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Chapter 1

Preliminaries

1.1 Introduction

In neurodegenerative diseases (NDD), e.g., Parkinson’s disease (PD), Huntington’s disease
(HD) and Amyotrophic Lateral Sclerosis (ALS), the dysfunction or death of nerve cells
lead to the progressive deterioration of the nervous system. PD is related to the abnormal
activity of dopamine-producing neurons, which affects the basal ganglia [6]. PD affects
between one and two people in every 1,000 [7] with symptoms including irregular gait
pace, rhythmic tremors at rest, and slow handwriting, walking, and blinking [6, 8]. HD,
which affects 2.71 in every 100, 000 [9], is caused by the loss of nerve cells in the subcorti-
cal ganglia [10], resulting in muscle aches, learning difficulties, and feelings of irritability,
sadness, apathy [11]. ALS affects five in 100, 000 individuals and results from damage to
the motor neurons of the cerebral cortex, the brain stem, and the spinal cord [12]. Among
its manifestations are gradual muscular atrophy, mobility difficulties, and cognitive im-
pairment. Although these diseases affect different areas of the brain, the similarity in
symptoms makes the diagnosis of PD, HD, and ALS problematic. Consequently, symp-
toms associated with PD may appear in advanced stages of both HD and ALS [13], [10],
leading to 25% of misdiagnosis in people with HD or ALS [14].

The traditional diagnosis of neurodegenerative diseases involves the use of question-
naires and biomarkers. The downside of questionnaires, such as the Modified Parkinson
Activity Scale [15], Unified Huntington’s disease rating scale [16], Amyotrophic Lateral
Sclerosis Functional Rating Scale [17] is their dependence on the expertise of the person
applying the test [18, 19]. The use of biomarkers involves blood and genetic tests, func-
tional neuroimaging, and biopsies of nerves and muscles [20, 21, 22], which are invasive
and expensive and may involve long waits for results. In addition, the effectiveness of the
approach remains a topic of study [23, 24, 25].

To overcome these issues, different alternatives have been proposed in the last few
decades based on the predominant role of the brain regions affected by ALS, HD, and PD
on the human gait [20, 26, 21, 22]. These approaches are based on the analysis of time
series describing gait variables such as stride time, step length, and walking speed [27, 28].
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2 CHAPTER 1. PRELIMINARIES

Example of such techniques include those of [29, 30], who show that stride time variability
significantly differs between groups with different neurodegenerative diseases. Other ex-
amples from [31, 32, 33] use trunk accelerations, arm movement asymmetry, and VGRFs,
respectively, instead of stride time. The results reported by [34, 30, 31, 32, 33] should
be understood not as a proposal for the diagnosis of neurodegenerative diseases but as a
contribution to clarify the effect of these diseases on the human locomotor system.

The diagnosis of neurodegenerative diseases using pattern classification algorithms has
been a major research topic in recent years. Such algorithms are commonly based on
artificial neural networks, vector support machines, and Bayesian classifiers, among oth-
ers. The following works focus on binary classifications that occur between healthy and
pathological gait [35], between CG and PD [36, 37, 38, 39, 40, 41], or between CG and
ALS groups [42]. Other approaches, such as [43, 44, 45, 46, 47, 48, 49], make multiple
binary comparisons (CG versus PD, CG versus HD, and CG versus ALS). [50] proposed a
signal processing approach named shifted one-dimensional local binary patterns to extract
gait features and then train a multilayer perceptron and a random forest. These classifiers
were used to differentiate between participants belonging to the CG and to PD groups.
[51] trained four adaptive neuro fuzzy inference systems to perform binary classifications
between CG and ALS, CG and HD, CG and PD, and normal and abnormal gait. [52]
applies a radial basis function neural network to conduct the same binary classifications
as [51]. [53] employ the gait features given by a recurrence quantification analysis to
train six binary classifiers for the following pairs of classes: (CG, ALS), (CG, HD), (CG,
PD), (ALS, HD), (ALS, PD), and (HD, PD). [54] trained the same six classifiers as [53]
but using statistical and entropic features as inputs to a support vector machine and a
multilayer feedforward neural network. [55] also use recurrence quantification analysis,
but unlike [53], these features are used to differentiate between CG and PD groups rather
than classifying subjects. [56], as [55], does not train classifiers but posits that long-range
dependence, chaos, and information content in gait records are significantly different be-
tween healthy young, healthy older adults, and PD. In a clinical context, the previous
binary classifiers are of little use since their output is uncertain when the evaluated indi-
vidual falls outside the two categories for which the classifier was trained. For example, if
a vector support machine learns to differentiate between CG and PD, it is not possible to
know in advance how someone with HD or ALS will be classified.

A notable exception to the predominance of binary classifiers is the work of [5], who
proposed a multilevel classification approach comprising a master classifier whose output
is CG or NDD. When the output of this classifier is NDD, the gait features are simul-
taneously processed by three binary subclassifiers: ALS versus PD, ALS versus HD, and
HD versus PD. The final class is defined by the voting algorithm described in [57]. The
main inconvenient of a pipeline of classifiers is that the overall accuracy is the product of
accuracies of each step. Hence, the accuracy of a sequence of two classifiers with 90% of
accuracy each is only 81%.

Given these limitations, this study focuses on the differential diagnosis using a RF
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and a CT with decision rules based on the transition times of a timed Petri net [58,
59, 60] model of human gait. The latter is used to represent systems whose evolution is
defined by deterministic or stochastic transition times. These allow the representation of
systems composed of sequential and parallel events, whose evolution is defined exclusively
in function of transition times that can be either deterministic or stochastic. In From
the above, the research question arises: What should be the constituent components of a
method of diagnosis of the neurodegenerative diseases PD, HD and ALS, based on timed
Petri nets that model the human gait?

1.2 Objectives

1.2.1 Main objective

To propose a differential diagnosis method for the neurodegenerative diseases Parkinson’s
Disease (PD), Huntington’s Disease (HD) and Amyotrophic Lateral Sclerosis (ALS), based
on a timed Petri net model of human gait.

1.2.2 Specific objectives

• To identify a timed Petri net model of the duration of the balancing period and of the
subphases that compose the support period of the human gait cycle of four groups of
people (Control Group (CG), PD, HD and ALS), from a database of reaction forces
between the foot and the ground.

• To contrast both the language generated and the statistical moments of the transition
times of each of the four identified timed Petri nets, with a view to establishing
whether there are significant differences between these parameters.

• To assess the accuracy, sensitivity, and specificity of a classifier based on the agree-
ment between the probability density functions of the transition times of an indi-
vidual’s gait model and that of the four groups under study (CG, PD, HD and
ALS).

1.3 Structure of the document

This dissertation is organised as follows: Chapter 1 develops the introduction, context,
research problem and research question, in addition, presents the objectives for the research
development; Chapter 2 presents the literature review and the background for this study;
Chapter 3 presents the database and develops the data preprocessing, the method for
event generation, Petri net modelling and statistical procedures; Chapter 4 presents the
results and Chapter 5 presents the discussion and future studies.
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Chapter 2

State of the Art and Background

2.1 State of the Art

This state of the art comprises four sections. First, studies aimed to characterise gait
parameters as indicators of the presence of a NDD. The second section describes binary
classifiers aimed at determining whether an individual has certain NDD. The third section
presents the works that address the duration of the gait phases as a NDD diagnosis marker.
The fourth section presents the research gaps detected.

2.1.1 Characteristic parameters of groups with neurodegenera-
tive diseases

In [29] and [30] it was determined that the correlation function between elements of the
time series obtained from the variability of the stride time varies significantly between
groups with different neurodegenerative diseases [29]. In [31] was observed that people
with sleep behavior disorder during the phase of rapid movement of the eyes, a condition
that in 50 % of cases precedes PD, presented a greater variability in accelerations of the
trunk in comparison with the subjects of the control group. In [32], it was observed that
those with PD had greater asymmetry in arm movement and greater variability in stride
time. In [27], it was observed that the duration of the single support, double support and
swing periods are different among groups of people with PD, HD and ALS. [56] reported
differences of gait due to age and pathology by measuring complexity parameters such as
self-similarity, chaos, and randomness in the comparisons CG vs PD subjects, and healthy
elderly subjects vs. PD. In addition, since these indicators are employed to identify non-
linear patterns in human gait stride time series, said patterns proved statistical difference
in the same set of comparisons. A balance and gait assessment was carried out in [28], from
which it was concluded that patients diagnosed with PD, compared to control subjects,
showed a significant reduction in gait speed and step length. In [33] a measure of the
amount of information contained in a signal, called Multi-Scale Entropy (MSE) , was
applied to the reaction forces between the foot and the ground, and it was deduced that
the MSE was different between the groups with PD, HD and ALS.

5



6 CHAPTER 2. STATE OF THE ART AND BACKGROUND

2.1.2 Binary diagnosis of neurodegenerative diseases

In [35], joint positions, stride length and gait speed are estimated. Subsequently, these
variables are used to train different variants of the K-nearest Neighbors Algorithm (kNN),
and it is reported that when kNN is applied to the joint positions, using as a similarity cri-
terion Dynamic Time Warping, a 100% classification accuracy is reached between healthy
subjects and neurodegenerative diseases. In [43], the accuracy is 89.33%, but by training
Support Vector Machines (SVM) with the reaction forces between the foot and the ground.

Binary classifiers have also been applied to the differentiation among individuals from
a CG and from participants with PD. In [36], a SVM trained with stride time and duration
of swing and simple support periods obtains 90.32% of successful classifications. In [37],
this percentage is 94.1% for a Bayesian classifier that uses stride length and gait speed as
input signals. Alike the previous research, in [41], the PD diagnosis is performed through
the extraction of VGRF features during the stance period, such as VGRF peak value,
VGRF peak delay, area under the curve, and the kurtosis of the signal. This information
is fed to a SVM classifier, which reports an accuracy of 90.82% for PD discrimination. In
[38], five machine learning methods are compared through the Cartesian positions of 15
reflective markers, and the following percentages of accuracy are obtained: Fisher linear
discriminant (87.4%), Naive Bayesian classifier (82.0%), kNN (84.4%), support vector ma-
chines (86.0%) and random forests (92.6%). In [40], the authors detect the severity of PD,
according to the Unified Parkinson’s Disease Rating Scale (UPDRS), by using an SVM
that processes spatiotemporal gait characteristics extracted from a dataset of VGRF. The
VGRF classifies a subject with 98.65% accuracy into one of four categories: Healthy, PD
severity 2, PD severity 2.5, and PD severity 3. In [39], an extension of the principal com-
ponents method to tensors (multi-dimensional extensions of matrices) is applied to the
reaction forces between the foot and the ground reaching a specificity and sensitivity of
100%.

The most recent works in the diagnosis of neurodegenerative diseases report the ap-
plication of multiple binary classifiers. In [44], an algorithm named empirical signal de-
composition mode is applied to the reaction forces between the foot and the ground of
the four groups of participants analyzed (CG, PD, HD and ALS). The accuracy of the
classifier was: CG-PD 94.9%, CG-HD 90.0%, and CG-ALS 93.4%. In [48], an automated
method for detecting PD, HD and ALS based in localized time-frecuency information of
gait signals is presented. This dual information, leads to the creation of a set of linear
and non-linear features for the training of a multicategorical Non-negative Least Square
(NNLS) classifier. The mentioned approach achieved accuracy rates of 93%, 94%, and 97%
for PD, ALS, and HD detection, respectively. In [45], the authors used the same signals
as in [44]; however, these are transformed into grayscale images applying the technique of
diffuse analysis of recurrence. Subsequently, these images are used to train SVM, where
accuracy percentages of 100% are obtained in the classifications: CG-PD, CG-HD, and
CG-ALS.A proposal similar to [45] is presented in [49], where force signals were trans-
formed into a Quick Response (QR) code. This 2D feature allows the employment of deep
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learning techniques for classification such as the Long-Short Term Memory Convolutional
Neural Network (ConvLSTM) and a 3D Convolutional Neural Network (CNN). Again, the
classification problems are CG-PD, CG-HD and CG-ALS providing an accuracy value of
89.44% using the ConvLSTM approach and a value of 86.05% using the 3D CNN approach.
[55] discriminated with a clear clustering and high separability between groups CG vs. PD
through gait features obtained from the RQA technique applied in gait rhythm timeseries
from five healthy elderly subjects and five PD individuals. [53] conducted six binary clas-
sification tasks ALS vs. CG, PD vs. CG, HD vs. CG, ALS vs. PD, ALS vs. HD, and PD
vs. HD using Support Vector Machine (SVM) and Probabilistic Neural Network (PNN)
techniques, with a set of twelve improved gait features extracted with Recurrence Quan-
tification Analysis (RQA) and statistical measures, to raise the classifiers performances.
Accuracies reported in the binary classifications activities ranges from 96% (ALS vs. CG)
to 100% (remainder comparisons). In [54], from original VGRF signals, basic time-domain
features such as mean, standard deviation, skewness, kurtosis, approximate entropy were
obtained and fed a classifier based on Non-Negative Least Squares (NNLS) performing six
binary classification tasks ALS vs. CG, PD vs. CG, HD vs. CG, ALS vs. PD, ALS vs.
HD and PD vs. HD with accuracies ranging from 99% to 100% and a multiclass approach
CG vs. ALS vs. PD vs. HD of 99.57% accuracy. [51] proposed a classifier based on the
Adaptive Neuro-fuzzy Inference System (ANFIS) model. This classifier received features
obtained from five gait cadence timeseries such as left stride interval, right stride interval,
left stance interval, right stance interval, and double support interval. The three binary
classifications tasks ALS vs. CO, PD vs. CO, and HD vs. CO reported accuracies of
93.10%, 90.22%, and 94.44% respectively. [52] presented a classifier based on radial basis
function neural networks and performed the same classification tasks as in [51] with accu-
racies of 93.1%, 100% and 100% respectively. The left and right swing and stance interval
timeseries served as input. In [47], a topological data analysis was applied to the duration
of the stride time in order to form the features vector that will be used as input to four
algorithms: Decision Trees, Random Forests, Naive Bayesian classifier and kNN, which
are compared in terms of their ability to perform the same four binary classifications as
in [44]. For each of the 16 results (4 algorithms × 4 classifications) accuracy, sensitivity
and specificity are presented. The superiority of one algorithm over another depends on
the pathology being compared. Thus, for example, the random forests show better results
than the decision trees for the CG versus PD classifier; however, this relationship is oppo-
site for the CG versus HD classifier.

2.1.3 Multiclass Classifier

In [5], unlike the works previously mentioned, a classifier with four possible outputs such
as CG, PD, HD or ALS is proposed. This proposal initially applied a binary classifier to
determine whether a person belongs to the CG or has a neurodegenerative disease. In case
of not belonging to the CG, the data is entered into three binary classifiers: PD versus HD,
HD versus ALS, and ALS versus PD, and based on an algorithm named majority voting,
the category PD, HD or ALS is selected. In this work, the same database of reaction forces
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between the foot and the ground is used as in the works cited in the preceding paragraph.
The authors report the accuracy, sensitivity, and specificity of the binary classifiers, but
not the multilevel classifier, making it impossible to determine the usefulness of the tool.

2.1.4 Duration of the gait phases

In [61], the Lyapunov exponents for the load response phase were compared between youth
and adults with no records of pathologies with effects on gait, and it was concluded that
the older group presented greater instability. In [62], the effect of speed on the duration
of the phases during the support period is studied, and it was concluded that these times
decrease linearly as the walking speed of the subject increases. In [63], the conclusion
obtained in [62] is endorsed, but this time alternating 12 gait speeds instead of 3.

2.1.5 Research gaps found

From the present state of the art, the absence of works that address the diagnosis between
PD, HD and ALS from human gait signals can be evidenced. Additionally, the research
regarding the incidence of neurodegenerative pathologies in the duration of gait phases 1

is scarce, as is the use of Petri nets for the analysis of human gait.

2.2 Background

2.2.1 Human gait

Gait is defined as a method of locomotion that involves the use of two legs, alternately,
to provide support and propulsion [2] allowing human beings to move from one place to
another. When a subject walks, he moves from one position to another, and, while he
develops this action, the human body can be assumed as a mass subjected to translations
generated by the movement of the lower extremities. In biomechanical terms, the human
gait is composed by a set of interrelated movements, moments, powers, forces, pressures,
coordination and balance [64, 65, 66]. In fact, the latter are some of the variables that
can be processed by a specific gait analysis method for characterisation and diagnosis
purposes. [64] [65] [66]

2.2.2 Gait cycle

Step and stride

As can be seen in Figure 2.1, when a lower limb goes forward and has contact with the
ground, it has made a step. For example, when the right limb moves forward and touches
the support surface, a right step has taken place. This can be perceived symmetrically in

1The phases in which the single and double support periods are divided
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Left step Right step

Stride
length

Figure 2.1: Occurring of a step (left or right) and a stride within the gait cycle. Source
from [1].

the left foot. In fact, the step length is defined as the distance from the heel of the lagging
member to the heel of the leading member.

The gait (or stride) cycle is defined as the time interval that occurs, starting with the
contact of the heel of one foot with the ground, until the new contact with the ground
with the heel of the same foot. This cycle is repeated on both feet, but it happens out of
phase with each other. For this work, it is decided to take as a reference the contact of
the heel of the right foot as the beginning and end of the gait cycle. Consequently, the
gait cycle of the left foot is analogous but half cycle out of phase [2].

The beginning of the cycle (0%) occurs with the first contact (initial contact or heel
strike in normal gait) of the right foot, and the end of the cycle (100%) occurs with the
next contact of the same foot, which it will correspond to the start of the next cycle. As
can be seen in Figure 2.2, in a normal symmetrical gait, toe-off occurs approximately 60%
or 62 % of the cycle [2], dividing this in two: First, the Support period that lasts between
60% to 62% of the total cycle, and, the Swing period in which one foot swings and lasts
about 38% to 40% [1] [2].

As can be seen in Figure 2.3, the right foot (ipsilateral) and the left foot (contralateral)
are in a phase shift of around 50% [1]. For this reason, when one foot swings, the other
rests on the ground. Also, there is a period when both feet contact on the ground. This
period is known as double support and lasts about 20 % of the gait cycle [2]. However,
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Figure 2.2: Division of the gait cycle into 2 periods: Stance and swing. Source [1].

all these times can change due to the walking speed. The swing period becomes propor-
tionally longer, and the support and double support periods shorten as speed increases [67].

Due to the high complexity involved in doing an analysis on the gait, it can generally
be subdivided into different phases (states) [68] [3] and events [65]. Table 2.1 shows the
phase division of the gait cycle according to [3].

In summary, the right foot gait cycle is composed of two periods and eight phases
as follows: The period of support comprises the phases: (For clarification purposes, the
subindices l and r will refer to the left and right foot respectively). initial contact (ICr),
loading response (LRr), mid-stance (MStr), terminal stance (TStr) and pre-swing (PSr).
The swing period comprises the phases: initial swing (ISr), mid swing (MSr), and terminal
swing (TSr). Similarly, the gait cycle of the left foot is also composed of a period of swing
and stance, but with the succession of phases in the following order: PSl ISl MSl TSl

ICl LRl MStl TStl.

2.3 Vertical Ground Reaction Forces

When the time comes to make a diagnosis about a patient, or it is desired to describe in
depth the qualitative and quantitative variables of a gait cycle, it is necessary to define a
technique that guarantees these objectives. For this reason, with the help of technological
advances and from physical principles, a variety of measurement systems have been devel-
oped. This is the case of the VGRF.

As the weight of the body falls and moves across the surface of the foot, forces are
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N◦ Phase
Ocurrence

Purpose
Temporal Description

1 Initial Con-
tact (IC)

0% This phase occurs the moment the ipsilateral
foot touches the ground.

The lower limb is positioned
to start the period of support
with a plantar flexion of the an-
kle.

2 Loading Re-
sponse (LR)

2% This phase begins with the heel strike of the
ipsilateral foot on the surface and continues
until the contralateral foot is lifted for swing.

Shock absorption, weight bear-
ing stability and preservation
of gait progression

3 Mid-Stance
(MSt)

10% This phase is the first half of the single support
interval. It begins as soon as the contralateral
foot is lifted and continues until the weight of
the body is aligned on the ipsilateral forefoot.

Progression on stationary foot,
stability of limbs and trunk

4 Terminal
Stance (TSt)

30% This phase completes the single support inter-
val. Begin with raising the heel of the ipsilat-
eral foot and continue until the contralateral
foot touches the ground. During this entire
phase, the weight of the body is shifted in front
of the forefoot.

Progression of the body be-
yond the supporting foot.

5 Pre Swing
(PS)

50% This is the final phase of stance and is the be-
ginning of the double support interval of the
cycle. It begins with the heel-strike of the con-
tralateral foot and ends with the detachment
of the toes of the ipsilateral lower limb.

Positioning of the lower limb
for swinging.

6 Initial swing
(IS)

60% This phase is approximately one third of the
swing period. It begins with lifting the ipsi-
lateral foot off the ground and ends when the
swinging foot is opposite the contralateral foot
in stance.

Clearance of the foot with re-
spect to the ground and ad-
vance of the limb from its lag-
ging position.

7 Mid-swing
(MS)

73% The second phase of the swing period begins
when the swinging limb is opposite the lower
limb is in stance. The phase ends when the
swinging limb is forward and the tibia is verti-
cal (i.e. the hip and knee flexion postures are
equal).

Advance the limb and clear
the foot with respect to the
ground.

8 Terminal
swing (TS)

87% The final phase of the swing period begins with
the tibia vertical and ends when the ipsilateral
foot hits the floor. The advancement of the
limb is completed when the leg advances the
thigh.

Complete advancement of the
limb and preparation of the
lower limb for the stance.

Table 2.1: Division of phases of the gait cycle of the right foot and its temporal occurrence
from [3]. In addition, its description and objective are presented within the cycle.
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Figure 2.3: Gait cycle for the right foot (ipsilateral) and left foot (contralateral). The
periods of double support of the cycle are highlighted in intense red. Source [1].

generated on the floor that can be measured using force platforms, which are fixed to
ground, or forces insoles, which are fixed to feet.

The individual load can be measured in laboratories with force platforms. These de-
vices use strain gauges or piezoelectric quartz crystals that convert force into electrical
signals. The data are processed to obtain information on the related rotational moments,
pressure centers and reaction force vectors. The main inconvenient of these devices is that
subjects tend to modify their gait patterns according to the location of the force plates
(Figure 2.4), and as a consequence, the resulting data are not representative of a typical
gait. However, technology has advanced to the point that force sensors can be inserted
into a shoe like a traditional insole. Thus, a natural gait process is guaranteed throughout
the experiment.

Vertical load

The classic gait model proposed by [3] (Figure 2.5), manifest that the normal gait during
the stance period contains two peaks separated by a local minimum. The value of the
peaks is approximately 110 % of the body weight, while in the valley it is about 80 % of
the weight [3]. In the same Figure, in blue, the active phases of the gait begin and end
with the occurrence of critical points in the force signal (maximum and minimum); which
are called Heel Strike (HS) , F1, F2, F3 and Toe-Off (TO) . At the beginning of the gait
profile, the point HS takes place as indication of the first contact of the foot with the
ground during the LR phase. Due to gravity, the body is falling which increases in force
towards a first peak (F1) that initiates the MSt phase in response to weight acceptance
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Figure 2.4: A, B and C, represent the usual arrangements of force platforms in laboratories.
Source [1].

events during the loading response. At the beginning of the TSt, the valley (F2) appears,
which is generated due to the translation the body’s center of gravity over the plantigrade
foot. The second peak (F3) occurs at the beginning of the PS and indicates an increase
in acceleration in order to lift the weight of the body. Finally, the TO corresponds to the
total take-off of the foot from the ground, starting the swing period. In addition, it can
be notice the 50% phase shift in the occurrence of the events and the gait phases of the
left foot compared to the right foot. Finally, given the absence of force during the swing
period, in this research the IS, MS and TS phases are combined into a single swing phase.

SwingPSTStMStLR

SwingPS TStMStLR

Left foot

Right foot

F1

F2

F3

TO

HS TO
HS

F1

F2

F3

Phases

Phases

Figure 2.5: Phases of gait evidenced through variations in the left and right VGRF signals.
Sources [2] [3].
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2.4 Discrete Event Systems

2.4.1 Systems, State and Event

A system is a combination of components that work together to perform a function that
cannot be performed by the individual parts [69].

Systems can be divided according to their behaviour over time into:

• Continuous Time Systems: The system receives as input a continuous signal, which is
a signal defined for a continuous sequence of values, and transforms it into continuous
output signals.

• Discrete Time Systems: The system receives discrete time signals as inputs, which
is a signal defined in discrete times (periodic or aperiodic), and transforms it into
discrete time output signals [70].

• Discrete Event Systems (DES): It is a dynamic system that varies its behaviour or
state according to the abrupt occurrence, in possibly unknown intervals, of physical
events [71].

• Hybrid Systems: It is a dynamic system that cannot be represented and analyzed
with sufficient precision by the theory of continuous systems or the theories of discrete
systems [72].

A DES is a dynamic system that evolves over time and under a discrete state space
[71]. The change of states is due to the occurring of a transition which in general, its
occurrence will be unpredictable.

2.4.2 Petri nets

A Petri netN is a bipartite directed graph represented by the tupleN = (P, T, Pre, Post,M0),
in which:

• P = {p1, p2, . . . , pn} is the finite set of places.

• T = {tr1, tr2, . . . , trm} is the finite set of transitions.

• Pre : It is a matrix of n rows and m columns, where the element i, j ∈ Z+ of the
pre-occurrence matrix indicates the weight of the arc from place pi to the transition
trj. The element in row i and column j is equal to zero if there is no connection
between the place pi and the transition trj.

• Post : It is a matrix of n rows and m columns, where the element i, j ∈ Z+ of the
post-incidence matrix indicates the weight of the arc from the transition trj to the
place pi. The element in row i and column j is equal to zero if there is no connection
between the transition trj and the place pi.
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• mk : P −→ Z+ is a function that assigns an integer number of marks to the place pi
after k transitions. Mk = [mk(p1),mk(p2), . . .mk(pn)] is a vector with the number
of marks of each place in the network, after k transitions have occurred.

Graphically, places are represented by circles, transitions by rectangles, and arcs by
arrows. The incidence matrix for N is C = Post− Pre.

In a Petri net, a trj transition is enabled to a marking Mk at time tk if all the places
pi that precede it have a marking greater than or equal to the weight of their respective
arc. Mathematically, this means that the condition mk(pi) ≥ Pre(i, j) must be fulfilled
for i = 1, 2, . . . , n. If a transition trj is enabled and fired, a new marking at a new instant

of time Mk+1 is reached. The new marking is calculated by Mk+1 = Mk +C.
−→
trj where

−→
trj

is a vector of zeros of size m, except in row j since trj was fired; this expression is known
as the equation of state of a Petri net.

Figure 2.6 shows a Petri net with three places and four transitions. I.e., the sets P
and T are P = {p1, p2, p3} T = {tr1, tr2, tr3, tr4}. The Pre and Post matrices of the
network are displayed in the Equations 2.1 and 2.2, which show the connections through
arcs between places and transitions.

𝒑𝟏

𝒑𝟐

𝒑𝟑

𝒕𝒓𝟏

𝒕𝒓𝟐 𝒕𝒓𝟑

𝒕𝒓𝟒

𝒑𝟏

𝒑𝟐

𝒑𝟑

𝒕𝒓𝟏

𝒕𝒓𝟐 𝒕𝒓𝟑

𝒕𝒓𝟒

Figure 2.6: Petri net example.

Pre =


tr1 tr2 tr3 tr4

p1 1 0 0 0
p2 0 1 0 0
p3 0 0 1 1

 (2.1)

Post =


tr1 tr2 tr3 tr4

p1 0 0 1 1
p2 1 0 1 0
p3 0 1 0 0

 (2.2)
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The evolution of this network is evidenced by the marking. The current marking (left
side of the figure) is described as M0 = [0 2 0]T . As tr2 is enabled since it meets the
previously mentioned enabling marking condition it can be fired allowing the flow of a
single mark which evolves to marking M1 = [0 1 1]T as seen in Equation 2.3.

M1 = M0 + C tr2

M1 =

02
0

+

0 0 1 1
1 0 1 0
0 1 0 0

−

1 0 0 0
0 1 0 0
0 0 1 1



0
1
0
0


M1 =

01
1


(2.3)

2.4.3 Petri net approach to model human gait

The dynamic system to be modeled is autonomous, i.e., it is a system whose evolution de-
pends on time and its behavior is modeled from a sequence of events. Under this premise,
in this research a Timed Interpreted Petri net is proposed, where first, the interpretation
of the net is given in the assignment of a label on the net places that represent the phases
of the gait cycle, and second, the events occurring time is associated to the transitions.

A Stochastic Timed Interpreted Petri Net (st-IPN) is composed by the tuple: stQ =
(N,X, φ, τ, λ) where:

• N is a Petri net as previously defined.

• X = {x1, x2, . . . x5} is the set of phases that comprise the running where x1 : LR,
x2 : MSt, x3 : TSt, x4 : PS, x5 : S as shown in Figure 2.5. In this work, the gait
phases are obtained from the generation of events over the VGRF signals. For this
reason, the Mid and Terminal Swing phases, seen in the figure, are not part of the
X set since they are late phases of the balancing period.

• φ : P −→ X is a labeling function that associates an item of X to each place, that
is φ(pi) = xi, i = 1, . . . , 5.

• τ = {t1, t2, . . . t5} is the set of random variables with normalized time from 0 to 1
where t1 represents the instant of time in which the maximum of the derivative of
the VGRF signal occurs, taking place the event HS. t2 represents the first maximum
of the VGRF signal which fires the F1 event. t3 represents the global minimum
of the VGRF signal where the event F2 occurs. t4 is registered with the next
maximum value of the force signal where the event F3 takes place, t5 is detected
when the minimum value of the derivative of the force signal occurs and indicates
the occurrence of the event TO.
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• λ : T −→ τ is a function that assigns a time element τ to each transition, that is
λ(tri) = ti, i = 1, . . . , 5.

A trj ∈ T transition is enabled if, in addition to fulfilling the marking condition de-
scribed in section 2.4.2, the random variable tj is within two standard deviations around
the mean value of time in which it occurs trj.

If trm is enabled, then trm fires and reaches a new markup Mk+1 represented by the
equation of state 2.4 that represents said evolution.

Mk+1 = Mk + C.
−→
trm (2.4)

Figure 2.7 shows the st-IPN that represents the behavior of human gait for both feet.
The events are differentiated according to the sub-index: On the right foot is the sequence
of events HSr, F1r, F2r, F3r and TOr and on the left foot is the sequence TOl, HSl,
F1l, F2l and F3l. Each of the phases of the gait cycle is represented by the places in
the net: On the right foot are LRr, MStr, TStr, PSr, Sr and on the left foot are PSl,
Sl, LRl, MStl, TStl. The transitions are associated with both the label and the time
intervals of the timed events that generates the phases change: tr1 is fired at 10% when
the event TOl occurs, tr2 fires at 10% when the event F1r occurs, tr3 fires at 30% when
the event F2r occurs, tr4 fires at 50% when the F3r event occurs, tr5 fires at 50% when
the HSl event occurs, tr6 fires at 60% when the TOr event occurs, tr7 fires at 60% when
the event F1l occurs, tr8 fires at 80% when the event F2l occurs, tr9 fires at 100% when
the event HSr occurs, tr10 is triggered at 100% when the event F3l occurs. The time
intervals are obtained from Table 2.1. Table 2.2 shows the Pre and Post locations of each
of the transitions as a function of the gait phases. In this net, it has been assumed that
the current states, due to the presence of marks in the places, are the initial contact in
the right foot and the pre-swing in the left foot.

2.5 Supervised Learning

2.5.1 Classification Trees

The classification tree (CT) is a supervised machine learning technique that concludes
about a set of observations into into a discrete series of values (categories), employing
a hierarchical structure composed of nodes and directed edges connected. The structure
has an initial node called root with no incoming edges. All other nodes have a unique
incoming edge. Now, if the node has outcoming edges then is called an internal or test
node. Otherwise, it is a terminal node or leaf [4].

The test nodes splits into two or more nodes according to certain conditions of the data
attributes labelled in the outcoming edges. These conditions may be nominal attributes
values or, in the case of numeric values, the conditions are a range. The leaf nodes are
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Ciclo de marcha [%]

𝑡2 ∶ 𝑡2 ∈ [0.1 ± 2𝜎]
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𝑳𝑹𝒍 𝑴𝑺𝒕𝒍 𝑻𝑺𝒕𝒍

𝑡3 ∶ 𝑡3 ∈ [0.3 ± 2𝜎] 𝑡4 ∶ 𝑡4 ∈ [0.5 ± 2𝜎] 𝑡6 ∶ 𝑡6 ∈ [0.6 ± 2𝜎] 𝑡9 ∶ 𝑡9 ∈ [1 ± 2𝜎]

𝑡1: 𝑡1 ∈ [0.1 ± 2𝜎] 𝑡5 ∶ 𝑡5 ∈ [0.5 ± 2𝜎] 𝑡7 ∶ 𝑡7 ∈ [0.6 ± 2𝜎] 𝑡8 ∶ 𝑡8 ∈ [0.8 ± 2𝜎] 𝑡10 ∶ 𝑡10 ∈ [1 ± 2𝜎]

Left foot

Right foot

Figure 2.7: Gait st-IPN generated from the phases segmentation seen in the chapter.

assigned a category and represent graphically the convergence of classification of input
data. Thus, the set of observations are classified by navigating from the tree’s root to a
leaf, according to the conditions met along the path.

For instance, Figure 2.8 presents the classification tree that asses demographics at-
tributes of a customer in order to decide their potential response to a direct mail. The
root node is the Age attribute, the test nodes are Gender and Last R (Response) at-
tributes. The leafs have the values ”Yes” and ”No”. Notice that the classification tree
involves both type of conditions in the edges: nominal (”Yes”) and numerical (≤ 30).

2.5.2 Random Forests

The random forests is an ensemble method for classification since constructs a set of clas-
sification trees in the training phase. The classification output is the class selected by
most trees [73].

The random forests can be applied to a wide range of prediction problems and the few
parameters for tuning is advantageous. In addition, its simplicity and accuracy, even with
small sample sizes, have increased its popularity [74].

In this work, the R package randomForest was employed for the processing of gait
timed features. This package is available in http://www.r-project.org.

http://www.r-project.org
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T
Places

Pre Post

tr1 PSl Sl

tr2 LRr MStr
tr3 MStr TStr
tr4 TStr PSr

tr5 Sl LRl

tr6 PSr Sr

tr7 LRl MStl
tr8 MStl TStr
tr9 Sr LRr

tr10 TStl PSl

Table 2.2: Pre and Post places of each transition seen in Figure 2.7.

2.6 Chapter Summary

In this chapter, we presented the theoretical conceptualisation necessary for the develop-
ment of the research. First, the concepts of human gait, stride, timing of the gait cycle,
and phases of it were addressed. Second, the measurement system based on VGRF and the
events that occur in the force profiles that indicate phase changes were described. Third,
the concepts of Systems, State, Discrete Events and Petri Nets were exposed. Then, the
Petri net proposal that defined to model the behaviour of the gait cycle for both feet.
Finally, the supervised learning techniques: Classification Trees and Random Forests were
addressed.
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Age

Gender No

Last R.Yes

No Yes

≤ 30 > 30

male female

No Yes

Figure 2.8: Classification tree of response to direct mailing. From [4]



Chapter 3

Method

3.1 Database Presentation

The database employed in this research is freely available at https://physionet.org/

content/gaitndd/1.0.0/. This database storages the VGRF of 64 participants: 16 be-
longing to the healthy subjects (CG), 15 diagnosed with PD, 20 affected with HD and
13 with ALS. The data were acquired while the users walked at their preferred speed in
a hallway of 77 meters length during five minutes. The VGRF were measured through a
pair of insoles with resistive force sensors, whose digital output is a voltage approximately
proportional to the contact force between the foot and the floor. A wearable device located
in the ankle performed the analog to digital conversion (12 bits) at a sampling rate of 300
Hz [75]. Table 3.1 presents the mean and standard deviation for the height, weight, and
age of the participants of each group. The data set for each participant comprises two
columns with the voltages (mV) for the left and right foot.

3.2 Data Preprocessing

The data were verified to detect discontinuities due to instrument deficiencies or measure-
ment saturations. As a result, the participant 13 of the control group, the participants
10 and 14 of the Parkinson group, and the participant 13 of the Huntington group were
removed (see Figure 3.1).

Control PD ALS HD

Height [m] 1.833 ± 0.081 1.870 ± 0.152 1.745 ± 0.095 1.830 ± 0.106
Weight [kg] 66.813 ± 11.077 75.067 ± 16.897 77.115 ± 21.150 72.050 ± 17.046
Age [Yrs.] 39.313 ± 18.514 66.800 ± 10.851 55.615 ± 12.829 46.650 ± 12.596

Table 3.1: Demographic information of the Control, PD, ALS, and HD groups.

21

https://physionet.org/content/gaitndd/1.0.0/
https://physionet.org/content/gaitndd/1.0.0/
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Figure 3.1: VGRF signal saturations and discontinuities of the subjects removed from the
present study.

3.2.1 Human Gait Cycle Timing

The duration of each stride was normalized to 0%-100% (101 points) to compare the
occurrence of events on same time scale. The 0% of each stride corresponds to the heel
strike and it is detected by finding the peaks of the time derivative of the VGRF (Figure
3.2). To avoid false heel strikes an amplitude restriction was imposed, so only peaks greater
than the 40% of the maximum of the force derivative of each participant were considered
as heel strikes. The left VGRF is timed according to the heel strike of the right foot.
Table 3.2 presents the number of strides per participant in each group.

Table 3.2: Computed number of strides per participant in the analysis groups. The lowest
number of strides (participant 3) and the highest number of strides (participant 12) are
both observed in the ALS group.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

CG 272 236 246 244 194 245 254 235 250 262 227 265 255 256 269
PD 213 238 245 232 238 268 222 218 256 262 215 198 216 - -
ALS 240 224 111 177 187 236 207 123 194 171 125 326 207 - -
HD 215 232 243 246 210 301 221 226 259 257 254 226 250 264 -
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Figure 3.2: Start of each stride according to the total force data (red) and its derivative
(blue).

3.2.2 Timed Events Generation

As seen in Figure 3.3, the gait cycle of one foot is delayed 50% with respect to the other;
therefore, the events detected for each foot remain the same in number although not in
order. The first event detected is HS, that occurs as the VGRF derivative reaches its
maximum value. The second event is F1, that takes place when the VGRF reaches its
first maximum value. The third event is F2, which occurs as soon as the VGRF reaches a
local minimum value. The fourth event is F3, that takes place when the VGRF reaches its
second maximum value. Finally, the fifth event is TO that occurs when the time derivative
of the VGRF reaches its minimum value.

3.3 Human gait model using a st-IPN

The st-IPN modelling algorithm 1 was adapted to model the human gait cycle [76]. The
input to the algorithm is the sequence of events for a given foot, and the output is a Petri
net. With this algorithm, we obtained one st-IPN for the right foot and another for the
left foot. Figure 3.6 presents the st-IPN of the first participant of the control group. The
circles represent the phases of the human gait, the rectangles the transitions between these
phases, and the arrows define the sequence of phases. A black dot in a circle indicates
that it is the current phase of the gait cycle.

3.3.1 Net Trimming

The nominal sequence of transitions for the right foot is HS, F1, F2, F3, and TO, and
for the left foot is TO, HS, F1, F2, F3. However, for the participants of the groups
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Algorithm 1 st-IPN construction

Input: (HS, t1), (F1, t2), (F2, t3), (F3, t4), (TO, t5)
Output: Pre, Post and δ.
Initial conditions: number of places = 0, number of tr=0;
{An event occurs}
{A place is created}
{A gait phase label is assigned to the place}
if the place with the assigned label does not exist then

{A transition is created}
{The matrices Pre y Post for the new tr are created. In addition, the event occurring time
is registered in δ}

else
{None additional places are created}
{A new transition is created}
for the first transition to the existing number of transitions do

if the created transition already exists connecting two already created places then
true{The transition already exists and connects two existing places. The matrices Pre
y Post remain the same and the event occurring time is registered in δ} and break
the for loop
false{This is actually a new transition. The matrices Pre y Post for the new tr are
created and the event occurring time is registered in δ} ;

end if
end for

end if
{Wait for a new event}
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Transition times for the strides 1 to n Mean firing times

HSr 0% 0% · · · · · · tn HSr

TOl t2 t11 · · · · · · tn TOl

F1r t3 t12 · · · · · · tn −→ F1r
F2r t4 t13 · · · · · · tn F2r
F3r t5 t14 · · · · · · tn F3r
HSl t6 t15 · · · · · · tn HSl

TOr t7 t16 · · · · · · tn TOr

F1l t8 t17 · · · · · · tn −→ F1l
F2l t9 t18 · · · · · · tn F2l
F3l t10 t19 · · · · · · tn F3l

Table 3.3: Mean firing times arrangement for a both feet in the i− th subject

PD, HD and ALS these sequences are not always obtained. In such cases, the strides
with non-nominal sequences of events are eliminated. For example, Figure 3.5 shows an
example where only HS and TO transitions are detected, while F1, F2, and F3 are not.
In such a case, the modelling algorithm adds a direct transition from LRl to Sl (left side
of Figure 3.6). Since this transition only occurs once, the trimming algorithm considers
it spurious. In general, these non nominal transitions are removed from the st-IPN (right
side of Figure 3.6).

3.4 Timed arrangements for group comparison

The st-IPN of each participant comprises nine numbers, which are the average times of
occurrence of the transitions F1r, F2r, F3r, TOr, HSl, F1l, F2l, F3l and TOl. Since HSr

is always 0%, it is not considered for statistical analyses.

3.5 Discrete Events Sequence Analysis

The transitions were chronologically ordered. Consequently, the gait of each participant
is represented by sequences of nine transitions, one sequence by stride. Table 3.4 shows
the most common sequences for the control group. The integers in the columns two to ten
indicate the order in which the transitions occur. The last column contains the percentage
of strides whose sequence is the indicated by the preceding columns.

Table 3.5 shows the sequences of transitions that took place for the 15 participants of
the control group (s1 to s15). For example, for the participant s1, 254 sequences corre-
spond to the first row of Table 3.4 and 14 to the second row of the same table. Among all
participants of the control group, the most common sequence is the described by the first
row of Table 3.4. Since this sequence occurred 2.173 times, we had 2.173 samples that
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Seq. Id TOl F1r F2r F3r HSl TOr F1l F2l F3l % Occur.
1 1 2 3 4 5 6 7 8 9 82.66
2 1 2 3 5 4 6 7 8 9 7.76
3 1 2 3 4 5 7 6 8 9 2.32
4 1 2 3 4 5 6 7 9 8 1.56
5 1 2 3 5 4 6 7 9 8 0.99

Other 4.72

Table 3.4: Sequences of events of the control group.

Seq. Id.
Sequences participation among control group subjects

% ocurr.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

1 254 202 150 192 145 112 10 217 22 197 17 218 254 1 182 82.66
2 14 8 1 3 31 75 1 1 0 41 6 6 0 17 0 7.76
3 0 0 36 1 4 0 0 0 0 0 19 0 0 0 1 2.32
4 0 5 6 7 2 4 0 2 8 0 0 3 0 4 0 1.56
5 0 0 0 0 1 1 0 0 2 0 0 0 0 22 0 0.99

Table 3.5: Participation of the sequences in the subjects of the Control group.

were used to establish the 95% confidence interval of each transition (Table 3.6).

For each participant in the ALS, HD, and PD groups, we found the most common
sequence of transitions, which we call the dominant sequence. Subsequently, we elimi-
nated the strides whose sequence was different from the dominant and plotted the time of
occurrence of each transition as a function of the stride (Figure 3.7). For each of the nine
graphs, we calculate the percentage of values within the 95% confidence interval.

Event Lower (%) Upper (%)
TOl 6 11
F1r 9 19
F2r 18 44
F3r 32 51
HSl 48 53
TOr 54 61
F1l 59 74
F2l 78 96
F3l 87 100

Table 3.6: 95% confidence intervals for the transitions of the control group.
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No Feature Unit
p1 Left Stride Interval Seconds
p2 Right Stride Interval Seconds
p3 Left Swing Interval Seconds
p4 Right Swing Interval Seconds
p5 Left Swing Interval % of stride
p6 Right Swing Interval % of stride
p7 Left Stance Interval Seconds
p8 Right Stance Interval Seconds
p9 Left Stance Interval % of stride
p10 Right Stance Interval % of stride
p11 Double Support Interval Seconds
p12 Double Support Interval % of stride

Table 3.7: Features obtained from the data set of PhysioNet.

3.6 Supervised learning approach

This section presents the results obtained with RFs and CTs, which are by default multi-
class classifiers based on supervised learning. Both RFs and CTs were trained using two
different sets of features. First are the nine means and nine standard deviations of Petri
net’s transition times (18 features in total), while second are the twelve means and twelve
standard deviations of the features presented in Table 3.7 (24 features in total). Most
machine-learning approaches presented in the introduction section use these last features,
which are available from PhysioNet VGRF database. The data in all the experiments
reported in this section were divided randomly between training (70%) and validation
(30%).

3.7 Chapter Summary

In this chapter, we presented the method of a neurodegenerative disease diagnoser based
on st-IPN via VGRF processing. Firstly, the VGRF database and its preprocessing was
presented, which involved the removal of some participants, since their data were unfitting
for this study. Secondly, the set of events (IC, F1, F2, F3 and TO) were gathered from
every stance period of all subjects. Per individual, these events were fed to the st-IPN
modelling algorithm that created a st-IPN for each foot; the net was trimmed in case of
any inconsistency in terms of events order. Thirdly, a nominal sequence of events from
the control group was determined and a 95% interval of time, per event, was calculated.
Then, for each pathological participant the percentage of inclusion within the mentioned
interval was calculated. Finally, the supervised learning approach is addressed.
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Figure 3.3: Events detection across the GVRF of a healthy and pathological subjects.
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bounds generated for subject 11 of ALS.
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Chapter 4

Results

This chapter presents the following results i) the events in each subject that present a
reduced percentage of values within the 95% interval ii) per group, the multiple compari-
son test is performed among all the set of gait events in order to verify which is the less
contained within bounds for each group, iii) the CT and RF classification performance
with the set of features obtained from both the Petri net model and PhysioNet’s database
features.

4.1 Sequence analysis

Tables 4.1, 4.3, 4.2, and 4.4 present the percentage of transitions that belong to the
confidence intervals given by Table 3.6. For the participant three of the Control group
(Table 4.1), the transition with the lowest percentage of values within the confidence in-
terval is F2l (45.21%). For the Parkinson group, this value is 0% and correspond to the
transition TOl of the subject four. For the participant number one of the ALS group,
transition TOl is always outside the confidence interval. For the first participant of the
Huntington group, the transition TOr belongs to its corresponding confidence interval
with the lowest value: 2.92%.

Figure 4.1 shows that for the ALS group, the percentage of TOl within its confidence
interval is significantly lower than for the transition F1l. Figure 4.2 shows that for the
Huntington group, the percentage of TOl within its confidence interval is only significantly
lower than HSl transition. Figure 4.3 shows that for the Parkinson group, the percentage
of TOl belonging to its respective confidence intervals is significantly lower than HSl, F1r
and F3r. In summary, for each group TOl is the transition with a significantly lower
percentage of values within its confidence interval.

33
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Group Subject TOl F1r F2r F3r ICl TOr F1l F2l F3l

CG 1 99.63 99.63 98.52 99.26 98.16 99.63 100.00 99.63 100.00
CG 2 98.61 93.64 99.15 97.88 97.88 98.31 99.58 100.00 100.00
CG 3 99.50 99.59 99.59 80.41 97.56 99.18 91.06 99.52 89.66
CG 4 98.20 100.00 99.57 90.75 97.95 98.68 100.00 96.22 97.31
CG 5 98.95 92.27 99.48 98.94 96.91 98.94 96.91 98.45 98.96
CG 6 98.97 98.37 98.77 95.08 98.78 96.72 100.00 99.18 97.44
CG 7 72.73 98.03 88.89 90.08 94.09 89.29 100.00 99.60 90.91
CG 8 97.40 81.28 93.59 98.72 94.04 77.78 99.57 99.57 98.71
CG 9 100.00 99.60 99.20 98.80 98.80 99.20 100.00 98.39 96.88
CG 10 99.58 99.24 100.00 100.00 98.47 99.62 100.00 100.00 100.00
CG 11 96.47 67.40 84.93 97.86 94.71 96.26 55.95 45.21 98.82
CG 12 97.80 98.11 99.62 100.00 100.00 100.00 100.00 100.00 99.12
CG 13 92.13 100.00 100.00 98.82 99.22 98.43 100.00 100.00 98.82
CG 14 95.45 99.22 92.65 93.06 99.61 97.14 100.00 73.47 86.36
CG 15 99.25 95.91 91.03 99.53 99.63 99.53 100.00 99.63 99.63

Table 4.1: Percentage of transitions of the CG group that belong to the confidence intervals
defined by the control group.

Group Subject TOl F1r F2r F3r ICl TOr F1l F2l F3l

ALS 1 0.00 67.08 78.21 99.45 72.50 38.12 100.00 99.17 97.92
ALS 2 30.00 92.41 97.30 16.22 95.98 88.74 100.00 97.32 96.67
ALS 3 100.00 92.79 92.79 89.19 24.32 82.88 97.30 32.99 91.67
ALS 4 1.75 71.19 38.64 31.85 82.49 31.85 100.00 79.45 72.17
ALS 5 81.82 4.28 95.70 95.14 44.92 85.41 22.46 95.70 66.67
ALS 6 100.00 92.80 96.96 98.69 99.58 98.69 100.00 99.15 97.02
ALS 7 81.33 97.10 99.51 97.07 18.84 51.22 77.78 83.17 85.33
ALS 8 1.75 15.45 82.09 56.92 54.47 16.92 98.37 63.10 28.07
ALS 9 40.79 89.69 90.91 75.00 13.68 25.00 82.47 72.32 80.38
ALS 10 2.50 6.43 91.18 93.53 70.76 71.76 89.82 90.12 96.25
ALS 11 15.38 21.60 74.51 74.36 14.85 0.00 61.02 67.20 65.28
ALS 12 31.65 88.04 54.50 35.00 22.57 53.64 47.86 68.10 60.71
ALS 13 90.00 52.17 97.56 97.56 97.58 98.54 99.52 99.52 70.00

Table 4.2: Percentage of transitions of the ALS group that belong to the confidence
intervals defined by the control group.
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Group Subject TOl F1r F2r F3r ICl TOr F1l F2l F3l

PD 1 18.42 48.36 28.70 79.41 49.30 29.41 84.06 30.40 100.00
PD 2 80.00 95.80 97.84 97.38 95.80 96.94 98.74 93.28 100.00
PD 3 86.00 93.06 100.00 72.60 89.39 94.06 98.78 73.04 88.00
PD 4 0.00 67.67 85.90 78.67 95.69 52.00 99.13 92.58 100.00
PD 5 74.64 92.86 85.17 86.02 86.55 92.37 99.16 86.73 87.77
PD 6 99.21 98.88 99.25 98.88 98.88 98.88 99.25 100.00 100.00
PD 7 12.50 4.95 99.10 83.64 95.50 53.18 99.10 21.81 50.00
PD 8 100.00 81.65 84.74 64.71 81.65 95.19 99.54 58.85 100.00
PD 9 5.56 97.27 99.21 76.77 89.06 46.06 100.00 98.43 83.33
PD 10 94.59 95.80 32.00 19.78 93.51 98.90 99.62 98.85 98.65
PD 11 38.10 97.67 52.09 30.70 80.84 88.37 99.53 98.60 90.91
PD 12 28.57 75.25 88.14 75.26 44.44 48.95 98.48 50.00 61.90
PD 13 98.57 76.85 99.53 98.60 97.22 98.60 77.78 98.15 99.53

Table 4.3: Percentage of transitions of the PD group that belong to the confidence intervals
defined by the control group.

Group Subject TOl F1r F2r F3r ICl TOr F1l F2l F3l

HD 1 94.22 85.58 97.13 91.23 22.79 2.92 98.60 87.02 87.36
HD 2 74.67 97.84 86.84 96.33 90.95 93.58 99.14 97.84 93.38
HD 3 62.10 62.14 87.50 88.74 64.20 84.77 98.35 92.31 79.09
HD 4 88.24 56.91 99.59 97.15 95.12 98.37 98.78 90.04 91.89
HD 5 40.98 66.19 59.26 54.55 26.67 12.73 66.14 55.37 87.10
HD 6 5.43 15.95 91.84 98.59 70.43 91.55 63.46 88.04 97.68
HD 7 73.40 99.10 99.53 87.38 83.71 96.26 97.74 98.18 100.00
HD 8 84.71 92.04 95.07 81.08 66.37 79.28 97.35 88.58 62.57
HD 9 85.17 63.71 81.82 92.42 67.57 79.15 93.82 97.28 97.47
HD 10 94.93 98.83 98.32 97.46 52.53 96.61 98.83 97.67 98.17
HD 11 93.42 82.68 98.02 94.42 79.13 93.23 98.43 97.61 99.12
HD 12 12.86 60.62 43.20 21.46 23.01 48.78 100.00 79.10 92.86
HD 13 98.74 95.20 100.00 99.20 97.60 99.20 99.60 99.17 89.12
HD 14 98.25 96.59 100.00 98.48 95.83 97.73 100.00 99.24 100.00

Table 4.4: Percentage of transitions of the HD group that belong to the confidence intervals
defined by the control group.
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Figure 4.1: ALS group. Percentage of the transitions belonging to the confidence intervals
defined by the control group.

Class Petri net features PhysioNet features
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

ALS 91.7 83.3 100 95.2 92.3 98.0
Control 94.7 100 89.5 89.4 93.8 85.1

Huntington 95.1 92.9 97.4 85.7 73.7 97.7
Parkinson 91.7 83.3 100 89.0 80.0 97.9

Table 4.5: The percentage of accuracy, sensitivity, and specificity of the RFs according to
the training features.

4.2 Unsupervised Learning results

4.2.1 Random forest

The two RFs presented in this section were obtained from the function train of the caret
package of the R programming language [77]. The sensitivities and the specificities are
provided in Table 4.5. The overall accuracy of the model trained with the transition times
of the Petri net was 90.6%, while the model trained with the PhysioNet features had an
accuracy of 84.1%. One of the sensitivities and two of specificities of the proposed features
reached as high as 100%. In addition, the lower indicator for the Petri net features was
83.3%, while for the other features this value was 73.7%. Figure 4.4 compares the two
RFs using a radar chart.
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Figure 4.2: Huntington group. Percentage of the transitions belonging to the confidence
intervals defined by the control group.

4.2.2 Classification trees

Since our aim is to provide a screening tool to support differential diagnosis rather than a
black box for pattern classification, we used CTs, which enable easy clinical interpretation.
The CTs were generated by the function rpart of the R language’s rpart library.

Features defined by the Petri model

Figure 4.5 presents the CT obtained from the transition times of the Petri net. Of the 18
features used to train the model, the CT uses only the following four: (1) the standard
deviation of the HS for the left foot, (2) the average of the TO for the right foot, (3) the
average of the TO for the left foot, and (4) the average for the time at which the highest
local minimum of the ground reaction occurs (F2).

PhysioNet’s Features

Figure 4.6 presents the CT obtained from the features of Table 3.7. It uses four of the 24
features used to train the model: (1) the standard deviation of the predictor p7 (left stance
interval in seconds), (2) the average of the predictor p2 (right stride interval in seconds),
(3) the standard deviation of the predictor p8 (right stance interval in seconds), and (4)
the standard deviation of the predictor p12 (double support interval as a percentage of the
stride duration).



38 CHAPTER 4. RESULTS

40% 50% 60% 70% 80% 90% 100% 110%

F3
l

F2
l

F1
l

TO
r

HS
l

F3
r

F2
r

F1
r

TO
l

 

Figure 4.3: Parkinson group. Percentage of the transitions belonging to the confidence
intervals defined by the control group.

Class Petri net features PhysioNet features
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

ALS 69.6 41.7 97.6 66.2 38.5 94.0
Control 79.4 66.7 92.1 79.0 75.0 83.0

Huntington 77.3 57.1 97.4 66.1 36.8 95.5
Parkinson 73.4 83.3 63.4 71.0 73.3 68.8

Table 4.6: The percentage of accuracy, sensitivity and specificity of the CT according to
the training features.

Comparison of the classification trees

The Table 4.6 presents the accuracy, sensitivity and specificity of each CT. The overall
accuracy of the model trained with the features obtained from the Petri net was 62.3%,
while the accuracy of the model trained with the PhysioNet features was 55.6%. According
to Table 4.6, the first three classes of both models have high specificities and moderate
sensitivities, which implies that for ALS, CG and HD, the two CTs tend to produce
more false negatives than false positives. However, for PD, the opposite is true; since the
sensitivity is greater than the specificity, the model is more likely to generate false positives
than false negatives. A radar chart is used to compare the two CTs in Figure 4.7.
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Figure 4.5: CT trained with the nine means and the nine standard deviations of the
transitions times of each participant. Each node comprises three lines: the predicted
class, the probability for each of the four classes, and the percentage of observations in
the node. The position of the highest number in the second row indicates the predicted
class (1 for ALS, 2 for Control, 3 for Huntington, and 4 for Parkinson). The average and
the standard deviation of the left TO are represented by TOl.av and TOl.sd, respectively.
An equivalent notation is used for the other transitions.
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Figure 4.6: CT trained with the twelve means and the twelve standard deviations of the
features in Table 3.7. Each node comprises three lines: the predicted class, the probability
for each of the four classes, and the percentage of observations in the node. The position
of the highest number in the second row indicates the predicted class (1 for ALS, 2 for
Control, 3 for Huntington, and 4 for Parkinson). The average and the standard deviation
of the predictor p2 are represented by p2.av and p2.sd, respectively. An equivalent notation
is used for the other predictors.
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Figure 4.7: CT comparison in terms of the sensitivity and specificity of each class. ALS.Se
and ALS.Sp are the sensitivity and the specificity of the class ALS, respectively. An
equivalent notation is used for the other three classes.



Chapter 5

Discussion

In this dissertation, we proposed to model human gait using timed Petri nets comprising
nine phases and nine events. Each event defines the transition from one phase to the next.
The moment at which these events occurred were represented as random variables between
0% and 100% of the stride duration. This normalization allowed the transition times of
strides of different duration to be considered as samples of the same population. For the
PD, HD and ALS groups, we observed that the transition with the lowest percentage of
values belonging to the confidence intervals is only TOl. Therefore, this similarity in the
transitions makes not possible a differential diagnosis among neurodegenerative diseases.
In addition, the transition times were used as features to train a multilevel CT, which,
due to its easy of human interpretation, was devised as a tool to support the differential
diagnosis of neurodegenerative diseases.

Previous studies on using VGRFs to diagnose neurodegenerative diseases can be catego-
rized into one of two classes. To the first group belong the studies that use binary classifiers
to label gait patterns as healthy or abnormal, such as [36, 42, 37, 38, 35, 39, 40, 41]. The
second group comprises the works that present multiple binary comparisons, typically CG
versus PD, CG versus HD, and CG versus ALS, for example, [43, 44, 45, 46, 47, 48, 49].
Despite the high accuracy reported in these studies, their main inconvenient is the uncer-
tainty of the classifier output when the evaluated subject does not belong to either of the
two categories for which it was trained. Table 5.1 summarizes the studies that present
multiple binary classifiers. The approach proposed in [44] was not included because it
does not report accuracy, sensitivity, nor specificity. Although we use a four-level classifier
(ALS, CG, HD, and PD), instead of four binary classifiers, the RF performance for the
Petri net features (Table 4.5) is comparable to that of the Table 5.1. However, this is not
the case for the CT, whose performance is significantly lower.

[5] proposed a solution for the multilevel classification problem, which consists of a two-
steps process. The participants are first classified as CG or NDD, then NDD gait patterns
are sent to three binary classifiers: ALS versus PD, ALS versus HD, and HD versus PD.
The final label of someone in the NDD group is defined by the voting algorithm described
in [57], which is applied to the output of all three subclassifiers. Table 5.2 shows that

43
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Study Approach CG-ALS CG-HD CG-PD
Acc. Se. Sp. Acc. Se. Sp. Acc. Se. Sp.

[43] SVM 96.8 95.1 98.8 90.3 95.9 85.4 89.3 89.8 89.8
[45] LS-SVM 100 100 100 100 100 100 100 100 100
[46] NNLS 98.0 100 95.0 88.0 100 75.0 91.0 100 85.0
[47] TDA: PL+RF 75.9 81.2 69.2 91.7 87.5 95.0 90.3 87.5 93.3
[48] NNLS 94.0 87.0 100 95.0 90.0 100 93.0 87.0 100
[49] ConvLSTM 97.7 97.5 97.7 92.9 92.8 93.0 94.0 94.0 94.1
[51] ANFIS 93.1 92.3 93.8 94.4 93.8 95.0 90.3 93.8 86.7
[52] RBF-NN 89.7 92.3 87.5 83.3 85.0 81.2 89.7 92.3 87.5
[53] RQA + SVM 96.1 100 94.0 100 100 100 100 100 100
[54] NNLS 100 100 100 99.9 99.8 100 99.8 99.5 100

Table 5.1: Summary of studies with multiple binary classifiers. If more than one ma-
chine learning approach was used, only the classifier that led to the highest accuracy
was reported. SVM stands for Support Vector Machine, LS stands for Least Squares,
NNLS stands for Non-Negative Least Squares, ConvLSTM stands for Convolutional Short-
Term Long-Term Memory, ANFIS stands for Adaptive Neurofuzzy Inference System, RBF
stands for Radial Basis Function, NN stands for neural network, and RQA for recurrence
quantification analysis.

for the Control and Huntington groups, the RF classifier trained with Petri net features
(Table 4.5) is 10% more accurate than the multiclass approach described by [5]. For the
Parkinson group, this difference is only 1%, and for the ALS group, the classifier of [5] is
2% more accurate than the one proposed here.

Group Petri net - RF [5]
ALS 91.7 93.7

Control 94.7 81.5
Huntington 95.1 84.7
Parkinson 91.7 90.7

Table 5.2: Percentage of accuracy obtained using the Petri Net features (Table 4.5) and
with multiclass approach proposed by [5].

Despite of the impressive results obtained by machine learning approaches in the last
decade, the main obstacle to their widespread adoption in a clinical context is the lack of
interpretability of the resulting models. RFs, support vector machines, and neural net-
works generate black boxes that map a given set of features to a class (i.e., ALS, CG,
PD, or HD, in the present paper). However, as well as being extremely complex, the
rules behind these maps do not contribute to establishing correlations between diseases
and deviations of features from nominal values. Conversely, CTs provide insight into this
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correlation. For example, Figure 4.5 reveals that the TO and HS are important for differ-
entiating between ALS, CG and PD. Likewise, the lowest-right node of this tree indicates
that the occurrence of the VGRFs local minimum is affected differently in HD and PD.

The present study has four main limitations. First, the average age of the CG was
much younger than in the other three groups (Table 3.1). Since gait changes with age
this is a potential problem for the external validity of the proposed CT. In addition, a
group with an average age of 39.313 ± 18.514 could not be compared with groups with
higher ages (55.615±12.829 for ALS, 46.650±12.596 for HD, and 66.800±10.851 for PD).
As mentioned earlier and according to [42], another limitation derived from the usage of
PhysioNet database is that during VGRF measurements, participants turned back when
they reached the end of the 77 m long corridor in which the gait test was conducted. This
change in walking direction generates strides with different events to those of a straight-
line gait. Finally, a disadvantage of normalizing the stride duration to [0%, 100%] is the
loss of the variability of this gait parameter, which has been recognized as significantly
influenced by aging [78].

Further studies will need to consider the laterality of participants, i.e., the dominance
of one side of the brain in controlling pairs of organs e.g., the eyes, the legs or hands. Lat-
erality could be useful in explaining why each branch of the tree presented in Figure 4.5
depends on one side of the body and not on the other. From a theoretical perspective,
future work should explain why a given disease affects certain transitions more than oth-
ers.
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