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Structured abstract

Background. The Internet of Things (IoT) integrates things, processes, and people
that interact with communication networks offering their functionalities, services, and
personalized experiences to the users. The IoT environment considers factors such as
device constraints, type of information exchanged, mode of operation of devices, type
of technology used, high mobility, and high density of end devices. In this way, when
the user is continually entering and leaving a network coverage area, the Handover
Management (HM) must provide seamless connectivity, enable timely and reliable de-
livery of services, and offer Quality of Service (QoS). However, current HM approaches
present some limitations. First, they consider insufficient criteria, which may lead to un-
necessary and frequent handovers due to a partial network view to make appropriate
decisions. Second, the high complexity of mechanisms used in network selection can
lead to low network performance (decreasing the throughput and increasing the packet
loss in the network) and even service disruption. Thus, handover is a significant issue
in IoT environments and 5G networks.

Aims. This thesis introduces an approach based on an Software-Defined Network-
ing (SDN) and Network Function Virtualization (NFV) ecosystem for mobility manage-
ment in IoT. This objective is three-fold: (i) proposes an information model for support-
ing mobility management in IoT by considering an SDN/NFV ecosystem, (ii) proposes
a communication model for supporting mobility management in IoT by considering an
SDN/NFV ecosystem, and (iii) build up a prototype per proposed model and evaluate
its efficiency, regarding packet loss, handover delay, and the false handover indication
to meet the QoS requirements of the end-user applications.

Methods. This thesis proposes an approach based on the SDN/NFV ecosystem
for mobility management in IoT. Three main components integrate the proposed mo-
bility management approach. First, a model for network selection based on multi-
criteria and supervised learning, named NetSel-RF. This model uses criteria from dif-
ferent sources (network, user preferences, end devices, and applications) and applies
Random Forest (RF) as a supervised learning technique to select the best network.
Second, a semantic knowledge-based approach for HM, named SIM-Know, improves
decision-making during handover. This approach proposes a Semantic Information
Model (SIM) and its distributed instantiation in various network entities as Knowledge
Base Profile (KBP). SIM and KBP offer local and global knowledge to make contex-
tual and proactive decisions during the handover. Third, an autonomous and cognitive
HM approach (ZTHM-5G) optimizes the handover procedure. ZTHM-5G introduces an



Autonomic Knowledge Base Profile (AKBP) based on a Cognitive Closed Loop (CCL)
to generate local intelligence, a semantic and goal-oriented communication model that
exchanges local and global intelligence among network entities, and Multi-Agent Sys-
tem (MAS) that provides a new distributed, scalable, and personalized HM. These
components reduce interactions and signaling message size during handover.

Results. The evaluation of the thesis uses handover evaluation metrics (numbers of
handover, ping-pong, and instantaneous throughput) and network performance metrics
(throughput, delay, jitter, and packet loss) and compared to HM approaches Strongest
Signal First (SSF) and Analytic Hierarchy Process (AHP)-Technique for Order of Pref-
erence by Similarity to Ideal Solution (TOPSIS). The results show that the NetSel-RF
model reduces the number of handovers, ping-pong, and instantaneous throughput.
Furthermore, our model is proactive; because the mobile selects a new AP while con-
nected to another one. On the other hand, SIM-Know improves the throughput, delay,
jitter, and packet loss due to its context-aware, cognition, and proactivity capabilities;
further, it decreases the number of handovers and instantaneous throughput. In turn,
ZTHM-5G result reveals that the handover-related signaling cost is lower than traditional
HM approaches.

Conclusions. Multiple criteria from different information sources (network, user
preferences, end device, and application) improve decision-making during handover.
The representation of these multi-criteria uses SIM to provide context awareness, cog-
nition, and proactivity to the handover procedure. Additionally, learning techniques im-
prove HM to make cognitive and appropriate decisions. Finally, a semantic and goal-
oriented communication model (SIM-based, network performance goal, and QoS goals)
reduces the exchange of signaling messages in number and size. Therefore, the so-
lutions proposed in this thesis using an Information and Communication model are
attractive for HM.

Keywords: Mobility Management, Handover Management, Information Model, Com-
munication Model, Multi-Agent Systems.



Resumen estructurado

Antecedentes. El Internet de las Cosas (IoT) integra cosas, procesos y personas que
interactúan con redes de comunicación ofreciendo sus funcionalidades, servicios y ex-
periencias personalizadas a los usuarios. El entorno de IoT considera factores como
las limitaciones de los dispositivos, el tipo de información intercambiada, el modo de
operación de los dispositivos, el tipo de tecnología utilizada, la alta movilidad y la alta
densidad de dispositivos finales. De este modo. Cuando el usuario entra y sale con-
tinuamente de un área de cobertura de la red, la gestión de traspaso (Handover Ma-
nagement - HM) proporciona una conectividad perfecta, permite una entrega de servi-
cios oportuna y fiable y ofrece calidad de servicio (QoS). Sin embargo, los enfoques
actuales de HM presentan algunas limitaciones. En primer lugar, consideran criterios
insuficientes que pueden dar lugar a traspasos innecesarios y frecuentes debido a una
visión parcial de la red para tomar decisiones adecuadas. En segundo lugar, la alta
complejidad de los mecanismos utilizados en la selección de red puede conducir a un
bajo rendimiento de la red (disminución del rendimiento y aumento de la pérdida de
paquetes en la red) e incluso interrupción del servicio. Por lo tanto, el traspaso es un
problema importante en entornos IoT y redes 5G.

Objetivos. Esta tesis introduce un enfoque basado en un ecosistema de redes de-
finidas por software (SDN) y virtualizacion de funciones de red (NFV) para la gestión
de la movilidad en IoT. Este objetivo se divide en tres partes: (i) proponer un modelo
de información para soportar la gestión de la movilidad en IoT considerando un eco-
sistema SDN/NFV, (ii) proponer un modelo de comunicación para soportar la gestión
de la movilidad en IoT considerando un ecosistema SDN/NFV, y (iii) construir un pro-
totipo según el modelo propuesto y evaluar su eficiencia, con respecto a la pérdida de
paquetes, el retraso del traspaso y la falsa indicación del traspaso para cumplir con los
requisitos de calidad de servicio (QoS) de las aplicaciones del usuario final.

Métodos. Esta tesis propone un enfoque basado en el ecosistema SDN/NFV para
la gestión de la movilidad en IoT. Tres componentes principales integran el enfoque
de gestión de movilidad propuesto. Primero, un modelo de selección de redes basa-
do en múlticriterios y aprendizaje supervisado, llamado NetSel-RF. Este modelo utiliza
criterios de diferentes fuentes (red, preferencias del usuario, dispositivos finales y apli-
caciones) y aplica Random Forest (RF) como técnica de aprendizaje supervisado para
seleccionar la mejor red. Segundo, un enfoque de gestión de traspaso basado en se-
mántica y conocimiento, llamado SIM-Know, para mejorar la gestión de traspaso. Este
enfoque propone un modelo de información semántico (Semantic Information Model -



SIM) y su instanciación distribuida en varias entidades de red como perfiles de base de
conocimiento (Knowledge Base Profile - KBP). SIM y KBP ofrecen conocimiento local y
global para tomar decisiones contextuales y proactivas durante el traspaso. Tercero, un
enfoque de gestión de traspaso autónomo y cognitivo (ZTHM-5G) optimiza el procedi-
miento de traspaso. ZTHM-5G introduce un perfil de base de conocimiento autónomo
(Autonomous Knowledge Base Profile - AKBP) basado en un ciclo cerrado cognitivo
(Cognitive Closed Loop - CCL) para generar inteligencia local, un modelo de comu-
nicación semántico y orientado a objetivos que intercambia inteligencia local y global
entre entidades de la red y un sistema multi-agente (Multi-Agent System - MAS) que
provee una nueva gestion de traspaso distribuida, escalable y personalizable. Estos
componentes reducen las interacciones y el tamaño de los mensajes de señalización
durante el traspaso.

Resultados. La evaluación de la tesis utiliza métricas de evaluación de traspaso
(número de traspasos, ping-pong y throughput instantáneos) y métricas de rendimien-
to de la red (throughput, delay, jitter, and packet loss) y se compara con enfoques
de gestión de traspaso (SSF y AHP-TOPSIS). Los resultados muestran que el mode-
lo NetSel-RF reduce la cantidad de traspasos, ping-pong y throughput instantáneos.
Además, nuestro modelo es proactivo; porque el móvil selecciona un nuevo AP mien-
tras está conectado a otro. Por otro lado, SIM-Know mejora en throughput, delay, jitter,
and packet loss debido a sus capacidades de conocimiento del contexto, cognición y
proactividad, además disminuye el número de traspasos y el numero de throughput
instantáneos. A su vez, el resultado de ZTHM-5G revela que el costo de señalización
relacionado con el traspaso es menor que los enfoques de gestión de traspaso tradi-
cionales.

Conclusiones. Los múltiples criterios provenientes desde diferentes fuentes de in-
formación (red, preferencias del usuario, dispositivo finales y aplicación) mejoran la to-
ma de decisiones durante el traspaso. La representación de estos multi criterios usan
SIM para proveer conciencia de contexto, cognición y proactividad al procedimiento de
traspaso. Adicionalmente, las técnicas de aprendizaje mejoran la gestión de traspaso
para tomar decisiones cognitivas y apropiadas. Finalmente, un modelo de comunica-
ción semántico y orientado a objetivos (basado en SIM, y objetivos de desempeño de
red y calidad de servicio) reduce el intercambio de mensajes de señalización tanto en
número y tamaño. Por lo tanto, las soluciones propuestas en esta tesis utilizando un
modelo de Información y Comunicación resultan atractivas para la gestión de traspaso.

Palabras clave: Gestión de movilidad, Gestión de traspaso, Modelo de Información,
Modelo de Comunicación, Sistema Multi-Agente.
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Chapter 1

Introduction

1.1 Problem statement

The Internet of Things (IoT) integrates things, processes, and people that interact with
communication networks offering their functionalities, services, and personalized expe-
riences to the users [1, 2]. In an IoT environment, the things consist of heterogeneous
devices, static or mobile. In this sense, in IoT, the Mobility Management (MM) pro-
vides seamless connectivity [3], enables timely and reliable delivery of services [4, 5],
and offers Quality of Service (QoS) [6]. In IoT, MM consider factors such as devices
constraints (in processing, storage capacity, communication, and energy consumption),
type of information exchanged, mode of operation of devices (e.g., sleeping), and type
of technology used (e.g., WiFi) [7–10]. Some IoT scenarios in which MM is essential
are, first, in a hospital when a patient moves freely, needing continuous monitoring of
vital signs across the connected medical devices. As these devices must send data
in (near) real-time for early diagnosis and treatment of acute issues, mobility must be
guaranteed. Second, in events or conferences, each person with a wearable person-
alizes his/her information and knowledge services by all the areas visited. Since these
wearables transmit essential information for generating customized user experiences,
mobility must also be supported.

In the aforementioned scenarios, it is necessary to consider two facts: on the one
hand, when a person moves along with a Mobile Device (MD), more than one network
may appear; therefore, such MD could disconnect from the current Access Point (AP)
and connect to another one. Indeed, in IoT, it is essential to manage connection re-
quests for billions of devices efficiently and reliably, and manage the rapid topological
changes caused by the unavailability of some MDs in, for instance, sleep mode opera-
tion [3,11,12]. On the other hand, the connection of any MD to the network must adapt
dynamically (i.e., real-time interactive services require consistent network capacity) to
different APs in the same or different network [13,14] to meet QoS [15,16]. The process
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that keeps the connection active of an MD when moves from an AP to another one, is
named HM. Handover consists of three phases called: handover initiation, network se-
lection, and handover execution [17]. It is noteworthy that the optimization of handover
is directly related to meet QoS requirements of end-users [6, 18]. Thus, handover is
considered a significant issue in IoT.

In IoT, from a general perspective, the handover presents some related limitations.
First, the insufficient criteria to make appropriate decisions about, for instance, when
starting?, which AP select? and so on. Second, the high complexity of mechanisms
used in AP selection leads to low network performance and even service disruption.
The insufficiency is associated with needing more criteria for a complete network view
[19]. The high complexity is associated with interrelating QoS and network criteria, tar-
geting a trade-off to select the best AP [20]. The service disruption is the discontinuity in
the delivery of services during handover (e.g., handover timing impacts delay-sensitive
applications) [21, 22]. This thesis focuses on problems of insufficient criteria to make
decisions about handover and the service disruption during handover because they
affect network connections and their performance directly and, as a result, QoS as a
whole.

In the literature, the insufficient criteria to make handover decisions have been ad-
dressed using single-criterion, estimated-criterion, and multi-criteria techniques. The
works [23–25] have used a single-criterion (i.e., RSSI) that is directly related to QoS.
The drawbacks of these works are false handover indication, wrong selection of the
network, and handover decisions realized from a constrained perspective (e.g., wire-
less links) instead of the overall network state. In the works [16, 26, 27], the authors
have applied the technique estimated-criterion using a window-based mechanism that
continually evaluated the criterion by improving its estimation. However, these works
share shortcomings related to a significant number of messages to estimate the crite-
rion and induce potential delays or losses in the network. In turn, the works [20,28–32]
have used multi-criteria to obtain several criteria that represent an entire network view.
Nonetheless, these works based on multi-criteria increase network signaling traffic, do
not provide details about how the criteria are collected, and criteria may be in conflict
between themselves.

In the literature, the service disruption during handover has been addressed using
techniques such as fast-handover, seamless handover, and virtualization of network
and device. The works in [33,34] have used fast-handover in networks with multiple APs
to change the channel between multiple RF channels and continue with their connection
without service disruption. These works increase collisions when many MDs are active
simultaneously, and each AP in the network needs information about its neighbors.
The works in [6, 35–37] have used a seamless handover based on the SDN and NFV
implementing a Virtual AP (VAP) abstraction to control association and re-association
processes of an MD with an AP. The drawbacks of these works are the multiple ap-
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plications running on a single controller make prioritization difficult and the absence of
mechanisms implemented in MDs that can gather information from users, end-devices,
and applications. Furthermore, these works do not consider QoS negotiation during
and after the handover. The work in [38] has used network-device-virtualization to build
up the SDN control plane in APs, the SDN data plane in MDs, and the corresponding
communication by the OpenFlow protocol. This SDN-based work overloads the com-
munication channel with signaling (i.e., the OpenFlow protocol transports packets of
topology discovery among sensor nodes) and lacks cooperation between controllers
(e.g., load balancing to neighbor controllers, which have spare resources), leading to
a simplified view of the network, and affecting handover performance regarding, for
instance, latency and delay.

This doctoral thesis argues that the shortcomings of the insufficient criteria to make
decisions about the handover and the service disruption during the handover are re-
lated to the lack of an MM approach based on an Information Model and a Communica-
tion Model supported by an SDN/NFV ecosystem. An Information Model would assist in
establishing a shared characterization of the network, simplify the development of func-
tionalities for MM (e.g., criteria transformation methods) and facilitate the deployment
of policies on the network to meet QoS. In turn, a Communication Model would aid in
delineating the exchange of information in IoT and reduce network signaling traffic. An
SDN/NFV ecosystem would assist in increasing the efficiency and network agility to ad-
dress the dynamic changes depending on traffic flow, application-specific requirements,
and mobility of the devices in the IoT environment from a logically centralized point of
view. To sum up, considering the shortcomings above, this doctoral thesis raises the
following research question:

How to carry out efficiently mobility management in IoT to meet QoS?

1.2 Hypothesis

To address the research question stated in Section 1.1, this doctoral thesis raises the
following hypothesis:

An SDN/NFV ecosystem allows performing mobility management efficiently
in IoT to meet QoS. This doctoral thesis argues that an SDN/NFV ecosystem would
define a programmable SDN plane by virtualizing the network entities to support MM in
IoT. The SDN controller would gather all the necessary information from other compo-
nents in the system to realize global optimization of MD associations with network moni-
toring techniques. Network virtualization would enable a dynamic attachment of MDs to
multiple networks allowing them to move from one location to another. Also, SDN/NFV
would enhance the QoS provisioning capability in MDs connected with APs [39–41].
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Global network state awareness comprises the monitoring and gathering of net-
work state information. The global information determines the selection criteria more
efficiently to carry out the MD association in a centralized manner. In this sense, an
Information Model would facilitate the discovery and regular access to criteria of mul-
tiple sources by using a common model at a syntactic and semantic level. Also, this
model would provide a well-designed structure to describe the criteria in the resources
domain and requirements from MDs. Furthermore, user requirements should be in-
volved in such a model, and a similarity degree between user requests, MDs, and APs
should also be provided. The Information Model should also be lightweight to reduce
traffic and processing time [42–45]. In the same way, provisioning an efficient and op-
timized Communication Model would reduce bandwidth needs without affecting related
resources such as battery life, energy consumed for processing, and memory size.
Besides, this model would improve the QoS provision by reducing the chance of ser-
vice interruption while keeping network signaling traffic with a short delay, and small
cost [2,46–49].

1.3 Objectives

1.3.1 General Objective

To introduce an approach based on an SDN/NFV ecosystem for mobility management
in IoT.

1.3.2 Specific Objectives

• To propose an information model for supporting mobility management in IoT by
considering an SDN/NFV ecosystem.

• To propose a communication model for supporting mobility management in IoT by
considering an SDN/NFV ecosystem.

• To build a prototype per the proposed models and evaluate its efficiency regard-
ing packet loss, handover delay, and false handover indication to meet the QoS
requirements of the end-user applications.

1.4 Contributions

The scientific research process conducted during this thesis led to introduce an ap-
proach based on an SDN/NFV ecosystem for MM in IoT. The expected research con-
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tributions of this doctoral thesis are to provide a MM approach formed by:

• An information model for supporting HM. This model enables context-aware and
multicriteria handover decisions and distributed knowledge base to incorporate
cognition in HM.

• A communication model for supporting HM. This model delineates the exchange
of local and global intelligence while reducing the interactions and size of the
signaling messages.

• A prototype per model and its corresponding evaluation include SIM-Know and
ZTHM-5G. SIM-Know improves HM by including SIM that provides local and global
knowledge to make contextual and proactive handover decisions. ZTHM-5G opti-
mizes the handover procedure by reducing interactions and the size of the sig-
naling messages using an autonomous and cognitive HM approach from the
Autonomic Network Management (ANM) point of view.

1.5 Scientific production

Two published journal papers and one journal paper under revision report the major
contributions achieved during this thesis to the scientific community.

• F. Y. Vivas, O. M. Caicedo, and J. C. Nieves, “A Semantic and Knowledge-Based
Approach for Handover Management,” published in Sensor MDPI, 2021 [50]. Rank-
ing: JCR Q1, SJR Q1, Publindex A1. Contribution: Information model based on
semantic for MM.

• D. A. Embus, A. J. Castillo, F. Y. Vivas, O. M. Caicedo, and A. Ordóñez, “NetSel-
RF: A Model for Network Selection Based on Multi-Criteria and Supervised Learn-
ing,” published in Applied Sciences, 2020 [51]. Ranking: JCR1 Q2, SJR2 Q2,
Publindex3 A1. Contribution: Network Selection using Machine Learning (ML).

• F. Y. Vivas and O. M. Caicedo, “ZTHM-5G: Zero-Touch Handover Management in
5G,” Submitted. Contribution: Communication model for autonomous and cogni-
tive MM from an ANM point of view.

Furthermore, one paper at national conference reports to the scientific community
the contributions achieved in collaboration with other researchers. This paper is pre-
sented below.

1Quartile from Journal Citation Reports (JCR)
2Quartile from SCImago Journal Rank (SJR)
3Bibliographic index from COLCIENCIAS, Colombia
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• F. Samboni, S. Bedoya, F. Y. Vivas, and O. M. Caicedo, “MEC IoT: Monitorización
de estructuras civiles en el contexto IoT,” published in the proceedings of the
2017 IEEE Colombian Conference on Communications and Computing (COL-
COM) [52]. Ranking: H5-index 12. Contribution: the structural health monitoring
system in IoT and cloud computing.

Appendix A lists the four published and under revision papers in inverse chronolog-
ical order.

1.6 Methodology and organization

The research process that guided the development of this thesis is based on a typi-
cal scheme of the scientific method [53]. Figure 1.1 depicts the phases of the scien-
tific research process: Problem Statement, Hypothesis Construction, Experimentation,
Conclusion, and Publication. Problem Statement, for identifying and establishing the
research question. Hypothesis Construction, for formulating the hypothesis and the as-
sociated fundamental questions. In addition, this phase aims to define and carry out
the conceptual and technological approaches. Experimentation, for testing the hypoth-
esis and analyzing the evaluation results. Conclusion, for outlining conclusions and
future works. Note that Hypothesis Construction has feedback from Experimentation
and Conclusion. Publication, for submitting and publishing papers for renowned confer-
ences and journals. The writing of the dissertation document also belongs to this last
phase.

Journals and 
conferences

Thesis document

Major contributions

Future works

Test of the hypothesis

Analysis of the evaluation 
results

An SDN/NFV ecosystem 
allows performing the 
mobility management 

efficiently in IoT to meet 
QoS

Fundamental questions

Conceptual and 
technological 
approaches

How to carry out 
efficiently mobility 

management in IoT to 
meet QoS?

Problem 
Statement

Hypothesis 
Construction

Experimentation Conclusion Publication

Figure 1.1: Thesis phases

The organization of this document reflects the phases of the methodology.

• This introductory chapter presents the problem statement, raises the hypothesis,
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exposes the objectives of this thesis, summarizes the contributions, lists the sci-
entific production, and describes the overall structure of this dissertation.

• Chapter 2 reviews the main concepts and research related to IoT, MM, network
management models, SDN, and NFV.

• Chapter 3 introduces a model for network selection based on multi-criteria and
supervised learning.

• Chapter 4 presents a semantic and knowledge-based approach for HM that intro-
duces an information model and their instances distributed in the network entities.

• Chapter 5 introduces an autonomous and cognitive HM approach that introduces
autonomic agents based on CCL and delineates a semantic and goal-oriented
communication model.

• Chapter 6 presents conclusions about the research question and hypothesis and
proposes some future works.
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Chapter 2

State-of-the-art

This chapter presents the central concepts of this thesis as follows. The first section
introduces a description of MM and especially HM (2.1). The second section provides
an IoT overview, discussing the challenges for MM (2.2). The third section presents the
models needed to describe network management approaches (2.3). The fourth (2.4)
and fifth (2.5) sections describe the SDN and NFV ecosystem. The section 2.6 provides
a literature review of HM in wireless and mobile networks, focusing on seminal works
based on information and communication models.

2.1 Mobility Management

In MM, an MD moves within a single AP or across many APs. Therefore, the network
must provide to each MD a global identifier, location management, and HM [4, 54, 55].
A global identifier is used to recognize an MD in the network. Location management
allows the network to track the locations of MDs between consecutive communications.
HM keeps the connection active of any MD when it moves from an AP to another one
located at the same (horizontal handover) or different network (vertical handover) [56,
57]. The handover process usually involves the transmission of packets, resulting in
increased signaling costs in the network. The signaling cost is the mobility signaling
overhead incurred during a handover. According to [58–60], the signaling message
delivery cost result of computing the product of the number of network hops, the size
of the mobility signaling message, and the weighting factors in the network [61]. The
more the number of handover occurrences, the higher the signaling overhead.

HM consists of three phases: initiation, selection, and execution [17]. The handover
initiation periodically collects different parameters. These parameters are transferred
among network entities to discover the network environment and trigger handover. Han-
dover Trigger is when the connectivity between an MD and its current AP drops below
a particular level (threshold). The network selection phase determines an appropriate
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target AP, radio link transfer, and channel assignment to continue connectivity and meet
QoS [62]. In the literature, network selection is performed using either a network-centric
or a user-centric approach. In a network-centric approach, a centralized entity assigns
APs to MDs in the service area. However, in network-centric, all wireless networks
are involved and, so, the communication overhead increases significantly. On the other
hand, in the user-centric approach, the MD is responsible for running network selection
algorithms. However, in this approach, the connection of the MD to an AP affects the
network performance because MDs do not know the network load. Furthermore, the
high resource consumption of MDs can lead to a decrease in their lifetime.

The handover execution phase establishes sessions after the AP change, allocates
new addresses, delivers stored packets, and routes packets [63]. This phase interrupts
the data flow to the user due to network change and signaling overhead. This inter-
ruption results in the reduction of the user throughput and increases latency [64]. In
the literature, there are two kinds of MM protocols [14]. On the one hand, host-based
protocols must modify the protocols stack and change the addressing in MDs. On the
other hand, network-based protocols need a central entity to know the entire network
and manage mobility. Up to date, IoT solutions prefer the network-based MM protocols
since improving the handover, signaling, and QoS for real-time applications.

HM includes a control mechanism [5] that can be classified as: Network-Controlled
HandOver (NCHO), Mobile-Controlled HandOver (MCHO), Mobile-Assisted HandOver
(MAHO) and Network-Assisted HandOver (NAHO). In NCHO, the network starts and
controls the handover; operators usually adopt it for load balancing and traffic manage-
ment. In MCHO—traditionally used by IEEE 802.11 technologies—the MD initiates and
controls the handover. In MAHO, the MD helps in the handover process controlled by
the network; MAHO is typically used in cellular networks. In NAHO, the network helps
with the handover process controlled by the MD; NAHO is intended for heterogeneous
wireless networks.

2.2 Internet of Things

An IoT environment (Figure 2.1) represents a smart environment where different kinds
of MDs and processes are continuously working in a (or several) communication net-
works to make inhabitants’ lives more comfortable [56, 65]. In such an environment,
MDs generate traffic that may exceed the traffic generated by humans. Furthermore,
this environment may be organized by different application domains, also called verti-
cals, such as health [9], industrial [8], and agricultural [66]. Each vertical has its data
model and authentication method. Indeed, using different data representation models
represents a barrier to information exchange and retrieval; note that the traffic produced
by MDs is heterogeneous syntactic and semantically.
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Figure 2.1: IoT environment

Connectivity plays an essential role in IoT since IoT consists of diverse MDs with
different network connection times [67]. IoT applications have different requirements,
especially regarding response time, identifying two classes of applications. On the one
hand, near real-time applications (delay-sensitive like electroencephalography, tractor
beam game, and vehicular monitoring). On the other hand, delay-tolerant applications
such as video surveillance and object tracking [68]. It is important to highlight that each
application needs to be treated separately to offer differentiated QoS levels [69].

An IoT infrastructure consists of many APs, where MDs can connect and disconnect
constantly. Thus, the efficient handling of mobility is crucial for the overall performance
of any IoT application. Hence, the carrying out of a seamless handover is needed be-
tween APs [7] [10]. In IoT, MM aims at achieving service discovery, improving connec-
tivity, and optimizing QoS support for differentiated services in the network. However,
because the absence of an information model, the description of MDs and their capabil-
ities are heterogeneous syntactically and semantically so that software agents cannot
perform tasks such as automatic discovery and orchestration of devices and services.
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2.3 Network Management Models

Network management employs a variety of protocols, tools, applications, and devices
for monitoring and controlling network resources. A network management system is
described using the Open System Interconnection (OSI) network management model,
which comprises, in turn, four significant models: Information, Organizational, Commu-
nication, and Functional. The Information Model specifies the information base useful
to describe the managed objects and their relationships. This model represents a gen-
eral abstraction that can be specialized in different domains, regardless of technologies
and implementations. The Organizational Model defines the managers, agents, and
managed objects. The Communication Model delineates the information exchanged
between the managed systems with a complete network view. The Functional Model
organizes functional areas of network management [70] [71].

The current approaches use ANM based on a set of CCL (Fig. 2.2) that meet spe-
cific intents or policies [72]. CCL controls the status of a managed entity according to
an operator-specified desired goal. Therefore, ANM allows the network entities to con-
trol their context, adapt to changes in the environment, and self-govern their behavior
to achieve specific goals [73].

Information
analisis

Decision
making

Information
acquisition

Action
execution

Knowledge

Figure 2.2: Cognitive Control Loops

MAPE (Monitor, Analyze, Plan, and Execute) is the architecture for autonomic com-
puting proposed by IBM [74]. MAPE is a CCL to Monitor continuously network entities
gathering changes in the network and its environment; Analyze the collected data to
achieve the goals; Plan actions to meet the desired goal reconfiguration if goals can-
not be achieved; and Execute those actions and observe the results without human
intervention.
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In MM, an information model characterizes information collected from the network
and the interaction between the users and their MDs and services [75]. Furthermore,
the design of a common format (e.g., ontologies) would simplify the development of
functionalities (e.g., topology discovery), which should allow selecting the best AP and
satisfy QoS [43–45]. A communication model delineates the exchange of information
in an IoT environment [47,63]. This model can support MM efficiently by a mechanism
to share information in multiple domain networks while keeping signaling traffic with a
short delay and small cost.

2.4 Software-Defined Networking

SDN is an emerging network paradigm (Figure 2.3) that allows dynamic and flexible net-
work operations by decoupling the network control plane from the data plane [76]. The
control plane implements a logically centralized controller (or network operating system)
to simplify policy enforcement and network configuration. SDN achieves network pro-
grammability, where the network operator programs the controller to manage devices
automatically located at the data plane and optimize the use of network resources [40].
Briefly, SDN focuses on improving network performance regarding network manage-
ment, control, and data handling. The SDN architecture allows for classifying the IoT
applications to define flow-forwarding policies and improve QoS. Furthermore, a dy-
namic load balancing optimizes the usage of the wireless link to face topology changes
caused by MDs. Notably, the centralized control plane of SDN allows for generating
optimized strategies to handle mobility events such as the localization of MDs and the
user mobility patterns [77].
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Recently, SDN has been used for supporting handover. For instance, the abstraction
of Physical AP (PAP) provides a platform to facilitate a programmable control plane and
MM functions. In this sense, an SDN Controller handles each domain of a cluster of
MDs, providing visibility of all network traffic. The Logical AP (LAP) is a logical entity
that resides in the PAP with an extended SDN abstraction. Furthermore, LAP acts as an
SDN agent that enables a dynamic mapping configuration between the controllers and
MDs. In particular, LAP assigns a unique BSSID per client (MD) targeting to generate
beacon and acknowledgment frames, establishes the initial configuration parameters,
such as IP address, MAC address, and SSID, of MDs, and holds the information into
OpenFlow tables. The LAP prioritizes critical/control traffic to meet QoS [36].

2.5 Network Functions Virtualization

NFV is an initiative of the European Telecommunications Standards Institute (ETSI),
aiming to enhance the delivery of network services by separating network functions
from the hardware they run [78] (Figure 2.4). NFV is a network architecture that aims to
deploy Network Services (NSs) flexibly and dynamically [39,79]. NSs are complete end-
to-end functionalities offered by network operators. These functionalities are delivered
by composing Network Functions (NFs) by a process called Network Service Chaining
(NSC) or Service Function Chaining (SFC) [80]. Virtualized Network Functions (VNFs)
are essential elements based on computing resources.
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In NFV, the Management and Orchestration Framework (MANO) [37] is responsible
for managing NSs, NFs, NSC, and physical and virtual infrastructures. NFV MANO is
formed by an Orchestrator for composing software resources and virtualized hardware;
a Virtualized Network Functions Manager (VNFM) for managing the lifecycle of VNFs;
and a Virtualized Infrastructure Manager (VIM) for virtualizing and managing network
resources [78,79].

NFV is related to the building blocks for virtual networks characterized by highly
dynamic network environments like IoT. NFV allows optimizing the allocation of the
available network resources to improve the NSs delivery. Furthermore, NFV provides
differentiated services to users, enabling diversified QoS for several usage scenarios,
such as MM and MANO for SDN. MM involves NF control and orchestration to achieve
optimized functionality. NFV in IoT would allow the transition from a network of entities
to a network of functions. MANO for SDN is an essential element for monitoring, config-
uring, and controlling SDN because its use can bring from NFV benefits like scalability,
elasticity, and workability [78].

An SDN/NFV ecosystem (Figure 2.5) combines the abstraction of functions by NFV
and the abstraction of the network by SDN to increase the efficiency and network
agility of IoT applications. This ecosystem presents scalable distribution capabilities of
NFV through VNF and virtualized resources depending on traffic flows and application-
specific requirements. SDN in this ecosystem allows the configuration flexibility of phys-
ical and virtual resources [78,81].
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An SDN/NFV ecosystem provides differentiated services to users, enabling diversi-
fied QoS for the scenario. In this ecosystem, NFV allows the virtualization of the AP
and VNFs, such as optimizing handover, controlling policies for connecting AP and sig-
naling, and making decisions in the handover procedure. Furthermore, SDN implies a
logically centralized network control plane, which allows the implementation of sophis-
ticated mechanisms for traffic control and dynamic resource management [36,37,40].

2.6 Mobility Management in IoT

This section presents the related work of this thesis divided into Criteria for MM and
seamless mobility. The criteria provide a network view to make appropriate decisions.
Investigations about seamless mobility are pivotal to providing access to the user to
services everywhere, service continuity, and experience contextualized and personal-
ized.

2.6.1 Criteria for Mobility Management

In the works [24,25,29], the authors have proposed Simple Additive Weighting (SAW),
which processes the data rate of different applications to obtain a predefined handover
threshold. In the same direction, the works [24, 25] used the TOPSIS to select an AP
based on data rate. In the work [29], the authors proposed the Artificial Bee Colony
optimization algorithm that uses as a criterion the Bit Error Rate (BER) to select the
optimal AP with minimum handover delay. However, these works share shortcomings
related to the significant number of messages needed to estimate the data rate, leading
to adding network signaling traffic. Furthermore, the data rate is a criterion from the
user perspective that lacks information from the network perspective. Note that an
IoT network should adjust to allow some users to associate and meet QoS without
degrading network performance.

In the work [16], the authors have proposed as a criterion the bandwidth reservation
for maintaining a proper handover policy and allowing the users to migrate from one
AP to another one based on their QoS requirements. The drawback of this work is that
using a bandwidth reservation criterion by service reduces the number of simultaneous
traffic for other service classes resulting in QoS degradation. This thesis argues that a
single criterion is insufficient to take a handover decision and meet QoS.

In the work [26], the authors have proposed a linear regression model to select
the best criterion to trigger handover. They consider a set of criteria: signal strength,
data rates, delay, and associations. The authors conclude that the Signal-to-Noise
Ratio (SNR) is the best criterion for a handover trigger. The drawback of this work is
related to the linear regression model used, which depends on the quality of collected
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information. Using a method to transform criteria to normalized values would improve
the predictive performance of the handover trigger algorithms.

In [20], the authors have developed a genetic algorithm (GA) that applies the best
combination of weights to QoS parameters (network coverage area, battery power re-
quirement, network latency, and monetary cost) to select the best network connection
according to user preferences. The proposed GA avoids the slow and massive compu-
tations associated with direct search techniques, thus, reducing the computation time.
Note that this GA was not evaluated in a real environment and only used estimated
values.

In the work [28], the authors have used Markov Decision Process (MDP) to for-
mulate the network selection problem. They consider criteria such as type of service
(i.e., a combination of reliability, latency, and data rate), monetary cost from the user
perspective, and network conditions parameters such as available bandwidth and net-
work latency. The authors applied a GA to find a set of optimal decisions that ensure
the best trade-off between the QoS of the connection to the network (reward function)
and overloading the network with signaling traffic (cost function). The drawback of this
work is that it does not specify details about measuring parameters on the user side.
Furthermore, many iterations of the proposed GA must run in the central controller to
select the best AP, and the network-based criteria may conflict with the quality criteria.

In the work [30], the authors have developed a Quantum-inspired Immune Clonal
Algorithm to perform horizontal and vertical handover. They consider criteria network-
related or user-related, economic or non-economic, objective or subjective, accurate
or fuzzy. Also, in this work, the criteria are descriptions based on fuzzy mathematics
methods which can adjust to different network conditions. However, these criteria are
hard to be accurate, requiring a data model. Note that data models are narrowly related
to Information Models.

In the work [31], the authors have used an AP selection algorithm based on the Fit-
tingness Factor (FF) concept. This algorithm considers the provided quality assessment
in AP and the required quality assessment in MD as criteria. In [32], the authors have
proposed the Network Fittingness Factor metric, which considers QoS requirements
by joining total flows, active flows, and bandwidth efficiency (i.e., the current network
capacity and the quality of the connectivity). The drawback of this work is that it does
not specify details to collect parameters from the end-users. Furthermore, transforming
QoS requirements into bit-rate metrics can represent a loss of crucial characteristics to
meet QoS.

Table 2.1 presents the investigations related to insufficient criteria to make decisions
about the handover, revealing that notwithstanding their contributions, they share some
shortcomings: a) incomplete representation of the IoT handover process, b) inappro-
priate communication management to share information in multiple domain networks;
and c) scarcity of a framework that characterizes MM in IoT to meet QoS. This the-



32 Chapter 2. State-of-the-art

sis argues to overcome these shortcomings and optimize the IoT handover procedure.
First, an Information Model is needed to establish a shared characterization of IoT and
simplify the functionalities development for MM (e.g., criteria transformation methods).
Second, a Communication Model is required to facilitate MM by sharing information in
multiple networks and reducing network signaling traffic. Third, an SDN/NFV ecosys-
tem is demanded to deliver high levels of automation and flexibility to improve real-time
monitoring and connectivity of MDs with AP.

Table 2.1: Related work - criteria for mobility management

Paper
Information

Model
Communication

Model
Single-criterion Estimate-criteria Multi-criteria SDN/NFV

[24,25] ✓ ✓
[29] ✓ ✓
[16] ✓ ✓
[26] ✓ ✓
[20] ✓ ✓
[28] ✓ ✓
[30] ✓ ✓

[31,32] ✓ ✓
This Thesis ✓ ✓ ✓ ✓

During the thesis, various research papers related to HM were explored based on
single-criterion and multicriteria. About those papers, we describe the control mecha-
nism, the method used to make a decision, and the wireless technology used [72, 82].
Table 2.2 presents the reviewed work.
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Table 2.2: Related Work - methods and technology for HM

Work Description Making-Decision Wireless
Control Method Technology

[83]

A Software-Defined Networking (SDN) controller uses a
fuzzy system to score candidate networks for staying in
the current network or connecting to a better one

NCHO
Fuzzy
Logic

Fifth Generation (5G)

[84]

An algorithm is proposed to reduce the handovers by
multicriteria decision-making algorithms improved with a
context-aware and threshold-based scheme

MCHO
TOPSIS,

SAW
5G, Long-Term Evolution

(LTE), WLAN

[85]

A fuzzy logic and reinforcement learning-based
mechanism is introduced to address unnecessary and
frequent handovers by adjusting HandOver
Margin (HOM) and Time-To-Trigger (TTT)

NCHO
Fuzzy Q-
Learning

LTE

[22]

A solution, based on SDN, Binary Integer Linear
Programming (BILP), user criteria and network packet
error rate data, is proposed to rank candidate Base
Stations (BSs) and to enhance the handover selection
phase

NCHO BILP LTE

[86]

A framework, based on data analytics, context
extraction, user profiling and pre-processing contextual
information, is presented to score the available BSs and
to improve network access selection

NAHO
Fuzzy
Logic

5G

[87]

The AP or BS selection is improved by using AHP for
weighting selection criteria coming from the user and
networks’ context and TOPSIS for ranking the available
networks

NCHO
AHP-

TOPSIS
LTE, WLAN

[88]

A mechanism is proposed for selecting the radio access
network that best meets the end-user needs by
considering the on/off state and battery level of the
mobile device and the available bandwidth in the target
and serving network

MCHO Policy LTE, WLAN

[89]

A versatile modeling methodology is introduced for
evaluating proactive and reactive vertical handover
approaches

NCHO Policy 5G, LTE, WLAN

[90]

Two co-operating algorithms with adaptive thresholds
are introduced for performing network selection while
avoiding network congestion and meeting user
preferences regarding monetary cost, QoS, security and
energy consumption

NAHO Policy 5G

[91]

A multiattribute decision handover making scheme,
centered in the triggering phase and based on SDN and
Fuzzy Logic, is proposed for increasing the network
throughput and reducing unnecessary handovers and
total handover delay in femto-access points and
device-to-device communications

NAHO

TOPSIS,
Fuzzy
Logic,
AHP

LTE, WLAN

2.6.2 Seamless Mobility in IoT

In the work [33], the authors have proposed a Multichannel VAP (mVAP) to support
seamless handover in networks with APs operating on multiple channels. MDs choose
new APs based on messages exchanged between APs using Inter-AP Protocol. APs
provide MDs with information on possible new APs to change channels and continue
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with their connections without service disruption. This work increases the collisions
when many MDs are active simultaneously because of the overhead generated by han-
dling a VAP per AP, making this solution few scalable. Furthermore, each AP requires
a list of its neighbors to send the scan request messages, which may lead to needing
more storage capacity per AP.

In [34], the authors have proposed the framework BIGAP with a single global BSSID
and different RF channels for all co-located APs. BIGAP consists of two components.
The first one resides at APs. It collects statistics and executes BIGAP controller com-
mands (e.g., trigger the RF channel switching in an MD). The second component is
the BIGAP controller, which aims to provide a global view of the network state. This
controller also facilitates the handover operations between the serving and target AP.
Unfortunately, BIGAP needs a sufficiently large number of available channels to make
a collision-free channel assignment. Note that since this work uses only network-based
criteria, it may cause degradation in the network performance.

In [35], the authors have introduced Odin, a Light Weight AP (LWAP) that runs over
a controller to associate or disassociate MDs with APs. LWAP offers a dedicated logical
connection per MD with a unique BSSID. Odin ensures seamless handover to reduce
the delay. The drawbacks of this work are: i) the network attachment processes in-
crease workload in APs, ii) the complex task of prioritizing applications in the controller;
and iii) the handover process depends on a single criterion, which could lead to a load
imbalance situation, inhibiting to achieve an optimal network performance.

In [36], the authors constructed a logical AP (LAP) in IEEE 802.11 WLAN using an
SDN/NFV abstraction. LAP acts as a VAP, an abstraction of a PAP. This LAP also pro-
vides auxiliary network functions like disabling LAP and collecting the neighboring PAP
information to provide a gateway between the SDN controller and MDs. The evaluation
results of this work evidence a decrease in false handover indications, latency, and ping-
pong ratio. However, the handover process incorporates additional workload values in
PAP that cause low network performance and avoids satisfying the QoS requirements
of users.

In the work [6], the authors have proposed UbiFlow to manage mobility by deploying
a network of distributed SDN controllers and OpenFlow switches. The authors imple-
ment an optimal assignment algorithm for AP selection on these controllers based on
the network status analysis and flow requests. Furthermore, each controller maintains
a finger table to achieve critical scalable look-up in this overlay structure. The handover
process localizes the destination controller using a quick look-up in its finger table,
which further saves the communication cost and improves the efficiency of handover.
It is noteworthy that. First, this work has not been evaluated in a real environment.
Second, the assignment process triggered at the end of each time window would lead
to low network performance.

In [37], the authors have proposed an IoT architecture formed by three layers named,
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perception layer (i.e., sense and collect data from MDs), network layer (i.e., provide
connectivity to MDs using different technologies) and application layer (i.e., IoT appli-
cations). The network layer supported by controllers is programmable by SDN and
NFV. In particular, an SDN Controller modifies the flow tables of OpenFlow switches to
assist the MDs mobility. The data plane virtualizes an IoT gateway to maintain MDs
current session continuity. The Virtualized Gateway manages the dynamic attachment
of MDs to multiple APs. This architecture does not consider mechanisms in the percep-
tion layer that may lead to enrichment MM. Thus, the proposed MM of this work cannot
gather valuable information from users and MD, change parameters of association and
re-association, and re-configure network access.

In SDN-WISE [38], the authors have proposed a solution based on SDN for Wire-
less Sensor Networks (WSN). SDN-WISE defines two kinds of nodes. The first one
is the sensor node running in the data plane. Second, the sink node represents the
gateways between the sensor nodes and the controller running at the control plane. In
this solution, a WISE-Visor establishes the communication between the layers using
OpenFlow and reduces the exchanged information between sensor nodes and SDN
controllers. The drawbacks of this work are. First, implementing the solution is im-
practical since it requires a high level of programmability, unknowing that MDs have
constrained resources. Second, it overloads the communication channel with network
signaling traffic.

Table 2.3 presents the investigations related to the service interruption during han-
dover, revealing that notwithstanding their contributions, they share some shortcom-
ings: a) network attachment processes increase workload in APs, b) lack of QoS nego-
tiation during handover; and c) do not specify an exact timing procedure for a handover
to minimize service disruptions. Considering these shortcomings, this thesis argues
that to optimize the IoT handover process. First, an Information Model is needed to
characterize user QoS requirements and to provide a similarity degree between QoS
requirements and the available devices/services during and after handover. Second, a
Communication Model is required to minimize the inter-packet delay of individual flows,
improving the QoS provisioning by reducing the chance of service disruption. Third, an
SDN/NFV ecosystem is demanded to provide efficient, proactive, fine-grained, QoS-
aware, and seamless MM, manner according to the current connectivity options (i.e.,
wireless networks (WiFi) and network devices (AP/BS)).
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Table 2.3: Related work - seamless mobility in IoT

Paper
Information

Model
Communication

Model
QoS Fast-Handover Seamless Handover SDN NFV

[33] ✓ ✓ ✓
[34] ✓ ✓ ✓
[35] ✓ ✓ ✓
[36] ✓ ✓ ✓ ✓
[6] ✓ ✓ ✓ ✓

[37] ✓ ✓ ✓ ✓ ✓
[38] ✓ ✓ ✓

This Thesis ✓ ✓ ✓ ✓ ✓ ✓

HM in 5G networks becomes more complicated with many issues and challenges.
5G combines ultra-dense network scenarios and radio access technologies with short
coverage areas increasing network signaling traffic due to frequent handovers. At the
same time, the users contain a large MDs number and present high mobility raising the
workload within network entities due to many handovers (e.g., massive Machine-Type
Communications (mMTC)). Additionally, the growing applications number with increas-
ingly strict restrictions in terms of QoS (e.g., Ultra-Reliable and Low-Latency Commu-
nication (URLLC)) impose conditions on HM to reduce the delay from minimizing the
signaling generated [92]. Therefore, HM from an ANM point of view offers seamless
mobility where users achieve a seamless, contextualized, and personalized experience
to access services everywhere [93] [94].

Autonomous and cognitive HM approaches achieve automatic and adaptive man-
agement using ML mechanisms to analyze different data from multicriteria and use
new network management structures. [95] outlines the handover procedure from an
ANM point of view to assess robustness and self-optimization. [96] proposes an au-
tonomous framework with five functionalities: context-aware interface, 5G access point,
macro cloud unit, control interface, and enabling platform. The macro cloud drive be-
haves as an autonomous, self-healing module. This framework uses the Fuzzy AHP
(FAHP) to consolidate the criteria weights and the Efficacy Coefficient Method-based
TOPSIS (ECM-TOPSIS) technique to select the network.

The work in [97] introduces a CCL and cross-layer access network selection frame-
work. The CCL comprises three modules: perception, decision, and execution to se-
lect the access network adaptively. The decision-making uses AHP to calculate the
criteria weights and TOPSIS to rank the candidate networks. [98] enables a Software-
Defined Wireless Network (SDWN) to manage and control the network autonomously.
Decision-making uses multiple criteria and Fuzzy Logic (FL) techniques with adaptive
hysteresis values taking into account the Quality Of Experience (QoE). [99] presents
an algorithm based on Reinforcement learning (RL) to trigger the handover and select
the network. This algorithm uses multicriteria and applies State-Action-Reward-State-
Action (SARSA) to learn an optimal handover policy. However, the lack of personalizing
the user actions during handover increases the network signaling traffic generated.
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2.7 Final remarks

This chapter presented the central concepts of this thesis as well as the related work.
From the literature review, we concluded that the investigations based on multicriteria
provide a global network view to make appropriate decisions in handover. In turn, the
works based on seamless mobility delineate the information exchange during handover
to reduce service interruption time. However, the insufficient criteria and the incom-
plete representation of the handover process drive to wrong selection of the network
and handover decisions realized from a constrained perspective. Moreover, network
attachment processes increase workload in APs and service disruption time.
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Chapter 3

A Model for Network Selection Based
on Multi-Criteria and Supervised
Learning

HM plays a fundamental role in wireless communications. HM is the process by which
a MD maintains an active connection when the user roams from the coverage area
of one network to another [100]. HM comprises three phases [101] [102]: initiation,
selection, and execution. Handover Initiation collects all information required to identify
and determine the neighbor networks, their parameters, and their available services.
Network Selection selects the best available network by taking into account diverse
parameters and metrics. Handover Execution establishes the connection and releases
resources. This chapter focuses on the network selection phase, which is crucial to
ensure service continuity, provide QoS, and satisfy (QoE) [103] [104].

Traditional approaches for Network Selection use a single-criterion to decide the
next network (e.g., AP or BS) to which MDs must connect as they move [105]. SSF is
the most widely used traditional approach, which performs the selection by comparing
Received Signal Strength Indication (RSSI) of the current network with available adja-
cent networks [100]. Other approaches based on a single-criterion use the available
bandwidth [106], network load [107], or Signal to Interference Noise Ratio (SINR)
[108] to select the network. As these approaches only use one criterion, they ignore

important information, leading to instantaneous throughput, unnecessary handovers,
and even service disruption [109] [110] [105].

Other approaches use multi-criteria to solve the shortcomings mentioned above.
The selection criteria can be classified in Network, User, Device, and Application [111].
Network criteria include parameters that describe the wireless network characteristics
(e.g., coverage area and RSSI). User criteria comprise parameters related to user pref-
erences. Device criteria encompass parameters that provide information about the MD,
such as battery consumption and location. Application criteria cover parameters related
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to QoS requirements of real or non-real-time applications, like the bandwidth consumed
by such applications. Some multicriteria approaches (a.k.a., Multi-Attribute Decision-
Making (MADM) are: SAW, Gray Relational Model, and TOPSIS [103] [112]. These
approaches have some shortcomings related to skipping diverse selection criteria, re-
sulting in wrong network selection [105]. Other relevant multicriteria approaches use
techniques like mathematical models [113], Neural Network (NN) [111] [114], Fuzzy
Logic (FL) [115] [116], and Game Theory [105] to perform network selection. However,
these techniques can decrease the throughput during the handover [117]. Hybrid solu-
tions combine multicriteria approaches [118]. However, their major problem is the high
computational complexity.

In this chapter, we introduce NetSel-RF, a multicriteria model based on supervised
learning (i.e., RL), to overcome the abovementioned shortcomings and efficiently se-
lect WiFi networks. To create this model, we constructed a dataset, performed data
preparation, carried out feature selection, and applied different supervised ML tech-
niques. The remainder of this chapter is as follows. Section 3.1 introduces the network
selection approach based on multicriteria and ML. Section 3.2 presents the efficiency
of NetSel-RF in comparison with AHP-TOPSIS and SSF. Finally, Section 3.3 contains
some concluding remarks.

3.1 NetSel-RF Model

This section presents our classification model for optimizing the network selection in a
WiFi-based environment. In particular, this section presents the motivation, methodol-
ogy, interpretation of data, data preparation, and model construction.

3.1.1 Motivation

Figure 3.1 shows a user with a MD (dev1) moving through the hall. This dev1 needs
to be always connected to the best network. As mentioned above, traditional handover
approaches consider only RSSI for making decisions [119]; however, his approach pro-
duces frequent disconnection and inefficient seamless handovers, leading to handover
operation failures [105].

Several approaches have addressed these problems using multicriteria considering
the handover decision criteria related to QoS and QoE [117]. Nevertheless, current
approaches based on multicriteria can perform wrong network selection by skipping
one or more criteria related to the network, devices, users, or application parameters.
In this chapter, we argue that a supervised learning model based on multicriteria allows
the network selection to be optimized by considering the criteria of networks, devices,
users, and applications. In this way, such a model can learn the best network to satisfy
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QoS and QoE. Additionally, supervised learning allows the new network to be selected
proactively. The MDs performs a handover before the network link quality degrades.

Figure 3.1: Motivation Scenario.

3.1.2 Methodology

We followed the Cross Industry Standard Process for Data Mining methodology (CRISP-
DM) [120] to build our classification model. The aim was to optimize the network se-
lection by choosing the best AP available in Wi-Fi networks. We carried out three
CRISP-DM steps: data interpretation, data preparation, and modeling. Data interpreta-
tion generates, gathers, and defines the initial dataset that includes the set of data and
features related to selecting the best AP to perform a handover. Data preparation cov-
ers all activities necessary to construct the final dataset from the initial dataset. Data
preparation tasks include attribute selection as well as the transformation and clean-
ing of data. Modeling refers to the assessment of several supervised ML algorithms to
choose the one that best foresees the AP to make the handover decision. The selec-
tion metrics are the True Positive Rate (TPR) [121], False Positive Rate (FPR) [122],
Matthews Correlation Coefficient (MCC) [123], and Time of Classification (TC) [121].
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3.1.3 Data Interpretation

This phase builds an initial dataset with the appropriate features (i.e., parameters) to
select the best available AP in a WiFi network. This phase includes the following tasks:
first, an experimental scenario is designed and implemented. Second, the relevant
parameters/attributes to optimize the AP selection are chosen. Third, the target variable
is defined. Fourth, the dataset is filled by capturing the attributes when the MDs are
moving and have at least two APs in range.

Figure 3.2 shows the scenario built to obtain the initial dataset. This scenario in-
cludes four APs (described in Table 3.1), together with 24 MDs (devs). In particular,
dev1, dev2, dev3, and dev4 perform a circular movement, and dev5, dev6, dev7, and
dev8, carry out a linear movement. In turn, dev9 to dev24 perform a random movement.
All devices perform the movement in 500 steps at a speed of 1 m/s and communicate
at 2462 GHz. The scenario described was deployed by using the Mininet-WiFi [124]
emulator in a virtual machine with Ubuntu Server 16.04.

Figure 3.2: Dataset scenario set-up.

In the second step, we investigated the most used parameters related to the network
selection phase in the literature. Table 3.2 briefly describes the parameters chosen for
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Table 3.1: Access Point (AP) setup.

AP SSID Position [x,y,z] (m) Range (m) Channel Total_Users_Support
ap1 ap1-ssid [50.0,150.0,0] 45 1 15
ap2 ap2-ssid [90.0,180.0,0] 50 7 18
ap3 ap3-ssid [130.0,150.0,0] 45 11 15
ap4 ap4-ssid [90.0,90.0,0] 57 11 20

our initial dataset and classifies them according to their type: network, device, applica-
tion, and user. In the third task, we defined AP_target as the dependent parameter/at-
tribute (also known as output variable) to predict; this variable is categorical (i.e., ap1,
ap2, ap3 and ap4) because it allows the prediction of the AP to which the MD should
connect taking into account the user preference. In the fourth task, we filled the dataset
and used TOPSIS to complete the AP_target parameter. We gathered the data when
MDs (devs) moved and had at least two candidate APs in range.

Table 3.2: Parameter description.

Proposal Criterion Parameter Description

[113,115,116] Network

AP Indicates which are the candidate APs that are in range of the MD.

RSSI Reference scale for measuring the power level of the signals received by a MD
and determining if the signal is sufficient to get a good wireless connection.

AP Ocupation Percentage of users connected to the AP concerning the entire capacity
of users support the AP.

[113] Devices Distance Distance between MD and candidate AP.

[125] Device and
Application Battery consumption Estimated discharge percentage of the MD when it is connected to the candidate AP

taking into account the applications used by the user and the distance to the AP.

[126] Application Power consumption Battery consumption in the MD due to the type of application that users
are using in the handover moment.

[112] User User Preference User preference between good signal quality, lower battery consumption or
good QoS.

The result of this phase is the initial dataset with five input parameters/attributes
and one output parameter. The input parameters are as follows: AP available, RSSI,
AP occupation, battery consumption of devices, distance from the MD to the AP, and
power consumption of applications. The output parameter (dependent variable) is the
selected AP. To create this dataset, we leveraged the global view of the network offered
by Mininet-WiFi. This emulator provides a global view, following the Software-Defined
Network concept [127]. With Mininet-WiFi, it is possible to collect parameters from MD
and APs [128]. Listing 3.1 shows code excerpts to illustrate how the aforementioned
parameters were collected.



44
Chapter 3. A Model for Network Selection Based on Multi-Criteria

and Supervised Learning

Listing 3.1: Parameter collection.
/ / AP a v a i l a b l e
dev . params [ " apsInRange " ]
dev . params [ " associatedTo " ]

/ / RSSI
ap_dis = dev . ge t_d is tance_to (ap_name)
dev_rss i = dev . g e t _ r s s i ( ap_name ,0 , ap_dis )

/ / AP occupat ion
ap_num_dev = ap_name . params [ " assoc ia tedSta t ions " ]
ap_max_dis . params [ ’ maxDis ’ ]
ap_ocu = ( ( ap_num_dev * 1 0 0 . ) / ap_max_dis )

/ / b a t t e r y consumption o f devices
dev_app = dev . params . get ( " app " )
ap_dis = dev . ge t_d is tance_to (ap_name)
bat_temp = cons tan t_ba t te ry_d ischarge * ap_dis * dev_app

/ / d is tance from the device to the AP
dev . ge t_d is tance_to ( ap_temp )

/ / power consumption o f a p p l i c a t i o n s
dev . params [ " pow " ]

3.1.4 Data Preparation

This phase analyzes and processes the initial dataset in order to build the final dataset.
The data preparation involves the assessment of the quality of the dataset and the
reduction of the dataset’s dimension. Firstly, we captured the data from the Mininet
Wi-Fi emulator. We noted that the data for APs in the range of MDs were correct in the
dataset. For APs which were out of range, there were missing values in the dataset.
Therefore, we decided to substitute the missing values with the maximum value of each
parameter. In particular, we assigned −100 dBm for RSSI, 100% for AP occupation,
and 1% for battery consumption. These maximum values in the dataset represent the
non-selection of an AP outside the range of the MD.

Secondly, we selected the most relevant features with the aim of reducing the dataset
dimension and computational complexity. To determine the final dataset features, we
applied three ML classification algorithms to all datasets resulting from the combination
of all features of the initial dataset. In particular, we used Hoedding Tree (HT) [129],
RF [129], and Support Vector Machine (SVM) [130] because the output variable of
these methods is categorical (i.e., ap1, ap2, ap3 and ap4). HT is an incremental de-
cision tree learner for large data streams, which assumes that the data distribution is
not changing over time [129]. Additionally, HT uses the simple idea that a small sample
can often be sufficient to choose an optimal splitting attribute, which is supported math-
ematically by the Hoeffding bound that quantifies the number of observations needed
to estimate some statistics within a prescribed precision [131]. RF consists of a large
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number of individual decision trees that operate as an ensemble. Each tree predicts a
class, and the class with the most votes becomes the prediction [132]. SVM outputs
an optimal N-dimensional hyperplane (N—the number of labels) that categorizes the
output variable given labeled training data [130].

We used accuracy [133] and MCC as metrics in this feature selection task because
they are typical in classification problems. Accuracy is the ratio between the number
of correct predictions and all predictions made [122]. MCC is a measure of the quality
of classifications; it takes into account true and false positives and negatives. MCC
is, in essence, a correlation coefficient value between −1 and 1. A coefficient of 1
represents a perfect prediction, 0 is an average random prediction, and −1 is an inverse
prediction [123].

For the sake of readability, Figure 3.3 depicts only the evaluation results of four
tested datasets regarding accuracy and MCC. Dataset 1, in purple, includes RSSI, AP
occupation, and battery consumption. Dataset 2, in green, considers RSSI, AP occu-
pation, battery consumption, and distance. Dataset 3, in blue, comprises RSSI, AP oc-
cupation, battery consumption, and power consumption. Dataset 4, in orange, includes
RSSI, AP occupation, battery consumption, distance, and power consumption. Dataset
1 obtained the best performance regarding the accuracy and MCC for all evaluated ML
algorithms. Specifically, this dataset obtained the highest accuracy, near 99.7%, and the
highest MCC score, of around 0.996; thus, Dataset 1 was selected as the final dataset.
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Figure 3.3: Feature Selection. (a) Accuracy, (b) MCC.

Considering the accuracy and MCC results mentioned above, we reduced the dataset
dimension (i.e., resulting in lower computational complexity) from five to four input fea-
tures; the final dataset (Dataset 1) includes the output variable AP_target and the input
features: AP available, RSSI, AP occupation, and battery consumption. Note that the
final dataset does not include the distance feature (no relevant); this may be due to its
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relationship with battery consumption. We filled the final dataset by capturing the fea-
tures/parameters when the MD is in movement and has at least two APs in range; note
that we assigned the maximum values to the missing data. Our final dataset comprises
10, 500 samples (Table 3.3).

Table 3.3: Excerpt of final dataset.

station ap1 rssi1 ocu1 con1 ap2 rssi2 ocu2 con2 ap3 rssi3 ocu3 con3 ap4 rssi4 ocu4 con4 AP_Target
1 sta1 0 −100 100 1.00 1 −69.0 66.67 0.031 1 −72.0 46.67 0.031 0 −100 100 1.00 ap3
2 sta2 0 −100 100 1.00 1 −55.0 55.56 0.010 1 −76.0 60.00 0.041 0 −100 100 1.00 ap2
3 sta3 0 −100 100 1.00 0 −100 100 1.00 1 −69.0 53.33 0.024 1 −76.00 45.00 0.052 ap3
4 sta4 0 −100 100 1.00 1 −74.0 66.67 0.046 1 −66.0 60.00 0.018 1 −77.00 40.00 0.056 ap3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

10500 sta24 0 −100.0 100.0 1.0 1 −72.0 66.67 0.0376 1 −64.0 46.67 0.0169 0 −100.0 100.0 1.0 ap3

3.1.5 Modeling

We evaluated five classification algorithms: the three used in the features selection plus
Adaptive Random Forest (ARF) [134] and Hoeffding Adaptive Tree (HAT) [134]. ARF is
an adaptation of RF, which includes mechanisms to adapt to different kinds of concept
drifts given the same hyper-parameters. HAT adaptively learns from data streams that
change over time without needing a fixed-size of the sliding window. The optimal size
of the sliding window is a complicated parameter to guess for users since it depends on
the rate of change of the distribution of the dataset [134]. We used these five algorithms
because the target variable is categorical.

As evaluation metrics, we used the two used in the feature selection plus TPR, FPR,
precision, and time of classification (TC). TPR is the number of class members classi-
fied correctly over the total number of class members (i.e., the label AP1 is used when
AP1 is the correct selection for handover). In contrast to TPR, FPR is the number of
class members classified incorrectly over the total number of class members (i.e., label
the AP1 is used when AP3 is the correct selection for handover) [121]. The precision
is the number of class members classified correctly over the total number of instances
classified as class members [122]. TC is the time spent by an algorithm to classify the
selected AP [121]. Furthermore, we used cross-validation, which consisted of randomly
dividing the final dataset into two parts: 80% for training and 20% for validation.

Figure 3.4 shows the evaluation results regarding accuracy. These results reveal
that RF and ARF obtain higher accuracy than the other evaluated algorithms. In par-
ticular, RF and ARF reach an accuracy of approximately 99.7% and 99.57%, respec-
tively. These results are due to RF and ARF being able to handle large amounts of
data with higher dimensionality; additionally, RF and ARF require less cleaning and
pre-processing of data compared to other learning methods. Figure 3.4 depicts the
evaluation results regarding MCC. These results reveal that RF and ARF also obtain
a higher MCC than SVM, HT, and HAT. In particular, RF and ARF reach an MCC of
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approximately 0.996 and 0.994, respectively. These results are because tree-based al-
gorithms are efficient at finding complex correlations. Therefore, RF and ARF provide
a high correlation between real and predicted values for HM.

We also evaluated HT, HAT, RF, ARF, and SVM by using the confusion matrix, which
is a fundamental tool to evaluate the performance of classification algorithms; this ma-
trix allows us to determine quickly if the model is confusing different classes. In this
matrix, each column represents the number of predictions per class, while each row
represents the instances in the real class. TPR and FRP represent the proportion of
APs selected correctly and incorrectly, respectively.

Table 3.4 presents the performance evaluation results of the five algorithms men-
tioned above according to metrics derived from the confusion matrix and TC . These
results show that all algorithms have a higher TPR than 90%. Again, RF and ARF be-
have better than the other evaluated algorithms, reaching percentages of around 99.7%
and 99.57%, respectively. Furthermore, RF and ARF have a low FPR of about 0.29%
and 0.43%, respectively. In addition, RF and ARF reach a high precision of around
99.68% and 99.69%, respectively. TC is low for all tested algorithms, ranging between
0.66 and 5.146 ms. HT and SVM obtain the shortest TC .
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Figure 3.4: Modeling evaluation. (a) Accuracy, (b) MCC.

From the cross-validation and confusion matrix analysis, we concluded the following:
(a) none of the algorithms achieve the best results for all the metrics presented, (b) RF
and ARF algorithms outperform the other algorithms regarding accuracy and MCC; and
(c) the algorithms that obtained better performance in the TPR metric result in a high
TC and vice-versa. Considering these conclusions, we decided to use RF for network
selection due to it being the model with the best balance between accuracy, MCC, and
TC . Thus, as a result of the modeling phase, we obtained the classification model called
NetSel-RF. In the next section, we compare NetSel-RF with SSF and AHP-TOPSIS.
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Table 3.4: TC and metrics derived from the confusion matrix. TPR: true positive rate;
FPR: false positive rate; RF: Random Forest; ARF: Adaptive Random Forest; SVM:
Support Vector Machine; HAT: Hoeffding Adaptive Tree; HT: Hoedding Tree.

Algorithms TPR% FPR% Precision% TC (ms)
RF 99.70 0.29 99.68 3.865

ARF 99.57 0.42 99.65 5.146
SVM 90.57 9.42 92.99 1.445
HAT 94.21 5.78 75.65 1.471
HT 92.55 7.44 74.44 0.666

3.2 Network Selection

This section aims to evaluate the behavior of NetSel-RF regarding two metrics: the
number of handovers and instantaneous throughput. Furthermore, this section com-
pares NetSel-RF to SSF and AHP-TOPSIS qualitatively and quantitatively. The follow-
ing subsections present the metrics, evaluation scenario, and results obtained.

3.2.1 Metrics and Evaluation Scenario

We compared NetSel-RF to SSF and AHP-TOPSIS regarding the number of handovers
and instantaneous throughput. The quantity of handovers is the number of transfers an
MD makes when it moves from one place to another one [112]. This number is affected
by the ping-pong effect that occurs when the MD does not stay within the coverage
of the selected AP and returns to the associated AP. The instantaneous throughput
(throughput drops) represents the time that the number of bytes transmitted falls to
zero due to handover.

With the aim of evaluating NetSel-RF, we used Mininet-WiFi to emulate a network
formed by four APs with 802.11 g and 17 MD distributed in four rooms (see Figure
3.1). We analyzed the performance of NetSel-RF, SSF, and AHP-TOPSIS regarding
the metrics mentioned above when dev1 carried out a linear movement at a speed of 1
m/s.

3.2.2 Results and Analysis

Figure 3.5 depicts how NetSel-RF, SSF, and AHP-TOPSIS behave regarding the num-
ber of handovers, revealing NetSel-RF has a higher number of unnecessary handovers
than SSF and AHP-TOPSIS because it suffers from the ping-pong effect in the move-
ments 100, 215, and 415. This ping-pong is caused by AP3 and AP4 offering identical
conditions (i.e., the same RSSI level and percentage of users connected to AP) to dev1.
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Figure 3.5: Number of handovers: NetSel-RF without movements module.

To address the ping-pong effect, we enhanced NetSel-RF with a movements mod-
ule. This module uses a row vector to store the variable AP_target as well as the last
seven locations (latitude and longitude) of MDs. A movement is given by a location
change. Thus, the handover is performed only when AP_target has the same value
for all seven movements; otherwise, the MDs remain connected to their current AP. It is
important to highlight that we performed tests considering the last 3, 5, 7, and 9 moves
to choose the proper number to eliminate the ping-pong effect.

Table 3.5 exemplifies two vectors containing AP_target. NetSel-RF does not per-
form any handover for the AP_target presented in the first row since this row jumps
between AP2 and AP3. Conversely, since the AP_target is the same for the seven lo-
cation changes (movements) in the second row, NetSel-RF carries out the handover. In
practice, we filled this vector for all MD in movement using Mininet features: dev.params[”associatedTo”]
and dev.params[”position”].

Table 3.5: AP_target example.

VariableMovement Mov1 Mov2 Mov3 Mov4 Mov5 Mov6 Mov7
AP_target AP2,loc1 AP2,loc2 AP2,loc3 AP3,loc4 AP2,loc5 AP3,loc6 AP2,loc7 X
AP_target AP2,loc1 AP2,loc2 AP2,loc3 AP2,loc4 AP2,loc5 AP2,loc6 AP2,loc7

√

Figure 3.6 depicts the evaluation results regarding the number of handovers car-
ried out by the enhanced NetSel-RF, AHP-TOPSIS, and SSF. These results reveal that
NetSet-RF and AHP-TOPSIS outperform SSF regarding this evaluation metric. In par-
ticular, the number of handovers for RSSI, AHP-TOPSIS, and our model are 9, 3, and
3, respectively.

Figure 3.7 shows the evaluation results regarding the instantaneous throughput of
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Figure 3.6: Number of handovers: NetSel-RF with movements module.

the enhanced NetSel-RF, AHP-TOPSIS, and SSF. These results reveal our model and
AHP-TOPSIS outperform SSF regarding this evaluation metric. In particular, NetSel-RF
and AHP-TOPSIS suffer 3 instantaneous throughput (0Mbps). In turn, SSF has 7 drops.
In summary, according to Figures 3.6 and 3.7, the multicriteria-based approaches be-
have better than SSF regarding the number of handovers and instantaneous through-
put.
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Figure 3.7: Instantaneous throughput in NetSel-RF.

Figures 3.6 and 3.7 reveal that NetSel-RF behaves similarly to AHP-TOPSIS re-
garding the number of handovers and instantaneous throughput. However, there is an
essential difference between our model and AHP-TOPSIS. NetSel-RF performs trans-
fers earlier than AHP-TOPSIS (Figure 3.8). This is due to the fact that our model is
proactive, and AHP-TOPSIS is reactive. Thus, NetSel-RF selects a new AP before suf-
fering a disconnection. The proactive approaches are more effective than reactive ones
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regarding QoS and QoE since the MDs perform the handover before the network link
quality degrades, meaning that MDs are always connected [135].

ap4

ap1

ap2

ap3

100 128 200 219 234 300 400 433 461 500

1

2

31

2

3

A
p
 S

e
le

c
te

d

Step

TOPSIS
NetSel-RF

Figure 3.8: AP Selection.

3.3 Final Remarks

In this chapter, we introduced a multicriteria model based on supervised learning, called
NetSel-RF, to cope with wrong network selection decisions that lead to unnecessary
handovers, instantaneous throughput, and complexity in the current HM solutions. We
constructed a dataset, performed data preparation, carried out feature selection, and
developed our model by using RF. Our model, based on multicriteria (coming from the
network, user preferences, devices, and applications) and supervised learning, outper-
formed the SSF approach regarding several metrics, such as the number of handovers
(67%) and instantaneous throughput (50%). Moreover, our model behaved similarly to
AHP-TOPSIS regarding the metrics mentioned, but selecting a new AP without waiting
for the current AP is beyond the capability of the model. Our approach is proactive, and
AHP-TOPSIS is reactive; therefore, NetSelf-RF makes a handover to an AP with better
conditions before the MD loses connection, in contrast to AHP-TOPSIS.

Considering these results, we concluded that NetSelf-RF is an attractive and fea-
sible solution for cognitive HM. In this sense, NetSel-RF envisions being deployed on
WiFi networks following the SDN paradigm. Since the NetSel-RF model needs infor-
mation from MD (e.g., battery consumption) and APs (e.g., occupation), it requires a
network global view for a real deployment. SDN offers programmability, a global view,
logically centralized control, and the decoupling of network control and packet forward-
ing. It is noteworthy that our training and validation datasets were collected by using
the Mininet-WiFi emulator, which is SDN-oriented.
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We analyzed the most common parameters used in the literature to build the final
dataset used to train and validate NetSel-RF. The use of parameters other than those
used in the data interpretation and data preparation phases is in other chapters of this
thesis. It is also worthy of note that we use the parameters available in the MD and
AP because, in practice, NetSel-RF is geared towards Software-Defined Wireless Net-
works [136–138], which is implicit from the data interpretation phase to the evaluation
phase. For actual deployment, we suggest installing the NetSel-RF learning agent in
the management plane [139] or in the cognitive plane [140].



Chapter 4

A Semantic and Knowledge-Based
Approach for Handover Management

HM is responsible for making network (dis)connection decisions in a timely manner
[54, 55]. In this sense, HM is pivotal for providing service continuity, ultra-high relia-
bility, extreme-low latency, and meeting sky-high data rates in current and upcoming
wireless communications [72, 82]. In order to achieve efficient HM, challenges need
to be faced that are related to high handover rates and ping-pongs in dense commu-
nication environments, leading to an increase in both the data flow latency and the
packet loss and, consequently, a reduction of the network throughput [141,142]. Users
moving at moderate-to-high speed require a seamless handover mechanism with few
failures [60,143].

In the networking literature, we find two approaches that address HM: single criterion-
based and multicriteria-based. Approaches based on a single-criterion, such as SSF,
usually consider only the link quality in the MD for carrying out handovers. SSF com-
pares the RSSI of available networks and selects the network with the highest sig-
nal [144]. Single criterion-based approaches operate with a constrained network view
that disregards contextual information, such as movement velocity and application re-
quirements, leading to unnecessary and frequent handovers. These handover issues
can decrease throughput, increase packet loss and even cause network service dis-
ruption [29, 145, 146]. The multicriteria-based approaches in [22, 30, 83–90] use RSSI
and context information as criteria for ranking the available networks; the top-ranked
network is selected by the MD for performing the connection process. These ap-
proaches disregard one or more relevant criteria, such as wireless network characteris-
tics (e.g., coverage area), MD features (e.g., battery consumption), application require-
ments (e.g., real-time response), or user peculiarities (e.g., mobility pattern), leading to
the handovers failure and wrong network selection, negatively impacting the network
performance [24, 146]. Hybrid solutions combine multicriteria approaches [91]; how-
ever, their computational complexity is high.
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This chapter presents SIM-Know, an approach for improving HM. The contributions
of SIM-Know are two-fold. SIM-Know proposes a SIM that allows us to make context-
aware handover decisions by considering and relating criteria from several context in-
formation domains: Network, Application, User, UserDevice, and Handover. SIM-Know
also introduces a SIM-based distributed KBP that offers local and global knowledge for
making contextual and proactive decisions during the handover process. We evaluated
SIM-Know in an emulated wireless network. The remainder of this chapter is as fol-
lows. Section 4.1 introduces SIM-Know, including SIM and KBP. Section 4.2 presents
the evaluation of SIM-Know. Section 4.3 compares SIM-Know to other related work.
Finally, some remarks are presented in Section 4.4.

4.1 SIM-Know

HM allows an MD to keep an active connection when moving from one network cover-
age area (BS or AP coverage) to another [144]. HM comprises the initiation, selection,
and execution phases [22, 147, 148]. Handover Initiation gathers all the information
needed to identify and determine the neighboring networks and their current and fu-
ture statuses (e.g., data about network performance and available services). Network
Selection chooses the best available network from a ranking created by taking into ac-
count a single-criterion or multicriteria. Handover Execution connects and disconnects
users to and from a network, involving resource allocation and releasing [51].

SIM-Know introduces SIM and KBP for improving HM. SIM allows SIM-Know to
make context-aware handover decisions. The distributed KBP provides local and global
knowledge to make rule-based cognitive decisions about network connection and dis-
connection. SIM and KBP envision diminishing the number of handovers and instanta-
neous throughputs and, as a consequence, have a positive impact on several network
performance metrics (delay, jitter, packet loss, and throughput).

4.1.1 Semantic Information Model

SIM-Know makes appropriate and contextual handover decisions by considering crite-
ria from several information domains (i.e., Network, Application, User, UserDevice, and
Handover ) modeled by SIM. We use the Common Information Model (CIM) and the
Web Ontology Language (OWL) to carry out SIM (Figure 4.1). We adopted CIM [149]
because it provides high expressiveness for modeling, management purposes, informa-
tion systems, applications, and networks [71]. We used OWL [150] because it enables
reasoning in the model and the sharing of knowledge among software agents [151]. In
particular, SIM uses OWL classes and properties to characterize HM entirely by mod-
eling the information domains and their relationships.
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Figure 4.1: Semantic Information Model.

Figure 4.1 shows the five knowledge domains comprising SIM as superclasses,
namely, Network, User, Application, UserDevice and Handover. It is worth noting that
the Handover superclass models HM by using the Initiation, Selection, Execution, and
Policy classes. The other superclasses represent the information domains contain-
ing the parameters used to improve decision-making in HM. Each superclass relates to
other classes by the has sub-class relationship. The Initiation class models the initiation
phase that defines when the selection phase is triggered, which, in turn, is modeled by
the Selection class responsible for obtaining the candidate networks for performing the
handover. The Execution class performs the handover itself since it allocates and re-
leases AP (i.e., AccessPoint class) and user device (i.e., UserDevice class) resources,
represented by the Resource class, which affects the QoS required (i.e., QoS class)
by a user application (i.e., Application class). The Policy class represents the policies
to apply to the Network class and governs the HM process. An example of a policy
is to rank the candidate networks considering some criteria, such as user speeds and
movement patterns.

The Network superclass models the characteristics and status of a network by using
the Topology, NetworkTraffic, and AccessPoint classes. The Topology class represents
the network’s organization, including nodes and links. The NetworkTraffic class repre-
sents data and control traffic passing by the network. The AccessPoint class models
a networking device using wireless technology; this class considers the area covered
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by the Cell class, which includes the Range class, which contains the LargeRange
and SmallRange classes. The isCoveredByCell, hasResource and belongToTopology
properties represent the AccessPoint class’s relationship with the Cell, Resource and
Topology classes, respectively. The Resource class models the ability to manage the
resource consumption of APs located at (Location class) a particular network point.

The User superclass models the profile and behavior of the users by the UserPref-
erences, UserHistory, MobilityPattern, and UserSpeed classes. The UserSpeed class
includes the SlowMobility, ModerateMobility, and HighMobility classes in order to model
how fast a user moves. The UserPreferences class profiles the users with information
related to, for instance, network preference by cost and service quality expectation.
The UserHistory class models the historical (dis)connection of user. The MobilityPat-
tern contains information about the user mobility pattern, which is predictable from their
trajectory and velocity. The Application superclass represents user applications with the
ServiceProfile and QoS. The ServiceProfile class models the application type (e.g., re-
mote surgery, augmented reality, high definition video conferences). The QoS class
allows the representation of a set of QoS requirements (e.g., delay, throughput, and
packet loss) for each type of application.

The UserDevice superclass models the end-user devices and their components by
the DeviceProfile, DeviceStatus, and Resource classes. The DeviceProfile class mod-
els the device’s characteristics. The DeviceStatus class represents the device’s current
status (e.g., low-battery and off-air). The Resource class models the ability to manage
the resource consumption of MDs located at (Location class) a particular network point.
The UserDevice superclass relates to the Application superclass via the runsApplica-
tion property, which allows knowledge of the applications that are running in each MD.
The isUsedByUser property defines a relationship between UserDevice and User.

4.1.2 Knowledge Base Profile

KBP is a distributed knowledge base that intends to provide local and global knowl-
edge that supports making rule-based cognitive decisions about network connection
and disconnection processes. Figure 4.2 depicts the KBP internal structure, comprised
of layers and processes. The Semantic layer uses SIM (the entire model or a part) to
obtain information from the data included in the Context layer. The Reasoning layer ob-
tains knowledge from the information represented by SIM. The Adaption process acts
on the layers to maintain updated data, information, and knowledge. The Collaboration
process enables sharing the obtained knowledge between KBP instances. Next, we
detail the KBP’s layers and processes.
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Figure 4.2: Knowledge Base Profile.

Layers

The Context layer includes contextual data about the user, network, device, applica-
tion, and handover. Contextual data are essential for carrying out HM in environments
with multiple wireless networks [88]. As in [89, 152], this layer is divided into static and
dynamic sublayers. The Static Context sublayer involves data that do not change or
rarely do; it plays a vital role in assisting with neighbor network discovery [153]. Exam-
ples of static data include the wireless technology supported by the MDs and APs, and
the wireless network technology coverage area. The Dynamic Context sublayer serves
an updated network view, including dynamic data such as the application requirements
of a device needing handover and capacity available in a target AP, which enables the
upper layers (Semantic and Reasoning layers) to realize knowledge-based handovers.

The Semantic layer offers a SIM instance nourished by the bottom layer’s contex-
tual data. Thus, the Semantic layer structures the information to achieve intelligent,
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timely, and context-aware HM (considering criteria from the Static and Dynamic con-
texts). For instance, the DeviceProfile, UserPreferences, UserSpeed, and Mobility-
Pattern SIM classes can be used to build up a map of candidate networks; overall,
SIM classes provide a structure to contextual data. It is worth noting that we consider
three KBP flavors depending on how they instantiate SIM. KBPN , located at any AP
or BS, instantiates the superclasses Network and Handover. KBPM , located at MDs,
instantiates the superclasses Application, User, UserDevice and Handover. KBPS is
a complete KBP that can run on a logically centralized entity (e.g., a controller in a
software-defined wireless network). The SIM’s distribution allows any KBP (SIM-Know)
to create and share local knowledge to generate global knowledge.

The Reasoning layer triggers the Initiation phase, selects the target network, and
realizes the handover itself by inferring knowledge from SIM. We use Description Logic
(DL) [154] to express in a structured and formal way the rules governing the Reason-
ing layer and, so, HM; the reasoning rules generate local and global intelligence to
make autonomous handover connection decisions. Each rule has a set of conditions
and settings. To illustrate how the Reasoning layer operates, we present some of the
rules modeled to realize a policy intended to select candidate networks proactively,
considering the coverage of APs and the mobility pattern of MD. For example, the Rule
APInRange (Listing 4.1) serves to discover neighboring networks considering RSSI.

Listing 4.1: Rule for APInRange.

APInRange ≡ User ⊓ ∃ isInCell.(∃ covers.AccessPoint)

Listing 4.2 shows that the Rule UserSpeed is useful for defining the speed of users.
If a User is moving with v > thu, he/she has a UserHighSpeed. If a User is moving
with speed higher than thl and lower than or equal to thu, he/she has a UserModSpeed.
UserSlowSpeed is when the user moves with v ≤ thl. According to [155], thu can be set
to 50 Km/h and thl to 10 Km/h.

Listing 4.2: Rule for UserSpeed.

UserHighSpeed ≡ User ⊓ (∃ hasUserSpeed.HighMobility)
UserModSpeed ≡ User ⊓ (∃ hasUserSpeed.ModerateMobility)
UserSlowSpeed ≡ User ⊓ (∃ hasUserSpeed.SlowMobility)

Listing 4.3 shows that Rule APRange is helpful for listing the APs by coverage range.
LargeRange is given by range > thr and ShortRange by range ≤ thr. According to [84],
thr can be set to 35 m for 802.11ac.

Listing 4.3: Rule for APRange.

APLRange ≡ AP ⊓ ∃ isCoveredBy.(∃ hasRange.LargeRange)
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APSRange ≡ AP ⊓ ∃ isCoveredBy.(∃ hasRange.ShortRange)

Listing 4.4 presents Rule SoJournT ime, which is useful for determining the time
the user stays covered by an AP. If UserSlowSpeed moves in APLRange, it results in
LongSojournT ime. If UserHighSpeed moves in APSRange, it results in SmallSojournT ime.
A MSojournT ime happens when UserHighSpeed or UserModSpeed is moving in APLRange.
If UserSlowSpeed or UserModSpeed moves in APSrange, it also results in MSojournT ime.
SmallSojournT ime may be more challenging than LongSojournT ime, and MSojournT ime

in 5G networks and beyond are characterized by small coverage areas and high-mobility.

Listing 4.4: Rule for SoJournTime.

LongSojournT ime ≡ UserSlowSpeed ⊓ (∃ APLRange) \ \
SmallSojournT ime ≡ UserHighSpeed ⊓ (∃ APSRange) \ \
MSojournT ime ≡ APLRange ⊓ (UserHighSpeed ⊔ UserModSpeed) ⊔ \ \

APSRange ⊓ (UserSlowSpeed ⊔ UserModSpeed)

Listing 4.5 shows that Rule CandidateAP is useful for creating the list of candidate
APs for MDs with MSojournT ime or LongSojournT ime in the network.

Listing 4.5: Rule for CandidateAP.

CandidateAP ≡ MSojournT ime ⊔ LongSojournT ime

Listing 4.6 presents Rule AssociateAP , which links the MD with the first AP in the
list of candidates. It is worth noting that each network administrator can define his/her
own rules to manage the wireless network as he/she needs.

Listing 4.6: Rule for AssociateAP.

AssociationToAP ≡ User ⊓ ∃ Uses.UserDevice(∃ Connects.AP )

Processes

The Adaptation process allows SIM-Know to dynamically adapt to the changing envi-
ronments and enhance HM by modifying the content of the layers of the KBP instances.
The content is modified in a bottom-up way, starting with the contextual data, followed
by the SIM instances, and ending with the acquired knowledge when environmental
changes happen, such as new networks appearing, dynamic traffic conditions, and vari-
ations in QoS requirements. Furthermore, this process allows the addition and updating
of the Reasoning layer seeking to meet QoS and to preserve network performance.

The Collaboration process allows KBP (KBPN , KBPS, KBPM , and any other profile
defined to extend SIM-Know) to interchange the knowledge obtained for enhancing the
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decision-making in HM. For instance, the collaboration between KBPM and KBPN

would allow for choosing the optimal and appropriate time to trigger the handover and
select the most suitable access network according to the user QoS requirements and
network status.

4.1.3 SIM-Know Operation

Figure 4.3 presents how SIM-Know operates in WLAN. First, KBPS, KBPM and KBPN

collect their Static Context. Second, KBPM monitors and updates the Dynamic Con-
text information related to, for instance, user speed, APs in range, and RSSI. In parallel,
KBPM requests from KBPN the Dynamic Context information, which includes the as-
sociated and in-range MDs. Third, every KBP generates local knowledge based on
the Static Context and Dynamic Context. For example, the local knowledge in KBPM

can be HighMobility, and in KBPN can be LargeRange. Fourth, KBPM launches the
handover process. Fifth, the Collaboration process starts between the corresponding
KBPM and KBPN and ends with sending knowledge to KBPS. Sixth, KBPS builds
up the global network view, generates a handover policy for selecting candidate APs
according to the rules defined in its Reasoning Layer, and sends those candidates to
KBPM . Seventh, KBPM selects the Target KBPN by using the rules defined in its
Reasoning Layer. Eighth, KBPM sends a Handover Request to the Target KBPN ,
which sends back an acknowledgment to KBPM . Ninth, KBPM sends disconnection
requests to the current Serving KBPN , which, in turn, sends a disconnection acknowl-
edgment to KBPM . Tenth, every KBP executes the Adaptation process to handle the
context variations dynamically.
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Figure 4.3: SIM-Know Operation.

Figure 4.4 shows the data format used in KBPS to store the global knowledge built
with information from KBPN and KBPM . The format follows the triplet (Subject, Predi-
cate, Object) encoded in Entity Notation (EN) [156], which enables a lightweight knowl-
edge representation for resource-constrained environments. The Subject identifies a
class in SIM by the combination of ClassId (e.g., ceu101) and ClassType (e.g., User ).
Each Subject is related to various pairs, Predicate–Object. The Predicate identifies a
property (e.g., UserSpeed) of the Subject while the Object provides the value of such
a property (e.g., HighMobility). The Object can also be a ClassId, to represent relation-
ships among Subjects.
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Figure 4.5 illustrates how SIM-Know can operate in 5G by running KBPM in the
User Equipment (UE), KBPN in gNodeB (gNB), and KBPS in the Core Network (CN).
The handover in 5G, according to the specification 3GPP TS38.300 [157], consists of
three phases: preparation (steps 0–5), execution (steps 6–8), and completion (steps
9–12).
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Figure 4.5: SIM-Know in 5G Intra-AMF/UPF Handover.
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The steps are as follows:

• Step 0: Each KBP gathers the Static context.

• Step 1: KBPM and KBPN initialize measuring procedures to collect the Dynamic
context, generate local knowledge, and exchange Measurement Reports by way
of the Collaboration process. Source KBPN builds up its local knowledge.

• Step 2: Source KBPN makes handover decisions based on its local knowledge.
gNBs are responsible for making handover decisions.

• Step 3: Source KBPN sends a handover request message to Target KBPN .

• Step 4: Target KBPN executes the admission control procedure based on its local
knowledge.

• Step 5: Target KBPN sends a handover request acknowledgment to Source
KBPN .

• Step 6: Source KBPN sends a handover command to KBPM for handover initia-
tion.

• Step 7: Source KBPN sends the sequence number status transfer message to
Target KBPN . Source KBPN may initiate data forwarding.

• Step 8: KBPM detaches from Source KBPN and synchronizes with Target KBPN .

• Step 9: Target KBPN informs KBPS that KBPM has changed the cell by way of
the path switch request message.

• Step 10: KBPS switches the data path towards Target KBPN .

• Step 11: KBPS acknowledges the path switch request message.

• Step 12: Target KBPN informs Source KBPN that the handover was successful
and triggers the release of resources for Source KBPN by sending a UE Context
Release message. Finally, Source KBPN releases the resources associated with
KBPM , invoking the Adaptation process.

4.2 Evaluation

This section presents the evaluation of SIM-Know in a WLAN, aiming to show its be-
havior regarding the number of handovers, instantaneous throughput, and its impact on
various typical network performance metrics. Subsection 4.2.1 depicts the SIM-Know’s
prototype and the test environment. Subsection 4.2.2 shows the performance metrics
and traffic generation.
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4.2.1 Prototype and Test Environment

We implemented the SIM-Know prototype for WLAN, including KBPM , KBPN , and
KBPS, by using the Python programming language version 2.7. We also deployed the
prototype in a Mininet-WiFi emulator [158] (Figure 4.6) running on an Ubuntu 16.04
Virtual Machine (VM) with a Core i7-3630 processor and 8 GB RAM. Mininet-WiFi adds
virtual BSs and APs to classical Mininet [159] to enable the emulation of wireless net-
work environments. The SIM-Know prototype, as well as all test scripts, are available
in the project repository [160].
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AP6

User 1
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POINT AKBP MKBP M

KBPNKBPN

KBPNKBPN
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KBP MKBP M
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Figure 4.6: Test Environment.

Figure 4.6 shows the WLAN test scenario in which we evaluated and compared SIM-
Know, SSF, and AHP-TOPSIS. The scenario, deployed in Mininet-WiFi, included seven
APs, an MD associated with User1, and another MD linked to User2. In particular, we
used three APs with a large coverage range (i.e., up to 75m for AP1, AP4, and AP5 with
802.11n) and four with a short coverage range (i.e., up to 35m for AP2, AP3, AP6, and
AP7 with 802.11ac).

We also analyzed the performance when the User 1 moved from Point A to Point
B by following a straight line without directional change at a constant speed. We
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used three speeds for testing: 1.42 m/s corresponding to SlowMobility, 3.74 m/s to
ModerateMobility, and 13.41 m/s to HighMobility. The MD associated with User 1
transmitted traffic (Voice over IP (VoIP) or Transmission Control Protocol (TCP)) to the
MD linked to User 2, which was immobile. We repeated the experiments thirty-three
times to obtain results with a 95% confidence level. Table 4.1 summarizes the setup of
the experiments.

Table 4.1: Experiment Setup.

Parameters Value

Wireless technology 802.11n, 802.11ac

Emulation area 180 × 180 m

Carrier frequency 2 GHz

Channel bandwidth 20 MHz

Transmission power of cells
large-range/short-range

25/14 dBm

Path loss model from cells Log-Distance Propagation Loss/ITU-R P1283

Emulation time for HighMobility 30 s

Emulation time for
ModerateMobility

80 s

Emulation time for SlowMobility 180 s

TCP traffic
Flows with constant inter-departure time between packets

(1000 pkts/s) and constant packets size (512 bytes)

VoIP traffic
Flows with audio code (G.711.2 - 84 Kbps and 50 pkts/s)

transmitted using real-time protocol and voice activity
detection

It is worth mentioning that the described scenario was constrained to a small number
of MDs because our main objective was to show the feasibility of SIM-Know.

4.2.2 Performance Metrics and Traffic Generation

We compared SIM-Know to SSF and AHP-TOPSIS in terms of the number of han-
dovers, number of instantaneous throughput, handover latency, and various well-known
network performance metrics (throughput, delay, jitter, and packet loss) [161]. The
quantity of handovers is the number of transfers an MD makes when it moves from one
place to another [162]. The instantaneous throughput (throughput drops) represents
the times that the number of bytes transmitted falls to zero because of a handover [51].
The handover latency is the time that elapses between the instant that the MD sends
the last link-going-down message to the serving AP and the moment at which the MD
establishes the connection with the target AP [82].
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In the emulation experiments, scripts for generating traffic were developed using
the iPerf3 [163], and D-ITG [164] tools. We used D-ITG to generate VoIP flows with
audio code (G.711.2 - 84 Kbps and 50 pkts/s) transmitted using the real-time protocol
and voice activity detection. We used iperf3 to generate TCP flows with constant inter-
departure time between packets (1000 pkts/s) and constant packet size (512 bytes).

4.3 Results and Analysis

Table 4.2 shows that SIM-Know and AHP-TOPSIS outperformed SSF, in terms of the
number of handovers and instantaneous throughput when the user moved at any speed
(slow, moderate, or high). This behavior is expected because SSF is the baseline and
triggers a handover when an AP with an RSSI higher than the serving AP is available.

Table 4.2: Handover Performance in SIM-Know.

Parameter SSF AHP-TOPSIS SIM-Know

SlowMobility

Number of handovers 7 3 3

Number of instantaneous
throughput

5 3 3

ModerateMobility

Number of handovers 7 3 3

Number of instantaneous
throughput

5 3 3

HighMobility

Number of handovers 7 4 3

Number of instantaneous
throughput

5 2 1

Table 4.2 also reveals that when the user moved at slow and moderate speeds,
SIM-Know behaved as AHP-TOPSIS does regarding the number of handovers and in-
stantaneous throughput. Figure 4.7 shows that SIM-Know outperformed AHP-TOPSIS
in these metrics when the user moved at a high velocity. The outperformance regarding
the number of handovers and instantaneous throughput was due to SIM-Know mak-
ing context-aware, cognitive, and proactive handovers. Figure 4.8 corroborates that
SIM-Know carried out handovers before SSF and AHP-TOPSIS did.
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Figure 4.9 shows, as expected, that SIM-Know obtained a higher handover latency
than SSF did, since our approach is knowledge-based and SSF makes decisions con-
sidering a single criterion. SIM-Know had 27% less handover latency than AHP-TOPSIS
because, first, our approach is proactive and, according to [165], AHP-TOPSIS is reac-
tive; the proactivity shortens the Handover Initiation phase [89]. Secondly, SIM-Know
employs a rule-based reasoning method, while AHP-TOPSIS uses a complex mathe-
matical model that requires considerable time to make handover decisions.

Next, we present how SIM-Know, SSF and AHP-TOPSIS impact various network
performance metrics when the end-user device moves at HighMobility. Figure 4.10
depicts SIM-Know overcoming SSF and AHP-TOPSIS regarding the throughput, delay,
and packet loss when the wireless network transferred VoIP/UDP traffic. In particular,
the delay attained by SIM-Know was 29.28% and 23.13% lower than that achieved by
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SSF and AHP-TOPSIS (Figure 4.10a). The packet loss of SIM-Know was 99.44% and
98.38% lower than that obtained by SSF and AHP-TOPSIS (Figure 4.10b). The through-
put obtained by SIM-Know was 57.17% and 16.87% higher than that obtained by SSF
and AHP-TOPSIS (Figure 4.10c).
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Figure 4.10: Impact on VoIP Traffic.

Figure 4.11 shows that SIM-Know outperformed SSF and AHP-TOPSIS regarding
the throughput, delay, and jitter when the wireless network transferred TCP traffic.
Specifically, the delay attained by SIM-Know was 91.95% and 80.27% lower than that
achieved by SSF and AHP-TOPSIS (Figure 4.11a). The jitter performed by SIM-Know
was 57.98% and 32.94% lower than that obtained by SSF and AHP-TOPSIS (Figure
4.11b). The throughput accomplished by SIM-Know was 80.3% and 29.22% higher than
SSF and AHP-TOPSIS (Figure 4.11c).

We argue that the improvement in throughput, delay, jitter, and packet loss offered
by SIM-Know is due to its context-aware, cognition, and proactivity capabilities, which
decreased the number of handovers and instantaneous throughput. In particular, SIM
provides the context-aware capability to perform handover decisions through the com-
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Figure 4.11: Impact on TCP Traffic

prehensive and semantic network view given by the information domains (Network,
Application, User, UserDevice, and Handover ).

The KBP’s Reasoning layer allows the achievement of cognitive HM. The distributed
nature of KBP and its continuous updating allow the Handover Initiation phase to be
proactive and operate with the local knowledge, built by KBPM and KBPN , and the
global knowledge, available in KBPS. It is worth noting that the above results cor-
roborate the idea that proactive approaches are more effective than reactive ones for
meeting QoS requirements. On the other hand, we consider that the handover latency
of SIM-Know can be addressed by improving the data format and the communication
model between KBPS and both KBPM and KBPN . These improvements are out of
the scope of this chapter and constitute limitations of the current SIM-Know version.

4.4 Final remarks

This chapter introduced SIM-Know, an approach that performs context-aware, cogni-
tive, and proactive handovers. SIM-Know includes SIM to provide context-awareness to
handover decisions and KBP to incorporate cognition of HM. KBP distributes knowl-
edge (local and global) to afford the proactivity capability in HM. The evaluation results
showed that thanks to the aforementioned SIM-Know capabilities, our approach over-
comes SSF regarding the number of handovers and instantaneous throughputs when
the user moves at any speed and, further, equals AHP-TOPSIS when it travels at low
and moderate speeds. SSF outperforms SIM-Know and AHP-TOPSIS regarding the
handover latency metric because SSF runs a straightforward process for making han-
dover decisions. SIM-Know overcomes AHP-TOPSIS regarding all evaluated metrics
when the user moves at high speed, positively impacting the wireless network’s perfor-
mance in terms of delay, throughput, packet loss, and jitter metrics. Considering these
results, we concluded that SIM-Know is an attractive and feasible solution for cognitive
HM.
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Chapter 5

An Autonomic and Cognitive
Handover Management Approach in
5G

In wireless communications, the handover aims to connect and disconnects the MD
of an AP every time it leaves the network’s coverage range. HM comprises three
phases [147,148]: handover initiation, network selection, and handover execution. Han-
dover initiation must discover other networks (candidate networks) to collect all infor-
mation required (e.g., neighbor networks, parameters, and available services). Network
selection chooses the most suitable access network (target network) according to di-
verse parameters and evaluation metrics. Handover execution establishes the network
change and releases resources. In this sense, HM is pivotal for providing service conti-
nuity, ultra-high reliability, extreme-low latency, and meeting sky-high data rates [72,82].
However, each phase of the handover process involves signaling overhead, defined as
exchanging necessary information between the MD and network to facilitate the opera-
tion. Therefore, HM is a considerably complex process since it brings heavy overheads
and large workloads within network entities, but it is a crucial factor in seamless mobil-
ity [92].

HM in 5G networks turns more complicated with many issues and challenges. 5G
combines ultra-dense network scenarios and different radio access technologies with
short coverage areas increasing signaling overhead in the network due to frequent
handovers. At the same time, the users contain a large MDs number and present high
mobility raising the workload within network entities due to many handovers. Addition-
ally, the growing applications number with increasingly strict restrictions in terms of QoS
(e.g., URLLC) impose conditions on HM to reduce the delay from minimizing the net-
work signaling traffic generated [92]. However, the future 5G network cannot reduce
the handover overhead under such circumstances because it relies on a traditionally
rigid and complex hierarchical sequence for a handover procedure. Thus, these issues
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limit the users’ achieving a seamless experience, contextualized and personalized, to
access services everywhere [93] [94].

Existing handover solutions based on a single-criterion (e.g., RSSI) move the MD
context from one cell to another, increasing the signaling overhead [60]. Moreover, the
handover decision is user-centric and uses thresholds established to select the most
suitable network increasing frequent handovers as well as signaling messages [142].
The context-based approaches use multicriteria and make a decision network-centric
based on MADM [97]. This approach exchanges more information among network
entities and higher the signaling overhead. Intelligent and cognitive approaches use
the latest ML techniques combined with context awareness to optimize the handover
parameters and reduce the number of handovers. However, the lack of personaliz-
ing the user actions during handover increases the signaling generated. Thus, these
approaches hardly handle the handover complexity (heavy signaling) caused by con-
tinuous changes to the network at the same time that it shares information in multiple
domains of the network under a manual or semi-automatic network management ap-
proach.

This chapter presents ZTHM-5G, an autonomous and cognitive HM approach from
an ANM point of view to optimize the handover procedure by reducing the interactions
and size of the signaling messages. ZTHM-5G introduces an AKBP based on CCL to
reduce the number of interactions (i.e., signaling messages) between network entities
by controlling its context and making local decisions to be shared during handover.
In turn, a semantic and goal-oriented communication model delineates the exchange
of meaningful information (i.e., local and global decisions) among network entities to
reduce the size of the signaling messages. Finally, a MAS provides a new distributed,
scalable, and personalized HM approach. The intelligent agents effectively handle the
handover complexity in 5G networks.

The contributions of ZTHM-5G are three-fold.

• AKBP – Agents with Cognitive Closed Loop based on Autonomic Knowledge Base
Profile

• Multi-Agent System for distributed, scalable, and personalized HM

• Semantic and goal-oriented communication model

The remainder of this chapter is as follows: Section 5.1 introduces ZTHM-5G, in-
cluding AKBP, MAS, and Semantic and goal-oriented communication model. Section
5.2 presents the usage case. Section 5.3 presents the evaluation of ZTHM-5G. Finally,
some remarks are presented in Section 5.4.
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5.1 ZTHM-5G: Zero-Touch Handover Management in 5G

ZTHM-5G proposes an autonomous and cognitive HM approach from an ANM point
of view to optimize the handover procedure by reducing the interactions and size of
the signaling messages. ZTHM-5G uses the management system decomposition that
follows MAPE (Monitor-Analyse-Plan-Execute) paradigm to implement the handover
procedure in a distributed way utilizing multiple CCL-driven operations. Moreover, HM
distributes the operations at multiple network entities (MD, AP/BS, server centralized),
providing a solid separation of management. All network entities process the HM, lead-
ing to reduced information exchange compared to the traditional and centralized han-
dover solutions. The exchanged information among network entities has meaningful
(i.e., knowledge generated with intention from raw data) since it exchanges local intel-
ligence to build optimal global intelligence. This self-management enables the devel-
opment of appropriate global policies to optimize handover, improve the whole network
performance, and meet user QoS requirements.

ZTHM-5G manages the handover procedure using a cognitive and autonomous
approach driven by high-level policies and rules that are flexible and adaptive. Au-
tonomous HM ensures the user access services everywhere, achieving a seamless,
personalized, and contextualized experience. ZTHM-5G introduces logical entities for
monitoring, analytics, decision-making, and execution distributed and executed at var-
ious network entities. The local knowledge and decisions minimize the signaling mes-
sages between logical entities to keep management scalable and significantly reduce
the reaction time of handover decisions handled locally. Therefore, ZTHM-5G is based
on a model-driven approach to perform HM using information and communication mod-
els. Furthermore, our approach offers self-monitoring and self-optimization which are
fundamental self-properties defined by IBM’s MAPE-K.

Figure 5.1 shows an AKBP based on CCL to provide self-management in ZTHM-5G.
The AKBP makes local cognitive decisions about handover and reduces the number of
interactions among network entities. In turn, a semantic and goal-oriented communica-
tion model delineates the exchange of local and global decisions in ZTHM-5G, reducing
the size of the signaling messages. Finally, a MAS distributes the AKBP in all network
entities creating goal-oriented autonomous agents in ZTHM-5G. This approach groups
autonomous agents to work together and accomplish a mission or perform tasks us-
ing their communication and coordination capabilities. Therefore, ZTHM-5G provides
a new distributed, scalable, and personalized HM approach to handle the handover
complexity effectively in 5G networks.
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Figure 5.1: ZTHM-5G Architecture

5.1.1 Autonomic Knowledge Base Profile

AKBP is a logical entity using a MAPE-based CCL for monitoring, analytics, decision-
making, and handover execution. A set of logical entities are distributed and executed
at various network entities to generate local intelligence about HM. AKBP creates self-
managed elements, minimizes the signaling messages between logical entities to keep
management scalable, and significantly reduces the processing time of handover de-
cisions. This self-managed enables the development of appropriate global policies to
optimize the handover, improve the whole network performance, and meet user QoS re-
quirements. Therefore, AKBP makes autonomous decisions for management actions,
distributed throughout the network with policy and rules pre-set, achieving HM flexibility
and adaptability.

Figure 5.2 depicts the AKBP internal structure. AKBP comprises internal compo-
nents responsible for monitoring the network environment (context component), rep-
resenting meaningful information (semantics component), and inferring over the data
(learning component) to create a knowledge base. Additionally, the intelligence gen-
erated (reasoning component) helps in making decisions (decision component) and
actuating (action and execution component) performed during the handover procedure.
The context component discovers criteria/parameters by monitoring the network envi-
ronment. The meaningful information obtained from the semantics component uses an
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information model well-structured about the handover procedure. The learning com-
ponent uses an AI-driving model inferring new knowledge. The reasoning component
generates local and global intelligence from the knowledge of the network entities draw-
ing meaningful conclusions. The decision component makes decisions concerning han-
dover initiation and network selection, and finally, the actuation component converts the
decision into a set of low-level commands. All the components cooperate to achieve
MAPE behavior at the network entity (MD, AP/BS, server centralized).

Semantic Learning

Decisión

Execution

Goal

Action

Static Context Dynamic ContextStatic Context Dynamic Context

Network Environment

Reasoning 

Figure 5.2: AKBP: Autonomic Knowledge Base Profile

AKBP Components

The context component discovers contextual data about the user, network, device, ap-
plication, and handover to use as criteria in HM. This component monitors the network
environment obtaining data that do not change (static context) and dynamic data (dy-
namic context). The Static Context subcomponent is vital in assisting with neighbor
network discovery from its intrinsic capabilities. The Dynamic Context subcomponent
updates the network view, including data such as the application requirements and ca-
pacity available in a target AP. Thus, the context component enables self-awareness to
realize context-based handovers.

The semantics component represents meaningful information using an information
model well-structured about the handover procedure. This information model uses
a SIM (Figure 4.1 in subsection 4.1.1) [50] instance, which provides a well-designed
structure to describe the criteria of multiple context sources by using a common model
at a syntactic and semantic level. The Semantic component uses the context compo-
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nent data. Thus, the Semantic component structures the information to achieve intelli-
gent, timely, and context-aware HM. The information model utilizes an ontology-based
scheme to capture attributes and support operations of resources and services, in-
creasing portability and reusability.

The learning component adds new information using a data-driving model to acquire
actionable knowledge. This component analyses and draws inferences from patterns in
a data set constructed from a dynamic context. The learning uses AI-driving algorithms,
models, and methods with criteria complete and limited in the information source. An
example of the learning component is, improving network selection by classification [51]
or clustering methods using criteria analysis to discover candidate networks [64] [166].
Furthermore, the learning component analyzes network entities’ personalized prefer-
ences to assist the semantic component in creating a knowledge base for reasoning.

The reasoning component draws meaningful conclusions about the handover pro-
cedure within the network entities using the implicit knowledge base to generate local
and global intelligence. This component uses the knowledge acquired (semantic com-
ponent) or learned (learning component) and takes into account the network entity pref-
erences (goal) in the derivation of conclusions [167]. In this sense, reasoning allows
consciously making sense of the handover process, triggering the events, exchanging
knowledge, and determining what operations perform during the HM [168]. Therefore,
the reasoning component based on new or existing information can answer questions
related to handover.

The decision component makes decisions concerning HM to be implemented and
executed on the appropriate network entity. This way, all network entities can know
what actions to perform according to the reasoning results of the knowledge base with-
out human intervention. This component enables the network entities to evolve and
adapt to changes in either network administrator objectives, user preferences, or appli-
cations QoS requirements. For this reason, the decision introduces rules to manage
the handover operations of various network entities in response to changes in the net-
work environment. Thus, the decision component triggers the initiation phase, selects
the target network, and executes the handover.

The actuation component converts the decision into a set of low-level commands
guiding the behavior of network entities to HM. This component (action and execu-
tion) performs connection to the target network, disconnection to the serving network,
determines the trigger time of the handover, and releases resources in the network
entities. Moreover, the interaction among AKBP using the actuation component builds
global intelligence to reach a specific goal in the network entity. Therefore, the actuation
component executes atomic commands during the handover procedure.

The goals component is a set of high-level abstractions or intents representing user
needs and business requirements. Afterward, these high-level intents are generally
converted into network policies aligned with expressed goals. In this way, the network
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administrators define the behavior of the whole network, and the user establishes their
goal according to their preferences to access services everywhere. Therefore, the goal
component enables the reasoning component to draw optimal conclusions in the net-
work entity to exhibit self-management properties in handover.

AKBP operation

AKBP operates as follows:
First, the context component monitors the network environment and collects raw

data on the network entity (AP/BS and user). The data collected from the static context
is done only once (configuration time), while the dynamic context continuously collects
data to update the local view (run time).

Second, based on contextual information (static and dynamic), the semantic com-
ponent acquires local knowledge using a SIM (Figure 4.1 in subsection 4.1.1) [50].

At the same time, the learning component helps to determine semantic states, op-
timize parameters (TTT and HOM), and obtain adaptive thresholds and possible de-
cisions (preferred APs or candidates) using Artificial Intelligence (AI) techniques and
methods. For example, the classification result from the dynamic context data (user
speed) generates a semantic state such as high, moderate, and low mobility. Other
methods (RF) generate a list of candidate networks based on various criteria to se-
lect the best network during the handover [51]. This locally learned knowledge uses a
data-driven approach.

The acquired knowledge (Semantics) and the learned knowledge (Learning), to-
gether with the goals of each network entity, outline significant conclusions to make
decisions reasonably. For example, user speed has three semantic states (high, mod-
erate, and slow speed). The dynamic context obtains user speed values between 70
and 50 km/h by a classification method; we will have a semantic state of high speed.
Moreover, this same knowledge uses RF to give a list of candidate networks. The goal
is to restrict handovers of high-mobility users to small cells. Therefore, the reasoning
component concludes that high-mobility users execute handover to large-range cells.

These conclusions are made by the decision component, which manages the han-
dover operations through a series of rules and policies. The policy decides i) to filter
candidate networks by cell size. ii) to send a message with the semantic state of high
mobility. iii) wait a time to trigger the handover, and iv) update the global view.

Finally, the decisions are executed on the same network entity or shared with other
entities to generate global intelligence. These actions can be reactive, proactive, or
predictive and executed by the actuation component.
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5.1.2 Semantic and goal-oriented communication model

The semantic and goal-oriented communication model delineates the exchange of
meaningful information (i.e., local and global decisions) among network entities (i.e.,
AKBP) to reduce the size of the signaling messages during handover. The exchanged
information among AKBP has meaningful (goal-oriented) since it exchanges semantic
knowledge and enables the development of appropriate global policies to improve the
whole network performance and meet user QoS requirements. Semantic communica-
tion works based on its innovative "semantic-meaning passing" concept to extract the
"meanings" of sent information between a transmitter and a receiver [169]. Additionally,
goal-oriented communication identifies the information strictly necessary to accomplish
a goal. Therefore, combining the semantic and goal-oriented aspects in a communi-
cation model to HM helps to reduce communication resources, minimizing the number
and size of the signaling messages.

Figure 5.3 shows the semantic and goal-oriented communication model comprised
of four modules. The strategy goal module collects the specific goal of the network
entity to optimize performance according to KPIs. In turn, the conflict management
module delivers a common goal among competing goals by an agreement consensus-
based. Then, the semantic communication module delineates meaningful information
exchange among network entities to reduce signaling messages. Finally, the goal mod-
ule represents a common goal to achieve optimal global HM.
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Figure 5.3: Communication Model

Modules

The modules of the communication model enable the semantics to exchange meaning-
ful information and the goal orientation to deploy appropriate policies in HM.

The strategy goal module represents the user needs, and business requirements
[170]. On the one hand, the network administrators define the behavior of the network
entities to improve the whole network’s performance. On the other hand, users es-
tablish their preferences to access services everywhere to meet the application’s QoS
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requirements. This strategy goal module includes requirements, goals, and constraints
that a network should meet and the outcomes that the network is supposed to deliver.
Hence, the strategy goal module allows the users to achieve a seamless experience,
contextualized and personalized for the network to obtain an optimal HM performance.

The conflict management module solves conflicts between different, complex, and
contrary goals. Since the user demands more resources to improve application QoS,
the network administrator manages resources limited and shared to optimize the per-
formance of the whole network during handover. This module achieves an agreement
consensus-based [171] to establish a common goal and guide the behavior of the net-
work entity. Hence, the conflict management module sets a common goal and target to
make actionable decisions from local optimization to global.

The semantic communication module exchanges "meanings" between a transmitter
and a receiver involving generation, transfer, and interpretation of semantic information.
This module reduces the size of the signaling messages in the handover procedure to
enable efficient communication. The transmitter sends the relevant information in a
data format pre-set based on semantics (e.g., RDF, EN) [172, 173]. In the receiver, a
match between the knowledge base and received information provides the successfully
interpreted information to accomplish a goal. Therefore, the semantic communication
module defines a data format used to exchange meaningful information among network
entities to reduce the interactions and size of the signaling messages.

The goal module contains all common expectations agreement between the user
and network administrator to achieve optimal global performance in the handover. This
module allows to performance of the handover procedure in the context of Autonomic
Networks according to the zero-touch approach. The goal enables the reasoning com-
ponent to derivate meaningful conclusions and optimize local decisions. These deci-
sions can answer questions about the optimal time to trigger the handover and select
the most suitable access network.

Operation

This section presents the operation of the communication model to enable a goal-
oriented exchange of information. The operation follows the steps described below:

• First, the network entity establishes its goals evaluated during the handover proce-
dure. For example, the user defines preferences according to applications, device
status, monetary cost, and mobility pattern. These user preferences are strategic
user goals for a seamless experience anywhere. AP and BS also present goals
for better network performance in a shared environment.

• Second, the goals of the other network entities arrive through the semantic com-
munication module, which reflects the goal of the network as a whole and its
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interactions with other users. Therefore, the network entity goals conflict with the
shared goals of the entire network as they pursue very different objectives.

• Third, the conflict management module resolves the conflicts between goals fight-
ing. This module achieves an agreement common on using the network to obtain
optimal performance by serving several users with different preferences and im-
proving user satisfaction by meeting their preferences and application QoS.

• Fourth, the result of this agreement is the goal component integrated into the CCL
and AKBP so that the network entity self-manages the handover.

Data Format

The data format is based on semantics to interpret the information exchanges and use
the information model introduced in the AKBP [174]. ZTHM-5G uses EN [156] as a data
format to describe classes, relationships, and properties of an ontology-based scheme,
which enables a lightweight knowledge representation for resource-constrained envi-
ronments. EN has two representation formats: complete and short packets. Complete
packets connect with ontologies to provide detailed descriptions and information. Short
packets aim to send identifiers, variables, and templates.

Figure 5.4 shows the data format used to exchange global and local intelligence
built with the information from AKBP. The format follows the triplet (Subject, Predicate,
Object) encoded using complete packets in EN. The Subject identifies a class in SIM
by the combination of ClassId (e.g., ceu101) and ClassType (e.g., UserDevice). Each
Subject is related to various pairs, Predicate–Object. The Predicate identifies a prop-
erty (e.g., BatteryStatus) of the Subject while the Object provides the value of such a
property (e.g., LowBattery). The Object can also be a ClassId, to represent relation-
ships among Subjects.

ClassType ClassId PropertyName PropertyValue

Subject Predicate Object

PropertyName PropertyValue

Predicate Object

ClassType ClassId PropertyName PropertyValue

Subject Predicate Object

{
Triplet

Repository

RDF i i j j

k k1

n

Figure 5.4: AKBP Data Format
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5.1.3 Multi-Agent System

MAS provides a new distributed, scalable, and personalized HM approach. The intelli-
gent agents effectively handle the handover complexity in 5G networks and the contex-
tualized and personalized user access to services everywhere. ZTHM-5G distributes
the goal-oriented autonomous agents (i.e., AKBP) at multiple network entities (AKBPM

in MD, AKBPN in AP/BS, AKBPS in server centralized) to work together and accom-
plish a mission or perform tasks. Therefore, MAS, with its communication and coordina-
tion capabilities provides ZTHM-5G with a solid separation of management to optimize
the handover procedure.

The communication capability determines the external behavior of agents AKBP to
control their interactions and communications whit other agents. ZTHM-5G delineates
communication capability as a communication model to achieve a general goal. Thus,
agents AKBP in HM acts proactively to collect context information and make flexible
decisions. Moreover, agents AKBP react autonomously to changes in the environment,
adapting their actions appropriately. For instance, by changing the capacity available in
a target AP, the agent AKBP connects to the following candidate network with resources
available.

The coordination capability of each agent AKBP uses collaboration to achieve its
goal and maximize its utility by identifying a common goal for choosing and performing
coherent actions. This cooperative behavior uses a consensus to agree on an aspect
of interest, common value, or state between the agents. However, the cooperation
presents issues since the agents AKBP can accept or reject the agreement. There-
fore, to ensure that all agents in a network come to an agreement, the consensus has
different configurations, such as leader-following, formation, synchronization in robotic
arms, and state estimation in sensor networks [171,175]. Another alternative approach
uses argumentation to exchange proposals, counterproposals, and reasons supporting
them.

The complex process of HM includes a control mechanism traditionally centralized:
NCHO, MCHO, MAHO, and NAHO. The centralized handover process delegates com-
plete control to one network entity, bringing heavy overheads and large workloads.
Unlike NCHO, MCHO, MAHO, and NAHO, ZTHM-5G adopts distributed control method
by splitting and distributing the handover procedure in various simple tasks performed
by the agents AKBP. Agents AKBPM and AKBPN cooperate on a common cogni-
tive structure (Information and Communication model) using goal-oriented consensus
to solve conflict situations. Therefore, ZTHM-5G obtains high reliability, fast running
speed, and convenient operation to reduce signaling costs during handover.
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5.1.4 ZTHM-5G Operation

Figure 5.5 presents how ZTHM-5G operates in 5G. First, every AKBP specifies its own
goal to be met; for example, AKBPM defines the user goal, and AKBPN establishes
the network goal. Second, every AKBP exchanges its goal using the communication
model. Third, the conflict management module generates a common goal for each
AKBP . Fourth, AKBPM and AKBPN collect their Static Context. Fifth, AKBPM

and AKBPN monitor and update the Dynamic Context information related to, for in-
stance, user speed, APs in range, RSSI, and the associated and in-range MDs. Sixth,
based on the Static Context and Dynamic Context, every AKBP generates its local
knowledge. For example, the local knowledge in AKBPM can be HighMobility, and
in AKBPN can be LargeRange. Seventh, each AKBP analyzes the dynamic context
information to identify, classify, or predict patterns. In this way, AKBP obtains learned
knowledge. Eighth, every AKBP generates local intelligence by drawing meaning-
ful conclusions and making appropriate decisions. Ninth, AKBPM executes actions
within its network entity or exchanges local intelligence with another network entity.
Tenth, AKBPM sends local intelligence to AKBPN , which builds up global intelligence.
Eleventh, AKBPN performs local actions and sends them to the AKBPM . Twelfth,
AKBPM and AKBPN evaluate goal compliance to achieve user satisfaction and main-
tain network performance.
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Figure 5.5: ZTHM-5G operation

5.2 Usage case: Maximization of Energy Efficiency

This section validates ZTHM-5G by a usage case. The use case examines the appli-
cation of the approach proposed in the real world to improve HM. Figure 5.6 shows the
usage case operation with AKBPM instantiated on the MD and AKBPN in the AP/BS.
Additionally, the handover procedure covers three phases: handover initiation, network
selection, and handover execution.
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5.2.1 Goal Establishing

This subsection performs the goal-Establishing process for the user and the network
through an argumentation-based consensus model, which seeks a common goal.

Step 1. Setting the goals. The user sets a strategic goal for its operation: "mini-
mizing energy consumption". This goal can be accomplished during the handover by
either decreasing the network discovery time, triggering the handover at the appropri-
ate time, or selecting networks with lower ranges. The network sets its own goal, which
is "maximizing bandwidth use".

Step 2. Determining a common goal. The conflict management module offers a
common goal resulting from a consensus between the user and the network. This
common goal is "the maximization of energy efficiency". The two above goals conflict
since maximizing bandwidth does not regard energy consumption at the risk of short-
ening the MD operational time. Similarly, with power minimization, the throughput may
suffer when connecting to overloaded networks (AP/BS) (i.e., many users connected to
the same network or applications with higher bandwidth requirements).

Step 3. Analyzing the common goal. Each network entity analyzes the common
target using the AKBP. The AKBP i) determines the required resources to achieve the
desired goal, ii) determines the degree of goal attainment with the available resources,
and iii) provides the best satisfying solution under a varying amount of resources and
priorities of the goal.

5.2.2 AKBP Operation

The AKBP operation describes the interaction of each component of CCL working in-
dependently AKBPM and AKBPN .

Step 4. The static context component gathers static information on each network
entity. The AKBPM collects the device profile that stores device capabilities and tech-
nology type. The AKBPN gathers the technology type, maximum cell load, cell range,
localization, and transmitting power.

Step 5. The dynamic context component collects information on each network en-
tity using a database to store the sample and the timestamp obtaining a time series. In
the AKBPM , the dynamic context comprises the battery consumption and applications
data rate every time interval. The AKBPN gathers the cell load in terms of bandwidth,
the number of connected MDs, and the number of discovered MDs on the range of the
AP/BS.
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Step 6. The knowledge component establishes semantic classes with the help of
SIM for AKBPM and AKBPN ( Figure 4.1 in subsection 4.1.1). The AKBPM deter-
mines the UserDevice and Application superclasses. UserDevice superclass has a
DeviceStatus class which represents the state of the MD based on the battery level
(e.g., LowBattery, HighBattery). Application superclass allows knowledge of the ap-
plications running in each MD to generate network traffic (i.e., NetworkTraffic class).
These applications set QoS (i.e., QoS class) requirements (e.g., delay, throughput, and
packet loss) for each type of application. For example, the Rule APInRange (Listing
5.1) serves to discover neighboring networks considering RSSI.

Listing 5.1: Rule for APInRange in usage case.

APInRange ≡ User ⊓ ∃ isInCell.(∃ covers.AccessPoint)
Listing 5.2 shows the Rule BatteryStatus to define the battery level of the MD. If

MD has battery level battlev > thbatt, MD has a DevHighBattery. If a MD has a battery
level lower than thbatt, MD has a DevLowBattery.

Listing 5.2: Rule for BatteryStatus.

DevHighBattery ≡ Dev ⊓ (∃ hasBatteryStatus.HighBattery)
DevLowBattery ≡ Dev ⊓ (∃ hasBatteryStatus.LowBattery)
Listing 5.3 shows that the Rule ScanningFrequency is useful to define the scanning

periodicity for context information discovery. If an MD has a high scanning frequency
ScanFreq > thu, the MD has a DevHighScanFreq. If an MD has a scanning frequency
lower than thu, the MD has a DevLowScanFreq.

Listing 5.3: Rule for ScanningFrequency.

DevHighScanFreq ≡ Dev ⊓ (∃ hasScanFreq.HighScanFreq)
DevLowScanFreq ≡ Dev ⊓ (∃ hasScanFreq.LowScanFreq)
AKBPN defines classes like AccessPoint, Cell, and Range, which represent the

range of the cell (i.e., Short and Large Range), and the cell load as Low, Moderate, and
High. The NetworkTraffic class models the semantic state of the bandwidth consumed
by user applications, which influences cell load.

Listing 5.4 shows that Rule APRange is helpful for listing the APs by coverage range.
LargeRange is given by range > thrange and ShortRange by range ≤ thrange. According
to [84], thrange can be set to 35m for 802.11ac.

Listing 5.4: Rule for APRange in usage case.

APLRange ≡ AP ⊓ ∃ isCoveredBy.(∃ hasRange.LargeRange)
APSRange ≡ AP ⊓ ∃ isCoveredBy.(∃ hasRange.ShortRange)
Listing 5.5 shows that the Rule CellLoad is useful for defining the cell load. If a cell

has load cellload > thhload, the cell has a CellHighLoad. If a cell has a load higher than
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thlload and lower than or equal to thhload, cell has a CellModLoad. CellLowLoad is when
the cell has load cellload ≤ thlload. According to [176], thhload can be set to 75% and
thlload to 25% load capacity.

Listing 5.5: Rule for CellLoad.

CellHighLoad ≡ Cell ⊓ (∃ hasCellLoad.HighLoad)
CellModLoad ≡ Cell ⊓ (∃ hasCellLoad.ModerateLoad)
CellLowLoad ≡ Cell ⊓ (∃ hasCellLoad.LowLoad)
Step 7. The learning component uses AI techniques and methods to learn from

dynamic context information (e,g., SVM and Deep Learning).
AKBPM uses battery level data to predict battery consumption based on the appli-

cations used, the mobility pattern employed [177], and the connected APs. The battery
level dataset facilitates the data analysis to create groups semantics (e.g., LowBattery,
HighBattery) by classification.

SVM analyzes the user mobility (i.e., user speed), resulting in a slow-mobility mobil-
ity pattern (UserSpeed.SlowMobility) (Listing 5.6). In addition, deep learning pre-
dicts the data rate according to the user’s applications leading to a high data rate
(App.HighDataRate) (Listing 5.7).

Listing 5.6: Rule for MobilityPattern.

UserSlowSpeed ≡ User ⊓ (∃ hasUserSpeed.SlowMobility)

Listing 5.7: Rule for Application.

AppHighDataRate ≡ UserDevice ⊓ (∃ hasApp.HighDataRate)
AKBPN analyzes network bandwidth, and data performance obtained from the dy-

namic context and generates knowledge related to the load capacity. This load capacity
predicts future changes in the environment produced during handover (i.e., MD connec-
tion and disconnection to the AP/BS).

ML or deep learning techniques analyze the load capacity (i.e., cell load), resulting in a
low-cellload (Cell.CellLowLoad) (Listing 5.5).

Step 8. The reasoning component implemented with propositional logic use DL
[154] to conclude the objective of "the maximization of energy efficiency" for AKBPM

and AKBPN [60,178].
In the AKBPM , the MD with low battery power prefers to connect to short-range

APs (Listing 5.8). Moreover, users with bandwidth-demanding applications prefer to
connect to APs with high throughput (Listing 5.9). The user speed affects the battery
consumption. Therefore at low speeds (UserSlowSpeed, we discover more networks
and consume more energy (Listing 5.10). In addition, to reduce battery consump-
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tion, the MD can reduce the frequency of monitoring (ScanFreq) of the battery level
(BatteryStatus) using the results of the energy consumption prediction (Listing 5.11).

Listing 5.8: Rule for Energy Efficiency.

HighEnergyEfficiency ≡ DevHighBattery ⊓ (∃ APSRange)
LowEnergyEfficiency ≡ DevLowBattery ⊓ (∃ APLRange)
MediumEnergyEfficiency ≡ DevLowBattery ⊓ APSRange

MediumEnergyEfficiency ≡ DevHighBattery ⊓ APLRange

Listing 5.9: Rule for Energy Consumption by Applications.

HighEnergyConsumptionApp ≡ AppHighDataRate ⊓ (∃ APSRange)
LowEnergyConsumptionApp ≡ AppLowDataRate ⊓ (∃ APLRange)
MediumEnergyConsumptionApp ≡ AppLowDataRate ⊓ APSRange

MediumEnergyConsumptionApp ≡ AppHighDataRate ⊓ APLRange

Listing 5.10: Rule for Energy Consumption by User Speed.

LowEnergyConsumptionApp ≡ UserHighSpeed ⊓ (∃ APLRange)
HighEnergyConsumptionSpeed ≡ UserSlowSpeed ⊓ (∃ APSRange)

Listing 5.11: Rule for Energy Consumption by Scan Frequency.

HighEnergyConsumptionSpeed ≡ UserDevice ⊓ (∃ DevHighScanFreq)
LowEnergyConsumptionSpeed ≡ UserDevice ⊓ (∃ DevLowScanFreq)

AKBPN concludes that load capacity (i.e., number of connected devices) and cell
coverage must be balanced to achieve optimal energy efficiency [177] [176] (Listing
5.12). In addition, managing the load capacity increases the number of satisfied users
from a data rate perspective.

Listing 5.12: Rule for EnergyEfficiency in Access Point.
HighEnergyEfficiency ≡ (CellLowLoad ⊓ (∃ APSRange)) ⊔ (CellHighLoad ⊓ (∃ APLRange))
LowEnergyEfficiency ≡ (CellHighLoad ⊓ (∃ APSRange)) ⊔ (CellLowLoad ⊓ (∃ APLRange))
MediumEnergyEfficiency ≡ CellModLoad ⊓ (∃ APLRange ⊔ ∃ APSRange)

5.2.3 Handover Initiation

In handover initiation, AKBPM discovers other networks (candidate networks) and trig-
gers the handover according to criteria (e.g., RSSI, load, packet loss, throughput, etc.).

Step 9. The decision component establishes a handover initiation policy based on
HOM and TTT. In addition, a dynamic contextual information monitoring policy man-
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ages battery consumption (Listing 5.13). These policies maximize energy efficiency
according to the common goal.

Listing 5.13: Handover Initiation Policy.
1. To reduce scanning frequency :

LowEnergyConsumption ≡ UserDevice ⊓ (∃ DevLowScanFreq)
2. To t r i g g e r the handover :

A p p l i c a t i o n Throughput i s lower t h a t a th resho ld ( thappdatrate ) .
3 . To de f ine candidates APs :

CandidateAP ≡ MediumEnergyEfficiency ⊔ HighEnergyEfficiency

4. To send frame :
Cell, Range, ShortRange

UserDevice, DeviceStatus, MediumEnergyEfficiency

The actuation component executes the local actions to reduce the frequency of mon-
itoring to initiate network discovery proactively using the prediction of energy consump-
tion [178]. Additionally, MD triggers the handover sending a message to other network
entities with the information about the energy efficiency and taking into account the
available throughput of the applications.

5.2.4 Network Selection

Network selection chooses the most suitable access network (target network) accord-
ing to diverse multicriteria and evaluation metrics.

Step 10. AKBPM initiates the information exchange to AKBPN candidates by
sending EN complete packets.

Step 11. The decision component of AKBPN establishes an admission control
policy and AP/BS selection using load balancing (Listing 5.14). This load balancing
adapts the load capacity to changes in network traffic and the number of connected
MDs. Listing 5.15 shows that Rule CandidateAP is useful for creating the list of APs
candidates for each MD with MediumEnergyEfficiency or HighEnergyEfficiency in
the network.
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Listing 5.14: Admission Control Policy.
1. To rece ive frame :

Cell, Range, ShortRange

UserDevice, DeviceStatus, MediumEnergyEfficiency

2. To decide on the handover :
CandidateAP ≡ (UserDevice ⊓ MediumEnergyEfficiency) ⊓ (Cell ⊓ APSRange)

⊓(AccessPoint ⊓ (hasMediumEnergyEfficiency ⊔ hasHighEnergyEfficiency)
3. To send frame :

Handover, Selection, Accepted

AccessPoint, APStatus, HighEnergyEfficiency

Listing 5.15: Rule for CandidateAP in usage case.

CandidateAP ≡ MediumEnergyEfficiency ⊔ HighEnergyEfficiency

Step 12. The actuation component of AKBPN executes actions that limit the cell
load by denying access to MDs, managing transmission power, redirecting the anten-
nas, and managing throughput according to the data rate. In addition, this compo-
nent sends significant information related to the established policies using EN complete
packets.

Step 13. AKBPN performs local actions and sends them to AKBPM . Listing 5.16
presents rule AssociateAP , which links the MD with the first AP in the list of candidates.

Listing 5.16: Rule for AssociateAP in usage case.

AssociationToAP ≡ User ⊓ ∃ Uses.UserDevice(∃ Connects.AP )

5.2.5 Handover Execution

Handover execution establishes the network change and releases resources.
Step 14. AKBPM sends a handover request to the Target AKBPN and returns a

handover response message (Handover Request ACK). Additionally, AKBPM trans-
mits a disconnect request to the Serving AKBPN and returns with a Disconnect-
Request ACK message.

Step 15. AKBPM and AKBPN evaluate goal compliance to achieve user satisfac-
tion and maintain network performance.

5.3 ZTHM-5G Evaluation

This section presents the ZTHM-5G evaluation in a WLAN for an IoT environment (i.e.,
mMTC), aiming to show its behavior regarding the number of handovers and instanta-
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neous throughput, and its impact on various typical network performance metrics (e.g.,
delay, packet loss, and throughput). Section 5.3.1 depicts the ZTHM-5G prototype and
the test environment. Section 5.3.2 shows the performance metrics and traffic gener-
ation. Section 5.3.3 presents and discusses the results of ZTHM-5G, SIM-Know, and
two well-known handover solutions.

5.3.1 Prototype and Test Environment

We implemented the ZTHM-5G prototype for WLAN, including AKBPM and AKBPN ,
by using the Python programming language version 3.0. We also deployed the proto-
type in a Mininet-WiFi emulator [158] (Figure 5.7) running on an Ubuntu 18.04 VM with
a Core i7-3630 processor and 8 GB RAM. Mininet-WiFi adds virtual BSs and APs to
classical Mininet [179] to enable the emulation of wireless network environments.
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Figure 5.7: ZTHM-5G Test Environment.

Figure 5.7 shows the WLAN test scenario in which we evaluated and compared
ZTHM-5G, SIM-Know, SSF, and AHP-TOPSIS. The scenario, deployed in Mininet-WiFi,
included seven APs, an MD associated with User1, and another MD linked to User2.
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Additionally, thirteen (13) MDs are associated with the APs and without mobility. In
particular, we used three APs with a large coverage range (i.e., up to 75m for AP1, AP4,
and AP5 with 802.11n) and four with a short coverage range (i.e., up to 35m for AP2,
AP3, AP6, and AP7 with 802.11g). We also analyzed the performance when the User

1 moved from Point A to Point B, following a straight line without directional change at
a constant speed. We used two battery statuses for testing: < 20% corresponding to
LowBattery, and > 20% to HighBattery. The MD associated with User 1 transmitted
traffic (VoIP or TCP) to the MD linked to User 2, which was static. We repeated the
experiments thirty-three times to obtain results with a 95% confidence level. Table 5.1
summarizes the setup of the experiments.

Table 5.1: ZTHM-5G Experiment Setup.

Parameters Value

Wireless technology 802.11n, 802.11ac

Emulation area 200 × 200 m

Carrier frequency 2.4 GHz

Channel bandwidth 20 MHz

Transmission power of cells
large-range/short-range

24/16 dBm

Path loss model from cells Log-Distance Propagation Loss/ITU-R P1283

Emulation time for HighMobility 30 s

Emulation time for
ModerateMobility

80 s

Emulation time for SlowMobility 180 s

TCP traffic
Flows with constant inter-departure time between packets

(1000 pkts/s) and constant packets size (512 bytes)

VoIP traffic
Flows with audio code (G.711.2 - 84 Kbps and 50 pkts/s)

transmitted using real time protocol and voice activity
detection

5.3.2 Performance Metrics and Traffic Generation

We compared ZTHM-5G to SSF, AHP-TOPSIS, and SIM-Know regarding the number
of handovers, number of instantaneous throughput, handover latency, signaling over-
head, and various well-known network performance metrics (throughput, delay, jitter
and packet loss) [161]. The quantity of handovers is the number of transfers an MD
makes when it moves from one place to another [162]. The instantaneous throughput
(throughput drops) represents the times that the number of bytes transmitted falls to
zero because of a handover [51]. The handover latency is the time that elapses be-
tween the instant the MD sends the last link-going-down message to the serving AP
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and the moment the MD establishes the connection with the target AP [82]. Handover
signaling overhead is the data generated during the handover process to facilitate the
operation. However, the handover process interrupts the data flow and results in the
reduction of the MD throughput [64].

In the emulation experiments, scripts for generating traffic were developed by using
the iPerf3 [163], and D-ITG [164] tools. We used D-ITG to generate VoIP flows with
audio code (G.711.2 - 84 Kbps and 50 pkts/s) transmitted using the real-time protocol
and voice activity detection. We used iperf3 to generate TCP flows with constant inter-
departure time between packets (1000 pkts/s) and constant packet size (512 bytes).

5.3.3 Results and Analysis

Figure 5.8 evidences the maximization of energy efficiency made by the ZTHM-5G
approach. User goal setting and consensus with network goals drive HM toward a
personalized, seamless, contextualized experience. The values of 6.37%, 9.86%, and
9.73% concerning SSF, AHP-TOPSIS, and SIM-Know confirm that ZTHM-5G meets
user preferences to minimize battery consumption and access services anywhere. In
addition, the cognitive and autonomous approach with high-level policies of ZTHM-5G
efficiently handles the complexity of the handover process. These goal-oriented and
adaptive policies achieved a balance between the user and the network.
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Figure 5.8: Usage Case: Maximization of Energy Efficiency.

Table 5.2 reveals that when the user moved at a slow speed, ZTHM-5G behaved as
AHP-TOPSIS does concerning the number of handovers and instantaneous through-
put. Furthermore, ZTHM-5G outperformed SSF on these metrics since it uses multi-
criteria to make an appropriate decision. SIM-Know and ZTHM-5G behavior are similar
in handovers since they use the same KBP in the semantic component. However, the
goal-oriented approach of ZTHM-5G satisfies the user preferences to execute a han-
dover when necessary. Figure 5.9 shows the first handover performed by ZTHM-5G to
meet the user goal of maximizing of energy efficiency. Additionally, this Figure corrob-
orates that ZTHM-5G carried out cognitive and proactive handovers before SSF and
AHP-TOPSIS.

Table 5.2: ZTHM-5G Handover Performance.

Parameter SSF AHP-TOPSIS SIM-Know ZTHM-5G

Number of handovers 5 4 3 4

Number of instantaneous
throughput

3 4 2 4
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Figure 5.9: Usage Case: Throughput.

Figure 5.10 shows that ZTHM-5G selected networks with short coverage range due
to its low battery level and following the user’s goal. Contrary to the SIM-Know ap-
proach, which selected networks with a large coverage range, obtaining less handover.
ZTMH-5G and AHP-TOPSIS selected the same APs since they use multicriteria. How-
ever, due to the reasoning and learning component, ZTHM-5G executes the handover
at the appropriate time. Additionally, SSF performs a wrong selection of the cell at time
T=250 seconds, decreasing user throughput (Figure 5.10). In this case, ZTHM-5G uses
the context-aware to wait a time interval and select the network.
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Figure 5.10: Usage Case: AP selections.

Figure 5.11 a shows the Round Trip Time (RTT) in the four evaluated approaches,
obtaining that ZTHM-5G has the lowest value. This value means that ZTHM-5G uses
the AKBP to perform HM internally in each network entity, reducing the signaling over-
head. Furthermore, this result reveals that ZTHM-5G made efficient and appropriate
network selection decisions. These selected networks make up a network topology to
improve the speed and reliability of the network connection (packet loss lower than 3%
see Figure 5.11b).



5.3. ZTHM-5G Evaluation 97

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

R
TT

 (m
s)

SSF
AHP-TOPSIS

SIM-Know
ZTHM-5G

ICMP

(a) RTT in ICMP Traffic at LowMobility

 0

 1

 2

 3

 4

 5

 6

P
ac

ke
t L

os
t (

%
)

SSF
AHP-TOPSIS

SIM-Know
ZTHM-5G

ICMP

(b) Packet Loss in ICMP Traffic at LowMobility

Figure 5.11: Impact on ICMP Traffic.

Figure 5.12 shows, as expected that ZTHM-5G obtained higher throughput than
SSF, which is corroborated at all user speeds since our approach is knowledge-based,
and SSF makes decisions considering only single-criterion. ZTHM-5G had higher
throughput than AHP-TOPSIS with values of 0.2% at slow speed and 1% for high speed
because our approach is proactive and, according to [165], AHP-TOPSIS is reactive;
proactivity shortens the handover initiation phase [89]. SIM-Know outperforms ZTHM-
5G by 0.94% for high and slow user speed and 7.6% for moderate user speed. These
values show that ZTHM-5G integrates more internal components in decision-making
with high-level policies, increasing latency and affecting throughput. At the same time,
SIM-Know uses rule-based reasoning that requires little time to execute the handover.
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Next, we present how ZTHM-5G, SIM-Know, SSF, and AHP-TOPSIS impact various
network performance metrics when the user moves with different speeds (HighMobility,
ModerateMobility, and SlowMobility). Figure 5.13 depicts ZTHM-5G overcoming SIM-
Know, SSF, and AHP-TOPSIS regarding the delay, jitter, and packet loss when the wire-
less network transferred VoIP/UDP traffic. In particular, the delay attained by ZTHM-5G
was 6.13% to 14.84%, and 21.7% to 24.17% lower than that achieved by AHP-TOPSIS
and SIM-Know at all speeds. But, ZTHM-5G was a delay of 2.34% to 4.32% higher than
that achieved by SSF (Figure 5.13a). The jitter obtained by ZTHM-5G was between
19.37% to 31.43% and 2.29% to 2.09% higher than that obtained by SSF, AHP-TOPSIS
at all speeds. ZTHM-5G got a lower jitter between 11.62% and 28.82% than that ob-
tained by SIM-Know (Figure 5.13b). The packet loss of ZTHM-5G was 0.52% and 0.13%
for high and moderate user speed and 24.94% for slow user speed lower than that ob-
tained by SSF. ZTHM-5G obtained a lower packet loss between 1.8% and 0.4% than
that obtained by AHP-TOPSIS for high and moderate user speed, however for slow
user speed, the value obtained was 0.31% higher. On the other hand, SIM-Know was
much superior to ZTHM-5G in all speeds with values obtained greater than 50% (Figure
5.13c).
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We argue that the improvement in throughput, delay, jitter, and packet loss offered
by ZTHM-5G compared to SSF and AHP-TOPSIS is due to its context awareness,
cognition, proactivity, and autonomic capabilities. In particular, ZTHM-5G uses AKBP,
which provides local intelligence on each network entity and shares such intelligence
through a semantic and goal-oriented communication model to generate the global in-
telligence needed to optimize HM. The effective management of the complexity of the
handover process in ZTHM-5G is reflected in the comparison made with SSF when
using a single-criterion since all the metrics were superior. Although ZTHM-5G sur-
passed SIM-Know in some metrics, the additional components ensure user-oriented
HM regarding preferences, device status, applications, and network context.

ZTHM-5G, with the learning, decision reasoning, and actuation components inte-
grated into a CCL, offers a robust AKBP that generates local intelligence in the network
entity. This local intelligence optimizes the handover process from its context com-
ponent by discovering multicriteria in the initiation phase. Later in the network selec-
tion phase, the semantics and learning component analyzes the acquired and learned
knowledge to draw conclusions in the reasoning component. The decision and actu-
ation components help in the phase of handover execution by taking local and global
actions. ZTHM-5G allows HM according to an agreement between the goals proposed
by the user and the network, resolving conflicts between goals and offering a balance to
optimize the handover process. The semantic and goal-oriented communication model
was partially evaluated with indirect metrics revealing reduced signaling overhead. In
future works, more in-depth studies will be made with direct metrics that establish the
number of signaling messages exchanged and their size.

5.4 Final remarks

In this chapter, we introduced ZTHM-5G, an approach that performs autonomous and
cognitive handovers from an ANM point of view. ZTHM-5G includes AKBP to reduce
the number of signaling messages between network entities by self-management of
its context and generating local intelligence to be shared during handover. In addition,
a semantic and goal-oriented communication model delineates the exchange of local
intelligence reducing the size of the signaling messages. ZTHM-5G distributes the
AKBP in all network entities creating goal-oriented autonomous agents using MAS.
Therefore, ZTHM-5G enables the development of appropriate global policies to optimize
handover, improve the whole network performance, and meet user QoS requirements.

The evaluation results showed that thanks to the aforementioned ZTHM-5G capa-
bilities, our approach overcomes SSF regarding the number of handovers and instanta-
neous throughput when the user moves at any speed and, further, equals AHP-TOPSIS
when it moves at low and moderate speeds. SIM-Know overcomes ZTHM-5G regard-
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ing all evaluated metrics when the user moves at a high speed. ZTHM-5G positively
impacts the wireless network’s performance in terms of delay, throughput, packet loss,
and jitter metrics at all user speeds. ZTHM-5G and their semantic and goal-oriented
communication model were partially evaluated with indirect metrics revealing reduced
signaling overhead. Considering those results, we concluded that ZTHM-5G is a feasi-
ble solution for autonomous and cognitive HM since it handles the handover complexity
effectively in 5G networks.



Chapter 6

Conclusions

This thesis presented the investigation carried out to verify the hypothesis: An SDN/NFV
ecosystem allows performing mobility management efficiently in IoT to meet
QoS. Considering the hypothesis, this work proposed three components to perform
MM in IoT: NetSel-RF, SIM-Know, and ZTHM-5G.

This thesis concludes that an SDN/NFV ecosystem supports MM in IoT since it uses
a programmable SDN plane to virtualize the network entities. The 5G system architec-
ture supports data connectivity and services, enabling deployments to use techniques
such as e.g. NFV and SDN, according to the specification 3GPP TS38.300. The SIM-
Know approach proposed in this thesis can operate in 5G by running KBPM in the
MD (i.e., User Equipment (UE)), KBPN in gNodeB (gNB), and KBPS in the Core Net-
work (CN). Moreover, the 5G System architecture consists of network functions (NF):
Policy Control Function (PCF), Access and Mobility Management Function (AMF), Ses-
sion Management Function (SMF), User Plane Function (UPF), Network Data Analytics
Function (NWDAF), UE radio Capability Management Function (UCMF). Therefore, the
network functions interact among them during the handover procedure (preparation, ex-
ecution, and completion) to enhance the QoS provisioning capability in MDs connected
to the network.

The global information allows determining the selection criteria more efficiently to
carry out the MD association in a centralized manner. All approaches (NetSel-RF, SIM-
Know, and ZTHM-5G) use criteria coming from the network, user preferences, devices,
and applications to perform context-aware, cognitive, and proactive handovers. In Ad-
dition, SIM represented the global and local knowledge of the network state to make
appropriate and contextual handover decisions. SIM provided a well-designed structure
to facilitate the discovery and regular access to criteria of multiple sources using a com-
mon model at a syntactic (CIM) and semantic level (OWL). The SIM-Know approach
distributed and instanced SIM in various network entities named KBP. KBP comprises
layers (context, semantics, and reasoning) and processes (collaboration and adaption)
to provide local and global intelligence. ZTHM-5G uses AKBP for self-management of
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the handover procedure, which provides local intelligence on each network entity and
shares such intelligence through a semantic and goal-oriented communication model
to generate the global intelligence needed to optimize HM. NetSel-RF outperforms the
SSF and AHP-TOPSIS approaches regarding the number of handovers, ping-pong,
and instantaneous throughput. Moreover, SIM-Know and ZTHM-5G overcome SSF
and AHP-TOPSIS regarding all evaluated metrics, positively impacting the wireless net-
work’s performance in delay, throughput, packet loss, and jitter metrics.

6.1 Answers for the fundamental question

The issues related to insufficient criteria to make decisions about the handover and
the service disruption during the handover are related to the need for an approach for
MM. In this way, the question guided the investigation of mobility management in IoT
supported by SDN/NFV ecosystem.

Fundamental question: How to carry out efficiently mobility management in IoT to
meet QoS?

HM is pivotal for providing service continuity, ultra-high reliability, extreme-low la-
tency, and meeting sky-high data rates in wireless communications. Current HM ap-
proaches may lead to unnecessary and frequent handovers due to a partial network
view. Additionally, the wrong network selection decreases the throughput and increases
packet loss. For this reason, SIM-Know improves HM by including SIM that enables
context-aware and multicriteria handover decisions. In this way, SIM represented the
global and local knowledge of the network state to make appropriate and contextual
handover decisions. SIM is lightweight to reduce traffic and processing time. SIM-Know
also introduces a SIM-based distributed KBP that provides local and global intelligence
to make contextual and proactive handover decisions.

The handover procedure is traditionally rigid and with a complex hierarchical se-
quence most demanding in cost and time consumption. For this reason, ZTHM-5G
proposed an autonomous and cognitive HM approach from an ANM point of view to
optimize handover. This approach reduced the number of interactions among network
entities by generating local intelligence using an AKBP. Furthermore, a semantic and
goal-oriented communication model delineated the exchange of local and global intelli-
gence while reducing the size of the signaling messages. This model improves the QoS
provision by reducing the chance of service interruption while keeping network signal-
ing traffic with a short delay and small cost. Therefore, the ZTHM-5G results reveal that
the handover-related signaling cost is lower than traditional HM approaches.
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6.2 Future work

During the development of this thesis, we observed interesting opportunities for further
research. These opportunities are outlined as follows.

• More extensive evaluations in large emulated environments, for example, ultra-
dense networks with a more significant number of users and MD, as well as ap-
plications with more stringent QoS requirements.

• Enriching the proposed solutions with SDN and NFV capabilities would address
the scalability problem imposed on HM by Industrial IoT and the massive use case
of 5G IoT.

• The creation of an efficient model to communicate KBP and evaluate SIM-Know
when making handover decisions in scenarios with many MD, high network traffic,
and high load on APs.

• Implementing and evaluating the semantic and goal-oriented communication model
introduced in ZTHM-5G would favor introducing semantic services in network
management.
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• “A Semantic and Knowledge-Based Approach for Handover Management,” pub-
lished in Sensor MDPI, 2021.

• “NetSel-RF: A Model for Network Selection Based on Multi-Criteria and Super-
vised Learning,” published in Applied Sciences, 2020.

• “ZTHM-5G: Zero-Touch Handover Management in 5G,” Submitted.

• “MEC IoT: Monitorización de estructuras civiles en el contexto IoT,” published in
the proceedings of the 2017 IEEE Colombian Conference on Communications
and Computing (COLCOM), 2017.

The published paper is available in the next pages.
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