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Facultad de Ingenieŕıa Electrónica y Telecomunicaciones

Universidad del Cauca
Popayán, Cauca, 2021



Acknowledgements

First and foremost, I would like to thank God for keeping his promises and giving

me the opportunities to grow up as a person and professional continually. I express

my sincere gratitude to my mom, partner, family, and friends for their continuous

support and love throughout the years. I want to dedicate this work to them. Fur-

thermore, I would like to thank my outstanding academic advisor, Professor Oscar

Mauricio Caicedo Rendón, for his support directing and guiding me for years with

unconditional backing and helping solve all academic problems. Also, I would like

to thank Jhonn, Carlos, David, and Rodrigo for all their support, encouragement,

and accompaniment during these years.

I



Abstract

Reliability is essential in Smart Farming supported by the Internet of Things. A

Fog Computing approach is pivotal for Smart Farming since it allows farmers to

monitor and improve crop production by getting closer cloud capabilities at the

edge of the network. The provisioning of reliability in farms is critical since the

failure of a fog node can cause interruptions for farmers’ decision-making services.

Smart Farms’ unprotection may cause significant economic losses and low yields of

production. Moreover, making decisions based on inaccurate data can diminish the

quality of crops and, consequently, lose money. This master dissertation addresses

the Fog-based Smart Farms’ unprotection from two approaches: system and data

reliability. On the one hand, the dissertation introduces an optimization model for

traditional protection schemes 1:1 and 1:N for meeting reliability in Smart Farms to

minimize deployment cost to farmers giving heterogeneous fog nodes. On the other

hand, we propose an IoT-Fog-Cloud architecture that incorporates a mechanism

based on Machine Learning to detect outliers and another based on interpolation

for inferring data intended to replace outliers. The proposed approaches were eval-

uated by conducting a case study in a network based on the proposed and deployed

architecture at a Colombian Coffee Smart Farm. The results show the effectiveness

of the proposed approaches regarding protection schemes in FN-based smart farms

guaranteeing high reliability to improve the operation of farms; and high Accuracy,

Precision, and Recall, as well as low False Alarm Rate and Root, Mean Squared

Error when detecting and replacing outliers with inferred data.
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Chapter 1

Introduction

The Smart Farming (SF) represents the application of Information and Communi-

cation Technologies (ICT) into the agriculture [1, 2]. SF aims to increase the quality

of a product and the growth of agriculture yield with minimum human intervention.

[3]. The particular environment of each crop affects directly the growth and pro-

ductivity thereof. Therefore, it is necessary to monitor weather variables such as

temperature, humidity, precipitation, and wind, to control quality, yield, traceabil-

ity, and the spread of diseases [4, 5]. The manual collection of data and inspection of

the crop status are error-prone, sporadic, unsupervised, and inaccurate, disturbing

the farmer decisions [6].

The Internet of Things (IoT) has emerged as a suitable technology to collect and

transmit several data from farms to users (e.g., farmer, exporter, and consumer)

because it is highly interoperable, scalable, open, and ubiquitous [7, 8]. IoT ap-

plications automatically offer farmers useful information to continually monitor the

growth and weather variables of crops [9, 10]. The use of IoT platforms in SF

(i.e., IoT-based SF) will bring many benefits such as sensing systems, easier data

exchange, device heterogeneity, data analytics, scalability, reasoning, and decision

support [11]. Nevertheless, creating reliable wireless networking is still a significant

challenge in IoT [12] since the computational power to process data is limited, the

communication protocols consume too much energy, the Internet is not always avail-

able for IoT devices, and the topologies are dynamic which generate an error-prone

1
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environment.

Reliability is the ability of a system to provide the correct service or the correct data

over a period of time [13, 14]. In IoT-based SF, there is a lack of reliability due to

failures in data collection and data transmission [15]. Some errors in data collec-

tion can be [16]: i) random errors by lack of sensor reading repeatedly, ii) spurious

reading (i.e., non-systematic reading errors) by a fake measure when some sporadic

physical events happen (e.g., if a camera flash triggers when measuring light inten-

sity); and iii) systematic errors such as calibration, loading errors, and environment

errors. Some data transmission failures can be: first, a sensor node failure causing a

total or partial absence of data. Second, message omissions for sensor readings lost

due to sensor failures and packet losses [17, 18]. Third, message delays when the

timeliness of sensor data is a system requirement [19]. Fourth, a message corrup-

tion when the communication is disturbed by an unexpected fault such as natural

disaster or if it has been intentionally attacked by a sensor manipulation [14].

The unreliability compromises the data and service quality that are necessary to

avoid inefficiency in monitoring and control systems [20, 21] and to meet the farmer

needs [22]. Thus, two of the main challenges in IoT-based SF are to assure the

reliable data collection and transmission [23]. To detail the problem, let us consider

a coffee farm as a particular SF scenario that involves IoT devices such as network-

connected weather stations, low-cost computers, Wireless Sensor Networks (WSN),

cameras, and smart-phones that collect a significant and heterogeneous amount of

environmental and crop performance data [24]. These devices can measure: i) pH

levels at the fermentation phase, ii) ambient temperature, air humidity, relative

temperature and humidity of coffee beans at the dry phase, iii) temperature, time

and color bean at the roasted phase; and iv) weather variables at any phase. These

data are essential to guarantee the quality, taste, and aroma of coffee. Indeed, these

data are the main input for applications such as data analysis to predict coffee

production, traceability, and alarm systems [25, 26]. Therefore, the data collection

and data transmission must be reliable to support the correct operation of the coffee

farm and SF in general.

The concept of reliability has been studied in IoT at several domains. Some works
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have proposed solutions to provide reliability in IoT by a self-control mechanism to

the reliable measure of domestic conditions in-home monitoring systems [27], a time

series-based prediction model to automate the reaction of a monitoring system [28],

a distributed matching algorithm to manage tasks distribution between user nodes

and Cloudlets [29], a smart IoT gateway to dynamic discovery and auto-registration

of devices in-home-scale environments [30], and an aggregation scheme for Fog-

based IoT to address the data privacy [31]. Nevertheless, none of the above works

operates with a standardized concept of reliability. Then, there is not consistent

way to provide reliability. Indeed, each work considers reliability from a different

focus such as probabilistic, security, or self-management.

To sum up, to the best of our knowledge, the concept of reliability has not been

studied deeply in SF. Thus, in the literature, a few works have considered reliable

systems for SF. For instance, a self-control mechanism for environmental parameters

monitoring and energy management [27]. An adaptive scheme for WSN nodes to

increase the energy efficiency by undervolting 1 the specified minimum voltage levels

of components on a potato field [32]. An application using Cloud Computing (CC)

and Fog Computing (FC) to ensure farm animal welfare by managing production

indicators [33]. It is noteworthy that these works present reliability results, but they

do not introduce how such results were achieved. In fact, they do not propose a

mechanism to provide reliability, nor they analyze the metrics that affect reliable

systems (e.g., energy consumption and packet losses).

Considering that IoT-based SF represents an appropriate solution in agriculture,

this master thesis highlights that it is relevant the provisioning of reliability in data

collection and transmission to afford services to the farmers that improve the quality

of a product, the crops productivity, economic gains, and decision support. Provi-

sioning of reliability includes the management of metrics such as devices density,

link loss probability, and energy consumption. Therefore, this master thesis focuses

on solving the following research question: How to provide reliability in the

collection and transmission of data in an IoT-based Smart Farming?

In order to answer the raised research question, we present the following objectives.

1Operate in areas below the minimum specification of voltage.



1.1. Contributions and Scientific Production 4

General Objective

• Propose a mechanism for providing reliability in the collection and transmis-

sion of data in an IoT-based SF.

Specific Objectives

• Design a mechanism based on FC to manage reliability in the collection and

transmission of data in an IoT-based Smart Farming.

• Implement a prototype of the proposed mechanism.

• Evaluate the reliability of the proposed mechanism considering network den-

sity, link losses, and energy consumption in a coffee Smart Farming environ-

ment.

1.1 Contributions and Scientific Production

We face the unreliability in IoT-based SF using FC. As farms are geographically far

from cloud providers, FC offers the cloud capabilities needed by SF at the edge of the

network, closer to the users or demand points. Moreover, FC is a suitable paradigm

for constrained Internet connectivity scenarios such as farms, a common challenge

in developing countries. It is essential to highlight that we address the provisioning

of reliable smart farms by two approaches: system and data reliability. The first

approach is oriented to find the optimal allocation (i.e,. placement of resources) of

heterogeneous Fog Nodes (FNs) under reliability constraints. This model considers

the protection of FNs by redundancy schemes. The second approach is directed to

data cleaning mechanisms located at the Fog Tier. The Failure Detection and Data

Failure Recovery mechanisms detect outliers and inferring data intended to replace

them.

The investigation about providing reliability in IoT-based Smart Farms led to the

following major contributions.
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• An optimization model to minimize fog-based infrastructure deployment cost

to farmers, considering heterogeneous nodes under reliability constraints.

• A comparison of redundancy protection schemes (i.e., 1:1 and 1:N) for meeting

reliability in SF.

• A Things-Fog-Cloud architecture that combines Machine Learning (ML) and

Interpolation techniques to intelligently and automatically provide data relia-

bility on SF applications.

• An ML-based mechanism for outlier detection in IoT-based SF data collection.

• An Interpolation-based mechanism for replacing the outliers detected with

inferred data.

• A case study involving real data collected in a network based on a Things-Fog-

Cloud and deployed in a Colombian Smart Coffee Farm.

The work presented in this monograph was reported to the scientific community by

a paper published as a first author, another as a co-author, and one submitted to

renowned journals (see Appendix B).

• Ana Isabel Montoya Muñoz, Oscar Mauricio Caicedo Rendón. An ap-

proach based on Fog Computing for providing reliability in IoT Data

Collection: A Case Study in a Colombian Coffee Smart Farm Applied

Sciences 2020.

– Status: Published.

– Special Issue: Computing and Artificial Intelligence.

– Classification: A1 MinCiencias - Q2 (JCR).

• Jhonn Pablo Rodŕıguez, Ana Isabel Montoya Muñoz, Carlos Rodriguez

Pabón, Javier Hoyos, and Juan Carlos Corrales. IoT-Agro: A smart farm-

ing system to Colombian coffee farms Computers and Electronics in Agri-

culture 2021.
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– Status: Published.

– Classification: A1 MinCiencias - Q1 (JCR).

• Ana Isabel Montoya Muñoz, Rodrigo A. C. da Silva, Nelson L. S. da

Fonseca, and Oscar Mauricio Caicedo Rendón. Provisioning Protection to

Smart Farming Computers and Electronics in Agriculture 2021.

– Status: Submitted.

– Classification: A1 MinCiencias - Q1 (JCR).

Although not directly related to this master thesis, other peer-reviewed publication

linked to the design of reliable network management solutions was published during

the master.

• Ana Isabel Montoya Muñoz, Daniela Casas Velasco, Felipe Estrada Solano,

Oscar Mauricio Caicedo Rendón, and Nelson L. Saldanha da Fonseca. An ap-

proach based on Yet Another Next Generation for software-defined

networking management International Journal of Communication Systems

2021.

– Status: Published.

– Classification: A1 MinCiencias - Q3 (JCR).

1.2 Methodology and Organization

Figure 1.1 depicts the phases of the scientific research process that will guide the

development of this master thesis: Problem Statement, Hypothesis Construction,

Experimentation, Conclusion, and Publication.

• Problem Statement is to identify and establish the research question.
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Figure 1.1: Master thesis phases

• Hypothesis Construction is to formulate the hypothesis and the associated

fundamental questions. In addition, this phase aims to define and carry out

the conceptual and technological approaches.

• Experimentation is to test the hypothesis and analyze the evaluation results.

• Conclusion is to outline conclusions and future works. Note that Hypotheses

Construction has feedback from Experimentation and Conclusion.

• Publication is to submit and publish papers for renowned conferences and

journals. The writing of the dissertation document also belongs to this last

phase.
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This master thesis document has been divided into chapters described below.

• Chapter 1 presents the Introduction that contains the Problem Statement,

Objectives, Contributions and Scientific Production, and Methodology and

Organization of this document.

• Chapter 2 presents the State-of-the-Art organized by the Background about

the relevant topics concerning the performed research (including Smart Farm-

ing, reliability in IoT, and Fog Computing), and the Related Work that

describes the researches works closer to the proposed approaches.

• Chapter 3 introduces the Fog Computing-based system reliability ap-

proach in IoT by the Problem statement and mathematical Formulation

of the optimization model under reliability constraints, an Evaluation at sev-

eral demand scenarios, and Final remarks.

• Chapter 4 introduces the Fog Computing-based data reliability approach

in IoT based on Reliable Fog Computing-based Architecture, the Data

cleaning mechanisms to provide reliability, and a Case Study in a

Colombian Coffee Smart Farm.

• Chapter 5 presents Conclusions and Future work. The main conclusion of

our work and outline future work are presented.



Chapter 2

State-of-the-Art

In this chapter, we present a background related to our approaches to provide relia-

bility in SF. First, we describe SF, IoT, Reliability, and FC. Second, we review the

related works according with the approaches of system reliability and data reliability.

2.1 Background

2.1.1 Smart Farming

The SF concept evolved from others paradigms such as Farm Management Informa-

tion Systems (FMIS) [34] and Precision Agriculture (PA) [35]. FMIS studies planner

systems for collecting, processing, providing and using all types of data necessary to

support management operations of agricultural processes [36, 37]. PA covers the set

of technologies that manage spatial and temporal variables of crop production [10]

to contribute with long-term sustainability of production agriculture and improve

the economics yields in an environmentally friendly way [38, 39]. Even if it is less

used in the literature, another way to refer SF is Smart Agriculture (SA) [40]. SA is

the integration of smartness into the agriculture using information technology that

help farmers [41]. One of the main aims of making the agriculture smarter is the

need to predict the demand for a crop so that the farmers are able to obtain fair

9
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return of investment without wasting resources [42]. Nevertheless, SF still has some

drawbacks such as the lack of high-quality information to meet the farm production

requirements [43].

For this master proposal, the primary motive of SF is to provide a better solution for

farmers to obtain a high yield, provide a high added value into the supply chain and

improve food production processes by using ICT in agricultural production systems

[1, 33]. SF involves the deployment of ICT into crops, equipment, machinery, and

sensors; this generates a large volume of data and information that allows automating

some processes such as monitoring and transportation [22]. SF relies on distributed

systems around the farm that enable the combination and analysis of various farm

data for decision making. Some authors suggest the integration of data mining

[3, 44, 45] or artificial intelligence into farming to find correlations or patterns among

the data collected (e.g., weather sensors data) in order to generate decision support.

For instance, an SF system alerts the farmers about critical weather conditions to

take the best control strategies in the crops [25].

With the necessity to apply an integrated system that assures high productivity

levels and monitoring systems at all stages of the agricultural value chain such

as cultivation and harvesting [46], new technologies have emerged to increase the

scope of SF, including IoT [22]. An IoT framework for SF offers various benefits

such as deploying sensing systems, interoperability between different smart systems,

easier data exchange from sensors, and increased automation by employing Internet

standards [47].

2.1.2 Internet of Things

IoT is a novel paradigm that is rapidly growing in modern wireless telecommunica-

tions and monitoring scenarios [48] [49]. IoT has several definitions, for instance, it is

defined as an infrastructure that will connect physical and virtual devices [49]. Also,

IoT is outlined as the Internet that considers “things“ identified by unique addresses

[50]. The network that connects devices having sensing capabilities is another IoT

definition [51]. Furthermore, IoT has also been defined as the connection between
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things that are dynamically configurable and communicates by interfaces-based on

Internet protocols [52]. This master dissertation uses the IoT definition provided by

[53], as a network that exchanges information to achieve intelligent identification,

location tracking, monitoring, and management.

Traditionally, IoT widely uses the following technologies for the deployment of ap-

plications at different domains [54] [55]: i) Radio-Frequency Identification (RFID)

that uses track tags attached to objects for identifying them automatically, ii) WSN

that allows different network topologies and multihop communication between low-

cost and low-power devices known as sensor nodes, iii) Middleware that provides

services to make easier the communication for application developers; and iv) CC

that provides hardware and software services from data centers over the Internet.

WSN can be considered a specific implementation of IoT monitoring systems [56],

particularly, using IoT devices as wireless sensors [57].

The IoT architecture for SF is divided into three layers from bottom-up [53, 58]:

Sensing layer, Network layer, and Application layer. The Sensing layer includes IoT

devices such as RFID tags, readers, cameras, sensors and so on, that are respon-

sible for collecting data, recognizing objects, and perceiving the environment. The

Network layer is in charge of all the data transmission, traffic management, routing

technology, local processing, real-time monitoring and process control of the sensed

data. The Application Layer process the data collection and transmission from the

bottom layers to deploy services to end-users through communication interfaces. An

example of their services is the prediction of coffee production based on weather

parameters.

2.1.3 Reliability in IoT

Since there is not a standardized definition of reliability in IoT [59], this section

presents the diverse definitions of reliability found in the IoT literature. Further-

more, this section exposes a more specific definition of reliability in WSN technology

which is an essential component of IoT in SF.

In IoT, the reliability has several definitions. For instance, the ability of a system or
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component to perform its required functions under stated conditions for a specified

period of time [60]. The probability that a program will not cause the failure of

a system for a specified time [61]. The ability of a system to prevent itself from

failing [28]. The ratio of calculated value with the information received correctly

[62]. The performance of components such as radio transceiver and communications

micro-controller [12]; and in terms of availability [30, 32] or security [31].

In WSN, [21] introduces a reference model to classify reliability. This model es-

tablishes a common taxonomy to evaluate the research in WSN reliability involving

different combinations of retransmission or redundancy techniques that aim to ensure

event or packet level reliability by using either end-to-end or hop-by-hop methods

[23]. The following WSN reliability techniques and methods consider both data

collection and data transmission.

• Retransmission-based reliability is the most commonly used technique to achieve

data transmission reliability. With this technique, the sender node waits for

the acknowledgment of the next hop node on the path after transmitting its

packet.

• Redundancy-based reliability aims to correct only the lost or corrupted bits

within the packet. The sender adds some extra information to the packet that

the receiver can use to reconstruct the packet if some bits are lost or corrupted.

• Event level reliability aims to ensure that the sink 1 only gets enough informa-

tion about a certain event happening in the network instead of all the sensed

packets.

• Packet level reliability aims to ensure that all the packets carrying sensed data

from all the related sensor nodes are reliably transported to the sink.

• End-to-end is a connection-oriented mechanism, where only the two end points

(i.e., only the source and destination nodes) are responsible for ensuring reli-

ability.

1Base station used to collect and process data in centralized mode.
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• Hop-by-hop is a link-oriented mechanism, where every single hop from source

to destination is responsible for ensuring the reliable transmission of the sensed

data.

Related to the reliability in WSN, there is a problem of data quality. In [14], the

authors provide a comprehensive overview of the solutions to achieve improved sensor

data quality and reliable operation of WSN-based monitoring applications. They

highlight the following different fault detection methods to provide reliability based

on data quality:

• Rule-based methods that use expert knowledge about the variables that sensors

measure to determine operation thresholds of sensors.

• Estimation-based methods that define a “normal” behavior by considering

spatial and temporal correlations from sensor data.

• Learning-based methods that define models for correct sensor measurements,

using collected data for building the models.

Redundancy techniques have also been extensively utilized to enhance the reliability

of engineering systems [63]. A redundant system is a system that remains in stand-

bay a set of nodes to guarantee its normal operation. The redundant nodes are

configured in parallel as backups; then as long as not all of the system components

fail, the entire system works. In other words, the total system reliability is higher

than the reliability of any single system component. Figure 2.1 shows the redundant

system reliability computation of “n” nodes where Rs is the total reliability and Ri

is the reliability of each component.

Another standard method to compute reliability is by the Mean Time Between Fail-

ure (MTBF) metric. Even though MTBF and reliability are different, MTBF can be

converted to reliability by using the following equation for exponential distributions

where e is the epsilon mathematical constant (i.e., 2.71828), t is the time in hours

of operation, and the MTBF is also expressed in hours. For instance, to calculate

the reliability at 8760 operation hours (i.e., one year), Equation 2.1 indicates that
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Figure 2.1: Redundant system

the probability that a system with an MTBF of 26280 hours (i.e., three years) will

still be functioning after the operation time, is the 71.6%.

R(t) = e−
t

MTBF (2.1)

SF is an error-prone environment needing system reliability since the IoT infrastruc-

ture deployment is outdoor, implying possible outages for lack of coverage, crashes,

or loss for harsh environmental conditions [64]. Moreover, making decisions based

on inaccurate data can diminish the quality of crops and, consequently, lose money.

We address these dependable challenges by two approaches: system and data relia-

bility. For this master thesis, system reliability is the ability of a system to provide

continuity of correct service over an operation time, and data reliability is the ability

of a system to give accurate data over a period of time [13, 14].

2.1.4 Fog Computing

In the literature, there are diverse concepts to refer to the intermediate layer be-

tween Things and Cloud. Originally, this concept was known as Edge Computing

(EC) [65] or Edge Computing Technologies (ECT) [66]. EC offers real-time response

by bringing networking and computational resources on edge devices (e.g., routers,

gateways, switches, and base stations) near to the end user. EC include emerg-

ing technologies such as FC, Mobile Edge Computing (MEC), Micro Data Centers

(MDCs), and Cloudlet. The primary aim of FC is to incorporate virtualized services
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into the network edge and network devices, in terms of processing, storage, and net-

working services [67, 68, 69]. The major purpose of MEC is Radio Access Networks

(RANs) in 4G and 5G cellular networks. MEC offers EC by proposing a placement

of computation and processing resources at base stations [70, 71]. However, its scope

has been expanded in the last year to encompass non-mobile network requirements,

replacing the “Mobile” by “Multi-Access” [72]. MDCs are the reduced scaled ver-

sion of data centers, which extend the offered services of the Cloud near to the end

users [73, 74, 75]. Cloudlet is a small virtualized “data center in a box” close to the

mobile devices to serve edge users in a distributed way [76, 77].

In this master thesis, we are going to study FC [78] because Fog Nodes (FNs) [79]

define devices with less storage resources and more energy limitations than Cloudlets

and MDC, which meets the resource constraints of SF. FC provides services for com-

puting, storage, and networking between end-devices and traditional Data Centers

[80]. FC addresses the limitations of CC when the number of connected devices in-

creases and compromises the Data and Service Quality, especially for delay-sensitive

applications [81]. The term FC was introduced by Cisco as a highly virtualized

platform suitable for a number of critical IoT services and applications [82]. Other

authors define FC as a distributed computing paradigm that fundamentally extends

the CC paradigm from the core to the edge of the network [72, 83, 84], and as a

“cloud closer to ground” [85].

FC has the following main characteristics [69] [84] [86]: i) location awareness of

distributed FNs, ii) lower latency of end-devices data processing, iii) geographical

distribution of services and applications provided by the Fogs deployed anywhere, iv)

scalability by providing distributed computing and storage resources that work with

large-scale sensor networks, v) support for mobility by the ability to connect directly

to mobile devices and to enable mobility methods, vi) real-time processing between

FNs, vii) heterogeneity of FNs or end-devices designed by different manufacturers

that need to be deployed according to their different platforms, viii) interoperability

by working with different domains and across different service providers, ix) support

for online analytic and interplay with the Cloud by processing data close to end-

devices; and x) reduction of operating expenses by processing selected data locally

instead of sending them to the Cloud for analysis.
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Figure 2.2: Fog Computing Hierarchical Architecture

Figure 2.2 depicts the Fog hierarchical architecture that is formed by a Cloud Tier

at the top, a Fog Tier at the middle and an IoT Tier at the bottom [87, 88, 89]. The

Cloud Tier consists of one or more traditional DCs that provide Infrastructure as

a Service (IaaS) [90], Platform as a Service (PaaS) [91], and Software as a Service

(SaaS) [92, 93]. The Fog Tier is composed of FNs. FNs are physical or virtual entities

(e.g., routers, switches, low-cost computers, wireless access points, video surveillance

cameras, controllers and servers) that communicates end-users and DCs, aimed to

ease the execution of IoT applications [94]. This tier can be divided into multiple

ones according to the requirements of applications as a Multi-Service Edge Tier. It

is important to highlight that FNs can collaboratively share storage and computing

installations, and can co-exist with network elements reusing the wireless interface.

The IoT Tier or Things Tier is responsible for receiving/sending data, performing
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a first stage analysis, and passing its results to the intermediate Fog Tier for more

detailed analysis [95]. The IoT Tier is formed by IoT devices such as sensors,

wearables, embedded systems, and so on. These devices can interact with the upper

layers and with each other too.

The fog network can be empowered by Software Defined Networking (SDN) and

Network Functions Virtualization (NFV) [96] to assure the dependability of IoT

integrated system, meet the QoS requirements of the fifth-generation (5G), managing

and controlling smart devices. The SDN paradigm decouples the control plane

from the data plane by offering a centralized logic, a programmatic configuration,

and open standards-based protocols [97]. [98] states that “some gateways can be

deployed as virtual machines and their traffic can be tightly controlled thanks to

SDN capabilities in a local edge cloud”. Thus, SDN and NFV make possible the

placement of controller on the end nodes of fog network, improving the services by

the virtualization of gateways, switches, load balancers, firewalls, and other functions

on those FNs [99].

Since the benefits of SDN and NFV were considered as a possible component of a

solution in FC-based IoT for providing SF reliability, the research carried out in the

master included SDN-integrated management in a technology-agnostic and heteroge-

neous environment. The results about SDN-integrated management were published

in a paper contributing to this master thesis (Section 1.1). The findings of that

paper were not included in the core of this thesis because the (actual) farm deploy-

ment used in the case study is not SDN-based. Nonetheless, SDN and virtualization

concepts were incorporated in the proposed reliability approaches, such as functions

virtualization, resources allocation, and hierarchical controller-based architecture.

2.1.5 Fog Computing for Smart Farming

Fog can control and manage IoT-based SF environments aiming at meeting the

requirements related to the limited capacity for storage, energy constraints and

computation of sensors [8, 100]. Some works have used FC to save bandwidth and

locally process data such as bonsai moisture measurements [101] and to ensure farm
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animal welfare (cows and pigs) by managing temperature, GPS, cameras, humidity,

and accelerometer [33]. Furthermore, FC can improve other SF applications such as

coffee production, traceability, farm data security, and farm alarm system.

Thanks to its advantageous features, Fog can provide reliability in IoT-based SF by

managing constraints of latency, network bandwidth, device resource and energy,

services with intermittent connectivity to the Cloud, and IoT security [102]. More-

over, reliability is one essential research area in FC [103]. Fog can provide reliability

into the interoperability issue [104] caused by the variable traffic generated by IoT

devices. FNs can handle various types of data collected, providing an environment

where heterogeneous devices can operate coherently.

2.2 Related Work

2.2.1 System Reliability in IoT-based Smart Farming

Table 2.1 summarizes research works on system reliability, which considers the in-

volvement of SF, IoT, Edge or FC and the objective function if the work uses opti-

mization. Recall that reliability is a standardized measure in software engineering

disciplines, but there is no agreed definition for IoT [105], much less for SF. For this

reason, we review principles of reliability in other domains.

Regarding SF domain, [27, 32, 106, 107] highlighted the relevance of reliability in

SF scenarios in terms of receiving sensor data correctly, saving energy by operating

sensor below the minimum specification of the voltage, comparing measurements

between generic and specialized sensors, and as a coefficient regarding rainwater

harvesting system. Most of the works aforecited handles reliability as a system

qualitative feature and not as a quantitative evaluation parameter. Moreover, none

work used traditional techniques, such as redundancy, nor implemented an FC-based

approach to provide reliability.

Several works have addressed the reliability in an edge computing domain. The

work [33] considered an SF scenario using FC for managing an animal welfare ap-
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plication locally. But this work proposed only a local database in case of failures

to handle data reliability. [108] proposed a fault-tolerant mechanism by combining

Directed Diffusion and Limited Flooding to enhance the data transmission reliabil-

ity. This mechanism was designed to evaluate the health status of older adults by

using a Reduced Variable Neighborhood Search based on the sensor Data Processing

Framework. [31] proposes a reliable and privacy-preserving selective data aggrega-

tion scheme for the fog-based IoT. This paper defines the non-collusive and collusive

attacks for the particular data aggregation service. Thus, the authors handle relia-

bility, stating that the data should not be forged/modified and intact.

For the SDN-based FC (SDN-F) domain, [96] predicts the current reliability of

legacy links based on their previous reliability values at the SDN controller using an

improved K-NNR algorithm. [109] estimates the link reliability level using an ML al-

gorithm. These works model path reliability in objective functions for SDN-enabled

IoT-Fog to improve network management. However, none of these optimization

models are related or applicable to an agriculture scenario which is the domain

addressed in this master thesis.

[110] and [111] present optimization solutions for fog-based location-allocation prob-

lem. The model in [110] evaluates two types of demands: strict (which can only be

processed in a FN) and flexible (which can be hosted either in the fog or in the

cloud). The goal is to process most of the strict workload in the FNs using the

minimum number of servers possible to reduce the overall cost. The authors do not

include reliability constraints in their model. [111] introduces the PACK algorithm

that optimizes the placement of a fixed number of edge servers, minimizing the dis-

tances between servers and Access Points (APs) while balancing system workload

and satisfying server capacity constraints. The PACK algorithm only considers reli-

ability by providing reserve capacity for APs that are a critical part of the network

infrastructure.

In particular, for Edge Computing-based 5G domain, [29] proposed a proactive edge

caching of Ultra-Reliable and Low-Latency Communication (URLLC) services in Fog

networks. The reliability consists of sending the same requests to various servers,

and using whatever response comes back first. This approach minimized the total
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Table 2.1: Related work - System reliability

Ref Domain Reliability Definition SF IoT Edge/Fog Optimization Objective

[32] Agriculture
Availability over operating areas below
the minimum specification of voltage

X

[27] WSN Homes
The high ratio of theoretical value with
the sensor information received cor-
rectly

X X

[106] Agriculture
Low reading difference between generic
meter and specialized sensors node

X X

[107] Greenhouse
The ability of the rainwater tank to sat-
isfy the water needs of tomato and be-
gonia crop

X X

[33] Animal welfare
Replicas of the database in case of fail-
ure

X X X

[108] Healthcare Fault-tolerant data transmission X X

[31] Fog-based IoT Integrity of data X X

[109] SDN
Link reliability as the average failure/-
downtime or repair time in specific time
duration

X X
Maximize the path reliability and min-
imize the path delay

[96] SDN-F
Edge’s failure and downtime probabil-
ity

X X
Maximize path reliability,and minimize
delay and bandwidth utilization

[110] 5G No formal definition X X

Maximize the processing of strict work-
load in the FNs using the minimum
number of servers possible to reduce the
overall cost

[111]
City-wide public
Wi-Fi network

Replication of a few critical Wi-Fi Ac-
cess Points

X X

Minimize the sum of weighted distances
between the edge servers and the APs
taking into consideration the workload
of each AP and the capacity constraints
of each server

[29] 5G
A probabilistic constraint on the max-
imum offloaded computing delay

X X
Minimize the total task computing la-
tency under reliability constraints

[112] 5G
The ability of a system to provide ser-
vice continuously over a defined period
of time

X
Minimize the number of MEC de-
ployed, the number of hosted slices, and
the total service response time

[113] 5G
The ability of a system to provide ser-
vice continuously over a defined period
of time

X
Minimize overall service provisioning
cost, service response time and service
loss probability

Chapter 3 Agriculture
The ability of a system to provide con-
tinuity of correct service over an oper-
ation time

X X X
Minimize fog-infrastructure cost under
reliability constraint
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task computing latency under reliability constraints, by efficiently distributing and

proactively caching the results of the computing tasks.

[112] highlighted that reliability can be assured by dynamic resource provisioning

at the edge nodes to cope with failures. This work introduced a Multi-access Edge

computing location problem, which aims at selecting locations to place edge nodes

hosting protected slices to meet the URLLC requirements. The authors evaluated

traditional protection schemes to provide reliability for latency-stringent services.

[113] introduced a capacitated reliable facility location problem with failure proba-

bility for edge device placement and reliable Broadcasting in 5G NFV-based small

cell networks. In the problem formulation, a standby backup facility will serve the

demands hosted by another facility if the primary facility fails or if the facility’s load

reaches its capacity. The authors employed an extended genetic NSGA-II algorithm

to locate edge devices to provide reliable broadcast services to minimize the ser-

vice response time, service loss probability, and service provisioning cost. Although

[29, 112, 113] provides and evaluates reliability at the edge of the network, do not

proposes a protected FNs schemes involving SF scenarios to minimize cost.

As far as we know, no work proposes protected SFs considering Fog layer deploy-

ment’s reliability and cost for farmers’ decision-making applications to perform de-

pendably. The system reliability approach presented in Chapter 3 introduces, first,

a model for optimizing the resource allocation of FNs serving farm’s demand points

in terms of processing and memory that seeks to minimize implementation costs

under reliability constraints. Second, two schemes to provide fog layer protection

by redundancy: one o more backups for each primary FN (1:1 and 1:N). Third,

new concepts to model common farming functions, consider heterogeneous FNs and

different types of demands.

2.2.2 Data Reliability in IoT Collection

Table 2.2 summarizes research works on data reliability, which considers the involve-

ment of IoT, FC, SF, mechanisms for outliers detection, and mechanisms for data

recovery when outliers happen.
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The works in [27, 28, 30, 32, 114, 115, 116, 117] introduced IoT applications, mostly

in SF domains. These works focus on deploying specific applications such as moni-

toring for greenhouses, a control system for watering crops, and a system to minimize

the use of fertilizer and pesticides. Although they highlight reliability as an essen-

tial feature for IoT-based SF, they did not design their solutions from a reliability

perspective. [29, 31, 108] managed reliability in FC-based IoT by using optimiza-

tion, self-adaptability, and re-transmission techniques. Nevertheless, none of these

works included failure data detection and data recovery mechanisms to provide re-

liability in SF scenarios. [33, 7, 118, 119, 120, 121] introduced novel IoT-based SF

applications using FC features, such as local processing, deploying control modules

near the access network, minimizing the amount of data transferred to the cloud,

and reducing delay. These works did not exploit the FC capabilities for data relia-

bility improvement. [122, 123, 124] introduced mechanisms to detect anomalies in

datasets. However, none of these works compared two or more methods for anomaly

detection nor considered an SF environment based on FC and IoT. [125] and [126]

proposed mechanisms for detecting and handling outliers by interpolation, and an

algorithm to remove spatial outliers in high-density data sets but this work did not

consider FC-and-IoT based-SF.

There is no approach based on ML and interpolation techniques, to the best of our

knowledge, aimed to provide data reliability to IoT-Fog-Cloud-based SF applications

that support decision-making to farming stakeholders. Our data reliability approach

presented in the Chapter 4 seeks to address the shortcomings mentioned above by

introducing a Fog-based and reliability-oriented architecture that incorporates a

mechanism for detecting outliers in data and another mechanism for handling them

to offer reliable data. Also, it is to highlight that our approach operated with data

collected in a real SF scenario.
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Table 2.2: Related work - Data Reliability

Ref Description Reliability Definition IoT FC SF Outlier Detection Data Recovery

[28]
A system architecture for monitoring
the reliability of IoT

The ability of the system to prevent
itself from failing by continuously in-
trospecting its state and take decisions
without human intervention

X

[30]
A self-configurable IoT gateway for in-
terconnecting non-IP devices in small-
scale IoT environments

Availability and self-configuring X

[114]
An optimal system watering agricultural
crops based on a Wireless Sensor Network
(WSN)

No formal definition X X

[115]
A micro-climate monitoring and control sys-
tem for greenhouses

Mean-battery life and network mean
packet reliability

X X

[116]
A methodology for data cleaning to elimi-
nate yield data errors in Winter cereals yield
tracking system

The correct data collection in
yield maps

X X X

[27]
A new framework for monitoring IoT systems
intelligently

The high ratio of theoretical value with
the sensor information received cor-
rectly

X X

[32]
An adaptive and reliable undervolting
scheme for WSN nodes

Availability over operating areas below
the minimum specification of voltage

X X

[117]
A detailed framework to cater full fledged
agricultural-solutions using IoT

No formal definition X X

[29]
A proactive computing and task distribution
scheme for ultra-reliable and low-latency fog
computing networks

A probabilistic constraint on the max-
imum offloaded computing delay

X X

[31]
A reliable and privacy-preserving selective
data aggregation scheme for Fog-based IoT

Integrity of data X X

[108]
A framework for reliable data transmission
in a healthcare IoT system supported in Fog
computing

Fault-tolerant data transmission X X

[33]
A framework for developing and deploying on
animal welfare applications

Replicas of the database in the Cloud,
in case of failures

X X X

[7]
An IoT platform to face soilless culture needs
in full recirculation greenhouses using mod-
erately saline water

The ability to avoid network ac-
cess failures

X X X

[121]
An IoT system with fog assistance and cloud
support that analyzes data generated from
wearables on cows

Availability X X X X

[118]
SmartHerd, an IoT platform solution that
addresses the connectivity and animal wel-
fare in a smart dairy farming scenario

Availability X X X

[119]
An IoT application that monitors the cattle
in real-time and identifies lame cattle at an
early stage

Accuracy X X X

[120]
An IoT platform for agricultural monitor-
ing automation, and pest management image
analysis

No formal definition X X X

[122]
A mechanism for discovering anomalies in a
temperature dataset using the DBSCAN al-
gorithm

The ability to detect outliers X

[123]
An anomaly detection framework for stream-
ing data

The ability to detect outliers X

[124]
An in-network knowledge discovery approach
for detecting outliers in sensor networks

Degree of truthfulness of the readings
obtained from each sensor

X

[125]
A mechanism that handles outliers via an in-
terpolation method based on neural networks

Data Quality X X

[126]
An algorithm to identify and exclude spatial
outliers in the high-density spatial data set.

Data Quality X X X

Chapter 4
An approach for providing reliability in Fog-
based IoT

The ability of a system to provide the
correct data collection in Smart Farm-
ing data over a period of time

X X X X X



Chapter 3

A Fog Computing-based System

Reliability Approach in IoT

3.1 Introduction

SF represents the application of ICT into agriculture [2]. SF aims at increasing

the quality of a product, and the growth of agriculture yield with minimum human

intervention [3]. An FC approach involving an IoT-Fog-Cloud continuum is pivotal

for SF since it allows farmers to monitor and improve crop production by data

analytics [10, 47, 117]. As farms are geographically far from cloud providers, FC

can be used to offer at the edge of the network the cloud capabilities needed by

SF [27, 33, 127, 128]. FC aids to address some SF challenges, such as connectivity

and availability constraints and limited capacity for storage and processing of the

sensors [8].

Despite the FC advantages, the provisioning of reliability in SF is critical since the

failure of an FN can cause interruptions for farmers’ decision-making services. Re-

markably, Smart Farms’ unprotection may cause significant economic losses and low

yields of production [11, 12, 129]. For example, if the server that transfers essen-

tial data to guarantee taste, value, and aroma of coffee [24] goes down, the coffee

production will not meet the quality standards; hence it will not be acceptable to

24
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exportation. Moreover, SF is an error-prone environment since the device’s deploy-

ment is outdoor, leading to possible outages for lack of coverage, crashes, or loss

for harsh environmental conditions. Ensuring reliability in resource-constrained IoT

networks is one of the primary concerns to achieve a high degree of efficiency in

monitoring and control systems [21].

For provisioning protection to SF is necessary to achieve devices continuum operation

without fault over a given time. This chapter introduces a novel model for protecting

Smart Farms by the Fog Layer infrastructure reliable deployment (protected FNs by

redundancy) for providing services to farmers minimizing the implementation costs.

We introduce the following new concepts to model the proper resource allocation in

protected and heterogeneous FNs regarding processing and memory: virtual Smart

Farming Functions (vSFFs) and Smart Farming Function Chains (SFFCs), referring

to an algorithm that performs a function related to a farm service, and the chaining

of these functions, respectively. Furthermore, we evaluate the following schemes to

provide reliability to SF services:

• 1 : 1, a dedicated backup node is reserved for each service demand.

• 1 : N , a backup node is shared among N potential primary nodes.

3.2 Problem Statement

The approach introduced in this chapter considers Smart Farms based on a tradi-

tional FC architecture formed by Cloud, Fog, and Things layers (Figure 2.2). The

Cloud layer includes one or more DC with high processing, memory, and bandwidth

resources. The Fog layer is composed of FNs. FNs are physical or virtual entities

(e.g., wireless access points, raspberry pi, controllers, and servers) that facilitate the

communication between end-users and DCs, these entities are intended to ease the

execution of IoT applications [94]. The Things layer comprises devices that sense

and transmit data to the FNs for processing [95].

The resources of FNs can be shared to meet demands points from multiple farm ser-

vices. A demand point represent a service request from farms stakeholders. A farm
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service (e.g., crop monitoring and automatic irrigation) corresponds to an SFFC

that has different processing, memory, and latency requirements. FNs can process

several SFFCs on-demand according to the available capacities for supporting the

requirements mentioned above. A set of vSFFs forms an SFFC. A vSFF is a primary

function needed to perform farm applications.

Figure 3.1: virtual Smart Farming Functions

Figure 3.1 depicts traditional vSFFs, such as collecting temperature values from a

sensor or saving data in a database. Note that a farm service can be composed of

another farm service. For instance, the alarm system contains all the vSFFs from

monitoring plus the vSFFs necessary to control, report, and act. Let us consider

that an SFFC1 is the corresponding chain from the service of forecasting and SFFC2

for traceability. Each service demands particular requirements regarding processing

and memory. All vSFFs of a chain are hosted by the same primary FN. In case of

failure, the whole chain is transferred to a backup device.

The goal is to design a model able to find the optimal allocation of SFFCs in terms

of CPU and RAM in FNs to meet the users’ demand points minimizing deployment

costs. By allocation, we mean the assignment of SFFCs demanded by the users,

which defines the FNs activation. Allocation aims to locate the resources in a way
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that supplies the demand points most efficiently. In addition, the model envisions

the redundancy of FNs by finding optimal assignation of backups under reliability

constraints and comparing two protection schemes: 1:1 and 1:N. The model also

differentiates two levels of protection assignment (i.e,. 0 - primary node, and 1 -

secondary or backup node). Moreover, it distinguishes three types of FNs, from 0 -

lowest resources to 2 - highest resources.

Figure 3.2 illustrates the 1 : 1 protection scheme, in which the primary FN contains

SFFCs for specific farm service, and a dedicated backup is assigned in a different

FN of the same type when the primary one fails. For instance, the primary FN1 of

type 0 process the SFFC composes of vSFF1, vSFF2, and vSFF3; in case of failure,

the dedicated backup FN2 of type 0 will be in charge of the same SFFC.

Figure 3.2: Dedicated Scheme (1 : 1)

Figure 3.3 presents the 1 : N protection scheme, in which the primaries FNs contain

SFFCs for a specific farm service, and there is a potential backup FN (of the same or

higher type) for the N assigned primary nodes in case one fails. The secondary FN

can replace N potential primary nodes depending on the capabilities of memory and

processing. For example, the primary FN1 of type 0 process a SFFC composes of

vSFF1, vSFF2, and vSFF3, and the primary FN3 of type 1 process a SFFC composes
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of vSFF1, vSFF2, and vSFF5. For a 1 : 2 scenario, the secondary FN5 of type 2 is

the potential backup of the SFFCs of FN1 and FN3 in case of one fails.

Figure 3.3: Shared Scheme (1 : N)

3.3 Problem Formulation

This section introduces the formulation of heterogeneous FN allocation problem

with two protection schemes. The goal is to devise the optimal number of FNs

(hosting SFFCs or vSFFs) based on available resources (i.e., processing and memory)

and reliability requirement to provide seamless connectivity for farms services and

minimizing deployment costs. The notation used in the formulation is summarized

in Table 3.1.

Let G = (U ∪ V,E) be a bipartite graph in which U denotes the set of potential

FNs where the vSFFs of farming services can be activated to serve the requests from

the demand points (users from several farms) v ∈ V . The network link between the

FNs and demand points is defined by E ⊆ U × V . FNs are heterogeneous. We
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Table 3.1: Notation used in the FN allocation problem formulation

Symbol Description
U Set of FNs
V Set of demand points
I Index of FN type (i=0 - lowest resources, i=2 - highest resources)
fui Fixed cost to activate a FN u ∈ U of type i in USD

K
Level of protection assignment of a FN (k=0 - primary, k=1 - sec-
ondary)

Ψui CPU capacity of FN u ∈ U of type i in MIPS
Φui RAM capacity of FN u ∈ U of type i in GB

τv
Processing (CPU) requirement of a demand point v assigned to a
FN u ∈ U in MIPS

σv
Memory (RAM) requirement of a demand point v assigned to a FN
u ∈ U in GB

ru Reliability of a FN at the location u ∈ U
Rv Required reliability level of a demand point v ∈ V

differentiate three types of FNs according to CPU (Ψ) and RAM (Φ) capacities,

reliability rates, and cost.

FNs can fail for several reasons, such as unexpected restart and shutdown, especially

for power outages often in developing countries’ farms. Each FN u ∈ U is associated

with a reliability value, ru, which defines its probability of no-failure operation for

a given operation time. The FNs hosting a demand point are categorized either

as primary or as secondary (i.e., k = 0 primary node, k = 1 secondary node),

depending on its role in protecting. If a primary FN fails, a node assigned as a

secondary (backup) hosts the demands of the failed node.

The objective is to find optimal allocation of FNs hosting vSFFs that compose a farm

service requested meeting reliability while minimizing deployment cost. We address

this objective by formulating an FN location problem extended with protection

schemes and cost minimization, which finds: the optimal number of FNs to minimize

monetary cost given heterogeneous FNs under two protection schemes (1 : 1 and

1 : N).

The solution for the FN location problem is given by a objective criteria formulation

which employs the binary decision variables in Table 3.2.
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Table 3.2: Decision variables

Notation Description

yuik ∈ {0, 1}
Value 1 indicates that the FN u ∈ U of type i as k assignment
(k = 0 primary node, k = 1 secondary node) is active

xuv ∈ {0, 1} Value 1 indicates that the FN u ∈ U serves a demand point v ∈ V
zuw ∈ {0, 1}

Value 1 indicates that the secondary node w ∈ U backing up the
primary node u ∈ U is active

The objective formulation has the following objective function:

Min
∑
k∈K

∑
u∈U

∑
i∈I

fuiyuik (3.1)

The objective function defined by Equation 3.1 aims at minimizing the cost to

active heterogeneous FNs. The above can be interpreted as: the higher the number

of activated FNs (primary and backups), the greater is the cost incurred.

The constraints of the problem are the following:

∑
u∈U

xuv = 1 ∀v ∈ V (3.2)

Constraint 3.2 ensure that all demand points v ∈ V are served by primary nodes

u ∈ U .

∑
k∈K

∑
i∈I

yuik ≤ 1 ∀u ∈ U (3.3)

Constraint 3.3 restricts the allocation of only one type and only one role (prima-

ry/backup) per node. For instance, if the node 0 (u = 0) of type 5 (i = 5) is

activated as primary node (k=0), the model cannot activate another node u = 0.

∑
v∈V

xuvτv ≤
∑
i∈I

yui0Ψui ∀u ∈ U (3.4)
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∑
v∈V

xuvσv ≤
∑
i∈I

yui0Φui ∀u ∈ U (3.5)

Constraints 3.4 and 3.5 ensures that the CPU and RAM capacities of an FN of type

i assigned as primary should be greater than or equal to the capacities requested by

a demand point assigned to it.

1− (1− ru)(1− rw) (3.6)

1− (1−
∑
i∈I

yui0rui)(1−
∑
i∈I

ywi1rwi) ≥ Rvxuv ∀u ∈ U,w ∈ U, v ∈ V (3.7)

1− (1−
∑
i∈I

yui0rui)(1−
∑
i∈I

ywi1zuwrwi) ≥ Rvxuvzuw ∀u ∈ U,w ∈ U, v ∈ V (3.8)

Constraint 3.8 follows from the reliability of a redundant system presented in Section

2. Recall a redundant system remains on standby a layer of backup devices to guar-

antee regular operation. Equation 3.6 illustrates the total reliability of a redundant

system with two elements in parallel: u and w (i.e., primary and secondary FNs).

Equation 3.7 instances the Equation 3.6 with the decision variables into a constraint

that assures the overall reliability level achieved with the implemented protection

scheme. This level should be greater than or equal to Rv, which is the expected

reliability level of a demand point v ∈ V . Equation 3.8 involves the decision variable

zuw. The left-hand side of the expression verifies that ywi1 is the assigned backup

of yui0; the right-hand side checks that u is the assigned FN attending the demand

point v.

The protection schemes 1 : 1 and 1 : N are considered in the FN allocation problem

to furnish different protect services in case of FN failure. They are presented in

Subsection 3.3.1.
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3.3.1 Protection schemes

This section extends the formulation of the FN allocation problem presented in

Section 3.3 to furnish a 1 : 1 and a 1 : N shared protection schemes to mitigate the

impact of failures of FNs on service provisioning. In the former scheme, if a primary

node fails, its demand points are reassigned to a dedicated backup on a different

FN of the same type. The secondary node serves as a dedicated backup facility. In

the latter scheme, the demand points are reassigned to a secondary FN shared by

N < |U | primary nodes if one of them fails. For instance, if the primary FN040 of

type 4 is attending the demand points 1, 2, and 3, and the primary FN110 of type

1 is serving the demand point 0, with N = 2, the secondary FN241 of type 4 is the

shared backup of both primary nodes and will attend the demand points of the first

node that fails.

∑
w∈U

zuw =
∑
i∈I

yui0 ∀u ∈ U (3.9)

∑
u∈U

zuw ≤ N ∀w ∈ U (3.10)

Constraint 3.9 indicates that a backup node is assigned for each primary active FN.

Constraint 3.10 indicates that a backup FN can replace N ≤ |U | potential primary

nodes. With this constraint, the dedicated protection scheme is a particular case

when N = 1.

zuw
∑
i∈I

yui0Ψui ≤ zuw
∑
i∈I

ywi1Ψwi ∀u ∈ Uw ∈ U (3.11)

zuw
∑
i∈I

yui0Φui ≤ zuw
∑
i∈I

ywi1Φwi ∀u ∈ Uw ∈ U (3.12)

Constraints 3.11 and 3.12 ensures that the CPU and RAM capacities of a secondary

FN w ∈ U of type i must be greater than or equal to the capacities of the primary
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FN u ∈ U assigned to it.

3.3.2 Linearization

The linearization of Equation 3.8 was required to simplify the implementation of the

reliability constraint. For linearizing the multiplication between the binary decision

variables ywi1 and zuw, an auxiliary variable auxuiw was necessary:

• auxuiw ∈ {0, 1}- the value 1 indicates that the secondary node w ∈ U assigned

as k = 1 is active and is backing up the FN u ∈ U of type i.

Equations 3.13 and 3.14 are necessary constraints regarding this operation.

2× auxuiw ≤ ywi1 + zuw ∀u ∈ U, i ∈ I, w ∈ U (3.13)

ywi1 + zuw − 1 ≤ auxuiw ∀u ∈ U, i ∈ I, w ∈ U (3.14)

1− (1−
∑
i∈I

yui0rui)(1−
∑
i∈I

auxuiwrwi) ≥ Rvxuvzuw

∀u ∈ U,w ∈ U, v ∈ V
(3.15)

Constraint 3.15 replaces Equation 3.8 in the model. The left-hand side of expres-

sion checks if the reliability rate of the primary nodes (k = 0) and corresponding

secondary nodes (k = 1) protection schemes are enough to meet the reliability de-

manded. The right-hand side of the expression verifies that the reliability of the

demand point v is attended by the actives primary and secondary node u and w.

For the same purpose, we also linearize the multiplication between the decision

variables yuik and zuw in Equations 3.11 and 3.12. Taking into account that all

the decision variables are binaries, we can describe Equation 3.11 as Equation 3.16
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where the left-hand side of the bracket is the difference of CPU capacities between

the backup and primary node.

∑
i∈I

ywi1Ψwi −
∑
i∈I

yui0Ψui

≥ 0 if zuw = 1

any value if zuw = 0
(3.16)

The lower possible value of this difference is −Ψmax where Ψmax is the highest

possible CPU capacity in the model. Since Ψmax is a known value, then:

∑
i∈I

ywi1Ψwi −
∑
i∈I

yui0Ψui

≥ 0 if zuw = 1

≥ −Ψmax if zuw = 0
(3.17)

Meaning that:

∑
i∈I

ywi1Ψwi −
∑
i∈I

yui0Ψui ≥ −(1− zuw)Ψmax (3.18)

∑
i∈I

ywi1Ψwi −
∑
i∈I

yui0Ψui ≥ (zuw − 1)Ψmax (3.19)

Thus, Equation 3.11 is updated by Equation 3.20. Similarly, Equation 3.12 is up-

dated by Equation 3.21.

∑
i∈I

ywi1Ψwi −
∑
i∈I

yui0Ψui ≥ Ψmaxzuw −Ψmax ∀u ∈ U,w ∈ U (3.20)

∑
i∈I

ywi1Φwi −
∑
i∈I

yui0Φui ≥ Φmaxzuw − Φmax ∀u ∈ U,w ∈ U (3.21)

Constraints 3.20 and 3.21 state that the CPU and RAM capacities of a backup

node w ∈ U are at least the same as its primary node. The values Ψmax and Φmax
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represent the largest CPU and RAM capacities, respectively, the CPU and RAM of

a type 2 FN.

3.4 Performance Evaluation

This chapter exposes the performance evaluation of the optimization problem de-

tailing the Smart Farms scenarios, experiment setup, and the analysis of the results.

3.4.1 Experiment Setup

This section presents the results obtained for different types of demand points as

input to the optimization problem. Figure 3.4 illustrates several scenarios such as

coffee, banana, avocado and tomatoes smart farms. Each farm’s supply chain has

stages with specifics needs and hence, capabilities requirements according to the

SFFCs to execute. For instance, production forecasting requires more CPU and

RAM capabilities than the ground temperature monitoring of crops; the continued

control of pests in crops demands more resources than handling irrigation systems.

Therefore, we classify four types of demand points to analyze the performance of

the optimization model considering several farming scenarios. Table 3.3 presents

the parameters that define the CPU and RAM capabilities per type of demand. We

differentiate low, medium, and high demand points, plus a category that includes

all classes. Demands of CPU and RAM are uniformly distributed in the ranges

presented in Table 3.3. The designed network infrastructure is composed of 30 to

60 potential FNs nodes and 30 demand points in all cases (i.e., V = 30).

Table 3.3: Types of demands

Demand CPU (MIPS) RAM (GB) Potential FNs (U)
Low 1-1240 0.01-0.5 30
Medium 1240-2460 0.5-1 50
High 2460-3680 1-2 60
All 1-3680 0.01-2 40
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Figure 3.4: Fog Computing-based Smart Farming

Furthermore, we distinguish three types of FNs based on devices commonly in-

stanced in an SF deployment such as Raspberry Pi (zero, 3B+, and 4B models).

Table 3.4 sums up the description of each node type classified by CPU and RAM

capabilities, reliability rate, and price.

Table 3.4: Node type description

Type CPU (MIPS) RAM (GB) Reliability Price (USD)
0 1240 0.5 0.50 20
1 2460 1 0.60 45
2 3680 2 0.70 70

The problem formulation presented in Section 3.3 was coded and implemented by

Gurobi Optimizer solver version 9.1.1 [130]. Gurobi is a mathematical solver for

Linear Programming (LP), Quadratic Programming (QP), and mixed programming

problems. We use gurobipy, a software library implementation of Gurobi using

Python 3.9.0 [131]. Most actions in the Gurobi Python interface are performed by

calling methods on Gurobi objects. The most commonly used object is the Model.



3.4. Performance Evaluation 37

The proposed model consists of a set of decision variables (Appendix A, lines 98-

102), a linear objective function on these variables (Appendix A, line 108), and a

set of constraints on these variables (Appendix A, lines 110-144). Once the model

is built, the Model.optimize function computes a solution (Appendix A, line 147).

By default, optimize use the concurrent optimizer to solve LP models, the barrier

algorithm to solve QP models with convex objectives, and quadratically constrained

programming models with convex constraints branch-and-cut algorithm otherwise.

The solution is stored in a set of attributes of the model, which can be subsequently

queried [132].

3.4.2 Results and Analysis

This section presents the numerical results obtained by the linear programming

model presented in this chapter. We analyze two metrics: cost and number of

activated FNs, both presented as a function of the required reliability. These metrics

are shown for all demand scenarios (low, medium, high, and all classes) to show

how the demands impact the final deployment. This evaluation considered farm

scenarios requiring reliability levels from 10% to 90%. The reliability rate indicates

the probability that a device operates during a year.

Figure 3.5: Price vs. Reliability - Low demand points

Figures 3.5, 3.6, 3.7, and 3.8 display the results for the cost metric as a function of

the required reliability level. 1 : N protection schemes were evaluated for N values
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Figure 3.6: Price vs. Reliability - Medium demand points

equal to 1, 2, and 3. The impact of N can be seen for all demand scenarios: for

greater values of N , fewer physical resources are required due to more shared backup

nodes, reducing the deployment price. Therefore, the dedicated protection scheme

is the most expensive. If N increases, the price reduces, but less primary FNs will

be covered by backup nodes.

Results in Figures 3.5, 3.6, 3.7, and 3.8 also evince the effect of the required reliability

on the deployment. For low demand points (Figure 3.5), the price is constant forN ≤
70% meaning that the cheapest deployment can guarantee at least 70% reliability.

Recall that the cheapest FN equipment has a reliability rate of 50% (see Table 3.4);

if both primary and backup nodes are of type 0, achieving redundancy reliability

of 0.75 is possible, enough to meet the reliability demands from 10% to 70%. For

medium and all demand points (Figure 3.6 and 3.8), this threshold is higher (80%)

due to the higher demands of SFFCs that require better equipment, even under

lower reliability requirements. Likewise, under the high demands (Figure 3.7), high

CPU and RAM capabilities are needed, requiring powerful hardware that already

provides high reliability. Consequently, the cost does not vary in function of the

reliability demanded.

The ratio between the costs required for 10% and 90% reliability is quite different

in the analyzed scenarios. For low demand points (Figure 3.5), a cost 21% to 28%

higher is required to achieve 90% reliability, but such increase is only about 9% for
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medium demand points (Figure 3.6), and less than 3% for all demand points (Figure

3.8). This trend shows that high reliability has a much more significant effect on

scenarios with lower demands, given that more expensive equipment to deal with

high demands is usually already designed to provide better reliability.

Figure 3.7: Price vs. Reliability - High types of demand points

Figure 3.8: Price vs. Reliability - All types of demand points

The evaluation results of heterogeneity in FNs are presented in Figures 3.9, 3.10,

3.11, and 3.12 depicting the total number of activated FNs for different demands.

The graphics disclose the activated primary and secondary node type in all the

protection schemes. Results were clustered with the same distribution per reliability

rate to improve the readability. This clustering corresponds with the price graphs:

when the price is constant over the reliability rates, the model finds the same optimal
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distribution of the FNs. Different colors indicate the node type as well as its role

(primary or backup). Each cluster in the figures has results for different protection

scheme levels (N).

Figure 3.9: Number of activated FNs vs. Reliability - Low demand points

Figure 3.10: Number of activated FNs vs. Reliability - Medium demand points

Three factors affect the number of activated nodes: the demand, value of N , and

required reliability. First, higher demands require better resources, but they can also
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activate more nodes to serve multiple farms. Therefore, low demands (Figure 3.9)

require less than 30 FNs, while high demands (Figure 3.11) can require up to 60

active nodes. Second, higher values of N allow more sharing of resources, reduc-

ing the number of hardware equipment. For example, under high demands (Figure

3.11), 30 primary nodes are employed regardless of the required reliability. However,

for N = 1, 30 backup nodes are activated, one for each primary node, but only 10

nodes are needed for N = 3. Finally, higher values of reliability tend to activate

fewer nodes, which is more evident for low demands (Figure 3.9). The variations

of capacity and price justify these rather contradictory results. When reliability

increases, better hardware is needed, raising the costs with infrastructure. However,

more expensive hardware offers more CPU and memory capabilities, reducing the

number of devices yet increasing costs. The type of FNs also varied for different

deployments. The most basic FN hardware, type 0, was only employed in scenar-

ios with low demands (Figure 3.9), which shows that FN deployments with high

computational and reliability demands rely on more powerful and expensive hard-

ware. Moreover, the backup nodes usually have the same type as their corresponding

primary node.

Figure 3.11: Number of activated FNs vs. Reliability - High demand points
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Figure 3.12: Number of activated FNs vs. Reliability - All types of demand points

3.5 Final Remarks

This chapter has addressed the problem of protecting Smart Farms by redundancy

techniques where the system stands a set of backups if primary nodes fail. The

problem was modeled as an allocation of FNs resources to minimize the cost of

implementing a Fog-based SF under reliability constraints. The model performance

was evaluated in several smart farms scenarios with low, medium, and high demands

and considering parameters of devices commonly instanced in SF deployment such

as Raspberry Pi (zero, 3B+, and 4B models). Moreover, we address two redundancy

schemes to provide reliability to IoT-based SF services: i) 1 : 1, a dedicated backup

node is reserved for each service demand, and ii) 1 : N , a backup node is shared

among N potential primary nodes.

The main findings of the numerical results produced by the linear programming

formulation proposed in this chapter are summarized as follows. First, protection

schemes in FN-based smart farms are possible, guaranteeing high reliability to im-

prove the operation of farms. Second, if backup nodes are shared, the cost associated

with the FN infrastructure can be significantly reduced, yet providing good reliabil-

ity. Third, reliability plays an important role, but it has a more significant impact
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on high-reliability demands. Finally, the type of demand has a notable impact on

the deployment, significantly increasing required resources and the cost.

Concerning the heterogeneity in FNs, it is essential to mention that its impact is

more notable in scenarios with low demands. The above means that for large farms

where the services demands are usually high, the more powerful hardware covers

the computational and reliability needs at once. Nevertheless, it could be cheaper

for small farms with low-demand tasks to deploy low-resource hardware when the

reliability demanded is less than 70%.



Chapter 4

A Fog Computing-based Data

Reliability Approach in IoT

4.1 Introduction

The IoT has emerged as a suitable technology to collect and transmit data in different

domains [133] ranging from agriculture [134], cities [135], and transportation [136]

to smart-homes [137]. Reliability is necessary for data collection to guarantee the

effectiveness of IoT-based services. Making decisions based on inaccurate data can

negatively impact the quality of crops and, consequently, lead to losing money.

Several failures affect IoT data collection: (i) random errors by lack of sensor reading

repeatedly (e.g., scatter in the measured data), (ii) spurious reading (i.e., non-

systematic reading errors) by a fake measure when some sporadic physical events

happen (e.g., if a camera flash triggers when measuring light intensity); and (iii)

systematic errors such as calibration, loading errors, and environmental errors [16].

These failures cause anomalies or outliers, avoiding reliability in data collection and

the good decision-making of end-users (e.g., farmers).

In SF, not all data go to the Cloud, nor do all applications operate in a Cloud style.

Note that in developing countries the Internet connectivity is still constrained. Some

data and applications must operate in the Fog Tier. For instance, SF applications

44
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can process data or deliver meaningful information to trigger rain and temperature

alarms for crops that are too sensitive to climate variations. Thus, SF applications

need to work with reliable data in the Fog Tier. These applications would not be

useful to the farmer if they operate with unreliable data since it would cause the

farming stakeholders to make wrong decisions that, in turn, would affect the yield

and control of crops.

In the literature, the works in [27, 32, 28, 30, 114, 115, 116, 117] considered the relia-

bility in IoT and IoT-based SF applications, but they did not exploit the capabilities

provided by FC for accomplishing data reliability. FC provides computation, storage,

and networking resources closer to end-devices, which allows facing the limitations

of IoT applications supported in the Cloud Computing [80, 81]. In developing coun-

tries, the SF applications that operate directly at Cloud suffer Internet constraints,

outages, or connectivity issues. Such issues will not be present if a Fog Tier is used.

The works in [7, 29, 31, 33, 108, 118, 119, 120, 121] managed reliability in FC-based

IoT by using optimization, self-adaptability, and redundancy techniques; these in-

vestigations did not include mechanisms for outliers detection and data inference

for reliability purposes. The works in [122, 123, 124] introduced methods to detect

anomalies in datasets without considering an SF environment based on FC and IoT.

The work in [125] and [126] proposed mechanisms for detecting and handling outliers

by interpolation; this work did not consider FC-and-IoT-based SF.

This chapter proposes an approach intended to provide data collection reliability

in Things-based SF, which focuses on outlier detection and treatment. The pro-

posal includes a conceptual Things-Fog-Cloud based architecture that incorporates

mechanisms for detecting and treating outliers. The Failure Detection Mechanism

(FDM) finds outliers in datasets by ML algorithms. The Failure Recovery Mecha-

nism (FRM) replaces the identified outliers with data inferred by using interpolation

techniques. This approach is novel because there is no approach based on ML and

interpolation techniques, to the best of our knowledge, aimed to provide data re-

liability to Things-Fog-Cloud-based SF applications that support decision-making

to farming stakeholders. The approach was evaluated by deploying the three Tiers-

based architecture in a Colombian coffee smart farm. We run the FDM and FRM

mechanisms at the Fog Tier over this real implementation to perform the data reli-
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ability testing. The datasets used in the case study contain real information about

the coffee crop temperature in different time scales (hour, day, and month) and, fur-

ther, information about the data collection sensor technologies (Intel, Omicron, and

Libelium). Results show our mechanisms achieve high Accuracy, Precision, and Re-

call as well as low False Alarm Rate (FAR) and Root Mean Squared Error (RMSE)

when detecting and replacing outliers with inferred data. Considering the obtained

results, we conclude that our approach provides reliable data collection in Smart

Farms to support correct decision-making.

The key contributions presented in this chapter are:

• An Things-Fog-Cloud architecture that combines ML and Interpolation tech-

niques to intelligently and automatically provide data reliability on SF appli-

cations.

• An ML-based mechanism for outlier detection in IoT-based SF data collection.

• An interpolation-based mechanism for replacing the outliers detected with

inferred data.

4.2 Motivation

Let us consider a Smart Coffee Farm as a scenario involving various IoT devices,

such as network-connected weather stations and wireless sensors. These IoT devices

collect significant and heterogeneous data about the environment and the coffee

crop. This data is the primary input for IoT-based applications like data analysis

to predict coffee production, traceability to track the coffee source, alarm to inform

about variables out of normal ranges, and irrigation systems [25, 26]. Since a coffee

farmer makes decisions based on the information that applications provide, data

supporting them must be reliable. For instance, if the weather variables’ monitoring

system fails due to information loss during the data collection, the coffee production

estimation may be inaccurate. This problem may affect farmers’ annual schedules,

avoiding a suitable organization of resources, storage space, and recruitment. Also,
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if a coffee quality variable gets outside the range of the standard parameters, such as

pH levels at the fermentation phase, the coffee may not achieve exportation quality.

This issue may cause the farmer to lose much money (approximately USD 1000 per

hectare). Therefore, the data collection must be reliable, aiming to support the

smart coffee farm proper operation.

Considering the above scenario, we argue that the Things-Fog-Cloud continuum

requires new ways to ensure reliable delivery of data retrieved by IoT-based devices

for guaranteeing the proper operation of applications located at the Fog and Cloud

tiers. In this sense, the approach proposed in this master thesis is more full-fledged

than the ones presented in Section 2.2.2 because it includes a reliability-oriented

and Fog-based architecture that incorporates mechanisms for detecting outliers and

inferring data to recovering from them in the data collection process.

4.3 Reliable Fog Computing-based Architecture

A Fog hierarchical architecture includes three tiers called Cloud, Fog, and Things

[89]. The Cloud Tier comprises one or more Data Centers for providing services

that consume many computational resources (e.g., big data analysis). The Fog

Tier includes Fog Nodes (FNs). An FN is any physical or virtual entity (e.g.,

routers, switches, wireless access points, video surveillance cameras, controllers, and

servers) that improves the interaction between the Things Tier and Cloud Tier

to enhance IoT-based services, such as data collection based on wireless sensors,

tracking systems, and, in general, delay-sensitive applications. The Things Tier

consists of IoT-enabled devices including sensor nodes. This Tier is responsible for

interacting with the environment and sending data to the Fog Tier [95].

Figure 4.1 presents our Fog-based and reliability-oriented architecture. Unlike the

traditional Fog-based architectures [8, 83], our architecture separates the Fog Tier

into two layers: categorizing resources in layers depending on domain requirements

leads to improve IoT reliability by properly locating management services [138]. As

making decisions with reliable data is pivotal for IoT-based applications, we locate

FDM and FRM mechanisms in Layer 2 FN because it is closest to the IoT devices. In



4.3. Reliable Fog Computing-based Architecture 48

Figure 4.1: Layer-based Fog Hierarchical Architecture

this way, we avoid applications running on upper Tiers operate with inaccurate data.

Note that outliers in collected data can negatively impact statistical analysis and the

accuracy in estimation and forecasting models of harvest, leading to making wrong

decisions and, consequently, lost money. Then, Layer 2 FN comprises several edge

computing nodes that collect data from IoT devices and host our reliability-targeted

mechanisms. FDM is to detect outliers (see Section 4.4), while FRM is to infer

correct values for replacing the detected outliers (see Section 4.5). Layer 1 includes

Fog Controllers (FCs) to coordinate the network tiers and perform preliminary data

analytic because they have more processing, storage, and networking resources than

Layer 2 FN.
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Figure 4.2: Data cleaning mechanisms to provide reliability

4.4 Failure Detection Mechanism

FDM aims at identifying and isolating outliers from correct data. These outliers can

happen by failures, such as a sensor with a damaged battery and incorrect reading.

The main benefits of detecting outliers in the Fog Tier are: characterizing normal

and abnormal data for early treatment of outliers and ensuring data quality before

using it in data analytic and forecasting applications. FDM receives data from

sensors and identifies the data’s failures as outliers (i.e, an abnormal and extreme

observation of data) using ML algorithms. FDM tags the outliers at the dataset.

The dataset with these tagged outliers is the input to FRM.

FDM considers three well-known outlier detection techniques [139]: Clustering-

based, Isolation-based, and Classification-based. Clustering-based approaches group

similar data instances into clusters with the same behavior [140]. Data instances are

identified as outliers if they do not belong to clusters or generate significantly smaller

clusters than other ones. The dissimilarity measure between two data instances is

the Euclidean distance. Isolation-based approaches focus on separating outliers from

the rest of the data points instead of profiling normal ones [141]. Classification-based

approaches learn a classification model using the set of data instances (training) and

classify an unseen instance into one of the learned (normal/outlier) class (testing)

[142].
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For the Clustering-based approach, FDM uses the Density-Based Spatial Clustering

of Applications with Noise (DBSCAN) due to it is a well-known and established

grouping algorithm that does not need the desired number of clusters as K-means

does [143]. DBSCAN groups the observations of a dataset into high and low-density

clusters using a simplified minimum density level estimation based on distance radius

named epsilon (esp), minimum points, and thresholds for the number of neighbors

[144]. DBSCAN mainly needs two parameters: min samples, and esp. With prelim-

inary tests, we verify that varying the parameter min samples does not affect the

outliers detection performed by FDM due to we are considering the higher density

cluster, such as the one with the correct values, and the other ones, such as clusters

with outliers. The eps parameter controls the maximum distance between two sam-

ples. If eps is too small, FDM cannot cluster most data. If eps is too large, FDM

can merge all clusters into a single one [145].

For the Isolation-based approach, we use the Isolation Forest (IF) algorithm that

poses the ability to identify anomalies (outliers in our approach) from a dataset.

This algorithm performs recursive random splits on attribute values generating trees

[123] that can isolate any data point from the rest of the data. Random partitioning

produces noticeably shorter paths for outliers. Hence, when a forest of random trees

collectively produces shorter path lengths for particular samples, they have a high

probability of being outliers [146]. For IF, the parameter of contamination defines

the proportion of outliers in the dataset [146]. If the contamination is set too low

than the real rate of outliers, the model will not detect them. If the parameter is

set too high, the number of False Positives will increase.

For the Classification-based technique, we use the Support Vector Machine (SVM)

to determine if an instance falling outside a boundary is an outlier [147]. SVM

separates the data from different classes by fitting a hyperplane between them,

which maximizes the separation [148]. In SVM, the parameter ”nu” represents the

fraction of outliers in the dataset. This parameter is analogous to the contamination

parameter in IF. If nu is set up to a too low value than the actual number of outliers,

the model will not detect all outliers. If it is set higher than the actual number of

outliers, the model will detect false normal values as outliers.
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4.5 Failure Recovery Mechanism

FRM infers data to replace outliers without losing significance in data, aiming to

achieve reliability and, consequently, accurate models in IoT-based applications.

Figure 4.2 depicts inputs and outputs in FRM. From a high-abstraction level, FRM

operates as follows. It receives the dataset with the outliers tagged. Then, it removes

and replaces them with data inferred by interpolation techniques. Finally, it delivers

the corrected data to applications in the Things-Fog-Cloud continuum for further

processing. These applications will be reliable regarding data due to the FDM and

FRM operation.

FRM infers data to replace outliers by considering three algorithms: Cubic Spline,

Linear, and Nearest Neighbor. Cubic Spline is an interpolation method that returns

the straight line connecting data points with a polynomial function to obtain a con-

tinuous and smooth curve [149]. Linear interpolation is a curve fitting method using

linear polynomials to construct new data points within the range of a discrete set of

known data points [150]. Nearest Neighbor interpolation is a proximal interpolation

method of multivariate interpolation in one or more dimensions used in image pro-

cessing [151]. The Nearest Neighbor algorithm takes a rounded value of the expected

position and finds the closest data value at the integer position [152].

4.6 Case Study in a Colombian Coffee Smart Farm

This chapter exposes the evaluation of the data reliability approach as follows. Ini-

tially, the architecture introduced in Section 4.3 was implemented and deployed in

a Colombian Coffee Smart Farm scenario. Then, the temperature datasets at the

Colombian Coffee Smart Farm were collected. After, the FDM and FRM at the

Fog Tier of the mentioned architecture were executed. Finally, the proposed mech-

anisms’ effectiveness to deliver reliable data were tested regarding Accuracy, Recall,

Precision, FAR, F-Score, and RMSE.
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4.6.1 Scenario

Figure 4.3 depicts the implemented and deployed architecture in a Colombian Coffee

Smart Farm, introduced in Section 4.3. This network aims at providing reliable

data for coffee farm services such as watering, fertilizing, harvesting, and forecasting

production. The farmers make important decisions to increase their earnings based

on the data collected and the information obtained by such services; the quality of

historical data, such as temperature, is crucial to their Accuracy. Farmers need to

trust in the information offered by services; therefore, it is pivotal to achieve high

data reliability.

Figure 4.3: Coffee Smart Farming

The Things Tier includes devices such as sensors of temperature, humidity, light,

and moisture. The sensors cover three hectares of a coffee crop, the coffee processing

center, and the coffee storage center. In particular, this tier comprises: (i) a weather

station Smart Agriculture PRO from Libelium - Waspmote Plug and Sense! [153]

with external solar panels, which supports several radio technologies (ZigBee, Wi-Fi,
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4G, SigFox, LoRaWAN) and sensors for monitoring soil moisture, solar radiation,

atmospheric pressure, pluviometer, air temperature, and air humidity. This station

covers all the three coffee farm hectares. (ii) a Datalog X-PRO from OMICRON

[154] with an Internal rechargeable battery, which supports Wi-Fi, SigFox and 3G,

and sensors for soil moisture, air temperature, and air humidity. This Omicron

device operates in just one of the hectares of the coffee farm. (iii) sets of new

low-cost sensor-tags from INTEL that support BlueTooth Low Energy, ZigBee, and

Wi-Fi sensors for temperature and humidity. A set operates in each hectare of the

coffee crop. The primary communication protocol used at the Things Tier was IEEE

802.11n (i.e., IEEE 802.11ax, IEEE 802.11 b, and IEEE 802.15.4) because it is the

protocol supported by all the IoT devices deployed in the case study farm. Using

IEEE 802.11 is not necessary to pay for a scription, such as with SigFox or 3G/4G.

The Fog Tier includes an FN per hectare and a Fog Controller. In this case study, a

single Fog Controller and three FNs were used due to the farm extension and the few

IoT devices generating data. FN collects data from the Things Tier and runs FDM

and FRM for providing reliable data to the Fog Controller; each FN functions on an

ESP32 module and a Raspberry Pi 3 Model B with integrated Wi-Fi and Bluetooth

connectivity. FNs are separated between 80 and 100 meters (approximately) from

each other. The Fog Controller Node runs on a Raspberry Pi 4 Model B that

manages and processes the farm information.

The Fog Tier communicates with the others using a REST-based services style by the

HTTP protocol; it was necessary to use a standardized north interface that would

allow simple interaction with the Cloud. This node sends aggregated information

to the Private Cloud Tier that performs an in-depth analysis of the information

provided by lower tiers via a Linux VPS server over Hyper-V. This server offers the

following farm services: environmental variables monitoring, historic coffee produc-

tion, production forecast, and IoT infrastructure management.
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4.6.2 Coffee Smart Farming Datasets

We conduct evaluation experiments with three temperature datasets (Table 4.1).

The first one, named ”Per Hour”, contains data collected with the Omicron device

every minute and a half from 14:00h to 14:57h on November 5th of 2019. The sec-

ond dataset named ”Per Day” was generated from an Intel device collecting data

every 5 minutes on the January 6th of 2020. The third dataset called ”Per Month”

was formed by the Libelium weather station collecting data every two minutes (ap-

proximately) from November 10th to December 10th of 2019. For testing purposes,

we included randomly 1%, 5%, and 10% of outliers in each of the three datasets

above mentioned using the InterQuartile Range (IQR) [155], generating in total

nine datasets. Three datasets ”Per Hour” with 24 instances collected by Omicron

device with 1%, 5%, and 10% of outliers, respectively. Three datasets ”Per Day”

with 288 instances collected by Intel device with 1%, 5%, and 10% of outliers, re-

spectively. Three datasets ”Per Month” with 22532 instances collected by Libelium

device with 1%, 5%, and 10% of outliers, respectively. The datasets and codes used

in this chapter are located in [156].

Table 4.1: Datasets for coffee Smart Farming

Name Scale Number of instances Technology

Per Hour Hour 24 Omicron
Per Day Day 288 Intel

Per Month Month 22532 Libelium

Table 4.2 presents the structure of datasets mentioned above. The columns represent

the features and the row their format. The first two features express the date and

time in the human-readable and in Unix timestamp format, respectively. The third

feature (value temp) is the original temperature data in degrees Celsius collected by

the Omicron, Intel, or Libelium devices. The fourth feature (Test 1) contains the

temperature data, including the outliers randomly created.
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Table 4.2: Dataset Structure

date timestamp value temp Test 1

(dd/mm/yyyy hh:mm:ss x.x.) (int) (float) (float)

4.6.3 Test Environment

We evaluate FDM and FRM in a virtual machine running a Ubuntu 64-bit oper-

ative system and using Python version 2.7.17 and R version 3.6.3 for the ML and

Interpolation algorithms, respectively. In Python, we deploy a ML library by us-

ing scikit-learn [157]; in particular, DBSCAN from sklearn.cluster, IsolationForest

from sklearn.ensemble, and OneClassSVM from sklearn.svm. In R [158], we deploy

the following functions to interpolate: spline for Cubic Spline interpolation, approx

for Linear interpolation, and loess.smooth for Nearest Neighbor interpolation. It is

worth mentioning that we use the CRISP-DM methodology for the construction of

the mechanisms [159]. This methodology consists of the following steps:

1. Business understanding focuses on understanding the objectives and require-

ments from a business perspective (i.e., provide reliable data in SF).

2. Data understanding takes care of the initial data collection and allows be-

coming familiar with the data (i.e., extract the datasets from the architecture

deployed in our case study farm).

3. Data preparation covers all the activities necessary to build the final dataset.

4. During modeling, apply data mining techniques to our data, including the

tunning of their parameters to achieve the best results (i.e., FDM and FRM

construction).

5. The model’s evaluation to determine if they are useful to the business needs.

6. Deployment involves exploiting the models within a production environment

(i.e., deployment of FDM and FRM in the Colombian coffee farm).
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4.6.4 Performance Metrics

We evaluate FDM’s ability to identify outliers by using the metrics involved in

the confusion matrix: Accuracy, Recall, Precision, FAR, and F-Score [160]. We

use the classical metrics used by other works in the literature for evaluating ML

algorithms and Interpolation techniques [161, 124, 139, 162]. Table 4.3 presents

the confusion matrix, the terms ”positive” and ”negative” refer to the classifier’s

prediction (i.e., normal or outlier). The terms ”true” and ”false” refer to whether

the prediction corresponds to the proper observation. The True Negative indicates

the outliers detected correctly. False Positive denotes values classified as normal that

were outliers. False Negative exposes outliers incorrectly identified. True Positive

states the well-classified normal values.

Accuracy is the proportion of normal and outlier values correctly classified among the

total number of classifications (see Equation 4.1). Accuracy answers the question:

how many classifications the algorithm identified correctly?. Recall refers to the

percentage of total normal values classified correctly by the algorithm (see Equation

4.2). Recall answers the question: how many instances the algorithm identified

correctly?. Precision is the fraction of normal values that are properly-identified

among the instances classified as normal (see Equation 4.3). Precision answers the

question: how many instances the algorithm predicted correctly?. F-Score is the

harmonic mean of Precision and Recall (see Equation 4.4). F-Score is best if there is

a balance between Precision and Recall. False Alarm Rate is the percentage of falsely

detected normal values of the instances classified as outliers (see Equation 4.5). FAR

answers the question: how many outliers the algorithm identified incorrectly?.

Table 4.3: Confusion Matrix

Predicted outlier Predicted normal

Actual outlier True Negative (TN) False Positive (FP)
Actual normal False Negative (FN) True Positive (TP)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4.1)
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Recall =
TP

(TP + FN)
(4.2)

Precision =
TP

(TP + FP )
(4.3)

F − Score =
(2×Recall × Precision)

(Recall + Precision)
(4.4)

FAR =
FP

(FP + TN)
(4.5)

We evaluate FRM’s ability to infer data to replace outliers by using RMSE [163].

RMSE is a method of measuring the difference between values predicted by a model

and their actual values. RMSE measures the amount of error between any two

datasets. In this vein, we calculate the RMSE of the original temperature datasets

versus the datasets interpolated to identify the most accurate technique. The less

RMSE, the better the performance of the interpolation technique.

4.6.5 Failure Detection Evaluation

We conducted experiments with different datasets to evaluate, in terms of Accu-

racy, Recall, Precision, FAR, and F-Score, several candidate algorithms for realizing

FDM; this mechanism tags the detected outliers and generates the tagged outliers

dataset that is the FRM’s input. This evaluation aims at selecting an algorithm

for carrying out FDM. In this sense, we define the best performance condition for

outliers detection algorithm: high Accuracy, high Precision, and low FAR. In partic-

ular, we vary the parameters from each algorithm described in Section 4.4 as follows.

For DBSCAN, the eps (e) parameter from 0.1 to 0.8 (with min samples set in 3).

For IF, the contamination (c) parameter from 0 to 0.5. For SVM, the nu parameter

from 0.01 to 0.1. We evaluated the algorithms using the datasets described in Table

4.1 aggregating to each of them 1%, 5%, and 10% of outliers.
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Table 4.4: Comparison Per Hour dataset

Accuracy Recall Precision F-Score FAR

1%
Outliers

DBSCAN (e=0.3 - 0.8) 100 100 100 100 0
IF (c=0 - 0.04) 100 100 100 100 0

SVM (nu=0.01 - 0.1) 83.33 82.61 100 90.48 0

5%
Outliers

DBSCAN (e=0.3 - 0.8) 100 100 100 100 0
IF (c=0.05 - 0.08) 100 100 100 100 0

SVM (nu=0.09 - 0.1) 100 100 100 100 0

10%
Outliers

DBSCAN (e=0.2) 100 100 100 100 0
IF (c=0.09 - 0.1) 100 100 100 100 0

SVM (nu=0.09 - 0.1) 79.16 80.95 94.44 87.18 33.33

Table 4.4 compares in the Per Hour dataset the candidate algorithms for perform-

ing FDM. DBSCAN and IF obtained the same high performance in any outliers’

percentage, meaning these algorithms can operate correctly with a small dataset

and few outliers. SVM obtained the worst performance; in this dataset with 10%

of outliers, this algorithm got 33% and 80% of FAR and Recall, respectively, which

indicates SVM did not find all the outliers and present many false positives. These

results are because SVM ignores the spatial correlation of neighboring nodes, which

makes the results of local outliers inaccurate [139].

Table 4.5: Comparison Per Day dataset

Accuracy Recall Precision F-Score FAR

1%
Outliers

DBSCAN (e=0.2 - 0.6) 100 100 100 100 0
IF (c=0.01) 100 100 100 100 0

SVM (nu=0.01) 100 100 100 100 0

5%
Outliers

DBSCAN (e=0.2 - 0.6) 99.65 100 99.64 99.82 7.14
IF (c=0.07) 97.56 97.45 100 98.71 0

SVM (nu=0.09) 95.83 95.62 100 97.76 0

10%
Outliers

DBSCAN (e=0.1 - 0.2) 99.65 100 99.62 99.81 3.45
IF (c=0.2) 89.93 88.80 100 94.07 0

SVM (nu=0.1) 98.96 99.61 99.23 99.24 6.90

Table 4.5 compares in the Per Day dataset the candidate algorithms for carrying

out FDM. All evaluated algorithms’ performance decreased in this dataset (12 times

bigger than the Per Hour dataset). The three evaluated algorithms obtained their
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best performance in this dataset with 1% of outliers, confirming they function well

when operating with a small dataset and few outliers. Overall, DBSCAN obtained

the best results for the evaluated metrics. However, note that this algorithm got 7%

and 3.5% of FAR when operating with 5% and 10% of outliers in the dataset, respec-

tively, meaning in the datasets mentioned, the outliers are closer to standard data

(DBSCAN has problems to identify this type of outliers). SVM obtained excellent

results in almost all evaluated metrics but slightly lower than DBSCAN did. Also,

FAR in SVM increased up to 6.9 when the dataset contains 10% of outliers. The IF

algorithm got excellent results regarding Precision, F-Score, and FAR. However, its

Accuracy and Recall are around 97% and 90% when this dataset contains 5% and

10% of outliers, respectively. This algorithm had problems with false positives.

Table 4.6: Comparison Per Month dataset

Accuracy Recall Precision F-Score FAR

1%
Outliers

DBSCAN (e=0.1 - 0.2) 99.99 100 99.99 99.99 1.33
IF (c=0.02) 98.98 98.97 100 99.48 0

SVM (nu=0.02) 99.02 99.01 100 99.50 0

5%
Outliers

DBSCAN (e=0.1) 99.78 100 99.77 99.89 0.44
IF (c=0.06) 98.90 98.94 100 99.42 0

SVM (nu=0.07) 97.89 97.78 100 98.88 0

10%
Outliers

DBSCAN (e=0.1) 99.46 100 99.41 99.70 5.6
IF (c=0.1) 99.57 99.52 100 99.76 0

SVM (nu=0.1) 98.23 98.80 99.25 99.02 7.09

Table 4.6 compares in the Per Month dataset the candidate algorithms for per-

forming FDM. All evaluated algorithms obtained excellent results regarding Accu-

racy, Recall, Precision, and F-Score. Accuracy and Precision in DBSCAN decreased

slighter to 99.7% and 99.4% when the percentage of outliers moved from 5% and

10%, respectively. In this dataset, DBSCAN also had problems with false positives

(FAR=5.6 with 10% of outliers), indicating limitations to identify outliers closer to

normal data. Regarding SVM, it is to highlight that its false positives increase when

the percentage of outliers is equal to 10% (FAR=7.09), which suggests inefficiency

in classifying many outliers. FAR obtained by IF is perfect because the contamina-

tion parameter used was very close to the real percentage of outliers existing in the

dataset; this is difficult to know in practice for an online operation.
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(a) 1% Outliers (b) 5% Outliers (c) 10% Outliers

Figure 4.4: Comparison Interpolation

Based on the results above, we consider DBSCAN as the best option for carrying out

FDM. DBSCAN obtained an excellent performance for marking outliers over all the

tests with a FAR lower than 6%, a perfect Recall and an Accuracy, Precision, and

F-Score greater than 99% for the most extensive dataset. Furthermore, DBSCAN

does not require a re-setting of the parameter eps when the outliers increase. Note

that IF got the highest Precision and lowest FAR. However, the IF’s contamination

parameter needs to be re-set when the outliers raise to keep high performance.

The IF’s false negatives will increase significantly if the real number of outliers is

lower than the contamination. In turn, the false positives of IF will increase when

the actual number of outliers is higher than the contamination. This re-setting is

unpractical because it is hard to know the percentage of outliers previous to the

algorithm’s training.

4.6.6 Failure Recovery Evaluation

We conducted experiments with the datasets outputted by FDM for evaluating,

regarding RMSE, several interpolation techniques that allow replacing the outliers

with ’accurate’ data. Figure 4.4 shows the Nearest Neighbor technique obtained the

worst RMSE; Nearest Neighbor selects the nearest datum’s value without considering

neighboring data values, which tends to increase noise, especially in the Per Month

dataset. From a conceptual perspective, the Cubic Spline should offer better results

than the Linear [164]. Still, our experimental results indicate a lower RMSE with
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the Linear, which is due to the data points in our datasets are closely near (our data

samples are measurements of temperature). Thus, the connection between each data

point by a straight line allows achieving high-accuracy interpolation.

4.7 Final Remarks

This chapter introduced an FC-based architecture approach that incorporates a

mechanism for detecting outliers and another for inferring data intended to replace

them. The evaluation demonstrated the approach’s effectiveness in a real network

deployed in a Colombian Smart Coffee Farm. For the failure detection mechanism,

the DBSCAN algorithm is selected due to it presented an excellent performance for

marking outliers over all the tests with a FAR lower than 6%, a perfect Recall as

well as an Accuracy, Precision, and F-Score greater than 99% for the most extensive

dataset. The linear interpolation for the failure recovery mechanism is selected be-

cause it infers data with low RMSE allowing replacing the detected outliers properly.

Considering the obtained results, we concluded the proposed approach is suitable

for providing reliability in the IoT-based Smart Farming data collection process and

supports the correct decision-making.



Chapter 5

Conclusions and future work

The research performed in this master thesis was guided by the following research

question: How to provide reliability in the collection and transmission of

data in an IoT-based Smart Farming?

This question was addressed by a mechanism composed of two approaches: sys-

tem and data reliability. The first approach introduces an allocation optimization

model of FNs’ resources (processing and memory) to meet the farm users’ demands

while maintaining the reliability requirements. The model provides overall reliability

by redundancy techniques where the system remains, in stand-bay, a set of nodes

configured in parallel as backups. Thus, if a primary node fails, the secondary will

process all the tasks of the first one giving continuity to the farm services. Moreover,

the model includes two redundancy schemes to provide reliability to IoT-based SF

services: a dedicated backup node reserved for each service demand and a backup

node shared among N potential primary nodes.

In particular, we mathematically modeled the system reliability approach by a linear

programming formulation to find the optimal number of activated FNs, minimizing

the deployment cost under reliability constraints. We also conducted a deep analysis

of FNs heterogeneity’s influence in our model and introduced new concepts to model

the proper allocation of resources: vSFFs and SFFCs. To evaluate the performance

model, two metrics were analyzed: cost and number of activated FNs, both presented
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as a function of the required reliability. This approach differentiates low, medium,

and high demand points, plus a category that includes all classes. The analysis

results disclose:

• If backup nodes are shared, the cost associated with the FN infrastructure can

be significantly reduced, yet providing good reliability.

• Reliability has a more significant impact on the deployment costs in high-

reliability demands.

• The type of demand has a notable impact on the deployment, significantly

increasing required resources and the cost.

The second approach introduces a Things-Fog-Cloud architecture that combines

ML and Interpolation techniques to intelligently and automatically provide data

reliability on SF applications. This approach provide data reliability by detecting

and treating outliers from the IoT data collection by mechanisms located at the Fog

Tier. The FDM finds outliers in datasets by ML algorithms. The FRM replaces

the identified outliers with data inferred by using interpolation techniques. We

consider these approaches a step further in reliable Smart Farms since they provide

foundations for developing farmers’ decision-making applications dependably.

The FC-based architecture was evaluated in a real network deployed in a Colombian

Smart Coffee Farm to demonstrate the efficiency of the mechanisms. The quantita-

tive results of the FDM and FRM evaluation revealed that:

• For the failure detection mechanism, the DBSCAN algorithm presented an

excellent performance for marking outliers over all the tests with a FAR lower

than 6%, a perfect Recall as well as an Accuracy, Precision, and F-Score greater

than 99% for the most extensive dataset.

• For the failure recovery mechanism, the linear interpolation infers data with

low RMSE allowing replacing the detected outliers properly.
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Considering the obtained results, this master dissertation concluded the proposed

approaches are suitable for providing reliability in the IoT-based Smart Farming.

This master thesis support the dependably farmer’s decision-making application by

continuity provide correct service and giving the accurate data on Smart Farms. It

is important to highlight that all the approaches are generic, then it can be apply

to other IoT-based FC domains.

As future work, the model’s multi-objective formulation optimizing energy consump-

tion, latency, and node location are considered, and the model implementation in

other domains such as SDN. Techniques or mathematical process to reduce signifi-

cantly the model execution time is also consider as a future work.

Furthermore, the involvement of more features into datasets (such as humidity, pres-

sure, and light), and the improvement of failure detection by the ability to differen-

tiate outliers from events of interest are also considered.
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Appendix A

Gurobipy-based implementation

Appendix A presents the content of the python file fogopt.py.

1 #!/usr/bin/env python3 .7

2 ’’’

3 This file contains a optimization model for protecting Smart Farms

by

4 Fog layer infrastructure reliable deployment (protected FNs by

redundancy)

5 for providing services to farmers minimizing the costs of

implementation.

6

7 Created by Ana Isabel Montoya -Munoz

8 Universidad del Cauca

9 ’’’

10 from gurobipy import *

11 import numpy as np

12 import random

13 from collections import defaultdict

14 import pandas as pd

15 import csv

16

17 #--- PARAMETERS (INPUT) ---

18

19 # Type of demand

20 Demand = ’High’

1



Appendix B

Publications

The Appendix B presents the papers developed during the elaboration of the master

thesis published and submitted.

• Ana Isabel Montoya Muñoz, Oscar Mauricio Caicedo Rendón. An ap-

proach based on Fog Computing for providing reliability in IoT Data

Collection: A Case Study in a Colombian Coffee Smart Farm Applied

Sciences 2020.

– Status: Published.

– Special Issue: Computing and Artificial Intelligence.

– Classification: A1 MinCiencias - Q2 (JCR).

• Jhonn Pablo Rodŕıguez, Ana Isabel Montoya Muñoz, Carlos Rodriguez

Pabón, Javier Hoyos, and Juan Carlos Corrales. IoT-Agro: A smart farm-

ing system to Colombian coffee farms Computers and Electronics in Agri-

culture 2021.

– Status: Published.

– Classification: A1 MinCiencias - Q1 (JCR).
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• Ana Isabel Montoya Muñoz, Rodrigo A. C. da Silva, Oscar Mauricio

Caicedo Rendón, and Nelson L. S. da Fonseca. Provisioning Protection

to Smart Farming Computers and Electronics in Agriculture 2021.

– Status: Submitted.

– Classification: A1 MinCiencias - Q1 (JCR).

• Ana Isabel Montoya Muñoz, Daniela Casas Velasco, Felipe Estrada Solano,
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