Repositorio Universidad del Cauca

Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach

Mostrar el registro sencillo del ítem

dc.contributor.author Cugia Peña, Kristian Samuel
dc.date.accessioned 2019-12-12T14:00:34Z
dc.date.available 2019-12-12T14:00:34Z
dc.date.issued 2012-07
dc.identifier.uri http://repositorio.unicauca.edu.co:8080/xmlui/handle/123456789/1839
dc.description.abstract State-of-the-art fingerprinting-based localization methods relying on WiFi/GSM information provide sufficient localization accuracy for many mobile applications and work reliably in urban areas and indoors. These methods assume that each location contains a unique combination of signal strength readings. To obtain a location estimation, a mobile devices gathers signal strength readings and with the help of a fingerprinting algorithm, the closest match in a reference database is found. Building this reference database requires a training set consisting of geo-referenced fingerprints. Traditional approaches require manual labelling of the reference locations or GPS information. This work proposes a collaborative, semi-supervised WiFi/GSMbased fingerprinting method where only a small fraction of all fingerprints needs to be georeferenced. This allows for automatic indexing of areas in the absence of GPS reception as found in urban spaces and indoors without requiring manual labelling of fingerprints. Taking advantage of the characteristic that the similarity between two fingerprints correlates to the distance between their corresponding locations, this method applies multidimensional scaling to generate a topology estimation of the training set. With the help of a subset of geo-referenced fingerprints, the topology estimation is anchored to physical locations now serving as a reference database. Further fingerprints can be used to refine and extend the topology estimation. Hence, the covered space grows gradually. An evaluation of the approach is performed using an urban-scale dataset showing that the method can locate a mobile device with a median accuracy of 30 m. Hereby, only 7% of the fingerprints are geo-referenced. Further, the localization error decreases and converges to a value comparable to related work as new fingerprints are added to the reference database. A promising application of the method is seen by combining it with existing fingerprinting systems to extend their functionality into areas where a GPS-based indexing is not possible. eng
dc.language.iso eng eng
dc.publisher Universidad del Cauca spa
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Localization eng
dc.subject Mobile Phone eng
dc.subject WiFi eng
dc.subject GSM eng
dc.subject Fingerprints eng
dc.subject MDS eng
dc.subject GPS Anchor Points eng
dc.title Localization in urban spaces using a collaborative WIFI+GSM- ingerprint-based approach eng
dc.type Trabajos de grado spa
dc.rights.creativecommons https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.type.driver info:eu-repo/semantics/bachelorThesis
dc.type.coar http://purl.org/coar/resource_type/c_7a1f
dc.publisher.faculty Facultad de Ingeniería Electrónica y Telecomunicaciones  spa
dc.publisher.program Ingeniería Electrónica y Telecomunicaciones spa
dc.rights.accessrights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/publishedVersion
dc.coar.version http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.identifier.instname
dc.identifier.reponame
oaire.accessrights
dc.identifier.repourl
oaire.version


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-nd/4.0/ Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-nd/4.0/

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta