arousal and 72.1% for valence. The models based
on CCN and DNN [284] showed better results in the affective classification when using the
image domain of the EEG signals [285, 240].

The related works deal with the trend of deep learning for the ER related to heart disease,
mental disorder, and stress. However, to validate the affective models, there is a limitation
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in the access to small physiological datasets [286], or there is a problem in obtaining correct
data [258]. Therefore, it is necessary to publish repositories of physiological datasets to
test the classification models used in the personalization of the services.

3.2 AMIGOS Dataset
The validation of the emotions classifier is done with A dataset for Mood, personality, and
affect research on Individuals and GrOupS (AMIGOS) [257]. This dataset is the result of
two experiments related to the multimodal study of emotional responses. In the first, 40
participants watched 16 short videos (duration < 250 seconds), in the second, 17 people
individually and five groups of four participants watched four long videos (duration > 14
minutes). In both experiments, neurophysiological signals were captured from the subjects
during the elicitation of emotion [268].

Electroencephalogram (EEG) signals were recorded using the Emotiv EPOC Neurohead-
set containing 14 electrodes for AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,
and AF4 channels [240]. The physiological signals were recorded with the ECG Shimmer
2R5 platform from three electrodes for the Electrocardiogram (ECG right and ECG left
channels) and two electrodes for the Galvanic Response of the Skin (GSR channel). The
physiological data were preprocessed with a sampling frequency of 128 Hz.

The emotional levels of the participants were reported in a self-assessment (arousal,
valence, dominance, liking, familiarity, and seven basic emotions) and an external annotation
(arousal and valence). The five dimensions are measured on a scale of 1(low) to 9 (high)
and, the basic emotions (neutral, disgust, happiness, surprise, anger, fear, and sadness)
are binary values. Specifically, this study focuses on the experiment with the 16 short
videos because a long video is more likely to elicit diverse emotional states according to
the scenes presented. The emotion appraisal is determined by the changes that the subject
can experience in the context. The experienced emotions can change through a process of
regulating emotion, which determines the effects on human behavior [287].

The classification of the 16 short videos by quadrants of valence and arousal (high and
low) was performed by [257] according to the elicitation of the emotion, for each participant,
94 clips were recorded according to the duration of each video (see Table 3.1). The first
20 seconds of each clip included five seconds from the beginning of the stimuli, then were
generated non-overlapping intermediate segments of 20 seconds, excepting for the final clip.

In the current study, the emotional classification is defined as a low and high subjective
scale for the valence and arousal dimensions. Figure 3.2 shows the distribution of the valence
and arousal means of the self-assessing participants during the experiment; 40 ∗ 16 = 640
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Table 3.1 Classification of the 16 short videos with the physiological signals instances that
were recorded during the presentation of the stimuli of each subject [257].

Video Instances Duration Quadrant Film Clips
10 12225 96 LAHV August Rush 6
13 7229 57 LAHV Love Actually 4
138 15610 122 LALV The Thin Red Line 7
18 10575 83 LAHV House of Flying Daggers 5
19 16106 126 LALV Exorcist 8
20 8335 65 LALV My girl 5
23 14265 112 LALV My Bodyguard 7
30 9717 76 HALV Silent Hill 5
31 19886 155 HALV Prestige 9
34 8417 66 HALV Pink Flamingos 5
36 8698 68 HALV Black Swan 5
4 11621 91 HAHV Airplane 6
5 14347 112 HAHV When Harry Met Sally 7
58 8181 64 LAHV Mr Beans Holiday 4
80 13047 102 HAHV Love Actually 6
9 9630 75 HAHV Hot Shots 5

instances are available. However, it is observed that videos 20 and 23 tend a neutral value
of arousal. That is, the intensity of the emotion is not so marked. Therefore, using the
k-means method, we defined the four clusters with the thresholds for the labels of arousal
and valence [280]. Besides, Figure 3.3 depicts the clusters with a threshold of (5, 5) for the
two or four classes of low or high emotion and were obtained with the K-means clustering
method [274].



3.2 AMIGOS Dataset 49

Fig. 3.2 Distribution of mean ratings of valence and arousal of self-assessment of the 16
short videos. Scale from -1 to 1.
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Fig. 3.3 Clustering of valence and arousal of self-assessment of the short videos. Scale from
1 to 9.
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3.3 Proposed Method

Fig. 3.4 Software components for the emotion recognition system, with a deep learning
approach and classic machine learning algorithms.

Affective computing involves the design of machine learning models to discover physiological
patterns of affective states from datasets. In this research, we propose validating supervised
learning algorithms and Deep Learning for efficient emotion detection. Therefore, Figure 3.4
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depicts the system with the components to load the dataset in a data frame as a requirement
for the preprocessing of the ECG and GSR signals. Then, the feature extraction stage
can be developed explicitly or implicitly. The first uses hand-crafted functions to obtain
features in the time or frequency domain, selected with ML algorithms. The second, with
deep learning, extracts automatic representations of the features. Finally, the models are
trained and tested with algorithms from the two approaches.

3.3.1 Machine Learning

3.3.1.1 Data Preprocessing

As a previous step to the features extraction of the physiological signals, the detection of
peaks of the ECG and GSR signals is performed because the emotions generate significant
changes in these segments. The Heart Rate Variability (HRV) analysis is an emotion
diagnostic tool to determine the beat-to-beat interval (RR interval) [259]. The values
between a RR interval correspond to the time between two peaks R, calculated through a
standard wave of the QRS complex. The ECG signal is transformed with the PanTomkins
QRS detection algorithm proposed in [288]. The signal is filtered to reduce the noise with
cutoff frequencies of 0.5 and 15 Hz and uses an adaptive threshold for the detection of the
QRS complex (see Figure 3.5).

Fig. 3.5 Detection of RR interval in the ECG signal. AMIGOS Dataset [257], participant
1, video 10.

Similarly, the GSR signal is preprocessed using bandpass filters to reduce noise with
cutoff frequencies of 0.05 and 19 Hz [289]. Then it is resampled with a digital phase filter
of 10 Hz. During SCR peak detection, a standard method is used that identifies the max,
min, and offset indexes of the signal GSR [290]. So, the threshold of the amplitude is
determined, and the features between SCR peaks are calculated (see Figure 3.6).
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Fig. 3.6 Detection of peaks in the GSR signal. AMIGOS Dataset [257], participant 1, video
10.

3.3.1.2 Extraction and Selection of Features

The affect detection requires an adequate features extraction of the signals, which correlate
with the emotional states recorded by the participants in the self-assessment. That is, the
relationship between features and emotions determines the physiological reaction [291] and
is taken as input to the predictor. Parametric measurements of the ECG signals in the
time domain quantify the variability of interbeat intervals (IBI) measurements successive.
The power distribution is determined in the frequency domain, and the unpredictability of
a series IBI is quantified in the non-linear according to [292, 293].

GSR signals are extracted statistics in the time domain related to amplitude, rise
time, decay time, latency, mean amplitude indexes, and SCR peak indexes. Because each
GSR signal produces a set of measurements by the amount of detected SCR peaks, some
measures of central tendency, dispersion variation, and distribution are applied.

In Table 3.2, the features generated from the peaks of the ECG and GSR signals are
described.
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Table 3.2 Notation of features extracted from ECG and GSR signals [293, 290].

Signal Features group Description of the extracted features
Time Domain (1 - 13) meanNN, medianNN, standardDevia-

tionNN, rmSSD, pnn50, pnn20, coeffVaria-
tionSD, medianADNN, coeffVariationNN,
mCoeffVariationNN, shannonEntropy,
HRVtriangular, and numArtifacts.

ECG Frequency Domain (14 -
24)

peakHF, hfTotalPowerRatio, normal-
izedHF, peakLF, lfhfRatio, lfTotalPower-
Ratio, normalizedLF, totalPower, ulfPeak,
vhfPeak, and vlfPeak.

Non Linear (25 - 33) correlation dimension, entropy (SVD, HF,
LF, VLF, and shannon), fractal dimension
(higushi and petrosian), and fisher infor-
mation.

GSR Mean, standard devia-
tion, max, min, kurtosis,
and skew (34 - 87)

EDA at apex, SCR width, amplitude, de-
cay time, half amplitude, half amplitude
(index and indexpre), latency, and rise
time.

After the process of extracting features, ML algorithms are used to filter the redundant
features that can cause overfitting in the classification model [294].

3.3.2 Deep Convolutional Neural Network

Deep learning is an area of machine learning based on algorithms and techniques for
modeling high-level abstractions in datasets [295], such as patterns recognition in images,
text, or emotions. The learning levels take the results of the previous levels, which are
transformed into insights, to train and validate the classification model.

The DCNN architecture proposed for the emotion detection system was adapted from
the work of [296], with the Keras framework [297]. The DCNN involves a sequence of CNN
layers and pooling layers to extract features from the physiological signals automatically.
Fully connected layers are located in front of CNN, operate on all nodes, and predict the
affective state.

In this study, CNN layers are considered fuzzy filters [298] that reduce noise and
discover particular morphological patterns in the R peaks of the ECG signals and the SCR
peaks of the GSR signals. Initially, the transformation implemented by the neuronal layers
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is parameterized by its weight w, since the neurons learn to discover the correct values
(convolution kernel) without affecting the behavior of the other layers [299]. That is, in
the 1D convolutional layer, the features vector of the physiological signals resulting from
the transformation of the input data x is defined in equation 3.1.

xl
i = f

∑
j

wl
ijx

l−1
j + bl

i

 (3.1)

Where xl−1
j represents the input vector to the convolutional function, wl

ij denotes the
kernel weight between the ith and jth neurons of the layers l and l − 1 respectively. bl

i

is the bias coefficient of the neuron ith in the layer l and xl
i indicates the output of the

convolutional layer.
In the CNN and fully connected layers, the Rectified Linear Unit (ReLU) activation

function is set, which handles a threshold of 0 for the negative values. This ReLU(x)
function is calculated as equation 3.2:

f(x) = max(0, xi) (3.2)

The max-pooling layers are alternated between the CNN layers to segment a convolu-
tional region that can increase the robustness of the features and reduce the dimensionality
of the physiological signals vector. As a regularization technique to decrease the overfitting
in the neural network layers, the dropout with a value of 0.5 is added. The output layers
of the fully connected network are configured with the softmax classifier, with the purpose
that the hidden layers verify the probability of predicting the emotion.

During the supervised training, the loss is minimized with the Root Mean Square
Propagation (RMSProp) [300] optimizer, since it adjusts the learning rate adaptively.
Initially, the learning rate is set to 0.001. Once the model is executed, the knowledge base
is consolidated between the vector of physiological features and the class vector. Then,
to evaluate the emotion recognition, in the fully connected layer, the cross-entropy loss
function is set, which determines the degree of correspondence of the target output vector
yi, with the predicted output vector cj, as follows in equation 3.3:

E = 1
2

N∑
j=1

(yi − cj)2 (3.3)

The emotion recognition model based on deep learning algorithms is shown in Figure
3.7.
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Fig. 3.7 An schema of emotion recognition process based in deep learning.
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The structure is defined by an input layer that connects the vector of physiological
features with the neurons of the first convolutional layer. Which, in turn, connects with
three consecutive convolutional layers to extract the features of the ECG and GSR signals.
Further, it is appreciated the transformation process of the input vectors in local patches
inside a convolution window [299]. Each 1D CNN contains a sequence of temporal data to
recognize local patterns, which can be learned from the morphology of the physiological
signal. The functionality of the CNN layers is given by the convolution kernel that obtains
the local patches, and the Max pooling extracts the windows from the feature vectors to
generate the downsampling output vector.

The vector resulting from the physiological features extraction state is sent to the input
neurons of the three FCN to perform the training and testing process of the model. The
last FCN layer is used to predict the affective state.

3.4 Experimental Results
Emotion recognition models are tested through the AMIGOS dataset. In the first validation
with the deep learning algorithms, the automatic extraction of the features is performed
from the R peaks and SCR peaks. In contrast, with the instances of physiological signals
that are loaded directly from the data frame to the convolutional layers.

The second experiment is based on some classic machine learning algorithms to ex-
tract, select and detect emotions. Each physiological signal comprises 640 instances
40participants ∗ 16videos, but at the time of consolidating the data frame, null values were
found; therefore, it was reduced to 603 instances.

3.4.1 Emotion Detection with DCNN

During the experiment, the configuration parameters previously explained were defined for
the training and testing of the deep learning model. Once the physiological signals have
been preprocessed, a segment of the length of 200 R peaks is defined for the input vector
of the ECG signal. For the GSR signal, it is specified as an input segment of 20 SCR
peaks. The values of each vector were normalized with the calculation of the mean and the
standard deviation of all the points of the signal segment. The sizes of the kernel and the
filter of the CNN layers affect the features detection that is represented in a convolution
vector.

For the ECG vector, the kernel size for the four convolutional layers is defined at 15,
10, 5, and 1. In the GSR vector, it was configured at 10, 3, 1, and 1. The max-poling sizes
were defined in 5, 2, 2, and 2,1,1 respectively for the ECG and GSR signals. Kernel filter
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sizes were set to 256. The epochs number used to train the model was 200. Table 3.3 shows
the accuracy results that were obtained for the best model during training and testing.

Table 3.3 The classification accuracy for the CNN model.

Physiological data Arousal Valence
Signal Input lenght Train Acc. Test Acc. Train Acc. Test Acc.

ECGL 200 0.83 0.82 0.75 0.71
ECGL-ECGR 200 0.83 0.76 0.79 0.75
ECGL 15000 0.82 0.82 0.66 0.72
GSR 15000 0.66 0.69 0.66 0.67
GSR 20 0.71 0.71 0.73 0.75

In the experimentation process, two types of input data segments were configured for
each ECG signal. The first was transformed to 200 R peaks, and the second was normalized
and segmented to 15.000 points. In the case of the ECGL signal, the results obtained for
the arousal dimension were similar, although different processing techniques were applied,
mainly in terms of dimensionality reduction.

Since the length of the segment of the ECGL signal is not significant, it is evident that
the convolutional layers extract emotionally discriminatory features for the detection of
arousal levels (low and high). The valence dimension obtained better results when the
ECG signals were integrated (ECGL and ECGR) than when using only the ECGL signal.
Similarly, for the GSR signal, regarding the type of segments used during the experiment,
it can be seen that with the length of 20 SCR peaks, the valence levels (low and high) have
a better performance.

3.4.2 DCNN vs. Shallow Machine Learning Algorithms

In this section, we compare the performance results in the prediction of the affective
states obtained initially by the authors of the AMIGOS dataset [257], with the algorithms
proposed in this study. Unlike CNN, the features of the physiological signals of the ECG
and GSR were extracted manually, as explained in the section on extraction and selection
of features. In most cases with machine algorithms, similar prediction results were obtained
or a little higher than the previous study of [257].

Therefore, with DCNN, better performance in arousal recognition is achieved through
the ECGL signals (see Table 3.4), in contrast to the GSR signal that shows better results
in valence prediction (see Table 3.5).
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Table 3.4 Performance comparison of DCNN with classical ML algorithms for ER based on
ECG signals.

ECGL Classifier
Arousal Valence

Accuracy F1-Score Accuracy F1-Score
Naive Bayes [257] 0.59 0.57
Nearest Neighbors 0.69 0.66 0.58 0.57
Linear Discriminant Analysis 0.72 0.63 0.67 0.65
Linear Support Vector 0.68 0.60 0.61 0.55
Multi-Layer Perceptron 0.68 0.59 0.61 0.51
AdaBoost 0.70 0.66 0.61 0.58
Random Forest 0.68 0.67 0.59 0.59
DCNN 0.81 0.76 0.71 0.68

Table 3.5 Performance comparison of DCNN with classical ML algorithms for ER based on
GSR signals.

GSR Classifier
Arousal Valence

Accuracy F1-Score Accuracy F1-Score
Naive Bayes [257] 0.54 0.53
Nearest Neighbors 0.68 0.64 0.69 0.68
Linear Discriminant Analysis 0.67 0.61 0.64 0.55
Linear Support Vector 0.69 0.56 0.68 0.55
Multi-Layer Perceptron 0.68 0.60 0.64 0.55
AdaBoost 0.64 0.59 0.66 0.65
Random Forest 0.58 0.58 0.64 0.64
DCNN 0.71 0.67 0.75 0.71

Considering the physiological data limitation of the AMIGOS dataset, it was proposed
to validate the deep learning model with the data of the EEG and ECG signals. Each signal
was segmented and normalized by 10,000 points. For the training, 90% of the data was
used, and the rest for the testing, 965 instances were assigned to validate the model. Due to
the size of the dataset, the processing of each epoch lasted 550 seconds. Compared to the
other tests, the computational effort was increased to generate a more robust model. The
categorical recognition of emotions was evaluated from 4 classes (HALV, HAHV, LALV,
and LAHV).

The Figure 3.8 shows the exponential behavior of the accuracy during the training and
testing for the 500 epochs. Similarly, in the Figure 3.9 the values of loss are displayed
during the learning that is decreasing for each epoch. The confusion matrix shows the
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results of prediction for the four classes of arousal and valence, respectively (see Figure
3.10). The unification of the EEG and ECG signals ratifies the trend of the prediction
results for arousal compared to valence because better results were obtained when the
values of the labels were high. Possibly, by the participants’ subjective evaluation in the
self-assessment of the emotion elicitation during the experiments of the short videos.
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Fig. 3.8 Accuracy result for DCNN model using the EEG and ECG signals for the ER
[257], participant 1, video 10.
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Fig. 3.9 Loss result for DCNN model using the EEG and ECG signals for the ER.
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Fig. 3.10 Confusion matrix for the prediction of four emotion classes.

Table 3.6 shows the comparative results of studies similar to this research. In [286]
describes a recognition method of arousal from ECG signals of various datasets represented
in a common spectrum-temporal space to train a deep neural network. Derived from
the results of the affect prediction with DECAF, it can conclude that the stimulus is an
indispensable factor to induce emotion. Also, other studies for the arousal and valence
detection used diverse EOG, EMG and, EEG signals from the DEAP dataset [282, 280, 284],
and they got the same or better results than the reported in this work (see Table 3.3).
Unlike AMIGOS, DEAP is one of the most explored datasets for ER since different ML
models have been developed to automatically extract physiological features, features fusion,
and classification of the affective states. Hence, the performance outcome of ER models
is subject to the number of physiological signals, the stimuli selection to elicit emotion,
the reliability of the emotional assessment labels (self-evaluation), and the participants’
number in the experiment.
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Table 3.6 Accuracy comparison with other datasets.

Research Dataset Arousal Valence

DNN [286]

DEAP 0.64
MAHNOB 0.66
ASCERTAIN 0.7
DECAF movie 0.65
DECAF music 0.79

SAE and DBN [282]
DEAP

0.73 0.78
MESAE [280] 0.84 0.83
CNN [284] 0.73 0.81
Our work (DCNN) Amigos 0.76 0.75

Compared to the classic algorithms of ML, the CNN demonstrated a better perfor-
mance in the emotion detection in physiological signals, despite being conceived for object
recognition in images. The preprocessing of the peaks of the ECG and GSR signals as an
entry vector to the CNN made possible the identification of morphological features suitable
for the affective state prediction. The experimental results validated the proposed methods
and improved the performance in the emotion classification for the AMIGOS Dataset.

Physiological datasets with many instances are optimal for the proposed experiments
since these directly impact the emotion prediction; the greater the number of instances,
the more influential the model. Consequently, several annotations of arousal and valence
must be recorded since, when subjecting a participant to the stimulus of a short video, it
can manifest different levels of emotion during of experiment.

The future work of this research consists of applying these computational models to
data acquired with wearable devices to recognize emotion from physiological signals.





Chapter 4

TERS-ER

This part describes the architecture of a Tourist Experiences Recommender System based
on Emotion Recognition (TERS-ER). TERS-ER’s purpose was to previously detect the
user’s emotional state who uses a wearable for a significant time. Based on the predominant
emotion of this user, the recommender generated a list of Tourist Experiences (TE). We had
18 participants who wore Xiaomi Mi Band devices with their respective mobile applications
during the proposed experiment. Also, we collected two datasets: one Heart Rate (HR) from
wearers of these devices and the other from their affective states using the myEmotionBand
(MEB) mobile application. Then, we created an emotional dataset from HR time series
preprocessing algorithms and affective detection based on Deep Neural Networks (DNN).
Subsequently, we obtained the TE portfolio from the OntoToutra ontology, profiled the
users, applied the prediction algorithms, and produced the recommendation list filtered
by contextual features. Finally, the evaluation results among the different algorithms
tested for ER showed that the hybrid Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) networks had promising results. Moreover, concerning TERS,
Collaborative Filtering (CF) using CNN gave better performance.

4.1 Introduction
Internet of Things (IoT) technology enables the integration of wearable and mobile devices
to gather historical data from users. Personalized services are designed based on this
data to contribute to people’s well-being and quality of life [301, 302]. Researchers, in
recognition of emotional patterns, find the physiological data of people that is relevant
in their daily lives. These devices become a ubiquitous source for providing this data [8].
Emotional detection can be applied in various contexts, including tourism, to improve the
tourist experience at destinations [303, 19].
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On the other hand, tourist expectations from a temporal perspective are analyzed
in three phases: before, during, and after the tourist visit [6, 7]. This study focuses on
the preliminary phase of the visit, which detects the affective condition of people as a
contextual factor of a recommender system. To this end, the World Tourism Organization
highlights that the tourism industry is more competitive when receptive tourists are more
inclined to the emotional benefits than to the physical features and cost of the destination
[9].

Preliminarily, the literature review was conducted to identify the components of the
emotion-based tourism recommender frameworks [304]. This study showed the gap in
integrating physiological data from wearable sensors to detect the affective condition of
the user as a relevant contextual factor in the satisfaction of the recommendation. The
analyzed approaches mainly considered sentiment analysis techniques to detect emotional
states from the social networks reviews. Moreover, these models did not consider low-cost
wearables to discover emotional patterns in the user’s daily life.

In this review of the state-of-the-art, it was also found that there is a disparity of
formats, emotional states, and physiological signals in the datasets. Wearables of a
different range were also used, mainly medium and high-end. Most of these studies took
biosignal measurements in controlled experiments [305–308, 304]. As wristbands evolve,
they integrate more sensors and with better accuracy. The most common sensors measure
heart rate (HR), Galvanic Skin Response (GSR), and temperature. In the context of
tourism, the most common wearables are those that are affordable and non-intrusive.
Therefore, in this study, the wearable Xiaomi Mi Band was chosen because it is cheap,
includes basic physiological sensors, is comfortable, and is easy to use.

One of the research challenges of this study was detecting changes in people’s emotional
states in natural and uncontrolled conditions, using wearables with low accuracy in
their measurements. To do this, we developed a mobile application to record emotions,
independent of the HR record. As a result of this double registration, creating a time series
synchronization algorithm called the adjustable and sliding window became necessary.

There are different types of emotions, and therefore their duration and intensity are
varied. Norman’s model [309] describes three levels of brain processing to explain the distinct
emotional reactions that a person experiences: visceral, behavioral, and reflective. Each
person interprets their emotional response according to their identity, culture, personality,
and context. Therefore, the automatic detection of emotional states in a time series of
physiological measurements became another challenge for this research. In this way, another
algorithm was proposed to detect emotional states, known as Emotional Slicing (ES). This
algorithm groups HR instances into a time slot to which it assigns an emotional label.
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In the previous study of emotional detection on the AMIGOS dataset [310], Convolu-
tional Neural Networks (CNN) [1] were used. Now, in this study, a hybrid Deep Learning
(DL) algorithm from CNN and Long Short-Term Memory (LSTM) networks [311–313] was
implemented for Emotion Recognition (ER) from the ES dataset.

Once the emotion was detected, the Tourist Experience Recommendation System
based on the ER (TERS-ER) was developed as the last phase of this study. An inter-
face was designed with the Tourist Traceability Ontology (OntoTouTra) [314] to get the
contextual data.

In addition, for the TERS engine, two approaches to Content-Based Filtering (CBF) [315, 316]
and Collaborative Filtering (CF) based on CNN [317, 302, 304] were designed to generate
the top-N list of Tourist Experiences (TE) recommendations. The TERS engine integrated
a user similarity algorithm, selecting candidate users from the ontology based on the profile
and contextual data of the wearable user.

4.2 Literature Review

4.2.1 Background

Previously, the performance of some Shallow Machine Learning and Deep Learning algo-
rithms for emotion detection [1], based on the AMIGOS public dataset [310], was compared.
In conclusion, it was evidenced that the DCNN architecture showed a better performance
in detecting Arousal (0.71 and 0.81) and Valence (0.75 and 0.71) using GSR and Electro-
cardiogram (ECG) signals (see Table 4.1). The AMIGOS dataset was collected in tests
controlled in the laboratory, using 14 electrodes for the electroencephalogram (EEG), two
for the ECG, and one for the GSR. These electrodes were placed on the body of each of the
40 participants. Emotions were elicited through 16 short videos of less than 250 s in length.
The resulting dataset is a time series with features corresponding to the physiological signal
measurements displayed on 17 channels. Moreover, as labels, it presents the annotations of
Arousal, Valence, and dominance [193, 318].
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Table 4.1 Performance of DCNN and shallow ML algorithms using AMIGOS dataset [1].

ER Classifier
GSR Signals ECGL Signals

Arousal Valence Arousal Valence
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Naive Bayes [310] 0.54 0.53 0.59 0.57
Nearest Neighbors 0.68 0.64 0.69 0.68 0.69 0.66 0.58 0.57
Linear Discriminant
Analysis

0.67 0.61 0.64 0.55 0.72 0.63 0.67 0.65

Linear Support Vector 0.69 0.56 0.68 0.55 0.68 0.6 0.61 0.55
Multi-Layer Perceptron 0.68 0.6 0.64 0.55 0.68 0.59 0.61 0.51
AdaBoost 0.64 0.59 0.66 0.65 0.7 0.66 0.61 0.58
Random Forest 0.58 0.58 0.64 0.64 0.68 0.67 0.59 0.59
DCNN [1] 0.71 0.68 0.75 0.71 0.81 0.76 0.71 0.68

In recent years, wearables have entered the market in significant numbers and have
increasingly incorporated sensors that measure physiological signals [304, 319]. The
most common sensor present in this type of device is the Photoplethysmogram (PPG)
[307, 196, 320, 321], which registers HR signals. The configuration of these devices has
aroused scientific interest in detecting the emotional state of a person from these signals
[307, 322, 308]. However, not all wearables have the same level of accuracy in getting the
physiological signals [321]. There are devices ranges [305, 319]: Expensive devices with
high accuracy sensors, principally used for healthcare purposes, for instance, include the
Empatica E4 [306, 320, 308, 323]. Medium range devices with precise sensors have more
extensive use, targeted to high-performance athletes, mainly for fitness and sports, and
these include, for example, Garmin and Microsoft Band [5, 324, 305, 307]. Affordable
devices for all audiences are used for general purposes, for instance, the Xiaomi Mi Band
[305, 325–328].

The second stage of the research project [1] corresponds to the study proposed in this
section, applied in the context of tourist recommendations outside the laboratory. The
massification of low-cost devices made it possible to reach different contexts, including
tourism. Of the three ranges of wearables, the low-cost ones have the highest probability
of being used by people who want to have a tourist experience in a destination soon. Then
a scientific challenge is created to take advantage of these wearables, which despite their
low precision in the measurement of physiological signals, still generate a large amount of
data that can be processed with data analytics to discover hidden patterns and trends.

Most of the studies described to the TERS design worked with traditional filtering
classifiers such as Collaborative and Content-Based [304]. The second challenge of this
study is to integrate the detection of people’s emotional states into the recommender
systems. It was traditionally recommended through the reviews of other tourists on
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lived experiences or based on the context and configuration of the tourist experience in
a destination. Nevertheless, this study is intended to refine this type of recommendation
according to a person’s emotional state, either to counteract it for negative moods; or to
maximize it for positive emotional states. The related work in [304] did not show previous
studies regarding a TERS based on the emotional state of a person using HR signals from
a low-cost wearable device.

The third challenge of this study is related to how to register the emotional state of a
person. In experiments such as the consolidation of the AMIGOS [310] and DEAP [192]
datasets, self-annotators and external annotators recorded perceived emotion using a
Self-Assessment Manikin (SAM) questionnaire [318]. However, in the daily life context of a
person, the researchers of this study developed a mobile application that recorded the mood
of the wearable user at different times when he/she felt that an emotion elicitation was being
presented. A new challenge arises: synchronizing the time series data of HR measurements
with the recording of emotional elicitations. This is achieved by developing a new algorithm,
which is the contribution of this study, the sliding and adjustable window algorithm.

4.2.2 Related Works

In this section, ER architectures and methods based on data from wearable devices are
analyzed. On the other hand, TERS studies similar to the architecture proposed in this
section are related, based on the previous research of [304].

4.2.2.1 Affective Detection

Studies have been developed on the detection of the emotional state in different contexts
[196, 308], most of them in controlled environments and with sensors or specialized wearable
devices. The number of participants involved in these types of experiments is around 20
people. Table 4.2 describes some research for affective detection according to the two-
dimensional model of emotions by Arousal (A) and Valence (V) [193]. Also, the specification
of the wearable device (physiological sensors and low-cost sensors) and the data collection
method (dataset, experiment type, and participants) are given. The last three columns of
Table 4.2 show the physiological signals, the emotion classification approach, and the best
performance results of each study.
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Table 4.2 Emotion detection studies based on physiological data from wearable devices.

Reseach
Wearable Method Emotion Detection

Technology Low-Cost Dataset Experiment Participants Signal Classifier Accuracy

[196] Electrodes No DEAP Controlled 32 GSR and PPG: Co-
variance matrix

Random
Forest

0.72 A and 0.71 V

[322] Electrodes No DEAP Controlled 32 EEG: Time domain LERM 0,73 A and 0.74 V

[1] Electrodes No AMIGOS Controlled 40 GSR and ECG:
SCR peak and
R-peak

DCNN A (0.71, 0.81) and
V (0.75, 0.71)

[307] Garmin
Vívosmart 3

No (own
dataset
created)

Controlled 17 PPG: IBI (Fre-
quency and Time
domain)

Bayesian
DNN

F1 score: 0.7 V

[308] Empatica
E4

No (own
dataset
created)

Controlled 20 PPG: HR SVM 0.46: HVHA,
HVLA, LVHA,
LVLA

This
study

Xiaomi mi
band

Yes (own
dataset
created)

Semi con-
trolled

18 PPG: HR 1D CNN-
LSTM

0.44: HVHA,
HVLA, LVHA,
LVLA
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Meanwhile, Abdel et al. [322] described a method of extracting covariance matrices
from EEG signals for the emotion classification using the Log-Euclidean Riemannian Metric
(LERM). The study [196] proposed an ER framework by merging multiple physiological
signals from the DEAP dataset. Also, they extracted time-domain features from GSR and
PPG signals to assess AV detection. These attributes are provided as input to a music
recommendation system.

Bulagang et al. [308] used the Empatica E4 device for the collection of HR data from
20 participants, a virtual reality viewer for the elicitation of emotions (emotional quadrants:
HVHA, HVLA, LVHA, and LVLA) while the subjects visualized a stream of sixteen 360º
videos, for 365 s. Accuracy performance is compared to three methods: Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and Random Forest (RF).

The SAM questionnaire was adopted for the self-assessment of the emotions of 17 par-
ticipants while watching a series of 24 short videos of affective induction [307]. Inter-Beat-
Interval (IBI) features were processed to classify emotional valence using a Bayesian Deep
Neural Network (DNN) model.

Deep Learning reduces the complexity of extracting features of traditional statistical
techniques because, with manual extraction, the inconvenience of bias in data induction
can arise [304]. Another drawback to take into account is the accuracy level of the
sensors used. Researchers prefer specialized devices but recognize the need to build new
datasets with enough instances, achieved through the use of cheap off-the-shelf wearable
devices [307, 321].

Unlike the previously described methods for collecting physiological data and emotional
labels [304] (see Table 4.2), this research proposes data collection methods in people’s daily
lives, processing, labeling, and emotional detection based on HR data from Xiaomi Mi
Band devices.

4.2.2.2 Tourist Recommendation Systems

Habitually, Recommender Systems (RS) are becoming more relevant for the decision
of the choice of tourist experiences by people [6, 7, 19, 329]. The large Online Travel
Agencies (OTAs) incorporate the RS in their systems, and the competitive factor of the
agency depends on its effectiveness in the recommendation. Typically RS engines base the
prediction primarily on CF and CBF. Considering the maximum number of contextual
variables contributes to the accuracy enhancement of the RS [302, 330, 303].
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Table 4.3 Studies of recommendation systems based on emotions.

Research Dataset Algorithms Similarity Result

[26] 312,896 Tongcheng reviews
and 5722 destinations

UBCF, IBCF, and TF-IDF
(scenery, cost, infrastruc-
ture, accommodations, traf-
fic, and travel sentiments)

CS MAE and RMSE: Hybrid
CF (0.63, 0.97) and TopicMF
(0.76, 1.04)

[35] TripAdvisor and Yelp:
48,253 POI, 33,576 users,
and 738,995 ratings.

Emotion Induced UBCF and
Emotion Induced IBCF

CS Precision: 0.74 UBCF, 0.66
IBCF, and 0.67 Hybrid

[90] 312,896 Tongcheng reviews
and 5722 destinations

Syn-ST SVD++ model: sen-
timent tendency and tempo-
ral factors dynamic

PCC MAE and RMSE: Syn-ST
SVD++ (1.04, 0.91)

[133] TripAdvisor and Yelp:
48,253 POI, 33,576 users,
and 738,995 ratings.

HSS (AKNN and SPTW)
and AbiPRS (Fuzzy-C-
means).

User clus-
ter

Precision and MAE: HSS
(0.81, 0.63) and AbiPRS
(0.77, 0.73)

This study OntoTouTra [314]: 1939 TE,
42,202 users, and 530,294
ratings

CF-CNN and CBF CS MAE and RMSE: CBF (0.15,
0.23) and CF-CNN (0.12,
0.16)
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Preliminarily, in the analysis of the RS literature [304], related works were filtered,
whose domain is tourism and that have used sentiment analysis as a contextual factor in
the recommendation process (see Table 4.3). This table incorporates some studies with
descriptions of datasets related to tourist destinations (reviews, users, and items), the RS
approaches, the similarity metrics (similarity of cosine and Pearson’s coefficient), and the
performance evaluation outcomes.

Data from social networks promote emotion analysis and opinion mining from user
reviews to determine TE preferences, as well as addressing issues related to a cold start and
data scarcity in CF [26, 35]. Other studies [26, 90] proposed to involve the feelings of the trip
as a relevant factor in the experience at the destination using the Term Frequency-Inverse
Document Frequency (TF-IDF) technique in the emotion polarity. The studies [35, 133]
involved the affective, temporal, and location features of users to improve the quality of
the RS through a hybrid preference mining algorithm.

Furthermore, in other contexts such as entertainment, business, health care, and smart
tourism, the contextual factors of emotions applying sentiment analysis techniques in the
classification of reviews have been the subject of research [304]. The user models, based on
contextual features extracted from social networks, established the similarity of the users’
preferences of tourist destinations. Also, the application of the algorithms of SVM, KNN,
DNN, CNN, and LSTM have been used for the automatic extraction of features and the
classification of the mood [304, 1].

Unlike the sentiment analysis based on the explicit rating of the reviews in the rec-
ommendation processes, this study defines a TERS-ER architecture incorporating the
contextual data of the users’ emotions before the tourist visit. For this purpose, a knowledge
base of tourist destinations from OntoTouTra [314] is obtained, and the TE are defined
according to the AV quadrants. Subsequently, Deep Learning techniques are employed for
extracting features and generating the top-N list of TE recommendations.

4.3 Materials and Methods
The general process of the methodology used is depicted in Figure 4.1, which comprises
three phases: HR measurements and emotion labeling, detection of emotional states, and
TERS-ER design and validation.
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Fig. 4.1 Method overview.

4.3.1 HR Measurement and Labeling Emotions

The purpose of this phase was to create an emotional dataset. This dataset is a time series
of HR measurements tagged with the emotion felt by the wearable user. The HR register
is an objective response to the elicitation of the perceived stimulus in the context, while
the emotion register is a subjective response.

As in the similar experiments described in Section 4.2.2.1, a group of 18 participants was
formed, nine men and nine women, whose ages ranged from 18 to 44 years. However, unlike
the related work experiments, the study was carried out in contexts outside a laboratory,
in the participants’ daily lives. However, three group sessions of controlled elicitation of
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emotions were programmed to verify the correct recording of the measurements. Each
participant was given a Xiaomi Mi Band wristband, and two applications were installed
on their mobile device: Master For mi Band (MFB) [331] and MyEmotionBand (MEB).
The first app recorded heart rate measurements. The second app was developed in this
study to record the person’s emotional states, activities, and location. Before starting the
experiment, a group of healthcare professionals assessed the physical and emotional state
of the participants. Once the group of participants knew the purpose and procedure of the
investigation, they signed the consent for participation. The duration of the experiment
was eleven weeks. Short videos were projected for the three group sessions: 19, 19, and 11
videos, respectively. These videos were chosen from the FilmStim repository [332] according
to the emotional elicitation of the four AV quadrants [193].

As a result of registering HR measurements, a dataset was created in MongoDB, and
from registering the labels, another dataset was created in Firebase. Later, both datasets
were synchronized so that the time series coincided with labeling the HR measurements
with emotions. For this, Algorithm 1 was developed. Then it was necessary to determine
the duration of emotional states [309] using Algorithm 2. Once both algorithms were
executed, the emotional dataset was created.

4.3.2 Detection of Emotional States

In IoT environments, the collection of user datasets can lead to multi-class imbalance, which
affects the efficiency and performance of the prediction models. The consolidated dataset
in this study presented an unequal distribution in the emotion classes (see Figure 4.2b)
because the participants showed different affective behaviors in their contexts. Likewise,
the participants were predisposed to the affective states of pleased, calm, tired, and glad. In
contrast to the lower emotional classes of HR records (embarrassed, alarmed, and depressed).
In Figure 4.2a, this same distribution was confirmed for the positive emotion quadrants
(HVHA and HVLA) compared to the negative emotion quadrants (LVHA, LVLA).
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(a)

(b)

Fig. 4.2 Physiological dataset with a distribution of classes: (a) by emotional quadrants;
(b) by affective states.

For this purpose, some studies have used heuristic sampling methods and oversampling
techniques for the Multi-class Imbalanced Classification (MIC) using neural networks [333–335].
These sampling techniques are based on the nearest neighbor rule of the feature space
of each class [335, 336]. For the above, the data balancing component sizes the dataset
and adjusts the label names by quadrants or emotional states. It also uses class balancing
methods to evaluate the performance of affective detection models. That is, the dataset is
transformed with the ES instance interpolation methods in the minority classes [337] with
the Synthetic Minority Oversampling Technique approaches with K-means (K-SMOTE)
[338, 335] and TomekLinks (TL) [336]. Subsequently, the combined techniques (K-SMOTE
+ TL) and oversampling (K-SMOTE) were implemented separately to process the dataset
in training [337].
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Once the emotional dataset had been balanced, a CNN and LSTM networks hybrid
model was used to detect emotion. This model was chosen because it better classified the
shallow algorithms’ emotional quadrants (happy, calm, sad, and angry).

An algorithm was designed to determine the predominant emotional state that defined
the frequency of the emotion felt by the participants. The results of the execution of this
algorithm were stored in a MongoDB collection.

4.3.3 Design and Validation

This phase corresponds to the moment that the wearable device user plans their next TE.
The emotional dataset has already been collected, and the predominant emotion of the
user has been calculated. So, a TERS is needed that recommends TE according to the
person’s emotional state, context, and profile. Therefore, as input sources, the TERS needs
the emotional dataset, and concerning the other two requirements, a knowledge base in
tourism is used. For this study, OntoTouTra was used.

Initially, similar features were selected among users of the tourist review dataset. To
know the profiles of the participants of the experiment, they, in advance, completed a
survey with their profile data and TE preferences. With the data from these profiles,
similar users were filtered using NLP techniques applied to the username in the ontology to
determine its gender. Features of the ontology such as country, ratings, TE, and location
were also extracted. The location was compared with the geographic coordinates obtained
in the emotional dataset. Then, the similarity was calculated using the Cosine Similarity
(CS) metric. In this way, the candidate users were obtained from OntoTouTra.

Two approaches were developed for the TERS engine: A CBF method that determines
the similarity between tourist destinations and the other CF-CNN method to relate user
preferences. These classification methods processed the filtered information from the
destination dataset and extracted the most relevant TE items for the recommendation
process. Finally, the list of recommended TE was generated based on the target user’s
profile, preferences, context, and emotions.

The following categories of TE [339–341] were established:

• Adventure: defines experiences of risky activities such as scuba diving, waterskiing,
horse riding, and canoeing.

• Ecological: relates experiences of contact with nature such as hiking, ecological walks,
and bicycle tours.

• Entertainment: involves experiences of fun attractions such as movie theaters, theme
parks, live music, and sports shows.
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• Family: promotes experiences of strengthening relationships between parents and
children through attractions on the beach, in the pool, family and children’s games.

• Fitness: promotes wellness experiences and physical activities such as aerobics, gym
routine, personal training, and dance.

• Heritage / Culture: promotes experiences of authentic activities such as visits to
museums, archaeological sites, and typical food festivals.

• Romantic: involves couples’ romance experiences such as themed dinners, fun in
nightclubs and bars.

• Relaxation: involves health care experiences and relaxation activities such as spa,
hydrotherapy, sauna, yoga, among others.

The distribution analysis of affective states showed a high rate of participants who
registered positive emotions in contrast to negative ones (see Figure 4.2a). This study
assumed that the TE recommendations that people seek are strongly related to increased
satisfaction and improving their experiences at destinations [6, 7, 19]. For this reason, if the
detected emotion was negative (sad: LVLA quadrant or anger: LVHA quadrant) or positive
(happy: HVHA or calm: HVLA emotional quadrant), the recommender emphasizes positive
emotions and mitigates negative ones. For instance, the suggestion for a person who was
stressed is the relaxation experience. At the same time, the recommendation for someone
calm may be the ecological experience. In this sense, the relationship of emotions with the
categories of TE was:

• Happy (HVHA) or sad (LVLA): encourages adventure, family, romantic, and her-
itage/culture experiences.

• Calm (HVLA) or angry (LVHA): promotes ecological, entertainment, fitness, and
relaxation experiences.

4.4 System Architecture
This section describes the operational and structural levels of detail of the TERS-ER
architecture. For this purpose, the functional modules, data models, user profiles, and
services represented in the context diagrams, containers, components, and classes were
identified [342]. Also, according to the IoT architecture [313, 302], the TERS-ER layers
are (see Figure 4.3):
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Fig. 4.3 IoT architecture

• The perception layer: It is responsible for collecting HR data using the PPG sensor
of the wearable and the emotion and context data from the MEB app installed
on smartphones

• The network layer: Transfers HR measurement data using the Bluetooth connection
between the wearable and the mobile device. In addition, the smartphone using mobile
networks for transferring the emotion and location data of the MyEmotionBand app
to the Firebase cloud.

• The service layer: Provides the connections to the Firebase cloud to get the emotion
data, the MongoDB server to obtain the HR collections, and the SPARQL endpoint
server to retrieve the tourism knowledge base. These datasets are then pre-processed
and filtered for the TERS-ER subsystems.

• The application layer: Manages an intelligent RS that displays TE suggestions
according to the user’s preferences and contextual factors.

4.4.1 System Context

How satisfying is a particular tourist experience for a person? It depends mainly on the
reason for the tourist visit. Often a person looks for options according to information
from travel agencies, suggestions from friends, cost of the plans, or the desire to know
new destinations. However, the emotional burden that the person manifested before the
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visit is seldom taken into account. Specifically, to understand the emotional state in a
period before the tourist visit, wearable devices are an exciting alternative for capturing
physiological and context data. In this way, with the processing of these data, the user’s
emotions can be recognized and therefore recommend the appropriate tourist experiences
to their affective state. The research question arises: How to design a TERS based on the
wearable users’ emotional state in the preliminary visit phase?

Before the visit that can measure in days or weeks, a person in their daily life uses the
wristband and mobile devices to record physiological and affective data. In this scenario
(see Figure 4.4), a user, depending on the activity type, (for instance, working, watching
movies, resting, traveling, driving, among others) can experience an emotional change
caused by various stimuli from the context. Then, through mobile applications, the user can
measure HR and record the emotion perceived at that moment (happy, content, sad, calm,
angry, and stressed). Afterward, the data from the objective and subjective measurements
are processed and analyzed by machine learning (ML) algorithms that detect the person’s
affective state.

Fig. 4.4 Scenario and context.

The recommender system uses the user’s profile (gender and tourist preferences), emo-
tional data, location, and TE portfolio as input items to display destination suggestions.
The recommendation list is created from similarity metrics and ML algorithms. Subse-
quently, the user checks the recommendations of TE according to their emotional state,
profile, and preferences.

4.4.2 TERS-ER Architecture

The TERS-ER architecture has two main subsystems. The first is the ER built with the
following components: data collection, preprocessing, ES analysis, emotion class balancing,
and affective detection using DNN models. The second is TERS, which is implemented
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with the dataset management components and the recommender engine. This recommender
generates the most relevant TE according to the preferences, location, and user emotion in
a period before the tourist visit.

4.4.3 Technological Container Communication

In this section, Figure 4.5 depicts the distribution of the technological infrastructure
functionalities and the interaction in the TERS-ER subsystems. The following outlines the
high-level implementation of the software architecture:

• The users in their context use the Xiaomi Mi Band wristband and the MFB mobile ap-
plication [331] to store HR data in an SQLite database. In turn, the emotion, activity,
and location data is recorded in the MyEmotionBand (MEB) mobile application.

• A real-time database that stores the JSON files of the MEB application in the
Firebase cloud.

• An application that manages the connection to the Firebase and MongoDB databases.
Also, it handles the collections gathered from wearable and mobile devices.

• A MongoDB database to store collections of HR, emotions, and user profiles.

• An application for ER that generates an affective detection dataset.

• A dataset of the TE portfolio is consulted from the SPARQL endpoint server.
This dataset was acquired from the Ontology of Tourist Traceability (OntoTouTra)
proposed in [314].

• A recommender engine that processes MongoDB data collections and TE datasets.
It then analyzes and displays a list of tourist recommendations.
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Fig. 4.5 Containers of technological infrastructure.

4.4.4 Implementation of functional components

The architecture of the TERS-RS model (see figure 4.6) portrays the procedure for collecting
affective and physiological data in the daily lives of users (see section 4.3.1). These datasets
are required by the emotion recognition and recommendation system containers. The
software components are indicated below:

• Authentication to Firebase was achieved with the Kotlin Android SDK to store data
collected by users with the MEB mobile application in the Cloud Firestore database.

• The connection to the Cloud Firestore service was performed with the Python SDK
library to obtain the JSON files stored in the Firebase database.

• The connection to the MongoDB server was programmed with the Python library.
This database server allowed the storage and administration of the data collections
required by the TERS-ER.
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Fig. 4.6 Modular components of the TERS-ER architecture

• Affective detection was developed with the Keras framework and the ML library
Scikit-learn [343, 344]. In section 4.4.5, the algorithms for segmenting the dataset,
analyzing emotional patterns, and predicting affective states are explained.

• The connection to the SPARQL endpoint was made from the Python SPARQLWrap-
per library to extract the knowledge base of the Ontotoutra [314] and retrieve the
JSON documents for creating the tourist experiences portfolio.

• The recommendation system was constructed with the Simple Python Recommenda-
tion System Engine (Surprise) [315], Keras, and Scikit-learn libraries. In section A.4,
the prediction algorithms based on the similarity of the items and the users’ interests
are analyzed to generate the recommendation list.

4.4.5 Apps Architecture

Figure 4.7 shows the user interface of the mobile applications developed and used by the
participants during the experiment. Also, Figure A.1 depicts the functional structure of
the MEB mobile application for consolidating the emotional dataset.
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(a) (b)

Fig. 4.7 The mobile app’s graphic interface used by the participants: (a) MyEmotionBand
for recording emotional state, activity, and location; (b) MFB [331] for HR measurement.

The MEB app provided the user interface for recording the affective state (16 emotions
and one neutral state) and the activity performed (21 tasks). According to the context of the
participants, categorical emotions were associated with activation (Arousal) and emotional
polarity (Valence) of Russell’s bi-dimensional model [193, 304]. That is, four emotions
were defined for each emotional quadrant: happy (HAHV: excited, amused, glad, and
pleased), calm (LAHV: satisfied, calm, relaxed, and tired), sad (LALV: bored, depressed,
embarrassed, and sad), and anger (HALV: stressed, afraid, angry, and alarmed). The
location (latitude and longitude), the date, and time were obtained from the smartphone
GPS. In addition, the authentication and synchronization methods were created to store
the data on the Firebase server. In particular, the emotional dataset collected 21,000
records from the participants (see Figure A.3). The SQLite files of the MFB application
were converted into CSV files, and a dataset of 1,535,992 HR instances was collected (see
Figure A.4).

In other studies [1, 304] the recording of emotions, either by the participant of the
experiment or by an observer, was carried out manually on a sheet of paper; this instrument
is called SAM [318]. SAM can be used in controlled experiments, but its use is inappropriate
in the context of a person’s daily life. For this reason, the MEB app was developed (see
Figure 4.7a). Although the emotion recording is still manual, it is more practical and
complete than SAM because the user makes a tap on the emoticon that depicts the emotion
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that he was feeling at that moment and then another tap on the icon of the activity
performed. In this way, MEB correlates the variables of emotion and activity.

4.4.6 Sliding and Adjustable Window Algorithm

Figure A.2 depicts the model implemented for affective detection based on data collected
from the context of the participants. ER model is integrated by dataset consolidation, data
preprocessing, ES analysis, balancing of emotion classes, and prediction of the affective
condition.

The preprocessing of the datasets was made with the synchronization algorithm called
a Sliding and Adjustable Window. Because it uses the time series of each participant’s HR
and emotional state, this algorithm is sliding because the timestamp window is located in
the segment that contains data for both datasets. It is adjustable because the size of the
timestamp window is configured depending on the behavior of the data (see Figure 4.8).
The Algorithm 1 loads the two MongoDB data collections (HR and emotion) to tag the
emotion in each participant’s HR instances:
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Fig. 4.8 A participant’s sample of HR data with the configuration of a dynamic window
adjusted to the HR and emotion timestamp.

• Initially, set up a loop to iteratively go through the HR instances dictionary of
the participants.
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• Obtains the timestamp and HR measurement of each record. Defines a time variable
(W∆) that controls the window size setting.

• Establishes an iterative cycle through the dictionary of the experiment participants’
emotion, activity, and location.

• Gets the HR and emotional data that correspond to the same participant.

• If the emotion label is not found within the maximum window size (for example, 180
s), it loops through the collection of emotions and gets the tag that matches the
timestamp of the HR instance. If the label cannot be found, the size of the window
is increased.

• Then, set the emotion tag on HR time series instances. In addition, it adds the
activity data and geographical location in the HR dictionary.

• Finally, build a new collection in MongoDB with the HR dataset labeled.

Hence, the method (see Algorithm 1) that we developed is adaptive and dynamic to
the time series windows of the physiological and emotional datasets.
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Algorithm 1 Sliding and adjustable window for the time series data tagging.
1: procedure getTagDataset
2: max_size_window = 180;
3: for k, v in hrData.items() do
4: hr = {};
5: for hrT imestamp, heartRate in v.items() do
6: W∆ = 0;
7: for k1, v1 in emotion.items() do
8: if k1 = k then
9: for key, value in v1.items() do

10: while W∆ ≤ max_size_window do
11: window_start = hrT imestamp - W∆;
12: window_end = hrT imestamp + W∆;
13: find = False;
14: for eT imestamp in v1.keys() do
15: if window_start ≤ eT imestamp ≤ window_end then
16: hr.update(hrT imestamp(v1, hr));
17: find = True;
18: break;
19: end if
20: end for
21: if find = True then
22: break;
23: else
24: hr.update(hrT imestamp(v1, hr));
25: end if
26: W∆ = W∆ + 1;
27: end while
28: end for
29: end if
30: end for
31: end for
32: hrData.update(hrT imestamp(k, hr));
33: end for
34: end procedure
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As a result of the preprocessing, a tagged data collection of 218,297 records (documents
in JSON format) was generated. The data structure is made up of a document identifier
(_id), a participant number (IMEI), the emotion timestamp (emotionts), the affective state
(emotion), type of activity (activity), HR (hr), location (longitude and latitude) and HR
timestamp (hrTimestamp).

4.4.7 Emotional Slicing Algorithm

The size of the segment parameterizes the Emotional Slicing (ES) algorithm (by default
30 HR instances), the time between instances (for example, 60 s), and the limit size of
instances (for default 20). The algorithm loads the MongoDB HR collection, consolidates
the labeled instance blocks, and generates the physiological dataset used in the affective
detection module. This algorithm was created for detecting the duration of the emotion
(See Section 4.3.1).

Algorithm 2 has the following activities:

• Loads the preprocessed collection into a list and gets the first HR instance.

• Initializes a new physiological slice.

• Add the values to the HR, timestamp, and emotion vectors.

• Creates a list with the minimum and maximum HR values for each participant to
normalize the data.

• Browses the records of the HR collection. Each iteration verifies that the instance
belongs to the same emotional slice of the participant and complies with the limit size
of instances. It controls that when the activity is a movie and has the same emotion,
it adds the instance to the data vectors. It checks the addition of new instances to
other activities that meet the established parameters.

• Then, creates the list of affective segments with the predominant emotion of the
HR instances.

Furthermore, the algorithm uses the duplication time-series values technique to adjust
the number of HR instances (for instance, a record of 20 HR instances repeats the initial
sequence of the vector until it completes the default size of 30). Lastly, the new collection
of 5247 ES is stored in MongoDB. The data structure of each participant (JSON format)
handles a vector of timestamp and affective segment data (_Id, imei, instances number,
slice duration, activity, emotion, longitude, and latitude), together with an HR vector
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normalized through the linear transformation function depicted in Equation (4.1) [313].
This method reduces the standard deviation in the data and suppresses the event of outlier
values.

xnormalized = x − xmin

xmax − xmin
(4.1)

where:
x = measurement of a user’s heart rate;
xmin = minimum measurement of all a user’s heart rates;
xmax = maximum measurement of all a user’s heart rates;
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Algorithm 2 Emotional slicing.
1: procedure buildSlices
2: timeBetweenInstance = 60; sliceSize = 30; sliceLimit = 20; slicesCounter = 0;
3: tagHrList = dataLoad(hrData); previous = tagHrList[0];
4: initSlice();
5: addInstanceToSlice();
6: getMinMaxByImei();
7: for row in range(1, len(tagHrList) do
8: previous = tagHrList[row − 1];
9: current = tagHrList[row];

10: if previous[0] = current[0] then
11: if int(current[0]) - int(previous[0]) ≤ timeBetweenInstance then
12: if current[4] =′ movie′ then
13: if previous[3] ̸= current[3] then
14: closeSlice();
15: end if
16: addInstanceToSlice();
17: else
18: addInstanceToSlice();
19: end if
20: else
21: closeSlice();
22: addInstanceToSlice();
23: end if
24: else
25: closeSlice();
26: addInstanceToSlice();
27: end if
28: end for
29: end procedure

4.4.8 DNN Models

The ER component defines the DNN approaches for detecting affective states based
on HR data (see Figure 4.9) using the Deep Convolutional Neural Network (DCNN)
model [1]. This model was built by stacking four 1D CNN layers that reached emotional
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patterns of physiological signals and three Fully Connected (FC) Layers to predict emotion.
Furthermore, two models based on 1D CNN and LSTM architectures [311, 313] were
defined. Initially, both models used a 1D-CNN to extract the emotion features related to
the input vectors. The convolution has a kernel size of 10 and a filter of 128. The second
MaxPooling layer reduces the dimensionality of the feature map and has a pool size of two.
The first model uses a third flatten layer to convert the feature map into a one-dimensional
vector. Then, the fourth FC layer that receives the learned features is connected.

Physiological features extraction

1D CNN
Max 

Pooling
Dropout 

layer

FC layer

Emotion detection

LSTM LSTM

Dropout 
layer

Input vector

Fig. 4.9 1D CNN LSTM Architecture.

On the other hand, in the second model (Figure 4.9), after the connections of the 1D
CNN and Maxpoling layers, a third dropout layer of 0.5 is added as an exclusion mask
to the LSTM that can improve the generalizability. This fourth LSTM layer learns the
order of the contextual dependencies of the local features entered. Then, in both models,
the 0.5 dropouts fifth layer prevents overfitting during model training and transfers the
learned features to the FC sixth layer. Besides, the Rectified Linear Unit (ReLU) activation
function is used in the middle layers of the network. While in the output layer, the Softmax
trigger function defines the predicted emotion of the multiclass classification.

4.4.9 Recommender Components

Figure A.5 depicts the technological components of TERS related to dataset management,
data evaluation, evaluation of prediction models, and contextualized recommendations of
tourist destinations (see Appendix A.4). The TERS approaches are explained below:

The CBF approach computes the similarity between all the pairs of hotels (see Equation
4.2) with the scalar product of categories of TE (binarized vector of TE), location (longitude
and latitude), description (summary of services related to TE), and the hotel review tags
(for instance exceptional, fantastic and outstanding). The CS metric determines the likeness
between TE categories, and the Haversine distance establishes the closeness of locations.
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On the other hand, the fuzzy match metric [345] compares the description of hotels, and
the Python tool “difflib.SequenceMatcher” measures the similarity of the categorical rating
of the reviews. As a result, a matrix correlates the similarity of the hotel ratings during
the model training and estimates the prediction of the hotel rating for a user. Furthermore,
the KNN algorithm derived from the AlgoBase class [315] was used. Afterward, the split
of the dataset, the evaluation of the recommendation algorithm’s performance is backed
up in the evaluation framework proposed in [316].

TE(hi, hj) = 1 − spatial.distance.cosine(te[hi], te[hj])
Location(hi, hj) = mt.exp(−haversine(te[hi], te[hj])/1.0e3)
Category(hi, hj) = SequenceMatcher(cat[hi], cat[hj]).ratio()

Description(hi, hj) = fuzz.token_sort_ratio(des[hi], des[hj])/1.0e2
Sim(hi, hj) = TEij · Locationij · Categoryij · Descriptionij

(4.2)

where:
hi, hj = pair of hotels related to the users’ rating;
te = binarized vector of hotels’ tourist experiences.;
cat = the hotels’ score category string;
des = the hotels’ services description string;

The CF-CNN model preprocesses the user and hotel identifiers of the rating dataset.
Then, the 50-dimensional feature vectors to train and evaluate the algorithm [317] were
generated. Initially, the embedment layers transformed the input vectors into matrices and
regularized the embeddings using the Gradient Descent (GD) technique [313]. Furthermore,
a concatenation layer decreased the dimensionality of the embedding layers. The developed
model CF-CNN employed a 1D CNN layer to automatically extract the patterns from the
concatenated vector and a Max-Pooling layer to reduce the convolution features map (see
Figure 4.10) [304, 313]. Also, a dropout layer to regularize the model during training was
added. The FC layers later compressed the extracted features and used a ReLu activation
function to produce the predicted rating of the tourist destinations. In contrast to the
CF-CNN approach, the embedding matrices-based CF approach (CF-Net) proposed in
[317] was implemented. A scalar product between the incrustations (users and hotels
matrices) was computed, and, finally, the CF-Net model was trained to apply the GD
through a sigmoid function.
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Fig. 4.10 Collaborative Filtering based on 1D CNN.

The CBF model used the prediction method of KNN [315, 316] for estimating the rating
of an item based on the average similarity score of the hotels and the ratings registered by
a user of the testing dataset.

Finally, the recommendation list was adjusted to 10 items, and the binary vector of TE
was added. Also, depending on the predominance of the emotion, the similarity with the TE
(cosine similarity in Equation (4.2)) and the location (Haversine distance in Equation (4.2))
of the hotels in the top-N list were calculated. The top-N list of tourist recommendations
was ordered according to the geographic proximity of the person. Subsequently, the final
top-N list of TE recommendations performed better in the proposed algorithms compared
to the SVD, SVD++, and normalPredictor algorithms [315].

The source code of the technological components of the ER subsystems and TERS is
available in the following public repository: https://github.com/luzsantamariag/terser.

https://github.com/luzsantamariag/terser




Chapter 5

Results

The datasets were split into a meaningful percentage to train the approaches (80%) and the
other percentage to test the performance of the emotional detection and recommendation models.
The training and testing environment was run on a computer with Fedora 34 operating
system, Intel Core i7, and 16 Gb memory.

5.1 Emotion Recognition
When evaluating the classification of the imbalanced AV classes, we used k-fold Cross-
Validation (CV) to guarantee the presence of all affective states. As defined in Section 4.4.6,
we analyzed the ES dataset with different times between HR instances. Then, we used
the ES dataset to predict emotions with shallow ML algorithms and with imbalanced AV
classes. Subsequently, we used the parameters of the ES with the best performance to test
the ER of the DNN models with balanced AV classes.

5.1.1 Multi-Class Imbalanced Classification

Figure 4.2 depicts the distribution by emotional quadrant of the physiological dataset
and shows an imbalance between the observations of the minority classes (LVHA with
16.3% and LVLA with 10.8%) concerning the majority classes (HVHA with 36.7% and
HVLA with 36.2%). Therefore, we used the Scikit-learn library to evaluate the dataset
with assembly classification algorithms using stratified 5-fold CV [337]. The dataset was
parameterized with ES of 30 HR measurements and different times between instances
(60 and five seconds). Figure 5.1b shows a better performance in the prediction by affective
quadrants with less time between instances (five seconds) than the longest time (60 s) (see
Figure 5.1a).
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Also, the results of the Random Forest (RF), Gradient Boosting (GB), and Extra Trees
(ET) algorithms tend to be slightly better in each case, compared to the Bagging (BAG)
and Ada Boost (AB) algorithms that recorded less accuracy in the emotion detection.
It should be noted that tests with ES of 20 HR instances were also performed, and the
accuracy scores were slightly lower than the tests with 30 HR instances for each ES, as
reported in Figure 5.1. Therefore, the experiments with the DNN models are parameterized
with ES of the size of 30 HR instances.

(a)

(b)

Fig. 5.1 Multiclass classification for ES dataset of 30 HR instances: (a) with 60 s between
instances; (b) with five seconds between instances.

5.1.2 Affective Classification Using DNN Models

The performance of DNN models depends on the volume and quality of the datasets.
Therefore, the implementation of heuristic sampling methods compensates for the imbalance



5.1 Emotion Recognition 95

in the distribution of affective classes [334, 333]. Table 5.1 shows the results of the DNN
models proposed in Section 4.4.8 for affective detection from the physiological dataset
balanced with the K-SMOTE and TL techniques. The three models (1D CNN LSTM, 1D
CNN Flatten, and DCNN) used a batch size of 32, with repetitions of 50 epochs and a loss
parameter calculated with the categorical cross-entropy function. We configured the Adam
optimizer and the learning rate 1 × 10−3 to train the physiological dataset in these models.
The accuracy results in the testing were slightly better than shallow ML approaches (see
Figure 5.1).

Table 5.1 ES dataset performance with CNN-based ER models and four-class balancing
methods.

Model
Data balancing

Method
Dataset Train Accuracy Test Accuracy

Labels HR Slices Better Average Better Average

DCNN [1]
K-SMOTE HVHA, HVLA,

LVLA, LVHA
1231, 1141,
200, 456

0.60 0.56 0.46 0.41
K-SMOTE + TL 0.61 0.57 0.44 0.43

1D CNN, Flat-
ten, and FC

K-SMOTE HVHA, HVLA,
LVLA, LVHA

1231, 1141,
200, 456

0.65 0.61 0.45 0.41
K-SMOTE + TL 0.69 0.64 0.46 0.43

1D CNN,
LSTM, and FC

K-SMOTE HVHA, HVLA,
LVLA, LVHA

1231, 1141,
200, 456

0.63 0.58 0.47 0.42
K-SMOTE + TL 0.67 0.63 0.46 0.44

Combined sampling methods tend to improve accuracy results in both the training and
testing of DNN models. Although the AV classes in Table 5.1 showed an imbalance in
positive affective states (HVHA: excited and HVLA: calm) related to negative emotions
(LVLA: sad and LVHA: angry), accuracy results performed better with CNN models that
used the K-SMOTE and TL data balancing methods. This same trend was confirmed in
Table 5.2, where the emotional class with the lowest number of instances (LVLA: sad) was
eliminated. Therefore, the results during training and testing indicate that this dataset
with more ES instances may increase the accuracy.
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Table 5.2 ES dataset performance with CNN-based ER models and three-class balancing
methods.

Model
Data balancing

Method
Dataset Train Accuracy Test Accuracy

Labels HR Slices Better Average Better Average

DCNN [1]
K-SMOTE HVHA, HVLA,

LVHA
1231, 1141,
456

0.54 0.53 0.48 0.45
K-SMOTE + TL 0.58 0.58 0.46 0.46

1D CNN, Flat-
ten, and FC

K-SMOTE HVHA, HVLA,
LVHA

1231, 1141,
456

0.63 0.57 0.50 0.46
K-SMOTE + TL 0.67 0.62 0.50 0.47

1D CNN,
LSTM, and FC

K-SMOTE HVHA, HVLA,
LVHA

1231, 1141,
456

0.56 0.54 0.50 0.47
K-SMOTE + TL 0.56 0.54 0.51 0.47

The 1D CNN LSTM model showed better performance in detecting AV classes (see
Figure 5.2a,b). However, the efficiency of ER models could be affected by imbalanced
spontaneous emotion data and poor measurements of people’s HR. Hence, we defined the
dataset evaluation protocol by grouping emotions by VA classes due to the importance of
including all affective states during training and testing. Furthermore, we compared the
MIC between ES of 30 HR measures with different times between instances and showed
that the ES dataset of 5-second interval HR instances performed better. Likely, this ER
framework will enhance the accuracy outcomes obtained in a new controlled experiment
with more participants to consolidate a more robust dataset.
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(a)

(b)

Fig. 5.2 Training and validation of the 1D CNN LSTM model in the Emotional Slices (ES)
dataset. The accuracy outcomes correspond to the classification of: (a) four emotional
quadrants in Table 5.1; (b) three emotional quadrants in Table 5.2.

In this way, we got the prediction of the emotional quadrant. The analysis of the
distribution of emotions showed a high rate of participants who registered positive emotions
(happy: HAHV and calm: LAHV) instead of negative emotions (LALV: sad and HALV:
anger). Therefore, we show that people increasingly seek to improve their TE. Although
the imbalance of the emotional dataset limited the prediction results of the ER models,
we achieved a better performance of 44% accuracy in the 1D CNN LSTM approach in
contrast to the shallow ML algorithms of 41% (see the middle part of Figure 6.1).

5.2 Evaluation of the TERS-ER
The evaluation determined the effectiveness of the approaches proposed in the TERS-ER
architecture using the emotional and destinations datasets (see Table 4.3). The evaluation
was carried out with the Mean Absolute Error (MAE) and Root Mean Square Error
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(RMSE) metrics. These accuracy metrics estimate the average prediction error based on
the closeness of the predicted hotel ratings and the actual data (see Equations (5.1) and
(5.2)). The best performance tends to a zero value, while a result equal to or greater than
one indicates a high error rate in the estimation.

The first CBF model was implemented using the Surprise [315] framework. For
this reason, the performance tests were compared with the SVD and SVD ++ matrix
factoring algorithms. The second CF-CNN model compared its performance with the
CF-Net algorithm during the training and testing phases. Subsequently, we analyzed the
performance results of the proposed models in comparison with the base algorithms.

MAE =

∑
(i,j)∈T S

|rij − r̂ij|

|TS|
(5.1)

RMSE =

√√√√√
∑

(i,j)∈T S
(rij − r̂ij)2

|TS|
(5.2)

where:
TS = represents the number of ratings of all users in the test set;
rij = depicts the actual rating of a user ui for the hotel’s TE hj;
r̂ij = represents the estimated rating of a user ui for the hotel’s TE hj;

5.2.1 Validation of CBF and Model-Based Approaches

The results of the tourist datasets training had a positive effect on the performance of the
CBF model compared to the algorithms for reducing the dimensionality of latent factors
since the CBF algorithm, unlike matrix factorization, correlated the similarity of hotel
destinations through the features of TE, location, and description. Moreover, Figure 5.3
depicts a similar behavior in the five folds of the CV of the algorithms CBF, SVD [346],
and the model derived from the latter with the addition of implicit feedback information
SVD ++ [347]. Further, it shows the distribution of performance measurements and the
rising rate according to the hotels’ TE dataset size.
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Mean Absolute Error (MAE) with varying number of fold

(a)
Root Mean Square Error (RMSE) with varying number of fold

(b)

Fig. 5.3 CBF evaluation: (a) MAE; (b) RMSE.

5.2.2 Training and Testing of CF Models

The hotels’ TE datasets were used for evaluating the CF models during the training and
testing. The validation parameters of the models were defined by the batch size of 64, a
loss function MeanSquaredError (MSE), repetitions of 10 epochs, Adam optimizer, and
learning rate of 1 × 10−3.

Figure 5.4 shows the iterations of the recommendation models during the training and
testing with their respective MSE losses. The MAE metric in training and testing shows
our CF-CNN model’s better performance than the CF-Net model.
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(a) (b)

(c) (d)

Fig. 5.4 Recommender system evaluation over (a) MAE of CF-CNN model; (b) MAE of
CF-Net model; (c) RMSE of CF-CNN model; (d) RMSE of CF-Net model.

Therefore, the CF-CNN capacity increased by reducing the regularized overfit by a
0.1 dropout. Furthermore, the loss of the model denotes a positive impact on the training
and testing data and is well below 0.1 (see Figure 5.5).
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(a)

(b)

Fig. 5.5 Loss value of CF-CNN (a) MAE; (b) RMSE.

Likewise, Figure 5.4 shows the RMSE variation of the epochs of the CF models during
the training and testing with their MSE losses. The behavior of the iterations is very
similar in both metrics. Also, the performance results of the CF-CNN model are better
than those of the CF-Net model.

5.2.3 Comparison of Performance Metrics

Unlike the CF-CNN model, the CBF model incorporated similarity metrics between desti-
nations to estimate the rating. Precisely, Figure 5.6 confirms that the proposed approaches
outperform the MAE performance for the predicted rating of the recommendation of tourist
destinations concerning the matrix factoring algorithms. However, in the RMSE metric,
the model’s performance is better for the CF-CNN approach than the other models.
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Fig. 5.6 TERS-ER Evaluation.

Furthermore, Table 5.3 describes the performance of the proposed models and indicates
an outstanding improvement in the accuracy of the list of top-N TE. Since the evaluation
metrics in both MAE and RMSE were the lowest in the CF-CNN model. In addition, the
experimental results with the tourist datasets of the traditional recommendation models
had a slightly lower performance than the models based on DNN.

Table 5.3 Performance statistics with different TERS algorithms.

Algorithm MAE RMSE

CBF (This study) 0.152 0.237
Random [315] 0.172 0.256
SVD [315] 0.153 0.237
SVD++ [315] 0.153 0.237
CF-CNN (This study) 0.124 0.168
CF-Net [317] 0.128 0.175

The general outcomes show that the information of the TE, the geographic location,
and the attributes of the tourist destinations can affect the performance in the prediction.
Finally, the performance results show that the proposed CF-CNN and CBF algorithms
perform better in the TERS-ER architecture.



Chapter 6

Conclusions and future work

The proposed architecture is a reference for developing recommendation systems based on
users’ emotional states in different contexts (see Figure 6.1). Furthermore, this model allows
adding wearable devices with more accuracy physiological sensors [306, 348, 308, 323].
However, when cheap wearable devices become more popular in the market, manufactur-
ers will probably include more accuracy sensors for monitoring biosignals and physical
activity [327, 325, 328, 321, 326, 320]. For this research, we opted for massive and cheap
devices that are probably the most used by people in their daily lives. The disadvantage of
these devices is the low accuracy of measuring physiological signals that would be very
sensitive in medical or specialized applications but are tolerable precisions for tourism. For
this reason, an accuracy of 44% in the emotion detection is tolerable to maximize the user
experience of these types of devices. Also, it’s important to take into account that this
accuracy can be improved with new versions of the wearables used, as with a more robust
ES dataset, through another experiment with a more significant number of participants
and controlled elicitations, which serves as a cold start for the TERS. It could involve other
physiological signals different from HR, such as, for instance, electrodermal activity and
temperature.
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Fig. 6.1 Data model of the TERS-ER architecture.
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Regarding the related work represented in Table 4.2, the use of shallow ML classifiers
with an accuracy of around 0.7 can be seen. ER used the 1D CNN-LSTM hybrid classifier
with an accuracy result of 0.44. This level of performance is tolerable due to the significant
differences in the conditions of the design of the experiments (see Table 6.1). However,
the conditions of this study were planned to meet the requirements of the context, that
is, anyone in their daily lives that uses a cheap wearable device. The emotion detection
performance of this system is acceptable for recognition, generating an additional contextual
factor to a recommender system to improve its accuracy. This contextual factor is emotion,
which is a new contribution to recommender systems for the domain of tourism.

Table 6.1 Differences between emotion recognition studies.

This study Related Studies

Context Daily life Laboratory
Devices Cheap wearable Specialized sensors and wearables
Annotators Self-annotation (MEB app) Team of annotators (external and internal)
Participants 18 20 (average)
Stimuli Daily life–spontaneous Videos and images–controlled
Emotion duration Variable Constant (1–2 minutes)
Emotion annotation Voluntary Mandatory
Experiment duration 11 weeks 1 day
Signals HR (PPG) PPG, GSR, EEG, ECG (multi-channel)
Signal recording Sampling (third-party app) Continous
Domain Tourist Various

Regarding the analysis of RS-related works based on emotions, these works focused
mainly on analyzing sentiments of reviews. Their MAE and RMSE results are very close
to 1 (see Table 4.3). On the contrary, in our study, the CF-CNN and CBF classifiers
were used, the similarity between users was determined, and the context, preferences, and
profile were taken into account. This way, optimal MAE and RMSE results were achieved
compared to the other studies (see Section 5.2).

Concerning MIC and following the comparison of results (see Section 5.1.1), it is
recommended to parameterize the number of sufficient physiological instances for each ES.
In the experiment, better results were obtained with 30 instances of HR for each ES, with
a distance between instances of five seconds.

It is necessary to deal with the imbalance of emotion classes in this ER system, which
is logical since human behavior predominates in certain emotional types, although the
contextual stimulus differs. For instance, a happy person tends to feel more frequent
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emotions from the happiness quadrant (HVHA). Then in the emotional register, an
imbalance of classes is created for the other quadrants. For this reason, combined K-
SMOTE and TL techniques were applied for balancing the minority emotional classes. It
was also experimented with the elimination of the instances of a minority class, in this case,
sadness (LVLA), to improve the performance of the classifier, although the performance
improved (see Tables 5.1 and 5.2). This procedure is not recommended because it biases
the emotional behavior and this can lead to overfitting of the model.

The main contributions of this research were:

• The TERS-ER model (see Section 4.4)

• An algorithm that synchronizes the emotional labeling of a physiological time series
in an adjustable and sliding window (see Section 4.4.6).

• An algorithm that creates emotional segments (see Section 4.4.7) according to the
process of an emotion formulated by Norman [309].

• The MEB app (see Section 4.4.5) replaces the paper recording of the emotional
spectrum that was done with SAM.

• An emotional dataset, heart rate recording, and emotion recording were created from
the data collection of the Xiaomi Mi Band wearable devices and the MEB app of 18
participants of the experiment (see Section 4.3).

• Source code for the implementation of the TERS-ER model (see Section 4.4.9).

The results of the TERS-ER model were published in the journal Sensors [349], the
review of the state of the art of this research was published in the journal Future Internet
[304], and the emotion detection model using deep learning in a multimodal dataset
AMIGOS was published in the journal IEEE Access [1]. Another collaborative investigation
(both investigations belonging to the same call for MinCiencias 733) was published in
Applied Sciences [314]. Finally, the cooperative paper published in IEEE Access was an
input for this research project, especially in feature extraction and ML algorithms for
sensor signal analysis [240].

Future research would focus on merging multimodal physiological datasets to the TERS-
ER architecture to optimize the affective detection of users. The system could incorporate
contextual information on the environment and travel routes to increase user satisfaction.

Furthermore, this research is part of the second of five phases of a TE recommendation
macro-project. Future areas of research would involve the following:
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• Definition of an emotion recognition model from a publicly available emotional
dataset. In this case, the AMIGOS dataset was used [1].

• Definition of the model: This corresponds to the results of this study, where the
TERS-ER architecture was proposed (see Figure 6.1).

• Consolidation of the ES dataset for the cold start: Replicating the experiment on a
larger scale and in a controlled environment to consolidate a large ES dataset with
better performance indicators in emotional detection from HR data (see Figure 6.2).

• TERS-ER production: users in the context of their daily life, months or weeks
before planning their TE, use low-cost wearable devices (Xiaomi mi band) and the
application (TE recommender) on their smartphone to collect in this period the HR
data. Subsequently, the HR data collected from the user will be labeled with the
emotions according to the ES dataset, and the remaining stages of the model are
applied to make the respective recommendation (see Figure 6.2).

• Improvement of the TERS-ER: Defines the ability of the dataset to learn by itself
from the new instances generated by the production environment, using advanced
ML techniques such as, for instance, reinforcement learning or deep reinforcement
learning [313] (see Figure 6.2).
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Fig. 6.2 Production scenario for the TERS-ER architecture
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Chapter 7

List of Acronyms

The following abbreviations are used in this document:

A Arousal
CARS Context-Aware Recommender System
CBF Content-Basic Filtering
CF Collaborative Filtering
CS Cosine Similarity
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DL Deep Learning
DNN Deep Neural Network
ECG Electrocardiogram
EEG Electroencephalogram
ER Emotion Recognition
ES Emotional Slicing
FC Fully Connected
GSR Galvanic Skin Response
HR Heart Rate
HVHA High Valence High Arousal
HVLA High Valence Low Arousal
IBI Inter-Beat-Interval
IoT Internet of Things
KNN K-Nearest Neighbor
LSTM Long Short-Term Memory
LVHA Low Valence High Arousal
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LVLA Low Valence Low Arousal
MAE Mean Absolute Error
MEB MyEmotionBand app
MFB Master For mi Band
MIC Multi-class Imbalanced Classification
ML Machine Learning
NLP Natural Language Processing
OntoTouTra Ontology for Tourist Traceability
OTA Online Travel Agency
POI Point of Interest
PPG Photoplethysmogram
RF Random Forest
RMSE Root Mean Square Error
RS Recommender System
SAM Self-Assessment Manikin
SMOTE Synthetic Minority Oversampling Technique
SPARQL SPARQL Protocol and RDF Query Language
SVM Support Vector Machine
TE Tourist Experiences
TERS Tourist Experiences Recommender System
TERS-ER Tourist Experiences Recommender System based on Emotion Recognition
TL TomekLinks
V Valence
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Appendix A

Implementation of Functional
Components of TERS-ER

A.1 MyEmotionBand Application
Figure A.1 depicts the functional structure of the MEB app for consolidating the emotional
dataset. For this purpose, the classes (MainEmotionBand and ActivityData) provided the
user interface for recording the emotion and activity.

A.2 ER System
ER model is integrated by dataset consolidation, data preprocessing, ES analysis, balancing
of emotion classes, and prediction of the affective condition (see Figure A.2). The first
component manages the collections of physiological data, emotions (emotional state,
activity, and location), labeled data (HR with emotion tag), and segmented (number of HR
instances). Also, it manages the connections to the database servers (getFirebaseConnection,
getConnectionMongoDB) and maintains the emotional dataset resulting from the ER.

A.3 HR and Emotion Dataset Records
The emotional dataset collected 21.000 records from the experiment participants. Figure
A.3 shows the time series of the emotion record. The HR dataset gathered 1.535.992 HR
instances from the experiment participants. Figure A.3 shows the time series of the HR
record.
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Fig. A.1 Components of the MyEmotionBand application.
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Fig. A.2 Components of the emotion recognition system
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Fig. A.3 Emotion data of experiment participants.
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Fig. A.4 HR of experiment participants.
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A.4 Components of the TERS
This part is presented the technological components of TERS related to dataset management,
data evaluation, evaluation of prediction models, and contextualized recommendations of
tourist destinations (see figureA.5).

For building the TE categories, OntoTouTra [314] supplied a knowledge base. Also, the
recommender managed the collections of emotion and TE preferences of the participant’s
(see Figure A.6). From these collections, a candidate user algorithm that calculated the
similarity of the participant with the users of the tourism dataset was proposed. The
recommender generated the list of top-N TE that the candidate user had not yet visited.
Subsequently, the recommendations are filtered by the interests of TE, affective status,
and location of the participant.
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Fig. A.5 Components of the TERS. The EvaluationData, EvaluatedAlgorithm, Evaluator,
and AlgoBase classes are based in [316, 315].
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Fig. A.6 Data model of TERS-ER.



A.4 Components of the TERS 159

A.4.1 Data Management

This module managed the MongoDB server datasets related to the profile (gender and
age), TE preferences (for instance, relaxation, family, entertainment, and ecological), and
affective states of the participants (felt emotion). Moreover, the OntoTouTra ontology
supplied the knowledge base of hotels (hotel identifier, description, location, and categorical
rating), hotel services (hotel identifier, wellness facilities, and activities), and user ratings of
the satisfaction of the services consumed in the destination (hotel identifier, user identifier,
and rating) [314]. Afterward, we defined the algorithms to recovery the datasets of the
tourist destinations from an endpoint, created the TE from the hotel services, and calculated
the frequency of the predominance of the emotion felt by the ER participants (see Figure
A.6).

The information Linked Data dispose of a large number of datasets of diverse appli-
cation domains published on endpoints [330]. Precisely, TERS-ER gathered the explicit
information from OntoTouTra through declarations of graphic patterns defined in SPARQL
queries. The data model is structured in triples of an object, predicate, and subject (for
instance, object:? Hotel, predicate: RDF:type, and subject: ott:Hotel). Therefore, we
developed Algorithm 3 to access an endpoint server that contains the tourist ontology.
Then, we implemented the scripts in the SPARQL query language to collect the information
from the Colombia datasets. The JSON documents retrieved from the SPARQL query
were stored in DataFrames. A similar procedure was carried out to execute the SPARQL
queries for reviews and services of the hotel destinations.
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Algorithm 3 For getting the OntoTouTra knowledge base.
1: procedure getOntotoutra
2: sparql = sparqlConnection; hotels = [];
3: stringQuery = ”””
4: PREFIX ott :< http : //tourdata.org/ontotoutra/ontotoutra.owl#
5: PREFIX rdf :< http : //www.w3.org/1999/02/22 − rdf − syntax − ns#
6: SELECT ?hotelID ?cityName ?hotelDes ?hotelLat ?hotelLon ?hotelCatScore
7: WHERE {;
8: ?hotel rdf : type ott : Hotel;
9: ott : hotelID ?hotelID;

10: ott : hotelDes ?hotelDes;
11: ott : hotelLat ?hotelLat;
12: ott : hotelLon ?hotelLon;
13: ott : hotelCatScore ?hotelCatScore;
14: ott : hasCityParent ?city.
15: ?city rdf : type ott : City;
16: ott : cityID ?cityID;
17: ott : cityName ?cityName;
18: ott : hasStateParent ?department.
19: ?department rdf : type ott : State;
20: ott : stateName ?stateName.
21: FILTER(?stateName = ”Boyaca”)
22: }”””
23: sparql.setQuery(stringQuery); sparql.setMethod(′POST ′);
24: sparql.setReturnFormat(JSON); results = sparql.query().convert();
25: for result in results[”results”][”bindings”] do
26: hotel = [];
27: for k, v in result.items() do
28: hotel.append(v[′value′]);
29: end for
30: hotels.append(hotel);
31: end for
32: return pd.DataFrame(data = hotels, columns = list(results[”results”]);
33: end procedure

Algorithm 4 to create the TE categories of hotels from the features of wellness facilities
(for example, thermal baths, spa, and body scrub) and activities (for instance, hiking,
canoeing, museum tours, and beach) was developed. These features belong to the dataset
of the services offered by the hotels. We implemented the string division method to
replace the separator characters and get a list of strings from each category of services.
Then, we extracted from a Dataframe of hotel experience categories the labels of each TE
corresponding to the service elements of activities (for example, the ecological experience
includes the hiking activity) and well-being (for instance, the relaxation experience is
related to the spa facilities). Finally, the TE lists are added to the hotels’ dataset (for this
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case, the TE list comprises: Ecological, Relaxation, Adventure, Heritage / Culture, and
Family).

Algorithm 4 Creating the tourist experiences in the hotels’ dataset.
1: procedure getTouristExperience
2: service[′activityExperience′] = experienceCategory(tags[′activity′][′tag′]);
3: service[′wellnessExperience′] = experienceCategory(tags[′wellness′][′tag′]);
4: hotel[′touristExperience′] = service.apply(;
5: lambda x : list(set(x[′activityExp′] + x[′wellnessExp′])), axis = 1);
6: end procedure
7: procedure experienceCategory(name)
8: tourExp = [];
9: for j in range(service) do

10: temp = [];
11: if str(service[name][j]) ̸= ′nan′ then
12: item = service[name][j].replace(′[′,′′ ).replace(”′”,′′ ).replace(”′”,′′ ).split(′,′ );
13: for i in item do
14: if len(touristE[touristE[′services′] = i][′exp′].tolist()) > 0 then
15: temp.append(touristE[touristE[′services′] = i][′exp′].tolist()[0]);
16: end if
17: end for
18: tourExp.append(list(set(temp)));
19: else
20: tourExp.append([]);
21: end if
22: end for
23: return tourExp;
24: end procedure

Algorithm 5 to determine the frequency of the emotion felt by the participants during
the affective detection stage was implemented. Initially, to identify the contextual features
of the affective state and the location of the participants, we created the Dataframes of
the collections of ER (imei, emotion, duration, and quantity of ES) and ES (imei, hr, ts,
emotion, latitude, and longitude). Then, the percentage of predominance between the
duration of ES of the same category and the total time of ES of each participant was
computed. Furthermore, we extracted the longitude and latitude parameters of the ES
and used the OpenStreetMap library to get the participants’ location (city, state, and
country). Afterward, we integrated the features of the emotion with the most significant
predominance, the VA quadrant (happy, calm, sad, and angry) and the location of each
participant.
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Algorithm 5 For getting the predominance of the emotion felt by participants, using the
ES and ER collections.
1: procedure getUserEmotionRecognition
2: getUserLocation();
3: df_emotion = pd.DataFrame(columns = emotion.columns);
4: df_emotion[′felt_emotion′] = ””;
5: for i, user in enumerate(emotion[”imei”].unique()) do
6: data = emotion.loc[emotion[′imei′] = user];
7: emotion[′felt_emotion′] = emotion.loc[;
8: data.index.values[0] : data.index.values[len(data) − 1]].apply(;
9: lambda x : x[′duration′]/data[”duration”].sum(), axis = 1);

10: df_emotion = df_emotion.append(emotion.loc[;
11: data.index.values[0] : data.index.values[len(data) − 1]]);
12: end for
13: emotion.update(df_emotion);
14: getUserCity();
15: return emotion;
16: end procedure

A.4.2 Recommender Engine

We developed two approaches to the TERS engine (see Algorithm 6). The prediction
algorithms processed the filtered information from the hotels’ dataset and extracted the
most relevant TE items for the recommendation process. Besides, we developed the
algorithms of candidate user similarity and contextual features filtering to create the top-N
list of TE. Finally, we generated the list of recommended TE based on the target user’s
preferences and emotions.
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Algorithm 6 TE recommendation based on contextual data.
1: procedure generateRecommenderReport
2: rd = recommenderData();
3: recommendation, algorithmName, mae, rmse = []; results = evaluator.results;
4: rc = RecommenderContext(rd, user, profile);
5: candidateUser = rc.computeUserSimilarity();
6: prediction = evaluator.TopNRecs(rd, candidateUser);
7: for algorithm in range(prediction) do
8: prediction = (pd.DataFrame(prediction[algorithm])).sortV alues();
9: recommendationList = pd.merge(prediction, rd.hotels);

10: result = rc.getUserContext(recommendationList);
11: name = evaluator.algorithms[algorithm].GetName();
12: recommendation.append([result, name, results[name]]);
13: end for
14: recommendation, results = cfPrediction(′CFCnn′, rd.rating, rd.hotels, candidateUser);
15: recommendation, results = cfPrediction(′CFN et′, rd.rating, rd.hotels, candidateUser);
16: for k, v in results.items() do
17: algorithmName.append(k);
18: for key, value in v.items() do
19: if key ==′ MAE′ then
20: mae.append(value);
21: else
22: rmse.append(value);
23: end if
24: end for
25: end for
26: userRecommendation = recommendation[mae.index(min(mae))][0];
27: end procedure

We proposed filtering candidate users via profiles similar to the target user to generate
the list of top-N TE (see Algorithm 7). Initially, similar features are selected among users
of the hotel review dataset and ER participants. Then, a binary vector of TE is created
from the participant’s profile data. On the other hand, in the hotels rating Dataframe,
we calculated the gender of the users by applying the gender_guesser.detector library.
Besides, we defined the aggregation functions to filter the candidate users by selected
features (gender, country, and TE). Also, we computed the similarity between the chosen
participant and the candidate users filtered by hotels visited. The cosine similarity metric
between the TE was estimated (see equation 4.2). Afterward, the number of user visits
per hotel, the average hotel review score, and the average TE similarity of the candidate
users are computed.
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Algorithm 7 For computing the similarity of the profile of an ER participant with the
users of the hotels’ tourist experiences dataset.
1: procedure computeUserSimilarity
2: participant = imei; profile = []; candidateUser = []; userNum = 25; reviews =

rd.rating;
3: uProfile[′TEType′] = uProfile.apply(
4: lambda x : rd.catToNumerical(TEType, ast.literal_eval(x.touExp)), axis = 1);
5: userER = rd.getUserEmotionRecognition();
6: if len(userER[userER.imei = participant])! = 0 : then
7: gender = list(uProfile[uProfile.imei = participant][′gender′])[0];
8: country = list(userER[userER.imei = participant][′country′])[0].lstrip();
9: te = list(uProfile[uProfile.imei = participant][′TEType′])[0];

10: end if
11: profile.append([participant, gender, country, te]);
12: detectorGender = gender.Detector();
13: sim = reviews.groupby(′userId′).filter( lambda x : x[′userId′].count() > 1);
14: sim[′gender′] = sim.apply( lambda x : detectorG.get_gender(x.userId), axis = 1);
15: sim = sim.filter([′userId′,′ gender′,′ country′,′ hotelID′,′ rating′,′ emotion′], axis = 1);
16: sim = sim[sim.gender == profile[0][1]];
17: sim = sim[sim.country == profile[0][2]];
18: hotelTE = rd.getTouristExperienceType();
19: userGr = sim.groupby([′userId′,′ gender′,′ country′]).agg(
20: [′count′,′ nunique′]).sort_values([(′hotelID′,′ nunique′)], ascending = False);
21: for i in range(userNum) do
22: groupSim = {};
23: user = sim[sim.userId = userGr.index[i][0]].filter([′hotelID′]);
24: user[′touExp′] = sim[′hotelID′].map(hotelTE);
25: user[′teSim′] =teSim(user.touExp, profile[0][3]);
26: groupSim[′userId′] = userGr.index[i][0];
27: rating = (sim[sim.userId = userGr.index[i][0]]).groupby([′userId′]).agg([′mean′]);
28: groupSim[′meanRating′] = rating.iloc[0][1];
29: groupSim[′teSim′] = user.teSim.mean();
30: groupSim[′uniqueHotel′] = len(user);
31: candidateUser.append(groupSim);
32: end for
33: end procedure

Furthermore, we implemented the prediction methods to generate the list of top-N TE
that the target user has not visited yet. This user was selected from the list of candidate
users ordered by TE similarity and average rating. The rating estimated of the list of hotel
destinations not visited by the target user for the CF-CNN model was calculated. While
the CBF model used the prediction method of KNN [315, 316] for estimating the rating of
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an item based on the average similarity score of the hotels and the ratings registered by a
user of the testing dataset.

We developed the algorithm to filter the list of top-N TE by the contextual features
of the affective state and the location of the target user (see Algorithm 8). Initially,
the participant’s record with the maximum percentage of the emotion felt, latitude, and
longitude was obtained from the ER collection. Then, the recommendation list was adjusted
to 10 items, and the binary vector of TE was added. Also, depending on the predominance
of the emotion felt by the target user, the similarity with the TE (cosine similarity in
equation 4.2) and the geographical location (haversine distance in equation 4.2) of the
hotels in the top-N list were calculated. The top-N list of tourist recommendations was
ordered according to the geographic proximity of the ER participant. Subsequently, the
final list of top-N TE recommendations performed better in the proposed algorithms
compared to the SVD, SVD++, and normalPredictor algorithms [315].

Algorithm 8 To filter the top-N recommendation list of hotels’ tourist experiences by
contextual features of an ER participant.

procedure getUserContext
userER = rd.getUserEmotionRecognition(); topN = 10;
er = userER.loc[(userER.felt_emotion == (

userER[userER.imei == participant].felt_emotion.max()))];
emotion = er.iloc[0][′emotion′];
lat = er.iloc[0][′latitude′];
lon = er.iloc[0][′longitude′];
userEmotion[′te′] = userEmotion.apply(

lambda x : rd.catToNumerical(TEType, ast.literal_eval(x.touExp)), axis = 1);
user[′check′] = user.apply(lambda x: (emotion in x.emotions), axis = 1);
user = user.loc[(user.check == True)];
rec = rec.filter(

[′hotelID′, ′hotelName′, ′touExp′, ′Lon′, ′Lat′,′ score′ ,′ number′,
′hotelCity′, ′hotelAddress′, ′hotelUrl′], axis = 1).iloc[0 : topN ];
rec[′te′] = rec[′hotelID′].map(rd.getTouristExperienceType());
rec[′teSimilarity′] =teSim(rec.te, userEmotion.iloc[0][′te′]);
rec[′locationSim′] =locationSim(str(lat+′,′ +lon), str(rec.hotelLat+′,′ +rec.hotelLon));
rec[′locNormalized′] =valueNormalized(rec[′locationSim′]);
rec[′similarity′] = rec[[′teSim′,′ locNormalized′]].mean(axis = 1);
userRecommendation = rec.sort_values([′similarity′], ascending = False);

end procedure
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