Repositorio Universidad del Cauca

Sistema de recomendaciones soportado en un esquema de cooperación Smart TV - Smartphone para entornos de publicidad ubicua

Mostrar el registro sencillo del ítem

dc.contributor.author Martínez Pabón, Francisco Orlando
dc.date.accessioned 2019-10-30T20:15:46Z
dc.date.available 2019-10-30T20:15:46Z
dc.date.issued 2016-06
dc.identifier.uri http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1262
dc.description.abstract La presente investigación propone una original aproximación para un Sistema de Recomendaciones basado en confianza, soportado en un esquema de cooperación Smart TV - Smartphone. Con este propósito se realizaron tres estudios complementarios: en un primer estudio, el trabajo se focalizó en el diseño de un algoritmo de inferencia de confianza entre usuarios a partir de la información disponible en un red social de uso masivo como Facebook; posteriormente, en una segunda etapa se diseñó una aproximación para adaptar un algoritmo de filtrado colaborativo clásico que incorporara dicha información de confianza al momento de generar las recomendaciones. Igualmente, se diseñó un mecanismo de cooperación Smart TV - Smartphone para soportar la entrega de recomendaciones bajo un principio precisión/novedad. Durante el desarrollo de los estudios, se plantearon pruebas online y offline con el ánimo de facilitar la comprobación de las hipótesis. Específicamente, las contribuciones de la presente investigación se pueden resumir de la siguiente manera: i) un algoritmo para inferir confianza a partir de la información disponible en la red social Facebook; ii) la adaptación de un algoritmo de filtrado colaborativo clásico para incluir el componente de confianza; iii) un esquema de cooperación Smart TV - Smartphone que soporta la entrega de recomendaciones bajo una aproximación multi-pantalla, con el ánimo de mejorar el balance precisión/novedad percibido por los usuarios; iv) un método de referencia para evaluar el sistema de recomendaciones desde una perspectiva precisión/ novedad. Finalmente, a partir de los resultados obtenidos se pueden evidenciar dos importantes conclusiones: la inclusión de información de confianza en el algortimo de filtrado colaborativo, puede ocasionar un detrimento en la precisión pero a costa de una mejora en la novedad de las recomendaciones; en el mismo sentido, el soporte que ofrece un esquema multipantalla para el despliegue de los anuncios, mejora igualmente el balance entre la precisión y la novedad percibida por los usuarios, lo cual evidencia que un mejor comportamiento del sistema de recomendaciones no sólo depende de la mejora de los algoritmos per-se como lo han planteado otras investigaciones, sino también de una adecuada estrategia de despliegue. Algunas limitaciones relacionadas con el manejo de la naturaleza ad-hoc en la conformación de los grupos en escenarios digital-signage, lo cual dificulta la extracción de la información desde la red social para la inferencia de confianza, o la mejora en los esquemas de seguridad del middleware Smart TV - Smartphone y su extensión a otras plataformas constituyen tópicos de interés para trabajos futuros. spa
dc.description.abstract This research proposes a novel approach for a trust based Recommender System supported on a Smart TV - Smartphone cooperation framework. Basically, three studies were done: in a first study, a trust inference algorithm between users was designed from the information of a massive used social network like Facebook; in a second phase, an approach to adapt a collaborative filtering algorithm included the trust information during the recommendations generation process. Additionally, a Smart TV - Smartphone cooperation mechanism design supported the recommendations delivery strategy under a precision/novelty principle. During the studies development, offline and online tests supported the experiments to validate the hypothesis. Specifically, the following contributions may be highlighted for the current work: i) an algorithm to infer trust from the Facebook social network information; ii) a classic colaborative filtering algorithm adaptation to include the trust component; iii) a Smart TV - Smartphone cooperation framework to support multi-screen recommendations delivery as a method to improve the precision/novelty balance perceived by the users; iv) a reference method to evaluate the recommender system from a precision/novelty perspective. Finally, from the results of the current work there are two important conclusions: the inclusion of trust in the collaborative filtering algorithm may affect the precision adversely but also it improves the novelty of the recommendations. On the other hand, the support of a multiscreen approach for ads delivery improves the precision/novelty balance perceived by the users; it means the improvement of the recommender system behavior not only depends on the algorithms improvements themself (which has been the target of other researches) but also a better recommendations display and delivery strategy. Some interest topics for future works are related to the management of the ad-hoc nature during the groups conformation in digital signage environments, which makes more complex the process for extracting the information for trust inference from the social network; other topics are related to the improvement of the security framework for the Smart TV - Smartphone middleware and its extension to other platforms. eng
dc.language.iso spa spa
dc.publisher Universidad del Cauca spa
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Recommender systems eng
dc.subject Trust inference eng
dc.subject Collaborative filtering eng
dc.subject Smart TV eng
dc.subject Smartphone middleware eng
dc.subject Precision/novelty eng
dc.subject Sistemas de recomendaciones spa
dc.subject Inferencia de confianza spa
dc.subject Filtrado colaborativo spa
dc.subject Precisión/novedad spa
dc.title Sistema de recomendaciones soportado en un esquema de cooperación Smart TV - Smartphone para entornos de publicidad ubicua spa
dc.type Tesis doctorado spa
dc.rights.creativecommons https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.type.driver info:eu-repo/semantics/doctoralThesis
dc.type.coar http://purl.org/coar/resource_type/c_db06
dc.publisher.faculty Facultad de Ingeniería Electrónica y Telecomunicaciones spa
dc.publisher.program Doctorado en Ingeniería Telemática spa
dc.rights.accessrights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/publishedVersion
dc.coar.version http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.instname
dc.identifier.reponame
oaire.accessrights
dc.identifier.repourl
oaire.version


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-nd/4.0/ Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-nd/4.0/

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta