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Structured Abstract 
Background: Traceability is the ability to identify and track the history, 
distribution, location, and application of products, parts and materials of a final 
product, so that reliability is ensured. Blockchain technology has come to 
significantly transform information management in the different branches where 
it has been applied from health care systems, cryptocurrencies, and food 
traceability, among others. Blockchain technology could also present new threats 
to traceability processes. For this reason, data reliability, human errors, and the 
reliability of sensor-generated measurements, must be considered. 

Goals: this research will focus on data reliability before being appended to a new 
block in a Blockchain traceability network. So, to validate the sensed data at the 
time of transaction arrival in a Blockchain traceability network, this work proposes 
using data analysis and machine learning (ML) algorithms in conjunction with 
smart contracts. 

Methods: The generation of semantic anomaly detection rules from machine 
learning models is proposed. Using historical data from the Blockchain network 
deployed, the developed tool can generate an anomalies classification model 
based on the Z-Score and Decision Tree. From this model, a function can be built 
in JavaScript and GO to detect semantic anomalies in incoming transaction data 
that using a smart contract. Additionally, the smart contract can detect syntaxis 
errors. 

Results: A set of data collected from two production sites as part of a pilot test. 
Autonomous anomaly detection tool for smart contracts. An autonomous 
deployment tool for blockchain test networks. An anomaly detection strategy for 
blockchain-based traceability schemes. 

Conclusions: We manage to develop a strategy to give a smart contract the 
ability to detect syntaxis and semantics anomalies in the data of Blockchain 
transactions in a traceability scheme. This strategy can translate Random Forest 
and Decision Tree rules into Go and JavaScript for smart contracts supported by 
Hyperledger Fabric. This strategy proves useful in traceability scheme in supply 
chains were most of the traced data is generated autonomously. Some of those 
data might be corrupted during transmission from the sensors to the database or 
during manual data conversion processes. 

Keywords: Blockchain, Smart Contracts, Anomaly Detection, Reliability, 
Traceability
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Resumen Estructurado 
Antecedentes: Trazabilidad es la capacidad de identificar y rastrear el historial, 
la distribución, la ubicación, la aplicación de productos, piezas y materiales de 
un producto final, de modo que se garantice la confiabilidad. La tecnología 
Blockchain ha llegado a transformar significativamente la gestión de la 
información en las diferentes ramas donde se ha aplicado desde sistemas de 
salud, criptomonedas, trazabilidad de alimentos entre otros. La tecnología 
Blockchain también podría presentar nuevas amenazas a los procesos de 
trazabilidad. Por esta razón, se debe considerar la confiabilidad de los datos, los 
errores humanos y la confiabilidad de las mediciones generadas por sensores . 

Objetivos: Esta investigación se centrará en la fiabilidad de los datos antes de 
ser anexada a un nuevo bloque en una red de trazabilidad Blockchain. Por lo 
tanto, para validar los datos detectados en el momento de la llegada de la 
transacción en una red de trazabilidad Blockchain, este trabajo propone el uso 
de algoritmos de análisis de datos y aprendizaje automático junto con contratos 
inteligentes. 

Métodos: Se propone la generación de reglas de detección de anomalías 
semánticas a partir de modelos de machine learning. Utilizando datos históricos 
de la red Blockchain desplegada, la herramienta desarrollada puede generar un 
modelo de clasificación de anomalías basado en el Z-Score y el Árbol de 
Decisión. A partir de este modelo, se puede construir una función en JavaScript 
y GO para detectar anomalías semánticas en los datos de transacciones 
entrantes que serán utilizados por el contrato inteligente. Además, el contrato 
inteligente es capaz de detectar errores de sintaxis. 

Resultados: Conjunto de datos recogidos de dos centros de producción como 
parte de una prueba piloto de desarrollo. Herramienta autónoma de detección de 
anomalías para contratos inteligentes. Herramienta de despliegue autónomo 
para redes de prueba de blockchain. Una estrategia de detección de anomalías 
para esquemas de trazabilidad basados en blockchain. 

Conclusiones: Logramos desarrollar una estrategia para dar a un contrato 
inteligente la capacidad de detectar anomalías de sintaxis y semánticas. Esta 
estrategia es capaz de traducir las reglas de dos algoritmos de aprendizaje 
máquina para su uso en contratos inteligentes. Esta estrategia demuestra ser útil 
en el esquema de trazabilidad en las cadenas de suministro donde la mayoría 
de los datos rastreados se generan de forma autónoma y pueden estar dañados 
durante la transmisión o durante los procesos manuales de conversión de datos. 

Palabras clave: Blockchain, Contratos inteligentes, Detección de anomalías, 
Confiabilidad, Trazabilidad  
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Chapter 1  

Introduction 

1.1. Problem Approach 
Traceability is the ability to identify and track the history, distribution, location, 
application of a final product’s products, parts and materials to ensure reliability 
(United Nations Global Compact & Business for Social Responsibility, 2014). This 
definition can suffer variations depending on the field of application. In recent 
years it has gained significant importance in supply chains, regardless of the type 
of product that needs to be traced (Haleem et al., 2019). Traceability arose in the 
1930s when in some countries of the European region it was wanted to have 
proof of the origin of high-quality products such as French champagne 
(Setboonsarng et al., 2009). Its use has been growing due to the increasing 
quality control conducted by both consumers and the public sector to improve the 
safety and reliability of the products marketed. 

Traceability has algo been defined as an organization's ability to determine its 
provenance, visibility in terms of what it is doing both upstream and downstream 
in the supply chain, and transparency in terms of how it is communicating its 
upstream activities and products to the public by (Sodhi & Tang, 2019). A supply 
chain is the network comprised by all resources, organizations, and activities 
involved in the creation and/or sale of a product. Traceability is a key element in 
Supply Chain Management (SCM), a goal of SCM is to improve efficiency by 
coordinating the efforts of the various entities in the supply chain. This can result 
in a company achieving a competitive advantage over its rivals and enhancing 
the quality of the products or services. 

Blockchain technology has come to significantly transform information 
management in the different branches where it has been applied, from healthcare 
systems (Griggs et al., 2018) to cryptocurrencies (Scott, 2016) and food 
traceability (Tian, 2016) among others. Blockchain emerged as an innovative 
technology in 2008 as part of the Bitcoin cryptocurrency (Bhardwaj & Kaushik, 
2018). This technology is based on a distributed ledger of financial accounting. 
On this ledger, every new piece of information is stored in a block and cannot be 
modified or eliminated from the block containing it. Its use has expanded rapidly 
to other areas due to the advantages that this technology offers, such as 
transparency in the management of information, its decentralization, its security, 
and the ability to be auditable at any time, among others (Zheng et al., 2018), and 
the increasing use of smart contracts in Blockchain networks. 
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However, this technology also presents several challenges, including the 
scalability of the network, the cost of network transactions, reliability, and security 
failure. Reliability has been focused on how reliable the information on the 
network or the source of information is, but not on the report before being entered 
into the network (D. Liu et al., 2019; M. Wang et al., 2018; Xiang et al., 2019). 
Though, these processes have a basis that the information collected does not 
present any anomaly. Nevertheless, network information must be dependable 
from the moment it has been appended. 

Blockchain technology could also introduce new threats to traceability processes, 
as authors (Grover & Sharma, 2016) mention, and third-party interactions with the 
network. For this reason, data reliability, human errors, and the reliability of 
sensor-generated measurements, due to the lack of mutual trust mechanism in 
the data collection and transmission processes, must give place to multiple 
security threats (J. Wang et al., 2020) be checked. Even if the data recorded on 
the Blockchain is secure and tamper-resistant, the chance of an altered input 
must be considered (Sheldon, 2021). Hence, this research will focus on data 
reliability before being appended to a new block in a Blockchain traceability 
network. 

But what can Blockchain technology brings to traceability to improve an already 
tested and accepted process? In recent years, it has gained significant 
importance in supply chains, regardless of the type of product that needs to be 
traced, due to the increasing quality control conducted by both consumers and 
the public sector to improve product safety and reliability. Nevertheless, the 
information is centered, and traceable partners may not have access to certain 
information about the product in real time. Due to Blockchain technology's 
distributed feature, all transactions are stored in every node of the Blockchain 
network and are available at any time, making them transparent, secure, and 
auditable (Zheng et al., 2018). 

Smart Contracts are used to validate transactions on the Blockchain Network. 
Once deployed on the Blockchain network, these contracts are software that runs 
autonomously (Sánchez et al., 2018) when a series of agreed-upon conditions 
are met. Since their implementation is done over a Blockchain network, Smart 
Contracts are immutable. They can be reviewed entirely, so they can be used to 
validate transactional data related to supply chain traceability. Organizations like 
Ethereum have proposed standards for the packaging of Smart Contracts to 
facilitate the reuse of contracts developed and have also made efforts to offer 
standards throughout the construction of the Blockchain network(EIP-190: 
Ethereum Smart Contract Packaging Standard, n.d.) 

To validate the sensed data at the time of transaction arrival in a Blockchain 
traceability network, this work proposes using data analysis and machine learning 
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(ML) algorithms in conjunction with smart contracts. In this way, an almost 
resilient anomaly data detection will be ensured. 

1.2. Motivation 
The rise of Industry 4.0 must be considered a challenge for traceability in supply 
chains due to the supply chain's further segmentation. Nowadays, individual 
businesses cannot compete while being independent; they must participate as 
members of a global supply chain (GSC) (Ben-Daya et al., 2019; Koberg & 
Longoni, 2019). However, the ever-changing environment made the supply 
chains vulnerable at many levels, given that the traceability of a product must be 
done carefully to avoid future problems. 

Recently there has been an increase in the use of Blockchain technology for 
multiple purposes; one of them has been traceability. This technology has 
increased quality control, safety, and reliability. So, the producers are looking for 
better ways to trace the products at any chain state to ensure their quality. To 
survive in the current and complex supply chain environment, the business must 
be agile, with high resilience and risk mitigation (Koberg & Longoni, 2019). The 
barriers most considered when implementing sustainable supply chains are 
higher costs, coordination and complex effort, and insufficient or lack of 
communication between the different actors in the chain (Seuring & Müller, 2008). 

Using Blockchain technology, we could improve the traceability of the processes 
in multiple environments so that users, both consumers, and businesses, have a 
greater capacity to respond to the different events that may occur in the 
production and sale process and increase the scope of business by offering 
reliable methods regardless of the process using smart contracts with data 
validations and even include management recommendations based on expert 
knowledge. 

In the above context, in this doctoral thesis, we proposed a strategy to provide a 
smart contract with the tools to perform a certain degree of data validation to 
ensure that the data related to a traced product is reliable and that no problem 
has been detected during its passage through the supply chain. A smart contract 
with data validation will contribute to the sustainability on a supply chain, 
specifically to the traceability of products in favor of potential protection for 
consumers and traceability partners, considering that to reduce the uncertainty 
and ensure the chain’s sustainability, it is pertinent to strengthen the quality of 
the relations between the participants.  
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1.3. Objectives 
1.3.1 General Objective 

Autonomous anomaly detection on a Blockchain traceability network transaction 
through smart contracts. 

1.3.2 Specific Objectives 

1. To characterize the anomalies in a traceability network. 
2. To propose an anomaly detection strategy. 
3. To update smart contracts in real-time according to the anomaly 

detected. 
4. To validate the autonomous anomaly detection in a simulated 

environment. 

1.4. Contributions 
In this doctoral thesis, the following main contributions are made: 

• A dataset with all the data collected in two production sites as part of a 
pilot test of the development. 

• A tool to detect anomalies in a data store on a Hyperledger Fabric 
Blockchain network. 

• A tool to autonomously update smart contract rules for anomaly detection. 
• A tool to autonomously deploy a test network using Hyperledger Fabric 

and deploy a smart base contract. 
• A strategy to perform data anomaly detection in a Blockchain traceability 

scheme. 
• Article: A Smart Contract for Coffee Transport and Storage with Data 

Validation published in the journal IEEE Access, vol. 10, pp. 37857-
37869, 2022. (Qualified as A1 by MinCiencias Publindex – SJR Q1) 

• Article: Smart Contract to Traceability of Food Social Selling accepted 
to be published in the journal CMC-Computers, Materials & Continua 
ISSN:1546-2226. (Qualified as A1 by MinCiencias Publindex – SJR Q2) 

• Article: Blockchain for Supply Chain Traceability with Data Validation 
presented and to be published in the 17th International Conference on Soft 
Computing Models in Industrial and Environmental Applications SOCO’22. 

1.5. Contents of the Dissertation 
This document is divided as follows.  

Chapter I describes the problem approach, the primary motivation, general and 
specific objectives, and the research contributions. 
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Chapter II presents the base concepts for this development such as Blockchain, 
traceability, and more, also the different data anomalies that may arise in a supply 
chain traceability scheme. Finally, a state-of-the-art study about data reliability in 
a Blockchain-based traceability scheme, with their contributions and gaps.  

Chapter III describes the developed strategy for syntaxis anomaly detection 
using Smart Contracts, network selection, and deployment. Finally, the Smart 
Contract test using different approaches, including a production site deployment.  

Chapter IV contains the development and test of the proposed smart contract for 
semantic anomaly detection, the ML model training, and the usage of the 
anomaly detection rules on the smart contract. Also, the autonomous Smart 
Contract anomaly detection rules process is described and tested using 
production site data.  

Chapter V presents the conclusions and future work based on the experience 
gained through the development of this doctoral research. 
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Chapter 2  

Background 
This project has a comprehensive documentary reference, which allows for 
forming the necessary knowledge base for the development of the project and its 
orientation in what it seeks to achieve: Blockchain, Smart Contracts, and Data 
Reliability, framed within the concept of Traceability. The associated concepts 
are found in section 2.1, in which the techniques used in the topics mentioned 
above are presented individually. Finally, section 2.2 presents the related works 

corresponding to each main topic.Key Concepts 
2.1.1 Traceability 

Traceability of a product is the ability to identify a product at any stage of the 
supply chain or follow the historical process, application, or location of a product 
according to ISO 9000:2015 (ISO 9000 Sistemas de Gestión de La Calidad — 
Fundamentos y Vocabulario, 2015). The identification and traceability of a 
product is the primary form of traceability alongside other comprehensive product 
information components and activity records that can only be accessed if the 
product is traced (Florkowski et al., 2009). 

Traceability can be simple and inexpensive through a "One-up One-Down" 
implementation, i.e., immediately knowing who the supplier is and to whom the 
product is targeted. Or it may be a little more complex depending on the level of 
information you want to have about the product (Karlsen & Olsen, 2016). 

The GS1 group (GS1, 2020) defined the standard procedure for traceability to be 
used across industries. In this standard every traceability partner will report the 
product information following a set of rules for the labeling and description of the 
product. 
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Figure 1. Traceability Matrix adapted from (GS1, 2012) 

Figure 1 shows the traceability matrix with some examples of the information 
related to each stage and how to classify it on a public or private level. Public 
information will be available to all kind of consumers while confidential information 
will be available only to the publisher itself and control entities. As can be seen 
traceability, is a chain of information related to a product and its history across 
manufacturing process. The GS1 has also been working in the development of a 
traceability standard for the Blockchain technology inclusion (GS1, n.d.). 

2.1.2 Blockchain 

Blockchain or distributed secure ledger (Pal et al., 2019) is a technology that has 
had a great boom in recent years, thanks to the possibility of not having the 
intervention of third parties to validate transactions in peer-to-peer networks or 
P2P. This technology arises in 2008 as part of the Bitcoin currency proposed by 
Satoshi Nakamoto (Bhardwaj & Kaushik, 2018). The most significant advantage 
of this currency with Blockchain is that it does not require a central authority to 
authenticate, control or validate transactions. Due to its distributed feature all the 
transactions are stored in every node of the Blockchain Network and are available 
at any time making them transparent, secure, and auditable. These features 
made Blockchain technology a vital and advisable companion to processes like 
traceability, monetary transactions and more without the need for a third party 
involved 
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This technology is still in development. However, it is possible to find examples 
of use in multiple fields such as the food industry, IoT devices, banking network, 
etc. The block network or Blockchain consists of multiple nodes or points that 
maintain a partial or full copy of all transactions performed over the network. Most 
network members must validate these transactions before being entered into the 
network with their respective time tags and verify that the block to be created 
contains a valid transaction and refers to the immediately preceding block (Azzi 
et al., 2019). 

To support and operate with this technology each network pair has to provide the 
following basic functionalities: routing, storage, wallet, and mining services 
(Reyna et al., 2018). According to the Blockchain peer or node's capabilities, it 
will be classified into one of the different node types. 

Table 1. Basic node types and functionality (Reyna et al., 2018) 

Wallet Storage Mining Router Node Type 
X X X X Core 
 X  X Full 
 X X X Miner Only 

X   X Light Wallet 

Basic node functions used in BlockChain 

Table 1 shows that the routing function is present on each node, this because it 
is required to be able to participate in the P2Pnetwork. The storage function is 
used to keep a copy of the BlockChain network on the node. The function of the 
wallet is to provide security keys for network users to transact. Finally, the mining 
function is responsible for the creation of new blocks in the network (Reyna et al., 
2018). A Core node has all the functionalities offered by the BlockChain network; 
a Full node only store the data of the BlockChain network. A Miner Only node 
perform mining activities and store the data of BlockChain network. Finally, a 
Light Wallet node obtains all the information needed about the payments in 
cryptocurrencies without downloading all the BlockChain network. 

Blockchain technology can currently be used in multiple business models; the 
most common is the Utility Token model, where tokens or symbolic objects are 
used to obtain functionality on the network. Blockchain as a Service (BaaS), 
where a third party offers a specific client service while keeping functions such 
as cloud management and server deployment. Security is the most recent; it is 
sought that the tokens represent a legal property or a physical or digital object. 
Development Platform for this case, the technology is used for the development 
of applications known as decentralized applications (Dapps). Blockchain 
software-based products where the developers sell or rent their software 
solutions (Dapps) to thirds. The Fee Charge model charges a fee for using the 
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Blockchain network to end users or for using Dapps. Finally, the Professional 
Services model is where Companies offer their services for developing 
applications, consultancies, audits, etc., to companies starting or showing interest 
in using Blockchain. 

Given the characteristics of the Blockchain network, it is ideal for traceability 
processes since the information stored in the network cannot be altered. It can 
be determined with certainty when an alteration was made in the knowledge of 
the traced product and what was the original information of the product. It also 
always allows access to the product information available to all network 
members, keeping the public and private levels of knowledge. This technology 
will also raise the level of trust in the information in the traceability network. 
Adding smart contracts to the traceability process will help to ensure that the 
changes or updates on the product information will be made by those who are 
authorized to and will be registered on the Blockchain when and who made the 
change or the update. Also, it could be used to validate the product information 
before being annexed to a new Blockchain block. 

2.1.3 Smart Contracts 

Nick Szabo initially coined this term in the 1990s (Szabo, 1996). However, its use 
began with the introduction of Blockchain technology in 2008. A smart contract is 
software that, once deployed on the Blockchain network, runs autonomously 
(Sánchez et al., 2018) when a series of conditions agreed upon by the parties 
that make up the network are met. 

Since their implementation is done over a Blockchain network, smart contracts 
are immutable and can be reviewed in their entirety. Smart contracts are stored 
on the network and can be used by anyone who is part of this. However, these 
cannot be modified by their creators or network administrators. So, before its 
implementation and deployment, the parties involved must fully agree on the 
contract. The nodes of the Blockchain network that have the mining function are 
responsible for executing these contracts. 

Currently, Blockchain platforms support smart contracts execution due to the 
multiple possible applications like the Internet of Things, E-commerce, and more. 
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Figure 2. Smart contracts system, based on (Alharby & Moorsel, 2017). 

Figure 2 shows the smart contracts system with account information to assign 
assets to the user and recollect data, private storage, and an executable code. 
The smart contract is executed by a Miner that stores the transaction data on a 
new block on the Blockchain. Finally, smart contracts have access to the 
information generated on the Blockchain. 

A smart contract is a computer program that considers all the parties agreed-
upon conditions. When it is deployed on the Blockchain network, it can be called 
by any user with access permissions and changes a set of state variables on the 
network using the transaction information. According to definition 12 on (Hu et al., 
2020), the smart contract needs to satisfy the following equation. 

𝐶𝐶(𝑆𝑆𝑖𝑖 ,𝑇𝑇𝑇𝑇𝑖𝑖) =  �𝑆𝑆𝑗𝑗 ,𝑅𝑅𝑗𝑗�  

Equation 1. Smart contract definition 

Where   

𝑆𝑆 =  {𝑆𝑆𝑖𝑖∈ℕ∗}  

Equation 2. States on the contract 

Equation 2 represents all the possible states in the smart contract C.   

𝑇𝑇 =  {𝑡𝑡𝑇𝑇𝑖𝑖∈ℕ∗ =  (𝑡𝑡, 𝑖𝑖𝑖𝑖, 𝑜𝑜𝑜𝑜𝑡𝑡, 𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝)𝑖𝑖∈ℕ∗}  

Equation 3. Transaction on the network 
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Equation 3 exposes a transaction on the Blockchain network where t is the 
transaction’s timestamp, in represent the data sent, out represent the transaction 
response, s represents the transaction signature and pld is the payload data.   

𝑅𝑅 =  {𝑅𝑅𝑖𝑖∈ℕ∗}  

Equation 4. Smart contract response 

Equation 4 represent the possible responses that the smart contract will give. If 
a valid transaction calls the contract, the smart contract will produce a new state 
𝑆𝑆𝑗𝑗 and a corresponding response. 

2.1.4 Data Analysis 

Statistical and logical techniques systematically describe, illustrate, condense, 
and evaluate datasets (Data Analysis, 2013). Data analysis involves the 
processes of inspection, cleaning, transformation, and modeling of a dataset to 
find helpful information that allows one to draw conclusions and support decision-
making processes. This process also involves verifying or validating the 
information contained in the database for reliability purposes. 

In the stages of inspection and cleaning the data, we can identify problems that 
can be corrected or allowed so that the developed models can detect these errors 
and alert the inconsistent data found in future applications. 

Among the methods that can be used in the modeling stage are rule-based 
models (Seines et al., 1998) and ML algorithms. Among these, we have the 
Neural Networks (Jordan & Bishop, 2004) and Decision Trees (Loh, 2011) among 
others, which also have methods that improve the results obtained by the applied 
models. Techniques such as Bagging (Breiman, 1996), Boosting (Skurichina & 
Duin, 2002), Incremental Learning (Xie et al., 2009), and others. 

• Data Reliability 

Data reliability is a crucial foundation when building data on an interesting topic. 
It means that the data is sufficiently complete and accurate (U.S. Government 
Accountability Office, 2019). It is related to the quality of the captured data. 
Reliability can also be expressed as the number of failures over time (Romeu, 
2003). 

2.1.5 Data Anomaly 

An anomaly is an observation different from what is usual or expected. These 
observations have inspired scientists to reconsider or modify theories or 
hypotheses, so they play a crucial role as observations that are inconsistent with 
the model in the academic paradigm (Foorthuis, 2021). Identifying, 
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understanding, and predicting data anomalies is a crucial pillar of data mining 
(Chandola et al., 2016). 

2.1.6 Anomaly Detection 

The problem of anomaly detection refers to finding anomalies in data. In different 
application domains, "anomalies" may also be known as outliers, discordant 
observations, exceptions, aberrations, surprises, peculiarities, or contaminants 
(Chandola et al., 2016). This has become a field of interest in data mining in 
multiple application domains such as credit card fraud detection, faults diagnosis 
in industry, or intrusion detection in cyber security. Also, anomaly detection can 
improve the understanding of the studied system.  

Currently, multiple techniques to perform anomaly detection can be split into two 
groups: Point Anomaly Detection and Anomaly Detection for Complex Data. 
Next, we will discuss these groups, their approaches, and their most common 
techniques. 

A. Point Anomaly Detection 

In this group, the goal is to identify points in a dataset that do not behave as 
average points do. Usually, there is no previous knowledge about a data point's 
average or abnormal behavior. There are multiple methods to perform this task; 
some of them are presented next. 

• Statistical Method 

This is the first and most studied method to detect anomalies. It considers that 
if the difference between the data point and the statistical distribution is more 
significant than a particular value or range, then that data point is an anomaly 
(H. S. Wu, 2017). Statistical methods also estimate a parametric or 
nonparametric model from the dataset and apply a statistical test on each data 
point to assign an anomaly score based on the probability of it being an 
anomaly. These methods are effective is the standard data points can be 
modeled by a statistical distribution (Chandola et al., 2016). 

• Clustering Method 

Anomaly detection based on data clusters use current clustering algorithms 
such as DBSCAN, K-Means, Gaussian Mixture Model, etc., to learn sets from 
a given dataset, and a point that cannot be clustered is considered an 
anomaly. Nevertheless, these algorithms are not developed to detect 
anomalies, but as a subproduct of its clustering process, the researchers can 
find abnormal points on the dataset (Chandola et al., 2016; H. S. Wu, 2017). 
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• Distance Method 

This method estimates the distance between data points in data space using 
a distance function selected by the researcher. The greater the distance, the 
greater the probability that the issue is an anomaly in the data set. The critical 
assumption is that average points lie in dense clusters so that distances will 
be shorter and anomalous points lie in sparse groups, so distances will be 
more considerable (Chandola et al., 2016; H. S. Wu, 2017). 

• Classification Method 

In this method, the ML algorithm learns how to separate anomalies from 
average data points using a labeled or unlabeled dataset. Based on the 
available training data, the assumption is that one can learn a classifier in the 
given feature space to distinguish between normal and anomalous points 
(Chandola et al., 2016). Some algorithms used for this are Random Forest 
(Breiman, 2001), Neural Networks (Stergiou & Siganos, n.d.), and Decision 
Tree (Loh, 2011), among others. 

B. Anomaly Detection for Complex Data 

In some cases, data points are related, so anomalies can only be found when 
analyzing the relationship between data points in a dataset. Next, we will review 
methods developed to consider these cases and detect anomalies within 
complex data. 

• Kernel-based Methods 

Analogous to point-based anomaly detection techniques, these techniques 
analyze the entire test sequence as a unit. They typically apply proximity-
based point anomaly detection techniques by defining an appropriate 
similarity kernel for the sequences (Chandola et al., 2016). 

• Window-based Methods 

Within the test sequence, these techniques analyze a short subsequence of 
symbols. Subsequences within test sequences are treated as unit elements 
for these techniques. By analyzing the subsequences within a test sequence, 
these techniques can determine whether the whole test sequence is 
anomalous (Chandola et al., 2016). 

• Time Series Methods 

These methods work by forecasting the following observation in the time 
series, using the statistical model and the previous comments, and 
comparing them with the actual word to detect anomalies (Chandola et al., 
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2016). These methods manage univariate time series but can also be 
extrapolated to multivariate ones. 

2.1.7 Anomalies in Supply Chain Traceability 

Anomalies in a supply chain traceability can occur due to multiple sources 
because supply chain management involves various actors and processes. So, 
every actor must be accountable for explaining or justifying their data or actions 
in the supply chain (Khalfaoui et al., 2013). They must be able to detect anomalies 
in their processes and perform the necessary steps to avoid those future 
anomalies. An anomaly along the supply chain, such as temperature fluctuations, 
can affect population safety and the environment. Supply chain actors often 
ignore anomalies for economic reasons, or there is no clear path to deal with the 
anomaly (Khalfaoui et al., 2013). Therefore, traceability has gained much 
popularity in supply chains. With the explosion of IoT sensors, increasingly 
wireless technology has been used in recent implementations (M. Chen et al., 
2017), allowing for easier anomaly detection and tracking of products.  

IoT sensor use has made problems like supply chain infiltrations, retail service 
copycatting, and factory overruns (D’Amato & Papadimitriou, 2013) harder, but 
they can still happen. These problems often introduce anomalous data into the 
supply chain traceable process. Although wireless sensors have improved the 
amount and reliability of traced data, they are also susceptible to security issues 
(Grover & Sharma, 2016; Tomić & McCann, 2017). Security issues are one of the 
reasons behind anomalous data in the supply chain traceability (Jan et al., 2019). 
Considering this, the anomalies typically found in supply chain traceability are 
based on the problem description made by the following authors (Baumgartner 
Data et al., 2021; Beteto et al., 2022; M. Chen et al., 2017; Jindal et al., 2020; 
Konovalenko & Ludwig, 2022; N. Liu et al., 2022; Masciari, 2012; Tsolaki et al., 
2022; Zunic et al., 2020), are described next. 

• Missing data anomaly 

This type of anomaly occurs when no data value is stored for a variable in 
observation. So, no information was provided, the information was lost during 
the transmission process, mistakes were made if the information was 
manually recollected, security issues, etc. Missing data anomaly could be at 
random or not at random, depending on the issue producing the missing data 
anomaly 
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Table 2. Missing data anomaly 

Variable 1 Variable 2 Variable 3 Variable 4 
15.26 Complete 1500 Good 
16.25 Incomplete  Good 
28.24  1600 Bad 

Example of missing data anomaly 

Table 2 shows an example of what a missing data anomaly would look like, 
Variable 2 and variable 3 presents white spaces on instance 2 and 3, 
respectively. The terms NULL or NAN also represents sometimes 

• Unknown data anomaly 

This type of anomaly occurs when the data stream has values for an unknown 
variable or a variable that has not been seen before. The information provided 
does not correspond with any of the expected variables under the expected 
normal conditions. 

Table 3. Unknown data anomaly 

Variable 1 Variable 2 Variable 3  
15.26 Complete 1500 Good 
28.24 Complete 1600 Bad 

Example of unknown data anomaly 

Table 3 shows an example of a unknown data anomaly, in this case we can 
see a nameless variable. A solution to solve this issue the system uses a 
predefined variable name or to ignore the data related to a unknown data 
anomaly. 

• Duplicate data anomaly 

This type of anomaly occurs when the data stream has identical values for 
two or more observed variables and/or two or more instances. In this case, 
the information of a process is replicated multiple times due to human 
mistakes, data transmission problems, security issues, etc. 

Table 4. Duplicate data anomaly 

Variable 1 Variable 2 Variable 3 Variable 3 
16.45 Incomplete 1800 1800 
16.45 Incomplete 1800 1800 

Example of duplicate data anomaly 
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Table 4 shows an example of a duplicate data anomaly, in this case we can 
see that the variable 3 is repeated and that instances 2 and 3 are the same. 
Normally, to solve this type of anomaly only one of the repeated variables or 
instances is preserved. 

• Syntaxis data anomaly 

This data anomaly refers to information that does not correspond with the 
expected data type. In other words, this anomaly occurs when the system 
tries to convert the information received to store the corresponding variables, 
but the data cannot be restored.  

Table 5. Syntaxis data anomaly 

Variable Name Type Correct Data Receive Data 
Temperature Numeric 18.5 18.5C 

Location Varchar Popayan 19001 
Date Date Time 15/08/2022 08/15/22 

Example of syntaxis data anomaly 

Anomalies in syntax data are illustrated in Table 5. The first example shows 
data from the temperature variable. As shown in the Correct Data column, 
the variable should be numeric, but the system receives a value similar to the 
Receive Data column. Depending on how the database is implemented, the 
system will generate an error or warning if this value is converted to numeric. 
The same considerations can be used when expected and received data 
types differ. In the last example, the expected and corrected data are dates, 
but the formats are different, resulting in a syntax error. 

• Semantic data anomaly 

Semantic anomaly is when one or more data or instances do not follow the 
usual pattern. In this case, the information shows values over or under the 
expected average or values that correspond with the sensed variable but on 
a different scale. Typically, semantic data anomalies are considered outliers 
or noise in the data. 

Table 6. Semantic data anomaly 

Variable 1 Variable 2 Variable 3 Variable 4 
15.26 Complete 1500 Good 
16.25 Incomplete 200 Good 
58.24 Complete 1600 Malo 

Example of semantic data anomaly 
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Examples of semantic data anomalies are shown in Table 6. Variable 1 has 
a value that is several times greater than the other values in the column, and 
this behavior is also apparent in Variable 3 where there is a value several 
times lower than the others. Lastly, Variable 4 shows another type of 
semantic anomaly; in this case, the expected value is Bad, but the system 
receives Malo; the meaning remains the same, but the system may not be 
able to process it. 

Multiple types of anomalies can be found in supply chain traceability. Each has 
various approaches for detection and correction, from data imputation to data 
elimination, depending on the importance of the data, the amount of data with 
problems, etc. To narrow the scope of our development, we will focus only on 
detecting numeric syntax and semantic data anomalies. 

2.2. Related Works 
For this project, the starting point was established around using smart contracts 
in traceability processes. With this in mind, a systematic mapping was conducted 
based on the methodology proposed by (Petersen et al., 2008), to obtain an 
overview of the research area and locate gaps and contributions in the research 
found; the method of the systematic review proposed in (Kitchenham & Charters, 
2007) was used. These methodologies are based on a procedure that can be 
summarized in five steps: first, define the research question, then perform the 
literature search, next select the relevant studies, classify the selected studies, 
and finally, extract and synthesize the information. Each of these steps will be 
detailed next. 

2.2.1 Research Methodology 

A. Research Question: The primary goal of this work is to provide a 
Blockchain traceability scheme with the necessary tools to perform data 
reliability validations to ensure that the trace data is reliable and gives an 
accurate representation of the traced product on the supply chain. 

Question 1. In a traceability scheme, what kinds of anomalies can 
be found? 

Question 2. How do smart contracts detect anomalies in a 
traceability scheme using Blockchain technology? 

Question 3. How can smart contracts be autonomously updated to 
adjust for anomalies in a traceability scheme? 

B. Data Sources and Search Strategy: To conduct the systematic mapping 
for our research, we consulted the following scientific bibliometric 
databases; Scopus, ScienceDirect, and IEEE Xplore. In total, we obtained 
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more than 3,400 scientific investigations, most of them between 2015 and 
2022, since Blockchain technology and its use in traceability schemes is 
relatively new. 
 

C. Relevant Studies Selection: The criteria used for the selection of studies 
were the following: 

Acceptance: Those studies that use binding terms such as 
“Blockchain,” “Smart Contracts,” “Traceability,” “Reliability,” “Data 
Validation,” and/or “Supply Chain.” Those studies whose titles 
suggest using Blockchain technology to detect anomalies in a 
traceability scheme. 
Rejection: Those studies that do not use the terms mentioned 
before. 
Only journals and conference articles written in English or Spanish 
were considered. 

With these acceptance and rejection criteria, the search is conducted in 
the selected databases using the following search strings: 

String 1. “Blockchain” AND “Supply Chain” AND “Traceability.” 

String 2. “Blockchain” AND “Data Validation.” 

String 3. “Traceability” AND “Data Anomalies.” 

String 4. “Smart Contracts” AND “Anomaly Detection.” 

String 5. “Blockchain” AND “Data Reliability.” 

Data anomalies are only used in the case of traceability to broaden the 
search in this field and to review what has been done, specifically in this 
area.  

D. Relevant Studies Classification: As mentioned before, more than 3400 
research were found. We reduce the number of research using the 
acceptance and rejection criteria to more than 1000 research documents.  
These documents were revised by title, summary, and conclusions to 
select the ones related to our investigation. Finally, 79 studies were 
selected and categorized after the review. 
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Figure 3. Categorized studies distribution. 

Figure 3 shows the distribution over the years of each group of the selected 
studies, the figure shows how the research interest has been shifted in the 
past years to Blockchain data reliability and Blockchain/IoT supply chain 
traceability. Also, we can see that there are some approximations for 
anomaly detection using smart contracts. 

A brief overview of some of the studies classified in each subject follows. 

1. Industry 4.0 Anomaly Detection 

In this category, the research papers highlight that data tampering is 
something that can happen on a Blockchain scheme before the 
network transaction occurs (Iyer et al., 2019; X. Liu et al., 2020) so to 
avoid fraud and to ensure trust, anomalies in data must be detected 
and corrected before adding them to the Blockchain. Additionally, 
research like (Oh et al., 2019; Shukla et al., 2022) proposes a method 
for business logic verification and anomaly connections to ensure that 
the process is not vulnerable to Interference from external sources.  

Also, authors like (Günther et al., 2019; Talha et al., 2019; X. Wang et 
al., 2021) have proposed methods to perform data quality evaluations 
analyzing the business data structure to highlight the conflicts of data 
quality management systems. Finally, authors like (Balagolla et al., 
2021) propose fraud prevention by detecting anomalies in credit card 
transactions using Blockchain technology to ensure transparency. 

2. Smart Contract Anomaly Detection 

Luo et al., in (Luo et al., 2022) review common scenarios where false 
information at any stage of the supply chain may represent a significant 
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challenge to authorities. They explain how Blockchain, and smart 
contracts can improve supply chain traceability transparency, security, 
and data immutability to address these scenarios. In (Kumar et al., 
2022) the authors explore Blockchain technology's applicability in 
logistics and supply chains using smart contracts in Ethereum, 
comparing their proposed solution with the ones currently available. 

Other authors like (Hameed et al., 2022) pursue the detection of 
security threats in Blockchain-based industrial applications and 
consider the introduction of the concept of Blockchain 5.0 needs to be 
able to introduce artificial intelligence as a feature of Blockchain to 
address the security threats such as data tampering and fraud 
detection. 

3. Blockchain Trust 

Within the Blockchain network, transparency and trust in information 
are emphasized by multiple authors such as (Cao et al. 2021; Guo & 
Yu, 2022; L. Liu et al., 2022; Marchesi et al., 2022; Patel & Shrimali, 
2021), some authors suggest that proposed Blockchain solutions lack 
trust due to being developed for a specific process and difficult to 
generalize, while others have proposed the use of ML algorithms to 
detect abnormal smart contracts to avoid security risk. 

Authors like (W. Wu et al., 2022) have proposed using neural networks 
in a framework of smart reporting systems based on the Blockchain 
and Internet of Things (IoT) technologies to evaluate the authenticity of 
the collected data. Authors like  (Kravitz, 2018; J. Wang et al., 2022) 
mentioned that data security issues are becoming increasingly 
important and must be addressed by improving the storage mechanism 
in Blockchain technology and implementing reputation traceability to 
increment the trust of the data stored in a Blockchain scheme. 

4. Blockchain Data Reliability 

Information sharing is an essential feature of Blockchain, so data 
reliability must be ensured; authors like (Yang et al., 2020) have 
proposed a mechanism to ensure data reliability in a big data 
environment with Blockchain technology using the user's private and 
public keys. Authors like (Cozzini et al., 2022) have proposed using 
Blockchain technology to improve the data reliability of COVID-19 
genomic sequences from all over the world. 

Finally, authors like (Casado-Vara et al., 2018; Deepa et al., 2022; 
Hussien et al., 2021) present multiple trends and opportunities to 
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improve data reliability in various areas by implementing different data 
reliability methods using Blockchain technology and how Blockchain 
with its features could be the cornerstone in the industry 5.0 
development. 

5. Blockchain/IoT-based Supply Chain Traceability 

Research on this group shows the improvements in traceability when 
Blockchain technology is used; authors like (C. Y. Chen et al., 2021; 
Etemadi et al., 2020; Jannat et al., 2021; Subashini & Hemavathi, 2022) 
has addressed different Blockchain implementations for traceability in 
supply chains, showing the weaknesses and strengths of the traceable 
scheme before and after the use of Blockchain. Also, these authors 
mention the opportunities and challenges to increase the acceptance 
and reception of Blockchain technology in both traceability and supply 
chain aspects. 

Authors like (Rodríguez et al., 2021) have tried to understand the 
technology better. They select the best one for supply chain traceability 
by analyzing multiple implementations and proposing a three-layered 
architecture for agriculture processes. In (Li et al., 2022), the authors 
propose a Blockchain framework to improve supply chain resilience so 
that companies using this technology can achieve higher performance. 

There are multiple approaches to supply chain traceability using 
Blockchain technology proposed by different authors, each focused on 
improving one or more critical aspects of the process. Despite this, none 
of them suggest using smart contracts to improve data reliability by 
enabling them to detect anomalies. 

2.2.2 Results and Analysis 

The results of steps A, B, C, and D of the literature mapping and systematic 
review are presented in the previous section. As a result, step E is shown 
below to highlight the results and their analysis. 

E. Extraction and synthesis of information: As indicated in the previous 
subsection, several researchers have tried to address the trust problem of 
Blockchain-based supply chain traceability, applying different approaches 
to make sure that the final users welcome the incorporation of Blockchain. 
Moreover, the research explores the critical aspects of including 
Blockchain technology in the non-distant future. 
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2.2.3 Gaps and contributions 

The following investigations are also highlighted from these groups: 

• (Pradhan et al., 2021): The authors proposed a Blockchain-based 
solution for a blood bank. The solution can trace blood-related data, 
check bloodstock on nearby sites, trace shipments, and more. The 
authors also include a conditional to prevent storage conditions 
violation in the proposed smart contract. 
 

• (Marchesi et al., 2022): An agri-food industrial Ethereum smart contract 
that is easy to customize and reuse to shorten development times of 
future decentralized applications (dApps). The proposed approach 
helps design and develop Apps to improve agricultural supply chain 
processes by creating higher-quality smart contracts. 

 
• (L. Liu et al., 2022): The authors proposed using Heterogeneous Graph 

Transformer Networks (S_HGTNs) for smart contract anomaly 
detection, specializing in financial fraud detection on Ethereum. Using 
this technique, the authors obtained the necessary features to classify 
the smart contracts on the platform as normal or anomalous. 

 
• (Iyer et al., 2019): A wastewater reuse monitoring system is proposed 

using Blockchain and anomaly detection. Blockchain technology is 
used to incentive wastewater reuse with tokens. In contrast, anomaly 
detection algorithms are used to detect anomalies in the data sent to 
the network by IoT sensors deployed all over wastewater treatment and 
industrial plants. 

 
• (Demertzis et al., 2020): Authors introduce the concept of deep 

learning smart contracts to detect anomalies in a Blockchain 
environment using Deep Autoencoders. The authors manage to use 
Cloud ML Services from inside the smart contract in the Wave 
Blockchain platform to analyze the DataStream received by the smart 
contract to classify it as normal or abnormal. 

 
• (Tukur et al., 2021): In this research, a Blockchain enable anomaly 

detection technique in an IoT environment is proposed. Edge 
computing is used as nodes on the Blockchain network; this ensures 
the integrity of the data collected and processed using edge computing 
as close as possible to the Blockchain nodes in the Ethereum platform.  

 
• (Shukla et al., 2022): A Blockchain system model for anomaly detection 

in smart grids using linear support vector machine for anomaly 
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detection in a fog computing environment. The fog nodes work as 
miners on the Blockchain network and perform data validations on the 
transaction data. 

 
• (Oh et al., 2019): Using business context data, authors proposed a 

novel distributed ledger system for supply chains that verifies the 
semantic correctness of transactions on Hyperledger Sawtooth. The 
proposed method can detect anomaly transactions in the life cycle and 
velocity in the supply chain. 

 
• (Shao et al., 2020): Authors proposed a framework to auto-update 

smart contracts in a Blockchain-based log system. The smart contracts 
are updated based on log anomaly detection using ML so that the 
recent smart contract version can detect anomalous log entries in the 
Blockchain. 

Research in this area exhibits an affinity with the developments 
undertaken within our research program. A gap analysis of the selected 
investigations is presented in table 7. 

Table 7. Located gaps. 

Research Gap 

(Pradhan et al., 
2021) 

Although the authors perform data validation to detect 
violations in the blood bank, the smart contract 
cannot detect anomalies in the received data. 

(Marchesi et al., 
2022) 

The authors do not consider the possibility of data 
anomalies being present on the traced data. 

(L. Liu et al., 
2022) 

Even though the author's goal is anomaly detection, 
their development is centered on detecting abnormal 
smart contracts. 

(Iyer et al., 
2019) 

The authors only use Blockchain technology to store 
the transaction data and to give tokens according to 
the wastewater reuse. 

(Demertzis et 
al., 2020) 

Although the authors manage to perform anomaly 
detection on the data sent on the transaction in the 
Blockchain network, it depends on an external tool to 
detect the anomalies with all the security risks it 
implies. 

(Tukur et al., 
2021) 

Even though the authors use edge computing as 
nodes in the Blockchain network, the anomaly 
detection is performed outside the network, and the 
results uploaded are the corrected data delivery by 
edge computing. 
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(Shukla et al., 
2022) 

The authors only use Blockchain technology to store 
the transactional data, and all the anomaly detection 
process is conducted outside the Blockchain 
network. 

(Oh et al., 2019) 

Although the authors proposed to perform anomaly 
detection on the transaction, it only checks if the 
transaction complies with the business context, 
leaving aside the correctness of the transaction data. 

(Shao et al., 
2020) 

The proposed framework only considers anomalous 
logs on the Blockchain network, but abnormal data 
can be present in normal transaction logs, so the 
smart contract will not be able to detect these kinds 
of anomalies. 

Detected gap for each highlighted research. 

• Most Industry 4.0 Anomaly Detection group research has focused on 
fraud detection or detecting anomalous transactions based on the 
information available about the involved users, logs, etc. 
 

• Research on Smart Contract Anomaly Detection, Blockchain Trust, 
and Blockchain Data Reliability has focused on aspects such as 
validating data before reaching the Blockchain network or using 
external tools to detect anomalies in the transaction data. 

 
• Although some investigations have tried to provide smart contracts 

with data anomaly detection capabilities, most have been using 
external tools, so the detection is not conducted inside the Blockchain 
network. 

 
• Some investigations have proposed smart contract auto-update, but 

only one has updated the contract based on anomaly detection. 
Nevertheless, the anomaly detections have been leaving aside 
abnormal data on the Blockchain transaction. 

 
• During the systematic mapping and review no evidence of abnormal 

data detection on a Blockchain transaction using smart contracts with 
autonomous update capabilities without the interference of an 
external tool.  
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2.3. Summary 
This chapter presents the theoretical concepts related to our doctoral research 
proposals, such as Blockchain, Smart Contracts, Traceability, Data Analysis, and 
Anomalies. 

Subsequently, the most relevant research in the systematic mapping process and 
subsequent review of the results obtained in the different bibliometric bases 
consulted were exposed. The systematic mapping was oriented based on the 
investigation problem described in chapter 1. The localized investigations were 
separated into groups, allowing us to locate the contributions and research gaps 
better. Most of the study focused on smart contract anomaly detection has been 
using external tools to rely on anomaly detection or to detect abnormal smart 
contracts or transaction logs on the Blockchain network.  
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Chapter 3  

Syntaxis Anomalies Detection Strategy 
This project's main objective is to develop an autonomous anomaly detection 
Blockchain traceability network using smart contracts. To perform this, we review 
anomalies that may arise in supply chain traceability data, anomaly detection 
methods, and implementations that may benefit our investigation. The Syntaxis 
anomaly detection strategy is discussed in section 3.1. Section 3.2 shows the 
network and smart contract deployment process, including the Blockchain 
network solution selection and the tool used for smart contract performance 
evaluation. Section 3.3 shows the results of the performance test. Section 3.4 
and 3.5 shows results for the use case of the developed base smart contracts for 
a simulated case and an actual use case on production sites, respectively. 
Finally, section 3.6 shows the advantages and disadvantages of the implemented 
strategy. 

3.1. Detection Strategy 
Considering that smart contracts execute inside the Blockchain network, our 
proposed strategy uses the information stored on the Blockchain ledger to raise 
alerts about anomalies found in the current transaction data. We developed the 
following to provide the smart contract with the ability to detect the selected 
anomalies. 

3.1.1 Base Smart Contract 

This section will introduce the essential parts of our smart contract, from asset 
creation and asset update. Algorithm 1 shows the asset creation process. The 
algorithm uses transactional data related to a traced good using an asset ID. 
Each time a traced product variable is modified, this algorithm adds the 
information to the traceability Blockchain network. If the asset ID is new, it will 
create the asset on the Blockchain ledger. If not, the asset update process 
(algorithm 2) is executed. 
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Inputs:  
ID: key value of a sensed good 
PSI: Traceable sensed information 

Outputs:  
product = GetState(ID); 
if product == null then 

PutState(key, “none”, “none”, 1.0, 1.0); 
else 

assetUpdate(); 
end if 

Asset created with the traced data. 

Algorithm 1. Asset creation algorithm. 

 

Figure 4. Algorithm 1 Finite State Machine (FSM). 

Figure 4 shows the FSM and the transitions between the states available for this 
stage, where Transaction receive (S0), Asset creation (S1), Asset update (S2), 
Asset validation (S3), and Ledger update (S4). 

Algorithm two shows the asset update process. This algorithm updates the asset 
states on the ledger; as previously mentioned, each traced good has an ID stored 
as an asset.ID. Using this ID, the smart contracts update the state of all the 
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product data on the ledger. The algorithm sets new states on the Blockchain 
ledger using the asset if the data is valid.ID; if data is invalid, the algorithm will 
update the conditions of the anomaly data states and update the asset states 
using the last good information available. If the asset has not been created, the 
algorithm executes asset creation. 

Inputs:  
ID: key value of a product 
PSI: Product sensed information 

Outputs:  
product = GetState(ID); 
if product != null then 

errorsString = syntaxErrCheck(PSI); 
PutState(key, errorsString); 

else 
createAsset(); 

end if 
Asset updated with the traced data; syntax errors located. 

Algorithm 2. Asset update algorithm. 

 

Figure 5. Algorithm 2 Finite State Machine (FSM). 
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Figure 5 shows the FSM and the transition between states, where Transaction 
receive (S0), Asset creation (S1), Asset update (S2), Asset validation (S3), 
Ledger update (S4), Data validation (S5) and Syntax error check (S6). 

Inputs:  
PSI: Product sensed information 
ID0: Optimal Product Information ID 

Outputs:  
OP = GetState(ID0); 
if OP != null then 

if PSI != OP then 
reco = “recommendation”; 

else 
reco = “none”; 

end if 
end if 
return reco; 

Management recommendation 

Algorithm 3. Management Recommendation algorithm. 

 

Figure 6. Algorithm 3 Finite State Machine (FSM). 

The FSM model presented in Figure 6 shows the transitions between the states 
available at this stage for the smart contract: Data validation (S5), Optimal values 
retrieval (S7), and Data comparison (S8). Algorithm 3 compares the traced 
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product data with the predefined optimal data and generates recommendations 
for the traced product management based on the collected knowledge. 

Algorithm 4 shows how the consistency value is calculated. In this case, all the 
historical data is used, the historical data is divided into two vectors of equal size, 
and the correlation between these vectors is then estimated. This value is used 
as the consistency parameter. Algorithm 5 calculates the reliability of the data; 
this measure is estimated by dividing the amount of data in good condition by the 
total amount of data. 

Inputs:  
PSI: Product sensed information 
ID: key value of the current product 

Outputs:  
productHistory = GetHistoricalState(ID); 
totaldata = []; 
if productHistory != null then 

for data in PSI  
totaldata.append(data); 

end for 
for data in productHistory.PSI 

totaldata.append(data); 
end for 
data1, data2 = split(totaldata); 
consistency = correlation(data1,data2); 
return consistency; 

end if 
Consistency Value 

Algorithm 4. Consistency calculation pseudocode 
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Figure 7. Algorithm 4 Finite State Machine (FSM). 

Figure 7 shows the transitions between the states available at this stage for the 
smart contract: Data validation (S5), Historical data retrieval (S9), Data selection 
(S10), Vectorization (S11), and Correlation (S12). 

Inputs:  
PSI: Product sensed information 
ID: key value of the current product 

Outputs:  
productHistory = GetHistoricalState(ID); 
totaldata = []; 
if productHistory != null then 

for data in PSI  
totaldata.append(data); 

end for 
for data in productHistory.PSI 

totaldata.append(data); 
end for 
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goodData = totaldata.size() - badData; 
reliability = goodData/totaldata.size(); 
return reliability; 

end if 
Reliability Value 

Algorithm 5. Reliability calculation pseudocode 

 

Figure 8. Algorithm 5 Finite State Machine (FSM). 

The FSM model presented in figure 8 shows the transitions between the states 
available at this stage for the smart contract: Data validation (S5), Syntax error 
check (S6), Historical data retrieval (S9), Data selection (S10), Total elements 
(S13), Reliability Calculation (S14). 

Consistency and Reliability as measurements used in conjunctions with the 
syntaxis anomaly detection, the anomalies detected affects the values of these 
two metrics. 
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3.1.2 Syntaxis Anomaly Detection 

To give the smart contract the ability to detect syntaxis anomalies, we developed 
a Go and JavaScript algorithm that looks through the data annexed in the current 
transaction data. This algorithm, based on the knowledge given checks is the 
transactions data received correspond with the expected data types for each 
transactional component; if one or several of these components do not 
correspond with the desired data types, the smart contract stores them on the 
ledger as anomalies to be addressed by the networks operators and keep the last 
correct transaction data value as the current data value. 

Inputs:  
PSI: Traceable sensed information 

Outputs:  
for data in PSI  

if Type(data) then 
return “none”; 

else 
badData += 1; 
baddataString = baddataString + data; 

end if 
end for 
return string(baddataString); 

Syntax error detected on the traceable sensed information 

Algorithm 6. Syntaxis anomaly detection 

 

Figure 9. Algorithm 6 Finite State Machine (FSM). 
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Algorithm 6 shows the pseudo-code of the developed syntaxis anomaly detection 
tool. In this case, the smart contract checks if the data can be converted from 
string to the expected data type. If the data cannot be, the algorithm returns the 
data value stored on the ledger as corrupted data to be analyzed later. If the data 
can be converted, the algorithm returns the string none. Figure 9 shows the FSM 
and the transition between states, where Data validation (S5) and Syntax error 
check (S6). 

3.2. Network & Smart Contract Deployment 
Blockchain technology is currently accessible through multiple platforms that 
allow the deployment of applications based on this technology. Next, we will 
review some of these platforms. In this case, we do not include Bitcoin since this 
platform is purely monetary and does not allow the execution of smart contracts. 

Stellar 

It is a platform that facilitates the transfer of value between assets, cryptocurrency 
exchanges, and currencies based on fiat currency (Stellar, n.d.). On this platform, 
it is possible to develop banking tools and wallets for mobile and smart devices. 

Hyperledger Fabric 

It is a platform for creating solutions or applications based on the Blockchain 
using a modular architecture (Hyperledger, n.d.). This allows network developers 
to connect specific components, such as membership or consensus services, to 
the network. Hyperledger Fabric is designed for permissioned networks, allowing 
known identities to participate within a system. Participants within this network 
must be authorized and have the credibility to participate in the Blockchain . 

Hyperledger Sawtooth 

This platform, like Fabric, is modular and enterprise-grade but focuses on 
creating, deploying, and running distributed ledgers (Hyperledger, n.d.). This 
platform uses the PoET (Proof of Elapsed Time) consensus mechanism, which 
allows it to integrate with trusted execution environments. Its most recent version 
includes web assembly smart contracts and Python transaction processors. 

Hyperledger Iroha 

The system is based on a rapid and highly safe consensus algorithm called Yet 
Another Consensus (YAC) (Hyperledger, n.d.)., which protects Iroha networks 
from adversary nodes. The platform is highly applicable to supply chain and IoT 
use cases since it is portable and compatible with macOS and Linux 
environments. However, it is primarily designed for small data and/or specific 
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situations. The platform is currently under development, but it holds great 
potential for the future. 

Corda 

It is a Blockchain platform that allows institutions to transact directly with smart 
contracts. It does not have a built-in cryptocurrency or token and is a permission 
Blockchain platform that only allows authorized participants to access data, not 
the entire network (Corda, n.d.). 

EOS 

Is a Blockchain platform founded by Block.one. It is designed to develop Dapps 
(decentralized applications) (EOS, n.d.). The platform aims to offer decentralized 
application hosting, decentralized enterprise solution storage, and smart contract 
capability, solving the scalability issues of Ethereum and Bitcoin. Also, there is no 
need to pay to reap the benefits of an EOS-based Dapp. It used the POS (Proof 
of Stake) consensus protocol 

Ethereum 

Ethereum is an open-source, Blockchain-based, distributed computing platform 
that is public (permissionless) and built for restricted access versus mass 
consumption (Ethereum, n.d.). It is known for running smart contracts on a 
custom Blockchain. Ethereum Virtual Machine (EVM) provides the runtime 
environment for smart contracts on Ethereum using Proof of Work (POW) as a 
consensus protocol. 

Table 8 shows a summary comparison of the reviewed Blockchain platforms. It 
is considering its consensus protocol, focus, and smart contract support, among 
others.
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Table 8. Blockchain platform comparison 
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After reviewing multiple platforms, we used Hyperledger Fabric to implement our 
proposed solution. Because the network does not necessarily need a consensus 
algorithm, it requires fewer resources. If it is determined that a consensus 
algorithm is necessary, it can be added without affecting the network deployment 
currently underway. A cross-industry approach and not focusing on specific 
applications allows the deployment of multiple applications over a network. 

To deploy our test network, we use the Minifabric tool (Minifabric, 2020); this tool's 
main goal is to help Hyperledger Fabric users to deploy in an easier way test 
network with the desired configurations without the need for the creation of 
multiple configuration files needed. Minifabric can stand up a Fabric network on 
a small machine like a VirtualBox VM but can also deploy Fabric networks across 
multiple production-grade serves, and support Hyperledger Fabric releases 1.4.4 
and up. 

Hyperledger Fabric supports multiple channels and does not require 
cryptocurrency for its operation. It can use Plug and Play consensus models to 
adopt the most efficient consensus model for each use case. The permission 
allows determining who can read or write on the Blockchain; all digital assets are 
stored in a key-value database, allowing easy retrieval of information from the 
network. By default, it uses RATF (RAFT, 2016) consensus protocol 

Additionally, it allows the execution of smart contracts called chain codes; these 
can be implemented in Go, Java, JavaScript, and Node.js. In the same way, it 
will enable the management of Plug and Play identities using managers such as 
LDAP or OpenID. Since all business network participants have known identities 
within an organization, PKI with X509 certificates is used to issue cryptographic 
certificates to organizations, participants, or application users. To deploy the 
Hyperledger Fabric network, the following requirements must be fulfilled: 

 
 Docker 17.03 or higher 
 Docker-compose 1.8 or higher 
 Node.js 8.9 or higher 
 npm 5.x 
 git 2.9.x or higher 
 python 2.7.x or higher 

In our case, we have a laptop PC with an Intel Core i7 processor, 16 Gb of RAM, 
512 Gb of internal storage, and a desktop PC with an Intel Core i7 processor and 
32 Gb of Ram, and 1 Tb of internal storage. We developed a python tool to create 
the network channels and install the selected smart contracts on the channel. 
Follow the step-by-step guide (Minifabric, 2020) docs’ page to add another 
device.  
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Once the Blockchain network is up, the developed module looks up the selected 
smart contract and performs the deployment process. The first step is to install 
the smart contract on the network channel that we choose; the installing method 
comprises the copying of the contract code and dependencies to a folder on the 
Blockchain directory; after that, the code is built; if no error is encountered during 
this stage, the contract will be correctly installed. 

The next step is discovering the installed smart contract. This process tells all the 
peers and organizations connected to the channel where the smart contract was 
established that a new contract had been found. Finally, the smart contract is 
initialized; in this step, the Blockchain network calls the initial function on the 
smart contract to define all the necessary assets for the smart contract execution. 
Although, assets can be created later if there are no initial values or the contract's 
initial conditions have not been agreed upon.  

A set of flags in the deployed smart contracts will assist in the autonomous update 
process. Our test scenarios make use of a set of techniques to generate a 
measurement for data reliability, including penalties and recommendations based 
on the number of anomalies found on the data. Consistency is one of the criteria 
for data reliability; this measurement is based on the correlation between data 
stored on the Blockchain ledger; if the data is consistent, the correlation will be 
high; otherwise, it will be low. As for another reliability measurement, the 
Kivenson method is used (Agmon & Ahituv, 1987). The values are based on a 
scale of 0 to 1, with 1 being the most reliable and 0 being the least reliable. 

To evaluate the feasibility of our base smart contracts and Blockchain network, 
we decided to use Hyperledger Caliper; this is a Blockchain benchmark tool that 
allows us to measure the performance of our Blockchain with a set of predefined 
use cases (Hyperledger Caliper, 2018). Caliper provides a unified Blockchain 
benchmark framework that can be used with multiple Blockchain solutions, not 
only those developed by the Hyperledger Foundation. To install and run Caliper, 
follow the instructions found (Installing and Running Caliper, 2018). 



- 45 - 
 

 

Figure 10. Hyperledger caliper monitoring/orchestration scheme  

Figure 10 show the caliper monitoring and orchestration scheme, the tool 
stablishes a connection with the deployed Blockchain network and begin to send 
transaction to the network while monitors it behavior. Caliper can give us metrics 
about Transaction/read throughput, Transaction/read latency (minimum, 
maximum, average, percentile), and more, depending on the type of network and 
configuration. We will measure throughput and latency metrics based on 
(Treiblmaier, 2019); we decided to focus only on these Blockchain challenges to 
ensure that the proposed smart contract will not threaten the network.  

Caliper throughput metric is the rate at which the Blockchain commits valid 
transactions in the defined time window. Latency metric is defined as a network-
wide view of the amount of time taken for a transaction's effect to be usable 
across the network and the amount of successful and failed transactions. Next, 
the Caliper configuration file is shown. 

test: 
 name: Base-Contract-Test 
 description: Base smart contract benchmark 
 workers: 
   type: local 
   number: 6 
 rounds: 
  - label: readAsset 
   description: read asset benchmark 
   txDuration: 60 
   rateControl:  
     type: fixed-load 
     opts: 
       transactionLoad: 2 
   workload: 
     module: workload/readAsset.js 
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     arguments: 
       assets: 10 
       contractId: BaseSC 
        
  - label: updateAsset 
   description: Update asset benchmark 
   txDuration: 60 
   rateControl:  
     type: fixed-load 
     opts: 
       transactionLoad: 2 
   workload: 
     module: workload/updateAsset.js 
     arguments: 
       assets: 10 
       contractId: BaseSC  

The configuration most important parameters are workers and rounds. Under 
workers options we set the number of Caliper workers or parallel process to be 
active during the test. Under rounds you can configure the different test to be 
made, in this specific case we will be doing a read and an update test with a 60 
seconds duration each, as rate control we use Fixed Load. This controller will 
maintain a defined backlog of transactions within the system by modifying the 
driven transaction per second (TPS). The result is the maximum possible TPS for 
the system while retaining the pending transaction load, as pending transaction 
load the configuration files is at 2, so the system will keep a maximum of 2 
transaction waiting while the current one finish.  

Under workload configuration, we can see the module to be used on each round, 
the number of assets to be created, and the id of the smart contract to be 
evaluated. The first round will assess the read transaction to create make ten 
assets for each worker; after that, the tool will send a read transaction consulting 
the information of the built asset; the transaction could come from any worker.  

Once again, the second round, or the update test, will create ten holdings for 
each worker; after that, the tool will send update transactions. These transactions 
will try to change the information about the asset on the network; in this case, the 
base contract will perform the syntaxis anomaly detection and measurement for 
data reliability using kivenson and correlation reliability. Finally, all created assets 
will be deleted at the end of the process. We can also configure the necessary 
parameters to use other tools to get additional metrics from our network if needed. 
Nevertheless, we could not get the data from the different tools due to 
compatibility issues.  

After the Caliper configuration file, we prepare the network configuration file. This 
file has all the necessary information about the Blockchain network that the 
Caliper tool needs to connect and send transactions on the channel where the 
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smart contract is installed. In this case, we got the test name, Hyperledger Fabric 
major version, 2.0.0. The Blockchain type, the channels used, and the smart 
contract id. Finally, for all the organizations to be used on the test, we will set all 
the parameters needed to send transactions on behalf of one of the members of 
said organization. 

Finally, we create using JavaScript the workload modules for the Caliper tools. 
These files will have the code to generate the read/update transactions on the 
Blockchain network. After all is done, we can run the Caliper tool and evaluate 
our network with the developed smart contracts.  

3.3. Smart Contract with Syntaxis Anomaly 
Detection Test 

Next, we show the results obtained for our smart base contracts. The first test 
was performed using ten as transaction load, six workers and test duration from 
60 to 600 seconds using the base smart contract 1 (BaseSC1). This contract was 
developed for food traceability research. 

 

Figure 11. Food supply chain, based on (Aung & Chang, 2014). 

In Figure 11, a general food supply chain is shown; each block is divided into 
several blocks depending on how many members are involved in the chain. 
Depending on how the process is conducted and how many processes are 
involved, each block may have a long or short internal supply chain. Depending 
on how each member of the supply chain performs their job, the supply chain 
becomes more complex; this could reduce traceability and increase vulnerability 
(Katsikouli et al., 2021). Due to its general approach, BaseSC1 can be used to 
trace any kind of food product in the production block on the food supply chain. 
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Figure 12. Read test BaseSC1 

 

Figure 13. Update test BaseSC1 

Figure 12 shows that the number of successful transactions in the reading stage 
creates the incrassates for the variables associated with the asset. We can see 
a decrease in the number of transactions, but no failed transactions were logged.  

We can also see a drastic drop in the number of successful transactions on the 
network on the update transactions (figure 13) due to the additional processes to 
which each transaction is subjected, in this case, the syntaxis anomaly validation 
and the recommendation processes.  

Failed transactions occur when two or more workers simultaneously try to update 
the same asset. So, the system only lets one of the workers perform the update, 
and the other transactions are rejected. In a typical environment, the probability 
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of this happening will be close to zero because each asset will be assigned to its 
manager at each stage. There will not be multiple users updating the same asset 
information simultaneously. 

We can also see that after 260 seconds of test duration, there was a decrease in 
the transaction rate; this could be due to a server-side problem or the smart 
contracts resource consumption being heavy on the system. However, after 
debugging the smart contracts and performing multiple tests, we determined that 
the system had problems with the deployed tools. After heavy use of the 
Hyperledger Fabric solutions, the performance decreases. 

 

Figure 14. Throughput comparison BaseSC1 

 

Figure 15. Latency comparison BaseSC1 
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Figures 14 and 15 show that throughput and latency differ significantly between 
the two types of transactions performed on the network. We believe that in a 
natural environment, the smart contracts would be executed without any 
inconveniences on the proposed platform owing to the use of multiple channels 
to trace various assets, even though the update transactions require more 
processing time due to the different processes needed to be conducted. On 
average, it would take only 0.4 seconds for the updated information to appear on 
the network for other nodes after updating information. 

Next, we show the results for the base smart contract 2 (BaseSC2); this contract 
was developed for coffee distribution and storage research. 

 

Figure 16. Distribution processes on the coffee supply chain. 

Figure 16 shows how the transportation process begins with the arrival of the 
coffee bags. Following this, the bags are transported to the destination point, 
where they are delivered to the corresponding stage. Thus, our smart contract 
proposal focuses on displacement. To ensure that the coffee is in an appropriate 
condition upon delivery, it must be monitored at this stage. 

 

Figure 17. Storage Processes on the coffee supply chain 
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Figure 17 shows the coffee bags storage processes. It begin by being organized 
by lots and stored until enough are collected. Following classification, cleaning, 
and milling, the coffee is sorted by size, weight, density, and color. These 
classifications will set the coffee bean quality and price. As a final step, it is 
packaged and stored for sale or distribution. 

Considering that; quality of coffee beans are susceptible to variables such as 
bean moisture, temperature, and water activity, these stages are crucial. In the 
best case scenario, 100 kilograms of cherry coffee will yield 13 kilograms of 
commercial coffee. BaseSC2 has a built in function to generate price and 
management recommendations based on expert knowledge and the Colombian 
National Federation of Coffee Growers (FNC by its acronym in Spanish) 
management and price regulations (Federación Nacional de Cafeteros, 2016). 

 

Figure 18. Read test BaseSC2 
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Figure 19. Update test BaseSC2 

As shown in figure 18, the task of reading information about the asset resulted in 
many successful transactions. The test did not result in any failed transactions. 
Nevertheless, we can see in Figure 19 that the number of successful transactions 
decreased dramatically on each run while the number of failed transactions 
increased. As a result, we debugged the smart contract; after that, we confirmed 
that the decreased number of successful transactions and the increased number 
of failed transactions were not caused by bugs in the smart contract. As a result, 
we concluded that the system performed a background task during the tests; 
however, we decided not to repeat the tests since the results were still good 
enough for the smart contract research for which we were aiming. 

 

Figure 20. Throughput comparison BaseSC2 

 

Figure 21. Latency comparison BaseSC2 
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Figures 20 and 21 show the Throughput and Average latency differences while 
sending the read and update transaction to the Blockchain network. While 
sending read transactions, the throughput is high, with an average of 300 
transactions per second. It is fast enough to respond to the environment where 
the smart contract would run. 

However, to update transactions while executing the smart contract, the 
throughput falls to an average of approximately ten transactions per second. In 
this case, considering the update window used on the research sites, the 
transaction rate per second remains sufficient to carry control of the assets. In 
the case of average latency, we can see in Figure 18 that the latency is constant 
(0.02 seconds) for the reading stage. At the same time, in the case of an update, 
this value goes up and remains at an average of 0.85 seconds. Still, good enough 
for research purposes. 

Results at A Smart Contract for Coffee Transport and Storage with Data 
Validation published in the journal IEEE Access, vol. 10, pp. 37857-37869, 2022. 
Also, Blockchain for Supply Chain Traceability with Data Validation was 
presented at the 17th International Conference on Soft Computing Models in 
Industrial and Environmental Applications SOCO’22 and published as part of the 
Lecture Notes in Networks and Systems, vol 531, pp 156–165, 2023. 

Considering the previous results, we decided to perform a test for the developed 
smart contracts. First, a test using simulated information for the BaseSC2 and 
BaseSC1 was evaluated in a real environment. 

3.4. Simulated test BaseSC2 
After testing BaseSC2 using the Caliper tool, we did a simulated test. In this test, 
we simulated coffee control data. All the simulated data was based on expert 
knowledge. This test was performed to evaluate the metrics implemented for data 
reliability. 

To simulate the data sent by various sensors, we use the simstudy library from 
R. We develop an application using R Studio. Subsequently, using the Node-Red 
tool to simulate the sensor package data sending to a Hub that would later send 
this data to the deployed Blockchain network, two-minute time intervals between 
data are defined. This sequence can be seen in Figure 22.  
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Figure 22. Sequence developed in Node-RED. 

Once the simulated data is sent, a python tool developed to detect the arrival of 
these data packages generates the transactions that will be sent to the 
Blockchain network. Figure 23 summarizes the sequence described. 

 

Figure 23. Tests sequence 

The results obtained in this process using our developed smart contracts are the 
following. 
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Figure 24. First test: Simulated Temperature Data 

A simulation of 60 temperature data points from 0 to 4 degrees Celsius is shown 
in Figure 24. Although temperature changes are not drastic in most cases, we 
can see that the consistency (based on correlation) shows that the data does not 
have any. Values close to 1 will indicate that the data has consistency or is 
reliable, while values close to zero or below will indicate the opposite.  

Nevertheless, the response from the metrics gave us a clue that they might be 
suitable for data with a tendency. As for reliability (based on kivenson), in this 
simulation, we include some random transactions with syntax anomalies; these 
errors affect the metric value, so for the 60 data points, the reliability was low, so 
the data has no reliability. 

Considering this, we decided to modify the smart contract to send transactional 
data with a clear tendency and no errors.  
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Figure 25. Second test: Simulated data with a tendency 

As shown in figure 25, the two metrics tend to go up until they reach values close 
to 1. This means that the data is reliable because no syntax anomalies were 
found, and due to the precise data tendency, it has consistency. As a result, we 
decided to keep the metrics but consider their results based on the type of data 
being sensed. For now, the reliability variable seems to be the most useful. 

3.5. Advantages and disadvantages 
• Advantages 

The smart contract can detect syntaxis anomalies in the traced data sent at each 
network transaction with the implemented strategy. It generates two metrics 
related to the anomalies detected. We also doted the smart contract on the use 
cases with the capacity to create recommendations, in this case, based on one 
expert's knowledge but can be extended to use more knowledge to generate 
better recommendations.  

Smart Contracts not only detect syntaxis anomalies but also perform a correction 
step, keeping the last correct value on the traced variable and storing the 
incorrect data alongside all the necessary information so that an operator can see 
the detected problem and take the steps needed to avoid it in the future. 
Traceable partner ratings could be generated based on a combined consistency 
and reliability metric. 

• Disadvantages 

Not all syntaxis anomalies were considered in the implementation due to the 
diverse kinds of data that can be traced. I.E., date data could have other formats, 
and a specific design could be required for some processes. Also, different 
alphanumeric characters or string data structures could be used to name 
traceable variables, but the system might be working with alphabet names only; 
on these cases, syntaxis anomaly detection would be needed, but due to the 
multiple considerations necessary to embrace all possible syntaxis cases only 
numeric syntaxis anomalies were considered. 

3.6. Summary 
This chapter presents the development of our proposed strategy for syntaxis 
anomaly detection, the action of the smart base contract, and the selection of the 
Blockchain solutions to deploy and evaluate our development.  

We introduce the smart base contract with the syntaxis anomaly detection and 
two metrics to evaluate data. After reviewing multiple Blockchain solutions, we 
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decided to use Hyperledger Fabric because there is no need to use tokens to 
perform a transaction, so no mining process is required. Also, Hyperledger Fabric 
has a Plug & Play feature that lets the users add a consensus protocol at any 
time without impacting the network deployment. To evaluate the developed Smart 
Contracts, we use Hyperledger Caliper. 

Next, we deploy and evaluate the developed smart contract using Caliper to 
assess the stress over the Blockchain network, a simulated environment to 
evaluate the proposed data reliability metrics. Subsequently, a short supply chain 
traceability test at two production sites was launched, gathering accurate data 
and assessing the behavior of our smart base contracts and the deployed 
Blockchain network. We were able to determine the network's stability and make 
queries of the stored data on the Blockchain ledger to analyze the collected data 
and some measurements automatically performed by the smart contract related 
to the reliability and consistency of the data. Finally, some advantages and 
disadvantages of our developed syntaxis anomaly detection strategy are 
presented.  
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Chapter 4  

Semantic Anomaly Detection Strategy 
This project's main objective is to develop an autonomous anomaly detection 
Blockchain traceability network using smart contracts. To perform this, we review 
anomalies that may arise in supply chain traceability data, anomaly detection 
methods, and implementations that may benefit our investigation. The semantic 
anomaly detection strategy is discussed in section 4.1. Section 4.2 shows the ML 
algorithm evaluated and the evaluation metrics used to select the best models for 
our test case. Section 4.3 shows the autonomous anomaly detection approaches 
assessed. Section 4.4 shows the test results using the modified version of the 
BaseSC2, adapted for artisan sweets supply chain traceability. This smart 
contract has rules for semantic anomaly detection. Section 4.5 shows the results 
of the autonomous smart contract update for semantic anomaly detections. 
Finally, section 4.6 offers the advantages and disadvantages of the implemented 
strategy. 

4.1. Detection Strategy 
We decided to evaluate two approaches to enable the smart contract to detect 
semantic anomalies. The developed approaches use the Point Anomaly 
Detection - Classification Method with all the data stored on the Blockchain ledger 
to detect an anomaly in the current transaction data. We use Z-Score (Brase & 
Brase, 2016) to generate the initial labels of the semantic anomalies. 

The first approach trains multiple ML algorithms; after that, the data of the 
anomalies are used to generate rules that can detect anomalies without the need 
for ML models. The second approach trains a decision tree model and then 
exports its rules to be utilized later. 
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Figure 26. Semantic Anomaly Detection FSM. 

The general flow process of the semantic anomaly detection is shown in Figure 
26 FSM where Transaction data mining (S0), Model process (S0), Modeling 
classification (S2), Rules generation (S3), Code generation (S4). As mentioned, 
the transaction data is processed with all the data stored on the Blockchain 
ledger. Then a mining process is applied to adjust the data to the model 
specifications; after that, the different models are trained and evaluated to 
generate the rules that can be used to give the smart contract the ability to detect 
the anomalies by itself. 

4.2. Production Site Traceability Test BaseSC1 
For our following test scenario, we deployed a set of 10 IoT Sensors on two 
production sites. The case scenario called Sweet BIoT has three components, 
one focused on IoT sensors and the developed interconnection app, another on 
the deployment of the Blockchain network, and the third component focused on 
the smart contracts that allow traceability processes to be conducted 
autonomously (see Figure 27). 
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Figure 27. Sweets BIoT Components 

 

 

Figure 28. Sweets BIoT Architecture 

Figure 28 shows the architecture of the deployed solution. At each production site 
a set of 5 IoT sensors were deployed, and we use an android device to download 
data and uploaded it to a server to be send to the Blockchain network. 

A lack of appreciation and recognition may lead to the disappearance of the 
artisan sweets tradition in Cauca, Colombia, especially in Popayán. This 
prompted a study to identify the artisan sweet supply chain in the region. In figure 
26, you can see the supply chain levels. 
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Figure 29. Artisan Sweet level 1-3 supply chain. 

Figure 29 shows the three-level supply chain for artisan sweets. In level 1 of the 
supply chain, the producer acquires the raw materials needed to produce the 
sweet and then sells the sweet directly to the final consumer (black-colored 
stages). In level 2, the producer offers his products through retailers (blue-colored 
stage), either his own or third parties. At level 3, sweets are distributed to retailers 
(green-colored stages). 

Based on the framework proposed in (Treiblmaier, 2019), users are the sweet 
artisan producers; they will send data related to the storage of raw materials, 
production processes, the storage of finished products, and their transportation. 
This case involves irreversible data. 

Two devices will be used to create the Blockchain network's peers; each device 
will have one or more peers connected to a channel, depending on the number 
of producers. A certificate authority on the network assigns digital certificates to 
peers as identifiers. A blockchain channel determines a peer's rights based on its 
identity whenever it connects to the channel. Assets can be retrieved over the 
network but cannot be created or updated independently by peers. It is necessary 
for all peers on the network to reach a consensus; once the consensus is 
reached, a new block is created. Transaction fees are not required on the 
deployed network because of the consensus algorithm used. 

To evaluate our proposal in a natural environment, we deploy a set of IoT sensors 
on the production site of “Aplanchados Doña Chepa,” one of the most famous 
producers of Artisan Sweets in the region. Kike's Kitchen was the other well-
known production site selected. In our tracking system, we use 10 Elitegroup 
Computer Systems (ECS) tags (CSCG Tag | ECS Global, n.d.); these tags are 
equipped with ambient light, temperature, humidity, and shock/tilt sensors. 

To download the sensed data from the deployed ECS tags, we develop an 
Android app that connects to each tag to download the data and upload the data 
to a File Transfer Protocol (FTP) server on the machine used to deploy the 
Blockchain network. The ECS tags were configured to record temperature and 
humidity measurements only. Once the information is uploaded to the server, it 
proceeds to conduct transactions on the Blockchain network. To do this, it loads 
into memory each file received and generates a transaction with each line of data 
in these files. When the transaction is sent to the network, the deployed smart 

Raw
Materials

Artisanal
Production

Distribution Retailers Consumer
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contract is executed, and it reviews the data being tried to upload to the network 
and the transaction's validity. Once the transaction is validated with the data, it 
becomes part of a block in the Blockchain network. 

Next, the deployed sensors' description, location, and minimum capacities 
required for using the Android App are related on table 9. 

Table 9. Deployed equipment. 

Description Quantity Location / Minimum software 
requirements 

IoT temperature and 
humidity sensors. 

Models: GWS-CSCG 
Logistic Monitoring Tag 

10 

Doña Chepa: Raw Material Storage, 
Finished Product Storage, Production 
Zone 1, Production Zone 2, Transport. 
Kike's Kitchen: Sales, Refrigerator 1, 
Refrigerator 2, Production Area, Raw 

Material 

Android Mobile Device 1 Must have Android version 9.0 and at 
least 2Gb of RAM. 

Desktop Server 1 Configure as FTP. 

PC 1 To run the developed tools to deploy 
the network and sent data transactions 

Equipment deployed during the production site pilot test. 

Table 9 show the equipment used for the pilot test to evaluate our proposal in a 
natural environment. The tags were located on key locations inside the production 
zones and used for the tracking system; each tag has ambient light, temperature, 
humidity, and shock/tilt sensors. We use a python developed code to 
autonomously send transactions to the Blockchain network only for temperature 
and humidity recollected data on the FTP server using the smart contracts. 

Figure 30 show the structure used to develop our strategy to the autonomous 
update of the smart contract, in order to use one of the most important features 
of the Blockchain network, its decentralization. Each module will have a task to 
perform during all the network execution time as we can see resume on the figure. 
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Figure 30. MAPE-K framework applied to our proposed solution 

The smart contracts have five critical components based on a MAPE-K (Arcaini 
et al., 2015). As mentioned before, MAPE-K framework is ideal to use on a 
Blockchain network since it can be decentralized. We will have a knowledge 
module that will store all the relevant information collected and generated by the 
other four modules. Errors, anomalies, or risks represent the Knowledge module 
that the ECS tags sensed data could show at any transaction. The Knowledge 
module will be each block in terms of the Blockchain network. 

The Monitoring & Analyze module will check each transaction made on the Block-
chain network. These modules will be part of the Smart Contract development 
and will look for anomalies in the data stored in the private storage of the Smart 
Contract and on every new transaction made using the specific Smart Contract. 
The module output will be all the anomalies and threats detected, and as part of 
the Smart Contract, all this information will be stored on the Blockchain network. 
The Monitoring module is represented by the functions that collect all the values 
sent at any transaction on the Blockchain network. After that, the Analyze module 
functions tries to find the previously defined error patterns; if an error is detected, 
update the error entity on the network using the detected error for later analysis 
and the target entity will be is updated using the previous state. The target entity 
is updated using the current transaction value if no error is found. 

The Planning module will create autonomously new Smart Contracts to validate 
the data anomalies based on the anomalies found by the Monitoring & Analyze 
Module. This module will be outside the Blockchain network, but it will consult the 
anomalies directly using the Smart Contract. To do this, the Smart Contract will 
store all the anomalies found at each transaction in the Blockchain blocks. On 
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the other hand, the planning module will also define management 
recommendations, and risk alerts based on the potential risks found. This part of 
the module will be part of the Smart Contract. Finally, the Execution module will 
update the Smart Contract on the Blockchain network with the new one generated 
in the Planning module. 

All the information on the Blockchain is exported to plain text files for the Planning 
and Execution modules, to be used as the latest information in the knowledge 
module and to generate new rules for the detection of anomalies. 

Next, the test results for the adjusted BaseSC1 are presented. This contract was 
adjusted to work with artisan sweets data. The contract can self-check the 
transactional data looking for syntax errors in all cases. Also, it compares the 
newly entered data with the optimal values agreed by members to check if any 
recommendation must be issued. 

As mentioned before our focus is on Throughput and Latency mainly because the 
smart contract must validate the growing amount of data to be stored in the 
network. This proposal does not consider other challenges because it requires 
more development and a broader deployment for assessment. 

 

Figure 31. Kike’s Kitchen humidity sensed data. 

In figure 31, we can see the humidity, consistency, and reliability values during 
the test. The Consistency and Reliability values calculations are made inside the 
smart contracts using the new data available on the recent transactions and the 
previously stored data from the old transactions. These transactions will also 
include the ones made by previous versions of the smart contracts. Humidity 
begins at the initialized value, goes up to current levels, and varies between 75 
and 80%, occasionally reaching this maximum value. Reliability always remains 
at one throughout the test duration. This means that the humidity transactions did 
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not present anomalous values in terms of syntax or values below the limits 
established by the producer.  

Nevertheless, the values that exceed 80% RH could be considered semantic 
anomalies on the data, this type of anomaly will be detected once the new 
versions of the smart contracts with semantic anomaly detection are deployed. In 
the case of consistency, we can see that it varies between 0 and -1, finally 
remaining at a value close to zero; that is, the data does not have consistency. 
As mentioned before, consistency correlates with the data sent to the network. It 
can be seen how the humidity variations affect the consistency measure, which 
presents significant variations throughout the execution time. 

Figure 32 shows the same results for the temperature data. In this case, we 
decided to put a limit at 16 degrees Celsius to evaluate the reliability 
measurement using only the data of the ECS tag located on the final product 
storage unit. So, the temperature data should be between 16 and 25 degrees 
Celsius to be considered a suitable storage temperature; it should be clarified 
that this limit does not represent the reality of the storage temperature of the 
production site, current temperatures at the region would not endanger the 
product.  

In this case, the reliability goes up from zero initially, but after the temperature 
drops below the 16 degrees limit, it rapidly goes to 0. Also, we see that the 
consistency stays close to 1 when the temperature data continuously drop. Still, 
at the beginning, when the temperature data drop and then goes up, and at the 
end, when the temperature starts to go up again, the consistency drops to zero. 
Considering the previous results, we perform the same process using the 
transport tag. The results are shown in Figures 33-35. 

  

Figure 32. Kike’s Kitchen temperature sensed data. 



- 66 - 
 

Figure 33 and 34 shows the humidity and temperature values during the transport 
stage. In this case, the behavior is like the results found during the storage stage 
in consistency and reliability measurement, although the humidity values and 
behavior are different. Also, figure 34 shows that in the case of transport where 
no temperature control has been stipulated, the reliability value stays at 1. The 
consistency ones again go from 0 to 1 once the temperature values start to drop 
and decrease after the temperature increases.  

In these cases, we see that the reliability values depend on the agreed terms 
because no syntax errors were found in the data collected from the sensors. 

 

Figure 33. Doña Chepa transport unit sensed humidity. 

 

Figure 34. Doña Chepa transport unit sensed temperature 
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Figure 35 shows the results for the shock-sensor data, only available for the 
transport tag. In this case, we can see that the sensor detects a shock at the final 
stage of the transport process, going up from 0 to 1. Due to this, the consistency 
measurement stays at zero, and the reliability value remains at one throughout 
the test. For this case, a semantic error will be anything below 0, above 1, or 
between those two. Figure 35 shows that the product shook firmly to activate the 
sensor response. 

 

Figure 35. Doña Chepa sensed shock data at transport unit. 

Results at Smart Contract to Traceability of Food Social Selling to be 
published in the journal CMC-Computers, Materials & Continua ISSN:1546-2226. 

4.3. ML Anomaly Detection Training/Evaluation 
To give the smart contract the ability to detect semantic anomalies, we developed 
on Python a module that ask the ledger for all the data related to a traced good 
and perform a data mining process on the store data. This mining process is 
focused on the detection of outliers in the data stream. 

Using the scikit learn python module (Pedregosa et al., 2011) we build a set of 
functions that transform the stored data from the Blockchain ledger to data that 
can be used in an ML process. During this process, we evaluate several ML 
algorithms, always considering that the selected ones should not consume many 
computational resources even when large data arrays are being processed. 
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A. K-Nearest Neighbors (KNN) 

Since it relies on the estimated distance, typically normalizing the data can 
improve the result accuracy, but it will depend on the processed data (Piryonesi 
& El-Diraby, 2020). KNN for outlier detection uses the distance from the current 
point to its kth nearest neighbor and use it as an outlier score. 

B. Local Outlier Factor (LOF) 

It is an algorithm for finding anomalies by measuring the local deviation of a data 
point according to its neighbors (Breunig et al., 2000). The anomaly score of each 
sample is called the Local Outlier Factor; it depends on how isolated the data 
point is concerning the surrounding, using the locality given by the k-nearest 
neighbors. 

C. Principal Component Analysis (PCA) 

PCA is a linear dimensionality reduction method that uses Singular Value 
Decomposition to project the current data to a lower dimensional space. (Tipping 
& Bishop, 1999). Therefore, a new low dimensional space can have most of the 
data variance, so outlier scores are estimated by the sum of the projected 
distance of a sample on all eigenvectors 

D. Isolation Forest 

By randomly selecting a feature and then randomly selecting a split value 
between its maximum and minimum values, the Isolation Forest isolates 
observations (F. T. Liu et al., 2012). Using a tree structure to represent recursive 
partitioning, the number of splitting required to isolate a sample equals the path 
length from the root node to the terminating node, the path length is a measure 
of normality. 

E. Rotation-based Outlier Detector (ROD) 

Using the Rodrigues rotation formula, rotation-based Outlier Detection (ROD) 
works intuitively in three-dimensional space since it requires no statistical 
distribution assumptions (Almardeny et al., 2020). Three-dimensional vectors 
representing data points are rotated two times counterclockwise around the 
geometric median. By analyzing their volumes as cost functions, the outlying 
scores are calculated using the median absolute deviations of the parallelepiped 
that results from the rotation. By averaging the overall 3D-subspace scores that 
result from decomposing the original data space, the overall score for high 
dimensions (more than 3) is calculated. 
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F. Random Forest  

Each tree in the forest is based on the values of a random independent vector 
and has the same distribution (Breiman, 2001). The response with the most votes 
is usually the one submitted by the forest since each tree produces only one vote 
in response to input X. 

G. AdaBoost 

Adaptive Boosting is an algorithm that fits a classifier on a dataset and then 
replicates it on the same dataset, but adjusts weights based on wrong 
classifications so that subsequent classifiers focus more on difficult cases 
(Freund & Schapire, 1997). AdaBoost is adaptive in the sense that subsequent 
weak learners are tweaked in favor of those instances misclassified. 

H. Bagging 

An assembly technique known as bootstrapping or bagging implies that each 
model trained in the assembly is given the same weight when trying to solve a 
classification or regression problem. In contrast to stacking, which allows the use 
of diverse types of algorithms, Bagging uses multiple versions of the same 
algorithm (Breiman, 1996). For regression, it returns the average value of the 
prediction for each version of the regressor, whereas, for classification, it is 
decided by a vote. 

I. Decision Tree (DT) 

Is a non-parametric supervised learning method used for classification and 
regression task (Alpaydin, 2010). A key feature of DT is that they represent rules, 
which are easy to understand and can be applied to languages such as SQL to 
access and classify databases. 

To evaluate the ML algorithm, we use the following metrics: 

Accuracy: This is the fraction of predictions our model got right. Defined as 
follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑁𝑁𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴 𝑜𝑜𝑜𝑜 𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝑁𝑁𝐴𝐴𝑡𝑡 𝑝𝑝𝐴𝐴𝑁𝑁𝑝𝑝𝑜𝑜𝐴𝐴𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑠𝑠
𝑇𝑇𝑜𝑜𝑡𝑡𝐴𝐴𝑝𝑝 𝑖𝑖𝑜𝑜𝑁𝑁𝑁𝑁𝑁𝑁𝐴𝐴 𝑜𝑜𝑜𝑜 𝑝𝑝𝐴𝐴𝑁𝑁𝑝𝑝𝑖𝑖𝐴𝐴𝑡𝑡𝑖𝑖𝑜𝑜𝑖𝑖𝑠𝑠

 

Equation 5. Accuracy definition 

Also, for binary classification problems: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝑜𝑜𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑁𝑁
 

Equation 6. Accuracy definition for binary problems 

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN 
= False Negatives. 

Recall: This metric measures the proportion of actual positives correctly 
classified and defined as follows. 

𝑅𝑅𝑁𝑁𝐴𝐴𝐴𝐴𝑝𝑝𝑝𝑝 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
 

Equation 7. Recall definition 

Precision: This is a metric that measures the proportion of identification that was 
correct. It is defined as follows. 

𝑇𝑇𝐴𝐴𝑁𝑁𝐴𝐴𝑖𝑖𝑠𝑠𝑖𝑖𝑜𝑜𝑖𝑖 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
 

Equation 8. Precision definition 

4.4. Autonomous Anomaly Detection 
Finally, after selecting the best algorithm, we try two rules generation methods, 
one based on the classification made by multiple ML algorithms and the other 
translating the decision rules generated by the decision tree algorithm to Go and 
JavaScript. Next, we show to talk about these two methods.  

Both versions use the standard score to label anomalies if needed. Z-Scores are 
standard deviations by which the value of data points differs from the mean value 
of what is being observed. 
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Figure 36. Autonomous semantic anomaly detection approximations. 

Figure 36 show the two proposed approximations to obtain rules from the trained 
machine learning models; one using multiple trained models and the second one 
using a RF or a DT model. Each approximation has different methods, but the 
main goal is to obtain rules that can be expressed in Golang or JavaScript code. 

A. Multi-Algorithm rules generation approach 

To generate rules using the multi-algorithm approach, we constructed a set of 
rules based on the instances classified as anomalies by the trained models with 
the best overall response. Using the function to acquire statistics values from all 
the cases, this module creates conditionals rules to separate anomalies from 
average data points.  

Nevertheless, this approach was discarded after reviewing the classification 
results of the algorithms. Some rules that could be generated after checking the 
result of one algorithm were contrary to the rules that could be developed with 
the results of another of the trained models. 

In December 2021 golearn package was published, this package tries to bring 
machine learning into the Go language, but it is still on v0.0. On the other hand, 
JavaScript has an interesting library to use TensorFlow models. Still, it supports 
web browsers and Node.js execution, so it cannot be called directly on the smart 
contract. Ml5js is another machine-learning library for JavaScript developed for 
web browser usage. Considering this and because the supported languages on 
Hyperledger Fabric, Go, and JavaScript does not have a library for ML model 
generation and execution supported by the Hyperledger Fabric environment, we 
decided to evaluate a second approach using Random Forest and Decision Tree. 
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B. Random Forest / Decision Tree rules translation approach 

In this approach we use the readability feature of decision trees to translate the 
tree rules into code rules. To do this, we write a python function that receives a 
previously trained model from memory or trains a new decision tree if needed. 
After that, the function exports the tree rules to a pseudo-code like the one used 
in both versions of the deployed smart contracts. 

Once we got the pseudo code, we converted it to Go and JavaScript code. Finally, 
using previously defined flags on the smart base contracts, the tools know where 
to place the new code that will give the smart contract the ability to detect 
anomalies. With this, the smart contract can autonomously update. 

To begin with the autonomous update, a predefined number of transactions must 
be made on the Blockchain network to ensure enough data to perform the 
anomaly detection training. So, this tool periodically sends transactions to the 
network consulting the current number of traceability transactions made. When 
the traceability transactions reach the predefined number, the agency sent a 
transaction asking for the historical data on the Blockchain ledger. Once the 
information is downloaded, the module starts its execution, and the smart contract 
update process begins.  

4.5. Anomaly Detection Update Test 
Using the acquired data from the production sites, we decided to train multiple 
ML models to be used as input in the anomaly detection test. But as we 
mentioned before, some rules generated by analyzing the results of said models 
were some rules generated using a model were contrary to another set of rules 
developed using another model. Nevertheless, we decided to show the complete 
results of this process and the final implementation for the autonomous update of 
the deployed smart contract. 
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Figure 37. Interaction with the Blockchain network. 

Figure 37 show the interaction with the network, we got our tags on the 
productions site measuring the selected variables, all the data is stored on the 
FTP server and the blockchain ledger and using another pc connected to the 
network we check the data to perform the semantic anomaly detection test with 
the ML algorithms mentioned above, we perform a short data mining process to 
adapt the data stored on the Blockchain ledger based on the characteristics of 
the tested algorithms.  

The developed tool is programmed to send a transaction requesting the historical 
information of the traced asset(s); the Blockchain network response will be a 
message with all the available information. Once the information is downloaded 
to a plain text file, the tool loads that file and processes the data to generate a 
dataset that will be stored on a CSV file. Due to the low amount of information 
stored, we use the date and hour as input variables; the tool generates the 
dataset with the current independent attributes: Temperature, Humidity, Year, 
Month, Day, Hour, Minutes, and SensorId.  

As a dependent attribute, the tool creates a new binary variable called Outlier, 
which will label all instances that can be considered semantic anomalies in the 
downloaded data. The dependent attribute Outlier is created using the Z-Score 
value, any data point with a score of 3 and above will be considered an outlier 
and labeled as 1, and any other case will be labeled as 0. 

 

 



- 74 - 
 

Table 10. Dataset example 

Temperature Humidity Year Month Day Hour Minutes SensorId Outlier 
26.500 88.120 2021 12 14 19 34 6 0 
25.170 77.710 2022 1 26 5 45 89 0 
24.250 83.270 2021 12 14 19 44 6 0 
27.570 70.620 2022 1 26 8 37 89 1 
24.250 83.270 2021 12 14 19 44 18 0 

Example of the constructed dataset instances. 

Table 10 show example instances of the constructed dataset using temperature, 
humidity and date data. Once the dataset is completed, we trained all the ML 
models using the default parameters and evaluate them to select the best models 
to generate the rules. 

Table 11. ML models Evaluation 

Model Accuracy Recall Precision 
K-Nearest Neighbors 0.95 0.52 0.51 
Local Outlier Factor 0.92 0.17 0.16 

Local Outlier Factor 2 0.95 0.04 0.60 
Principal Component Analysis 0.98 0.77 0.75 

Isolation Forest 0.61 0.97 0.10 
Isolation Forest 2 0.95 0.52 0.50 

Rotation-based Outlier Detector 0.92 0.15 0.15 
Random Forest 0.99 0.99 0.99 

AdaBoost 0.99 0.95 0.98 
Bagging 0.99 0.91 0.88 

Decision Tree 0.99 0.99 0.99 

Example of the constructed dataset instances.  

Table 11 shows the evaluation metrics results for the selected models. Most of 
the models chosen have high accuracy but fail on recall and precision values; a 
good model must have a high value on these three values to ensure that its 
response will be accurate in most cases.  

Local Outlier Factor 2 and Isolation Forest 2 are implementations of these 
algorithms PyOD an outlier detection specialized module for Python. We decide 
to test these two algorithms implementations given the different parameter 
configuration offered hoping to get better results. Nevertheless, according to the 
evaluation metrics, the best models are Random Forest and Decision Trees.  

Table 12 shows the training and classification time for the best ML-trained models 
based on this result.  
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Table 12. Selected ML Training/Classification time 

Model Training 
time (s) 

Classification 
time (s) 

PCA 2.2 2.4 
Random Forest 33.2 4.4 

AdaBoost 65.2 14.8 
Bagging 4.9 2.8 

Decision Tree 3.5 2.2 

Training and classification time measurements. 

Table 12 shows that the training time using 70% of the total data collected on the 
production sites (700k instances approx.) will not take too much time, although 
this will depend on the traceability process; for our specific case, it will be fast 
enough. The classification time is measured using 30% of the total data (around 
300k instances approx.). 

We initially wanted to use all the selected models to generate the rules for the 
smart contract, but some rules were not clear enough to cause them 
automatically. Depending on the model, an anomaly could be over or under a 
specific value in temperature or humidity, but another model may produce a rule 
that contradicts this. Based on this finding, we convert Random Forest trees and 
Decision Tree "trees" to Go and JavaScript code for use in smart contracts. Since 
the smart contract must be auditable, only the Decision Tree was used in this test 
because the semantic anomaly detection using the Random Forest rules would 
be too extensive due to its 100 trees in the default configuration. Nevertheless, 
the development is complete and can be used at any moment before the tool's 
deployment. The semantic anomalies dataset construction tool can be found on 
the annexes, the rules generation tool, and all the development for this project. 

We decided to deploy and send transactions on the Blockchain network using the 
production site sensed data to evaluate the autonomous smart contract update 
process. After a predefined number of transactions, the tool will generate the first 
smart contract update, we will use the number of successful transactions, and the 
number of semantic anomalies detected as indicators for this test. 

To run the test, the following configuration files must be edited: 

- Details: 
  transactionNumber: 200 
  KeepUp: "keepup" 
  SmartContract: "Sweets" 
  SCFolder: "D:\\HyperLedger\\Go\\ChainCodes" 
  SmartContractGO: "go\\main.go" 
  SmartContractJS: "js\\lib\\smartSweets.js" 
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  Version: 1.0 
  FTPdir: "93.XXX.XXX.110" 
  FTPName: "XXXXX" 
  FTPPass: "XXXXX" 

The parameter transactionNumber sets the number of successful transactions 
needed to start the autonomous smart contract update process. The KeepUp 
parameter sets the tool behavior when the test ends, “Keepup” to keep the 
Blockchain network running; any other values will shut down the network and 
delete all files. SmartContract option tells the tool the name of the smart contract 
to be installed once the network is deployed. SCFolder is the path where the 
chain code is to be installed in the store, SmartContractGO and 
SmartContractJS are the relative paths to the files that must be modified to 
update the smart contract autonomously. The Version option sets the initial 
version of the smart contract to be deployed. Finally, FTPdir, FTPName, and 
FTPPass are the necessary credentials to connect to the FTP server to access 
the sensed data. 

Once the configuration file has been edited, the test can run on a command 
console python main.py. The tool will deploy the network if it is not up and install 
the smart contract. After the number of successful transactions is reached it will 
generate a set of files to analyze the simulation results up to that point. Next, we 
will show the results obtained for 20 iterations of the transactionNumber. 

Table 13. Simulation results 

Number of 
transactions 

Confirmed 
Anomalies 

Detected 
Anomalies 

Accuracy 
(%) 

Smart 
Contract 
Version 

100 4 0 0 1.0 
200 11 11 100 2.0 
300 18 18 100 3.0 
400 22 22 100 4.0 
500 25 25 100 5.0 
600 28 27 96 6.0 
700 31 30 97 7.0 
800 37 36 97 8.0 
900 43 42 98 9.0 
1000 47 43 91 10.0 
1100 55 51 93 11.0 
1200 62 58 94 12.0 
1300 65 61 94 13.0 
1400 74 72 97 14.0 
1500 82 77 94 15.0 
1600 86 83 97 16.0 
1700 93 90 97 17.0 
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1800 98 93 95 18.0 
1900 101 96 96 19.0 
2000 106 101 96 20.0 

Results obtained after performing 2000 transactions on the network 

The semantic anomalies detected by the smart contract with each autonomous 
update are shown in Table 13. After the update process, the smart contract could 
see most anomalies in the next batch of data. Even though the previous test 
indicates that the Decision Tree has a 0.99 accuracy, those results were obtained 
using all the data collected at the production sites. In this case, however, the tool 
only uses the data stored in the Blockchain ledger, so anomaly detection could 
improve with each iteration if no new anomaly types are sent. Still, even so, the 
accuracy of the smart contract when detecting anomalies with each data batch is 
high. Also, with each iteration, the number of rules used to detect anomalies will 
increase, making the semantic anomaly function more robust and trustworthy. 
The mean accuracy considering the smart base contract, is 92%. Still, 
considering only after the V2.0 or the first anomaly detection capable smart 
contract, the accuracy is 96%, which is an excellent accuracy level. 

Data collection and dataset generation using the 10 sensors took up to 45 
minutes during this test, while rules generation and smart contract update 
transactions took around 1 second. We limit the data collection from the 
Blockchain ledger to only those relevant for dataset generation and anomaly 
detection confirmation, which reduces the time to a mean of 20 minutes per 
iteration. It does not mean that the node running the update tool will not send 
more transactions during this period or that the blockchain ledger will be paused 
until the smart contract update transaction begins. Nevertheless, an improved 
version of the smart contract could potentially reduce the data collection time for 
each variable. 

Considering the above, an online training model could better replace the original 
Decision Tree model. To do so, the system will have to execute a historical data 
request transaction for training the model and an update transaction for updating 
the smart contract for each traced data transaction. As a result of such a process, 
the network will be overloaded, and the nodes will be able to make fewer 
transactions. 

The autonomous smart contract update results show that our approach is valid 
and can be used in real environments. Although some detected anomalies after 
the update of the smart contract could be average data points after a change or 
update in the traceability process, and an updated version of the same contract 
will stop detecting those data as anomalies, it will be essential to define the 
optimal transaction limit to autonomously update the smart contract by performing 
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a comprehensive study of the traceability process to apply the developed 
strategy. 

4.6. Modified BaseSC1 (MBSC1) Test 
To perform this test, we started with the BaseSC1 and adapted it for semantic 
anomaly detection. We hope to find semantic anomalies naturally using real 
production sensed data and perform the best possible test for our development.  

First, we compare BaseSC1 syntaxis anomaly detection only with MBSC1, with 
syntaxis and semantic anomaly detection using six workers, 10 and 20, as 
transaction loads with a fixed load driver and test duration of 60 to 600 seconds. 

Hyperledger Caliper MBSC1 

Figure 39 and 39 show the results of the reading test on both smart contracts 
versions. The results are similar because the asset creation and consult parts are 
the same. Other tasks running in the background on the host OS can cause slight 
differences. 

 

Figure 38. Read results without the semantic anomaly detection. 
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Figure 39. Read results with the semantic anomaly detection. 

Figure 40 and 41 show the results for the update test on this case with the 
syntaxis anomaly detection only and the next one with the syntaxis and semantic 
anomaly detection. As we can see, the results are similar to what we expected 
based on the previous Caliper results; there is an increase in the number of failed 
transactions over time in both cases, but the results are similar, so the addition 
of the semantic detection function does not seem to impact the Blockchain 
network negatively. 

 

Figure 40. Update results without the semantic anomaly detection. 
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Figure 41. Update results with the semantic anomaly detection. 

There is a clear difference between 10 and 20 as transaction loads in this case. 
During the reading test, the results were close between the two metrics. However, 
due to anomaly detection procedures, the transaction process took a little longer. 
Hence, the driver reduced the number of transactions to maintain the selected 
transaction load on the Blockchain network. However, the behavior of both tests 
using the smart contract with and without the semantic anomaly detection 
function is remarkably similar, strengthening the conclusion that this function 
does not negatively impact the network. 

Figures 42- 45 show the latency and throughput results for both smart contract 
versions. The results confirm what we see on the Read and Update test results. 
The read-throughput average for both cases is around 350 TPS with an average 
latency of 0.01 seconds. The updated throughput average in both cases is around 
18 TPS with an average latency of 0.8 seconds. Although there is a significant 
difference in the average values in both cases is enough for the proposed 
traceability task.  
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Figure 42. Latency results without the semantic anomaly detection. 

 

 

Figure 43. Latency results with the semantic anomaly detection. 

It is evident from the latency and throughput results that they have a similar 
pattern throughout all tests, increasing over time. This illustrates the fact that the 
amount of stored data will consistently put more work into the semantic anomaly 
detection functions, the reliability estimation functions, and the recommendation 
functions built into the contract. Given that for most of this process, the smart 
contract must consult all the past data of variables. The contract must include 
limitations on how far back to check for semantic anomaly detection updates, 
management and price recommendations, and reliability measurements in order 
to ensure an accurate estimation of these functions, and that the load on the 
Blockchain network will remain optimal after a long operation period. 
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Figure 44. Throughput results without the semantic anomaly detection. 

 

Figure 45. Throughput results with the semantic anomaly detection.  

These values were obtained in a simulated environment; in a real environment, 
traced assets will oversee diverse Blockchain workers, so the number of failed 
transactions will be expected to be lower or close to zero. Due to the possibility 
of mistakes being made in the transactions sent to the network, we do not expect 
any failed transactions. Finally, we can conclude that using the anomaly detection 
function will not put the Blockchain network at risk and the proposed strategy's 
feasibility to detect anomalies in transactional data. Although, it may affect the 
latency and throughput during long executions periods. 
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4.7. Advantages and disadvantages 

• Advantages 

With the strategy, the smart contract will be able to keep up with new anomalies 
that may arise in the data stream in the future. In traceable processes, this is 
important due to the ever-changing environment and relationships between 
supply chain members.  

Also, the data gain a new level of trust, not only for being stored on the Blockchain 
ledger but also because the smart contract validates the data for each 
transaction. Supply chain members can consult all the information marked as 
anomalies at any time and adjust their processes to prevent these problems from 
occurring in the future. 

This information could also qualify supply chain members based on the number 
of anomalies in their data stream stored on the ledger. Finally, with the 
development of new methods, smart contracts could propose the proper handling 
for a traced product based on expert knowledge and the anomaly detection 
strategy offered. 

• Disadvantages 

As anomaly detection requires a minimum set of successful transactions, if the 
transaction data is filled with anomalies from the start, it will be classified as 
standard data. ML algorithms will require more computational resources as the 
number of stored information increases, resulting in longer training times. To 
update and deploy smart contracts autonomously and detect semantic 
anomalies, Python tools must continuously run on all nodes with permission to 
deploy smart contracts on the Blockchain network. 

As training and rules generation will take place outside the Blockchain network, 
security measures will be needed to ensure that the smart contract update was 
not tampered with. 

4.8. Summary 

This chapter presents the test of our developed strategy for semantic anomaly 
detection from the developed smart contract to the system deployment with real 
data from two artisan sweets production sites. We use the Hyperledger Caliper 
tool for performance tests. 

Subsequently, we evaluated the semantic anomaly development and the 
autonomous semantic anomaly detection rules update using the short supply 
chain traceability data. We assess multiple ML models and select decision trees 
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and random forest models to develop a module that translates these models' 
generated rules to Go and JavaScript programming languages. 

Finally, we run the final test of our developed strategy using the collected data at 
the production sites. This part focuses solely on semantic anomaly detection and 
autonomous, innovative contract update process. The results show that our 
strategy works correctly, although some improvements can be made based on 
the results.   
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Chapter 5  

Conclusions and Future Work 
This chapter presents the conclusions from this doctoral research project, 
followed by recommendations, and proposes a future work plan to improve or 
expand this study. 

5.1. Conclusions 
Next, the main conclusions obtained with the development of this anomaly’s 
detection strategy are presented. 

• We manage to develop a strategy to give a smart contract the ability to 
detect syntaxis and semantics anomalies in the data of Blockchain 
transactions in a traceability scheme. This strategy can translate Random 
Forest and Decision Tree rules into Go and JavaScript code for smart 
contracts supported by Hyperledger Fabric. This strategy proves helpful in 
traceability schemes in supply chains where most of the traced data is 
generated autonomously. Some data points might be corrupted during 
transmission from the sensors to the database or during manual data 
conversion processes. 
 

• Although the strategy shows good behavior during the test, more real 
environment deployment will be required to complete the adjustment that 
is not necessary for a research field. A Blockchain network with more 
nodes connected and sending transactions will be an ideal environment to 
do the closest “real world” test scenario. It will help to define configurations 
related to which nodes will be performing the smart contract updates 
process and when will be the best time to perform such updates in terms 
of network usage and Blockchain ledger size. 
 

• We found that, although some libraries use ML algorithms with the 
selected programming languages to develop the smart contract, they are 
still limited to some environments or in an early development stage. 
Nevertheless, currently, there are community efforts to bring this type of 
solution to these languages due to its applicability not only to Blockchain 
technology. 
 

• With our Blockchain network deployment, we found that giving the smart 
contract the ability to detect syntaxis and semantic anomaly detection 
does not negatively impact the network behavior and that throughput and 
latency are good enough for most traceability processes. However, more 
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measurements like the ones presented by (Treiblmaier, 2019) will be 
needed to determine if this approach is helpful for most Blockchain 
network configurations or applicable to other Blockchain solutions. 
 

• The data sent on each transaction to the Blockchain network can be 
trusted if these anomaly detection methods are implemented in data 
centers or similar. Still, the use of IoT sensors, particularly ones that can 
commit blockchain transactions, is expected to increase in the coming 
days. It is unlikely that devices connected directly to the Blockchain 
network will be able to perform anomaly detection, so smart contracts will 
come in handy to detect anomalies in the not-too-distant future. 
 

• We aimed to determine if data validations can be made using smart 
contracts; having this in mind, we decided to implement syntaxis and 
semantic error validations in the sensed data and two variables related 
reliability; consistency and kivenson reliability, allowing us to get some 
metrics that enable us to decide whether the information in the network is 
reliable. However, more metrics and tests are needed.  
 

• We were able to observe the behavior of the Blockchain network by stress 
testing and a pilot assembly of two production sites. This allowed us to 
determine that using the implemented smart contracts functions does not 
represent a significant load on the network, and traceability activities can 
be conducted without saturating the network 
 

• Finally, as we saw, supply chain traceability processes can encounter 
multiple types of anomalies. We are focusing solely on numeric syntaxis 
and semantic anomalies in this doctoral dissertation, so there is still more 
work to do to create smart contracts for traceability purposes, which can 
be used to validate data in real time and inform supply chain members of 
anomalies detected and viable solutions. 

5.2. Future Work 
This study's main objective was to develop an autonomous anomaly detection on 
a Blockchain traceability network transaction through smart contracts. The 
primary approach was to create a strategy to update deployed smart contracts 
based on rules generated by a Decision Tree ML algorithm and a tool to deploy 
the autonomously modified version of the smart contract. 

Considering the above, and to improve and/or complement the developments, 
the following future works are proposed: 
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• To develop or apply a security framework to ensure that the autonomous 
smart contract deployment tool will be secure and unmodified in all nodes 
where it will be deployed. This will help to keep a safe environment like the 
one on the Blockchain network and give more trust to the developed tools. 
 

• Implement the proposed strategy utilizing Blockchain solutions such as 
Hyperledger Sawtooth, which includes a smart contract or transaction 
processor. The developers have named it that can be written in Python. 
Smart contracts could now run multiple data mining processes to improve 
data validation, but the network usage and stress will need to be 
evaluated. 
 

• Improve the rules generation process by using other rules-based ML 
models and more databases to see if problems that do not arise in this 
research will affect the rule generation, like categorical data. 
 

• Improve the anomaly detection function by allowing the smart contract to 
reprocess past data to detect anomalies not considered by the previous 
version of the semantic anomaly detection function. Nevertheless, a 
network load test will be needed, depending on the type of supply chain 
traceability. 
 

• To evaluate the current development in a wide Blockchain deployment to 
gather measurements that allow the validation of the proposed solutions 
in a more robust environment to find security risks that may not arise in a 
controlled environment. 
 

• To evaluate is Complex Event Processing (CEP) will be adequate to 
generate rules valid during the cold start of the anomaly detection tool. 
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